aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2010-05-20 08:38:55 -0400
committerIngo Molnar <mingo@elte.hu>2010-05-20 08:38:55 -0400
commitdfacc4d6c98b89609250269f518c1f54c30454ef (patch)
treee7effbee7bdc85d18f7b26ab9cb5c9f700d1481a /kernel
parentf869097e884d8cb65b2bb7831ca57b7dffb66fdd (diff)
parent85cb68b27c428d477169f3aa46c72dba103a17bd (diff)
Merge branch 'perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/random-tracing into perf/core
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile2
-rw-r--r--kernel/acct.c17
-rw-r--r--kernel/capability.c1
-rw-r--r--kernel/cgroup.c64
-rw-r--r--kernel/cpu.c26
-rw-r--r--kernel/cpuset.c67
-rw-r--r--kernel/cred-internals.h21
-rw-r--r--kernel/cred.c3
-rw-r--r--kernel/exit.c1
-rw-r--r--kernel/fork.c1
-rw-r--r--kernel/kexec.c6
-rw-r--r--kernel/lockdep.c84
-rw-r--r--kernel/lockdep_internals.h72
-rw-r--r--kernel/lockdep_proc.c58
-rw-r--r--kernel/module.c22
-rw-r--r--kernel/perf_event.c58
-rw-r--r--kernel/profile.c4
-rw-r--r--kernel/ptrace.c11
-rw-r--r--kernel/rcupdate.c30
-rw-r--r--kernel/rcutiny.c35
-rw-r--r--kernel/rcutiny_plugin.h39
-rw-r--r--kernel/rcutorture.c4
-rw-r--r--kernel/rcutree.c131
-rw-r--r--kernel/rcutree.h2
-rw-r--r--kernel/rcutree_plugin.h69
-rw-r--r--kernel/rcutree_trace.c4
-rw-r--r--kernel/sched.c728
-rw-r--r--kernel/sched_debug.c110
-rw-r--r--kernel/sched_fair.c350
-rw-r--r--kernel/sched_features.h55
-rw-r--r--kernel/sched_idletask.c8
-rw-r--r--kernel/sched_rt.c15
-rw-r--r--kernel/softirq.c2
-rw-r--r--kernel/stop_machine.c537
-rw-r--r--kernel/time/tick-sched.c84
-rw-r--r--kernel/time/timer_list.c1
-rw-r--r--kernel/trace/ftrace.c33
-rw-r--r--kernel/trace/ring_buffer.c179
-rw-r--r--kernel/trace/ring_buffer_benchmark.c5
-rw-r--r--kernel/trace/trace.c127
-rw-r--r--kernel/trace/trace.h27
-rw-r--r--kernel/trace/trace_functions_graph.c169
-rw-r--r--kernel/trace/trace_irqsoff.c271
-rw-r--r--kernel/trace/trace_output.c2
-rw-r--r--kernel/trace/trace_sched_switch.c5
-rw-r--r--kernel/trace/trace_sched_wakeup.c5
-rw-r--r--kernel/trace/trace_selftest.c7
-rw-r--r--kernel/user.c11
48 files changed, 2153 insertions, 1410 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index a987aa1676b5..149e18ef1ab1 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -68,7 +68,7 @@ obj-$(CONFIG_USER_NS) += user_namespace.o
68obj-$(CONFIG_PID_NS) += pid_namespace.o 68obj-$(CONFIG_PID_NS) += pid_namespace.o
69obj-$(CONFIG_IKCONFIG) += configs.o 69obj-$(CONFIG_IKCONFIG) += configs.o
70obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o 70obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o
71obj-$(CONFIG_STOP_MACHINE) += stop_machine.o 71obj-$(CONFIG_SMP) += stop_machine.o
72obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o 72obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
73obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o 73obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o
74obj-$(CONFIG_AUDITSYSCALL) += auditsc.o 74obj-$(CONFIG_AUDITSYSCALL) += auditsc.o
diff --git a/kernel/acct.c b/kernel/acct.c
index 24f8c81fc48d..e4c0e1fee9b0 100644
--- a/kernel/acct.c
+++ b/kernel/acct.c
@@ -353,17 +353,18 @@ restart:
353 353
354void acct_exit_ns(struct pid_namespace *ns) 354void acct_exit_ns(struct pid_namespace *ns)
355{ 355{
356 struct bsd_acct_struct *acct; 356 struct bsd_acct_struct *acct = ns->bacct;
357 357
358 spin_lock(&acct_lock); 358 if (acct == NULL)
359 acct = ns->bacct; 359 return;
360 if (acct != NULL) {
361 if (acct->file != NULL)
362 acct_file_reopen(acct, NULL, NULL);
363 360
364 kfree(acct); 361 del_timer_sync(&acct->timer);
365 } 362 spin_lock(&acct_lock);
363 if (acct->file != NULL)
364 acct_file_reopen(acct, NULL, NULL);
366 spin_unlock(&acct_lock); 365 spin_unlock(&acct_lock);
366
367 kfree(acct);
367} 368}
368 369
369/* 370/*
diff --git a/kernel/capability.c b/kernel/capability.c
index 9e4697e9b276..2f05303715a5 100644
--- a/kernel/capability.c
+++ b/kernel/capability.c
@@ -15,7 +15,6 @@
15#include <linux/syscalls.h> 15#include <linux/syscalls.h>
16#include <linux/pid_namespace.h> 16#include <linux/pid_namespace.h>
17#include <asm/uaccess.h> 17#include <asm/uaccess.h>
18#include "cred-internals.h"
19 18
20/* 19/*
21 * Leveraged for setting/resetting capabilities 20 * Leveraged for setting/resetting capabilities
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index e2769e13980c..e9ec642932ee 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -1646,7 +1646,9 @@ static inline struct cftype *__d_cft(struct dentry *dentry)
1646int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) 1646int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1647{ 1647{
1648 char *start; 1648 char *start;
1649 struct dentry *dentry = rcu_dereference(cgrp->dentry); 1649 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1650 rcu_read_lock_held() ||
1651 cgroup_lock_is_held());
1650 1652
1651 if (!dentry || cgrp == dummytop) { 1653 if (!dentry || cgrp == dummytop) {
1652 /* 1654 /*
@@ -1662,13 +1664,17 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1662 *--start = '\0'; 1664 *--start = '\0';
1663 for (;;) { 1665 for (;;) {
1664 int len = dentry->d_name.len; 1666 int len = dentry->d_name.len;
1667
1665 if ((start -= len) < buf) 1668 if ((start -= len) < buf)
1666 return -ENAMETOOLONG; 1669 return -ENAMETOOLONG;
1667 memcpy(start, cgrp->dentry->d_name.name, len); 1670 memcpy(start, dentry->d_name.name, len);
1668 cgrp = cgrp->parent; 1671 cgrp = cgrp->parent;
1669 if (!cgrp) 1672 if (!cgrp)
1670 break; 1673 break;
1671 dentry = rcu_dereference(cgrp->dentry); 1674
1675 dentry = rcu_dereference_check(cgrp->dentry,
1676 rcu_read_lock_held() ||
1677 cgroup_lock_is_held());
1672 if (!cgrp->parent) 1678 if (!cgrp->parent)
1673 continue; 1679 continue;
1674 if (--start < buf) 1680 if (--start < buf)
@@ -3010,7 +3016,7 @@ static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3010 unsigned long flags = (unsigned long)key; 3016 unsigned long flags = (unsigned long)key;
3011 3017
3012 if (flags & POLLHUP) { 3018 if (flags & POLLHUP) {
3013 remove_wait_queue_locked(event->wqh, &event->wait); 3019 __remove_wait_queue(event->wqh, &event->wait);
3014 spin_lock(&cgrp->event_list_lock); 3020 spin_lock(&cgrp->event_list_lock);
3015 list_del(&event->list); 3021 list_del(&event->list);
3016 spin_unlock(&cgrp->event_list_lock); 3022 spin_unlock(&cgrp->event_list_lock);
@@ -4429,7 +4435,15 @@ __setup("cgroup_disable=", cgroup_disable);
4429 */ 4435 */
4430unsigned short css_id(struct cgroup_subsys_state *css) 4436unsigned short css_id(struct cgroup_subsys_state *css)
4431{ 4437{
4432 struct css_id *cssid = rcu_dereference(css->id); 4438 struct css_id *cssid;
4439
4440 /*
4441 * This css_id() can return correct value when somone has refcnt
4442 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4443 * it's unchanged until freed.
4444 */
4445 cssid = rcu_dereference_check(css->id,
4446 rcu_read_lock_held() || atomic_read(&css->refcnt));
4433 4447
4434 if (cssid) 4448 if (cssid)
4435 return cssid->id; 4449 return cssid->id;
@@ -4439,7 +4453,10 @@ EXPORT_SYMBOL_GPL(css_id);
4439 4453
4440unsigned short css_depth(struct cgroup_subsys_state *css) 4454unsigned short css_depth(struct cgroup_subsys_state *css)
4441{ 4455{
4442 struct css_id *cssid = rcu_dereference(css->id); 4456 struct css_id *cssid;
4457
4458 cssid = rcu_dereference_check(css->id,
4459 rcu_read_lock_held() || atomic_read(&css->refcnt));
4443 4460
4444 if (cssid) 4461 if (cssid)
4445 return cssid->depth; 4462 return cssid->depth;
@@ -4447,15 +4464,36 @@ unsigned short css_depth(struct cgroup_subsys_state *css)
4447} 4464}
4448EXPORT_SYMBOL_GPL(css_depth); 4465EXPORT_SYMBOL_GPL(css_depth);
4449 4466
4467/**
4468 * css_is_ancestor - test "root" css is an ancestor of "child"
4469 * @child: the css to be tested.
4470 * @root: the css supporsed to be an ancestor of the child.
4471 *
4472 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4473 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4474 * But, considering usual usage, the csses should be valid objects after test.
4475 * Assuming that the caller will do some action to the child if this returns
4476 * returns true, the caller must take "child";s reference count.
4477 * If "child" is valid object and this returns true, "root" is valid, too.
4478 */
4479
4450bool css_is_ancestor(struct cgroup_subsys_state *child, 4480bool css_is_ancestor(struct cgroup_subsys_state *child,
4451 const struct cgroup_subsys_state *root) 4481 const struct cgroup_subsys_state *root)
4452{ 4482{
4453 struct css_id *child_id = rcu_dereference(child->id); 4483 struct css_id *child_id;
4454 struct css_id *root_id = rcu_dereference(root->id); 4484 struct css_id *root_id;
4485 bool ret = true;
4455 4486
4456 if (!child_id || !root_id || (child_id->depth < root_id->depth)) 4487 rcu_read_lock();
4457 return false; 4488 child_id = rcu_dereference(child->id);
4458 return child_id->stack[root_id->depth] == root_id->id; 4489 root_id = rcu_dereference(root->id);
4490 if (!child_id
4491 || !root_id
4492 || (child_id->depth < root_id->depth)
4493 || (child_id->stack[root_id->depth] != root_id->id))
4494 ret = false;
4495 rcu_read_unlock();
4496 return ret;
4459} 4497}
4460 4498
4461static void __free_css_id_cb(struct rcu_head *head) 4499static void __free_css_id_cb(struct rcu_head *head)
@@ -4555,13 +4593,13 @@ static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4555{ 4593{
4556 int subsys_id, i, depth = 0; 4594 int subsys_id, i, depth = 0;
4557 struct cgroup_subsys_state *parent_css, *child_css; 4595 struct cgroup_subsys_state *parent_css, *child_css;
4558 struct css_id *child_id, *parent_id = NULL; 4596 struct css_id *child_id, *parent_id;
4559 4597
4560 subsys_id = ss->subsys_id; 4598 subsys_id = ss->subsys_id;
4561 parent_css = parent->subsys[subsys_id]; 4599 parent_css = parent->subsys[subsys_id];
4562 child_css = child->subsys[subsys_id]; 4600 child_css = child->subsys[subsys_id];
4563 depth = css_depth(parent_css) + 1;
4564 parent_id = parent_css->id; 4601 parent_id = parent_css->id;
4602 depth = parent_id->depth;
4565 4603
4566 child_id = get_new_cssid(ss, depth); 4604 child_id = get_new_cssid(ss, depth);
4567 if (IS_ERR(child_id)) 4605 if (IS_ERR(child_id))
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 25bba73b1be3..545777574779 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -164,6 +164,7 @@ static inline void check_for_tasks(int cpu)
164} 164}
165 165
166struct take_cpu_down_param { 166struct take_cpu_down_param {
167 struct task_struct *caller;
167 unsigned long mod; 168 unsigned long mod;
168 void *hcpu; 169 void *hcpu;
169}; 170};
@@ -172,6 +173,7 @@ struct take_cpu_down_param {
172static int __ref take_cpu_down(void *_param) 173static int __ref take_cpu_down(void *_param)
173{ 174{
174 struct take_cpu_down_param *param = _param; 175 struct take_cpu_down_param *param = _param;
176 unsigned int cpu = (unsigned long)param->hcpu;
175 int err; 177 int err;
176 178
177 /* Ensure this CPU doesn't handle any more interrupts. */ 179 /* Ensure this CPU doesn't handle any more interrupts. */
@@ -182,6 +184,8 @@ static int __ref take_cpu_down(void *_param)
182 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, 184 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
183 param->hcpu); 185 param->hcpu);
184 186
187 if (task_cpu(param->caller) == cpu)
188 move_task_off_dead_cpu(cpu, param->caller);
185 /* Force idle task to run as soon as we yield: it should 189 /* Force idle task to run as soon as we yield: it should
186 immediately notice cpu is offline and die quickly. */ 190 immediately notice cpu is offline and die quickly. */
187 sched_idle_next(); 191 sched_idle_next();
@@ -192,10 +196,10 @@ static int __ref take_cpu_down(void *_param)
192static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 196static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
193{ 197{
194 int err, nr_calls = 0; 198 int err, nr_calls = 0;
195 cpumask_var_t old_allowed;
196 void *hcpu = (void *)(long)cpu; 199 void *hcpu = (void *)(long)cpu;
197 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 200 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
198 struct take_cpu_down_param tcd_param = { 201 struct take_cpu_down_param tcd_param = {
202 .caller = current,
199 .mod = mod, 203 .mod = mod,
200 .hcpu = hcpu, 204 .hcpu = hcpu,
201 }; 205 };
@@ -206,9 +210,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
206 if (!cpu_online(cpu)) 210 if (!cpu_online(cpu))
207 return -EINVAL; 211 return -EINVAL;
208 212
209 if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
210 return -ENOMEM;
211
212 cpu_hotplug_begin(); 213 cpu_hotplug_begin();
213 set_cpu_active(cpu, false); 214 set_cpu_active(cpu, false);
214 err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, 215 err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
@@ -225,10 +226,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
225 goto out_release; 226 goto out_release;
226 } 227 }
227 228
228 /* Ensure that we are not runnable on dying cpu */
229 cpumask_copy(old_allowed, &current->cpus_allowed);
230 set_cpus_allowed_ptr(current, cpu_active_mask);
231
232 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); 229 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
233 if (err) { 230 if (err) {
234 set_cpu_active(cpu, true); 231 set_cpu_active(cpu, true);
@@ -237,7 +234,7 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
237 hcpu) == NOTIFY_BAD) 234 hcpu) == NOTIFY_BAD)
238 BUG(); 235 BUG();
239 236
240 goto out_allowed; 237 goto out_release;
241 } 238 }
242 BUG_ON(cpu_online(cpu)); 239 BUG_ON(cpu_online(cpu));
243 240
@@ -255,8 +252,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
255 252
256 check_for_tasks(cpu); 253 check_for_tasks(cpu);
257 254
258out_allowed:
259 set_cpus_allowed_ptr(current, old_allowed);
260out_release: 255out_release:
261 cpu_hotplug_done(); 256 cpu_hotplug_done();
262 if (!err) { 257 if (!err) {
@@ -264,7 +259,6 @@ out_release:
264 hcpu) == NOTIFY_BAD) 259 hcpu) == NOTIFY_BAD)
265 BUG(); 260 BUG();
266 } 261 }
267 free_cpumask_var(old_allowed);
268 return err; 262 return err;
269} 263}
270 264
@@ -272,9 +266,6 @@ int __ref cpu_down(unsigned int cpu)
272{ 266{
273 int err; 267 int err;
274 268
275 err = stop_machine_create();
276 if (err)
277 return err;
278 cpu_maps_update_begin(); 269 cpu_maps_update_begin();
279 270
280 if (cpu_hotplug_disabled) { 271 if (cpu_hotplug_disabled) {
@@ -286,7 +277,6 @@ int __ref cpu_down(unsigned int cpu)
286 277
287out: 278out:
288 cpu_maps_update_done(); 279 cpu_maps_update_done();
289 stop_machine_destroy();
290 return err; 280 return err;
291} 281}
292EXPORT_SYMBOL(cpu_down); 282EXPORT_SYMBOL(cpu_down);
@@ -367,9 +357,6 @@ int disable_nonboot_cpus(void)
367{ 357{
368 int cpu, first_cpu, error; 358 int cpu, first_cpu, error;
369 359
370 error = stop_machine_create();
371 if (error)
372 return error;
373 cpu_maps_update_begin(); 360 cpu_maps_update_begin();
374 first_cpu = cpumask_first(cpu_online_mask); 361 first_cpu = cpumask_first(cpu_online_mask);
375 /* 362 /*
@@ -400,7 +387,6 @@ int disable_nonboot_cpus(void)
400 printk(KERN_ERR "Non-boot CPUs are not disabled\n"); 387 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
401 } 388 }
402 cpu_maps_update_done(); 389 cpu_maps_update_done();
403 stop_machine_destroy();
404 return error; 390 return error;
405} 391}
406 392
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index d10946748ec2..9a50c5f6e727 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -2182,19 +2182,52 @@ void __init cpuset_init_smp(void)
2182void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 2182void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2183{ 2183{
2184 mutex_lock(&callback_mutex); 2184 mutex_lock(&callback_mutex);
2185 cpuset_cpus_allowed_locked(tsk, pmask); 2185 task_lock(tsk);
2186 guarantee_online_cpus(task_cs(tsk), pmask);
2187 task_unlock(tsk);
2186 mutex_unlock(&callback_mutex); 2188 mutex_unlock(&callback_mutex);
2187} 2189}
2188 2190
2189/** 2191int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2190 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2191 * Must be called with callback_mutex held.
2192 **/
2193void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2194{ 2192{
2195 task_lock(tsk); 2193 const struct cpuset *cs;
2196 guarantee_online_cpus(task_cs(tsk), pmask); 2194 int cpu;
2197 task_unlock(tsk); 2195
2196 rcu_read_lock();
2197 cs = task_cs(tsk);
2198 if (cs)
2199 cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
2200 rcu_read_unlock();
2201
2202 /*
2203 * We own tsk->cpus_allowed, nobody can change it under us.
2204 *
2205 * But we used cs && cs->cpus_allowed lockless and thus can
2206 * race with cgroup_attach_task() or update_cpumask() and get
2207 * the wrong tsk->cpus_allowed. However, both cases imply the
2208 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2209 * which takes task_rq_lock().
2210 *
2211 * If we are called after it dropped the lock we must see all
2212 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2213 * set any mask even if it is not right from task_cs() pov,
2214 * the pending set_cpus_allowed_ptr() will fix things.
2215 */
2216
2217 cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2218 if (cpu >= nr_cpu_ids) {
2219 /*
2220 * Either tsk->cpus_allowed is wrong (see above) or it
2221 * is actually empty. The latter case is only possible
2222 * if we are racing with remove_tasks_in_empty_cpuset().
2223 * Like above we can temporary set any mask and rely on
2224 * set_cpus_allowed_ptr() as synchronization point.
2225 */
2226 cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
2227 cpu = cpumask_any(cpu_active_mask);
2228 }
2229
2230 return cpu;
2198} 2231}
2199 2232
2200void cpuset_init_current_mems_allowed(void) 2233void cpuset_init_current_mems_allowed(void)
@@ -2383,22 +2416,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2383} 2416}
2384 2417
2385/** 2418/**
2386 * cpuset_lock - lock out any changes to cpuset structures
2387 *
2388 * The out of memory (oom) code needs to mutex_lock cpusets
2389 * from being changed while it scans the tasklist looking for a
2390 * task in an overlapping cpuset. Expose callback_mutex via this
2391 * cpuset_lock() routine, so the oom code can lock it, before
2392 * locking the task list. The tasklist_lock is a spinlock, so
2393 * must be taken inside callback_mutex.
2394 */
2395
2396void cpuset_lock(void)
2397{
2398 mutex_lock(&callback_mutex);
2399}
2400
2401/**
2402 * cpuset_unlock - release lock on cpuset changes 2419 * cpuset_unlock - release lock on cpuset changes
2403 * 2420 *
2404 * Undo the lock taken in a previous cpuset_lock() call. 2421 * Undo the lock taken in a previous cpuset_lock() call.
diff --git a/kernel/cred-internals.h b/kernel/cred-internals.h
deleted file mode 100644
index 2dc4fc2d0bf1..000000000000
--- a/kernel/cred-internals.h
+++ /dev/null
@@ -1,21 +0,0 @@
1/* Internal credentials stuff
2 *
3 * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 */
11
12/*
13 * user.c
14 */
15static inline void sched_switch_user(struct task_struct *p)
16{
17#ifdef CONFIG_USER_SCHED
18 sched_move_task(p);
19#endif /* CONFIG_USER_SCHED */
20}
21
diff --git a/kernel/cred.c b/kernel/cred.c
index 62af1816c235..8f3672a58a1e 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -17,7 +17,6 @@
17#include <linux/init_task.h> 17#include <linux/init_task.h>
18#include <linux/security.h> 18#include <linux/security.h>
19#include <linux/cn_proc.h> 19#include <linux/cn_proc.h>
20#include "cred-internals.h"
21 20
22#if 0 21#if 0
23#define kdebug(FMT, ...) \ 22#define kdebug(FMT, ...) \
@@ -560,8 +559,6 @@ int commit_creds(struct cred *new)
560 atomic_dec(&old->user->processes); 559 atomic_dec(&old->user->processes);
561 alter_cred_subscribers(old, -2); 560 alter_cred_subscribers(old, -2);
562 561
563 sched_switch_user(task);
564
565 /* send notifications */ 562 /* send notifications */
566 if (new->uid != old->uid || 563 if (new->uid != old->uid ||
567 new->euid != old->euid || 564 new->euid != old->euid ||
diff --git a/kernel/exit.c b/kernel/exit.c
index 7f2683a10ac4..eabca5a73a85 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -55,7 +55,6 @@
55#include <asm/unistd.h> 55#include <asm/unistd.h>
56#include <asm/pgtable.h> 56#include <asm/pgtable.h>
57#include <asm/mmu_context.h> 57#include <asm/mmu_context.h>
58#include "cred-internals.h"
59 58
60static void exit_mm(struct task_struct * tsk); 59static void exit_mm(struct task_struct * tsk);
61 60
diff --git a/kernel/fork.c b/kernel/fork.c
index 5d3592deaf71..4d57d9e3a6e9 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1111,7 +1111,6 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1111 p->memcg_batch.do_batch = 0; 1111 p->memcg_batch.do_batch = 0;
1112 p->memcg_batch.memcg = NULL; 1112 p->memcg_batch.memcg = NULL;
1113#endif 1113#endif
1114 p->stack_start = stack_start;
1115 1114
1116 /* Perform scheduler related setup. Assign this task to a CPU. */ 1115 /* Perform scheduler related setup. Assign this task to a CPU. */
1117 sched_fork(p, clone_flags); 1116 sched_fork(p, clone_flags);
diff --git a/kernel/kexec.c b/kernel/kexec.c
index 87ebe8adc474..474a84715eac 100644
--- a/kernel/kexec.c
+++ b/kernel/kexec.c
@@ -1134,11 +1134,9 @@ int crash_shrink_memory(unsigned long new_size)
1134 1134
1135 free_reserved_phys_range(end, crashk_res.end); 1135 free_reserved_phys_range(end, crashk_res.end);
1136 1136
1137 if (start == end) { 1137 if (start == end)
1138 crashk_res.end = end;
1139 release_resource(&crashk_res); 1138 release_resource(&crashk_res);
1140 } else 1139 crashk_res.end = end - 1;
1141 crashk_res.end = end - 1;
1142 1140
1143unlock: 1141unlock:
1144 mutex_unlock(&kexec_mutex); 1142 mutex_unlock(&kexec_mutex);
diff --git a/kernel/lockdep.c b/kernel/lockdep.c
index e9c759f06c1d..ec21304856d1 100644
--- a/kernel/lockdep.c
+++ b/kernel/lockdep.c
@@ -431,20 +431,7 @@ static struct stack_trace lockdep_init_trace = {
431/* 431/*
432 * Various lockdep statistics: 432 * Various lockdep statistics:
433 */ 433 */
434atomic_t chain_lookup_hits; 434DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
435atomic_t chain_lookup_misses;
436atomic_t hardirqs_on_events;
437atomic_t hardirqs_off_events;
438atomic_t redundant_hardirqs_on;
439atomic_t redundant_hardirqs_off;
440atomic_t softirqs_on_events;
441atomic_t softirqs_off_events;
442atomic_t redundant_softirqs_on;
443atomic_t redundant_softirqs_off;
444atomic_t nr_unused_locks;
445atomic_t nr_cyclic_checks;
446atomic_t nr_find_usage_forwards_checks;
447atomic_t nr_find_usage_backwards_checks;
448#endif 435#endif
449 436
450/* 437/*
@@ -748,7 +735,7 @@ register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
748 return NULL; 735 return NULL;
749 } 736 }
750 class = lock_classes + nr_lock_classes++; 737 class = lock_classes + nr_lock_classes++;
751 debug_atomic_inc(&nr_unused_locks); 738 debug_atomic_inc(nr_unused_locks);
752 class->key = key; 739 class->key = key;
753 class->name = lock->name; 740 class->name = lock->name;
754 class->subclass = subclass; 741 class->subclass = subclass;
@@ -818,7 +805,8 @@ static struct lock_list *alloc_list_entry(void)
818 * Add a new dependency to the head of the list: 805 * Add a new dependency to the head of the list:
819 */ 806 */
820static int add_lock_to_list(struct lock_class *class, struct lock_class *this, 807static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
821 struct list_head *head, unsigned long ip, int distance) 808 struct list_head *head, unsigned long ip,
809 int distance, struct stack_trace *trace)
822{ 810{
823 struct lock_list *entry; 811 struct lock_list *entry;
824 /* 812 /*
@@ -829,11 +817,9 @@ static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
829 if (!entry) 817 if (!entry)
830 return 0; 818 return 0;
831 819
832 if (!save_trace(&entry->trace))
833 return 0;
834
835 entry->class = this; 820 entry->class = this;
836 entry->distance = distance; 821 entry->distance = distance;
822 entry->trace = *trace;
837 /* 823 /*
838 * Since we never remove from the dependency list, the list can 824 * Since we never remove from the dependency list, the list can
839 * be walked lockless by other CPUs, it's only allocation 825 * be walked lockless by other CPUs, it's only allocation
@@ -1205,7 +1191,7 @@ check_noncircular(struct lock_list *root, struct lock_class *target,
1205{ 1191{
1206 int result; 1192 int result;
1207 1193
1208 debug_atomic_inc(&nr_cyclic_checks); 1194 debug_atomic_inc(nr_cyclic_checks);
1209 1195
1210 result = __bfs_forwards(root, target, class_equal, target_entry); 1196 result = __bfs_forwards(root, target, class_equal, target_entry);
1211 1197
@@ -1242,7 +1228,7 @@ find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1242{ 1228{
1243 int result; 1229 int result;
1244 1230
1245 debug_atomic_inc(&nr_find_usage_forwards_checks); 1231 debug_atomic_inc(nr_find_usage_forwards_checks);
1246 1232
1247 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); 1233 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1248 1234
@@ -1265,7 +1251,7 @@ find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1265{ 1251{
1266 int result; 1252 int result;
1267 1253
1268 debug_atomic_inc(&nr_find_usage_backwards_checks); 1254 debug_atomic_inc(nr_find_usage_backwards_checks);
1269 1255
1270 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); 1256 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1271 1257
@@ -1635,12 +1621,20 @@ check_deadlock(struct task_struct *curr, struct held_lock *next,
1635 */ 1621 */
1636static int 1622static int
1637check_prev_add(struct task_struct *curr, struct held_lock *prev, 1623check_prev_add(struct task_struct *curr, struct held_lock *prev,
1638 struct held_lock *next, int distance) 1624 struct held_lock *next, int distance, int trylock_loop)
1639{ 1625{
1640 struct lock_list *entry; 1626 struct lock_list *entry;
1641 int ret; 1627 int ret;
1642 struct lock_list this; 1628 struct lock_list this;
1643 struct lock_list *uninitialized_var(target_entry); 1629 struct lock_list *uninitialized_var(target_entry);
1630 /*
1631 * Static variable, serialized by the graph_lock().
1632 *
1633 * We use this static variable to save the stack trace in case
1634 * we call into this function multiple times due to encountering
1635 * trylocks in the held lock stack.
1636 */
1637 static struct stack_trace trace;
1644 1638
1645 /* 1639 /*
1646 * Prove that the new <prev> -> <next> dependency would not 1640 * Prove that the new <prev> -> <next> dependency would not
@@ -1688,20 +1682,23 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
1688 } 1682 }
1689 } 1683 }
1690 1684
1685 if (!trylock_loop && !save_trace(&trace))
1686 return 0;
1687
1691 /* 1688 /*
1692 * Ok, all validations passed, add the new lock 1689 * Ok, all validations passed, add the new lock
1693 * to the previous lock's dependency list: 1690 * to the previous lock's dependency list:
1694 */ 1691 */
1695 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 1692 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
1696 &hlock_class(prev)->locks_after, 1693 &hlock_class(prev)->locks_after,
1697 next->acquire_ip, distance); 1694 next->acquire_ip, distance, &trace);
1698 1695
1699 if (!ret) 1696 if (!ret)
1700 return 0; 1697 return 0;
1701 1698
1702 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 1699 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
1703 &hlock_class(next)->locks_before, 1700 &hlock_class(next)->locks_before,
1704 next->acquire_ip, distance); 1701 next->acquire_ip, distance, &trace);
1705 if (!ret) 1702 if (!ret)
1706 return 0; 1703 return 0;
1707 1704
@@ -1731,6 +1728,7 @@ static int
1731check_prevs_add(struct task_struct *curr, struct held_lock *next) 1728check_prevs_add(struct task_struct *curr, struct held_lock *next)
1732{ 1729{
1733 int depth = curr->lockdep_depth; 1730 int depth = curr->lockdep_depth;
1731 int trylock_loop = 0;
1734 struct held_lock *hlock; 1732 struct held_lock *hlock;
1735 1733
1736 /* 1734 /*
@@ -1756,7 +1754,8 @@ check_prevs_add(struct task_struct *curr, struct held_lock *next)
1756 * added: 1754 * added:
1757 */ 1755 */
1758 if (hlock->read != 2) { 1756 if (hlock->read != 2) {
1759 if (!check_prev_add(curr, hlock, next, distance)) 1757 if (!check_prev_add(curr, hlock, next,
1758 distance, trylock_loop))
1760 return 0; 1759 return 0;
1761 /* 1760 /*
1762 * Stop after the first non-trylock entry, 1761 * Stop after the first non-trylock entry,
@@ -1779,6 +1778,7 @@ check_prevs_add(struct task_struct *curr, struct held_lock *next)
1779 if (curr->held_locks[depth].irq_context != 1778 if (curr->held_locks[depth].irq_context !=
1780 curr->held_locks[depth-1].irq_context) 1779 curr->held_locks[depth-1].irq_context)
1781 break; 1780 break;
1781 trylock_loop = 1;
1782 } 1782 }
1783 return 1; 1783 return 1;
1784out_bug: 1784out_bug:
@@ -1825,7 +1825,7 @@ static inline int lookup_chain_cache(struct task_struct *curr,
1825 list_for_each_entry(chain, hash_head, entry) { 1825 list_for_each_entry(chain, hash_head, entry) {
1826 if (chain->chain_key == chain_key) { 1826 if (chain->chain_key == chain_key) {
1827cache_hit: 1827cache_hit:
1828 debug_atomic_inc(&chain_lookup_hits); 1828 debug_atomic_inc(chain_lookup_hits);
1829 if (very_verbose(class)) 1829 if (very_verbose(class))
1830 printk("\nhash chain already cached, key: " 1830 printk("\nhash chain already cached, key: "
1831 "%016Lx tail class: [%p] %s\n", 1831 "%016Lx tail class: [%p] %s\n",
@@ -1890,7 +1890,7 @@ cache_hit:
1890 chain_hlocks[chain->base + j] = class - lock_classes; 1890 chain_hlocks[chain->base + j] = class - lock_classes;
1891 } 1891 }
1892 list_add_tail_rcu(&chain->entry, hash_head); 1892 list_add_tail_rcu(&chain->entry, hash_head);
1893 debug_atomic_inc(&chain_lookup_misses); 1893 debug_atomic_inc(chain_lookup_misses);
1894 inc_chains(); 1894 inc_chains();
1895 1895
1896 return 1; 1896 return 1;
@@ -2311,7 +2311,12 @@ void trace_hardirqs_on_caller(unsigned long ip)
2311 return; 2311 return;
2312 2312
2313 if (unlikely(curr->hardirqs_enabled)) { 2313 if (unlikely(curr->hardirqs_enabled)) {
2314 debug_atomic_inc(&redundant_hardirqs_on); 2314 /*
2315 * Neither irq nor preemption are disabled here
2316 * so this is racy by nature but loosing one hit
2317 * in a stat is not a big deal.
2318 */
2319 __debug_atomic_inc(redundant_hardirqs_on);
2315 return; 2320 return;
2316 } 2321 }
2317 /* we'll do an OFF -> ON transition: */ 2322 /* we'll do an OFF -> ON transition: */
@@ -2338,7 +2343,7 @@ void trace_hardirqs_on_caller(unsigned long ip)
2338 2343
2339 curr->hardirq_enable_ip = ip; 2344 curr->hardirq_enable_ip = ip;
2340 curr->hardirq_enable_event = ++curr->irq_events; 2345 curr->hardirq_enable_event = ++curr->irq_events;
2341 debug_atomic_inc(&hardirqs_on_events); 2346 debug_atomic_inc(hardirqs_on_events);
2342} 2347}
2343EXPORT_SYMBOL(trace_hardirqs_on_caller); 2348EXPORT_SYMBOL(trace_hardirqs_on_caller);
2344 2349
@@ -2370,9 +2375,9 @@ void trace_hardirqs_off_caller(unsigned long ip)
2370 curr->hardirqs_enabled = 0; 2375 curr->hardirqs_enabled = 0;
2371 curr->hardirq_disable_ip = ip; 2376 curr->hardirq_disable_ip = ip;
2372 curr->hardirq_disable_event = ++curr->irq_events; 2377 curr->hardirq_disable_event = ++curr->irq_events;
2373 debug_atomic_inc(&hardirqs_off_events); 2378 debug_atomic_inc(hardirqs_off_events);
2374 } else 2379 } else
2375 debug_atomic_inc(&redundant_hardirqs_off); 2380 debug_atomic_inc(redundant_hardirqs_off);
2376} 2381}
2377EXPORT_SYMBOL(trace_hardirqs_off_caller); 2382EXPORT_SYMBOL(trace_hardirqs_off_caller);
2378 2383
@@ -2396,7 +2401,7 @@ void trace_softirqs_on(unsigned long ip)
2396 return; 2401 return;
2397 2402
2398 if (curr->softirqs_enabled) { 2403 if (curr->softirqs_enabled) {
2399 debug_atomic_inc(&redundant_softirqs_on); 2404 debug_atomic_inc(redundant_softirqs_on);
2400 return; 2405 return;
2401 } 2406 }
2402 2407
@@ -2406,7 +2411,7 @@ void trace_softirqs_on(unsigned long ip)
2406 curr->softirqs_enabled = 1; 2411 curr->softirqs_enabled = 1;
2407 curr->softirq_enable_ip = ip; 2412 curr->softirq_enable_ip = ip;
2408 curr->softirq_enable_event = ++curr->irq_events; 2413 curr->softirq_enable_event = ++curr->irq_events;
2409 debug_atomic_inc(&softirqs_on_events); 2414 debug_atomic_inc(softirqs_on_events);
2410 /* 2415 /*
2411 * We are going to turn softirqs on, so set the 2416 * We are going to turn softirqs on, so set the
2412 * usage bit for all held locks, if hardirqs are 2417 * usage bit for all held locks, if hardirqs are
@@ -2436,10 +2441,10 @@ void trace_softirqs_off(unsigned long ip)
2436 curr->softirqs_enabled = 0; 2441 curr->softirqs_enabled = 0;
2437 curr->softirq_disable_ip = ip; 2442 curr->softirq_disable_ip = ip;
2438 curr->softirq_disable_event = ++curr->irq_events; 2443 curr->softirq_disable_event = ++curr->irq_events;
2439 debug_atomic_inc(&softirqs_off_events); 2444 debug_atomic_inc(softirqs_off_events);
2440 DEBUG_LOCKS_WARN_ON(!softirq_count()); 2445 DEBUG_LOCKS_WARN_ON(!softirq_count());
2441 } else 2446 } else
2442 debug_atomic_inc(&redundant_softirqs_off); 2447 debug_atomic_inc(redundant_softirqs_off);
2443} 2448}
2444 2449
2445static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) 2450static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
@@ -2644,7 +2649,7 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this,
2644 return 0; 2649 return 0;
2645 break; 2650 break;
2646 case LOCK_USED: 2651 case LOCK_USED:
2647 debug_atomic_dec(&nr_unused_locks); 2652 debug_atomic_dec(nr_unused_locks);
2648 break; 2653 break;
2649 default: 2654 default:
2650 if (!debug_locks_off_graph_unlock()) 2655 if (!debug_locks_off_graph_unlock())
@@ -2750,7 +2755,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2750 if (!class) 2755 if (!class)
2751 return 0; 2756 return 0;
2752 } 2757 }
2753 debug_atomic_inc((atomic_t *)&class->ops); 2758 atomic_inc((atomic_t *)&class->ops);
2754 if (very_verbose(class)) { 2759 if (very_verbose(class)) {
2755 printk("\nacquire class [%p] %s", class->key, class->name); 2760 printk("\nacquire class [%p] %s", class->key, class->name);
2756 if (class->name_version > 1) 2761 if (class->name_version > 1)
@@ -3801,8 +3806,11 @@ void lockdep_rcu_dereference(const char *file, const int line)
3801{ 3806{
3802 struct task_struct *curr = current; 3807 struct task_struct *curr = current;
3803 3808
3809#ifndef CONFIG_PROVE_RCU_REPEATEDLY
3804 if (!debug_locks_off()) 3810 if (!debug_locks_off())
3805 return; 3811 return;
3812#endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */
3813 /* Note: the following can be executed concurrently, so be careful. */
3806 printk("\n===================================================\n"); 3814 printk("\n===================================================\n");
3807 printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n"); 3815 printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n");
3808 printk( "---------------------------------------------------\n"); 3816 printk( "---------------------------------------------------\n");
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h
index a2ee95ad1313..4f560cfedc8f 100644
--- a/kernel/lockdep_internals.h
+++ b/kernel/lockdep_internals.h
@@ -110,30 +110,60 @@ lockdep_count_backward_deps(struct lock_class *class)
110#endif 110#endif
111 111
112#ifdef CONFIG_DEBUG_LOCKDEP 112#ifdef CONFIG_DEBUG_LOCKDEP
113
114#include <asm/local.h>
113/* 115/*
114 * Various lockdep statistics: 116 * Various lockdep statistics.
117 * We want them per cpu as they are often accessed in fast path
118 * and we want to avoid too much cache bouncing.
115 */ 119 */
116extern atomic_t chain_lookup_hits; 120struct lockdep_stats {
117extern atomic_t chain_lookup_misses; 121 int chain_lookup_hits;
118extern atomic_t hardirqs_on_events; 122 int chain_lookup_misses;
119extern atomic_t hardirqs_off_events; 123 int hardirqs_on_events;
120extern atomic_t redundant_hardirqs_on; 124 int hardirqs_off_events;
121extern atomic_t redundant_hardirqs_off; 125 int redundant_hardirqs_on;
122extern atomic_t softirqs_on_events; 126 int redundant_hardirqs_off;
123extern atomic_t softirqs_off_events; 127 int softirqs_on_events;
124extern atomic_t redundant_softirqs_on; 128 int softirqs_off_events;
125extern atomic_t redundant_softirqs_off; 129 int redundant_softirqs_on;
126extern atomic_t nr_unused_locks; 130 int redundant_softirqs_off;
127extern atomic_t nr_cyclic_checks; 131 int nr_unused_locks;
128extern atomic_t nr_cyclic_check_recursions; 132 int nr_cyclic_checks;
129extern atomic_t nr_find_usage_forwards_checks; 133 int nr_cyclic_check_recursions;
130extern atomic_t nr_find_usage_forwards_recursions; 134 int nr_find_usage_forwards_checks;
131extern atomic_t nr_find_usage_backwards_checks; 135 int nr_find_usage_forwards_recursions;
132extern atomic_t nr_find_usage_backwards_recursions; 136 int nr_find_usage_backwards_checks;
133# define debug_atomic_inc(ptr) atomic_inc(ptr) 137 int nr_find_usage_backwards_recursions;
134# define debug_atomic_dec(ptr) atomic_dec(ptr) 138};
135# define debug_atomic_read(ptr) atomic_read(ptr) 139
140DECLARE_PER_CPU(struct lockdep_stats, lockdep_stats);
141
142#define __debug_atomic_inc(ptr) \
143 this_cpu_inc(lockdep_stats.ptr);
144
145#define debug_atomic_inc(ptr) { \
146 WARN_ON_ONCE(!irqs_disabled()); \
147 __this_cpu_inc(lockdep_stats.ptr); \
148}
149
150#define debug_atomic_dec(ptr) { \
151 WARN_ON_ONCE(!irqs_disabled()); \
152 __this_cpu_dec(lockdep_stats.ptr); \
153}
154
155#define debug_atomic_read(ptr) ({ \
156 struct lockdep_stats *__cpu_lockdep_stats; \
157 unsigned long long __total = 0; \
158 int __cpu; \
159 for_each_possible_cpu(__cpu) { \
160 __cpu_lockdep_stats = &per_cpu(lockdep_stats, __cpu); \
161 __total += __cpu_lockdep_stats->ptr; \
162 } \
163 __total; \
164})
136#else 165#else
166# define __debug_atomic_inc(ptr) do { } while (0)
137# define debug_atomic_inc(ptr) do { } while (0) 167# define debug_atomic_inc(ptr) do { } while (0)
138# define debug_atomic_dec(ptr) do { } while (0) 168# define debug_atomic_dec(ptr) do { } while (0)
139# define debug_atomic_read(ptr) 0 169# define debug_atomic_read(ptr) 0
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c
index d4aba4f3584c..59b76c8ce9d7 100644
--- a/kernel/lockdep_proc.c
+++ b/kernel/lockdep_proc.c
@@ -184,34 +184,34 @@ static const struct file_operations proc_lockdep_chains_operations = {
184static void lockdep_stats_debug_show(struct seq_file *m) 184static void lockdep_stats_debug_show(struct seq_file *m)
185{ 185{
186#ifdef CONFIG_DEBUG_LOCKDEP 186#ifdef CONFIG_DEBUG_LOCKDEP
187 unsigned int hi1 = debug_atomic_read(&hardirqs_on_events), 187 unsigned long long hi1 = debug_atomic_read(hardirqs_on_events),
188 hi2 = debug_atomic_read(&hardirqs_off_events), 188 hi2 = debug_atomic_read(hardirqs_off_events),
189 hr1 = debug_atomic_read(&redundant_hardirqs_on), 189 hr1 = debug_atomic_read(redundant_hardirqs_on),
190 hr2 = debug_atomic_read(&redundant_hardirqs_off), 190 hr2 = debug_atomic_read(redundant_hardirqs_off),
191 si1 = debug_atomic_read(&softirqs_on_events), 191 si1 = debug_atomic_read(softirqs_on_events),
192 si2 = debug_atomic_read(&softirqs_off_events), 192 si2 = debug_atomic_read(softirqs_off_events),
193 sr1 = debug_atomic_read(&redundant_softirqs_on), 193 sr1 = debug_atomic_read(redundant_softirqs_on),
194 sr2 = debug_atomic_read(&redundant_softirqs_off); 194 sr2 = debug_atomic_read(redundant_softirqs_off);
195 195
196 seq_printf(m, " chain lookup misses: %11u\n", 196 seq_printf(m, " chain lookup misses: %11llu\n",
197 debug_atomic_read(&chain_lookup_misses)); 197 debug_atomic_read(chain_lookup_misses));
198 seq_printf(m, " chain lookup hits: %11u\n", 198 seq_printf(m, " chain lookup hits: %11llu\n",
199 debug_atomic_read(&chain_lookup_hits)); 199 debug_atomic_read(chain_lookup_hits));
200 seq_printf(m, " cyclic checks: %11u\n", 200 seq_printf(m, " cyclic checks: %11llu\n",
201 debug_atomic_read(&nr_cyclic_checks)); 201 debug_atomic_read(nr_cyclic_checks));
202 seq_printf(m, " find-mask forwards checks: %11u\n", 202 seq_printf(m, " find-mask forwards checks: %11llu\n",
203 debug_atomic_read(&nr_find_usage_forwards_checks)); 203 debug_atomic_read(nr_find_usage_forwards_checks));
204 seq_printf(m, " find-mask backwards checks: %11u\n", 204 seq_printf(m, " find-mask backwards checks: %11llu\n",
205 debug_atomic_read(&nr_find_usage_backwards_checks)); 205 debug_atomic_read(nr_find_usage_backwards_checks));
206 206
207 seq_printf(m, " hardirq on events: %11u\n", hi1); 207 seq_printf(m, " hardirq on events: %11llu\n", hi1);
208 seq_printf(m, " hardirq off events: %11u\n", hi2); 208 seq_printf(m, " hardirq off events: %11llu\n", hi2);
209 seq_printf(m, " redundant hardirq ons: %11u\n", hr1); 209 seq_printf(m, " redundant hardirq ons: %11llu\n", hr1);
210 seq_printf(m, " redundant hardirq offs: %11u\n", hr2); 210 seq_printf(m, " redundant hardirq offs: %11llu\n", hr2);
211 seq_printf(m, " softirq on events: %11u\n", si1); 211 seq_printf(m, " softirq on events: %11llu\n", si1);
212 seq_printf(m, " softirq off events: %11u\n", si2); 212 seq_printf(m, " softirq off events: %11llu\n", si2);
213 seq_printf(m, " redundant softirq ons: %11u\n", sr1); 213 seq_printf(m, " redundant softirq ons: %11llu\n", sr1);
214 seq_printf(m, " redundant softirq offs: %11u\n", sr2); 214 seq_printf(m, " redundant softirq offs: %11llu\n", sr2);
215#endif 215#endif
216} 216}
217 217
@@ -263,7 +263,7 @@ static int lockdep_stats_show(struct seq_file *m, void *v)
263#endif 263#endif
264 } 264 }
265#ifdef CONFIG_DEBUG_LOCKDEP 265#ifdef CONFIG_DEBUG_LOCKDEP
266 DEBUG_LOCKS_WARN_ON(debug_atomic_read(&nr_unused_locks) != nr_unused); 266 DEBUG_LOCKS_WARN_ON(debug_atomic_read(nr_unused_locks) != nr_unused);
267#endif 267#endif
268 seq_printf(m, " lock-classes: %11lu [max: %lu]\n", 268 seq_printf(m, " lock-classes: %11lu [max: %lu]\n",
269 nr_lock_classes, MAX_LOCKDEP_KEYS); 269 nr_lock_classes, MAX_LOCKDEP_KEYS);
diff --git a/kernel/module.c b/kernel/module.c
index 1016b75b026a..e2564580f3f1 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -59,8 +59,6 @@
59#define CREATE_TRACE_POINTS 59#define CREATE_TRACE_POINTS
60#include <trace/events/module.h> 60#include <trace/events/module.h>
61 61
62EXPORT_TRACEPOINT_SYMBOL(module_get);
63
64#if 0 62#if 0
65#define DEBUGP printk 63#define DEBUGP printk
66#else 64#else
@@ -515,6 +513,9 @@ MODINFO_ATTR(srcversion);
515static char last_unloaded_module[MODULE_NAME_LEN+1]; 513static char last_unloaded_module[MODULE_NAME_LEN+1];
516 514
517#ifdef CONFIG_MODULE_UNLOAD 515#ifdef CONFIG_MODULE_UNLOAD
516
517EXPORT_TRACEPOINT_SYMBOL(module_get);
518
518/* Init the unload section of the module. */ 519/* Init the unload section of the module. */
519static void module_unload_init(struct module *mod) 520static void module_unload_init(struct module *mod)
520{ 521{
@@ -723,16 +724,8 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
723 return -EFAULT; 724 return -EFAULT;
724 name[MODULE_NAME_LEN-1] = '\0'; 725 name[MODULE_NAME_LEN-1] = '\0';
725 726
726 /* Create stop_machine threads since free_module relies on 727 if (mutex_lock_interruptible(&module_mutex) != 0)
727 * a non-failing stop_machine call. */ 728 return -EINTR;
728 ret = stop_machine_create();
729 if (ret)
730 return ret;
731
732 if (mutex_lock_interruptible(&module_mutex) != 0) {
733 ret = -EINTR;
734 goto out_stop;
735 }
736 729
737 mod = find_module(name); 730 mod = find_module(name);
738 if (!mod) { 731 if (!mod) {
@@ -792,8 +785,6 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
792 785
793 out: 786 out:
794 mutex_unlock(&module_mutex); 787 mutex_unlock(&module_mutex);
795out_stop:
796 stop_machine_destroy();
797 return ret; 788 return ret;
798} 789}
799 790
@@ -867,8 +858,7 @@ void module_put(struct module *module)
867 smp_wmb(); /* see comment in module_refcount */ 858 smp_wmb(); /* see comment in module_refcount */
868 __this_cpu_inc(module->refptr->decs); 859 __this_cpu_inc(module->refptr->decs);
869 860
870 trace_module_put(module, _RET_IP_, 861 trace_module_put(module, _RET_IP_);
871 __this_cpu_read(module->refptr->decs));
872 /* Maybe they're waiting for us to drop reference? */ 862 /* Maybe they're waiting for us to drop reference? */
873 if (unlikely(!module_is_live(module))) 863 if (unlikely(!module_is_live(module)))
874 wake_up_process(module->waiter); 864 wake_up_process(module->waiter);
diff --git a/kernel/perf_event.c b/kernel/perf_event.c
index 7e3bcf1a29f0..2a060be3b07f 100644
--- a/kernel/perf_event.c
+++ b/kernel/perf_event.c
@@ -4050,19 +4050,46 @@ static inline u64 swevent_hash(u64 type, u32 event_id)
4050 return hash_64(val, SWEVENT_HLIST_BITS); 4050 return hash_64(val, SWEVENT_HLIST_BITS);
4051} 4051}
4052 4052
4053static struct hlist_head * 4053static inline struct hlist_head *
4054find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id) 4054__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4055{ 4055{
4056 u64 hash; 4056 u64 hash = swevent_hash(type, event_id);
4057 struct swevent_hlist *hlist; 4057
4058 return &hlist->heads[hash];
4059}
4058 4060
4059 hash = swevent_hash(type, event_id); 4061/* For the read side: events when they trigger */
4062static inline struct hlist_head *
4063find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4064{
4065 struct swevent_hlist *hlist;
4060 4066
4061 hlist = rcu_dereference(ctx->swevent_hlist); 4067 hlist = rcu_dereference(ctx->swevent_hlist);
4062 if (!hlist) 4068 if (!hlist)
4063 return NULL; 4069 return NULL;
4064 4070
4065 return &hlist->heads[hash]; 4071 return __find_swevent_head(hlist, type, event_id);
4072}
4073
4074/* For the event head insertion and removal in the hlist */
4075static inline struct hlist_head *
4076find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4077{
4078 struct swevent_hlist *hlist;
4079 u32 event_id = event->attr.config;
4080 u64 type = event->attr.type;
4081
4082 /*
4083 * Event scheduling is always serialized against hlist allocation
4084 * and release. Which makes the protected version suitable here.
4085 * The context lock guarantees that.
4086 */
4087 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4088 lockdep_is_held(&event->ctx->lock));
4089 if (!hlist)
4090 return NULL;
4091
4092 return __find_swevent_head(hlist, type, event_id);
4066} 4093}
4067 4094
4068static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4095static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
@@ -4079,7 +4106,7 @@ static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4079 4106
4080 rcu_read_lock(); 4107 rcu_read_lock();
4081 4108
4082 head = find_swevent_head(cpuctx, type, event_id); 4109 head = find_swevent_head_rcu(cpuctx, type, event_id);
4083 4110
4084 if (!head) 4111 if (!head)
4085 goto end; 4112 goto end;
@@ -4162,7 +4189,7 @@ static int perf_swevent_enable(struct perf_event *event)
4162 perf_swevent_set_period(event); 4189 perf_swevent_set_period(event);
4163 } 4190 }
4164 4191
4165 head = find_swevent_head(cpuctx, event->attr.type, event->attr.config); 4192 head = find_swevent_head(cpuctx, event);
4166 if (WARN_ON_ONCE(!head)) 4193 if (WARN_ON_ONCE(!head))
4167 return -EINVAL; 4194 return -EINVAL;
4168 4195
@@ -4350,6 +4377,14 @@ static const struct pmu perf_ops_task_clock = {
4350 .read = task_clock_perf_event_read, 4377 .read = task_clock_perf_event_read,
4351}; 4378};
4352 4379
4380/* Deref the hlist from the update side */
4381static inline struct swevent_hlist *
4382swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4383{
4384 return rcu_dereference_protected(cpuctx->swevent_hlist,
4385 lockdep_is_held(&cpuctx->hlist_mutex));
4386}
4387
4353static void swevent_hlist_release_rcu(struct rcu_head *rcu_head) 4388static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4354{ 4389{
4355 struct swevent_hlist *hlist; 4390 struct swevent_hlist *hlist;
@@ -4360,12 +4395,11 @@ static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4360 4395
4361static void swevent_hlist_release(struct perf_cpu_context *cpuctx) 4396static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4362{ 4397{
4363 struct swevent_hlist *hlist; 4398 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4364 4399
4365 if (!cpuctx->swevent_hlist) 4400 if (!hlist)
4366 return; 4401 return;
4367 4402
4368 hlist = cpuctx->swevent_hlist;
4369 rcu_assign_pointer(cpuctx->swevent_hlist, NULL); 4403 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4370 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu); 4404 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4371} 4405}
@@ -4402,7 +4436,7 @@ static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4402 4436
4403 mutex_lock(&cpuctx->hlist_mutex); 4437 mutex_lock(&cpuctx->hlist_mutex);
4404 4438
4405 if (!cpuctx->swevent_hlist && cpu_online(cpu)) { 4439 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4406 struct swevent_hlist *hlist; 4440 struct swevent_hlist *hlist;
4407 4441
4408 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 4442 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
diff --git a/kernel/profile.c b/kernel/profile.c
index a55d3a367ae8..dfadc5b729f1 100644
--- a/kernel/profile.c
+++ b/kernel/profile.c
@@ -127,8 +127,10 @@ int __ref profile_init(void)
127 return 0; 127 return 0;
128 128
129 prof_buffer = vmalloc(buffer_bytes); 129 prof_buffer = vmalloc(buffer_bytes);
130 if (prof_buffer) 130 if (prof_buffer) {
131 memset(prof_buffer, 0, buffer_bytes);
131 return 0; 132 return 0;
133 }
132 134
133 free_cpumask_var(prof_cpu_mask); 135 free_cpumask_var(prof_cpu_mask);
134 return -ENOMEM; 136 return -ENOMEM;
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 9fb51237b18c..6af9cdd558b7 100644
--- a/kernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -14,7 +14,6 @@
14#include <linux/mm.h> 14#include <linux/mm.h>
15#include <linux/highmem.h> 15#include <linux/highmem.h>
16#include <linux/pagemap.h> 16#include <linux/pagemap.h>
17#include <linux/smp_lock.h>
18#include <linux/ptrace.h> 17#include <linux/ptrace.h>
19#include <linux/security.h> 18#include <linux/security.h>
20#include <linux/signal.h> 19#include <linux/signal.h>
@@ -665,10 +664,6 @@ SYSCALL_DEFINE4(ptrace, long, request, long, pid, long, addr, long, data)
665 struct task_struct *child; 664 struct task_struct *child;
666 long ret; 665 long ret;
667 666
668 /*
669 * This lock_kernel fixes a subtle race with suid exec
670 */
671 lock_kernel();
672 if (request == PTRACE_TRACEME) { 667 if (request == PTRACE_TRACEME) {
673 ret = ptrace_traceme(); 668 ret = ptrace_traceme();
674 if (!ret) 669 if (!ret)
@@ -702,7 +697,6 @@ SYSCALL_DEFINE4(ptrace, long, request, long, pid, long, addr, long, data)
702 out_put_task_struct: 697 out_put_task_struct:
703 put_task_struct(child); 698 put_task_struct(child);
704 out: 699 out:
705 unlock_kernel();
706 return ret; 700 return ret;
707} 701}
708 702
@@ -812,10 +806,6 @@ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
812 struct task_struct *child; 806 struct task_struct *child;
813 long ret; 807 long ret;
814 808
815 /*
816 * This lock_kernel fixes a subtle race with suid exec
817 */
818 lock_kernel();
819 if (request == PTRACE_TRACEME) { 809 if (request == PTRACE_TRACEME) {
820 ret = ptrace_traceme(); 810 ret = ptrace_traceme();
821 goto out; 811 goto out;
@@ -845,7 +835,6 @@ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
845 out_put_task_struct: 835 out_put_task_struct:
846 put_task_struct(child); 836 put_task_struct(child);
847 out: 837 out:
848 unlock_kernel();
849 return ret; 838 return ret;
850} 839}
851#endif /* CONFIG_COMPAT */ 840#endif /* CONFIG_COMPAT */
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index 03a7ea1579f6..72a8dc9567f5 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -44,7 +44,6 @@
44#include <linux/cpu.h> 44#include <linux/cpu.h>
45#include <linux/mutex.h> 45#include <linux/mutex.h>
46#include <linux/module.h> 46#include <linux/module.h>
47#include <linux/kernel_stat.h>
48#include <linux/hardirq.h> 47#include <linux/hardirq.h>
49 48
50#ifdef CONFIG_DEBUG_LOCK_ALLOC 49#ifdef CONFIG_DEBUG_LOCK_ALLOC
@@ -64,9 +63,6 @@ struct lockdep_map rcu_sched_lock_map =
64EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 63EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
65#endif 64#endif
66 65
67int rcu_scheduler_active __read_mostly;
68EXPORT_SYMBOL_GPL(rcu_scheduler_active);
69
70#ifdef CONFIG_DEBUG_LOCK_ALLOC 66#ifdef CONFIG_DEBUG_LOCK_ALLOC
71 67
72int debug_lockdep_rcu_enabled(void) 68int debug_lockdep_rcu_enabled(void)
@@ -97,21 +93,6 @@ EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
97#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 93#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
98 94
99/* 95/*
100 * This function is invoked towards the end of the scheduler's initialization
101 * process. Before this is called, the idle task might contain
102 * RCU read-side critical sections (during which time, this idle
103 * task is booting the system). After this function is called, the
104 * idle tasks are prohibited from containing RCU read-side critical
105 * sections.
106 */
107void rcu_scheduler_starting(void)
108{
109 WARN_ON(num_online_cpus() != 1);
110 WARN_ON(nr_context_switches() > 0);
111 rcu_scheduler_active = 1;
112}
113
114/*
115 * Awaken the corresponding synchronize_rcu() instance now that a 96 * Awaken the corresponding synchronize_rcu() instance now that a
116 * grace period has elapsed. 97 * grace period has elapsed.
117 */ 98 */
@@ -122,3 +103,14 @@ void wakeme_after_rcu(struct rcu_head *head)
122 rcu = container_of(head, struct rcu_synchronize, head); 103 rcu = container_of(head, struct rcu_synchronize, head);
123 complete(&rcu->completion); 104 complete(&rcu->completion);
124} 105}
106
107#ifdef CONFIG_PROVE_RCU
108/*
109 * wrapper function to avoid #include problems.
110 */
111int rcu_my_thread_group_empty(void)
112{
113 return thread_group_empty(current);
114}
115EXPORT_SYMBOL_GPL(rcu_my_thread_group_empty);
116#endif /* #ifdef CONFIG_PROVE_RCU */
diff --git a/kernel/rcutiny.c b/kernel/rcutiny.c
index 9f6d9ff2572c..38729d3cd236 100644
--- a/kernel/rcutiny.c
+++ b/kernel/rcutiny.c
@@ -44,9 +44,9 @@ struct rcu_ctrlblk {
44}; 44};
45 45
46/* Definition for rcupdate control block. */ 46/* Definition for rcupdate control block. */
47static struct rcu_ctrlblk rcu_ctrlblk = { 47static struct rcu_ctrlblk rcu_sched_ctrlblk = {
48 .donetail = &rcu_ctrlblk.rcucblist, 48 .donetail = &rcu_sched_ctrlblk.rcucblist,
49 .curtail = &rcu_ctrlblk.rcucblist, 49 .curtail = &rcu_sched_ctrlblk.rcucblist,
50}; 50};
51 51
52static struct rcu_ctrlblk rcu_bh_ctrlblk = { 52static struct rcu_ctrlblk rcu_bh_ctrlblk = {
@@ -54,6 +54,11 @@ static struct rcu_ctrlblk rcu_bh_ctrlblk = {
54 .curtail = &rcu_bh_ctrlblk.rcucblist, 54 .curtail = &rcu_bh_ctrlblk.rcucblist,
55}; 55};
56 56
57#ifdef CONFIG_DEBUG_LOCK_ALLOC
58int rcu_scheduler_active __read_mostly;
59EXPORT_SYMBOL_GPL(rcu_scheduler_active);
60#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
61
57#ifdef CONFIG_NO_HZ 62#ifdef CONFIG_NO_HZ
58 63
59static long rcu_dynticks_nesting = 1; 64static long rcu_dynticks_nesting = 1;
@@ -108,7 +113,8 @@ static int rcu_qsctr_help(struct rcu_ctrlblk *rcp)
108 */ 113 */
109void rcu_sched_qs(int cpu) 114void rcu_sched_qs(int cpu)
110{ 115{
111 if (rcu_qsctr_help(&rcu_ctrlblk) + rcu_qsctr_help(&rcu_bh_ctrlblk)) 116 if (rcu_qsctr_help(&rcu_sched_ctrlblk) +
117 rcu_qsctr_help(&rcu_bh_ctrlblk))
112 raise_softirq(RCU_SOFTIRQ); 118 raise_softirq(RCU_SOFTIRQ);
113} 119}
114 120
@@ -173,7 +179,7 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp)
173 */ 179 */
174static void rcu_process_callbacks(struct softirq_action *unused) 180static void rcu_process_callbacks(struct softirq_action *unused)
175{ 181{
176 __rcu_process_callbacks(&rcu_ctrlblk); 182 __rcu_process_callbacks(&rcu_sched_ctrlblk);
177 __rcu_process_callbacks(&rcu_bh_ctrlblk); 183 __rcu_process_callbacks(&rcu_bh_ctrlblk);
178} 184}
179 185
@@ -187,7 +193,8 @@ static void rcu_process_callbacks(struct softirq_action *unused)
187 * 193 *
188 * Cool, huh? (Due to Josh Triplett.) 194 * Cool, huh? (Due to Josh Triplett.)
189 * 195 *
190 * But we want to make this a static inline later. 196 * But we want to make this a static inline later. The cond_resched()
197 * currently makes this problematic.
191 */ 198 */
192void synchronize_sched(void) 199void synchronize_sched(void)
193{ 200{
@@ -195,12 +202,6 @@ void synchronize_sched(void)
195} 202}
196EXPORT_SYMBOL_GPL(synchronize_sched); 203EXPORT_SYMBOL_GPL(synchronize_sched);
197 204
198void synchronize_rcu_bh(void)
199{
200 synchronize_sched();
201}
202EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
203
204/* 205/*
205 * Helper function for call_rcu() and call_rcu_bh(). 206 * Helper function for call_rcu() and call_rcu_bh().
206 */ 207 */
@@ -226,7 +227,7 @@ static void __call_rcu(struct rcu_head *head,
226 */ 227 */
227void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 228void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
228{ 229{
229 __call_rcu(head, func, &rcu_ctrlblk); 230 __call_rcu(head, func, &rcu_sched_ctrlblk);
230} 231}
231EXPORT_SYMBOL_GPL(call_rcu); 232EXPORT_SYMBOL_GPL(call_rcu);
232 233
@@ -244,11 +245,13 @@ void rcu_barrier(void)
244{ 245{
245 struct rcu_synchronize rcu; 246 struct rcu_synchronize rcu;
246 247
248 init_rcu_head_on_stack(&rcu.head);
247 init_completion(&rcu.completion); 249 init_completion(&rcu.completion);
248 /* Will wake me after RCU finished. */ 250 /* Will wake me after RCU finished. */
249 call_rcu(&rcu.head, wakeme_after_rcu); 251 call_rcu(&rcu.head, wakeme_after_rcu);
250 /* Wait for it. */ 252 /* Wait for it. */
251 wait_for_completion(&rcu.completion); 253 wait_for_completion(&rcu.completion);
254 destroy_rcu_head_on_stack(&rcu.head);
252} 255}
253EXPORT_SYMBOL_GPL(rcu_barrier); 256EXPORT_SYMBOL_GPL(rcu_barrier);
254 257
@@ -256,11 +259,13 @@ void rcu_barrier_bh(void)
256{ 259{
257 struct rcu_synchronize rcu; 260 struct rcu_synchronize rcu;
258 261
262 init_rcu_head_on_stack(&rcu.head);
259 init_completion(&rcu.completion); 263 init_completion(&rcu.completion);
260 /* Will wake me after RCU finished. */ 264 /* Will wake me after RCU finished. */
261 call_rcu_bh(&rcu.head, wakeme_after_rcu); 265 call_rcu_bh(&rcu.head, wakeme_after_rcu);
262 /* Wait for it. */ 266 /* Wait for it. */
263 wait_for_completion(&rcu.completion); 267 wait_for_completion(&rcu.completion);
268 destroy_rcu_head_on_stack(&rcu.head);
264} 269}
265EXPORT_SYMBOL_GPL(rcu_barrier_bh); 270EXPORT_SYMBOL_GPL(rcu_barrier_bh);
266 271
@@ -268,11 +273,13 @@ void rcu_barrier_sched(void)
268{ 273{
269 struct rcu_synchronize rcu; 274 struct rcu_synchronize rcu;
270 275
276 init_rcu_head_on_stack(&rcu.head);
271 init_completion(&rcu.completion); 277 init_completion(&rcu.completion);
272 /* Will wake me after RCU finished. */ 278 /* Will wake me after RCU finished. */
273 call_rcu_sched(&rcu.head, wakeme_after_rcu); 279 call_rcu_sched(&rcu.head, wakeme_after_rcu);
274 /* Wait for it. */ 280 /* Wait for it. */
275 wait_for_completion(&rcu.completion); 281 wait_for_completion(&rcu.completion);
282 destroy_rcu_head_on_stack(&rcu.head);
276} 283}
277EXPORT_SYMBOL_GPL(rcu_barrier_sched); 284EXPORT_SYMBOL_GPL(rcu_barrier_sched);
278 285
@@ -280,3 +287,5 @@ void __init rcu_init(void)
280{ 287{
281 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 288 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
282} 289}
290
291#include "rcutiny_plugin.h"
diff --git a/kernel/rcutiny_plugin.h b/kernel/rcutiny_plugin.h
new file mode 100644
index 000000000000..d223a92bc742
--- /dev/null
+++ b/kernel/rcutiny_plugin.h
@@ -0,0 +1,39 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright IBM Corporation, 2009
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25#ifdef CONFIG_DEBUG_LOCK_ALLOC
26
27#include <linux/kernel_stat.h>
28
29/*
30 * During boot, we forgive RCU lockdep issues. After this function is
31 * invoked, we start taking RCU lockdep issues seriously.
32 */
33void rcu_scheduler_starting(void)
34{
35 WARN_ON(nr_context_switches() > 0);
36 rcu_scheduler_active = 1;
37}
38
39#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c
index 58df55bf83ed..6535ac8bc6a5 100644
--- a/kernel/rcutorture.c
+++ b/kernel/rcutorture.c
@@ -464,9 +464,11 @@ static void rcu_bh_torture_synchronize(void)
464{ 464{
465 struct rcu_bh_torture_synchronize rcu; 465 struct rcu_bh_torture_synchronize rcu;
466 466
467 init_rcu_head_on_stack(&rcu.head);
467 init_completion(&rcu.completion); 468 init_completion(&rcu.completion);
468 call_rcu_bh(&rcu.head, rcu_bh_torture_wakeme_after_cb); 469 call_rcu_bh(&rcu.head, rcu_bh_torture_wakeme_after_cb);
469 wait_for_completion(&rcu.completion); 470 wait_for_completion(&rcu.completion);
471 destroy_rcu_head_on_stack(&rcu.head);
470} 472}
471 473
472static struct rcu_torture_ops rcu_bh_ops = { 474static struct rcu_torture_ops rcu_bh_ops = {
@@ -669,7 +671,7 @@ static struct rcu_torture_ops sched_expedited_ops = {
669 .sync = synchronize_sched_expedited, 671 .sync = synchronize_sched_expedited,
670 .cb_barrier = NULL, 672 .cb_barrier = NULL,
671 .fqs = rcu_sched_force_quiescent_state, 673 .fqs = rcu_sched_force_quiescent_state,
672 .stats = rcu_expedited_torture_stats, 674 .stats = NULL,
673 .irq_capable = 1, 675 .irq_capable = 1,
674 .name = "sched_expedited" 676 .name = "sched_expedited"
675}; 677};
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 3ec8160fc75f..d4437345706f 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -46,6 +46,7 @@
46#include <linux/cpu.h> 46#include <linux/cpu.h>
47#include <linux/mutex.h> 47#include <linux/mutex.h>
48#include <linux/time.h> 48#include <linux/time.h>
49#include <linux/kernel_stat.h>
49 50
50#include "rcutree.h" 51#include "rcutree.h"
51 52
@@ -53,8 +54,8 @@
53 54
54static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
55 56
56#define RCU_STATE_INITIALIZER(name) { \ 57#define RCU_STATE_INITIALIZER(structname) { \
57 .level = { &name.node[0] }, \ 58 .level = { &structname.node[0] }, \
58 .levelcnt = { \ 59 .levelcnt = { \
59 NUM_RCU_LVL_0, /* root of hierarchy. */ \ 60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
60 NUM_RCU_LVL_1, \ 61 NUM_RCU_LVL_1, \
@@ -65,13 +66,14 @@ static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
65 .signaled = RCU_GP_IDLE, \ 66 .signaled = RCU_GP_IDLE, \
66 .gpnum = -300, \ 67 .gpnum = -300, \
67 .completed = -300, \ 68 .completed = -300, \
68 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \ 69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
69 .orphan_cbs_list = NULL, \ 70 .orphan_cbs_list = NULL, \
70 .orphan_cbs_tail = &name.orphan_cbs_list, \ 71 .orphan_cbs_tail = &structname.orphan_cbs_list, \
71 .orphan_qlen = 0, \ 72 .orphan_qlen = 0, \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \ 73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \ 74 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \ 75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
75} 77}
76 78
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); 79struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
@@ -80,6 +82,9 @@ DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); 82struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 83DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
82 84
85int rcu_scheduler_active __read_mostly;
86EXPORT_SYMBOL_GPL(rcu_scheduler_active);
87
83/* 88/*
84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 89 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
85 * permit this function to be invoked without holding the root rcu_node 90 * permit this function to be invoked without holding the root rcu_node
@@ -97,25 +102,32 @@ static int rcu_gp_in_progress(struct rcu_state *rsp)
97 */ 102 */
98void rcu_sched_qs(int cpu) 103void rcu_sched_qs(int cpu)
99{ 104{
100 struct rcu_data *rdp; 105 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
101 106
102 rdp = &per_cpu(rcu_sched_data, cpu);
103 rdp->passed_quiesc_completed = rdp->gpnum - 1; 107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
104 barrier(); 108 barrier();
105 rdp->passed_quiesc = 1; 109 rdp->passed_quiesc = 1;
106 rcu_preempt_note_context_switch(cpu);
107} 110}
108 111
109void rcu_bh_qs(int cpu) 112void rcu_bh_qs(int cpu)
110{ 113{
111 struct rcu_data *rdp; 114 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
112 115
113 rdp = &per_cpu(rcu_bh_data, cpu);
114 rdp->passed_quiesc_completed = rdp->gpnum - 1; 116 rdp->passed_quiesc_completed = rdp->gpnum - 1;
115 barrier(); 117 barrier();
116 rdp->passed_quiesc = 1; 118 rdp->passed_quiesc = 1;
117} 119}
118 120
121/*
122 * Note a context switch. This is a quiescent state for RCU-sched,
123 * and requires special handling for preemptible RCU.
124 */
125void rcu_note_context_switch(int cpu)
126{
127 rcu_sched_qs(cpu);
128 rcu_preempt_note_context_switch(cpu);
129}
130
119#ifdef CONFIG_NO_HZ 131#ifdef CONFIG_NO_HZ
120DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 132DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
121 .dynticks_nesting = 1, 133 .dynticks_nesting = 1,
@@ -438,6 +450,8 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
438 450
439#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 451#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
440 452
453int rcu_cpu_stall_panicking __read_mostly;
454
441static void record_gp_stall_check_time(struct rcu_state *rsp) 455static void record_gp_stall_check_time(struct rcu_state *rsp)
442{ 456{
443 rsp->gp_start = jiffies; 457 rsp->gp_start = jiffies;
@@ -470,7 +484,8 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
470 484
471 /* OK, time to rat on our buddy... */ 485 /* OK, time to rat on our buddy... */
472 486
473 printk(KERN_ERR "INFO: RCU detected CPU stalls:"); 487 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
488 rsp->name);
474 rcu_for_each_leaf_node(rsp, rnp) { 489 rcu_for_each_leaf_node(rsp, rnp) {
475 raw_spin_lock_irqsave(&rnp->lock, flags); 490 raw_spin_lock_irqsave(&rnp->lock, flags);
476 rcu_print_task_stall(rnp); 491 rcu_print_task_stall(rnp);
@@ -481,7 +496,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
481 if (rnp->qsmask & (1UL << cpu)) 496 if (rnp->qsmask & (1UL << cpu))
482 printk(" %d", rnp->grplo + cpu); 497 printk(" %d", rnp->grplo + cpu);
483 } 498 }
484 printk(" (detected by %d, t=%ld jiffies)\n", 499 printk("} (detected by %d, t=%ld jiffies)\n",
485 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 500 smp_processor_id(), (long)(jiffies - rsp->gp_start));
486 trigger_all_cpu_backtrace(); 501 trigger_all_cpu_backtrace();
487 502
@@ -497,8 +512,8 @@ static void print_cpu_stall(struct rcu_state *rsp)
497 unsigned long flags; 512 unsigned long flags;
498 struct rcu_node *rnp = rcu_get_root(rsp); 513 struct rcu_node *rnp = rcu_get_root(rsp);
499 514
500 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", 515 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
501 smp_processor_id(), jiffies - rsp->gp_start); 516 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
502 trigger_all_cpu_backtrace(); 517 trigger_all_cpu_backtrace();
503 518
504 raw_spin_lock_irqsave(&rnp->lock, flags); 519 raw_spin_lock_irqsave(&rnp->lock, flags);
@@ -515,6 +530,8 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
515 long delta; 530 long delta;
516 struct rcu_node *rnp; 531 struct rcu_node *rnp;
517 532
533 if (rcu_cpu_stall_panicking)
534 return;
518 delta = jiffies - rsp->jiffies_stall; 535 delta = jiffies - rsp->jiffies_stall;
519 rnp = rdp->mynode; 536 rnp = rdp->mynode;
520 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { 537 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
@@ -529,6 +546,21 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
529 } 546 }
530} 547}
531 548
549static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
550{
551 rcu_cpu_stall_panicking = 1;
552 return NOTIFY_DONE;
553}
554
555static struct notifier_block rcu_panic_block = {
556 .notifier_call = rcu_panic,
557};
558
559static void __init check_cpu_stall_init(void)
560{
561 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
562}
563
532#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 564#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
533 565
534static void record_gp_stall_check_time(struct rcu_state *rsp) 566static void record_gp_stall_check_time(struct rcu_state *rsp)
@@ -539,6 +571,10 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
539{ 571{
540} 572}
541 573
574static void __init check_cpu_stall_init(void)
575{
576}
577
542#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 578#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
543 579
544/* 580/*
@@ -1125,8 +1161,6 @@ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1125 */ 1161 */
1126void rcu_check_callbacks(int cpu, int user) 1162void rcu_check_callbacks(int cpu, int user)
1127{ 1163{
1128 if (!rcu_pending(cpu))
1129 return; /* if nothing for RCU to do. */
1130 if (user || 1164 if (user ||
1131 (idle_cpu(cpu) && rcu_scheduler_active && 1165 (idle_cpu(cpu) && rcu_scheduler_active &&
1132 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { 1166 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
@@ -1158,7 +1192,8 @@ void rcu_check_callbacks(int cpu, int user)
1158 rcu_bh_qs(cpu); 1192 rcu_bh_qs(cpu);
1159 } 1193 }
1160 rcu_preempt_check_callbacks(cpu); 1194 rcu_preempt_check_callbacks(cpu);
1161 raise_softirq(RCU_SOFTIRQ); 1195 if (rcu_pending(cpu))
1196 raise_softirq(RCU_SOFTIRQ);
1162} 1197}
1163 1198
1164#ifdef CONFIG_SMP 1199#ifdef CONFIG_SMP
@@ -1236,11 +1271,11 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1236 break; /* grace period idle or initializing, ignore. */ 1271 break; /* grace period idle or initializing, ignore. */
1237 1272
1238 case RCU_SAVE_DYNTICK: 1273 case RCU_SAVE_DYNTICK:
1239
1240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1241 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) 1274 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1242 break; /* So gcc recognizes the dead code. */ 1275 break; /* So gcc recognizes the dead code. */
1243 1276
1277 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1278
1244 /* Record dyntick-idle state. */ 1279 /* Record dyntick-idle state. */
1245 force_qs_rnp(rsp, dyntick_save_progress_counter); 1280 force_qs_rnp(rsp, dyntick_save_progress_counter);
1246 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1281 raw_spin_lock(&rnp->lock); /* irqs already disabled */
@@ -1449,11 +1484,13 @@ void synchronize_sched(void)
1449 if (rcu_blocking_is_gp()) 1484 if (rcu_blocking_is_gp())
1450 return; 1485 return;
1451 1486
1487 init_rcu_head_on_stack(&rcu.head);
1452 init_completion(&rcu.completion); 1488 init_completion(&rcu.completion);
1453 /* Will wake me after RCU finished. */ 1489 /* Will wake me after RCU finished. */
1454 call_rcu_sched(&rcu.head, wakeme_after_rcu); 1490 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1455 /* Wait for it. */ 1491 /* Wait for it. */
1456 wait_for_completion(&rcu.completion); 1492 wait_for_completion(&rcu.completion);
1493 destroy_rcu_head_on_stack(&rcu.head);
1457} 1494}
1458EXPORT_SYMBOL_GPL(synchronize_sched); 1495EXPORT_SYMBOL_GPL(synchronize_sched);
1459 1496
@@ -1473,11 +1510,13 @@ void synchronize_rcu_bh(void)
1473 if (rcu_blocking_is_gp()) 1510 if (rcu_blocking_is_gp())
1474 return; 1511 return;
1475 1512
1513 init_rcu_head_on_stack(&rcu.head);
1476 init_completion(&rcu.completion); 1514 init_completion(&rcu.completion);
1477 /* Will wake me after RCU finished. */ 1515 /* Will wake me after RCU finished. */
1478 call_rcu_bh(&rcu.head, wakeme_after_rcu); 1516 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1479 /* Wait for it. */ 1517 /* Wait for it. */
1480 wait_for_completion(&rcu.completion); 1518 wait_for_completion(&rcu.completion);
1519 destroy_rcu_head_on_stack(&rcu.head);
1481} 1520}
1482EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 1521EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1483 1522
@@ -1498,8 +1537,20 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1498 check_cpu_stall(rsp, rdp); 1537 check_cpu_stall(rsp, rdp);
1499 1538
1500 /* Is the RCU core waiting for a quiescent state from this CPU? */ 1539 /* Is the RCU core waiting for a quiescent state from this CPU? */
1501 if (rdp->qs_pending) { 1540 if (rdp->qs_pending && !rdp->passed_quiesc) {
1541
1542 /*
1543 * If force_quiescent_state() coming soon and this CPU
1544 * needs a quiescent state, and this is either RCU-sched
1545 * or RCU-bh, force a local reschedule.
1546 */
1502 rdp->n_rp_qs_pending++; 1547 rdp->n_rp_qs_pending++;
1548 if (!rdp->preemptable &&
1549 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1550 jiffies))
1551 set_need_resched();
1552 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1553 rdp->n_rp_report_qs++;
1503 return 1; 1554 return 1;
1504 } 1555 }
1505 1556
@@ -1767,6 +1818,21 @@ static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1767} 1818}
1768 1819
1769/* 1820/*
1821 * This function is invoked towards the end of the scheduler's initialization
1822 * process. Before this is called, the idle task might contain
1823 * RCU read-side critical sections (during which time, this idle
1824 * task is booting the system). After this function is called, the
1825 * idle tasks are prohibited from containing RCU read-side critical
1826 * sections. This function also enables RCU lockdep checking.
1827 */
1828void rcu_scheduler_starting(void)
1829{
1830 WARN_ON(num_online_cpus() != 1);
1831 WARN_ON(nr_context_switches() > 0);
1832 rcu_scheduler_active = 1;
1833}
1834
1835/*
1770 * Compute the per-level fanout, either using the exact fanout specified 1836 * Compute the per-level fanout, either using the exact fanout specified
1771 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 1837 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1772 */ 1838 */
@@ -1849,6 +1915,14 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1849 INIT_LIST_HEAD(&rnp->blocked_tasks[3]); 1915 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1850 } 1916 }
1851 } 1917 }
1918
1919 rnp = rsp->level[NUM_RCU_LVLS - 1];
1920 for_each_possible_cpu(i) {
1921 while (i > rnp->grphi)
1922 rnp++;
1923 rsp->rda[i]->mynode = rnp;
1924 rcu_boot_init_percpu_data(i, rsp);
1925 }
1852} 1926}
1853 1927
1854/* 1928/*
@@ -1859,19 +1933,11 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1859#define RCU_INIT_FLAVOR(rsp, rcu_data) \ 1933#define RCU_INIT_FLAVOR(rsp, rcu_data) \
1860do { \ 1934do { \
1861 int i; \ 1935 int i; \
1862 int j; \
1863 struct rcu_node *rnp; \
1864 \ 1936 \
1865 rcu_init_one(rsp); \
1866 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1867 j = 0; \
1868 for_each_possible_cpu(i) { \ 1937 for_each_possible_cpu(i) { \
1869 if (i > rnp[j].grphi) \
1870 j++; \
1871 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1872 (rsp)->rda[i] = &per_cpu(rcu_data, i); \ 1938 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1873 rcu_boot_init_percpu_data(i, rsp); \
1874 } \ 1939 } \
1940 rcu_init_one(rsp); \
1875} while (0) 1941} while (0)
1876 1942
1877void __init rcu_init(void) 1943void __init rcu_init(void)
@@ -1879,12 +1945,6 @@ void __init rcu_init(void)
1879 int cpu; 1945 int cpu;
1880 1946
1881 rcu_bootup_announce(); 1947 rcu_bootup_announce();
1882#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1883 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1884#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1885#if NUM_RCU_LVL_4 != 0
1886 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1887#endif /* #if NUM_RCU_LVL_4 != 0 */
1888 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); 1948 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1889 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); 1949 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1890 __rcu_init_preempt(); 1950 __rcu_init_preempt();
@@ -1898,6 +1958,7 @@ void __init rcu_init(void)
1898 cpu_notifier(rcu_cpu_notify, 0); 1958 cpu_notifier(rcu_cpu_notify, 0);
1899 for_each_online_cpu(cpu) 1959 for_each_online_cpu(cpu)
1900 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 1960 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1961 check_cpu_stall_init();
1901} 1962}
1902 1963
1903#include "rcutree_plugin.h" 1964#include "rcutree_plugin.h"
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index 4a525a30e08e..14c040b18ed0 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -223,6 +223,7 @@ struct rcu_data {
223 /* 5) __rcu_pending() statistics. */ 223 /* 5) __rcu_pending() statistics. */
224 unsigned long n_rcu_pending; /* rcu_pending() calls since boot. */ 224 unsigned long n_rcu_pending; /* rcu_pending() calls since boot. */
225 unsigned long n_rp_qs_pending; 225 unsigned long n_rp_qs_pending;
226 unsigned long n_rp_report_qs;
226 unsigned long n_rp_cb_ready; 227 unsigned long n_rp_cb_ready;
227 unsigned long n_rp_cpu_needs_gp; 228 unsigned long n_rp_cpu_needs_gp;
228 unsigned long n_rp_gp_completed; 229 unsigned long n_rp_gp_completed;
@@ -326,6 +327,7 @@ struct rcu_state {
326 unsigned long jiffies_stall; /* Time at which to check */ 327 unsigned long jiffies_stall; /* Time at which to check */
327 /* for CPU stalls. */ 328 /* for CPU stalls. */
328#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 329#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
330 char *name; /* Name of structure. */
329}; 331};
330 332
331/* Return values for rcu_preempt_offline_tasks(). */ 333/* Return values for rcu_preempt_offline_tasks(). */
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index 79b53bda8943..0e4f420245d9 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -26,6 +26,45 @@
26 26
27#include <linux/delay.h> 27#include <linux/delay.h>
28 28
29/*
30 * Check the RCU kernel configuration parameters and print informative
31 * messages about anything out of the ordinary. If you like #ifdef, you
32 * will love this function.
33 */
34static void __init rcu_bootup_announce_oddness(void)
35{
36#ifdef CONFIG_RCU_TRACE
37 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
38#endif
39#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
40 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
41 CONFIG_RCU_FANOUT);
42#endif
43#ifdef CONFIG_RCU_FANOUT_EXACT
44 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
45#endif
46#ifdef CONFIG_RCU_FAST_NO_HZ
47 printk(KERN_INFO
48 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
49#endif
50#ifdef CONFIG_PROVE_RCU
51 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
52#endif
53#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
54 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
55#endif
56#ifndef CONFIG_RCU_CPU_STALL_DETECTOR
57 printk(KERN_INFO
58 "\tRCU-based detection of stalled CPUs is disabled.\n");
59#endif
60#ifndef CONFIG_RCU_CPU_STALL_VERBOSE
61 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
62#endif
63#if NUM_RCU_LVL_4 != 0
64 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
65#endif
66}
67
29#ifdef CONFIG_TREE_PREEMPT_RCU 68#ifdef CONFIG_TREE_PREEMPT_RCU
30 69
31struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); 70struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
@@ -38,8 +77,8 @@ static int rcu_preempted_readers_exp(struct rcu_node *rnp);
38 */ 77 */
39static void __init rcu_bootup_announce(void) 78static void __init rcu_bootup_announce(void)
40{ 79{
41 printk(KERN_INFO 80 printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n");
42 "Experimental preemptable hierarchical RCU implementation.\n"); 81 rcu_bootup_announce_oddness();
43} 82}
44 83
45/* 84/*
@@ -75,13 +114,19 @@ EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
75 * that this just means that the task currently running on the CPU is 114 * that this just means that the task currently running on the CPU is
76 * not in a quiescent state. There might be any number of tasks blocked 115 * not in a quiescent state. There might be any number of tasks blocked
77 * while in an RCU read-side critical section. 116 * while in an RCU read-side critical section.
117 *
118 * Unlike the other rcu_*_qs() functions, callers to this function
119 * must disable irqs in order to protect the assignment to
120 * ->rcu_read_unlock_special.
78 */ 121 */
79static void rcu_preempt_qs(int cpu) 122static void rcu_preempt_qs(int cpu)
80{ 123{
81 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); 124 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
125
82 rdp->passed_quiesc_completed = rdp->gpnum - 1; 126 rdp->passed_quiesc_completed = rdp->gpnum - 1;
83 barrier(); 127 barrier();
84 rdp->passed_quiesc = 1; 128 rdp->passed_quiesc = 1;
129 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
85} 130}
86 131
87/* 132/*
@@ -144,9 +189,8 @@ static void rcu_preempt_note_context_switch(int cpu)
144 * grace period, then the fact that the task has been enqueued 189 * grace period, then the fact that the task has been enqueued
145 * means that we continue to block the current grace period. 190 * means that we continue to block the current grace period.
146 */ 191 */
147 rcu_preempt_qs(cpu);
148 local_irq_save(flags); 192 local_irq_save(flags);
149 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; 193 rcu_preempt_qs(cpu);
150 local_irq_restore(flags); 194 local_irq_restore(flags);
151} 195}
152 196
@@ -236,7 +280,6 @@ static void rcu_read_unlock_special(struct task_struct *t)
236 */ 280 */
237 special = t->rcu_read_unlock_special; 281 special = t->rcu_read_unlock_special;
238 if (special & RCU_READ_UNLOCK_NEED_QS) { 282 if (special & RCU_READ_UNLOCK_NEED_QS) {
239 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
240 rcu_preempt_qs(smp_processor_id()); 283 rcu_preempt_qs(smp_processor_id());
241 } 284 }
242 285
@@ -473,7 +516,6 @@ static void rcu_preempt_check_callbacks(int cpu)
473 struct task_struct *t = current; 516 struct task_struct *t = current;
474 517
475 if (t->rcu_read_lock_nesting == 0) { 518 if (t->rcu_read_lock_nesting == 0) {
476 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
477 rcu_preempt_qs(cpu); 519 rcu_preempt_qs(cpu);
478 return; 520 return;
479 } 521 }
@@ -515,11 +557,13 @@ void synchronize_rcu(void)
515 if (!rcu_scheduler_active) 557 if (!rcu_scheduler_active)
516 return; 558 return;
517 559
560 init_rcu_head_on_stack(&rcu.head);
518 init_completion(&rcu.completion); 561 init_completion(&rcu.completion);
519 /* Will wake me after RCU finished. */ 562 /* Will wake me after RCU finished. */
520 call_rcu(&rcu.head, wakeme_after_rcu); 563 call_rcu(&rcu.head, wakeme_after_rcu);
521 /* Wait for it. */ 564 /* Wait for it. */
522 wait_for_completion(&rcu.completion); 565 wait_for_completion(&rcu.completion);
566 destroy_rcu_head_on_stack(&rcu.head);
523} 567}
524EXPORT_SYMBOL_GPL(synchronize_rcu); 568EXPORT_SYMBOL_GPL(synchronize_rcu);
525 569
@@ -754,6 +798,7 @@ void exit_rcu(void)
754static void __init rcu_bootup_announce(void) 798static void __init rcu_bootup_announce(void)
755{ 799{
756 printk(KERN_INFO "Hierarchical RCU implementation.\n"); 800 printk(KERN_INFO "Hierarchical RCU implementation.\n");
801 rcu_bootup_announce_oddness();
757} 802}
758 803
759/* 804/*
@@ -1008,6 +1053,8 @@ static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1008int rcu_needs_cpu(int cpu) 1053int rcu_needs_cpu(int cpu)
1009{ 1054{
1010 int c = 0; 1055 int c = 0;
1056 int snap;
1057 int snap_nmi;
1011 int thatcpu; 1058 int thatcpu;
1012 1059
1013 /* Check for being in the holdoff period. */ 1060 /* Check for being in the holdoff period. */
@@ -1015,12 +1062,18 @@ int rcu_needs_cpu(int cpu)
1015 return rcu_needs_cpu_quick_check(cpu); 1062 return rcu_needs_cpu_quick_check(cpu);
1016 1063
1017 /* Don't bother unless we are the last non-dyntick-idle CPU. */ 1064 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1018 for_each_cpu_not(thatcpu, nohz_cpu_mask) 1065 for_each_online_cpu(thatcpu) {
1019 if (thatcpu != cpu) { 1066 if (thatcpu == cpu)
1067 continue;
1068 snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
1069 snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
1070 smp_mb(); /* Order sampling of snap with end of grace period. */
1071 if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
1020 per_cpu(rcu_dyntick_drain, cpu) = 0; 1072 per_cpu(rcu_dyntick_drain, cpu) = 0;
1021 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; 1073 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1022 return rcu_needs_cpu_quick_check(cpu); 1074 return rcu_needs_cpu_quick_check(cpu);
1023 } 1075 }
1076 }
1024 1077
1025 /* Check and update the rcu_dyntick_drain sequencing. */ 1078 /* Check and update the rcu_dyntick_drain sequencing. */
1026 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) { 1079 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c
index d45db2e35d27..36c95b45738e 100644
--- a/kernel/rcutree_trace.c
+++ b/kernel/rcutree_trace.c
@@ -241,11 +241,13 @@ static const struct file_operations rcugp_fops = {
241static void print_one_rcu_pending(struct seq_file *m, struct rcu_data *rdp) 241static void print_one_rcu_pending(struct seq_file *m, struct rcu_data *rdp)
242{ 242{
243 seq_printf(m, "%3d%cnp=%ld " 243 seq_printf(m, "%3d%cnp=%ld "
244 "qsp=%ld cbr=%ld cng=%ld gpc=%ld gps=%ld nf=%ld nn=%ld\n", 244 "qsp=%ld rpq=%ld cbr=%ld cng=%ld "
245 "gpc=%ld gps=%ld nf=%ld nn=%ld\n",
245 rdp->cpu, 246 rdp->cpu,
246 cpu_is_offline(rdp->cpu) ? '!' : ' ', 247 cpu_is_offline(rdp->cpu) ? '!' : ' ',
247 rdp->n_rcu_pending, 248 rdp->n_rcu_pending,
248 rdp->n_rp_qs_pending, 249 rdp->n_rp_qs_pending,
250 rdp->n_rp_report_qs,
249 rdp->n_rp_cb_ready, 251 rdp->n_rp_cb_ready,
250 rdp->n_rp_cpu_needs_gp, 252 rdp->n_rp_cpu_needs_gp,
251 rdp->n_rp_gp_completed, 253 rdp->n_rp_gp_completed,
diff --git a/kernel/sched.c b/kernel/sched.c
index b11b80a3eed3..1d93cd0ae4d3 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -55,9 +55,9 @@
55#include <linux/cpu.h> 55#include <linux/cpu.h>
56#include <linux/cpuset.h> 56#include <linux/cpuset.h>
57#include <linux/percpu.h> 57#include <linux/percpu.h>
58#include <linux/kthread.h>
59#include <linux/proc_fs.h> 58#include <linux/proc_fs.h>
60#include <linux/seq_file.h> 59#include <linux/seq_file.h>
60#include <linux/stop_machine.h>
61#include <linux/sysctl.h> 61#include <linux/sysctl.h>
62#include <linux/syscalls.h> 62#include <linux/syscalls.h>
63#include <linux/times.h> 63#include <linux/times.h>
@@ -503,8 +503,11 @@ struct rq {
503 #define CPU_LOAD_IDX_MAX 5 503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505#ifdef CONFIG_NO_HZ 505#ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
506 unsigned char in_nohz_recently; 507 unsigned char in_nohz_recently;
507#endif 508#endif
509 unsigned int skip_clock_update;
510
508 /* capture load from *all* tasks on this cpu: */ 511 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load; 512 struct load_weight load;
510 unsigned long nr_load_updates; 513 unsigned long nr_load_updates;
@@ -546,15 +549,13 @@ struct rq {
546 int post_schedule; 549 int post_schedule;
547 int active_balance; 550 int active_balance;
548 int push_cpu; 551 int push_cpu;
552 struct cpu_stop_work active_balance_work;
549 /* cpu of this runqueue: */ 553 /* cpu of this runqueue: */
550 int cpu; 554 int cpu;
551 int online; 555 int online;
552 556
553 unsigned long avg_load_per_task; 557 unsigned long avg_load_per_task;
554 558
555 struct task_struct *migration_thread;
556 struct list_head migration_queue;
557
558 u64 rt_avg; 559 u64 rt_avg;
559 u64 age_stamp; 560 u64 age_stamp;
560 u64 idle_stamp; 561 u64 idle_stamp;
@@ -602,6 +603,13 @@ static inline
602void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 603void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
603{ 604{
604 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
606
607 /*
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
610 */
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
605} 613}
606 614
607static inline int cpu_of(struct rq *rq) 615static inline int cpu_of(struct rq *rq)
@@ -636,7 +644,8 @@ static inline int cpu_of(struct rq *rq)
636 644
637inline void update_rq_clock(struct rq *rq) 645inline void update_rq_clock(struct rq *rq)
638{ 646{
639 rq->clock = sched_clock_cpu(cpu_of(rq)); 647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
640} 649}
641 650
642/* 651/*
@@ -914,16 +923,12 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 923#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915 924
916/* 925/*
917 * Check whether the task is waking, we use this to synchronize against 926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * ttwu() so that task_cpu() reports a stable number. 927 * against ttwu().
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */ 928 */
924static inline int task_is_waking(struct task_struct *p) 929static inline int task_is_waking(struct task_struct *p)
925{ 930{
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); 931 return unlikely(p->state == TASK_WAKING);
927} 932}
928 933
929/* 934/*
@@ -936,11 +941,9 @@ static inline struct rq *__task_rq_lock(struct task_struct *p)
936 struct rq *rq; 941 struct rq *rq;
937 942
938 for (;;) { 943 for (;;) {
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p); 944 rq = task_rq(p);
942 raw_spin_lock(&rq->lock); 945 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p) && !task_is_waking(p))) 946 if (likely(rq == task_rq(p)))
944 return rq; 947 return rq;
945 raw_spin_unlock(&rq->lock); 948 raw_spin_unlock(&rq->lock);
946 } 949 }
@@ -957,12 +960,10 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 struct rq *rq; 960 struct rq *rq;
958 961
959 for (;;) { 962 for (;;) {
960 while (task_is_waking(p))
961 cpu_relax();
962 local_irq_save(*flags); 963 local_irq_save(*flags);
963 rq = task_rq(p); 964 rq = task_rq(p);
964 raw_spin_lock(&rq->lock); 965 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p) && !task_is_waking(p))) 966 if (likely(rq == task_rq(p)))
966 return rq; 967 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags); 968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 } 969 }
@@ -1239,6 +1240,17 @@ void wake_up_idle_cpu(int cpu)
1239 if (!tsk_is_polling(rq->idle)) 1240 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu); 1241 smp_send_reschedule(cpu);
1241} 1242}
1243
1244int nohz_ratelimit(int cpu)
1245{
1246 struct rq *rq = cpu_rq(cpu);
1247 u64 diff = rq->clock - rq->nohz_stamp;
1248
1249 rq->nohz_stamp = rq->clock;
1250
1251 return diff < (NSEC_PER_SEC / HZ) >> 1;
1252}
1253
1242#endif /* CONFIG_NO_HZ */ 1254#endif /* CONFIG_NO_HZ */
1243 1255
1244static u64 sched_avg_period(void) 1256static u64 sched_avg_period(void)
@@ -1781,8 +1793,6 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1781 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1782 } 1794 }
1783 } 1795 }
1784 update_rq_clock(rq1);
1785 update_rq_clock(rq2);
1786} 1796}
1787 1797
1788/* 1798/*
@@ -1813,7 +1823,7 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813} 1823}
1814#endif 1824#endif
1815 1825
1816static void calc_load_account_active(struct rq *this_rq); 1826static void calc_load_account_idle(struct rq *this_rq);
1817static void update_sysctl(void); 1827static void update_sysctl(void);
1818static int get_update_sysctl_factor(void); 1828static int get_update_sysctl_factor(void);
1819 1829
@@ -1870,62 +1880,43 @@ static void set_load_weight(struct task_struct *p)
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; 1880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1871} 1881}
1872 1882
1873static void update_avg(u64 *avg, u64 sample) 1883static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1874{ 1884{
1875 s64 diff = sample - *avg; 1885 update_rq_clock(rq);
1876 *avg += diff >> 3;
1877}
1878
1879static void
1880enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1881{
1882 if (wakeup)
1883 p->se.start_runtime = p->se.sum_exec_runtime;
1884
1885 sched_info_queued(p); 1886 sched_info_queued(p);
1886 p->sched_class->enqueue_task(rq, p, wakeup, head); 1887 p->sched_class->enqueue_task(rq, p, flags);
1887 p->se.on_rq = 1; 1888 p->se.on_rq = 1;
1888} 1889}
1889 1890
1890static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) 1891static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1891{ 1892{
1892 if (sleep) { 1893 update_rq_clock(rq);
1893 if (p->se.last_wakeup) {
1894 update_avg(&p->se.avg_overlap,
1895 p->se.sum_exec_runtime - p->se.last_wakeup);
1896 p->se.last_wakeup = 0;
1897 } else {
1898 update_avg(&p->se.avg_wakeup,
1899 sysctl_sched_wakeup_granularity);
1900 }
1901 }
1902
1903 sched_info_dequeued(p); 1894 sched_info_dequeued(p);
1904 p->sched_class->dequeue_task(rq, p, sleep); 1895 p->sched_class->dequeue_task(rq, p, flags);
1905 p->se.on_rq = 0; 1896 p->se.on_rq = 0;
1906} 1897}
1907 1898
1908/* 1899/*
1909 * activate_task - move a task to the runqueue. 1900 * activate_task - move a task to the runqueue.
1910 */ 1901 */
1911static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) 1902static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1912{ 1903{
1913 if (task_contributes_to_load(p)) 1904 if (task_contributes_to_load(p))
1914 rq->nr_uninterruptible--; 1905 rq->nr_uninterruptible--;
1915 1906
1916 enqueue_task(rq, p, wakeup, false); 1907 enqueue_task(rq, p, flags);
1917 inc_nr_running(rq); 1908 inc_nr_running(rq);
1918} 1909}
1919 1910
1920/* 1911/*
1921 * deactivate_task - remove a task from the runqueue. 1912 * deactivate_task - remove a task from the runqueue.
1922 */ 1913 */
1923static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) 1914static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1924{ 1915{
1925 if (task_contributes_to_load(p)) 1916 if (task_contributes_to_load(p))
1926 rq->nr_uninterruptible++; 1917 rq->nr_uninterruptible++;
1927 1918
1928 dequeue_task(rq, p, sleep); 1919 dequeue_task(rq, p, flags);
1929 dec_nr_running(rq); 1920 dec_nr_running(rq);
1930} 1921}
1931 1922
@@ -2054,21 +2045,18 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2054 __set_task_cpu(p, new_cpu); 2045 __set_task_cpu(p, new_cpu);
2055} 2046}
2056 2047
2057struct migration_req { 2048struct migration_arg {
2058 struct list_head list;
2059
2060 struct task_struct *task; 2049 struct task_struct *task;
2061 int dest_cpu; 2050 int dest_cpu;
2062
2063 struct completion done;
2064}; 2051};
2065 2052
2053static int migration_cpu_stop(void *data);
2054
2066/* 2055/*
2067 * The task's runqueue lock must be held. 2056 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread. 2057 * Returns true if you have to wait for migration thread.
2069 */ 2058 */
2070static int 2059static bool migrate_task(struct task_struct *p, int dest_cpu)
2071migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2072{ 2060{
2073 struct rq *rq = task_rq(p); 2061 struct rq *rq = task_rq(p);
2074 2062
@@ -2076,15 +2064,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2076 * If the task is not on a runqueue (and not running), then 2064 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task. 2065 * the next wake-up will properly place the task.
2078 */ 2066 */
2079 if (!p->se.on_rq && !task_running(rq, p)) 2067 return p->se.on_rq || task_running(rq, p);
2080 return 0;
2081
2082 init_completion(&req->done);
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
2086
2087 return 1;
2088} 2068}
2089 2069
2090/* 2070/*
@@ -2142,7 +2122,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2142 * just go back and repeat. 2122 * just go back and repeat.
2143 */ 2123 */
2144 rq = task_rq_lock(p, &flags); 2124 rq = task_rq_lock(p, &flags);
2145 trace_sched_wait_task(rq, p); 2125 trace_sched_wait_task(p);
2146 running = task_running(rq, p); 2126 running = task_running(rq, p);
2147 on_rq = p->se.on_rq; 2127 on_rq = p->se.on_rq;
2148 ncsw = 0; 2128 ncsw = 0;
@@ -2240,6 +2220,9 @@ void task_oncpu_function_call(struct task_struct *p,
2240} 2220}
2241 2221
2242#ifdef CONFIG_SMP 2222#ifdef CONFIG_SMP
2223/*
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2225 */
2243static int select_fallback_rq(int cpu, struct task_struct *p) 2226static int select_fallback_rq(int cpu, struct task_struct *p)
2244{ 2227{
2245 int dest_cpu; 2228 int dest_cpu;
@@ -2256,12 +2239,8 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
2256 return dest_cpu; 2239 return dest_cpu;
2257 2240
2258 /* No more Mr. Nice Guy. */ 2241 /* No more Mr. Nice Guy. */
2259 if (dest_cpu >= nr_cpu_ids) { 2242 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2260 rcu_read_lock(); 2243 dest_cpu = cpuset_cpus_allowed_fallback(p);
2261 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2262 rcu_read_unlock();
2263 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2264
2265 /* 2244 /*
2266 * Don't tell them about moving exiting tasks or 2245 * Don't tell them about moving exiting tasks or
2267 * kernel threads (both mm NULL), since they never 2246 * kernel threads (both mm NULL), since they never
@@ -2278,17 +2257,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
2278} 2257}
2279 2258
2280/* 2259/*
2281 * Gets called from 3 sites (exec, fork, wakeup), since it is called without 2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2282 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2283 * by:
2284 *
2285 * exec: is unstable, retry loop
2286 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2287 */ 2261 */
2288static inline 2262static inline
2289int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 2263int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2290{ 2264{
2291 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2292 2266
2293 /* 2267 /*
2294 * In order not to call set_task_cpu() on a blocking task we need 2268 * In order not to call set_task_cpu() on a blocking task we need
@@ -2306,6 +2280,12 @@ int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2306 2280
2307 return cpu; 2281 return cpu;
2308} 2282}
2283
2284static void update_avg(u64 *avg, u64 sample)
2285{
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2288}
2309#endif 2289#endif
2310 2290
2311/*** 2291/***
@@ -2327,16 +2307,13 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2327{ 2307{
2328 int cpu, orig_cpu, this_cpu, success = 0; 2308 int cpu, orig_cpu, this_cpu, success = 0;
2329 unsigned long flags; 2309 unsigned long flags;
2310 unsigned long en_flags = ENQUEUE_WAKEUP;
2330 struct rq *rq; 2311 struct rq *rq;
2331 2312
2332 if (!sched_feat(SYNC_WAKEUPS))
2333 wake_flags &= ~WF_SYNC;
2334
2335 this_cpu = get_cpu(); 2313 this_cpu = get_cpu();
2336 2314
2337 smp_wmb(); 2315 smp_wmb();
2338 rq = task_rq_lock(p, &flags); 2316 rq = task_rq_lock(p, &flags);
2339 update_rq_clock(rq);
2340 if (!(p->state & state)) 2317 if (!(p->state & state))
2341 goto out; 2318 goto out;
2342 2319
@@ -2356,28 +2333,26 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2356 * 2333 *
2357 * First fix up the nr_uninterruptible count: 2334 * First fix up the nr_uninterruptible count:
2358 */ 2335 */
2359 if (task_contributes_to_load(p)) 2336 if (task_contributes_to_load(p)) {
2360 rq->nr_uninterruptible--; 2337 if (likely(cpu_online(orig_cpu)))
2338 rq->nr_uninterruptible--;
2339 else
2340 this_rq()->nr_uninterruptible--;
2341 }
2361 p->state = TASK_WAKING; 2342 p->state = TASK_WAKING;
2362 2343
2363 if (p->sched_class->task_waking) 2344 if (p->sched_class->task_waking) {
2364 p->sched_class->task_waking(rq, p); 2345 p->sched_class->task_waking(rq, p);
2346 en_flags |= ENQUEUE_WAKING;
2347 }
2365 2348
2366 __task_rq_unlock(rq); 2349 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2367 2350 if (cpu != orig_cpu)
2368 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2369 if (cpu != orig_cpu) {
2370 /*
2371 * Since we migrate the task without holding any rq->lock,
2372 * we need to be careful with task_rq_lock(), since that
2373 * might end up locking an invalid rq.
2374 */
2375 set_task_cpu(p, cpu); 2351 set_task_cpu(p, cpu);
2376 } 2352 __task_rq_unlock(rq);
2377 2353
2378 rq = cpu_rq(cpu); 2354 rq = cpu_rq(cpu);
2379 raw_spin_lock(&rq->lock); 2355 raw_spin_lock(&rq->lock);
2380 update_rq_clock(rq);
2381 2356
2382 /* 2357 /*
2383 * We migrated the task without holding either rq->lock, however 2358 * We migrated the task without holding either rq->lock, however
@@ -2405,36 +2380,20 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2405 2380
2406out_activate: 2381out_activate:
2407#endif /* CONFIG_SMP */ 2382#endif /* CONFIG_SMP */
2408 schedstat_inc(p, se.nr_wakeups); 2383 schedstat_inc(p, se.statistics.nr_wakeups);
2409 if (wake_flags & WF_SYNC) 2384 if (wake_flags & WF_SYNC)
2410 schedstat_inc(p, se.nr_wakeups_sync); 2385 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2411 if (orig_cpu != cpu) 2386 if (orig_cpu != cpu)
2412 schedstat_inc(p, se.nr_wakeups_migrate); 2387 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2413 if (cpu == this_cpu) 2388 if (cpu == this_cpu)
2414 schedstat_inc(p, se.nr_wakeups_local); 2389 schedstat_inc(p, se.statistics.nr_wakeups_local);
2415 else 2390 else
2416 schedstat_inc(p, se.nr_wakeups_remote); 2391 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2417 activate_task(rq, p, 1); 2392 activate_task(rq, p, en_flags);
2418 success = 1; 2393 success = 1;
2419 2394
2420 /*
2421 * Only attribute actual wakeups done by this task.
2422 */
2423 if (!in_interrupt()) {
2424 struct sched_entity *se = &current->se;
2425 u64 sample = se->sum_exec_runtime;
2426
2427 if (se->last_wakeup)
2428 sample -= se->last_wakeup;
2429 else
2430 sample -= se->start_runtime;
2431 update_avg(&se->avg_wakeup, sample);
2432
2433 se->last_wakeup = se->sum_exec_runtime;
2434 }
2435
2436out_running: 2395out_running:
2437 trace_sched_wakeup(rq, p, success); 2396 trace_sched_wakeup(p, success);
2438 check_preempt_curr(rq, p, wake_flags); 2397 check_preempt_curr(rq, p, wake_flags);
2439 2398
2440 p->state = TASK_RUNNING; 2399 p->state = TASK_RUNNING;
@@ -2494,42 +2453,9 @@ static void __sched_fork(struct task_struct *p)
2494 p->se.sum_exec_runtime = 0; 2453 p->se.sum_exec_runtime = 0;
2495 p->se.prev_sum_exec_runtime = 0; 2454 p->se.prev_sum_exec_runtime = 0;
2496 p->se.nr_migrations = 0; 2455 p->se.nr_migrations = 0;
2497 p->se.last_wakeup = 0;
2498 p->se.avg_overlap = 0;
2499 p->se.start_runtime = 0;
2500 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2501 2456
2502#ifdef CONFIG_SCHEDSTATS 2457#ifdef CONFIG_SCHEDSTATS
2503 p->se.wait_start = 0; 2458 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2504 p->se.wait_max = 0;
2505 p->se.wait_count = 0;
2506 p->se.wait_sum = 0;
2507
2508 p->se.sleep_start = 0;
2509 p->se.sleep_max = 0;
2510 p->se.sum_sleep_runtime = 0;
2511
2512 p->se.block_start = 0;
2513 p->se.block_max = 0;
2514 p->se.exec_max = 0;
2515 p->se.slice_max = 0;
2516
2517 p->se.nr_migrations_cold = 0;
2518 p->se.nr_failed_migrations_affine = 0;
2519 p->se.nr_failed_migrations_running = 0;
2520 p->se.nr_failed_migrations_hot = 0;
2521 p->se.nr_forced_migrations = 0;
2522
2523 p->se.nr_wakeups = 0;
2524 p->se.nr_wakeups_sync = 0;
2525 p->se.nr_wakeups_migrate = 0;
2526 p->se.nr_wakeups_local = 0;
2527 p->se.nr_wakeups_remote = 0;
2528 p->se.nr_wakeups_affine = 0;
2529 p->se.nr_wakeups_affine_attempts = 0;
2530 p->se.nr_wakeups_passive = 0;
2531 p->se.nr_wakeups_idle = 0;
2532
2533#endif 2459#endif
2534 2460
2535 INIT_LIST_HEAD(&p->rt.run_list); 2461 INIT_LIST_HEAD(&p->rt.run_list);
@@ -2550,11 +2476,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
2550 2476
2551 __sched_fork(p); 2477 __sched_fork(p);
2552 /* 2478 /*
2553 * We mark the process as waking here. This guarantees that 2479 * We mark the process as running here. This guarantees that
2554 * nobody will actually run it, and a signal or other external 2480 * nobody will actually run it, and a signal or other external
2555 * event cannot wake it up and insert it on the runqueue either. 2481 * event cannot wake it up and insert it on the runqueue either.
2556 */ 2482 */
2557 p->state = TASK_WAKING; 2483 p->state = TASK_RUNNING;
2558 2484
2559 /* 2485 /*
2560 * Revert to default priority/policy on fork if requested. 2486 * Revert to default priority/policy on fork if requested.
@@ -2621,31 +2547,27 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2621 int cpu __maybe_unused = get_cpu(); 2547 int cpu __maybe_unused = get_cpu();
2622 2548
2623#ifdef CONFIG_SMP 2549#ifdef CONFIG_SMP
2550 rq = task_rq_lock(p, &flags);
2551 p->state = TASK_WAKING;
2552
2624 /* 2553 /*
2625 * Fork balancing, do it here and not earlier because: 2554 * Fork balancing, do it here and not earlier because:
2626 * - cpus_allowed can change in the fork path 2555 * - cpus_allowed can change in the fork path
2627 * - any previously selected cpu might disappear through hotplug 2556 * - any previously selected cpu might disappear through hotplug
2628 * 2557 *
2629 * We still have TASK_WAKING but PF_STARTING is gone now, meaning 2558 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2630 * ->cpus_allowed is stable, we have preemption disabled, meaning 2559 * without people poking at ->cpus_allowed.
2631 * cpu_online_mask is stable.
2632 */ 2560 */
2633 cpu = select_task_rq(p, SD_BALANCE_FORK, 0); 2561 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2634 set_task_cpu(p, cpu); 2562 set_task_cpu(p, cpu);
2635#endif
2636 2563
2637 /*
2638 * Since the task is not on the rq and we still have TASK_WAKING set
2639 * nobody else will migrate this task.
2640 */
2641 rq = cpu_rq(cpu);
2642 raw_spin_lock_irqsave(&rq->lock, flags);
2643
2644 BUG_ON(p->state != TASK_WAKING);
2645 p->state = TASK_RUNNING; 2564 p->state = TASK_RUNNING;
2646 update_rq_clock(rq); 2565 task_rq_unlock(rq, &flags);
2566#endif
2567
2568 rq = task_rq_lock(p, &flags);
2647 activate_task(rq, p, 0); 2569 activate_task(rq, p, 0);
2648 trace_sched_wakeup_new(rq, p, 1); 2570 trace_sched_wakeup_new(p, 1);
2649 check_preempt_curr(rq, p, WF_FORK); 2571 check_preempt_curr(rq, p, WF_FORK);
2650#ifdef CONFIG_SMP 2572#ifdef CONFIG_SMP
2651 if (p->sched_class->task_woken) 2573 if (p->sched_class->task_woken)
@@ -2865,7 +2787,7 @@ context_switch(struct rq *rq, struct task_struct *prev,
2865 struct mm_struct *mm, *oldmm; 2787 struct mm_struct *mm, *oldmm;
2866 2788
2867 prepare_task_switch(rq, prev, next); 2789 prepare_task_switch(rq, prev, next);
2868 trace_sched_switch(rq, prev, next); 2790 trace_sched_switch(prev, next);
2869 mm = next->mm; 2791 mm = next->mm;
2870 oldmm = prev->active_mm; 2792 oldmm = prev->active_mm;
2871 /* 2793 /*
@@ -2982,6 +2904,61 @@ static unsigned long calc_load_update;
2982unsigned long avenrun[3]; 2904unsigned long avenrun[3];
2983EXPORT_SYMBOL(avenrun); 2905EXPORT_SYMBOL(avenrun);
2984 2906
2907static long calc_load_fold_active(struct rq *this_rq)
2908{
2909 long nr_active, delta = 0;
2910
2911 nr_active = this_rq->nr_running;
2912 nr_active += (long) this_rq->nr_uninterruptible;
2913
2914 if (nr_active != this_rq->calc_load_active) {
2915 delta = nr_active - this_rq->calc_load_active;
2916 this_rq->calc_load_active = nr_active;
2917 }
2918
2919 return delta;
2920}
2921
2922#ifdef CONFIG_NO_HZ
2923/*
2924 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2925 *
2926 * When making the ILB scale, we should try to pull this in as well.
2927 */
2928static atomic_long_t calc_load_tasks_idle;
2929
2930static void calc_load_account_idle(struct rq *this_rq)
2931{
2932 long delta;
2933
2934 delta = calc_load_fold_active(this_rq);
2935 if (delta)
2936 atomic_long_add(delta, &calc_load_tasks_idle);
2937}
2938
2939static long calc_load_fold_idle(void)
2940{
2941 long delta = 0;
2942
2943 /*
2944 * Its got a race, we don't care...
2945 */
2946 if (atomic_long_read(&calc_load_tasks_idle))
2947 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2948
2949 return delta;
2950}
2951#else
2952static void calc_load_account_idle(struct rq *this_rq)
2953{
2954}
2955
2956static inline long calc_load_fold_idle(void)
2957{
2958 return 0;
2959}
2960#endif
2961
2985/** 2962/**
2986 * get_avenrun - get the load average array 2963 * get_avenrun - get the load average array
2987 * @loads: pointer to dest load array 2964 * @loads: pointer to dest load array
@@ -3028,20 +3005,22 @@ void calc_global_load(void)
3028} 3005}
3029 3006
3030/* 3007/*
3031 * Either called from update_cpu_load() or from a cpu going idle 3008 * Called from update_cpu_load() to periodically update this CPU's
3009 * active count.
3032 */ 3010 */
3033static void calc_load_account_active(struct rq *this_rq) 3011static void calc_load_account_active(struct rq *this_rq)
3034{ 3012{
3035 long nr_active, delta; 3013 long delta;
3036 3014
3037 nr_active = this_rq->nr_running; 3015 if (time_before(jiffies, this_rq->calc_load_update))
3038 nr_active += (long) this_rq->nr_uninterruptible; 3016 return;
3039 3017
3040 if (nr_active != this_rq->calc_load_active) { 3018 delta = calc_load_fold_active(this_rq);
3041 delta = nr_active - this_rq->calc_load_active; 3019 delta += calc_load_fold_idle();
3042 this_rq->calc_load_active = nr_active; 3020 if (delta)
3043 atomic_long_add(delta, &calc_load_tasks); 3021 atomic_long_add(delta, &calc_load_tasks);
3044 } 3022
3023 this_rq->calc_load_update += LOAD_FREQ;
3045} 3024}
3046 3025
3047/* 3026/*
@@ -3073,10 +3052,7 @@ static void update_cpu_load(struct rq *this_rq)
3073 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; 3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3074 } 3053 }
3075 3054
3076 if (time_after_eq(jiffies, this_rq->calc_load_update)) { 3055 calc_load_account_active(this_rq);
3077 this_rq->calc_load_update += LOAD_FREQ;
3078 calc_load_account_active(this_rq);
3079 }
3080} 3056}
3081 3057
3082#ifdef CONFIG_SMP 3058#ifdef CONFIG_SMP
@@ -3088,44 +3064,27 @@ static void update_cpu_load(struct rq *this_rq)
3088void sched_exec(void) 3064void sched_exec(void)
3089{ 3065{
3090 struct task_struct *p = current; 3066 struct task_struct *p = current;
3091 struct migration_req req;
3092 int dest_cpu, this_cpu;
3093 unsigned long flags; 3067 unsigned long flags;
3094 struct rq *rq; 3068 struct rq *rq;
3095 3069 int dest_cpu;
3096again:
3097 this_cpu = get_cpu();
3098 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3099 if (dest_cpu == this_cpu) {
3100 put_cpu();
3101 return;
3102 }
3103 3070
3104 rq = task_rq_lock(p, &flags); 3071 rq = task_rq_lock(p, &flags);
3105 put_cpu(); 3072 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3073 if (dest_cpu == smp_processor_id())
3074 goto unlock;
3106 3075
3107 /* 3076 /*
3108 * select_task_rq() can race against ->cpus_allowed 3077 * select_task_rq() can race against ->cpus_allowed
3109 */ 3078 */
3110 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) 3079 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3111 || unlikely(!cpu_active(dest_cpu))) { 3080 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3112 task_rq_unlock(rq, &flags); 3081 struct migration_arg arg = { p, dest_cpu };
3113 goto again;
3114 }
3115 3082
3116 /* force the process onto the specified CPU */
3117 if (migrate_task(p, dest_cpu, &req)) {
3118 /* Need to wait for migration thread (might exit: take ref). */
3119 struct task_struct *mt = rq->migration_thread;
3120
3121 get_task_struct(mt);
3122 task_rq_unlock(rq, &flags); 3083 task_rq_unlock(rq, &flags);
3123 wake_up_process(mt); 3084 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3124 put_task_struct(mt);
3125 wait_for_completion(&req.done);
3126
3127 return; 3085 return;
3128 } 3086 }
3087unlock:
3129 task_rq_unlock(rq, &flags); 3088 task_rq_unlock(rq, &flags);
3130} 3089}
3131 3090
@@ -3597,23 +3556,9 @@ static inline void schedule_debug(struct task_struct *prev)
3597 3556
3598static void put_prev_task(struct rq *rq, struct task_struct *prev) 3557static void put_prev_task(struct rq *rq, struct task_struct *prev)
3599{ 3558{
3600 if (prev->state == TASK_RUNNING) { 3559 if (prev->se.on_rq)
3601 u64 runtime = prev->se.sum_exec_runtime; 3560 update_rq_clock(rq);
3602 3561 rq->skip_clock_update = 0;
3603 runtime -= prev->se.prev_sum_exec_runtime;
3604 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3605
3606 /*
3607 * In order to avoid avg_overlap growing stale when we are
3608 * indeed overlapping and hence not getting put to sleep, grow
3609 * the avg_overlap on preemption.
3610 *
3611 * We use the average preemption runtime because that
3612 * correlates to the amount of cache footprint a task can
3613 * build up.
3614 */
3615 update_avg(&prev->se.avg_overlap, runtime);
3616 }
3617 prev->sched_class->put_prev_task(rq, prev); 3562 prev->sched_class->put_prev_task(rq, prev);
3618} 3563}
3619 3564
@@ -3663,7 +3608,7 @@ need_resched:
3663 preempt_disable(); 3608 preempt_disable();
3664 cpu = smp_processor_id(); 3609 cpu = smp_processor_id();
3665 rq = cpu_rq(cpu); 3610 rq = cpu_rq(cpu);
3666 rcu_sched_qs(cpu); 3611 rcu_note_context_switch(cpu);
3667 prev = rq->curr; 3612 prev = rq->curr;
3668 switch_count = &prev->nivcsw; 3613 switch_count = &prev->nivcsw;
3669 3614
@@ -3676,14 +3621,13 @@ need_resched_nonpreemptible:
3676 hrtick_clear(rq); 3621 hrtick_clear(rq);
3677 3622
3678 raw_spin_lock_irq(&rq->lock); 3623 raw_spin_lock_irq(&rq->lock);
3679 update_rq_clock(rq);
3680 clear_tsk_need_resched(prev); 3624 clear_tsk_need_resched(prev);
3681 3625
3682 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3626 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3683 if (unlikely(signal_pending_state(prev->state, prev))) 3627 if (unlikely(signal_pending_state(prev->state, prev)))
3684 prev->state = TASK_RUNNING; 3628 prev->state = TASK_RUNNING;
3685 else 3629 else
3686 deactivate_task(rq, prev, 1); 3630 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3687 switch_count = &prev->nvcsw; 3631 switch_count = &prev->nvcsw;
3688 } 3632 }
3689 3633
@@ -4006,8 +3950,7 @@ do_wait_for_common(struct completion *x, long timeout, int state)
4006 if (!x->done) { 3950 if (!x->done) {
4007 DECLARE_WAITQUEUE(wait, current); 3951 DECLARE_WAITQUEUE(wait, current);
4008 3952
4009 wait.flags |= WQ_FLAG_EXCLUSIVE; 3953 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4010 __add_wait_queue_tail(&x->wait, &wait);
4011 do { 3954 do {
4012 if (signal_pending_state(state, current)) { 3955 if (signal_pending_state(state, current)) {
4013 timeout = -ERESTARTSYS; 3956 timeout = -ERESTARTSYS;
@@ -4233,7 +4176,6 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
4233 BUG_ON(prio < 0 || prio > MAX_PRIO); 4176 BUG_ON(prio < 0 || prio > MAX_PRIO);
4234 4177
4235 rq = task_rq_lock(p, &flags); 4178 rq = task_rq_lock(p, &flags);
4236 update_rq_clock(rq);
4237 4179
4238 oldprio = p->prio; 4180 oldprio = p->prio;
4239 prev_class = p->sched_class; 4181 prev_class = p->sched_class;
@@ -4254,7 +4196,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
4254 if (running) 4196 if (running)
4255 p->sched_class->set_curr_task(rq); 4197 p->sched_class->set_curr_task(rq);
4256 if (on_rq) { 4198 if (on_rq) {
4257 enqueue_task(rq, p, 0, oldprio < prio); 4199 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4258 4200
4259 check_class_changed(rq, p, prev_class, oldprio, running); 4201 check_class_changed(rq, p, prev_class, oldprio, running);
4260 } 4202 }
@@ -4276,7 +4218,6 @@ void set_user_nice(struct task_struct *p, long nice)
4276 * the task might be in the middle of scheduling on another CPU. 4218 * the task might be in the middle of scheduling on another CPU.
4277 */ 4219 */
4278 rq = task_rq_lock(p, &flags); 4220 rq = task_rq_lock(p, &flags);
4279 update_rq_clock(rq);
4280 /* 4221 /*
4281 * The RT priorities are set via sched_setscheduler(), but we still 4222 * The RT priorities are set via sched_setscheduler(), but we still
4282 * allow the 'normal' nice value to be set - but as expected 4223 * allow the 'normal' nice value to be set - but as expected
@@ -4298,7 +4239,7 @@ void set_user_nice(struct task_struct *p, long nice)
4298 delta = p->prio - old_prio; 4239 delta = p->prio - old_prio;
4299 4240
4300 if (on_rq) { 4241 if (on_rq) {
4301 enqueue_task(rq, p, 0, false); 4242 enqueue_task(rq, p, 0);
4302 /* 4243 /*
4303 * If the task increased its priority or is running and 4244 * If the task increased its priority or is running and
4304 * lowered its priority, then reschedule its CPU: 4245 * lowered its priority, then reschedule its CPU:
@@ -4559,7 +4500,6 @@ recheck:
4559 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4500 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4560 goto recheck; 4501 goto recheck;
4561 } 4502 }
4562 update_rq_clock(rq);
4563 on_rq = p->se.on_rq; 4503 on_rq = p->se.on_rq;
4564 running = task_current(rq, p); 4504 running = task_current(rq, p);
4565 if (on_rq) 4505 if (on_rq)
@@ -5296,17 +5236,15 @@ static inline void sched_init_granularity(void)
5296/* 5236/*
5297 * This is how migration works: 5237 * This is how migration works:
5298 * 5238 *
5299 * 1) we queue a struct migration_req structure in the source CPU's 5239 * 1) we invoke migration_cpu_stop() on the target CPU using
5300 * runqueue and wake up that CPU's migration thread. 5240 * stop_one_cpu().
5301 * 2) we down() the locked semaphore => thread blocks. 5241 * 2) stopper starts to run (implicitly forcing the migrated thread
5302 * 3) migration thread wakes up (implicitly it forces the migrated 5242 * off the CPU)
5303 * thread off the CPU) 5243 * 3) it checks whether the migrated task is still in the wrong runqueue.
5304 * 4) it gets the migration request and checks whether the migrated 5244 * 4) if it's in the wrong runqueue then the migration thread removes
5305 * task is still in the wrong runqueue.
5306 * 5) if it's in the wrong runqueue then the migration thread removes
5307 * it and puts it into the right queue. 5245 * it and puts it into the right queue.
5308 * 6) migration thread up()s the semaphore. 5246 * 5) stopper completes and stop_one_cpu() returns and the migration
5309 * 7) we wake up and the migration is done. 5247 * is done.
5310 */ 5248 */
5311 5249
5312/* 5250/*
@@ -5320,12 +5258,23 @@ static inline void sched_init_granularity(void)
5320 */ 5258 */
5321int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 5259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5322{ 5260{
5323 struct migration_req req;
5324 unsigned long flags; 5261 unsigned long flags;
5325 struct rq *rq; 5262 struct rq *rq;
5263 unsigned int dest_cpu;
5326 int ret = 0; 5264 int ret = 0;
5327 5265
5266 /*
5267 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5268 * drop the rq->lock and still rely on ->cpus_allowed.
5269 */
5270again:
5271 while (task_is_waking(p))
5272 cpu_relax();
5328 rq = task_rq_lock(p, &flags); 5273 rq = task_rq_lock(p, &flags);
5274 if (task_is_waking(p)) {
5275 task_rq_unlock(rq, &flags);
5276 goto again;
5277 }
5329 5278
5330 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 5279 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5331 ret = -EINVAL; 5280 ret = -EINVAL;
@@ -5349,15 +5298,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5349 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5298 if (cpumask_test_cpu(task_cpu(p), new_mask))
5350 goto out; 5299 goto out;
5351 5300
5352 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { 5301 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5302 if (migrate_task(p, dest_cpu)) {
5303 struct migration_arg arg = { p, dest_cpu };
5353 /* Need help from migration thread: drop lock and wait. */ 5304 /* Need help from migration thread: drop lock and wait. */
5354 struct task_struct *mt = rq->migration_thread;
5355
5356 get_task_struct(mt);
5357 task_rq_unlock(rq, &flags); 5305 task_rq_unlock(rq, &flags);
5358 wake_up_process(mt); 5306 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5359 put_task_struct(mt);
5360 wait_for_completion(&req.done);
5361 tlb_migrate_finish(p->mm); 5307 tlb_migrate_finish(p->mm);
5362 return 0; 5308 return 0;
5363 } 5309 }
@@ -5415,98 +5361,49 @@ fail:
5415 return ret; 5361 return ret;
5416} 5362}
5417 5363
5418#define RCU_MIGRATION_IDLE 0
5419#define RCU_MIGRATION_NEED_QS 1
5420#define RCU_MIGRATION_GOT_QS 2
5421#define RCU_MIGRATION_MUST_SYNC 3
5422
5423/* 5364/*
5424 * migration_thread - this is a highprio system thread that performs 5365 * migration_cpu_stop - this will be executed by a highprio stopper thread
5425 * thread migration by bumping thread off CPU then 'pushing' onto 5366 * and performs thread migration by bumping thread off CPU then
5426 * another runqueue. 5367 * 'pushing' onto another runqueue.
5427 */ 5368 */
5428static int migration_thread(void *data) 5369static int migration_cpu_stop(void *data)
5429{ 5370{
5430 int badcpu; 5371 struct migration_arg *arg = data;
5431 int cpu = (long)data;
5432 struct rq *rq;
5433
5434 rq = cpu_rq(cpu);
5435 BUG_ON(rq->migration_thread != current);
5436
5437 set_current_state(TASK_INTERRUPTIBLE);
5438 while (!kthread_should_stop()) {
5439 struct migration_req *req;
5440 struct list_head *head;
5441
5442 raw_spin_lock_irq(&rq->lock);
5443
5444 if (cpu_is_offline(cpu)) {
5445 raw_spin_unlock_irq(&rq->lock);
5446 break;
5447 }
5448
5449 if (rq->active_balance) {
5450 active_load_balance(rq, cpu);
5451 rq->active_balance = 0;
5452 }
5453
5454 head = &rq->migration_queue;
5455
5456 if (list_empty(head)) {
5457 raw_spin_unlock_irq(&rq->lock);
5458 schedule();
5459 set_current_state(TASK_INTERRUPTIBLE);
5460 continue;
5461 }
5462 req = list_entry(head->next, struct migration_req, list);
5463 list_del_init(head->next);
5464
5465 if (req->task != NULL) {
5466 raw_spin_unlock(&rq->lock);
5467 __migrate_task(req->task, cpu, req->dest_cpu);
5468 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5469 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5470 raw_spin_unlock(&rq->lock);
5471 } else {
5472 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5473 raw_spin_unlock(&rq->lock);
5474 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5475 }
5476 local_irq_enable();
5477
5478 complete(&req->done);
5479 }
5480 __set_current_state(TASK_RUNNING);
5481
5482 return 0;
5483}
5484
5485#ifdef CONFIG_HOTPLUG_CPU
5486
5487static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5488{
5489 int ret;
5490 5372
5373 /*
5374 * The original target cpu might have gone down and we might
5375 * be on another cpu but it doesn't matter.
5376 */
5491 local_irq_disable(); 5377 local_irq_disable();
5492 ret = __migrate_task(p, src_cpu, dest_cpu); 5378 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5493 local_irq_enable(); 5379 local_irq_enable();
5494 return ret; 5380 return 0;
5495} 5381}
5496 5382
5383#ifdef CONFIG_HOTPLUG_CPU
5497/* 5384/*
5498 * Figure out where task on dead CPU should go, use force if necessary. 5385 * Figure out where task on dead CPU should go, use force if necessary.
5499 */ 5386 */
5500static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 5387void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5501{ 5388{
5502 int dest_cpu; 5389 struct rq *rq = cpu_rq(dead_cpu);
5390 int needs_cpu, uninitialized_var(dest_cpu);
5391 unsigned long flags;
5503 5392
5504again: 5393 local_irq_save(flags);
5505 dest_cpu = select_fallback_rq(dead_cpu, p);
5506 5394
5507 /* It can have affinity changed while we were choosing. */ 5395 raw_spin_lock(&rq->lock);
5508 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) 5396 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5509 goto again; 5397 if (needs_cpu)
5398 dest_cpu = select_fallback_rq(dead_cpu, p);
5399 raw_spin_unlock(&rq->lock);
5400 /*
5401 * It can only fail if we race with set_cpus_allowed(),
5402 * in the racer should migrate the task anyway.
5403 */
5404 if (needs_cpu)
5405 __migrate_task(p, dead_cpu, dest_cpu);
5406 local_irq_restore(flags);
5510} 5407}
5511 5408
5512/* 5409/*
@@ -5570,7 +5467,6 @@ void sched_idle_next(void)
5570 5467
5571 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 5468 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5572 5469
5573 update_rq_clock(rq);
5574 activate_task(rq, p, 0); 5470 activate_task(rq, p, 0);
5575 5471
5576 raw_spin_unlock_irqrestore(&rq->lock, flags); 5472 raw_spin_unlock_irqrestore(&rq->lock, flags);
@@ -5625,7 +5521,6 @@ static void migrate_dead_tasks(unsigned int dead_cpu)
5625 for ( ; ; ) { 5521 for ( ; ; ) {
5626 if (!rq->nr_running) 5522 if (!rq->nr_running)
5627 break; 5523 break;
5628 update_rq_clock(rq);
5629 next = pick_next_task(rq); 5524 next = pick_next_task(rq);
5630 if (!next) 5525 if (!next)
5631 break; 5526 break;
@@ -5848,35 +5743,20 @@ static void set_rq_offline(struct rq *rq)
5848static int __cpuinit 5743static int __cpuinit
5849migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5744migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5850{ 5745{
5851 struct task_struct *p;
5852 int cpu = (long)hcpu; 5746 int cpu = (long)hcpu;
5853 unsigned long flags; 5747 unsigned long flags;
5854 struct rq *rq; 5748 struct rq *rq = cpu_rq(cpu);
5855 5749
5856 switch (action) { 5750 switch (action) {
5857 5751
5858 case CPU_UP_PREPARE: 5752 case CPU_UP_PREPARE:
5859 case CPU_UP_PREPARE_FROZEN: 5753 case CPU_UP_PREPARE_FROZEN:
5860 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5861 if (IS_ERR(p))
5862 return NOTIFY_BAD;
5863 kthread_bind(p, cpu);
5864 /* Must be high prio: stop_machine expects to yield to it. */
5865 rq = task_rq_lock(p, &flags);
5866 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5867 task_rq_unlock(rq, &flags);
5868 get_task_struct(p);
5869 cpu_rq(cpu)->migration_thread = p;
5870 rq->calc_load_update = calc_load_update; 5754 rq->calc_load_update = calc_load_update;
5871 break; 5755 break;
5872 5756
5873 case CPU_ONLINE: 5757 case CPU_ONLINE:
5874 case CPU_ONLINE_FROZEN: 5758 case CPU_ONLINE_FROZEN:
5875 /* Strictly unnecessary, as first user will wake it. */
5876 wake_up_process(cpu_rq(cpu)->migration_thread);
5877
5878 /* Update our root-domain */ 5759 /* Update our root-domain */
5879 rq = cpu_rq(cpu);
5880 raw_spin_lock_irqsave(&rq->lock, flags); 5760 raw_spin_lock_irqsave(&rq->lock, flags);
5881 if (rq->rd) { 5761 if (rq->rd) {
5882 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5762 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
@@ -5887,61 +5767,24 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5887 break; 5767 break;
5888 5768
5889#ifdef CONFIG_HOTPLUG_CPU 5769#ifdef CONFIG_HOTPLUG_CPU
5890 case CPU_UP_CANCELED:
5891 case CPU_UP_CANCELED_FROZEN:
5892 if (!cpu_rq(cpu)->migration_thread)
5893 break;
5894 /* Unbind it from offline cpu so it can run. Fall thru. */
5895 kthread_bind(cpu_rq(cpu)->migration_thread,
5896 cpumask_any(cpu_online_mask));
5897 kthread_stop(cpu_rq(cpu)->migration_thread);
5898 put_task_struct(cpu_rq(cpu)->migration_thread);
5899 cpu_rq(cpu)->migration_thread = NULL;
5900 break;
5901
5902 case CPU_DEAD: 5770 case CPU_DEAD:
5903 case CPU_DEAD_FROZEN: 5771 case CPU_DEAD_FROZEN:
5904 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5905 migrate_live_tasks(cpu); 5772 migrate_live_tasks(cpu);
5906 rq = cpu_rq(cpu);
5907 kthread_stop(rq->migration_thread);
5908 put_task_struct(rq->migration_thread);
5909 rq->migration_thread = NULL;
5910 /* Idle task back to normal (off runqueue, low prio) */ 5773 /* Idle task back to normal (off runqueue, low prio) */
5911 raw_spin_lock_irq(&rq->lock); 5774 raw_spin_lock_irq(&rq->lock);
5912 update_rq_clock(rq);
5913 deactivate_task(rq, rq->idle, 0); 5775 deactivate_task(rq, rq->idle, 0);
5914 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 5776 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5915 rq->idle->sched_class = &idle_sched_class; 5777 rq->idle->sched_class = &idle_sched_class;
5916 migrate_dead_tasks(cpu); 5778 migrate_dead_tasks(cpu);
5917 raw_spin_unlock_irq(&rq->lock); 5779 raw_spin_unlock_irq(&rq->lock);
5918 cpuset_unlock();
5919 migrate_nr_uninterruptible(rq); 5780 migrate_nr_uninterruptible(rq);
5920 BUG_ON(rq->nr_running != 0); 5781 BUG_ON(rq->nr_running != 0);
5921 calc_global_load_remove(rq); 5782 calc_global_load_remove(rq);
5922 /*
5923 * No need to migrate the tasks: it was best-effort if
5924 * they didn't take sched_hotcpu_mutex. Just wake up
5925 * the requestors.
5926 */
5927 raw_spin_lock_irq(&rq->lock);
5928 while (!list_empty(&rq->migration_queue)) {
5929 struct migration_req *req;
5930
5931 req = list_entry(rq->migration_queue.next,
5932 struct migration_req, list);
5933 list_del_init(&req->list);
5934 raw_spin_unlock_irq(&rq->lock);
5935 complete(&req->done);
5936 raw_spin_lock_irq(&rq->lock);
5937 }
5938 raw_spin_unlock_irq(&rq->lock);
5939 break; 5783 break;
5940 5784
5941 case CPU_DYING: 5785 case CPU_DYING:
5942 case CPU_DYING_FROZEN: 5786 case CPU_DYING_FROZEN:
5943 /* Update our root-domain */ 5787 /* Update our root-domain */
5944 rq = cpu_rq(cpu);
5945 raw_spin_lock_irqsave(&rq->lock, flags); 5788 raw_spin_lock_irqsave(&rq->lock, flags);
5946 if (rq->rd) { 5789 if (rq->rd) {
5947 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5790 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
@@ -6272,6 +6115,9 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6272 struct rq *rq = cpu_rq(cpu); 6115 struct rq *rq = cpu_rq(cpu);
6273 struct sched_domain *tmp; 6116 struct sched_domain *tmp;
6274 6117
6118 for (tmp = sd; tmp; tmp = tmp->parent)
6119 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6120
6275 /* Remove the sched domains which do not contribute to scheduling. */ 6121 /* Remove the sched domains which do not contribute to scheduling. */
6276 for (tmp = sd; tmp; ) { 6122 for (tmp = sd; tmp; ) {
6277 struct sched_domain *parent = tmp->parent; 6123 struct sched_domain *parent = tmp->parent;
@@ -7755,10 +7601,8 @@ void __init sched_init(void)
7755 rq->push_cpu = 0; 7601 rq->push_cpu = 0;
7756 rq->cpu = i; 7602 rq->cpu = i;
7757 rq->online = 0; 7603 rq->online = 0;
7758 rq->migration_thread = NULL;
7759 rq->idle_stamp = 0; 7604 rq->idle_stamp = 0;
7760 rq->avg_idle = 2*sysctl_sched_migration_cost; 7605 rq->avg_idle = 2*sysctl_sched_migration_cost;
7761 INIT_LIST_HEAD(&rq->migration_queue);
7762 rq_attach_root(rq, &def_root_domain); 7606 rq_attach_root(rq, &def_root_domain);
7763#endif 7607#endif
7764 init_rq_hrtick(rq); 7608 init_rq_hrtick(rq);
@@ -7859,7 +7703,6 @@ static void normalize_task(struct rq *rq, struct task_struct *p)
7859{ 7703{
7860 int on_rq; 7704 int on_rq;
7861 7705
7862 update_rq_clock(rq);
7863 on_rq = p->se.on_rq; 7706 on_rq = p->se.on_rq;
7864 if (on_rq) 7707 if (on_rq)
7865 deactivate_task(rq, p, 0); 7708 deactivate_task(rq, p, 0);
@@ -7886,9 +7729,9 @@ void normalize_rt_tasks(void)
7886 7729
7887 p->se.exec_start = 0; 7730 p->se.exec_start = 0;
7888#ifdef CONFIG_SCHEDSTATS 7731#ifdef CONFIG_SCHEDSTATS
7889 p->se.wait_start = 0; 7732 p->se.statistics.wait_start = 0;
7890 p->se.sleep_start = 0; 7733 p->se.statistics.sleep_start = 0;
7891 p->se.block_start = 0; 7734 p->se.statistics.block_start = 0;
7892#endif 7735#endif
7893 7736
7894 if (!rt_task(p)) { 7737 if (!rt_task(p)) {
@@ -8221,8 +8064,6 @@ void sched_move_task(struct task_struct *tsk)
8221 8064
8222 rq = task_rq_lock(tsk, &flags); 8065 rq = task_rq_lock(tsk, &flags);
8223 8066
8224 update_rq_clock(rq);
8225
8226 running = task_current(rq, tsk); 8067 running = task_current(rq, tsk);
8227 on_rq = tsk->se.on_rq; 8068 on_rq = tsk->se.on_rq;
8228 8069
@@ -8241,7 +8082,7 @@ void sched_move_task(struct task_struct *tsk)
8241 if (unlikely(running)) 8082 if (unlikely(running))
8242 tsk->sched_class->set_curr_task(rq); 8083 tsk->sched_class->set_curr_task(rq);
8243 if (on_rq) 8084 if (on_rq)
8244 enqueue_task(rq, tsk, 0, false); 8085 enqueue_task(rq, tsk, 0);
8245 8086
8246 task_rq_unlock(rq, &flags); 8087 task_rq_unlock(rq, &flags);
8247} 8088}
@@ -9055,43 +8896,32 @@ struct cgroup_subsys cpuacct_subsys = {
9055 8896
9056#ifndef CONFIG_SMP 8897#ifndef CONFIG_SMP
9057 8898
9058int rcu_expedited_torture_stats(char *page)
9059{
9060 return 0;
9061}
9062EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9063
9064void synchronize_sched_expedited(void) 8899void synchronize_sched_expedited(void)
9065{ 8900{
8901 barrier();
9066} 8902}
9067EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 8903EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9068 8904
9069#else /* #ifndef CONFIG_SMP */ 8905#else /* #ifndef CONFIG_SMP */
9070 8906
9071static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); 8907static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9072static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9073
9074#define RCU_EXPEDITED_STATE_POST -2
9075#define RCU_EXPEDITED_STATE_IDLE -1
9076
9077static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9078 8908
9079int rcu_expedited_torture_stats(char *page) 8909static int synchronize_sched_expedited_cpu_stop(void *data)
9080{ 8910{
9081 int cnt = 0; 8911 /*
9082 int cpu; 8912 * There must be a full memory barrier on each affected CPU
9083 8913 * between the time that try_stop_cpus() is called and the
9084 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); 8914 * time that it returns.
9085 for_each_online_cpu(cpu) { 8915 *
9086 cnt += sprintf(&page[cnt], " %d:%d", 8916 * In the current initial implementation of cpu_stop, the
9087 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); 8917 * above condition is already met when the control reaches
9088 } 8918 * this point and the following smp_mb() is not strictly
9089 cnt += sprintf(&page[cnt], "\n"); 8919 * necessary. Do smp_mb() anyway for documentation and
9090 return cnt; 8920 * robustness against future implementation changes.
8921 */
8922 smp_mb(); /* See above comment block. */
8923 return 0;
9091} 8924}
9092EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9093
9094static long synchronize_sched_expedited_count;
9095 8925
9096/* 8926/*
9097 * Wait for an rcu-sched grace period to elapse, but use "big hammer" 8927 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
@@ -9105,18 +8935,14 @@ static long synchronize_sched_expedited_count;
9105 */ 8935 */
9106void synchronize_sched_expedited(void) 8936void synchronize_sched_expedited(void)
9107{ 8937{
9108 int cpu; 8938 int snap, trycount = 0;
9109 unsigned long flags;
9110 bool need_full_sync = 0;
9111 struct rq *rq;
9112 struct migration_req *req;
9113 long snap;
9114 int trycount = 0;
9115 8939
9116 smp_mb(); /* ensure prior mod happens before capturing snap. */ 8940 smp_mb(); /* ensure prior mod happens before capturing snap. */
9117 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; 8941 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9118 get_online_cpus(); 8942 get_online_cpus();
9119 while (!mutex_trylock(&rcu_sched_expedited_mutex)) { 8943 while (try_stop_cpus(cpu_online_mask,
8944 synchronize_sched_expedited_cpu_stop,
8945 NULL) == -EAGAIN) {
9120 put_online_cpus(); 8946 put_online_cpus();
9121 if (trycount++ < 10) 8947 if (trycount++ < 10)
9122 udelay(trycount * num_online_cpus()); 8948 udelay(trycount * num_online_cpus());
@@ -9124,41 +8950,15 @@ void synchronize_sched_expedited(void)
9124 synchronize_sched(); 8950 synchronize_sched();
9125 return; 8951 return;
9126 } 8952 }
9127 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { 8953 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9128 smp_mb(); /* ensure test happens before caller kfree */ 8954 smp_mb(); /* ensure test happens before caller kfree */
9129 return; 8955 return;
9130 } 8956 }
9131 get_online_cpus(); 8957 get_online_cpus();
9132 } 8958 }
9133 rcu_expedited_state = RCU_EXPEDITED_STATE_POST; 8959 atomic_inc(&synchronize_sched_expedited_count);
9134 for_each_online_cpu(cpu) { 8960 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9135 rq = cpu_rq(cpu);
9136 req = &per_cpu(rcu_migration_req, cpu);
9137 init_completion(&req->done);
9138 req->task = NULL;
9139 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9140 raw_spin_lock_irqsave(&rq->lock, flags);
9141 list_add(&req->list, &rq->migration_queue);
9142 raw_spin_unlock_irqrestore(&rq->lock, flags);
9143 wake_up_process(rq->migration_thread);
9144 }
9145 for_each_online_cpu(cpu) {
9146 rcu_expedited_state = cpu;
9147 req = &per_cpu(rcu_migration_req, cpu);
9148 rq = cpu_rq(cpu);
9149 wait_for_completion(&req->done);
9150 raw_spin_lock_irqsave(&rq->lock, flags);
9151 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9152 need_full_sync = 1;
9153 req->dest_cpu = RCU_MIGRATION_IDLE;
9154 raw_spin_unlock_irqrestore(&rq->lock, flags);
9155 }
9156 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9157 synchronize_sched_expedited_count++;
9158 mutex_unlock(&rcu_sched_expedited_mutex);
9159 put_online_cpus(); 8961 put_online_cpus();
9160 if (need_full_sync)
9161 synchronize_sched();
9162} 8962}
9163EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 8963EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9164 8964
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index 9b49db144037..87a330a7185f 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -70,16 +70,16 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu,
70 PN(se->vruntime); 70 PN(se->vruntime);
71 PN(se->sum_exec_runtime); 71 PN(se->sum_exec_runtime);
72#ifdef CONFIG_SCHEDSTATS 72#ifdef CONFIG_SCHEDSTATS
73 PN(se->wait_start); 73 PN(se->statistics.wait_start);
74 PN(se->sleep_start); 74 PN(se->statistics.sleep_start);
75 PN(se->block_start); 75 PN(se->statistics.block_start);
76 PN(se->sleep_max); 76 PN(se->statistics.sleep_max);
77 PN(se->block_max); 77 PN(se->statistics.block_max);
78 PN(se->exec_max); 78 PN(se->statistics.exec_max);
79 PN(se->slice_max); 79 PN(se->statistics.slice_max);
80 PN(se->wait_max); 80 PN(se->statistics.wait_max);
81 PN(se->wait_sum); 81 PN(se->statistics.wait_sum);
82 P(se->wait_count); 82 P(se->statistics.wait_count);
83#endif 83#endif
84 P(se->load.weight); 84 P(se->load.weight);
85#undef PN 85#undef PN
@@ -104,7 +104,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
104 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 104 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
105 SPLIT_NS(p->se.vruntime), 105 SPLIT_NS(p->se.vruntime),
106 SPLIT_NS(p->se.sum_exec_runtime), 106 SPLIT_NS(p->se.sum_exec_runtime),
107 SPLIT_NS(p->se.sum_sleep_runtime)); 107 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
108#else 108#else
109 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 109 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
110 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); 110 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
@@ -114,7 +114,9 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
114 { 114 {
115 char path[64]; 115 char path[64];
116 116
117 rcu_read_lock();
117 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path)); 118 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
119 rcu_read_unlock();
118 SEQ_printf(m, " %s", path); 120 SEQ_printf(m, " %s", path);
119 } 121 }
120#endif 122#endif
@@ -173,11 +175,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
173 task_group_path(tg, path, sizeof(path)); 175 task_group_path(tg, path, sizeof(path));
174 176
175 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); 177 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
176#elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
177 {
178 uid_t uid = cfs_rq->tg->uid;
179 SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid);
180 }
181#else 178#else
182 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 179 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
183#endif 180#endif
@@ -407,40 +404,38 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
407 PN(se.exec_start); 404 PN(se.exec_start);
408 PN(se.vruntime); 405 PN(se.vruntime);
409 PN(se.sum_exec_runtime); 406 PN(se.sum_exec_runtime);
410 PN(se.avg_overlap);
411 PN(se.avg_wakeup);
412 407
413 nr_switches = p->nvcsw + p->nivcsw; 408 nr_switches = p->nvcsw + p->nivcsw;
414 409
415#ifdef CONFIG_SCHEDSTATS 410#ifdef CONFIG_SCHEDSTATS
416 PN(se.wait_start); 411 PN(se.statistics.wait_start);
417 PN(se.sleep_start); 412 PN(se.statistics.sleep_start);
418 PN(se.block_start); 413 PN(se.statistics.block_start);
419 PN(se.sleep_max); 414 PN(se.statistics.sleep_max);
420 PN(se.block_max); 415 PN(se.statistics.block_max);
421 PN(se.exec_max); 416 PN(se.statistics.exec_max);
422 PN(se.slice_max); 417 PN(se.statistics.slice_max);
423 PN(se.wait_max); 418 PN(se.statistics.wait_max);
424 PN(se.wait_sum); 419 PN(se.statistics.wait_sum);
425 P(se.wait_count); 420 P(se.statistics.wait_count);
426 PN(se.iowait_sum); 421 PN(se.statistics.iowait_sum);
427 P(se.iowait_count); 422 P(se.statistics.iowait_count);
428 P(sched_info.bkl_count); 423 P(sched_info.bkl_count);
429 P(se.nr_migrations); 424 P(se.nr_migrations);
430 P(se.nr_migrations_cold); 425 P(se.statistics.nr_migrations_cold);
431 P(se.nr_failed_migrations_affine); 426 P(se.statistics.nr_failed_migrations_affine);
432 P(se.nr_failed_migrations_running); 427 P(se.statistics.nr_failed_migrations_running);
433 P(se.nr_failed_migrations_hot); 428 P(se.statistics.nr_failed_migrations_hot);
434 P(se.nr_forced_migrations); 429 P(se.statistics.nr_forced_migrations);
435 P(se.nr_wakeups); 430 P(se.statistics.nr_wakeups);
436 P(se.nr_wakeups_sync); 431 P(se.statistics.nr_wakeups_sync);
437 P(se.nr_wakeups_migrate); 432 P(se.statistics.nr_wakeups_migrate);
438 P(se.nr_wakeups_local); 433 P(se.statistics.nr_wakeups_local);
439 P(se.nr_wakeups_remote); 434 P(se.statistics.nr_wakeups_remote);
440 P(se.nr_wakeups_affine); 435 P(se.statistics.nr_wakeups_affine);
441 P(se.nr_wakeups_affine_attempts); 436 P(se.statistics.nr_wakeups_affine_attempts);
442 P(se.nr_wakeups_passive); 437 P(se.statistics.nr_wakeups_passive);
443 P(se.nr_wakeups_idle); 438 P(se.statistics.nr_wakeups_idle);
444 439
445 { 440 {
446 u64 avg_atom, avg_per_cpu; 441 u64 avg_atom, avg_per_cpu;
@@ -491,31 +486,6 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
491void proc_sched_set_task(struct task_struct *p) 486void proc_sched_set_task(struct task_struct *p)
492{ 487{
493#ifdef CONFIG_SCHEDSTATS 488#ifdef CONFIG_SCHEDSTATS
494 p->se.wait_max = 0; 489 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
495 p->se.wait_sum = 0;
496 p->se.wait_count = 0;
497 p->se.iowait_sum = 0;
498 p->se.iowait_count = 0;
499 p->se.sleep_max = 0;
500 p->se.sum_sleep_runtime = 0;
501 p->se.block_max = 0;
502 p->se.exec_max = 0;
503 p->se.slice_max = 0;
504 p->se.nr_migrations = 0;
505 p->se.nr_migrations_cold = 0;
506 p->se.nr_failed_migrations_affine = 0;
507 p->se.nr_failed_migrations_running = 0;
508 p->se.nr_failed_migrations_hot = 0;
509 p->se.nr_forced_migrations = 0;
510 p->se.nr_wakeups = 0;
511 p->se.nr_wakeups_sync = 0;
512 p->se.nr_wakeups_migrate = 0;
513 p->se.nr_wakeups_local = 0;
514 p->se.nr_wakeups_remote = 0;
515 p->se.nr_wakeups_affine = 0;
516 p->se.nr_wakeups_affine_attempts = 0;
517 p->se.nr_wakeups_passive = 0;
518 p->se.nr_wakeups_idle = 0;
519 p->sched_info.bkl_count = 0;
520#endif 490#endif
521} 491}
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 5a5ea2cd924f..217e4a9393e4 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -35,8 +35,8 @@
35 * (to see the precise effective timeslice length of your workload, 35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field) 36 * run vmstat and monitor the context-switches (cs) field)
37 */ 37 */
38unsigned int sysctl_sched_latency = 5000000ULL; 38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 5000000ULL; 39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40 40
41/* 41/*
42 * The initial- and re-scaling of tunables is configurable 42 * The initial- and re-scaling of tunables is configurable
@@ -52,15 +52,15 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 52
53/* 53/*
54 * Minimal preemption granularity for CPU-bound tasks: 54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */ 56 */
57unsigned int sysctl_sched_min_granularity = 1000000ULL; 57unsigned int sysctl_sched_min_granularity = 2000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL; 58unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59 59
60/* 60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */ 62 */
63static unsigned int sched_nr_latency = 5; 63static unsigned int sched_nr_latency = 3;
64 64
65/* 65/*
66 * After fork, child runs first. If set to 0 (default) then 66 * After fork, child runs first. If set to 0 (default) then
@@ -505,7 +505,8 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
505{ 505{
506 unsigned long delta_exec_weighted; 506 unsigned long delta_exec_weighted;
507 507
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); 508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
509 510
510 curr->sum_exec_runtime += delta_exec; 511 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec); 512 schedstat_add(cfs_rq, exec_clock, delta_exec);
@@ -548,7 +549,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
548static inline void 549static inline void
549update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
550{ 551{
551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); 552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
552} 553}
553 554
554/* 555/*
@@ -567,18 +568,18 @@ static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
567static void 568static void
568update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
569{ 570{
570 schedstat_set(se->wait_max, max(se->wait_max, 571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start)); 572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
572 schedstat_set(se->wait_count, se->wait_count + 1); 573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum + 574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start); 575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
575#ifdef CONFIG_SCHEDSTATS 576#ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) { 577 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se), 578 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start); 579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
579 } 580 }
580#endif 581#endif
581 schedstat_set(se->wait_start, 0); 582 schedstat_set(se->statistics.wait_start, 0);
582} 583}
583 584
584static inline void 585static inline void
@@ -657,39 +658,39 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
657 if (entity_is_task(se)) 658 if (entity_is_task(se))
658 tsk = task_of(se); 659 tsk = task_of(se);
659 660
660 if (se->sleep_start) { 661 if (se->statistics.sleep_start) {
661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; 662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
662 663
663 if ((s64)delta < 0) 664 if ((s64)delta < 0)
664 delta = 0; 665 delta = 0;
665 666
666 if (unlikely(delta > se->sleep_max)) 667 if (unlikely(delta > se->statistics.sleep_max))
667 se->sleep_max = delta; 668 se->statistics.sleep_max = delta;
668 669
669 se->sleep_start = 0; 670 se->statistics.sleep_start = 0;
670 se->sum_sleep_runtime += delta; 671 se->statistics.sum_sleep_runtime += delta;
671 672
672 if (tsk) { 673 if (tsk) {
673 account_scheduler_latency(tsk, delta >> 10, 1); 674 account_scheduler_latency(tsk, delta >> 10, 1);
674 trace_sched_stat_sleep(tsk, delta); 675 trace_sched_stat_sleep(tsk, delta);
675 } 676 }
676 } 677 }
677 if (se->block_start) { 678 if (se->statistics.block_start) {
678 u64 delta = rq_of(cfs_rq)->clock - se->block_start; 679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
679 680
680 if ((s64)delta < 0) 681 if ((s64)delta < 0)
681 delta = 0; 682 delta = 0;
682 683
683 if (unlikely(delta > se->block_max)) 684 if (unlikely(delta > se->statistics.block_max))
684 se->block_max = delta; 685 se->statistics.block_max = delta;
685 686
686 se->block_start = 0; 687 se->statistics.block_start = 0;
687 se->sum_sleep_runtime += delta; 688 se->statistics.sum_sleep_runtime += delta;
688 689
689 if (tsk) { 690 if (tsk) {
690 if (tsk->in_iowait) { 691 if (tsk->in_iowait) {
691 se->iowait_sum += delta; 692 se->statistics.iowait_sum += delta;
692 se->iowait_count++; 693 se->statistics.iowait_count++;
693 trace_sched_stat_iowait(tsk, delta); 694 trace_sched_stat_iowait(tsk, delta);
694 } 695 }
695 696
@@ -737,20 +738,10 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
737 vruntime += sched_vslice(cfs_rq, se); 738 vruntime += sched_vslice(cfs_rq, se);
738 739
739 /* sleeps up to a single latency don't count. */ 740 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) { 741 if (!initial) {
741 unsigned long thresh = sysctl_sched_latency; 742 unsigned long thresh = sysctl_sched_latency;
742 743
743 /* 744 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
752
753 /*
754 * Halve their sleep time's effect, to allow 745 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers: 746 * for a gentler effect of sleepers:
756 */ 747 */
@@ -766,9 +757,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
766 se->vruntime = vruntime; 757 se->vruntime = vruntime;
767} 758}
768 759
769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
772static void 760static void
773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
774{ 762{
@@ -776,7 +764,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
776 * Update the normalized vruntime before updating min_vruntime 764 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr(). 765 * through callig update_curr().
778 */ 766 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE)) 767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
780 se->vruntime += cfs_rq->min_vruntime; 768 se->vruntime += cfs_rq->min_vruntime;
781 769
782 /* 770 /*
@@ -812,7 +800,7 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
812} 800}
813 801
814static void 802static void
815dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) 803dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
816{ 804{
817 /* 805 /*
818 * Update run-time statistics of the 'current'. 806 * Update run-time statistics of the 'current'.
@@ -820,15 +808,15 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
820 update_curr(cfs_rq); 808 update_curr(cfs_rq);
821 809
822 update_stats_dequeue(cfs_rq, se); 810 update_stats_dequeue(cfs_rq, se);
823 if (sleep) { 811 if (flags & DEQUEUE_SLEEP) {
824#ifdef CONFIG_SCHEDSTATS 812#ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se)) { 813 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se); 814 struct task_struct *tsk = task_of(se);
827 815
828 if (tsk->state & TASK_INTERRUPTIBLE) 816 if (tsk->state & TASK_INTERRUPTIBLE)
829 se->sleep_start = rq_of(cfs_rq)->clock; 817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
830 if (tsk->state & TASK_UNINTERRUPTIBLE) 818 if (tsk->state & TASK_UNINTERRUPTIBLE)
831 se->block_start = rq_of(cfs_rq)->clock; 819 se->statistics.block_start = rq_of(cfs_rq)->clock;
832 } 820 }
833#endif 821#endif
834 } 822 }
@@ -845,7 +833,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
845 * update can refer to the ->curr item and we need to reflect this 833 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position. 834 * movement in our normalized position.
847 */ 835 */
848 if (!sleep) 836 if (!(flags & DEQUEUE_SLEEP))
849 se->vruntime -= cfs_rq->min_vruntime; 837 se->vruntime -= cfs_rq->min_vruntime;
850} 838}
851 839
@@ -912,7 +900,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
912 * when there are only lesser-weight tasks around): 900 * when there are only lesser-weight tasks around):
913 */ 901 */
914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
915 se->slice_max = max(se->slice_max, 903 se->statistics.slice_max = max(se->statistics.slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime); 904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 } 905 }
918#endif 906#endif
@@ -1054,16 +1042,10 @@ static inline void hrtick_update(struct rq *rq)
1054 * then put the task into the rbtree: 1042 * then put the task into the rbtree:
1055 */ 1043 */
1056static void 1044static void
1057enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) 1045enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1058{ 1046{
1059 struct cfs_rq *cfs_rq; 1047 struct cfs_rq *cfs_rq;
1060 struct sched_entity *se = &p->se; 1048 struct sched_entity *se = &p->se;
1061 int flags = 0;
1062
1063 if (wakeup)
1064 flags |= ENQUEUE_WAKEUP;
1065 if (p->state == TASK_WAKING)
1066 flags |= ENQUEUE_MIGRATE;
1067 1049
1068 for_each_sched_entity(se) { 1050 for_each_sched_entity(se) {
1069 if (se->on_rq) 1051 if (se->on_rq)
@@ -1081,18 +1063,18 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1081 * decreased. We remove the task from the rbtree and 1063 * decreased. We remove the task from the rbtree and
1082 * update the fair scheduling stats: 1064 * update the fair scheduling stats:
1083 */ 1065 */
1084static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) 1066static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1085{ 1067{
1086 struct cfs_rq *cfs_rq; 1068 struct cfs_rq *cfs_rq;
1087 struct sched_entity *se = &p->se; 1069 struct sched_entity *se = &p->se;
1088 1070
1089 for_each_sched_entity(se) { 1071 for_each_sched_entity(se) {
1090 cfs_rq = cfs_rq_of(se); 1072 cfs_rq = cfs_rq_of(se);
1091 dequeue_entity(cfs_rq, se, sleep); 1073 dequeue_entity(cfs_rq, se, flags);
1092 /* Don't dequeue parent if it has other entities besides us */ 1074 /* Don't dequeue parent if it has other entities besides us */
1093 if (cfs_rq->load.weight) 1075 if (cfs_rq->load.weight)
1094 break; 1076 break;
1095 sleep = 1; 1077 flags |= DEQUEUE_SLEEP;
1096 } 1078 }
1097 1079
1098 hrtick_update(rq); 1080 hrtick_update(rq);
@@ -1240,7 +1222,6 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
1240 1222
1241static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 1223static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1242{ 1224{
1243 struct task_struct *curr = current;
1244 unsigned long this_load, load; 1225 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu; 1226 int idx, this_cpu, prev_cpu;
1246 unsigned long tl_per_task; 1227 unsigned long tl_per_task;
@@ -1255,18 +1236,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1255 load = source_load(prev_cpu, idx); 1236 load = source_load(prev_cpu, idx);
1256 this_load = target_load(this_cpu, idx); 1237 this_load = target_load(this_cpu, idx);
1257 1238
1258 if (sync) {
1259 if (sched_feat(SYNC_LESS) &&
1260 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1261 p->se.avg_overlap > sysctl_sched_migration_cost))
1262 sync = 0;
1263 } else {
1264 if (sched_feat(SYNC_MORE) &&
1265 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1266 p->se.avg_overlap < sysctl_sched_migration_cost))
1267 sync = 1;
1268 }
1269
1270 /* 1239 /*
1271 * If sync wakeup then subtract the (maximum possible) 1240 * If sync wakeup then subtract the (maximum possible)
1272 * effect of the currently running task from the load 1241 * effect of the currently running task from the load
@@ -1306,7 +1275,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1306 if (sync && balanced) 1275 if (sync && balanced)
1307 return 1; 1276 return 1;
1308 1277
1309 schedstat_inc(p, se.nr_wakeups_affine_attempts); 1278 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1310 tl_per_task = cpu_avg_load_per_task(this_cpu); 1279 tl_per_task = cpu_avg_load_per_task(this_cpu);
1311 1280
1312 if (balanced || 1281 if (balanced ||
@@ -1318,7 +1287,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1318 * there is no bad imbalance. 1287 * there is no bad imbalance.
1319 */ 1288 */
1320 schedstat_inc(sd, ttwu_move_affine); 1289 schedstat_inc(sd, ttwu_move_affine);
1321 schedstat_inc(p, se.nr_wakeups_affine); 1290 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1322 1291
1323 return 1; 1292 return 1;
1324 } 1293 }
@@ -1406,29 +1375,48 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1406/* 1375/*
1407 * Try and locate an idle CPU in the sched_domain. 1376 * Try and locate an idle CPU in the sched_domain.
1408 */ 1377 */
1409static int 1378static int select_idle_sibling(struct task_struct *p, int target)
1410select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1411{ 1379{
1412 int cpu = smp_processor_id(); 1380 int cpu = smp_processor_id();
1413 int prev_cpu = task_cpu(p); 1381 int prev_cpu = task_cpu(p);
1382 struct sched_domain *sd;
1414 int i; 1383 int i;
1415 1384
1416 /* 1385 /*
1417 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE 1386 * If the task is going to be woken-up on this cpu and if it is
1418 * test in select_task_rq_fair) and the prev_cpu is idle then that's 1387 * already idle, then it is the right target.
1419 * always a better target than the current cpu.
1420 */ 1388 */
1421 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running) 1389 if (target == cpu && idle_cpu(cpu))
1390 return cpu;
1391
1392 /*
1393 * If the task is going to be woken-up on the cpu where it previously
1394 * ran and if it is currently idle, then it the right target.
1395 */
1396 if (target == prev_cpu && idle_cpu(prev_cpu))
1422 return prev_cpu; 1397 return prev_cpu;
1423 1398
1424 /* 1399 /*
1425 * Otherwise, iterate the domain and find an elegible idle cpu. 1400 * Otherwise, iterate the domains and find an elegible idle cpu.
1426 */ 1401 */
1427 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { 1402 for_each_domain(target, sd) {
1428 if (!cpu_rq(i)->cfs.nr_running) { 1403 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1429 target = i;
1430 break; 1404 break;
1405
1406 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1407 if (idle_cpu(i)) {
1408 target = i;
1409 break;
1410 }
1431 } 1411 }
1412
1413 /*
1414 * Lets stop looking for an idle sibling when we reached
1415 * the domain that spans the current cpu and prev_cpu.
1416 */
1417 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1418 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1419 break;
1432 } 1420 }
1433 1421
1434 return target; 1422 return target;
@@ -1445,7 +1433,8 @@ select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1445 * 1433 *
1446 * preempt must be disabled. 1434 * preempt must be disabled.
1447 */ 1435 */
1448static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 1436static int
1437select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1449{ 1438{
1450 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 1439 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1451 int cpu = smp_processor_id(); 1440 int cpu = smp_processor_id();
@@ -1456,8 +1445,7 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1456 int sync = wake_flags & WF_SYNC; 1445 int sync = wake_flags & WF_SYNC;
1457 1446
1458 if (sd_flag & SD_BALANCE_WAKE) { 1447 if (sd_flag & SD_BALANCE_WAKE) {
1459 if (sched_feat(AFFINE_WAKEUPS) && 1448 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1460 cpumask_test_cpu(cpu, &p->cpus_allowed))
1461 want_affine = 1; 1449 want_affine = 1;
1462 new_cpu = prev_cpu; 1450 new_cpu = prev_cpu;
1463 } 1451 }
@@ -1491,34 +1479,13 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1491 } 1479 }
1492 1480
1493 /* 1481 /*
1494 * While iterating the domains looking for a spanning 1482 * If both cpu and prev_cpu are part of this domain,
1495 * WAKE_AFFINE domain, adjust the affine target to any idle cpu 1483 * cpu is a valid SD_WAKE_AFFINE target.
1496 * in cache sharing domains along the way.
1497 */ 1484 */
1498 if (want_affine) { 1485 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1499 int target = -1; 1486 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1500 1487 affine_sd = tmp;
1501 /* 1488 want_affine = 0;
1502 * If both cpu and prev_cpu are part of this domain,
1503 * cpu is a valid SD_WAKE_AFFINE target.
1504 */
1505 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1506 target = cpu;
1507
1508 /*
1509 * If there's an idle sibling in this domain, make that
1510 * the wake_affine target instead of the current cpu.
1511 */
1512 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
1513 target = select_idle_sibling(p, tmp, target);
1514
1515 if (target >= 0) {
1516 if (tmp->flags & SD_WAKE_AFFINE) {
1517 affine_sd = tmp;
1518 want_affine = 0;
1519 }
1520 cpu = target;
1521 }
1522 } 1489 }
1523 1490
1524 if (!want_sd && !want_affine) 1491 if (!want_sd && !want_affine)
@@ -1531,22 +1498,29 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1531 sd = tmp; 1498 sd = tmp;
1532 } 1499 }
1533 1500
1501#ifdef CONFIG_FAIR_GROUP_SCHED
1534 if (sched_feat(LB_SHARES_UPDATE)) { 1502 if (sched_feat(LB_SHARES_UPDATE)) {
1535 /* 1503 /*
1536 * Pick the largest domain to update shares over 1504 * Pick the largest domain to update shares over
1537 */ 1505 */
1538 tmp = sd; 1506 tmp = sd;
1539 if (affine_sd && (!tmp || 1507 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1540 cpumask_weight(sched_domain_span(affine_sd)) >
1541 cpumask_weight(sched_domain_span(sd))))
1542 tmp = affine_sd; 1508 tmp = affine_sd;
1543 1509
1544 if (tmp) 1510 if (tmp) {
1511 raw_spin_unlock(&rq->lock);
1545 update_shares(tmp); 1512 update_shares(tmp);
1513 raw_spin_lock(&rq->lock);
1514 }
1546 } 1515 }
1516#endif
1547 1517
1548 if (affine_sd && wake_affine(affine_sd, p, sync)) 1518 if (affine_sd) {
1549 return cpu; 1519 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1520 return select_idle_sibling(p, cpu);
1521 else
1522 return select_idle_sibling(p, prev_cpu);
1523 }
1550 1524
1551 while (sd) { 1525 while (sd) {
1552 int load_idx = sd->forkexec_idx; 1526 int load_idx = sd->forkexec_idx;
@@ -1576,10 +1550,10 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1576 1550
1577 /* Now try balancing at a lower domain level of new_cpu */ 1551 /* Now try balancing at a lower domain level of new_cpu */
1578 cpu = new_cpu; 1552 cpu = new_cpu;
1579 weight = cpumask_weight(sched_domain_span(sd)); 1553 weight = sd->span_weight;
1580 sd = NULL; 1554 sd = NULL;
1581 for_each_domain(cpu, tmp) { 1555 for_each_domain(cpu, tmp) {
1582 if (weight <= cpumask_weight(sched_domain_span(tmp))) 1556 if (weight <= tmp->span_weight)
1583 break; 1557 break;
1584 if (tmp->flags & sd_flag) 1558 if (tmp->flags & sd_flag)
1585 sd = tmp; 1559 sd = tmp;
@@ -1591,63 +1565,26 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1591} 1565}
1592#endif /* CONFIG_SMP */ 1566#endif /* CONFIG_SMP */
1593 1567
1594/*
1595 * Adaptive granularity
1596 *
1597 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1598 * with the limit of wakeup_gran -- when it never does a wakeup.
1599 *
1600 * So the smaller avg_wakeup is the faster we want this task to preempt,
1601 * but we don't want to treat the preemptee unfairly and therefore allow it
1602 * to run for at least the amount of time we'd like to run.
1603 *
1604 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1605 *
1606 * NOTE: we use *nr_running to scale with load, this nicely matches the
1607 * degrading latency on load.
1608 */
1609static unsigned long
1610adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1611{
1612 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1613 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1614 u64 gran = 0;
1615
1616 if (this_run < expected_wakeup)
1617 gran = expected_wakeup - this_run;
1618
1619 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1620}
1621
1622static unsigned long 1568static unsigned long
1623wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 1569wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1624{ 1570{
1625 unsigned long gran = sysctl_sched_wakeup_granularity; 1571 unsigned long gran = sysctl_sched_wakeup_granularity;
1626 1572
1627 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1628 gran = adaptive_gran(curr, se);
1629
1630 /* 1573 /*
1631 * Since its curr running now, convert the gran from real-time 1574 * Since its curr running now, convert the gran from real-time
1632 * to virtual-time in his units. 1575 * to virtual-time in his units.
1576 *
1577 * By using 'se' instead of 'curr' we penalize light tasks, so
1578 * they get preempted easier. That is, if 'se' < 'curr' then
1579 * the resulting gran will be larger, therefore penalizing the
1580 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1581 * be smaller, again penalizing the lighter task.
1582 *
1583 * This is especially important for buddies when the leftmost
1584 * task is higher priority than the buddy.
1633 */ 1585 */
1634 if (sched_feat(ASYM_GRAN)) { 1586 if (unlikely(se->load.weight != NICE_0_LOAD))
1635 /* 1587 gran = calc_delta_fair(gran, se);
1636 * By using 'se' instead of 'curr' we penalize light tasks, so
1637 * they get preempted easier. That is, if 'se' < 'curr' then
1638 * the resulting gran will be larger, therefore penalizing the
1639 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1640 * be smaller, again penalizing the lighter task.
1641 *
1642 * This is especially important for buddies when the leftmost
1643 * task is higher priority than the buddy.
1644 */
1645 if (unlikely(se->load.weight != NICE_0_LOAD))
1646 gran = calc_delta_fair(gran, se);
1647 } else {
1648 if (unlikely(curr->load.weight != NICE_0_LOAD))
1649 gran = calc_delta_fair(gran, curr);
1650 }
1651 1588
1652 return gran; 1589 return gran;
1653} 1590}
@@ -1705,7 +1642,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
1705 struct task_struct *curr = rq->curr; 1642 struct task_struct *curr = rq->curr;
1706 struct sched_entity *se = &curr->se, *pse = &p->se; 1643 struct sched_entity *se = &curr->se, *pse = &p->se;
1707 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 1644 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1708 int sync = wake_flags & WF_SYNC;
1709 int scale = cfs_rq->nr_running >= sched_nr_latency; 1645 int scale = cfs_rq->nr_running >= sched_nr_latency;
1710 1646
1711 if (unlikely(rt_prio(p->prio))) 1647 if (unlikely(rt_prio(p->prio)))
@@ -1738,14 +1674,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
1738 if (unlikely(curr->policy == SCHED_IDLE)) 1674 if (unlikely(curr->policy == SCHED_IDLE))
1739 goto preempt; 1675 goto preempt;
1740 1676
1741 if (sched_feat(WAKEUP_SYNC) && sync)
1742 goto preempt;
1743
1744 if (sched_feat(WAKEUP_OVERLAP) &&
1745 se->avg_overlap < sysctl_sched_migration_cost &&
1746 pse->avg_overlap < sysctl_sched_migration_cost)
1747 goto preempt;
1748
1749 if (!sched_feat(WAKEUP_PREEMPT)) 1677 if (!sched_feat(WAKEUP_PREEMPT))
1750 return; 1678 return;
1751 1679
@@ -1844,13 +1772,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1844 * 3) are cache-hot on their current CPU. 1772 * 3) are cache-hot on their current CPU.
1845 */ 1773 */
1846 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { 1774 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1847 schedstat_inc(p, se.nr_failed_migrations_affine); 1775 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1848 return 0; 1776 return 0;
1849 } 1777 }
1850 *all_pinned = 0; 1778 *all_pinned = 0;
1851 1779
1852 if (task_running(rq, p)) { 1780 if (task_running(rq, p)) {
1853 schedstat_inc(p, se.nr_failed_migrations_running); 1781 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1854 return 0; 1782 return 0;
1855 } 1783 }
1856 1784
@@ -1866,14 +1794,14 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1866#ifdef CONFIG_SCHEDSTATS 1794#ifdef CONFIG_SCHEDSTATS
1867 if (tsk_cache_hot) { 1795 if (tsk_cache_hot) {
1868 schedstat_inc(sd, lb_hot_gained[idle]); 1796 schedstat_inc(sd, lb_hot_gained[idle]);
1869 schedstat_inc(p, se.nr_forced_migrations); 1797 schedstat_inc(p, se.statistics.nr_forced_migrations);
1870 } 1798 }
1871#endif 1799#endif
1872 return 1; 1800 return 1;
1873 } 1801 }
1874 1802
1875 if (tsk_cache_hot) { 1803 if (tsk_cache_hot) {
1876 schedstat_inc(p, se.nr_failed_migrations_hot); 1804 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1877 return 0; 1805 return 0;
1878 } 1806 }
1879 return 1; 1807 return 1;
@@ -2311,7 +2239,7 @@ unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2311 2239
2312unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 2240unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2313{ 2241{
2314 unsigned long weight = cpumask_weight(sched_domain_span(sd)); 2242 unsigned long weight = sd->span_weight;
2315 unsigned long smt_gain = sd->smt_gain; 2243 unsigned long smt_gain = sd->smt_gain;
2316 2244
2317 smt_gain /= weight; 2245 smt_gain /= weight;
@@ -2344,7 +2272,7 @@ unsigned long scale_rt_power(int cpu)
2344 2272
2345static void update_cpu_power(struct sched_domain *sd, int cpu) 2273static void update_cpu_power(struct sched_domain *sd, int cpu)
2346{ 2274{
2347 unsigned long weight = cpumask_weight(sched_domain_span(sd)); 2275 unsigned long weight = sd->span_weight;
2348 unsigned long power = SCHED_LOAD_SCALE; 2276 unsigned long power = SCHED_LOAD_SCALE;
2349 struct sched_group *sdg = sd->groups; 2277 struct sched_group *sdg = sd->groups;
2350 2278
@@ -2870,6 +2798,8 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2870 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 2798 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2871} 2799}
2872 2800
2801static int active_load_balance_cpu_stop(void *data);
2802
2873/* 2803/*
2874 * Check this_cpu to ensure it is balanced within domain. Attempt to move 2804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2875 * tasks if there is an imbalance. 2805 * tasks if there is an imbalance.
@@ -2959,8 +2889,9 @@ redo:
2959 if (need_active_balance(sd, sd_idle, idle)) { 2889 if (need_active_balance(sd, sd_idle, idle)) {
2960 raw_spin_lock_irqsave(&busiest->lock, flags); 2890 raw_spin_lock_irqsave(&busiest->lock, flags);
2961 2891
2962 /* don't kick the migration_thread, if the curr 2892 /* don't kick the active_load_balance_cpu_stop,
2963 * task on busiest cpu can't be moved to this_cpu 2893 * if the curr task on busiest cpu can't be
2894 * moved to this_cpu
2964 */ 2895 */
2965 if (!cpumask_test_cpu(this_cpu, 2896 if (!cpumask_test_cpu(this_cpu,
2966 &busiest->curr->cpus_allowed)) { 2897 &busiest->curr->cpus_allowed)) {
@@ -2970,14 +2901,22 @@ redo:
2970 goto out_one_pinned; 2901 goto out_one_pinned;
2971 } 2902 }
2972 2903
2904 /*
2905 * ->active_balance synchronizes accesses to
2906 * ->active_balance_work. Once set, it's cleared
2907 * only after active load balance is finished.
2908 */
2973 if (!busiest->active_balance) { 2909 if (!busiest->active_balance) {
2974 busiest->active_balance = 1; 2910 busiest->active_balance = 1;
2975 busiest->push_cpu = this_cpu; 2911 busiest->push_cpu = this_cpu;
2976 active_balance = 1; 2912 active_balance = 1;
2977 } 2913 }
2978 raw_spin_unlock_irqrestore(&busiest->lock, flags); 2914 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2915
2979 if (active_balance) 2916 if (active_balance)
2980 wake_up_process(busiest->migration_thread); 2917 stop_one_cpu_nowait(cpu_of(busiest),
2918 active_load_balance_cpu_stop, busiest,
2919 &busiest->active_balance_work);
2981 2920
2982 /* 2921 /*
2983 * We've kicked active balancing, reset the failure 2922 * We've kicked active balancing, reset the failure
@@ -3084,24 +3023,29 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3084} 3023}
3085 3024
3086/* 3025/*
3087 * active_load_balance is run by migration threads. It pushes running tasks 3026 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3088 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be 3027 * running tasks off the busiest CPU onto idle CPUs. It requires at
3089 * running on each physical CPU where possible, and avoids physical / 3028 * least 1 task to be running on each physical CPU where possible, and
3090 * logical imbalances. 3029 * avoids physical / logical imbalances.
3091 *
3092 * Called with busiest_rq locked.
3093 */ 3030 */
3094static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) 3031static int active_load_balance_cpu_stop(void *data)
3095{ 3032{
3033 struct rq *busiest_rq = data;
3034 int busiest_cpu = cpu_of(busiest_rq);
3096 int target_cpu = busiest_rq->push_cpu; 3035 int target_cpu = busiest_rq->push_cpu;
3036 struct rq *target_rq = cpu_rq(target_cpu);
3097 struct sched_domain *sd; 3037 struct sched_domain *sd;
3098 struct rq *target_rq; 3038
3039 raw_spin_lock_irq(&busiest_rq->lock);
3040
3041 /* make sure the requested cpu hasn't gone down in the meantime */
3042 if (unlikely(busiest_cpu != smp_processor_id() ||
3043 !busiest_rq->active_balance))
3044 goto out_unlock;
3099 3045
3100 /* Is there any task to move? */ 3046 /* Is there any task to move? */
3101 if (busiest_rq->nr_running <= 1) 3047 if (busiest_rq->nr_running <= 1)
3102 return; 3048 goto out_unlock;
3103
3104 target_rq = cpu_rq(target_cpu);
3105 3049
3106 /* 3050 /*
3107 * This condition is "impossible", if it occurs 3051 * This condition is "impossible", if it occurs
@@ -3112,8 +3056,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3112 3056
3113 /* move a task from busiest_rq to target_rq */ 3057 /* move a task from busiest_rq to target_rq */
3114 double_lock_balance(busiest_rq, target_rq); 3058 double_lock_balance(busiest_rq, target_rq);
3115 update_rq_clock(busiest_rq);
3116 update_rq_clock(target_rq);
3117 3059
3118 /* Search for an sd spanning us and the target CPU. */ 3060 /* Search for an sd spanning us and the target CPU. */
3119 for_each_domain(target_cpu, sd) { 3061 for_each_domain(target_cpu, sd) {
@@ -3132,6 +3074,10 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3132 schedstat_inc(sd, alb_failed); 3074 schedstat_inc(sd, alb_failed);
3133 } 3075 }
3134 double_unlock_balance(busiest_rq, target_rq); 3076 double_unlock_balance(busiest_rq, target_rq);
3077out_unlock:
3078 busiest_rq->active_balance = 0;
3079 raw_spin_unlock_irq(&busiest_rq->lock);
3080 return 0;
3135} 3081}
3136 3082
3137#ifdef CONFIG_NO_HZ 3083#ifdef CONFIG_NO_HZ
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index d5059fd761d9..83c66e8ad3ee 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -1,11 +1,4 @@
1/* 1/*
2 * Disregards a certain amount of sleep time (sched_latency_ns) and
3 * considers the task to be running during that period. This gives it
4 * a service deficit on wakeup, allowing it to run sooner.
5 */
6SCHED_FEAT(FAIR_SLEEPERS, 1)
7
8/*
9 * Only give sleepers 50% of their service deficit. This allows 2 * Only give sleepers 50% of their service deficit. This allows
10 * them to run sooner, but does not allow tons of sleepers to 3 * them to run sooner, but does not allow tons of sleepers to
11 * rip the spread apart. 4 * rip the spread apart.
@@ -13,13 +6,6 @@ SCHED_FEAT(FAIR_SLEEPERS, 1)
13SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) 6SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1)
14 7
15/* 8/*
16 * By not normalizing the sleep time, heavy tasks get an effective
17 * longer period, and lighter task an effective shorter period they
18 * are considered running.
19 */
20SCHED_FEAT(NORMALIZED_SLEEPER, 0)
21
22/*
23 * Place new tasks ahead so that they do not starve already running 9 * Place new tasks ahead so that they do not starve already running
24 * tasks 10 * tasks
25 */ 11 */
@@ -31,37 +17,6 @@ SCHED_FEAT(START_DEBIT, 1)
31SCHED_FEAT(WAKEUP_PREEMPT, 1) 17SCHED_FEAT(WAKEUP_PREEMPT, 1)
32 18
33/* 19/*
34 * Compute wakeup_gran based on task behaviour, clipped to
35 * [0, sched_wakeup_gran_ns]
36 */
37SCHED_FEAT(ADAPTIVE_GRAN, 1)
38
39/*
40 * When converting the wakeup granularity to virtual time, do it such
41 * that heavier tasks preempting a lighter task have an edge.
42 */
43SCHED_FEAT(ASYM_GRAN, 1)
44
45/*
46 * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS.
47 */
48SCHED_FEAT(WAKEUP_SYNC, 0)
49
50/*
51 * Wakeup preempt based on task behaviour. Tasks that do not overlap
52 * don't get preempted.
53 */
54SCHED_FEAT(WAKEUP_OVERLAP, 0)
55
56/*
57 * Use the SYNC wakeup hint, pipes and the likes use this to indicate
58 * the remote end is likely to consume the data we just wrote, and
59 * therefore has cache benefit from being placed on the same cpu, see
60 * also AFFINE_WAKEUPS.
61 */
62SCHED_FEAT(SYNC_WAKEUPS, 1)
63
64/*
65 * Based on load and program behaviour, see if it makes sense to place 20 * Based on load and program behaviour, see if it makes sense to place
66 * a newly woken task on the same cpu as the task that woke it -- 21 * a newly woken task on the same cpu as the task that woke it --
67 * improve cache locality. Typically used with SYNC wakeups as 22 * improve cache locality. Typically used with SYNC wakeups as
@@ -70,16 +25,6 @@ SCHED_FEAT(SYNC_WAKEUPS, 1)
70SCHED_FEAT(AFFINE_WAKEUPS, 1) 25SCHED_FEAT(AFFINE_WAKEUPS, 1)
71 26
72/* 27/*
73 * Weaken SYNC hint based on overlap
74 */
75SCHED_FEAT(SYNC_LESS, 1)
76
77/*
78 * Add SYNC hint based on overlap
79 */
80SCHED_FEAT(SYNC_MORE, 0)
81
82/*
83 * Prefer to schedule the task we woke last (assuming it failed 28 * Prefer to schedule the task we woke last (assuming it failed
84 * wakeup-preemption), since its likely going to consume data we 29 * wakeup-preemption), since its likely going to consume data we
85 * touched, increases cache locality. 30 * touched, increases cache locality.
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
index a8a6d8a50947..9fa0f402c87c 100644
--- a/kernel/sched_idletask.c
+++ b/kernel/sched_idletask.c
@@ -6,7 +6,8 @@
6 */ 6 */
7 7
8#ifdef CONFIG_SMP 8#ifdef CONFIG_SMP
9static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) 9static int
10select_task_rq_idle(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
10{ 11{
11 return task_cpu(p); /* IDLE tasks as never migrated */ 12 return task_cpu(p); /* IDLE tasks as never migrated */
12} 13}
@@ -22,8 +23,7 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl
22static struct task_struct *pick_next_task_idle(struct rq *rq) 23static struct task_struct *pick_next_task_idle(struct rq *rq)
23{ 24{
24 schedstat_inc(rq, sched_goidle); 25 schedstat_inc(rq, sched_goidle);
25 /* adjust the active tasks as we might go into a long sleep */ 26 calc_load_account_idle(rq);
26 calc_load_account_active(rq);
27 return rq->idle; 27 return rq->idle;
28} 28}
29 29
@@ -32,7 +32,7 @@ static struct task_struct *pick_next_task_idle(struct rq *rq)
32 * message if some code attempts to do it: 32 * message if some code attempts to do it:
33 */ 33 */
34static void 34static void
35dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep) 35dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
36{ 36{
37 raw_spin_unlock_irq(&rq->lock); 37 raw_spin_unlock_irq(&rq->lock);
38 printk(KERN_ERR "bad: scheduling from the idle thread!\n"); 38 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index b5b920ae2ea7..8afb953e31c6 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -613,7 +613,7 @@ static void update_curr_rt(struct rq *rq)
613 if (unlikely((s64)delta_exec < 0)) 613 if (unlikely((s64)delta_exec < 0))
614 delta_exec = 0; 614 delta_exec = 0;
615 615
616 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); 616 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
617 617
618 curr->se.sum_exec_runtime += delta_exec; 618 curr->se.sum_exec_runtime += delta_exec;
619 account_group_exec_runtime(curr, delta_exec); 619 account_group_exec_runtime(curr, delta_exec);
@@ -888,20 +888,20 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
888 * Adding/removing a task to/from a priority array: 888 * Adding/removing a task to/from a priority array:
889 */ 889 */
890static void 890static void
891enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head) 891enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
892{ 892{
893 struct sched_rt_entity *rt_se = &p->rt; 893 struct sched_rt_entity *rt_se = &p->rt;
894 894
895 if (wakeup) 895 if (flags & ENQUEUE_WAKEUP)
896 rt_se->timeout = 0; 896 rt_se->timeout = 0;
897 897
898 enqueue_rt_entity(rt_se, head); 898 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
899 899
900 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) 900 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
901 enqueue_pushable_task(rq, p); 901 enqueue_pushable_task(rq, p);
902} 902}
903 903
904static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) 904static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
905{ 905{
906 struct sched_rt_entity *rt_se = &p->rt; 906 struct sched_rt_entity *rt_se = &p->rt;
907 907
@@ -948,10 +948,9 @@ static void yield_task_rt(struct rq *rq)
948#ifdef CONFIG_SMP 948#ifdef CONFIG_SMP
949static int find_lowest_rq(struct task_struct *task); 949static int find_lowest_rq(struct task_struct *task);
950 950
951static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) 951static int
952select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
952{ 953{
953 struct rq *rq = task_rq(p);
954
955 if (sd_flag != SD_BALANCE_WAKE) 954 if (sd_flag != SD_BALANCE_WAKE)
956 return smp_processor_id(); 955 return smp_processor_id();
957 956
diff --git a/kernel/softirq.c b/kernel/softirq.c
index 7c1a67ef0274..0db913a5c60f 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -716,7 +716,7 @@ static int run_ksoftirqd(void * __bind_cpu)
716 preempt_enable_no_resched(); 716 preempt_enable_no_resched();
717 cond_resched(); 717 cond_resched();
718 preempt_disable(); 718 preempt_disable();
719 rcu_sched_qs((long)__bind_cpu); 719 rcu_note_context_switch((long)__bind_cpu);
720 } 720 }
721 preempt_enable(); 721 preempt_enable();
722 set_current_state(TASK_INTERRUPTIBLE); 722 set_current_state(TASK_INTERRUPTIBLE);
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c
index 9bb9fb1bd79c..b4e7431e7c78 100644
--- a/kernel/stop_machine.c
+++ b/kernel/stop_machine.c
@@ -1,17 +1,384 @@
1/* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation. 1/*
2 * GPL v2 and any later version. 2 * kernel/stop_machine.c
3 *
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
8 *
9 * This file is released under the GPLv2 and any later version.
3 */ 10 */
11#include <linux/completion.h>
4#include <linux/cpu.h> 12#include <linux/cpu.h>
5#include <linux/err.h> 13#include <linux/init.h>
6#include <linux/kthread.h> 14#include <linux/kthread.h>
7#include <linux/module.h> 15#include <linux/module.h>
16#include <linux/percpu.h>
8#include <linux/sched.h> 17#include <linux/sched.h>
9#include <linux/stop_machine.h> 18#include <linux/stop_machine.h>
10#include <linux/syscalls.h>
11#include <linux/interrupt.h> 19#include <linux/interrupt.h>
20#include <linux/kallsyms.h>
12 21
13#include <asm/atomic.h> 22#include <asm/atomic.h>
14#include <asm/uaccess.h> 23
24/*
25 * Structure to determine completion condition and record errors. May
26 * be shared by works on different cpus.
27 */
28struct cpu_stop_done {
29 atomic_t nr_todo; /* nr left to execute */
30 bool executed; /* actually executed? */
31 int ret; /* collected return value */
32 struct completion completion; /* fired if nr_todo reaches 0 */
33};
34
35/* the actual stopper, one per every possible cpu, enabled on online cpus */
36struct cpu_stopper {
37 spinlock_t lock;
38 struct list_head works; /* list of pending works */
39 struct task_struct *thread; /* stopper thread */
40 bool enabled; /* is this stopper enabled? */
41};
42
43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
44
45static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
46{
47 memset(done, 0, sizeof(*done));
48 atomic_set(&done->nr_todo, nr_todo);
49 init_completion(&done->completion);
50}
51
52/* signal completion unless @done is NULL */
53static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
54{
55 if (done) {
56 if (executed)
57 done->executed = true;
58 if (atomic_dec_and_test(&done->nr_todo))
59 complete(&done->completion);
60 }
61}
62
63/* queue @work to @stopper. if offline, @work is completed immediately */
64static void cpu_stop_queue_work(struct cpu_stopper *stopper,
65 struct cpu_stop_work *work)
66{
67 unsigned long flags;
68
69 spin_lock_irqsave(&stopper->lock, flags);
70
71 if (stopper->enabled) {
72 list_add_tail(&work->list, &stopper->works);
73 wake_up_process(stopper->thread);
74 } else
75 cpu_stop_signal_done(work->done, false);
76
77 spin_unlock_irqrestore(&stopper->lock, flags);
78}
79
80/**
81 * stop_one_cpu - stop a cpu
82 * @cpu: cpu to stop
83 * @fn: function to execute
84 * @arg: argument to @fn
85 *
86 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
87 * the highest priority preempting any task on the cpu and
88 * monopolizing it. This function returns after the execution is
89 * complete.
90 *
91 * This function doesn't guarantee @cpu stays online till @fn
92 * completes. If @cpu goes down in the middle, execution may happen
93 * partially or fully on different cpus. @fn should either be ready
94 * for that or the caller should ensure that @cpu stays online until
95 * this function completes.
96 *
97 * CONTEXT:
98 * Might sleep.
99 *
100 * RETURNS:
101 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
102 * otherwise, the return value of @fn.
103 */
104int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
105{
106 struct cpu_stop_done done;
107 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
108
109 cpu_stop_init_done(&done, 1);
110 cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
111 wait_for_completion(&done.completion);
112 return done.executed ? done.ret : -ENOENT;
113}
114
115/**
116 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
117 * @cpu: cpu to stop
118 * @fn: function to execute
119 * @arg: argument to @fn
120 *
121 * Similar to stop_one_cpu() but doesn't wait for completion. The
122 * caller is responsible for ensuring @work_buf is currently unused
123 * and will remain untouched until stopper starts executing @fn.
124 *
125 * CONTEXT:
126 * Don't care.
127 */
128void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
129 struct cpu_stop_work *work_buf)
130{
131 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
132 cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
133}
134
135/* static data for stop_cpus */
136static DEFINE_MUTEX(stop_cpus_mutex);
137static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
138
139int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
140{
141 struct cpu_stop_work *work;
142 struct cpu_stop_done done;
143 unsigned int cpu;
144
145 /* initialize works and done */
146 for_each_cpu(cpu, cpumask) {
147 work = &per_cpu(stop_cpus_work, cpu);
148 work->fn = fn;
149 work->arg = arg;
150 work->done = &done;
151 }
152 cpu_stop_init_done(&done, cpumask_weight(cpumask));
153
154 /*
155 * Disable preemption while queueing to avoid getting
156 * preempted by a stopper which might wait for other stoppers
157 * to enter @fn which can lead to deadlock.
158 */
159 preempt_disable();
160 for_each_cpu(cpu, cpumask)
161 cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
162 &per_cpu(stop_cpus_work, cpu));
163 preempt_enable();
164
165 wait_for_completion(&done.completion);
166 return done.executed ? done.ret : -ENOENT;
167}
168
169/**
170 * stop_cpus - stop multiple cpus
171 * @cpumask: cpus to stop
172 * @fn: function to execute
173 * @arg: argument to @fn
174 *
175 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
176 * @fn is run in a process context with the highest priority
177 * preempting any task on the cpu and monopolizing it. This function
178 * returns after all executions are complete.
179 *
180 * This function doesn't guarantee the cpus in @cpumask stay online
181 * till @fn completes. If some cpus go down in the middle, execution
182 * on the cpu may happen partially or fully on different cpus. @fn
183 * should either be ready for that or the caller should ensure that
184 * the cpus stay online until this function completes.
185 *
186 * All stop_cpus() calls are serialized making it safe for @fn to wait
187 * for all cpus to start executing it.
188 *
189 * CONTEXT:
190 * Might sleep.
191 *
192 * RETURNS:
193 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
194 * @cpumask were offline; otherwise, 0 if all executions of @fn
195 * returned 0, any non zero return value if any returned non zero.
196 */
197int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
198{
199 int ret;
200
201 /* static works are used, process one request at a time */
202 mutex_lock(&stop_cpus_mutex);
203 ret = __stop_cpus(cpumask, fn, arg);
204 mutex_unlock(&stop_cpus_mutex);
205 return ret;
206}
207
208/**
209 * try_stop_cpus - try to stop multiple cpus
210 * @cpumask: cpus to stop
211 * @fn: function to execute
212 * @arg: argument to @fn
213 *
214 * Identical to stop_cpus() except that it fails with -EAGAIN if
215 * someone else is already using the facility.
216 *
217 * CONTEXT:
218 * Might sleep.
219 *
220 * RETURNS:
221 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
222 * @fn(@arg) was not executed at all because all cpus in @cpumask were
223 * offline; otherwise, 0 if all executions of @fn returned 0, any non
224 * zero return value if any returned non zero.
225 */
226int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
227{
228 int ret;
229
230 /* static works are used, process one request at a time */
231 if (!mutex_trylock(&stop_cpus_mutex))
232 return -EAGAIN;
233 ret = __stop_cpus(cpumask, fn, arg);
234 mutex_unlock(&stop_cpus_mutex);
235 return ret;
236}
237
238static int cpu_stopper_thread(void *data)
239{
240 struct cpu_stopper *stopper = data;
241 struct cpu_stop_work *work;
242 int ret;
243
244repeat:
245 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
246
247 if (kthread_should_stop()) {
248 __set_current_state(TASK_RUNNING);
249 return 0;
250 }
251
252 work = NULL;
253 spin_lock_irq(&stopper->lock);
254 if (!list_empty(&stopper->works)) {
255 work = list_first_entry(&stopper->works,
256 struct cpu_stop_work, list);
257 list_del_init(&work->list);
258 }
259 spin_unlock_irq(&stopper->lock);
260
261 if (work) {
262 cpu_stop_fn_t fn = work->fn;
263 void *arg = work->arg;
264 struct cpu_stop_done *done = work->done;
265 char ksym_buf[KSYM_NAME_LEN];
266
267 __set_current_state(TASK_RUNNING);
268
269 /* cpu stop callbacks are not allowed to sleep */
270 preempt_disable();
271
272 ret = fn(arg);
273 if (ret)
274 done->ret = ret;
275
276 /* restore preemption and check it's still balanced */
277 preempt_enable();
278 WARN_ONCE(preempt_count(),
279 "cpu_stop: %s(%p) leaked preempt count\n",
280 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
281 ksym_buf), arg);
282
283 cpu_stop_signal_done(done, true);
284 } else
285 schedule();
286
287 goto repeat;
288}
289
290/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
291static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
292 unsigned long action, void *hcpu)
293{
294 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
295 unsigned int cpu = (unsigned long)hcpu;
296 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
297 struct task_struct *p;
298
299 switch (action & ~CPU_TASKS_FROZEN) {
300 case CPU_UP_PREPARE:
301 BUG_ON(stopper->thread || stopper->enabled ||
302 !list_empty(&stopper->works));
303 p = kthread_create(cpu_stopper_thread, stopper, "migration/%d",
304 cpu);
305 if (IS_ERR(p))
306 return NOTIFY_BAD;
307 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
308 get_task_struct(p);
309 stopper->thread = p;
310 break;
311
312 case CPU_ONLINE:
313 kthread_bind(stopper->thread, cpu);
314 /* strictly unnecessary, as first user will wake it */
315 wake_up_process(stopper->thread);
316 /* mark enabled */
317 spin_lock_irq(&stopper->lock);
318 stopper->enabled = true;
319 spin_unlock_irq(&stopper->lock);
320 break;
321
322#ifdef CONFIG_HOTPLUG_CPU
323 case CPU_UP_CANCELED:
324 case CPU_DEAD:
325 {
326 struct cpu_stop_work *work;
327
328 /* kill the stopper */
329 kthread_stop(stopper->thread);
330 /* drain remaining works */
331 spin_lock_irq(&stopper->lock);
332 list_for_each_entry(work, &stopper->works, list)
333 cpu_stop_signal_done(work->done, false);
334 stopper->enabled = false;
335 spin_unlock_irq(&stopper->lock);
336 /* release the stopper */
337 put_task_struct(stopper->thread);
338 stopper->thread = NULL;
339 break;
340 }
341#endif
342 }
343
344 return NOTIFY_OK;
345}
346
347/*
348 * Give it a higher priority so that cpu stopper is available to other
349 * cpu notifiers. It currently shares the same priority as sched
350 * migration_notifier.
351 */
352static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
353 .notifier_call = cpu_stop_cpu_callback,
354 .priority = 10,
355};
356
357static int __init cpu_stop_init(void)
358{
359 void *bcpu = (void *)(long)smp_processor_id();
360 unsigned int cpu;
361 int err;
362
363 for_each_possible_cpu(cpu) {
364 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
365
366 spin_lock_init(&stopper->lock);
367 INIT_LIST_HEAD(&stopper->works);
368 }
369
370 /* start one for the boot cpu */
371 err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
372 bcpu);
373 BUG_ON(err == NOTIFY_BAD);
374 cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
375 register_cpu_notifier(&cpu_stop_cpu_notifier);
376
377 return 0;
378}
379early_initcall(cpu_stop_init);
380
381#ifdef CONFIG_STOP_MACHINE
15 382
16/* This controls the threads on each CPU. */ 383/* This controls the threads on each CPU. */
17enum stopmachine_state { 384enum stopmachine_state {
@@ -26,174 +393,94 @@ enum stopmachine_state {
26 /* Exit */ 393 /* Exit */
27 STOPMACHINE_EXIT, 394 STOPMACHINE_EXIT,
28}; 395};
29static enum stopmachine_state state;
30 396
31struct stop_machine_data { 397struct stop_machine_data {
32 int (*fn)(void *); 398 int (*fn)(void *);
33 void *data; 399 void *data;
34 int fnret; 400 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
401 unsigned int num_threads;
402 const struct cpumask *active_cpus;
403
404 enum stopmachine_state state;
405 atomic_t thread_ack;
35}; 406};
36 407
37/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 408static void set_state(struct stop_machine_data *smdata,
38static unsigned int num_threads; 409 enum stopmachine_state newstate)
39static atomic_t thread_ack;
40static DEFINE_MUTEX(lock);
41/* setup_lock protects refcount, stop_machine_wq and stop_machine_work. */
42static DEFINE_MUTEX(setup_lock);
43/* Users of stop_machine. */
44static int refcount;
45static struct workqueue_struct *stop_machine_wq;
46static struct stop_machine_data active, idle;
47static const struct cpumask *active_cpus;
48static void __percpu *stop_machine_work;
49
50static void set_state(enum stopmachine_state newstate)
51{ 410{
52 /* Reset ack counter. */ 411 /* Reset ack counter. */
53 atomic_set(&thread_ack, num_threads); 412 atomic_set(&smdata->thread_ack, smdata->num_threads);
54 smp_wmb(); 413 smp_wmb();
55 state = newstate; 414 smdata->state = newstate;
56} 415}
57 416
58/* Last one to ack a state moves to the next state. */ 417/* Last one to ack a state moves to the next state. */
59static void ack_state(void) 418static void ack_state(struct stop_machine_data *smdata)
60{ 419{
61 if (atomic_dec_and_test(&thread_ack)) 420 if (atomic_dec_and_test(&smdata->thread_ack))
62 set_state(state + 1); 421 set_state(smdata, smdata->state + 1);
63} 422}
64 423
65/* This is the actual function which stops the CPU. It runs 424/* This is the cpu_stop function which stops the CPU. */
66 * in the context of a dedicated stopmachine workqueue. */ 425static int stop_machine_cpu_stop(void *data)
67static void stop_cpu(struct work_struct *unused)
68{ 426{
427 struct stop_machine_data *smdata = data;
69 enum stopmachine_state curstate = STOPMACHINE_NONE; 428 enum stopmachine_state curstate = STOPMACHINE_NONE;
70 struct stop_machine_data *smdata = &idle; 429 int cpu = smp_processor_id(), err = 0;
71 int cpu = smp_processor_id(); 430 bool is_active;
72 int err; 431
432 if (!smdata->active_cpus)
433 is_active = cpu == cpumask_first(cpu_online_mask);
434 else
435 is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
73 436
74 if (!active_cpus) {
75 if (cpu == cpumask_first(cpu_online_mask))
76 smdata = &active;
77 } else {
78 if (cpumask_test_cpu(cpu, active_cpus))
79 smdata = &active;
80 }
81 /* Simple state machine */ 437 /* Simple state machine */
82 do { 438 do {
83 /* Chill out and ensure we re-read stopmachine_state. */ 439 /* Chill out and ensure we re-read stopmachine_state. */
84 cpu_relax(); 440 cpu_relax();
85 if (state != curstate) { 441 if (smdata->state != curstate) {
86 curstate = state; 442 curstate = smdata->state;
87 switch (curstate) { 443 switch (curstate) {
88 case STOPMACHINE_DISABLE_IRQ: 444 case STOPMACHINE_DISABLE_IRQ:
89 local_irq_disable(); 445 local_irq_disable();
90 hard_irq_disable(); 446 hard_irq_disable();
91 break; 447 break;
92 case STOPMACHINE_RUN: 448 case STOPMACHINE_RUN:
93 /* On multiple CPUs only a single error code 449 if (is_active)
94 * is needed to tell that something failed. */ 450 err = smdata->fn(smdata->data);
95 err = smdata->fn(smdata->data);
96 if (err)
97 smdata->fnret = err;
98 break; 451 break;
99 default: 452 default:
100 break; 453 break;
101 } 454 }
102 ack_state(); 455 ack_state(smdata);
103 } 456 }
104 } while (curstate != STOPMACHINE_EXIT); 457 } while (curstate != STOPMACHINE_EXIT);
105 458
106 local_irq_enable(); 459 local_irq_enable();
460 return err;
107} 461}
108 462
109/* Callback for CPUs which aren't supposed to do anything. */
110static int chill(void *unused)
111{
112 return 0;
113}
114
115int stop_machine_create(void)
116{
117 mutex_lock(&setup_lock);
118 if (refcount)
119 goto done;
120 stop_machine_wq = create_rt_workqueue("kstop");
121 if (!stop_machine_wq)
122 goto err_out;
123 stop_machine_work = alloc_percpu(struct work_struct);
124 if (!stop_machine_work)
125 goto err_out;
126done:
127 refcount++;
128 mutex_unlock(&setup_lock);
129 return 0;
130
131err_out:
132 if (stop_machine_wq)
133 destroy_workqueue(stop_machine_wq);
134 mutex_unlock(&setup_lock);
135 return -ENOMEM;
136}
137EXPORT_SYMBOL_GPL(stop_machine_create);
138
139void stop_machine_destroy(void)
140{
141 mutex_lock(&setup_lock);
142 refcount--;
143 if (refcount)
144 goto done;
145 destroy_workqueue(stop_machine_wq);
146 free_percpu(stop_machine_work);
147done:
148 mutex_unlock(&setup_lock);
149}
150EXPORT_SYMBOL_GPL(stop_machine_destroy);
151
152int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) 463int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
153{ 464{
154 struct work_struct *sm_work; 465 struct stop_machine_data smdata = { .fn = fn, .data = data,
155 int i, ret; 466 .num_threads = num_online_cpus(),
156 467 .active_cpus = cpus };
157 /* Set up initial state. */ 468
158 mutex_lock(&lock); 469 /* Set the initial state and stop all online cpus. */
159 num_threads = num_online_cpus(); 470 set_state(&smdata, STOPMACHINE_PREPARE);
160 active_cpus = cpus; 471 return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
161 active.fn = fn;
162 active.data = data;
163 active.fnret = 0;
164 idle.fn = chill;
165 idle.data = NULL;
166
167 set_state(STOPMACHINE_PREPARE);
168
169 /* Schedule the stop_cpu work on all cpus: hold this CPU so one
170 * doesn't hit this CPU until we're ready. */
171 get_cpu();
172 for_each_online_cpu(i) {
173 sm_work = per_cpu_ptr(stop_machine_work, i);
174 INIT_WORK(sm_work, stop_cpu);
175 queue_work_on(i, stop_machine_wq, sm_work);
176 }
177 /* This will release the thread on our CPU. */
178 put_cpu();
179 flush_workqueue(stop_machine_wq);
180 ret = active.fnret;
181 mutex_unlock(&lock);
182 return ret;
183} 472}
184 473
185int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) 474int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
186{ 475{
187 int ret; 476 int ret;
188 477
189 ret = stop_machine_create();
190 if (ret)
191 return ret;
192 /* No CPUs can come up or down during this. */ 478 /* No CPUs can come up or down during this. */
193 get_online_cpus(); 479 get_online_cpus();
194 ret = __stop_machine(fn, data, cpus); 480 ret = __stop_machine(fn, data, cpus);
195 put_online_cpus(); 481 put_online_cpus();
196 stop_machine_destroy();
197 return ret; 482 return ret;
198} 483}
199EXPORT_SYMBOL_GPL(stop_machine); 484EXPORT_SYMBOL_GPL(stop_machine);
485
486#endif /* CONFIG_STOP_MACHINE */
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index f992762d7f51..1d7b9bc1c034 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -150,14 +150,32 @@ static void tick_nohz_update_jiffies(ktime_t now)
150 touch_softlockup_watchdog(); 150 touch_softlockup_watchdog();
151} 151}
152 152
153/*
154 * Updates the per cpu time idle statistics counters
155 */
156static void
157update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158{
159 ktime_t delta;
160
161 if (ts->idle_active) {
162 delta = ktime_sub(now, ts->idle_entrytime);
163 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 if (nr_iowait_cpu() > 0)
165 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
166 ts->idle_entrytime = now;
167 }
168
169 if (last_update_time)
170 *last_update_time = ktime_to_us(now);
171
172}
173
153static void tick_nohz_stop_idle(int cpu, ktime_t now) 174static void tick_nohz_stop_idle(int cpu, ktime_t now)
154{ 175{
155 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 ktime_t delta;
157 177
158 delta = ktime_sub(now, ts->idle_entrytime); 178 update_ts_time_stats(ts, now, NULL);
159 ts->idle_lastupdate = now;
160 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 ts->idle_active = 0; 179 ts->idle_active = 0;
162 180
163 sched_clock_idle_wakeup_event(0); 181 sched_clock_idle_wakeup_event(0);
@@ -165,20 +183,32 @@ static void tick_nohz_stop_idle(int cpu, ktime_t now)
165 183
166static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 184static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
167{ 185{
168 ktime_t now, delta; 186 ktime_t now;
169 187
170 now = ktime_get(); 188 now = ktime_get();
171 if (ts->idle_active) { 189
172 delta = ktime_sub(now, ts->idle_entrytime); 190 update_ts_time_stats(ts, now, NULL);
173 ts->idle_lastupdate = now; 191
174 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
175 }
176 ts->idle_entrytime = now; 192 ts->idle_entrytime = now;
177 ts->idle_active = 1; 193 ts->idle_active = 1;
178 sched_clock_idle_sleep_event(); 194 sched_clock_idle_sleep_event();
179 return now; 195 return now;
180} 196}
181 197
198/**
199 * get_cpu_idle_time_us - get the total idle time of a cpu
200 * @cpu: CPU number to query
201 * @last_update_time: variable to store update time in
202 *
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds. The idle time returned includes
205 * the iowait time (unlike what "top" and co report).
206 *
207 * This time is measured via accounting rather than sampling,
208 * and is as accurate as ktime_get() is.
209 *
210 * This function returns -1 if NOHZ is not enabled.
211 */
182u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 212u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
183{ 213{
184 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 214 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
@@ -186,15 +216,38 @@ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
186 if (!tick_nohz_enabled) 216 if (!tick_nohz_enabled)
187 return -1; 217 return -1;
188 218
189 if (ts->idle_active) 219 update_ts_time_stats(ts, ktime_get(), last_update_time);
190 *last_update_time = ktime_to_us(ts->idle_lastupdate);
191 else
192 *last_update_time = ktime_to_us(ktime_get());
193 220
194 return ktime_to_us(ts->idle_sleeptime); 221 return ktime_to_us(ts->idle_sleeptime);
195} 222}
196EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 223EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
197 224
225/*
226 * get_cpu_iowait_time_us - get the total iowait time of a cpu
227 * @cpu: CPU number to query
228 * @last_update_time: variable to store update time in
229 *
230 * Return the cummulative iowait time (since boot) for a given
231 * CPU, in microseconds.
232 *
233 * This time is measured via accounting rather than sampling,
234 * and is as accurate as ktime_get() is.
235 *
236 * This function returns -1 if NOHZ is not enabled.
237 */
238u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
239{
240 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
241
242 if (!tick_nohz_enabled)
243 return -1;
244
245 update_ts_time_stats(ts, ktime_get(), last_update_time);
246
247 return ktime_to_us(ts->iowait_sleeptime);
248}
249EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
250
198/** 251/**
199 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 252 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
200 * 253 *
@@ -262,6 +315,9 @@ void tick_nohz_stop_sched_tick(int inidle)
262 goto end; 315 goto end;
263 } 316 }
264 317
318 if (nohz_ratelimit(cpu))
319 goto end;
320
265 ts->idle_calls++; 321 ts->idle_calls++;
266 /* Read jiffies and the time when jiffies were updated last */ 322 /* Read jiffies and the time when jiffies were updated last */
267 do { 323 do {
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c
index 1a4a7dd78777..ab8f5e33fa92 100644
--- a/kernel/time/timer_list.c
+++ b/kernel/time/timer_list.c
@@ -176,6 +176,7 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now)
176 P_ns(idle_waketime); 176 P_ns(idle_waketime);
177 P_ns(idle_exittime); 177 P_ns(idle_exittime);
178 P_ns(idle_sleeptime); 178 P_ns(idle_sleeptime);
179 P_ns(iowait_sleeptime);
179 P(last_jiffies); 180 P(last_jiffies);
180 P(next_jiffies); 181 P(next_jiffies);
181 P_ns(idle_expires); 182 P_ns(idle_expires);
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 2404b59b3097..32837e19e3bd 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -264,6 +264,7 @@ struct ftrace_profile {
264 unsigned long counter; 264 unsigned long counter;
265#ifdef CONFIG_FUNCTION_GRAPH_TRACER 265#ifdef CONFIG_FUNCTION_GRAPH_TRACER
266 unsigned long long time; 266 unsigned long long time;
267 unsigned long long time_squared;
267#endif 268#endif
268}; 269};
269 270
@@ -366,9 +367,9 @@ static int function_stat_headers(struct seq_file *m)
366{ 367{
367#ifdef CONFIG_FUNCTION_GRAPH_TRACER 368#ifdef CONFIG_FUNCTION_GRAPH_TRACER
368 seq_printf(m, " Function " 369 seq_printf(m, " Function "
369 "Hit Time Avg\n" 370 "Hit Time Avg s^2\n"
370 " -------- " 371 " -------- "
371 "--- ---- ---\n"); 372 "--- ---- --- ---\n");
372#else 373#else
373 seq_printf(m, " Function Hit\n" 374 seq_printf(m, " Function Hit\n"
374 " -------- ---\n"); 375 " -------- ---\n");
@@ -384,6 +385,7 @@ static int function_stat_show(struct seq_file *m, void *v)
384 static DEFINE_MUTEX(mutex); 385 static DEFINE_MUTEX(mutex);
385 static struct trace_seq s; 386 static struct trace_seq s;
386 unsigned long long avg; 387 unsigned long long avg;
388 unsigned long long stddev;
387#endif 389#endif
388 390
389 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 391 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
@@ -394,11 +396,25 @@ static int function_stat_show(struct seq_file *m, void *v)
394 avg = rec->time; 396 avg = rec->time;
395 do_div(avg, rec->counter); 397 do_div(avg, rec->counter);
396 398
399 /* Sample standard deviation (s^2) */
400 if (rec->counter <= 1)
401 stddev = 0;
402 else {
403 stddev = rec->time_squared - rec->counter * avg * avg;
404 /*
405 * Divide only 1000 for ns^2 -> us^2 conversion.
406 * trace_print_graph_duration will divide 1000 again.
407 */
408 do_div(stddev, (rec->counter - 1) * 1000);
409 }
410
397 mutex_lock(&mutex); 411 mutex_lock(&mutex);
398 trace_seq_init(&s); 412 trace_seq_init(&s);
399 trace_print_graph_duration(rec->time, &s); 413 trace_print_graph_duration(rec->time, &s);
400 trace_seq_puts(&s, " "); 414 trace_seq_puts(&s, " ");
401 trace_print_graph_duration(avg, &s); 415 trace_print_graph_duration(avg, &s);
416 trace_seq_puts(&s, " ");
417 trace_print_graph_duration(stddev, &s);
402 trace_print_seq(m, &s); 418 trace_print_seq(m, &s);
403 mutex_unlock(&mutex); 419 mutex_unlock(&mutex);
404#endif 420#endif
@@ -650,6 +666,10 @@ static void profile_graph_return(struct ftrace_graph_ret *trace)
650 if (!stat->hash || !ftrace_profile_enabled) 666 if (!stat->hash || !ftrace_profile_enabled)
651 goto out; 667 goto out;
652 668
669 /* If the calltime was zero'd ignore it */
670 if (!trace->calltime)
671 goto out;
672
653 calltime = trace->rettime - trace->calltime; 673 calltime = trace->rettime - trace->calltime;
654 674
655 if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) { 675 if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) {
@@ -668,8 +688,10 @@ static void profile_graph_return(struct ftrace_graph_ret *trace)
668 } 688 }
669 689
670 rec = ftrace_find_profiled_func(stat, trace->func); 690 rec = ftrace_find_profiled_func(stat, trace->func);
671 if (rec) 691 if (rec) {
672 rec->time += calltime; 692 rec->time += calltime;
693 rec->time_squared += calltime * calltime;
694 }
673 695
674 out: 696 out:
675 local_irq_restore(flags); 697 local_irq_restore(flags);
@@ -3212,8 +3234,7 @@ free:
3212} 3234}
3213 3235
3214static void 3236static void
3215ftrace_graph_probe_sched_switch(struct rq *__rq, struct task_struct *prev, 3237ftrace_graph_probe_sched_switch(struct task_struct *prev, struct task_struct *next)
3216 struct task_struct *next)
3217{ 3238{
3218 unsigned long long timestamp; 3239 unsigned long long timestamp;
3219 int index; 3240 int index;
@@ -3339,11 +3360,11 @@ void unregister_ftrace_graph(void)
3339 goto out; 3360 goto out;
3340 3361
3341 ftrace_graph_active--; 3362 ftrace_graph_active--;
3342 unregister_trace_sched_switch(ftrace_graph_probe_sched_switch);
3343 ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; 3363 ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub;
3344 ftrace_graph_entry = ftrace_graph_entry_stub; 3364 ftrace_graph_entry = ftrace_graph_entry_stub;
3345 ftrace_shutdown(FTRACE_STOP_FUNC_RET); 3365 ftrace_shutdown(FTRACE_STOP_FUNC_RET);
3346 unregister_pm_notifier(&ftrace_suspend_notifier); 3366 unregister_pm_notifier(&ftrace_suspend_notifier);
3367 unregister_trace_sched_switch(ftrace_graph_probe_sched_switch);
3347 3368
3348 out: 3369 out:
3349 mutex_unlock(&ftrace_lock); 3370 mutex_unlock(&ftrace_lock);
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index 41ca394feb22..7f6059c5aa94 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -319,6 +319,11 @@ EXPORT_SYMBOL_GPL(ring_buffer_event_data);
319#define TS_MASK ((1ULL << TS_SHIFT) - 1) 319#define TS_MASK ((1ULL << TS_SHIFT) - 1)
320#define TS_DELTA_TEST (~TS_MASK) 320#define TS_DELTA_TEST (~TS_MASK)
321 321
322/* Flag when events were overwritten */
323#define RB_MISSED_EVENTS (1 << 31)
324/* Missed count stored at end */
325#define RB_MISSED_STORED (1 << 30)
326
322struct buffer_data_page { 327struct buffer_data_page {
323 u64 time_stamp; /* page time stamp */ 328 u64 time_stamp; /* page time stamp */
324 local_t commit; /* write committed index */ 329 local_t commit; /* write committed index */
@@ -338,6 +343,7 @@ struct buffer_page {
338 local_t write; /* index for next write */ 343 local_t write; /* index for next write */
339 unsigned read; /* index for next read */ 344 unsigned read; /* index for next read */
340 local_t entries; /* entries on this page */ 345 local_t entries; /* entries on this page */
346 unsigned long real_end; /* real end of data */
341 struct buffer_data_page *page; /* Actual data page */ 347 struct buffer_data_page *page; /* Actual data page */
342}; 348};
343 349
@@ -417,6 +423,12 @@ int ring_buffer_print_page_header(struct trace_seq *s)
417 (unsigned int)sizeof(field.commit), 423 (unsigned int)sizeof(field.commit),
418 (unsigned int)is_signed_type(long)); 424 (unsigned int)is_signed_type(long));
419 425
426 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
427 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 (unsigned int)offsetof(typeof(field), commit),
429 1,
430 (unsigned int)is_signed_type(long));
431
420 ret = trace_seq_printf(s, "\tfield: char data;\t" 432 ret = trace_seq_printf(s, "\tfield: char data;\t"
421 "offset:%u;\tsize:%u;\tsigned:%u;\n", 433 "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)offsetof(typeof(field), data), 434 (unsigned int)offsetof(typeof(field), data),
@@ -440,6 +452,8 @@ struct ring_buffer_per_cpu {
440 struct buffer_page *tail_page; /* write to tail */ 452 struct buffer_page *tail_page; /* write to tail */
441 struct buffer_page *commit_page; /* committed pages */ 453 struct buffer_page *commit_page; /* committed pages */
442 struct buffer_page *reader_page; 454 struct buffer_page *reader_page;
455 unsigned long lost_events;
456 unsigned long last_overrun;
443 local_t commit_overrun; 457 local_t commit_overrun;
444 local_t overrun; 458 local_t overrun;
445 local_t entries; 459 local_t entries;
@@ -1762,6 +1776,13 @@ rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1762 kmemcheck_annotate_bitfield(event, bitfield); 1776 kmemcheck_annotate_bitfield(event, bitfield);
1763 1777
1764 /* 1778 /*
1779 * Save the original length to the meta data.
1780 * This will be used by the reader to add lost event
1781 * counter.
1782 */
1783 tail_page->real_end = tail;
1784
1785 /*
1765 * If this event is bigger than the minimum size, then 1786 * If this event is bigger than the minimum size, then
1766 * we need to be careful that we don't subtract the 1787 * we need to be careful that we don't subtract the
1767 * write counter enough to allow another writer to slip 1788 * write counter enough to allow another writer to slip
@@ -1979,17 +2000,13 @@ rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1979 u64 *ts, u64 *delta) 2000 u64 *ts, u64 *delta)
1980{ 2001{
1981 struct ring_buffer_event *event; 2002 struct ring_buffer_event *event;
1982 static int once;
1983 int ret; 2003 int ret;
1984 2004
1985 if (unlikely(*delta > (1ULL << 59) && !once++)) { 2005 WARN_ONCE(*delta > (1ULL << 59),
1986 printk(KERN_WARNING "Delta way too big! %llu" 2006 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
1987 " ts=%llu write stamp = %llu\n", 2007 (unsigned long long)*delta,
1988 (unsigned long long)*delta, 2008 (unsigned long long)*ts,
1989 (unsigned long long)*ts, 2009 (unsigned long long)cpu_buffer->write_stamp);
1990 (unsigned long long)cpu_buffer->write_stamp);
1991 WARN_ON(1);
1992 }
1993 2010
1994 /* 2011 /*
1995 * The delta is too big, we to add a 2012 * The delta is too big, we to add a
@@ -2838,6 +2855,7 @@ static struct buffer_page *
2838rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2855rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2839{ 2856{
2840 struct buffer_page *reader = NULL; 2857 struct buffer_page *reader = NULL;
2858 unsigned long overwrite;
2841 unsigned long flags; 2859 unsigned long flags;
2842 int nr_loops = 0; 2860 int nr_loops = 0;
2843 int ret; 2861 int ret;
@@ -2879,6 +2897,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2879 local_set(&cpu_buffer->reader_page->write, 0); 2897 local_set(&cpu_buffer->reader_page->write, 0);
2880 local_set(&cpu_buffer->reader_page->entries, 0); 2898 local_set(&cpu_buffer->reader_page->entries, 0);
2881 local_set(&cpu_buffer->reader_page->page->commit, 0); 2899 local_set(&cpu_buffer->reader_page->page->commit, 0);
2900 cpu_buffer->reader_page->real_end = 0;
2882 2901
2883 spin: 2902 spin:
2884 /* 2903 /*
@@ -2899,6 +2918,18 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2899 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2918 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2900 2919
2901 /* 2920 /*
2921 * We want to make sure we read the overruns after we set up our
2922 * pointers to the next object. The writer side does a
2923 * cmpxchg to cross pages which acts as the mb on the writer
2924 * side. Note, the reader will constantly fail the swap
2925 * while the writer is updating the pointers, so this
2926 * guarantees that the overwrite recorded here is the one we
2927 * want to compare with the last_overrun.
2928 */
2929 smp_mb();
2930 overwrite = local_read(&(cpu_buffer->overrun));
2931
2932 /*
2902 * Here's the tricky part. 2933 * Here's the tricky part.
2903 * 2934 *
2904 * We need to move the pointer past the header page. 2935 * We need to move the pointer past the header page.
@@ -2929,6 +2960,11 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2929 cpu_buffer->reader_page = reader; 2960 cpu_buffer->reader_page = reader;
2930 rb_reset_reader_page(cpu_buffer); 2961 rb_reset_reader_page(cpu_buffer);
2931 2962
2963 if (overwrite != cpu_buffer->last_overrun) {
2964 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2965 cpu_buffer->last_overrun = overwrite;
2966 }
2967
2932 goto again; 2968 goto again;
2933 2969
2934 out: 2970 out:
@@ -3005,8 +3041,14 @@ static void rb_advance_iter(struct ring_buffer_iter *iter)
3005 rb_advance_iter(iter); 3041 rb_advance_iter(iter);
3006} 3042}
3007 3043
3044static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3045{
3046 return cpu_buffer->lost_events;
3047}
3048
3008static struct ring_buffer_event * 3049static struct ring_buffer_event *
3009rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) 3050rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3051 unsigned long *lost_events)
3010{ 3052{
3011 struct ring_buffer_event *event; 3053 struct ring_buffer_event *event;
3012 struct buffer_page *reader; 3054 struct buffer_page *reader;
@@ -3058,6 +3100,8 @@ rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3058 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3100 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3059 cpu_buffer->cpu, ts); 3101 cpu_buffer->cpu, ts);
3060 } 3102 }
3103 if (lost_events)
3104 *lost_events = rb_lost_events(cpu_buffer);
3061 return event; 3105 return event;
3062 3106
3063 default: 3107 default:
@@ -3168,12 +3212,14 @@ static inline int rb_ok_to_lock(void)
3168 * @buffer: The ring buffer to read 3212 * @buffer: The ring buffer to read
3169 * @cpu: The cpu to peak at 3213 * @cpu: The cpu to peak at
3170 * @ts: The timestamp counter of this event. 3214 * @ts: The timestamp counter of this event.
3215 * @lost_events: a variable to store if events were lost (may be NULL)
3171 * 3216 *
3172 * This will return the event that will be read next, but does 3217 * This will return the event that will be read next, but does
3173 * not consume the data. 3218 * not consume the data.
3174 */ 3219 */
3175struct ring_buffer_event * 3220struct ring_buffer_event *
3176ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 3221ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3222 unsigned long *lost_events)
3177{ 3223{
3178 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3224 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3179 struct ring_buffer_event *event; 3225 struct ring_buffer_event *event;
@@ -3188,7 +3234,7 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3188 local_irq_save(flags); 3234 local_irq_save(flags);
3189 if (dolock) 3235 if (dolock)
3190 spin_lock(&cpu_buffer->reader_lock); 3236 spin_lock(&cpu_buffer->reader_lock);
3191 event = rb_buffer_peek(cpu_buffer, ts); 3237 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3192 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3238 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3193 rb_advance_reader(cpu_buffer); 3239 rb_advance_reader(cpu_buffer);
3194 if (dolock) 3240 if (dolock)
@@ -3230,13 +3276,17 @@ ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3230/** 3276/**
3231 * ring_buffer_consume - return an event and consume it 3277 * ring_buffer_consume - return an event and consume it
3232 * @buffer: The ring buffer to get the next event from 3278 * @buffer: The ring buffer to get the next event from
3279 * @cpu: the cpu to read the buffer from
3280 * @ts: a variable to store the timestamp (may be NULL)
3281 * @lost_events: a variable to store if events were lost (may be NULL)
3233 * 3282 *
3234 * Returns the next event in the ring buffer, and that event is consumed. 3283 * Returns the next event in the ring buffer, and that event is consumed.
3235 * Meaning, that sequential reads will keep returning a different event, 3284 * Meaning, that sequential reads will keep returning a different event,
3236 * and eventually empty the ring buffer if the producer is slower. 3285 * and eventually empty the ring buffer if the producer is slower.
3237 */ 3286 */
3238struct ring_buffer_event * 3287struct ring_buffer_event *
3239ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) 3288ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3289 unsigned long *lost_events)
3240{ 3290{
3241 struct ring_buffer_per_cpu *cpu_buffer; 3291 struct ring_buffer_per_cpu *cpu_buffer;
3242 struct ring_buffer_event *event = NULL; 3292 struct ring_buffer_event *event = NULL;
@@ -3257,9 +3307,11 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3257 if (dolock) 3307 if (dolock)
3258 spin_lock(&cpu_buffer->reader_lock); 3308 spin_lock(&cpu_buffer->reader_lock);
3259 3309
3260 event = rb_buffer_peek(cpu_buffer, ts); 3310 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3261 if (event) 3311 if (event) {
3312 cpu_buffer->lost_events = 0;
3262 rb_advance_reader(cpu_buffer); 3313 rb_advance_reader(cpu_buffer);
3314 }
3263 3315
3264 if (dolock) 3316 if (dolock)
3265 spin_unlock(&cpu_buffer->reader_lock); 3317 spin_unlock(&cpu_buffer->reader_lock);
@@ -3276,23 +3328,30 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3276EXPORT_SYMBOL_GPL(ring_buffer_consume); 3328EXPORT_SYMBOL_GPL(ring_buffer_consume);
3277 3329
3278/** 3330/**
3279 * ring_buffer_read_start - start a non consuming read of the buffer 3331 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3280 * @buffer: The ring buffer to read from 3332 * @buffer: The ring buffer to read from
3281 * @cpu: The cpu buffer to iterate over 3333 * @cpu: The cpu buffer to iterate over
3282 * 3334 *
3283 * This starts up an iteration through the buffer. It also disables 3335 * This performs the initial preparations necessary to iterate
3284 * the recording to the buffer until the reading is finished. 3336 * through the buffer. Memory is allocated, buffer recording
3285 * This prevents the reading from being corrupted. This is not 3337 * is disabled, and the iterator pointer is returned to the caller.
3286 * a consuming read, so a producer is not expected.
3287 * 3338 *
3288 * Must be paired with ring_buffer_finish. 3339 * Disabling buffer recordng prevents the reading from being
3340 * corrupted. This is not a consuming read, so a producer is not
3341 * expected.
3342 *
3343 * After a sequence of ring_buffer_read_prepare calls, the user is
3344 * expected to make at least one call to ring_buffer_prepare_sync.
3345 * Afterwards, ring_buffer_read_start is invoked to get things going
3346 * for real.
3347 *
3348 * This overall must be paired with ring_buffer_finish.
3289 */ 3349 */
3290struct ring_buffer_iter * 3350struct ring_buffer_iter *
3291ring_buffer_read_start(struct ring_buffer *buffer, int cpu) 3351ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3292{ 3352{
3293 struct ring_buffer_per_cpu *cpu_buffer; 3353 struct ring_buffer_per_cpu *cpu_buffer;
3294 struct ring_buffer_iter *iter; 3354 struct ring_buffer_iter *iter;
3295 unsigned long flags;
3296 3355
3297 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3356 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 return NULL; 3357 return NULL;
@@ -3306,15 +3365,52 @@ ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3306 iter->cpu_buffer = cpu_buffer; 3365 iter->cpu_buffer = cpu_buffer;
3307 3366
3308 atomic_inc(&cpu_buffer->record_disabled); 3367 atomic_inc(&cpu_buffer->record_disabled);
3368
3369 return iter;
3370}
3371EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3372
3373/**
3374 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3375 *
3376 * All previously invoked ring_buffer_read_prepare calls to prepare
3377 * iterators will be synchronized. Afterwards, read_buffer_read_start
3378 * calls on those iterators are allowed.
3379 */
3380void
3381ring_buffer_read_prepare_sync(void)
3382{
3309 synchronize_sched(); 3383 synchronize_sched();
3384}
3385EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3386
3387/**
3388 * ring_buffer_read_start - start a non consuming read of the buffer
3389 * @iter: The iterator returned by ring_buffer_read_prepare
3390 *
3391 * This finalizes the startup of an iteration through the buffer.
3392 * The iterator comes from a call to ring_buffer_read_prepare and
3393 * an intervening ring_buffer_read_prepare_sync must have been
3394 * performed.
3395 *
3396 * Must be paired with ring_buffer_finish.
3397 */
3398void
3399ring_buffer_read_start(struct ring_buffer_iter *iter)
3400{
3401 struct ring_buffer_per_cpu *cpu_buffer;
3402 unsigned long flags;
3403
3404 if (!iter)
3405 return;
3406
3407 cpu_buffer = iter->cpu_buffer;
3310 3408
3311 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3409 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3312 arch_spin_lock(&cpu_buffer->lock); 3410 arch_spin_lock(&cpu_buffer->lock);
3313 rb_iter_reset(iter); 3411 rb_iter_reset(iter);
3314 arch_spin_unlock(&cpu_buffer->lock); 3412 arch_spin_unlock(&cpu_buffer->lock);
3315 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3413 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3316
3317 return iter;
3318} 3414}
3319EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3415EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3320 3416
@@ -3408,6 +3504,9 @@ rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3408 cpu_buffer->write_stamp = 0; 3504 cpu_buffer->write_stamp = 0;
3409 cpu_buffer->read_stamp = 0; 3505 cpu_buffer->read_stamp = 0;
3410 3506
3507 cpu_buffer->lost_events = 0;
3508 cpu_buffer->last_overrun = 0;
3509
3411 rb_head_page_activate(cpu_buffer); 3510 rb_head_page_activate(cpu_buffer);
3412} 3511}
3413 3512
@@ -3683,6 +3782,7 @@ int ring_buffer_read_page(struct ring_buffer *buffer,
3683 struct ring_buffer_event *event; 3782 struct ring_buffer_event *event;
3684 struct buffer_data_page *bpage; 3783 struct buffer_data_page *bpage;
3685 struct buffer_page *reader; 3784 struct buffer_page *reader;
3785 unsigned long missed_events;
3686 unsigned long flags; 3786 unsigned long flags;
3687 unsigned int commit; 3787 unsigned int commit;
3688 unsigned int read; 3788 unsigned int read;
@@ -3719,6 +3819,9 @@ int ring_buffer_read_page(struct ring_buffer *buffer,
3719 read = reader->read; 3819 read = reader->read;
3720 commit = rb_page_commit(reader); 3820 commit = rb_page_commit(reader);
3721 3821
3822 /* Check if any events were dropped */
3823 missed_events = cpu_buffer->lost_events;
3824
3722 /* 3825 /*
3723 * If this page has been partially read or 3826 * If this page has been partially read or
3724 * if len is not big enough to read the rest of the page or 3827 * if len is not big enough to read the rest of the page or
@@ -3779,9 +3882,35 @@ int ring_buffer_read_page(struct ring_buffer *buffer,
3779 local_set(&reader->entries, 0); 3882 local_set(&reader->entries, 0);
3780 reader->read = 0; 3883 reader->read = 0;
3781 *data_page = bpage; 3884 *data_page = bpage;
3885
3886 /*
3887 * Use the real_end for the data size,
3888 * This gives us a chance to store the lost events
3889 * on the page.
3890 */
3891 if (reader->real_end)
3892 local_set(&bpage->commit, reader->real_end);
3782 } 3893 }
3783 ret = read; 3894 ret = read;
3784 3895
3896 cpu_buffer->lost_events = 0;
3897 /*
3898 * Set a flag in the commit field if we lost events
3899 */
3900 if (missed_events) {
3901 commit = local_read(&bpage->commit);
3902
3903 /* If there is room at the end of the page to save the
3904 * missed events, then record it there.
3905 */
3906 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3907 memcpy(&bpage->data[commit], &missed_events,
3908 sizeof(missed_events));
3909 local_add(RB_MISSED_STORED, &bpage->commit);
3910 }
3911 local_add(RB_MISSED_EVENTS, &bpage->commit);
3912 }
3913
3785 out_unlock: 3914 out_unlock:
3786 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3915 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3787 3916
diff --git a/kernel/trace/ring_buffer_benchmark.c b/kernel/trace/ring_buffer_benchmark.c
index df74c7982255..302f8a614635 100644
--- a/kernel/trace/ring_buffer_benchmark.c
+++ b/kernel/trace/ring_buffer_benchmark.c
@@ -81,7 +81,7 @@ static enum event_status read_event(int cpu)
81 int *entry; 81 int *entry;
82 u64 ts; 82 u64 ts;
83 83
84 event = ring_buffer_consume(buffer, cpu, &ts); 84 event = ring_buffer_consume(buffer, cpu, &ts, NULL);
85 if (!event) 85 if (!event)
86 return EVENT_DROPPED; 86 return EVENT_DROPPED;
87 87
@@ -113,7 +113,8 @@ static enum event_status read_page(int cpu)
113 ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1); 113 ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1);
114 if (ret >= 0) { 114 if (ret >= 0) {
115 rpage = bpage; 115 rpage = bpage;
116 commit = local_read(&rpage->commit); 116 /* The commit may have missed event flags set, clear them */
117 commit = local_read(&rpage->commit) & 0xfffff;
117 for (i = 0; i < commit && !kill_test; i += inc) { 118 for (i = 0; i < commit && !kill_test; i += inc) {
118 119
119 if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) { 120 if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) {
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index 44f916a04065..756d7283318b 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -117,9 +117,12 @@ static cpumask_var_t __read_mostly tracing_buffer_mask;
117 * 117 *
118 * It is default off, but you can enable it with either specifying 118 * It is default off, but you can enable it with either specifying
119 * "ftrace_dump_on_oops" in the kernel command line, or setting 119 * "ftrace_dump_on_oops" in the kernel command line, or setting
120 * /proc/sys/kernel/ftrace_dump_on_oops to true. 120 * /proc/sys/kernel/ftrace_dump_on_oops
121 * Set 1 if you want to dump buffers of all CPUs
122 * Set 2 if you want to dump the buffer of the CPU that triggered oops
121 */ 123 */
122int ftrace_dump_on_oops; 124
125enum ftrace_dump_mode ftrace_dump_on_oops;
123 126
124static int tracing_set_tracer(const char *buf); 127static int tracing_set_tracer(const char *buf);
125 128
@@ -139,8 +142,17 @@ __setup("ftrace=", set_cmdline_ftrace);
139 142
140static int __init set_ftrace_dump_on_oops(char *str) 143static int __init set_ftrace_dump_on_oops(char *str)
141{ 144{
142 ftrace_dump_on_oops = 1; 145 if (*str++ != '=' || !*str) {
143 return 1; 146 ftrace_dump_on_oops = DUMP_ALL;
147 return 1;
148 }
149
150 if (!strcmp("orig_cpu", str)) {
151 ftrace_dump_on_oops = DUMP_ORIG;
152 return 1;
153 }
154
155 return 0;
144} 156}
145__setup("ftrace_dump_on_oops", set_ftrace_dump_on_oops); 157__setup("ftrace_dump_on_oops", set_ftrace_dump_on_oops);
146 158
@@ -1545,7 +1557,8 @@ static void trace_iterator_increment(struct trace_iterator *iter)
1545} 1557}
1546 1558
1547static struct trace_entry * 1559static struct trace_entry *
1548peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts) 1560peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts,
1561 unsigned long *lost_events)
1549{ 1562{
1550 struct ring_buffer_event *event; 1563 struct ring_buffer_event *event;
1551 struct ring_buffer_iter *buf_iter = iter->buffer_iter[cpu]; 1564 struct ring_buffer_iter *buf_iter = iter->buffer_iter[cpu];
@@ -1556,7 +1569,8 @@ peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts)
1556 if (buf_iter) 1569 if (buf_iter)
1557 event = ring_buffer_iter_peek(buf_iter, ts); 1570 event = ring_buffer_iter_peek(buf_iter, ts);
1558 else 1571 else
1559 event = ring_buffer_peek(iter->tr->buffer, cpu, ts); 1572 event = ring_buffer_peek(iter->tr->buffer, cpu, ts,
1573 lost_events);
1560 1574
1561 ftrace_enable_cpu(); 1575 ftrace_enable_cpu();
1562 1576
@@ -1564,10 +1578,12 @@ peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts)
1564} 1578}
1565 1579
1566static struct trace_entry * 1580static struct trace_entry *
1567__find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) 1581__find_next_entry(struct trace_iterator *iter, int *ent_cpu,
1582 unsigned long *missing_events, u64 *ent_ts)
1568{ 1583{
1569 struct ring_buffer *buffer = iter->tr->buffer; 1584 struct ring_buffer *buffer = iter->tr->buffer;
1570 struct trace_entry *ent, *next = NULL; 1585 struct trace_entry *ent, *next = NULL;
1586 unsigned long lost_events = 0, next_lost = 0;
1571 int cpu_file = iter->cpu_file; 1587 int cpu_file = iter->cpu_file;
1572 u64 next_ts = 0, ts; 1588 u64 next_ts = 0, ts;
1573 int next_cpu = -1; 1589 int next_cpu = -1;
@@ -1580,7 +1596,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts)
1580 if (cpu_file > TRACE_PIPE_ALL_CPU) { 1596 if (cpu_file > TRACE_PIPE_ALL_CPU) {
1581 if (ring_buffer_empty_cpu(buffer, cpu_file)) 1597 if (ring_buffer_empty_cpu(buffer, cpu_file))
1582 return NULL; 1598 return NULL;
1583 ent = peek_next_entry(iter, cpu_file, ent_ts); 1599 ent = peek_next_entry(iter, cpu_file, ent_ts, missing_events);
1584 if (ent_cpu) 1600 if (ent_cpu)
1585 *ent_cpu = cpu_file; 1601 *ent_cpu = cpu_file;
1586 1602
@@ -1592,7 +1608,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts)
1592 if (ring_buffer_empty_cpu(buffer, cpu)) 1608 if (ring_buffer_empty_cpu(buffer, cpu))
1593 continue; 1609 continue;
1594 1610
1595 ent = peek_next_entry(iter, cpu, &ts); 1611 ent = peek_next_entry(iter, cpu, &ts, &lost_events);
1596 1612
1597 /* 1613 /*
1598 * Pick the entry with the smallest timestamp: 1614 * Pick the entry with the smallest timestamp:
@@ -1601,6 +1617,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts)
1601 next = ent; 1617 next = ent;
1602 next_cpu = cpu; 1618 next_cpu = cpu;
1603 next_ts = ts; 1619 next_ts = ts;
1620 next_lost = lost_events;
1604 } 1621 }
1605 } 1622 }
1606 1623
@@ -1610,6 +1627,9 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts)
1610 if (ent_ts) 1627 if (ent_ts)
1611 *ent_ts = next_ts; 1628 *ent_ts = next_ts;
1612 1629
1630 if (missing_events)
1631 *missing_events = next_lost;
1632
1613 return next; 1633 return next;
1614} 1634}
1615 1635
@@ -1617,13 +1637,14 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts)
1617struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, 1637struct trace_entry *trace_find_next_entry(struct trace_iterator *iter,
1618 int *ent_cpu, u64 *ent_ts) 1638 int *ent_cpu, u64 *ent_ts)
1619{ 1639{
1620 return __find_next_entry(iter, ent_cpu, ent_ts); 1640 return __find_next_entry(iter, ent_cpu, NULL, ent_ts);
1621} 1641}
1622 1642
1623/* Find the next real entry, and increment the iterator to the next entry */ 1643/* Find the next real entry, and increment the iterator to the next entry */
1624static void *find_next_entry_inc(struct trace_iterator *iter) 1644static void *find_next_entry_inc(struct trace_iterator *iter)
1625{ 1645{
1626 iter->ent = __find_next_entry(iter, &iter->cpu, &iter->ts); 1646 iter->ent = __find_next_entry(iter, &iter->cpu,
1647 &iter->lost_events, &iter->ts);
1627 1648
1628 if (iter->ent) 1649 if (iter->ent)
1629 trace_iterator_increment(iter); 1650 trace_iterator_increment(iter);
@@ -1635,7 +1656,8 @@ static void trace_consume(struct trace_iterator *iter)
1635{ 1656{
1636 /* Don't allow ftrace to trace into the ring buffers */ 1657 /* Don't allow ftrace to trace into the ring buffers */
1637 ftrace_disable_cpu(); 1658 ftrace_disable_cpu();
1638 ring_buffer_consume(iter->tr->buffer, iter->cpu, &iter->ts); 1659 ring_buffer_consume(iter->tr->buffer, iter->cpu, &iter->ts,
1660 &iter->lost_events);
1639 ftrace_enable_cpu(); 1661 ftrace_enable_cpu();
1640} 1662}
1641 1663
@@ -1786,7 +1808,7 @@ static void print_func_help_header(struct seq_file *m)
1786} 1808}
1787 1809
1788 1810
1789static void 1811void
1790print_trace_header(struct seq_file *m, struct trace_iterator *iter) 1812print_trace_header(struct seq_file *m, struct trace_iterator *iter)
1791{ 1813{
1792 unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); 1814 unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK);
@@ -1995,7 +2017,7 @@ static enum print_line_t print_bin_fmt(struct trace_iterator *iter)
1995 return event ? event->binary(iter, 0) : TRACE_TYPE_HANDLED; 2017 return event ? event->binary(iter, 0) : TRACE_TYPE_HANDLED;
1996} 2018}
1997 2019
1998static int trace_empty(struct trace_iterator *iter) 2020int trace_empty(struct trace_iterator *iter)
1999{ 2021{
2000 int cpu; 2022 int cpu;
2001 2023
@@ -2030,6 +2052,10 @@ static enum print_line_t print_trace_line(struct trace_iterator *iter)
2030{ 2052{
2031 enum print_line_t ret; 2053 enum print_line_t ret;
2032 2054
2055 if (iter->lost_events)
2056 trace_seq_printf(&iter->seq, "CPU:%d [LOST %lu EVENTS]\n",
2057 iter->cpu, iter->lost_events);
2058
2033 if (iter->trace && iter->trace->print_line) { 2059 if (iter->trace && iter->trace->print_line) {
2034 ret = iter->trace->print_line(iter); 2060 ret = iter->trace->print_line(iter);
2035 if (ret != TRACE_TYPE_UNHANDLED) 2061 if (ret != TRACE_TYPE_UNHANDLED)
@@ -2058,6 +2084,23 @@ static enum print_line_t print_trace_line(struct trace_iterator *iter)
2058 return print_trace_fmt(iter); 2084 return print_trace_fmt(iter);
2059} 2085}
2060 2086
2087void trace_default_header(struct seq_file *m)
2088{
2089 struct trace_iterator *iter = m->private;
2090
2091 if (iter->iter_flags & TRACE_FILE_LAT_FMT) {
2092 /* print nothing if the buffers are empty */
2093 if (trace_empty(iter))
2094 return;
2095 print_trace_header(m, iter);
2096 if (!(trace_flags & TRACE_ITER_VERBOSE))
2097 print_lat_help_header(m);
2098 } else {
2099 if (!(trace_flags & TRACE_ITER_VERBOSE))
2100 print_func_help_header(m);
2101 }
2102}
2103
2061static int s_show(struct seq_file *m, void *v) 2104static int s_show(struct seq_file *m, void *v)
2062{ 2105{
2063 struct trace_iterator *iter = v; 2106 struct trace_iterator *iter = v;
@@ -2070,17 +2113,9 @@ static int s_show(struct seq_file *m, void *v)
2070 } 2113 }
2071 if (iter->trace && iter->trace->print_header) 2114 if (iter->trace && iter->trace->print_header)
2072 iter->trace->print_header(m); 2115 iter->trace->print_header(m);
2073 else if (iter->iter_flags & TRACE_FILE_LAT_FMT) { 2116 else
2074 /* print nothing if the buffers are empty */ 2117 trace_default_header(m);
2075 if (trace_empty(iter)) 2118
2076 return 0;
2077 print_trace_header(m, iter);
2078 if (!(trace_flags & TRACE_ITER_VERBOSE))
2079 print_lat_help_header(m);
2080 } else {
2081 if (!(trace_flags & TRACE_ITER_VERBOSE))
2082 print_func_help_header(m);
2083 }
2084 } else if (iter->leftover) { 2119 } else if (iter->leftover) {
2085 /* 2120 /*
2086 * If we filled the seq_file buffer earlier, we 2121 * If we filled the seq_file buffer earlier, we
@@ -2166,15 +2201,20 @@ __tracing_open(struct inode *inode, struct file *file)
2166 2201
2167 if (iter->cpu_file == TRACE_PIPE_ALL_CPU) { 2202 if (iter->cpu_file == TRACE_PIPE_ALL_CPU) {
2168 for_each_tracing_cpu(cpu) { 2203 for_each_tracing_cpu(cpu) {
2169
2170 iter->buffer_iter[cpu] = 2204 iter->buffer_iter[cpu] =
2171 ring_buffer_read_start(iter->tr->buffer, cpu); 2205 ring_buffer_read_prepare(iter->tr->buffer, cpu);
2206 }
2207 ring_buffer_read_prepare_sync();
2208 for_each_tracing_cpu(cpu) {
2209 ring_buffer_read_start(iter->buffer_iter[cpu]);
2172 tracing_iter_reset(iter, cpu); 2210 tracing_iter_reset(iter, cpu);
2173 } 2211 }
2174 } else { 2212 } else {
2175 cpu = iter->cpu_file; 2213 cpu = iter->cpu_file;
2176 iter->buffer_iter[cpu] = 2214 iter->buffer_iter[cpu] =
2177 ring_buffer_read_start(iter->tr->buffer, cpu); 2215 ring_buffer_read_prepare(iter->tr->buffer, cpu);
2216 ring_buffer_read_prepare_sync();
2217 ring_buffer_read_start(iter->buffer_iter[cpu]);
2178 tracing_iter_reset(iter, cpu); 2218 tracing_iter_reset(iter, cpu);
2179 } 2219 }
2180 2220
@@ -4324,7 +4364,7 @@ static int trace_panic_handler(struct notifier_block *this,
4324 unsigned long event, void *unused) 4364 unsigned long event, void *unused)
4325{ 4365{
4326 if (ftrace_dump_on_oops) 4366 if (ftrace_dump_on_oops)
4327 ftrace_dump(); 4367 ftrace_dump(ftrace_dump_on_oops);
4328 return NOTIFY_OK; 4368 return NOTIFY_OK;
4329} 4369}
4330 4370
@@ -4341,7 +4381,7 @@ static int trace_die_handler(struct notifier_block *self,
4341 switch (val) { 4381 switch (val) {
4342 case DIE_OOPS: 4382 case DIE_OOPS:
4343 if (ftrace_dump_on_oops) 4383 if (ftrace_dump_on_oops)
4344 ftrace_dump(); 4384 ftrace_dump(ftrace_dump_on_oops);
4345 break; 4385 break;
4346 default: 4386 default:
4347 break; 4387 break;
@@ -4382,7 +4422,8 @@ trace_printk_seq(struct trace_seq *s)
4382 trace_seq_init(s); 4422 trace_seq_init(s);
4383} 4423}
4384 4424
4385static void __ftrace_dump(bool disable_tracing) 4425static void
4426__ftrace_dump(bool disable_tracing, enum ftrace_dump_mode oops_dump_mode)
4386{ 4427{
4387 static arch_spinlock_t ftrace_dump_lock = 4428 static arch_spinlock_t ftrace_dump_lock =
4388 (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 4429 (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
@@ -4415,12 +4456,25 @@ static void __ftrace_dump(bool disable_tracing)
4415 /* don't look at user memory in panic mode */ 4456 /* don't look at user memory in panic mode */
4416 trace_flags &= ~TRACE_ITER_SYM_USEROBJ; 4457 trace_flags &= ~TRACE_ITER_SYM_USEROBJ;
4417 4458
4418 printk(KERN_TRACE "Dumping ftrace buffer:\n");
4419
4420 /* Simulate the iterator */ 4459 /* Simulate the iterator */
4421 iter.tr = &global_trace; 4460 iter.tr = &global_trace;
4422 iter.trace = current_trace; 4461 iter.trace = current_trace;
4423 iter.cpu_file = TRACE_PIPE_ALL_CPU; 4462
4463 switch (oops_dump_mode) {
4464 case DUMP_ALL:
4465 iter.cpu_file = TRACE_PIPE_ALL_CPU;
4466 break;
4467 case DUMP_ORIG:
4468 iter.cpu_file = raw_smp_processor_id();
4469 break;
4470 case DUMP_NONE:
4471 goto out_enable;
4472 default:
4473 printk(KERN_TRACE "Bad dumping mode, switching to all CPUs dump\n");
4474 iter.cpu_file = TRACE_PIPE_ALL_CPU;
4475 }
4476
4477 printk(KERN_TRACE "Dumping ftrace buffer:\n");
4424 4478
4425 /* 4479 /*
4426 * We need to stop all tracing on all CPUS to read the 4480 * We need to stop all tracing on all CPUS to read the
@@ -4459,6 +4513,7 @@ static void __ftrace_dump(bool disable_tracing)
4459 else 4513 else
4460 printk(KERN_TRACE "---------------------------------\n"); 4514 printk(KERN_TRACE "---------------------------------\n");
4461 4515
4516 out_enable:
4462 /* Re-enable tracing if requested */ 4517 /* Re-enable tracing if requested */
4463 if (!disable_tracing) { 4518 if (!disable_tracing) {
4464 trace_flags |= old_userobj; 4519 trace_flags |= old_userobj;
@@ -4475,9 +4530,9 @@ static void __ftrace_dump(bool disable_tracing)
4475} 4530}
4476 4531
4477/* By default: disable tracing after the dump */ 4532/* By default: disable tracing after the dump */
4478void ftrace_dump(void) 4533void ftrace_dump(enum ftrace_dump_mode oops_dump_mode)
4479{ 4534{
4480 __ftrace_dump(true); 4535 __ftrace_dump(true, oops_dump_mode);
4481} 4536}
4482 4537
4483__init static int tracer_alloc_buffers(void) 4538__init static int tracer_alloc_buffers(void)
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index 3ebdb6bd2362..d1ce0bec1b3f 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -364,6 +364,9 @@ void trace_function(struct trace_array *tr,
364 unsigned long ip, 364 unsigned long ip,
365 unsigned long parent_ip, 365 unsigned long parent_ip,
366 unsigned long flags, int pc); 366 unsigned long flags, int pc);
367void trace_default_header(struct seq_file *m);
368void print_trace_header(struct seq_file *m, struct trace_iterator *iter);
369int trace_empty(struct trace_iterator *iter);
367 370
368void trace_graph_return(struct ftrace_graph_ret *trace); 371void trace_graph_return(struct ftrace_graph_ret *trace);
369int trace_graph_entry(struct ftrace_graph_ent *trace); 372int trace_graph_entry(struct ftrace_graph_ent *trace);
@@ -475,9 +478,29 @@ extern int trace_clock_id;
475 478
476/* Standard output formatting function used for function return traces */ 479/* Standard output formatting function used for function return traces */
477#ifdef CONFIG_FUNCTION_GRAPH_TRACER 480#ifdef CONFIG_FUNCTION_GRAPH_TRACER
478extern enum print_line_t print_graph_function(struct trace_iterator *iter); 481
482/* Flag options */
483#define TRACE_GRAPH_PRINT_OVERRUN 0x1
484#define TRACE_GRAPH_PRINT_CPU 0x2
485#define TRACE_GRAPH_PRINT_OVERHEAD 0x4
486#define TRACE_GRAPH_PRINT_PROC 0x8
487#define TRACE_GRAPH_PRINT_DURATION 0x10
488#define TRACE_GRAPH_PRINT_ABS_TIME 0x20
489
490extern enum print_line_t
491print_graph_function_flags(struct trace_iterator *iter, u32 flags);
492extern void print_graph_headers_flags(struct seq_file *s, u32 flags);
479extern enum print_line_t 493extern enum print_line_t
480trace_print_graph_duration(unsigned long long duration, struct trace_seq *s); 494trace_print_graph_duration(unsigned long long duration, struct trace_seq *s);
495extern void graph_trace_open(struct trace_iterator *iter);
496extern void graph_trace_close(struct trace_iterator *iter);
497extern int __trace_graph_entry(struct trace_array *tr,
498 struct ftrace_graph_ent *trace,
499 unsigned long flags, int pc);
500extern void __trace_graph_return(struct trace_array *tr,
501 struct ftrace_graph_ret *trace,
502 unsigned long flags, int pc);
503
481 504
482#ifdef CONFIG_DYNAMIC_FTRACE 505#ifdef CONFIG_DYNAMIC_FTRACE
483/* TODO: make this variable */ 506/* TODO: make this variable */
@@ -508,7 +531,7 @@ static inline int ftrace_graph_addr(unsigned long addr)
508#endif /* CONFIG_DYNAMIC_FTRACE */ 531#endif /* CONFIG_DYNAMIC_FTRACE */
509#else /* CONFIG_FUNCTION_GRAPH_TRACER */ 532#else /* CONFIG_FUNCTION_GRAPH_TRACER */
510static inline enum print_line_t 533static inline enum print_line_t
511print_graph_function(struct trace_iterator *iter) 534print_graph_function_flags(struct trace_iterator *iter, u32 flags)
512{ 535{
513 return TRACE_TYPE_UNHANDLED; 536 return TRACE_TYPE_UNHANDLED;
514} 537}
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c
index 9aed1a5cf553..dd11c830eb84 100644
--- a/kernel/trace/trace_functions_graph.c
+++ b/kernel/trace/trace_functions_graph.c
@@ -40,7 +40,7 @@ struct fgraph_data {
40#define TRACE_GRAPH_PRINT_OVERHEAD 0x4 40#define TRACE_GRAPH_PRINT_OVERHEAD 0x4
41#define TRACE_GRAPH_PRINT_PROC 0x8 41#define TRACE_GRAPH_PRINT_PROC 0x8
42#define TRACE_GRAPH_PRINT_DURATION 0x10 42#define TRACE_GRAPH_PRINT_DURATION 0x10
43#define TRACE_GRAPH_PRINT_ABS_TIME 0X20 43#define TRACE_GRAPH_PRINT_ABS_TIME 0x20
44 44
45static struct tracer_opt trace_opts[] = { 45static struct tracer_opt trace_opts[] = {
46 /* Display overruns? (for self-debug purpose) */ 46 /* Display overruns? (for self-debug purpose) */
@@ -179,7 +179,7 @@ unsigned long ftrace_return_to_handler(unsigned long frame_pointer)
179 return ret; 179 return ret;
180} 180}
181 181
182static int __trace_graph_entry(struct trace_array *tr, 182int __trace_graph_entry(struct trace_array *tr,
183 struct ftrace_graph_ent *trace, 183 struct ftrace_graph_ent *trace,
184 unsigned long flags, 184 unsigned long flags,
185 int pc) 185 int pc)
@@ -246,7 +246,7 @@ int trace_graph_thresh_entry(struct ftrace_graph_ent *trace)
246 return trace_graph_entry(trace); 246 return trace_graph_entry(trace);
247} 247}
248 248
249static void __trace_graph_return(struct trace_array *tr, 249void __trace_graph_return(struct trace_array *tr,
250 struct ftrace_graph_ret *trace, 250 struct ftrace_graph_ret *trace,
251 unsigned long flags, 251 unsigned long flags,
252 int pc) 252 int pc)
@@ -490,9 +490,10 @@ get_return_for_leaf(struct trace_iterator *iter,
490 * We need to consume the current entry to see 490 * We need to consume the current entry to see
491 * the next one. 491 * the next one.
492 */ 492 */
493 ring_buffer_consume(iter->tr->buffer, iter->cpu, NULL); 493 ring_buffer_consume(iter->tr->buffer, iter->cpu,
494 NULL, NULL);
494 event = ring_buffer_peek(iter->tr->buffer, iter->cpu, 495 event = ring_buffer_peek(iter->tr->buffer, iter->cpu,
495 NULL); 496 NULL, NULL);
496 } 497 }
497 498
498 if (!event) 499 if (!event)
@@ -526,17 +527,18 @@ get_return_for_leaf(struct trace_iterator *iter,
526 527
527/* Signal a overhead of time execution to the output */ 528/* Signal a overhead of time execution to the output */
528static int 529static int
529print_graph_overhead(unsigned long long duration, struct trace_seq *s) 530print_graph_overhead(unsigned long long duration, struct trace_seq *s,
531 u32 flags)
530{ 532{
531 /* If duration disappear, we don't need anything */ 533 /* If duration disappear, we don't need anything */
532 if (!(tracer_flags.val & TRACE_GRAPH_PRINT_DURATION)) 534 if (!(flags & TRACE_GRAPH_PRINT_DURATION))
533 return 1; 535 return 1;
534 536
535 /* Non nested entry or return */ 537 /* Non nested entry or return */
536 if (duration == -1) 538 if (duration == -1)
537 return trace_seq_printf(s, " "); 539 return trace_seq_printf(s, " ");
538 540
539 if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERHEAD) { 541 if (flags & TRACE_GRAPH_PRINT_OVERHEAD) {
540 /* Duration exceeded 100 msecs */ 542 /* Duration exceeded 100 msecs */
541 if (duration > 100000ULL) 543 if (duration > 100000ULL)
542 return trace_seq_printf(s, "! "); 544 return trace_seq_printf(s, "! ");
@@ -562,7 +564,7 @@ static int print_graph_abs_time(u64 t, struct trace_seq *s)
562 564
563static enum print_line_t 565static enum print_line_t
564print_graph_irq(struct trace_iterator *iter, unsigned long addr, 566print_graph_irq(struct trace_iterator *iter, unsigned long addr,
565 enum trace_type type, int cpu, pid_t pid) 567 enum trace_type type, int cpu, pid_t pid, u32 flags)
566{ 568{
567 int ret; 569 int ret;
568 struct trace_seq *s = &iter->seq; 570 struct trace_seq *s = &iter->seq;
@@ -572,21 +574,21 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr,
572 return TRACE_TYPE_UNHANDLED; 574 return TRACE_TYPE_UNHANDLED;
573 575
574 /* Absolute time */ 576 /* Absolute time */
575 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) { 577 if (flags & TRACE_GRAPH_PRINT_ABS_TIME) {
576 ret = print_graph_abs_time(iter->ts, s); 578 ret = print_graph_abs_time(iter->ts, s);
577 if (!ret) 579 if (!ret)
578 return TRACE_TYPE_PARTIAL_LINE; 580 return TRACE_TYPE_PARTIAL_LINE;
579 } 581 }
580 582
581 /* Cpu */ 583 /* Cpu */
582 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) { 584 if (flags & TRACE_GRAPH_PRINT_CPU) {
583 ret = print_graph_cpu(s, cpu); 585 ret = print_graph_cpu(s, cpu);
584 if (ret == TRACE_TYPE_PARTIAL_LINE) 586 if (ret == TRACE_TYPE_PARTIAL_LINE)
585 return TRACE_TYPE_PARTIAL_LINE; 587 return TRACE_TYPE_PARTIAL_LINE;
586 } 588 }
587 589
588 /* Proc */ 590 /* Proc */
589 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { 591 if (flags & TRACE_GRAPH_PRINT_PROC) {
590 ret = print_graph_proc(s, pid); 592 ret = print_graph_proc(s, pid);
591 if (ret == TRACE_TYPE_PARTIAL_LINE) 593 if (ret == TRACE_TYPE_PARTIAL_LINE)
592 return TRACE_TYPE_PARTIAL_LINE; 594 return TRACE_TYPE_PARTIAL_LINE;
@@ -596,7 +598,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr,
596 } 598 }
597 599
598 /* No overhead */ 600 /* No overhead */
599 ret = print_graph_overhead(-1, s); 601 ret = print_graph_overhead(-1, s, flags);
600 if (!ret) 602 if (!ret)
601 return TRACE_TYPE_PARTIAL_LINE; 603 return TRACE_TYPE_PARTIAL_LINE;
602 604
@@ -609,7 +611,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr,
609 return TRACE_TYPE_PARTIAL_LINE; 611 return TRACE_TYPE_PARTIAL_LINE;
610 612
611 /* Don't close the duration column if haven't one */ 613 /* Don't close the duration column if haven't one */
612 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) 614 if (flags & TRACE_GRAPH_PRINT_DURATION)
613 trace_seq_printf(s, " |"); 615 trace_seq_printf(s, " |");
614 ret = trace_seq_printf(s, "\n"); 616 ret = trace_seq_printf(s, "\n");
615 617
@@ -679,7 +681,8 @@ print_graph_duration(unsigned long long duration, struct trace_seq *s)
679static enum print_line_t 681static enum print_line_t
680print_graph_entry_leaf(struct trace_iterator *iter, 682print_graph_entry_leaf(struct trace_iterator *iter,
681 struct ftrace_graph_ent_entry *entry, 683 struct ftrace_graph_ent_entry *entry,
682 struct ftrace_graph_ret_entry *ret_entry, struct trace_seq *s) 684 struct ftrace_graph_ret_entry *ret_entry,
685 struct trace_seq *s, u32 flags)
683{ 686{
684 struct fgraph_data *data = iter->private; 687 struct fgraph_data *data = iter->private;
685 struct ftrace_graph_ret *graph_ret; 688 struct ftrace_graph_ret *graph_ret;
@@ -711,12 +714,12 @@ print_graph_entry_leaf(struct trace_iterator *iter,
711 } 714 }
712 715
713 /* Overhead */ 716 /* Overhead */
714 ret = print_graph_overhead(duration, s); 717 ret = print_graph_overhead(duration, s, flags);
715 if (!ret) 718 if (!ret)
716 return TRACE_TYPE_PARTIAL_LINE; 719 return TRACE_TYPE_PARTIAL_LINE;
717 720
718 /* Duration */ 721 /* Duration */
719 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { 722 if (flags & TRACE_GRAPH_PRINT_DURATION) {
720 ret = print_graph_duration(duration, s); 723 ret = print_graph_duration(duration, s);
721 if (ret == TRACE_TYPE_PARTIAL_LINE) 724 if (ret == TRACE_TYPE_PARTIAL_LINE)
722 return TRACE_TYPE_PARTIAL_LINE; 725 return TRACE_TYPE_PARTIAL_LINE;
@@ -739,7 +742,7 @@ print_graph_entry_leaf(struct trace_iterator *iter,
739static enum print_line_t 742static enum print_line_t
740print_graph_entry_nested(struct trace_iterator *iter, 743print_graph_entry_nested(struct trace_iterator *iter,
741 struct ftrace_graph_ent_entry *entry, 744 struct ftrace_graph_ent_entry *entry,
742 struct trace_seq *s, int cpu) 745 struct trace_seq *s, int cpu, u32 flags)
743{ 746{
744 struct ftrace_graph_ent *call = &entry->graph_ent; 747 struct ftrace_graph_ent *call = &entry->graph_ent;
745 struct fgraph_data *data = iter->private; 748 struct fgraph_data *data = iter->private;
@@ -759,12 +762,12 @@ print_graph_entry_nested(struct trace_iterator *iter,
759 } 762 }
760 763
761 /* No overhead */ 764 /* No overhead */
762 ret = print_graph_overhead(-1, s); 765 ret = print_graph_overhead(-1, s, flags);
763 if (!ret) 766 if (!ret)
764 return TRACE_TYPE_PARTIAL_LINE; 767 return TRACE_TYPE_PARTIAL_LINE;
765 768
766 /* No time */ 769 /* No time */
767 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { 770 if (flags & TRACE_GRAPH_PRINT_DURATION) {
768 ret = trace_seq_printf(s, " | "); 771 ret = trace_seq_printf(s, " | ");
769 if (!ret) 772 if (!ret)
770 return TRACE_TYPE_PARTIAL_LINE; 773 return TRACE_TYPE_PARTIAL_LINE;
@@ -790,7 +793,7 @@ print_graph_entry_nested(struct trace_iterator *iter,
790 793
791static enum print_line_t 794static enum print_line_t
792print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, 795print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s,
793 int type, unsigned long addr) 796 int type, unsigned long addr, u32 flags)
794{ 797{
795 struct fgraph_data *data = iter->private; 798 struct fgraph_data *data = iter->private;
796 struct trace_entry *ent = iter->ent; 799 struct trace_entry *ent = iter->ent;
@@ -803,27 +806,27 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s,
803 806
804 if (type) { 807 if (type) {
805 /* Interrupt */ 808 /* Interrupt */
806 ret = print_graph_irq(iter, addr, type, cpu, ent->pid); 809 ret = print_graph_irq(iter, addr, type, cpu, ent->pid, flags);
807 if (ret == TRACE_TYPE_PARTIAL_LINE) 810 if (ret == TRACE_TYPE_PARTIAL_LINE)
808 return TRACE_TYPE_PARTIAL_LINE; 811 return TRACE_TYPE_PARTIAL_LINE;
809 } 812 }
810 813
811 /* Absolute time */ 814 /* Absolute time */
812 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) { 815 if (flags & TRACE_GRAPH_PRINT_ABS_TIME) {
813 ret = print_graph_abs_time(iter->ts, s); 816 ret = print_graph_abs_time(iter->ts, s);
814 if (!ret) 817 if (!ret)
815 return TRACE_TYPE_PARTIAL_LINE; 818 return TRACE_TYPE_PARTIAL_LINE;
816 } 819 }
817 820
818 /* Cpu */ 821 /* Cpu */
819 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) { 822 if (flags & TRACE_GRAPH_PRINT_CPU) {
820 ret = print_graph_cpu(s, cpu); 823 ret = print_graph_cpu(s, cpu);
821 if (ret == TRACE_TYPE_PARTIAL_LINE) 824 if (ret == TRACE_TYPE_PARTIAL_LINE)
822 return TRACE_TYPE_PARTIAL_LINE; 825 return TRACE_TYPE_PARTIAL_LINE;
823 } 826 }
824 827
825 /* Proc */ 828 /* Proc */
826 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { 829 if (flags & TRACE_GRAPH_PRINT_PROC) {
827 ret = print_graph_proc(s, ent->pid); 830 ret = print_graph_proc(s, ent->pid);
828 if (ret == TRACE_TYPE_PARTIAL_LINE) 831 if (ret == TRACE_TYPE_PARTIAL_LINE)
829 return TRACE_TYPE_PARTIAL_LINE; 832 return TRACE_TYPE_PARTIAL_LINE;
@@ -845,7 +848,7 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s,
845 848
846static enum print_line_t 849static enum print_line_t
847print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s, 850print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s,
848 struct trace_iterator *iter) 851 struct trace_iterator *iter, u32 flags)
849{ 852{
850 struct fgraph_data *data = iter->private; 853 struct fgraph_data *data = iter->private;
851 struct ftrace_graph_ent *call = &field->graph_ent; 854 struct ftrace_graph_ent *call = &field->graph_ent;
@@ -853,14 +856,14 @@ print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s,
853 static enum print_line_t ret; 856 static enum print_line_t ret;
854 int cpu = iter->cpu; 857 int cpu = iter->cpu;
855 858
856 if (print_graph_prologue(iter, s, TRACE_GRAPH_ENT, call->func)) 859 if (print_graph_prologue(iter, s, TRACE_GRAPH_ENT, call->func, flags))
857 return TRACE_TYPE_PARTIAL_LINE; 860 return TRACE_TYPE_PARTIAL_LINE;
858 861
859 leaf_ret = get_return_for_leaf(iter, field); 862 leaf_ret = get_return_for_leaf(iter, field);
860 if (leaf_ret) 863 if (leaf_ret)
861 ret = print_graph_entry_leaf(iter, field, leaf_ret, s); 864 ret = print_graph_entry_leaf(iter, field, leaf_ret, s, flags);
862 else 865 else
863 ret = print_graph_entry_nested(iter, field, s, cpu); 866 ret = print_graph_entry_nested(iter, field, s, cpu, flags);
864 867
865 if (data) { 868 if (data) {
866 /* 869 /*
@@ -879,7 +882,8 @@ print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s,
879 882
880static enum print_line_t 883static enum print_line_t
881print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, 884print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
882 struct trace_entry *ent, struct trace_iterator *iter) 885 struct trace_entry *ent, struct trace_iterator *iter,
886 u32 flags)
883{ 887{
884 unsigned long long duration = trace->rettime - trace->calltime; 888 unsigned long long duration = trace->rettime - trace->calltime;
885 struct fgraph_data *data = iter->private; 889 struct fgraph_data *data = iter->private;
@@ -909,16 +913,16 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
909 } 913 }
910 } 914 }
911 915
912 if (print_graph_prologue(iter, s, 0, 0)) 916 if (print_graph_prologue(iter, s, 0, 0, flags))
913 return TRACE_TYPE_PARTIAL_LINE; 917 return TRACE_TYPE_PARTIAL_LINE;
914 918
915 /* Overhead */ 919 /* Overhead */
916 ret = print_graph_overhead(duration, s); 920 ret = print_graph_overhead(duration, s, flags);
917 if (!ret) 921 if (!ret)
918 return TRACE_TYPE_PARTIAL_LINE; 922 return TRACE_TYPE_PARTIAL_LINE;
919 923
920 /* Duration */ 924 /* Duration */
921 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { 925 if (flags & TRACE_GRAPH_PRINT_DURATION) {
922 ret = print_graph_duration(duration, s); 926 ret = print_graph_duration(duration, s);
923 if (ret == TRACE_TYPE_PARTIAL_LINE) 927 if (ret == TRACE_TYPE_PARTIAL_LINE)
924 return TRACE_TYPE_PARTIAL_LINE; 928 return TRACE_TYPE_PARTIAL_LINE;
@@ -948,14 +952,15 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
948 } 952 }
949 953
950 /* Overrun */ 954 /* Overrun */
951 if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERRUN) { 955 if (flags & TRACE_GRAPH_PRINT_OVERRUN) {
952 ret = trace_seq_printf(s, " (Overruns: %lu)\n", 956 ret = trace_seq_printf(s, " (Overruns: %lu)\n",
953 trace->overrun); 957 trace->overrun);
954 if (!ret) 958 if (!ret)
955 return TRACE_TYPE_PARTIAL_LINE; 959 return TRACE_TYPE_PARTIAL_LINE;
956 } 960 }
957 961
958 ret = print_graph_irq(iter, trace->func, TRACE_GRAPH_RET, cpu, pid); 962 ret = print_graph_irq(iter, trace->func, TRACE_GRAPH_RET,
963 cpu, pid, flags);
959 if (ret == TRACE_TYPE_PARTIAL_LINE) 964 if (ret == TRACE_TYPE_PARTIAL_LINE)
960 return TRACE_TYPE_PARTIAL_LINE; 965 return TRACE_TYPE_PARTIAL_LINE;
961 966
@@ -963,8 +968,8 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
963} 968}
964 969
965static enum print_line_t 970static enum print_line_t
966print_graph_comment(struct trace_seq *s, struct trace_entry *ent, 971print_graph_comment(struct trace_seq *s, struct trace_entry *ent,
967 struct trace_iterator *iter) 972 struct trace_iterator *iter, u32 flags)
968{ 973{
969 unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); 974 unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK);
970 struct fgraph_data *data = iter->private; 975 struct fgraph_data *data = iter->private;
@@ -976,16 +981,16 @@ print_graph_comment(struct trace_seq *s, struct trace_entry *ent,
976 if (data) 981 if (data)
977 depth = per_cpu_ptr(data->cpu_data, iter->cpu)->depth; 982 depth = per_cpu_ptr(data->cpu_data, iter->cpu)->depth;
978 983
979 if (print_graph_prologue(iter, s, 0, 0)) 984 if (print_graph_prologue(iter, s, 0, 0, flags))
980 return TRACE_TYPE_PARTIAL_LINE; 985 return TRACE_TYPE_PARTIAL_LINE;
981 986
982 /* No overhead */ 987 /* No overhead */
983 ret = print_graph_overhead(-1, s); 988 ret = print_graph_overhead(-1, s, flags);
984 if (!ret) 989 if (!ret)
985 return TRACE_TYPE_PARTIAL_LINE; 990 return TRACE_TYPE_PARTIAL_LINE;
986 991
987 /* No time */ 992 /* No time */
988 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { 993 if (flags & TRACE_GRAPH_PRINT_DURATION) {
989 ret = trace_seq_printf(s, " | "); 994 ret = trace_seq_printf(s, " | ");
990 if (!ret) 995 if (!ret)
991 return TRACE_TYPE_PARTIAL_LINE; 996 return TRACE_TYPE_PARTIAL_LINE;
@@ -1040,7 +1045,7 @@ print_graph_comment(struct trace_seq *s, struct trace_entry *ent,
1040 1045
1041 1046
1042enum print_line_t 1047enum print_line_t
1043print_graph_function(struct trace_iterator *iter) 1048print_graph_function_flags(struct trace_iterator *iter, u32 flags)
1044{ 1049{
1045 struct ftrace_graph_ent_entry *field; 1050 struct ftrace_graph_ent_entry *field;
1046 struct fgraph_data *data = iter->private; 1051 struct fgraph_data *data = iter->private;
@@ -1061,7 +1066,7 @@ print_graph_function(struct trace_iterator *iter)
1061 if (data && data->failed) { 1066 if (data && data->failed) {
1062 field = &data->ent; 1067 field = &data->ent;
1063 iter->cpu = data->cpu; 1068 iter->cpu = data->cpu;
1064 ret = print_graph_entry(field, s, iter); 1069 ret = print_graph_entry(field, s, iter, flags);
1065 if (ret == TRACE_TYPE_HANDLED && iter->cpu != cpu) { 1070 if (ret == TRACE_TYPE_HANDLED && iter->cpu != cpu) {
1066 per_cpu_ptr(data->cpu_data, iter->cpu)->ignore = 1; 1071 per_cpu_ptr(data->cpu_data, iter->cpu)->ignore = 1;
1067 ret = TRACE_TYPE_NO_CONSUME; 1072 ret = TRACE_TYPE_NO_CONSUME;
@@ -1081,32 +1086,49 @@ print_graph_function(struct trace_iterator *iter)
1081 struct ftrace_graph_ent_entry saved; 1086 struct ftrace_graph_ent_entry saved;
1082 trace_assign_type(field, entry); 1087 trace_assign_type(field, entry);
1083 saved = *field; 1088 saved = *field;
1084 return print_graph_entry(&saved, s, iter); 1089 return print_graph_entry(&saved, s, iter, flags);
1085 } 1090 }
1086 case TRACE_GRAPH_RET: { 1091 case TRACE_GRAPH_RET: {
1087 struct ftrace_graph_ret_entry *field; 1092 struct ftrace_graph_ret_entry *field;
1088 trace_assign_type(field, entry); 1093 trace_assign_type(field, entry);
1089 return print_graph_return(&field->ret, s, entry, iter); 1094 return print_graph_return(&field->ret, s, entry, iter, flags);
1090 } 1095 }
1096 case TRACE_STACK:
1097 case TRACE_FN:
1098 /* dont trace stack and functions as comments */
1099 return TRACE_TYPE_UNHANDLED;
1100
1091 default: 1101 default:
1092 return print_graph_comment(s, entry, iter); 1102 return print_graph_comment(s, entry, iter, flags);
1093 } 1103 }
1094 1104
1095 return TRACE_TYPE_HANDLED; 1105 return TRACE_TYPE_HANDLED;
1096} 1106}
1097 1107
1098static void print_lat_header(struct seq_file *s) 1108static enum print_line_t
1109print_graph_function(struct trace_iterator *iter)
1110{
1111 return print_graph_function_flags(iter, tracer_flags.val);
1112}
1113
1114static enum print_line_t
1115print_graph_function_event(struct trace_iterator *iter, int flags)
1116{
1117 return print_graph_function(iter);
1118}
1119
1120static void print_lat_header(struct seq_file *s, u32 flags)
1099{ 1121{
1100 static const char spaces[] = " " /* 16 spaces */ 1122 static const char spaces[] = " " /* 16 spaces */
1101 " " /* 4 spaces */ 1123 " " /* 4 spaces */
1102 " "; /* 17 spaces */ 1124 " "; /* 17 spaces */
1103 int size = 0; 1125 int size = 0;
1104 1126
1105 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) 1127 if (flags & TRACE_GRAPH_PRINT_ABS_TIME)
1106 size += 16; 1128 size += 16;
1107 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) 1129 if (flags & TRACE_GRAPH_PRINT_CPU)
1108 size += 4; 1130 size += 4;
1109 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) 1131 if (flags & TRACE_GRAPH_PRINT_PROC)
1110 size += 17; 1132 size += 17;
1111 1133
1112 seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces); 1134 seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces);
@@ -1117,43 +1139,48 @@ static void print_lat_header(struct seq_file *s)
1117 seq_printf(s, "#%.*s|||| / \n", size, spaces); 1139 seq_printf(s, "#%.*s|||| / \n", size, spaces);
1118} 1140}
1119 1141
1120static void print_graph_headers(struct seq_file *s) 1142void print_graph_headers_flags(struct seq_file *s, u32 flags)
1121{ 1143{
1122 int lat = trace_flags & TRACE_ITER_LATENCY_FMT; 1144 int lat = trace_flags & TRACE_ITER_LATENCY_FMT;
1123 1145
1124 if (lat) 1146 if (lat)
1125 print_lat_header(s); 1147 print_lat_header(s, flags);
1126 1148
1127 /* 1st line */ 1149 /* 1st line */
1128 seq_printf(s, "#"); 1150 seq_printf(s, "#");
1129 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) 1151 if (flags & TRACE_GRAPH_PRINT_ABS_TIME)
1130 seq_printf(s, " TIME "); 1152 seq_printf(s, " TIME ");
1131 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) 1153 if (flags & TRACE_GRAPH_PRINT_CPU)
1132 seq_printf(s, " CPU"); 1154 seq_printf(s, " CPU");
1133 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) 1155 if (flags & TRACE_GRAPH_PRINT_PROC)
1134 seq_printf(s, " TASK/PID "); 1156 seq_printf(s, " TASK/PID ");
1135 if (lat) 1157 if (lat)
1136 seq_printf(s, "|||||"); 1158 seq_printf(s, "|||||");
1137 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) 1159 if (flags & TRACE_GRAPH_PRINT_DURATION)
1138 seq_printf(s, " DURATION "); 1160 seq_printf(s, " DURATION ");
1139 seq_printf(s, " FUNCTION CALLS\n"); 1161 seq_printf(s, " FUNCTION CALLS\n");
1140 1162
1141 /* 2nd line */ 1163 /* 2nd line */
1142 seq_printf(s, "#"); 1164 seq_printf(s, "#");
1143 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) 1165 if (flags & TRACE_GRAPH_PRINT_ABS_TIME)
1144 seq_printf(s, " | "); 1166 seq_printf(s, " | ");
1145 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) 1167 if (flags & TRACE_GRAPH_PRINT_CPU)
1146 seq_printf(s, " | "); 1168 seq_printf(s, " | ");
1147 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) 1169 if (flags & TRACE_GRAPH_PRINT_PROC)
1148 seq_printf(s, " | | "); 1170 seq_printf(s, " | | ");
1149 if (lat) 1171 if (lat)
1150 seq_printf(s, "|||||"); 1172 seq_printf(s, "|||||");
1151 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) 1173 if (flags & TRACE_GRAPH_PRINT_DURATION)
1152 seq_printf(s, " | | "); 1174 seq_printf(s, " | | ");
1153 seq_printf(s, " | | | |\n"); 1175 seq_printf(s, " | | | |\n");
1154} 1176}
1155 1177
1156static void graph_trace_open(struct trace_iterator *iter) 1178void print_graph_headers(struct seq_file *s)
1179{
1180 print_graph_headers_flags(s, tracer_flags.val);
1181}
1182
1183void graph_trace_open(struct trace_iterator *iter)
1157{ 1184{
1158 /* pid and depth on the last trace processed */ 1185 /* pid and depth on the last trace processed */
1159 struct fgraph_data *data; 1186 struct fgraph_data *data;
@@ -1188,7 +1215,7 @@ static void graph_trace_open(struct trace_iterator *iter)
1188 pr_warning("function graph tracer: not enough memory\n"); 1215 pr_warning("function graph tracer: not enough memory\n");
1189} 1216}
1190 1217
1191static void graph_trace_close(struct trace_iterator *iter) 1218void graph_trace_close(struct trace_iterator *iter)
1192{ 1219{
1193 struct fgraph_data *data = iter->private; 1220 struct fgraph_data *data = iter->private;
1194 1221
@@ -1198,6 +1225,16 @@ static void graph_trace_close(struct trace_iterator *iter)
1198 } 1225 }
1199} 1226}
1200 1227
1228static struct trace_event graph_trace_entry_event = {
1229 .type = TRACE_GRAPH_ENT,
1230 .trace = print_graph_function_event,
1231};
1232
1233static struct trace_event graph_trace_ret_event = {
1234 .type = TRACE_GRAPH_RET,
1235 .trace = print_graph_function_event,
1236};
1237
1201static struct tracer graph_trace __read_mostly = { 1238static struct tracer graph_trace __read_mostly = {
1202 .name = "function_graph", 1239 .name = "function_graph",
1203 .open = graph_trace_open, 1240 .open = graph_trace_open,
@@ -1219,6 +1256,16 @@ static __init int init_graph_trace(void)
1219{ 1256{
1220 max_bytes_for_cpu = snprintf(NULL, 0, "%d", nr_cpu_ids - 1); 1257 max_bytes_for_cpu = snprintf(NULL, 0, "%d", nr_cpu_ids - 1);
1221 1258
1259 if (!register_ftrace_event(&graph_trace_entry_event)) {
1260 pr_warning("Warning: could not register graph trace events\n");
1261 return 1;
1262 }
1263
1264 if (!register_ftrace_event(&graph_trace_ret_event)) {
1265 pr_warning("Warning: could not register graph trace events\n");
1266 return 1;
1267 }
1268
1222 return register_tracer(&graph_trace); 1269 return register_tracer(&graph_trace);
1223} 1270}
1224 1271
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c
index 2974bc7538c7..6fd486e0cef4 100644
--- a/kernel/trace/trace_irqsoff.c
+++ b/kernel/trace/trace_irqsoff.c
@@ -34,6 +34,9 @@ static int trace_type __read_mostly;
34 34
35static int save_lat_flag; 35static int save_lat_flag;
36 36
37static void stop_irqsoff_tracer(struct trace_array *tr, int graph);
38static int start_irqsoff_tracer(struct trace_array *tr, int graph);
39
37#ifdef CONFIG_PREEMPT_TRACER 40#ifdef CONFIG_PREEMPT_TRACER
38static inline int 41static inline int
39preempt_trace(void) 42preempt_trace(void)
@@ -55,6 +58,23 @@ irq_trace(void)
55# define irq_trace() (0) 58# define irq_trace() (0)
56#endif 59#endif
57 60
61#define TRACE_DISPLAY_GRAPH 1
62
63static struct tracer_opt trace_opts[] = {
64#ifdef CONFIG_FUNCTION_GRAPH_TRACER
65 /* display latency trace as call graph */
66 { TRACER_OPT(display-graph, TRACE_DISPLAY_GRAPH) },
67#endif
68 { } /* Empty entry */
69};
70
71static struct tracer_flags tracer_flags = {
72 .val = 0,
73 .opts = trace_opts,
74};
75
76#define is_graph() (tracer_flags.val & TRACE_DISPLAY_GRAPH)
77
58/* 78/*
59 * Sequence count - we record it when starting a measurement and 79 * Sequence count - we record it when starting a measurement and
60 * skip the latency if the sequence has changed - some other section 80 * skip the latency if the sequence has changed - some other section
@@ -108,6 +128,202 @@ static struct ftrace_ops trace_ops __read_mostly =
108}; 128};
109#endif /* CONFIG_FUNCTION_TRACER */ 129#endif /* CONFIG_FUNCTION_TRACER */
110 130
131#ifdef CONFIG_FUNCTION_GRAPH_TRACER
132static int irqsoff_set_flag(u32 old_flags, u32 bit, int set)
133{
134 int cpu;
135
136 if (!(bit & TRACE_DISPLAY_GRAPH))
137 return -EINVAL;
138
139 if (!(is_graph() ^ set))
140 return 0;
141
142 stop_irqsoff_tracer(irqsoff_trace, !set);
143
144 for_each_possible_cpu(cpu)
145 per_cpu(tracing_cpu, cpu) = 0;
146
147 tracing_max_latency = 0;
148 tracing_reset_online_cpus(irqsoff_trace);
149
150 return start_irqsoff_tracer(irqsoff_trace, set);
151}
152
153static int irqsoff_graph_entry(struct ftrace_graph_ent *trace)
154{
155 struct trace_array *tr = irqsoff_trace;
156 struct trace_array_cpu *data;
157 unsigned long flags;
158 long disabled;
159 int ret;
160 int cpu;
161 int pc;
162
163 cpu = raw_smp_processor_id();
164 if (likely(!per_cpu(tracing_cpu, cpu)))
165 return 0;
166
167 local_save_flags(flags);
168 /* slight chance to get a false positive on tracing_cpu */
169 if (!irqs_disabled_flags(flags))
170 return 0;
171
172 data = tr->data[cpu];
173 disabled = atomic_inc_return(&data->disabled);
174
175 if (likely(disabled == 1)) {
176 pc = preempt_count();
177 ret = __trace_graph_entry(tr, trace, flags, pc);
178 } else
179 ret = 0;
180
181 atomic_dec(&data->disabled);
182 return ret;
183}
184
185static void irqsoff_graph_return(struct ftrace_graph_ret *trace)
186{
187 struct trace_array *tr = irqsoff_trace;
188 struct trace_array_cpu *data;
189 unsigned long flags;
190 long disabled;
191 int cpu;
192 int pc;
193
194 cpu = raw_smp_processor_id();
195 if (likely(!per_cpu(tracing_cpu, cpu)))
196 return;
197
198 local_save_flags(flags);
199 /* slight chance to get a false positive on tracing_cpu */
200 if (!irqs_disabled_flags(flags))
201 return;
202
203 data = tr->data[cpu];
204 disabled = atomic_inc_return(&data->disabled);
205
206 if (likely(disabled == 1)) {
207 pc = preempt_count();
208 __trace_graph_return(tr, trace, flags, pc);
209 }
210
211 atomic_dec(&data->disabled);
212}
213
214static void irqsoff_trace_open(struct trace_iterator *iter)
215{
216 if (is_graph())
217 graph_trace_open(iter);
218
219}
220
221static void irqsoff_trace_close(struct trace_iterator *iter)
222{
223 if (iter->private)
224 graph_trace_close(iter);
225}
226
227#define GRAPH_TRACER_FLAGS (TRACE_GRAPH_PRINT_CPU | \
228 TRACE_GRAPH_PRINT_PROC)
229
230static enum print_line_t irqsoff_print_line(struct trace_iterator *iter)
231{
232 u32 flags = GRAPH_TRACER_FLAGS;
233
234 if (trace_flags & TRACE_ITER_LATENCY_FMT)
235 flags |= TRACE_GRAPH_PRINT_DURATION;
236 else
237 flags |= TRACE_GRAPH_PRINT_ABS_TIME;
238
239 /*
240 * In graph mode call the graph tracer output function,
241 * otherwise go with the TRACE_FN event handler
242 */
243 if (is_graph())
244 return print_graph_function_flags(iter, flags);
245
246 return TRACE_TYPE_UNHANDLED;
247}
248
249static void irqsoff_print_header(struct seq_file *s)
250{
251 if (is_graph()) {
252 struct trace_iterator *iter = s->private;
253 u32 flags = GRAPH_TRACER_FLAGS;
254
255 if (trace_flags & TRACE_ITER_LATENCY_FMT) {
256 /* print nothing if the buffers are empty */
257 if (trace_empty(iter))
258 return;
259
260 print_trace_header(s, iter);
261 flags |= TRACE_GRAPH_PRINT_DURATION;
262 } else
263 flags |= TRACE_GRAPH_PRINT_ABS_TIME;
264
265 print_graph_headers_flags(s, flags);
266 } else
267 trace_default_header(s);
268}
269
270static void
271trace_graph_function(struct trace_array *tr,
272 unsigned long ip, unsigned long flags, int pc)
273{
274 u64 time = trace_clock_local();
275 struct ftrace_graph_ent ent = {
276 .func = ip,
277 .depth = 0,
278 };
279 struct ftrace_graph_ret ret = {
280 .func = ip,
281 .depth = 0,
282 .calltime = time,
283 .rettime = time,
284 };
285
286 __trace_graph_entry(tr, &ent, flags, pc);
287 __trace_graph_return(tr, &ret, flags, pc);
288}
289
290static void
291__trace_function(struct trace_array *tr,
292 unsigned long ip, unsigned long parent_ip,
293 unsigned long flags, int pc)
294{
295 if (!is_graph())
296 trace_function(tr, ip, parent_ip, flags, pc);
297 else {
298 trace_graph_function(tr, parent_ip, flags, pc);
299 trace_graph_function(tr, ip, flags, pc);
300 }
301}
302
303#else
304#define __trace_function trace_function
305
306static int irqsoff_set_flag(u32 old_flags, u32 bit, int set)
307{
308 return -EINVAL;
309}
310
311static int irqsoff_graph_entry(struct ftrace_graph_ent *trace)
312{
313 return -1;
314}
315
316static enum print_line_t irqsoff_print_line(struct trace_iterator *iter)
317{
318 return TRACE_TYPE_UNHANDLED;
319}
320
321static void irqsoff_graph_return(struct ftrace_graph_ret *trace) { }
322static void irqsoff_print_header(struct seq_file *s) { }
323static void irqsoff_trace_open(struct trace_iterator *iter) { }
324static void irqsoff_trace_close(struct trace_iterator *iter) { }
325#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
326
111/* 327/*
112 * Should this new latency be reported/recorded? 328 * Should this new latency be reported/recorded?
113 */ 329 */
@@ -150,7 +366,7 @@ check_critical_timing(struct trace_array *tr,
150 if (!report_latency(delta)) 366 if (!report_latency(delta))
151 goto out_unlock; 367 goto out_unlock;
152 368
153 trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); 369 __trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc);
154 /* Skip 5 functions to get to the irq/preempt enable function */ 370 /* Skip 5 functions to get to the irq/preempt enable function */
155 __trace_stack(tr, flags, 5, pc); 371 __trace_stack(tr, flags, 5, pc);
156 372
@@ -172,7 +388,7 @@ out_unlock:
172out: 388out:
173 data->critical_sequence = max_sequence; 389 data->critical_sequence = max_sequence;
174 data->preempt_timestamp = ftrace_now(cpu); 390 data->preempt_timestamp = ftrace_now(cpu);
175 trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); 391 __trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc);
176} 392}
177 393
178static inline void 394static inline void
@@ -204,7 +420,7 @@ start_critical_timing(unsigned long ip, unsigned long parent_ip)
204 420
205 local_save_flags(flags); 421 local_save_flags(flags);
206 422
207 trace_function(tr, ip, parent_ip, flags, preempt_count()); 423 __trace_function(tr, ip, parent_ip, flags, preempt_count());
208 424
209 per_cpu(tracing_cpu, cpu) = 1; 425 per_cpu(tracing_cpu, cpu) = 1;
210 426
@@ -238,7 +454,7 @@ stop_critical_timing(unsigned long ip, unsigned long parent_ip)
238 atomic_inc(&data->disabled); 454 atomic_inc(&data->disabled);
239 455
240 local_save_flags(flags); 456 local_save_flags(flags);
241 trace_function(tr, ip, parent_ip, flags, preempt_count()); 457 __trace_function(tr, ip, parent_ip, flags, preempt_count());
242 check_critical_timing(tr, data, parent_ip ? : ip, cpu); 458 check_critical_timing(tr, data, parent_ip ? : ip, cpu);
243 data->critical_start = 0; 459 data->critical_start = 0;
244 atomic_dec(&data->disabled); 460 atomic_dec(&data->disabled);
@@ -347,19 +563,32 @@ void trace_preempt_off(unsigned long a0, unsigned long a1)
347} 563}
348#endif /* CONFIG_PREEMPT_TRACER */ 564#endif /* CONFIG_PREEMPT_TRACER */
349 565
350static void start_irqsoff_tracer(struct trace_array *tr) 566static int start_irqsoff_tracer(struct trace_array *tr, int graph)
351{ 567{
352 register_ftrace_function(&trace_ops); 568 int ret = 0;
353 if (tracing_is_enabled()) 569
570 if (!graph)
571 ret = register_ftrace_function(&trace_ops);
572 else
573 ret = register_ftrace_graph(&irqsoff_graph_return,
574 &irqsoff_graph_entry);
575
576 if (!ret && tracing_is_enabled())
354 tracer_enabled = 1; 577 tracer_enabled = 1;
355 else 578 else
356 tracer_enabled = 0; 579 tracer_enabled = 0;
580
581 return ret;
357} 582}
358 583
359static void stop_irqsoff_tracer(struct trace_array *tr) 584static void stop_irqsoff_tracer(struct trace_array *tr, int graph)
360{ 585{
361 tracer_enabled = 0; 586 tracer_enabled = 0;
362 unregister_ftrace_function(&trace_ops); 587
588 if (!graph)
589 unregister_ftrace_function(&trace_ops);
590 else
591 unregister_ftrace_graph();
363} 592}
364 593
365static void __irqsoff_tracer_init(struct trace_array *tr) 594static void __irqsoff_tracer_init(struct trace_array *tr)
@@ -372,12 +601,14 @@ static void __irqsoff_tracer_init(struct trace_array *tr)
372 /* make sure that the tracer is visible */ 601 /* make sure that the tracer is visible */
373 smp_wmb(); 602 smp_wmb();
374 tracing_reset_online_cpus(tr); 603 tracing_reset_online_cpus(tr);
375 start_irqsoff_tracer(tr); 604
605 if (start_irqsoff_tracer(tr, is_graph()))
606 printk(KERN_ERR "failed to start irqsoff tracer\n");
376} 607}
377 608
378static void irqsoff_tracer_reset(struct trace_array *tr) 609static void irqsoff_tracer_reset(struct trace_array *tr)
379{ 610{
380 stop_irqsoff_tracer(tr); 611 stop_irqsoff_tracer(tr, is_graph());
381 612
382 if (!save_lat_flag) 613 if (!save_lat_flag)
383 trace_flags &= ~TRACE_ITER_LATENCY_FMT; 614 trace_flags &= ~TRACE_ITER_LATENCY_FMT;
@@ -409,9 +640,15 @@ static struct tracer irqsoff_tracer __read_mostly =
409 .start = irqsoff_tracer_start, 640 .start = irqsoff_tracer_start,
410 .stop = irqsoff_tracer_stop, 641 .stop = irqsoff_tracer_stop,
411 .print_max = 1, 642 .print_max = 1,
643 .print_header = irqsoff_print_header,
644 .print_line = irqsoff_print_line,
645 .flags = &tracer_flags,
646 .set_flag = irqsoff_set_flag,
412#ifdef CONFIG_FTRACE_SELFTEST 647#ifdef CONFIG_FTRACE_SELFTEST
413 .selftest = trace_selftest_startup_irqsoff, 648 .selftest = trace_selftest_startup_irqsoff,
414#endif 649#endif
650 .open = irqsoff_trace_open,
651 .close = irqsoff_trace_close,
415}; 652};
416# define register_irqsoff(trace) register_tracer(&trace) 653# define register_irqsoff(trace) register_tracer(&trace)
417#else 654#else
@@ -435,9 +672,15 @@ static struct tracer preemptoff_tracer __read_mostly =
435 .start = irqsoff_tracer_start, 672 .start = irqsoff_tracer_start,
436 .stop = irqsoff_tracer_stop, 673 .stop = irqsoff_tracer_stop,
437 .print_max = 1, 674 .print_max = 1,
675 .print_header = irqsoff_print_header,
676 .print_line = irqsoff_print_line,
677 .flags = &tracer_flags,
678 .set_flag = irqsoff_set_flag,
438#ifdef CONFIG_FTRACE_SELFTEST 679#ifdef CONFIG_FTRACE_SELFTEST
439 .selftest = trace_selftest_startup_preemptoff, 680 .selftest = trace_selftest_startup_preemptoff,
440#endif 681#endif
682 .open = irqsoff_trace_open,
683 .close = irqsoff_trace_close,
441}; 684};
442# define register_preemptoff(trace) register_tracer(&trace) 685# define register_preemptoff(trace) register_tracer(&trace)
443#else 686#else
@@ -463,9 +706,15 @@ static struct tracer preemptirqsoff_tracer __read_mostly =
463 .start = irqsoff_tracer_start, 706 .start = irqsoff_tracer_start,
464 .stop = irqsoff_tracer_stop, 707 .stop = irqsoff_tracer_stop,
465 .print_max = 1, 708 .print_max = 1,
709 .print_header = irqsoff_print_header,
710 .print_line = irqsoff_print_line,
711 .flags = &tracer_flags,
712 .set_flag = irqsoff_set_flag,
466#ifdef CONFIG_FTRACE_SELFTEST 713#ifdef CONFIG_FTRACE_SELFTEST
467 .selftest = trace_selftest_startup_preemptirqsoff, 714 .selftest = trace_selftest_startup_preemptirqsoff,
468#endif 715#endif
716 .open = irqsoff_trace_open,
717 .close = irqsoff_trace_close,
469}; 718};
470 719
471# define register_preemptirqsoff(trace) register_tracer(&trace) 720# define register_preemptirqsoff(trace) register_tracer(&trace)
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c
index 8e46b3323cdc..2404c129a8c9 100644
--- a/kernel/trace/trace_output.c
+++ b/kernel/trace/trace_output.c
@@ -253,7 +253,7 @@ void *trace_seq_reserve(struct trace_seq *s, size_t len)
253 void *ret; 253 void *ret;
254 254
255 if (s->full) 255 if (s->full)
256 return 0; 256 return NULL;
257 257
258 if (len > ((PAGE_SIZE - 1) - s->len)) { 258 if (len > ((PAGE_SIZE - 1) - s->len)) {
259 s->full = 1; 259 s->full = 1;
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c
index 5fca0f51fde4..a55fccfede5d 100644
--- a/kernel/trace/trace_sched_switch.c
+++ b/kernel/trace/trace_sched_switch.c
@@ -50,8 +50,7 @@ tracing_sched_switch_trace(struct trace_array *tr,
50} 50}
51 51
52static void 52static void
53probe_sched_switch(struct rq *__rq, struct task_struct *prev, 53probe_sched_switch(struct task_struct *prev, struct task_struct *next)
54 struct task_struct *next)
55{ 54{
56 struct trace_array_cpu *data; 55 struct trace_array_cpu *data;
57 unsigned long flags; 56 unsigned long flags;
@@ -109,7 +108,7 @@ tracing_sched_wakeup_trace(struct trace_array *tr,
109} 108}
110 109
111static void 110static void
112probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) 111probe_sched_wakeup(struct task_struct *wakee, int success)
113{ 112{
114 struct trace_array_cpu *data; 113 struct trace_array_cpu *data;
115 unsigned long flags; 114 unsigned long flags;
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index 0271742abb8d..8052446ceeaa 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -107,8 +107,7 @@ static void probe_wakeup_migrate_task(struct task_struct *task, int cpu)
107} 107}
108 108
109static void notrace 109static void notrace
110probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, 110probe_wakeup_sched_switch(struct task_struct *prev, struct task_struct *next)
111 struct task_struct *next)
112{ 111{
113 struct trace_array_cpu *data; 112 struct trace_array_cpu *data;
114 cycle_t T0, T1, delta; 113 cycle_t T0, T1, delta;
@@ -200,7 +199,7 @@ static void wakeup_reset(struct trace_array *tr)
200} 199}
201 200
202static void 201static void
203probe_wakeup(struct rq *rq, struct task_struct *p, int success) 202probe_wakeup(struct task_struct *p, int success)
204{ 203{
205 struct trace_array_cpu *data; 204 struct trace_array_cpu *data;
206 int cpu = smp_processor_id(); 205 int cpu = smp_processor_id();
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
index 1cc9858258b3..250e7f9bd2f0 100644
--- a/kernel/trace/trace_selftest.c
+++ b/kernel/trace/trace_selftest.c
@@ -29,7 +29,7 @@ static int trace_test_buffer_cpu(struct trace_array *tr, int cpu)
29 struct trace_entry *entry; 29 struct trace_entry *entry;
30 unsigned int loops = 0; 30 unsigned int loops = 0;
31 31
32 while ((event = ring_buffer_consume(tr->buffer, cpu, NULL))) { 32 while ((event = ring_buffer_consume(tr->buffer, cpu, NULL, NULL))) {
33 entry = ring_buffer_event_data(event); 33 entry = ring_buffer_event_data(event);
34 34
35 /* 35 /*
@@ -255,7 +255,8 @@ trace_selftest_startup_function(struct tracer *trace, struct trace_array *tr)
255/* Maximum number of functions to trace before diagnosing a hang */ 255/* Maximum number of functions to trace before diagnosing a hang */
256#define GRAPH_MAX_FUNC_TEST 100000000 256#define GRAPH_MAX_FUNC_TEST 100000000
257 257
258static void __ftrace_dump(bool disable_tracing); 258static void
259__ftrace_dump(bool disable_tracing, enum ftrace_dump_mode oops_dump_mode);
259static unsigned int graph_hang_thresh; 260static unsigned int graph_hang_thresh;
260 261
261/* Wrap the real function entry probe to avoid possible hanging */ 262/* Wrap the real function entry probe to avoid possible hanging */
@@ -266,7 +267,7 @@ static int trace_graph_entry_watchdog(struct ftrace_graph_ent *trace)
266 ftrace_graph_stop(); 267 ftrace_graph_stop();
267 printk(KERN_WARNING "BUG: Function graph tracer hang!\n"); 268 printk(KERN_WARNING "BUG: Function graph tracer hang!\n");
268 if (ftrace_dump_on_oops) 269 if (ftrace_dump_on_oops)
269 __ftrace_dump(false); 270 __ftrace_dump(false, DUMP_ALL);
270 return 0; 271 return 0;
271 } 272 }
272 273
diff --git a/kernel/user.c b/kernel/user.c
index 766467b3bcb7..7e72614b736d 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -16,7 +16,6 @@
16#include <linux/interrupt.h> 16#include <linux/interrupt.h>
17#include <linux/module.h> 17#include <linux/module.h>
18#include <linux/user_namespace.h> 18#include <linux/user_namespace.h>
19#include "cred-internals.h"
20 19
21struct user_namespace init_user_ns = { 20struct user_namespace init_user_ns = {
22 .kref = { 21 .kref = {
@@ -137,9 +136,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
137 struct hlist_head *hashent = uidhashentry(ns, uid); 136 struct hlist_head *hashent = uidhashentry(ns, uid);
138 struct user_struct *up, *new; 137 struct user_struct *up, *new;
139 138
140 /* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
141 * atomic.
142 */
143 spin_lock_irq(&uidhash_lock); 139 spin_lock_irq(&uidhash_lock);
144 up = uid_hash_find(uid, hashent); 140 up = uid_hash_find(uid, hashent);
145 spin_unlock_irq(&uidhash_lock); 141 spin_unlock_irq(&uidhash_lock);
@@ -161,11 +157,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
161 spin_lock_irq(&uidhash_lock); 157 spin_lock_irq(&uidhash_lock);
162 up = uid_hash_find(uid, hashent); 158 up = uid_hash_find(uid, hashent);
163 if (up) { 159 if (up) {
164 /* This case is not possible when CONFIG_USER_SCHED
165 * is defined, since we serialize alloc_uid() using
166 * uids_mutex. Hence no need to call
167 * sched_destroy_user() or remove_user_sysfs_dir().
168 */
169 key_put(new->uid_keyring); 160 key_put(new->uid_keyring);
170 key_put(new->session_keyring); 161 key_put(new->session_keyring);
171 kmem_cache_free(uid_cachep, new); 162 kmem_cache_free(uid_cachep, new);
@@ -178,8 +169,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
178 169
179 return up; 170 return up;
180 171
181 put_user_ns(new->user_ns);
182 kmem_cache_free(uid_cachep, new);
183out_unlock: 172out_unlock:
184 return NULL; 173 return NULL;
185} 174}