aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-10-12 06:35:23 -0400
committerIngo Molnar <mingo@elte.hu>2008-10-12 06:37:32 -0400
commit365d46dc9be9b3c833990a06f3994b1987eda578 (patch)
tree9397d1304144a288411f2118707f44ff5e862fa6 /kernel
parent5dc64a3442b98eaa0e3730c35fcf00cf962a93e7 (diff)
parentfd048088306656824958e7783ffcee27e241b361 (diff)
Merge branch 'linus' into x86/xen
Conflicts: arch/x86/kernel/cpu/common.c arch/x86/kernel/process_64.c arch/x86/xen/enlighten.c
Diffstat (limited to 'kernel')
-rw-r--r--kernel/cgroup.c5
-rw-r--r--kernel/cpu.c24
-rw-r--r--kernel/cpuset.c2
-rw-r--r--kernel/dma-coherent.c2
-rw-r--r--kernel/exit.c12
-rw-r--r--kernel/hrtimer.c95
-rw-r--r--kernel/irq/manage.c9
-rw-r--r--kernel/kexec.c8
-rw-r--r--kernel/kgdb.c13
-rw-r--r--kernel/posix-timers.c2
-rw-r--r--kernel/rcuclassic.c337
-rw-r--r--kernel/rcupreempt.c8
-rw-r--r--kernel/rcupreempt_trace.c7
-rw-r--r--kernel/resource.c68
-rw-r--r--kernel/sched.c383
-rw-r--r--kernel/sched_fair.c234
-rw-r--r--kernel/sched_features.h1
-rw-r--r--kernel/sched_idletask.c6
-rw-r--r--kernel/sched_rt.c57
-rw-r--r--kernel/time/tick-broadcast.c6
-rw-r--r--kernel/time/tick-sched.c13
-rw-r--r--kernel/trace/trace_sysprof.c2
-rw-r--r--kernel/user.c4
23 files changed, 846 insertions, 452 deletions
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 13932abde159..a0123d75ec9a 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -2738,14 +2738,15 @@ void cgroup_fork_callbacks(struct task_struct *child)
2738 */ 2738 */
2739void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new) 2739void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2740{ 2740{
2741 struct cgroup *oldcgrp, *newcgrp; 2741 struct cgroup *oldcgrp, *newcgrp = NULL;
2742 2742
2743 if (need_mm_owner_callback) { 2743 if (need_mm_owner_callback) {
2744 int i; 2744 int i;
2745 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { 2745 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2746 struct cgroup_subsys *ss = subsys[i]; 2746 struct cgroup_subsys *ss = subsys[i];
2747 oldcgrp = task_cgroup(old, ss->subsys_id); 2747 oldcgrp = task_cgroup(old, ss->subsys_id);
2748 newcgrp = task_cgroup(new, ss->subsys_id); 2748 if (new)
2749 newcgrp = task_cgroup(new, ss->subsys_id);
2749 if (oldcgrp == newcgrp) 2750 if (oldcgrp == newcgrp)
2750 continue; 2751 continue;
2751 if (ss->mm_owner_changed) 2752 if (ss->mm_owner_changed)
diff --git a/kernel/cpu.c b/kernel/cpu.c
index f17e9854c246..86d49045daed 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -199,13 +199,14 @@ static int __ref take_cpu_down(void *_param)
199 struct take_cpu_down_param *param = _param; 199 struct take_cpu_down_param *param = _param;
200 int err; 200 int err;
201 201
202 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
203 param->hcpu);
204 /* Ensure this CPU doesn't handle any more interrupts. */ 202 /* Ensure this CPU doesn't handle any more interrupts. */
205 err = __cpu_disable(); 203 err = __cpu_disable();
206 if (err < 0) 204 if (err < 0)
207 return err; 205 return err;
208 206
207 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
208 param->hcpu);
209
209 /* Force idle task to run as soon as we yield: it should 210 /* Force idle task to run as soon as we yield: it should
210 immediately notice cpu is offline and die quickly. */ 211 immediately notice cpu is offline and die quickly. */
211 sched_idle_next(); 212 sched_idle_next();
@@ -453,6 +454,25 @@ out:
453} 454}
454#endif /* CONFIG_PM_SLEEP_SMP */ 455#endif /* CONFIG_PM_SLEEP_SMP */
455 456
457/**
458 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
459 * @cpu: cpu that just started
460 *
461 * This function calls the cpu_chain notifiers with CPU_STARTING.
462 * It must be called by the arch code on the new cpu, before the new cpu
463 * enables interrupts and before the "boot" cpu returns from __cpu_up().
464 */
465void notify_cpu_starting(unsigned int cpu)
466{
467 unsigned long val = CPU_STARTING;
468
469#ifdef CONFIG_PM_SLEEP_SMP
470 if (cpu_isset(cpu, frozen_cpus))
471 val = CPU_STARTING_FROZEN;
472#endif /* CONFIG_PM_SLEEP_SMP */
473 raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu);
474}
475
456#endif /* CONFIG_SMP */ 476#endif /* CONFIG_SMP */
457 477
458/* 478/*
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 827cd9adccb2..eab7bd6628e0 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -1921,7 +1921,7 @@ static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1921 * that has tasks along with an empty 'mems'. But if we did see such 1921 * that has tasks along with an empty 'mems'. But if we did see such
1922 * a cpuset, we'd handle it just like we do if its 'cpus' was empty. 1922 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1923 */ 1923 */
1924static void scan_for_empty_cpusets(const struct cpuset *root) 1924static void scan_for_empty_cpusets(struct cpuset *root)
1925{ 1925{
1926 LIST_HEAD(queue); 1926 LIST_HEAD(queue);
1927 struct cpuset *cp; /* scans cpusets being updated */ 1927 struct cpuset *cp; /* scans cpusets being updated */
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c
index c1d4d5b4c61c..f013a0c2e111 100644
--- a/kernel/dma-coherent.c
+++ b/kernel/dma-coherent.c
@@ -124,6 +124,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size,
124 } 124 }
125 return (mem != NULL); 125 return (mem != NULL);
126} 126}
127EXPORT_SYMBOL(dma_alloc_from_coherent);
127 128
128/** 129/**
129 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool 130 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
@@ -151,3 +152,4 @@ int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
151 } 152 }
152 return 0; 153 return 0;
153} 154}
155EXPORT_SYMBOL(dma_release_from_coherent);
diff --git a/kernel/exit.c b/kernel/exit.c
index 16395644a98f..85a83c831856 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -583,8 +583,6 @@ mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
583 * If there are other users of the mm and the owner (us) is exiting 583 * If there are other users of the mm and the owner (us) is exiting
584 * we need to find a new owner to take on the responsibility. 584 * we need to find a new owner to take on the responsibility.
585 */ 585 */
586 if (!mm)
587 return 0;
588 if (atomic_read(&mm->mm_users) <= 1) 586 if (atomic_read(&mm->mm_users) <= 1)
589 return 0; 587 return 0;
590 if (mm->owner != p) 588 if (mm->owner != p)
@@ -627,6 +625,16 @@ retry:
627 } while_each_thread(g, c); 625 } while_each_thread(g, c);
628 626
629 read_unlock(&tasklist_lock); 627 read_unlock(&tasklist_lock);
628 /*
629 * We found no owner yet mm_users > 1: this implies that we are
630 * most likely racing with swapoff (try_to_unuse()) or /proc or
631 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
632 * so that subsystems can understand the callback and take action.
633 */
634 down_write(&mm->mmap_sem);
635 cgroup_mm_owner_callbacks(mm->owner, NULL);
636 mm->owner = NULL;
637 up_write(&mm->mmap_sem);
630 return; 638 return;
631 639
632assign_new_owner: 640assign_new_owner:
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index b8e4dce80a74..cdec83e722fa 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -672,13 +672,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
672 */ 672 */
673 BUG_ON(timer->function(timer) != HRTIMER_NORESTART); 673 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
674 return 1; 674 return 1;
675 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: 675 case HRTIMER_CB_IRQSAFE_PERCPU:
676 case HRTIMER_CB_IRQSAFE_UNLOCKED:
676 /* 677 /*
677 * This is solely for the sched tick emulation with 678 * This is solely for the sched tick emulation with
678 * dynamic tick support to ensure that we do not 679 * dynamic tick support to ensure that we do not
679 * restart the tick right on the edge and end up with 680 * restart the tick right on the edge and end up with
680 * the tick timer in the softirq ! The calling site 681 * the tick timer in the softirq ! The calling site
681 * takes care of this. 682 * takes care of this. Also used for hrtimer sleeper !
682 */ 683 */
683 debug_hrtimer_deactivate(timer); 684 debug_hrtimer_deactivate(timer);
684 return 1; 685 return 1;
@@ -1245,7 +1246,8 @@ static void __run_hrtimer(struct hrtimer *timer)
1245 timer_stats_account_hrtimer(timer); 1246 timer_stats_account_hrtimer(timer);
1246 1247
1247 fn = timer->function; 1248 fn = timer->function;
1248 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) { 1249 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
1250 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
1249 /* 1251 /*
1250 * Used for scheduler timers, avoid lock inversion with 1252 * Used for scheduler timers, avoid lock inversion with
1251 * rq->lock and tasklist_lock. 1253 * rq->lock and tasklist_lock.
@@ -1452,7 +1454,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1452 sl->timer.function = hrtimer_wakeup; 1454 sl->timer.function = hrtimer_wakeup;
1453 sl->task = task; 1455 sl->task = task;
1454#ifdef CONFIG_HIGH_RES_TIMERS 1456#ifdef CONFIG_HIGH_RES_TIMERS
1455 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 1457 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
1456#endif 1458#endif
1457} 1459}
1458 1460
@@ -1591,29 +1593,95 @@ static void __cpuinit init_hrtimers_cpu(int cpu)
1591 1593
1592#ifdef CONFIG_HOTPLUG_CPU 1594#ifdef CONFIG_HOTPLUG_CPU
1593 1595
1594static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1596static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1595 struct hrtimer_clock_base *new_base) 1597 struct hrtimer_clock_base *new_base, int dcpu)
1596{ 1598{
1597 struct hrtimer *timer; 1599 struct hrtimer *timer;
1598 struct rb_node *node; 1600 struct rb_node *node;
1601 int raise = 0;
1599 1602
1600 while ((node = rb_first(&old_base->active))) { 1603 while ((node = rb_first(&old_base->active))) {
1601 timer = rb_entry(node, struct hrtimer, node); 1604 timer = rb_entry(node, struct hrtimer, node);
1602 BUG_ON(hrtimer_callback_running(timer)); 1605 BUG_ON(hrtimer_callback_running(timer));
1603 debug_hrtimer_deactivate(timer); 1606 debug_hrtimer_deactivate(timer);
1604 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); 1607
1608 /*
1609 * Should not happen. Per CPU timers should be
1610 * canceled _before_ the migration code is called
1611 */
1612 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
1613 __remove_hrtimer(timer, old_base,
1614 HRTIMER_STATE_INACTIVE, 0);
1615 WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
1616 timer, timer->function, dcpu);
1617 continue;
1618 }
1619
1620 /*
1621 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1622 * timer could be seen as !active and just vanish away
1623 * under us on another CPU
1624 */
1625 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1605 timer->base = new_base; 1626 timer->base = new_base;
1606 /* 1627 /*
1607 * Enqueue the timer. Allow reprogramming of the event device 1628 * Enqueue the timer. Allow reprogramming of the event device
1608 */ 1629 */
1609 enqueue_hrtimer(timer, new_base, 1); 1630 enqueue_hrtimer(timer, new_base, 1);
1631
1632#ifdef CONFIG_HIGH_RES_TIMERS
1633 /*
1634 * Happens with high res enabled when the timer was
1635 * already expired and the callback mode is
1636 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
1637 * enqueue code does not move them to the soft irq
1638 * pending list for performance/latency reasons, but
1639 * in the migration state, we need to do that
1640 * otherwise we end up with a stale timer.
1641 */
1642 if (timer->state == HRTIMER_STATE_MIGRATE) {
1643 timer->state = HRTIMER_STATE_PENDING;
1644 list_add_tail(&timer->cb_entry,
1645 &new_base->cpu_base->cb_pending);
1646 raise = 1;
1647 }
1648#endif
1649 /* Clear the migration state bit */
1650 timer->state &= ~HRTIMER_STATE_MIGRATE;
1651 }
1652 return raise;
1653}
1654
1655#ifdef CONFIG_HIGH_RES_TIMERS
1656static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1657 struct hrtimer_cpu_base *new_base)
1658{
1659 struct hrtimer *timer;
1660 int raise = 0;
1661
1662 while (!list_empty(&old_base->cb_pending)) {
1663 timer = list_entry(old_base->cb_pending.next,
1664 struct hrtimer, cb_entry);
1665
1666 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
1667 timer->base = &new_base->clock_base[timer->base->index];
1668 list_add_tail(&timer->cb_entry, &new_base->cb_pending);
1669 raise = 1;
1610 } 1670 }
1671 return raise;
1672}
1673#else
1674static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1675 struct hrtimer_cpu_base *new_base)
1676{
1677 return 0;
1611} 1678}
1679#endif
1612 1680
1613static void migrate_hrtimers(int cpu) 1681static void migrate_hrtimers(int cpu)
1614{ 1682{
1615 struct hrtimer_cpu_base *old_base, *new_base; 1683 struct hrtimer_cpu_base *old_base, *new_base;
1616 int i; 1684 int i, raise = 0;
1617 1685
1618 BUG_ON(cpu_online(cpu)); 1686 BUG_ON(cpu_online(cpu));
1619 old_base = &per_cpu(hrtimer_bases, cpu); 1687 old_base = &per_cpu(hrtimer_bases, cpu);
@@ -1626,14 +1694,21 @@ static void migrate_hrtimers(int cpu)
1626 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1694 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1627 1695
1628 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1696 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629 migrate_hrtimer_list(&old_base->clock_base[i], 1697 if (migrate_hrtimer_list(&old_base->clock_base[i],
1630 &new_base->clock_base[i]); 1698 &new_base->clock_base[i], cpu))
1699 raise = 1;
1631 } 1700 }
1632 1701
1702 if (migrate_hrtimer_pending(old_base, new_base))
1703 raise = 1;
1704
1633 spin_unlock(&old_base->lock); 1705 spin_unlock(&old_base->lock);
1634 spin_unlock(&new_base->lock); 1706 spin_unlock(&new_base->lock);
1635 local_irq_enable(); 1707 local_irq_enable();
1636 put_cpu_var(hrtimer_bases); 1708 put_cpu_var(hrtimer_bases);
1709
1710 if (raise)
1711 hrtimer_raise_softirq();
1637} 1712}
1638#endif /* CONFIG_HOTPLUG_CPU */ 1713#endif /* CONFIG_HOTPLUG_CPU */
1639 1714
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 0314074fa232..60c49e324390 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -89,7 +89,14 @@ int irq_set_affinity(unsigned int irq, cpumask_t cpumask)
89 set_balance_irq_affinity(irq, cpumask); 89 set_balance_irq_affinity(irq, cpumask);
90 90
91#ifdef CONFIG_GENERIC_PENDING_IRQ 91#ifdef CONFIG_GENERIC_PENDING_IRQ
92 set_pending_irq(irq, cpumask); 92 if (desc->status & IRQ_MOVE_PCNTXT) {
93 unsigned long flags;
94
95 spin_lock_irqsave(&desc->lock, flags);
96 desc->chip->set_affinity(irq, cpumask);
97 spin_unlock_irqrestore(&desc->lock, flags);
98 } else
99 set_pending_irq(irq, cpumask);
93#else 100#else
94 desc->affinity = cpumask; 101 desc->affinity = cpumask;
95 desc->chip->set_affinity(irq, cpumask); 102 desc->chip->set_affinity(irq, cpumask);
diff --git a/kernel/kexec.c b/kernel/kexec.c
index 59f3f0df35d4..aef265325cd3 100644
--- a/kernel/kexec.c
+++ b/kernel/kexec.c
@@ -753,8 +753,14 @@ static struct page *kimage_alloc_page(struct kimage *image,
753 *old = addr | (*old & ~PAGE_MASK); 753 *old = addr | (*old & ~PAGE_MASK);
754 754
755 /* The old page I have found cannot be a 755 /* The old page I have found cannot be a
756 * destination page, so return it. 756 * destination page, so return it if it's
757 * gfp_flags honor the ones passed in.
757 */ 758 */
759 if (!(gfp_mask & __GFP_HIGHMEM) &&
760 PageHighMem(old_page)) {
761 kimage_free_pages(old_page);
762 continue;
763 }
758 addr = old_addr; 764 addr = old_addr;
759 page = old_page; 765 page = old_page;
760 break; 766 break;
diff --git a/kernel/kgdb.c b/kernel/kgdb.c
index eaa21fc9ad1d..e4dcfb2272a4 100644
--- a/kernel/kgdb.c
+++ b/kernel/kgdb.c
@@ -488,7 +488,7 @@ static int write_mem_msg(int binary)
488 if (err) 488 if (err)
489 return err; 489 return err;
490 if (CACHE_FLUSH_IS_SAFE) 490 if (CACHE_FLUSH_IS_SAFE)
491 flush_icache_range(addr, addr + length + 1); 491 flush_icache_range(addr, addr + length);
492 return 0; 492 return 0;
493 } 493 }
494 494
@@ -590,6 +590,7 @@ static void kgdb_wait(struct pt_regs *regs)
590 590
591 /* Signal the primary CPU that we are done: */ 591 /* Signal the primary CPU that we are done: */
592 atomic_set(&cpu_in_kgdb[cpu], 0); 592 atomic_set(&cpu_in_kgdb[cpu], 0);
593 touch_softlockup_watchdog();
593 clocksource_touch_watchdog(); 594 clocksource_touch_watchdog();
594 local_irq_restore(flags); 595 local_irq_restore(flags);
595} 596}
@@ -1432,6 +1433,7 @@ acquirelock:
1432 atomic_read(&kgdb_cpu_doing_single_step) != cpu) { 1433 atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1433 1434
1434 atomic_set(&kgdb_active, -1); 1435 atomic_set(&kgdb_active, -1);
1436 touch_softlockup_watchdog();
1435 clocksource_touch_watchdog(); 1437 clocksource_touch_watchdog();
1436 local_irq_restore(flags); 1438 local_irq_restore(flags);
1437 1439
@@ -1462,7 +1464,7 @@ acquirelock:
1462 * Get the passive CPU lock which will hold all the non-primary 1464 * Get the passive CPU lock which will hold all the non-primary
1463 * CPU in a spin state while the debugger is active 1465 * CPU in a spin state while the debugger is active
1464 */ 1466 */
1465 if (!kgdb_single_step || !kgdb_contthread) { 1467 if (!kgdb_single_step) {
1466 for (i = 0; i < NR_CPUS; i++) 1468 for (i = 0; i < NR_CPUS; i++)
1467 atomic_set(&passive_cpu_wait[i], 1); 1469 atomic_set(&passive_cpu_wait[i], 1);
1468 } 1470 }
@@ -1475,7 +1477,7 @@ acquirelock:
1475 1477
1476#ifdef CONFIG_SMP 1478#ifdef CONFIG_SMP
1477 /* Signal the other CPUs to enter kgdb_wait() */ 1479 /* Signal the other CPUs to enter kgdb_wait() */
1478 if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup) 1480 if ((!kgdb_single_step) && kgdb_do_roundup)
1479 kgdb_roundup_cpus(flags); 1481 kgdb_roundup_cpus(flags);
1480#endif 1482#endif
1481 1483
@@ -1494,7 +1496,7 @@ acquirelock:
1494 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code); 1496 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1495 kgdb_deactivate_sw_breakpoints(); 1497 kgdb_deactivate_sw_breakpoints();
1496 kgdb_single_step = 0; 1498 kgdb_single_step = 0;
1497 kgdb_contthread = NULL; 1499 kgdb_contthread = current;
1498 exception_level = 0; 1500 exception_level = 0;
1499 1501
1500 /* Talk to debugger with gdbserial protocol */ 1502 /* Talk to debugger with gdbserial protocol */
@@ -1508,7 +1510,7 @@ acquirelock:
1508 kgdb_info[ks->cpu].task = NULL; 1510 kgdb_info[ks->cpu].task = NULL;
1509 atomic_set(&cpu_in_kgdb[ks->cpu], 0); 1511 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1510 1512
1511 if (!kgdb_single_step || !kgdb_contthread) { 1513 if (!kgdb_single_step) {
1512 for (i = NR_CPUS-1; i >= 0; i--) 1514 for (i = NR_CPUS-1; i >= 0; i--)
1513 atomic_set(&passive_cpu_wait[i], 0); 1515 atomic_set(&passive_cpu_wait[i], 0);
1514 /* 1516 /*
@@ -1524,6 +1526,7 @@ acquirelock:
1524kgdb_restore: 1526kgdb_restore:
1525 /* Free kgdb_active */ 1527 /* Free kgdb_active */
1526 atomic_set(&kgdb_active, -1); 1528 atomic_set(&kgdb_active, -1);
1529 touch_softlockup_watchdog();
1527 clocksource_touch_watchdog(); 1530 clocksource_touch_watchdog();
1528 local_irq_restore(flags); 1531 local_irq_restore(flags);
1529 1532
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index e36d5798cbff..5131e5471169 100644
--- a/kernel/posix-timers.c
+++ b/kernel/posix-timers.c
@@ -441,7 +441,7 @@ static struct k_itimer * alloc_posix_timer(void)
441 return tmr; 441 return tmr;
442 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 442 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
443 kmem_cache_free(posix_timers_cache, tmr); 443 kmem_cache_free(posix_timers_cache, tmr);
444 tmr = NULL; 444 return NULL;
445 } 445 }
446 memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); 446 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
447 return tmr; 447 return tmr;
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c
index aad93cdc9f68..37f72e551542 100644
--- a/kernel/rcuclassic.c
+++ b/kernel/rcuclassic.c
@@ -47,6 +47,7 @@
47#include <linux/notifier.h> 47#include <linux/notifier.h>
48#include <linux/cpu.h> 48#include <linux/cpu.h>
49#include <linux/mutex.h> 49#include <linux/mutex.h>
50#include <linux/time.h>
50 51
51#ifdef CONFIG_DEBUG_LOCK_ALLOC 52#ifdef CONFIG_DEBUG_LOCK_ALLOC
52static struct lock_class_key rcu_lock_key; 53static struct lock_class_key rcu_lock_key;
@@ -60,12 +61,14 @@ EXPORT_SYMBOL_GPL(rcu_lock_map);
60static struct rcu_ctrlblk rcu_ctrlblk = { 61static struct rcu_ctrlblk rcu_ctrlblk = {
61 .cur = -300, 62 .cur = -300,
62 .completed = -300, 63 .completed = -300,
64 .pending = -300,
63 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock), 65 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock),
64 .cpumask = CPU_MASK_NONE, 66 .cpumask = CPU_MASK_NONE,
65}; 67};
66static struct rcu_ctrlblk rcu_bh_ctrlblk = { 68static struct rcu_ctrlblk rcu_bh_ctrlblk = {
67 .cur = -300, 69 .cur = -300,
68 .completed = -300, 70 .completed = -300,
71 .pending = -300,
69 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock), 72 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock),
70 .cpumask = CPU_MASK_NONE, 73 .cpumask = CPU_MASK_NONE,
71}; 74};
@@ -83,7 +86,10 @@ static void force_quiescent_state(struct rcu_data *rdp,
83{ 86{
84 int cpu; 87 int cpu;
85 cpumask_t cpumask; 88 cpumask_t cpumask;
89 unsigned long flags;
90
86 set_need_resched(); 91 set_need_resched();
92 spin_lock_irqsave(&rcp->lock, flags);
87 if (unlikely(!rcp->signaled)) { 93 if (unlikely(!rcp->signaled)) {
88 rcp->signaled = 1; 94 rcp->signaled = 1;
89 /* 95 /*
@@ -109,6 +115,7 @@ static void force_quiescent_state(struct rcu_data *rdp,
109 for_each_cpu_mask_nr(cpu, cpumask) 115 for_each_cpu_mask_nr(cpu, cpumask)
110 smp_send_reschedule(cpu); 116 smp_send_reschedule(cpu);
111 } 117 }
118 spin_unlock_irqrestore(&rcp->lock, flags);
112} 119}
113#else 120#else
114static inline void force_quiescent_state(struct rcu_data *rdp, 121static inline void force_quiescent_state(struct rcu_data *rdp,
@@ -118,6 +125,126 @@ static inline void force_quiescent_state(struct rcu_data *rdp,
118} 125}
119#endif 126#endif
120 127
128static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp,
129 struct rcu_data *rdp)
130{
131 long batch;
132
133 head->next = NULL;
134 smp_mb(); /* Read of rcu->cur must happen after any change by caller. */
135
136 /*
137 * Determine the batch number of this callback.
138 *
139 * Using ACCESS_ONCE to avoid the following error when gcc eliminates
140 * local variable "batch" and emits codes like this:
141 * 1) rdp->batch = rcp->cur + 1 # gets old value
142 * ......
143 * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value
144 * then [*nxttail[0], *nxttail[1]) may contain callbacks
145 * that batch# = rdp->batch, see the comment of struct rcu_data.
146 */
147 batch = ACCESS_ONCE(rcp->cur) + 1;
148
149 if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) {
150 /* process callbacks */
151 rdp->nxttail[0] = rdp->nxttail[1];
152 rdp->nxttail[1] = rdp->nxttail[2];
153 if (rcu_batch_after(batch - 1, rdp->batch))
154 rdp->nxttail[0] = rdp->nxttail[2];
155 }
156
157 rdp->batch = batch;
158 *rdp->nxttail[2] = head;
159 rdp->nxttail[2] = &head->next;
160
161 if (unlikely(++rdp->qlen > qhimark)) {
162 rdp->blimit = INT_MAX;
163 force_quiescent_state(rdp, &rcu_ctrlblk);
164 }
165}
166
167#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
168
169static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
170{
171 rcp->gp_start = jiffies;
172 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
173}
174
175static void print_other_cpu_stall(struct rcu_ctrlblk *rcp)
176{
177 int cpu;
178 long delta;
179 unsigned long flags;
180
181 /* Only let one CPU complain about others per time interval. */
182
183 spin_lock_irqsave(&rcp->lock, flags);
184 delta = jiffies - rcp->jiffies_stall;
185 if (delta < 2 || rcp->cur != rcp->completed) {
186 spin_unlock_irqrestore(&rcp->lock, flags);
187 return;
188 }
189 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
190 spin_unlock_irqrestore(&rcp->lock, flags);
191
192 /* OK, time to rat on our buddy... */
193
194 printk(KERN_ERR "RCU detected CPU stalls:");
195 for_each_possible_cpu(cpu) {
196 if (cpu_isset(cpu, rcp->cpumask))
197 printk(" %d", cpu);
198 }
199 printk(" (detected by %d, t=%ld jiffies)\n",
200 smp_processor_id(), (long)(jiffies - rcp->gp_start));
201}
202
203static void print_cpu_stall(struct rcu_ctrlblk *rcp)
204{
205 unsigned long flags;
206
207 printk(KERN_ERR "RCU detected CPU %d stall (t=%lu/%lu jiffies)\n",
208 smp_processor_id(), jiffies,
209 jiffies - rcp->gp_start);
210 dump_stack();
211 spin_lock_irqsave(&rcp->lock, flags);
212 if ((long)(jiffies - rcp->jiffies_stall) >= 0)
213 rcp->jiffies_stall =
214 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
215 spin_unlock_irqrestore(&rcp->lock, flags);
216 set_need_resched(); /* kick ourselves to get things going. */
217}
218
219static void check_cpu_stall(struct rcu_ctrlblk *rcp)
220{
221 long delta;
222
223 delta = jiffies - rcp->jiffies_stall;
224 if (cpu_isset(smp_processor_id(), rcp->cpumask) && delta >= 0) {
225
226 /* We haven't checked in, so go dump stack. */
227 print_cpu_stall(rcp);
228
229 } else if (rcp->cur != rcp->completed && delta >= 2) {
230
231 /* They had two seconds to dump stack, so complain. */
232 print_other_cpu_stall(rcp);
233 }
234}
235
236#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
237
238static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
239{
240}
241
242static inline void check_cpu_stall(struct rcu_ctrlblk *rcp)
243{
244}
245
246#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
247
121/** 248/**
122 * call_rcu - Queue an RCU callback for invocation after a grace period. 249 * call_rcu - Queue an RCU callback for invocation after a grace period.
123 * @head: structure to be used for queueing the RCU updates. 250 * @head: structure to be used for queueing the RCU updates.
@@ -133,18 +260,10 @@ void call_rcu(struct rcu_head *head,
133 void (*func)(struct rcu_head *rcu)) 260 void (*func)(struct rcu_head *rcu))
134{ 261{
135 unsigned long flags; 262 unsigned long flags;
136 struct rcu_data *rdp;
137 263
138 head->func = func; 264 head->func = func;
139 head->next = NULL;
140 local_irq_save(flags); 265 local_irq_save(flags);
141 rdp = &__get_cpu_var(rcu_data); 266 __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data));
142 *rdp->nxttail = head;
143 rdp->nxttail = &head->next;
144 if (unlikely(++rdp->qlen > qhimark)) {
145 rdp->blimit = INT_MAX;
146 force_quiescent_state(rdp, &rcu_ctrlblk);
147 }
148 local_irq_restore(flags); 267 local_irq_restore(flags);
149} 268}
150EXPORT_SYMBOL_GPL(call_rcu); 269EXPORT_SYMBOL_GPL(call_rcu);
@@ -169,20 +288,10 @@ void call_rcu_bh(struct rcu_head *head,
169 void (*func)(struct rcu_head *rcu)) 288 void (*func)(struct rcu_head *rcu))
170{ 289{
171 unsigned long flags; 290 unsigned long flags;
172 struct rcu_data *rdp;
173 291
174 head->func = func; 292 head->func = func;
175 head->next = NULL;
176 local_irq_save(flags); 293 local_irq_save(flags);
177 rdp = &__get_cpu_var(rcu_bh_data); 294 __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
178 *rdp->nxttail = head;
179 rdp->nxttail = &head->next;
180
181 if (unlikely(++rdp->qlen > qhimark)) {
182 rdp->blimit = INT_MAX;
183 force_quiescent_state(rdp, &rcu_bh_ctrlblk);
184 }
185
186 local_irq_restore(flags); 295 local_irq_restore(flags);
187} 296}
188EXPORT_SYMBOL_GPL(call_rcu_bh); 297EXPORT_SYMBOL_GPL(call_rcu_bh);
@@ -211,12 +320,6 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
211static inline void raise_rcu_softirq(void) 320static inline void raise_rcu_softirq(void)
212{ 321{
213 raise_softirq(RCU_SOFTIRQ); 322 raise_softirq(RCU_SOFTIRQ);
214 /*
215 * The smp_mb() here is required to ensure that this cpu's
216 * __rcu_process_callbacks() reads the most recently updated
217 * value of rcu->cur.
218 */
219 smp_mb();
220} 323}
221 324
222/* 325/*
@@ -225,6 +328,7 @@ static inline void raise_rcu_softirq(void)
225 */ 328 */
226static void rcu_do_batch(struct rcu_data *rdp) 329static void rcu_do_batch(struct rcu_data *rdp)
227{ 330{
331 unsigned long flags;
228 struct rcu_head *next, *list; 332 struct rcu_head *next, *list;
229 int count = 0; 333 int count = 0;
230 334
@@ -239,9 +343,9 @@ static void rcu_do_batch(struct rcu_data *rdp)
239 } 343 }
240 rdp->donelist = list; 344 rdp->donelist = list;
241 345
242 local_irq_disable(); 346 local_irq_save(flags);
243 rdp->qlen -= count; 347 rdp->qlen -= count;
244 local_irq_enable(); 348 local_irq_restore(flags);
245 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark) 349 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark)
246 rdp->blimit = blimit; 350 rdp->blimit = blimit;
247 351
@@ -269,6 +373,7 @@ static void rcu_do_batch(struct rcu_data *rdp)
269 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace 373 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
270 * period (if necessary). 374 * period (if necessary).
271 */ 375 */
376
272/* 377/*
273 * Register a new batch of callbacks, and start it up if there is currently no 378 * Register a new batch of callbacks, and start it up if there is currently no
274 * active batch and the batch to be registered has not already occurred. 379 * active batch and the batch to be registered has not already occurred.
@@ -276,15 +381,10 @@ static void rcu_do_batch(struct rcu_data *rdp)
276 */ 381 */
277static void rcu_start_batch(struct rcu_ctrlblk *rcp) 382static void rcu_start_batch(struct rcu_ctrlblk *rcp)
278{ 383{
279 if (rcp->next_pending && 384 if (rcp->cur != rcp->pending &&
280 rcp->completed == rcp->cur) { 385 rcp->completed == rcp->cur) {
281 rcp->next_pending = 0;
282 /*
283 * next_pending == 0 must be visible in
284 * __rcu_process_callbacks() before it can see new value of cur.
285 */
286 smp_wmb();
287 rcp->cur++; 386 rcp->cur++;
387 record_gp_stall_check_time(rcp);
288 388
289 /* 389 /*
290 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a 390 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a
@@ -322,6 +422,8 @@ static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
322static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp, 422static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
323 struct rcu_data *rdp) 423 struct rcu_data *rdp)
324{ 424{
425 unsigned long flags;
426
325 if (rdp->quiescbatch != rcp->cur) { 427 if (rdp->quiescbatch != rcp->cur) {
326 /* start new grace period: */ 428 /* start new grace period: */
327 rdp->qs_pending = 1; 429 rdp->qs_pending = 1;
@@ -345,7 +447,7 @@ static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
345 return; 447 return;
346 rdp->qs_pending = 0; 448 rdp->qs_pending = 0;
347 449
348 spin_lock(&rcp->lock); 450 spin_lock_irqsave(&rcp->lock, flags);
349 /* 451 /*
350 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync 452 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
351 * during cpu startup. Ignore the quiescent state. 453 * during cpu startup. Ignore the quiescent state.
@@ -353,7 +455,7 @@ static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
353 if (likely(rdp->quiescbatch == rcp->cur)) 455 if (likely(rdp->quiescbatch == rcp->cur))
354 cpu_quiet(rdp->cpu, rcp); 456 cpu_quiet(rdp->cpu, rcp);
355 457
356 spin_unlock(&rcp->lock); 458 spin_unlock_irqrestore(&rcp->lock, flags);
357} 459}
358 460
359 461
@@ -364,33 +466,38 @@ static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
364 * which is dead and hence not processing interrupts. 466 * which is dead and hence not processing interrupts.
365 */ 467 */
366static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list, 468static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
367 struct rcu_head **tail) 469 struct rcu_head **tail, long batch)
368{ 470{
369 local_irq_disable(); 471 unsigned long flags;
370 *this_rdp->nxttail = list; 472
371 if (list) 473 if (list) {
372 this_rdp->nxttail = tail; 474 local_irq_save(flags);
373 local_irq_enable(); 475 this_rdp->batch = batch;
476 *this_rdp->nxttail[2] = list;
477 this_rdp->nxttail[2] = tail;
478 local_irq_restore(flags);
479 }
374} 480}
375 481
376static void __rcu_offline_cpu(struct rcu_data *this_rdp, 482static void __rcu_offline_cpu(struct rcu_data *this_rdp,
377 struct rcu_ctrlblk *rcp, struct rcu_data *rdp) 483 struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
378{ 484{
379 /* if the cpu going offline owns the grace period 485 unsigned long flags;
486
487 /*
488 * if the cpu going offline owns the grace period
380 * we can block indefinitely waiting for it, so flush 489 * we can block indefinitely waiting for it, so flush
381 * it here 490 * it here
382 */ 491 */
383 spin_lock_bh(&rcp->lock); 492 spin_lock_irqsave(&rcp->lock, flags);
384 if (rcp->cur != rcp->completed) 493 if (rcp->cur != rcp->completed)
385 cpu_quiet(rdp->cpu, rcp); 494 cpu_quiet(rdp->cpu, rcp);
386 spin_unlock_bh(&rcp->lock); 495 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1);
387 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail); 496 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1);
388 rcu_move_batch(this_rdp, rdp->curlist, rdp->curtail); 497 spin_unlock(&rcp->lock);
389 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail);
390 498
391 local_irq_disable();
392 this_rdp->qlen += rdp->qlen; 499 this_rdp->qlen += rdp->qlen;
393 local_irq_enable(); 500 local_irq_restore(flags);
394} 501}
395 502
396static void rcu_offline_cpu(int cpu) 503static void rcu_offline_cpu(int cpu)
@@ -420,38 +527,52 @@ static void rcu_offline_cpu(int cpu)
420static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, 527static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
421 struct rcu_data *rdp) 528 struct rcu_data *rdp)
422{ 529{
423 if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) { 530 unsigned long flags;
424 *rdp->donetail = rdp->curlist; 531 long completed_snap;
425 rdp->donetail = rdp->curtail;
426 rdp->curlist = NULL;
427 rdp->curtail = &rdp->curlist;
428 }
429 532
430 if (rdp->nxtlist && !rdp->curlist) { 533 if (rdp->nxtlist) {
431 local_irq_disable(); 534 local_irq_save(flags);
432 rdp->curlist = rdp->nxtlist; 535 completed_snap = ACCESS_ONCE(rcp->completed);
433 rdp->curtail = rdp->nxttail;
434 rdp->nxtlist = NULL;
435 rdp->nxttail = &rdp->nxtlist;
436 local_irq_enable();
437 536
438 /* 537 /*
439 * start the next batch of callbacks 538 * move the other grace-period-completed entries to
539 * [rdp->nxtlist, *rdp->nxttail[0]) temporarily
440 */ 540 */
541 if (!rcu_batch_before(completed_snap, rdp->batch))
542 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2];
543 else if (!rcu_batch_before(completed_snap, rdp->batch - 1))
544 rdp->nxttail[0] = rdp->nxttail[1];
441 545
442 /* determine batch number */ 546 /*
443 rdp->batch = rcp->cur + 1; 547 * the grace period for entries in
444 /* see the comment and corresponding wmb() in 548 * [rdp->nxtlist, *rdp->nxttail[0]) has completed and
445 * the rcu_start_batch() 549 * move these entries to donelist
446 */ 550 */
447 smp_rmb(); 551 if (rdp->nxttail[0] != &rdp->nxtlist) {
552 *rdp->donetail = rdp->nxtlist;
553 rdp->donetail = rdp->nxttail[0];
554 rdp->nxtlist = *rdp->nxttail[0];
555 *rdp->donetail = NULL;
556
557 if (rdp->nxttail[1] == rdp->nxttail[0])
558 rdp->nxttail[1] = &rdp->nxtlist;
559 if (rdp->nxttail[2] == rdp->nxttail[0])
560 rdp->nxttail[2] = &rdp->nxtlist;
561 rdp->nxttail[0] = &rdp->nxtlist;
562 }
563
564 local_irq_restore(flags);
565
566 if (rcu_batch_after(rdp->batch, rcp->pending)) {
567 unsigned long flags2;
448 568
449 if (!rcp->next_pending) {
450 /* and start it/schedule start if it's a new batch */ 569 /* and start it/schedule start if it's a new batch */
451 spin_lock(&rcp->lock); 570 spin_lock_irqsave(&rcp->lock, flags2);
452 rcp->next_pending = 1; 571 if (rcu_batch_after(rdp->batch, rcp->pending)) {
453 rcu_start_batch(rcp); 572 rcp->pending = rdp->batch;
454 spin_unlock(&rcp->lock); 573 rcu_start_batch(rcp);
574 }
575 spin_unlock_irqrestore(&rcp->lock, flags2);
455 } 576 }
456 } 577 }
457 578
@@ -462,21 +583,53 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
462 583
463static void rcu_process_callbacks(struct softirq_action *unused) 584static void rcu_process_callbacks(struct softirq_action *unused)
464{ 585{
586 /*
587 * Memory references from any prior RCU read-side critical sections
588 * executed by the interrupted code must be see before any RCU
589 * grace-period manupulations below.
590 */
591
592 smp_mb(); /* See above block comment. */
593
465 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data)); 594 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data));
466 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); 595 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
596
597 /*
598 * Memory references from any later RCU read-side critical sections
599 * executed by the interrupted code must be see after any RCU
600 * grace-period manupulations above.
601 */
602
603 smp_mb(); /* See above block comment. */
467} 604}
468 605
469static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp) 606static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
470{ 607{
471 /* This cpu has pending rcu entries and the grace period 608 /* Check for CPU stalls, if enabled. */
472 * for them has completed. 609 check_cpu_stall(rcp);
473 */
474 if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch))
475 return 1;
476 610
477 /* This cpu has no pending entries, but there are new entries */ 611 if (rdp->nxtlist) {
478 if (!rdp->curlist && rdp->nxtlist) 612 long completed_snap = ACCESS_ONCE(rcp->completed);
479 return 1; 613
614 /*
615 * This cpu has pending rcu entries and the grace period
616 * for them has completed.
617 */
618 if (!rcu_batch_before(completed_snap, rdp->batch))
619 return 1;
620 if (!rcu_batch_before(completed_snap, rdp->batch - 1) &&
621 rdp->nxttail[0] != rdp->nxttail[1])
622 return 1;
623 if (rdp->nxttail[0] != &rdp->nxtlist)
624 return 1;
625
626 /*
627 * This cpu has pending rcu entries and the new batch
628 * for then hasn't been started nor scheduled start
629 */
630 if (rcu_batch_after(rdp->batch, rcp->pending))
631 return 1;
632 }
480 633
481 /* This cpu has finished callbacks to invoke */ 634 /* This cpu has finished callbacks to invoke */
482 if (rdp->donelist) 635 if (rdp->donelist)
@@ -512,9 +665,15 @@ int rcu_needs_cpu(int cpu)
512 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 665 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
513 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu); 666 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu);
514 667
515 return (!!rdp->curlist || !!rdp_bh->curlist || rcu_pending(cpu)); 668 return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu);
516} 669}
517 670
671/*
672 * Top-level function driving RCU grace-period detection, normally
673 * invoked from the scheduler-clock interrupt. This function simply
674 * increments counters that are read only from softirq by this same
675 * CPU, so there are no memory barriers required.
676 */
518void rcu_check_callbacks(int cpu, int user) 677void rcu_check_callbacks(int cpu, int user)
519{ 678{
520 if (user || 679 if (user ||
@@ -558,14 +717,17 @@ void rcu_check_callbacks(int cpu, int user)
558static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp, 717static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
559 struct rcu_data *rdp) 718 struct rcu_data *rdp)
560{ 719{
720 unsigned long flags;
721
722 spin_lock_irqsave(&rcp->lock, flags);
561 memset(rdp, 0, sizeof(*rdp)); 723 memset(rdp, 0, sizeof(*rdp));
562 rdp->curtail = &rdp->curlist; 724 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist;
563 rdp->nxttail = &rdp->nxtlist;
564 rdp->donetail = &rdp->donelist; 725 rdp->donetail = &rdp->donelist;
565 rdp->quiescbatch = rcp->completed; 726 rdp->quiescbatch = rcp->completed;
566 rdp->qs_pending = 0; 727 rdp->qs_pending = 0;
567 rdp->cpu = cpu; 728 rdp->cpu = cpu;
568 rdp->blimit = blimit; 729 rdp->blimit = blimit;
730 spin_unlock_irqrestore(&rcp->lock, flags);
569} 731}
570 732
571static void __cpuinit rcu_online_cpu(int cpu) 733static void __cpuinit rcu_online_cpu(int cpu)
@@ -610,6 +772,9 @@ static struct notifier_block __cpuinitdata rcu_nb = {
610 */ 772 */
611void __init __rcu_init(void) 773void __init __rcu_init(void)
612{ 774{
775#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
776 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
777#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
613 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, 778 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
614 (void *)(long)smp_processor_id()); 779 (void *)(long)smp_processor_id());
615 /* Register notifier for non-boot CPUs */ 780 /* Register notifier for non-boot CPUs */
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c
index 27827931ca0d..ca4bbbe04aa4 100644
--- a/kernel/rcupreempt.c
+++ b/kernel/rcupreempt.c
@@ -59,14 +59,6 @@
59#include <linux/rcupreempt_trace.h> 59#include <linux/rcupreempt_trace.h>
60 60
61/* 61/*
62 * Macro that prevents the compiler from reordering accesses, but does
63 * absolutely -nothing- to prevent CPUs from reordering. This is used
64 * only to mediate communication between mainline code and hardware
65 * interrupt and NMI handlers.
66 */
67#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
68
69/*
70 * PREEMPT_RCU data structures. 62 * PREEMPT_RCU data structures.
71 */ 63 */
72 64
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c
index 5edf82c34bbc..35c2d3360ecf 100644
--- a/kernel/rcupreempt_trace.c
+++ b/kernel/rcupreempt_trace.c
@@ -308,11 +308,16 @@ out:
308 308
309static int __init rcupreempt_trace_init(void) 309static int __init rcupreempt_trace_init(void)
310{ 310{
311 int ret;
312
311 mutex_init(&rcupreempt_trace_mutex); 313 mutex_init(&rcupreempt_trace_mutex);
312 rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL); 314 rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL);
313 if (!rcupreempt_trace_buf) 315 if (!rcupreempt_trace_buf)
314 return 1; 316 return 1;
315 return rcupreempt_debugfs_init(); 317 ret = rcupreempt_debugfs_init();
318 if (ret)
319 kfree(rcupreempt_trace_buf);
320 return ret;
316} 321}
317 322
318static void __exit rcupreempt_trace_cleanup(void) 323static void __exit rcupreempt_trace_cleanup(void)
diff --git a/kernel/resource.c b/kernel/resource.c
index 03d796c1b2e9..414d6fc9131e 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -516,6 +516,74 @@ int adjust_resource(struct resource *res, resource_size_t start, resource_size_t
516 return result; 516 return result;
517} 517}
518 518
519static void __init __reserve_region_with_split(struct resource *root,
520 resource_size_t start, resource_size_t end,
521 const char *name)
522{
523 struct resource *parent = root;
524 struct resource *conflict;
525 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
526
527 if (!res)
528 return;
529
530 res->name = name;
531 res->start = start;
532 res->end = end;
533 res->flags = IORESOURCE_BUSY;
534
535 for (;;) {
536 conflict = __request_resource(parent, res);
537 if (!conflict)
538 break;
539 if (conflict != parent) {
540 parent = conflict;
541 if (!(conflict->flags & IORESOURCE_BUSY))
542 continue;
543 }
544
545 /* Uhhuh, that didn't work out.. */
546 kfree(res);
547 res = NULL;
548 break;
549 }
550
551 if (!res) {
552 printk(KERN_DEBUG " __reserve_region_with_split: (%s) [%llx, %llx], res: (%s) [%llx, %llx]\n",
553 conflict->name, conflict->start, conflict->end,
554 name, start, end);
555
556 /* failed, split and try again */
557
558 /* conflict coverred whole area */
559 if (conflict->start <= start && conflict->end >= end)
560 return;
561
562 if (conflict->start > start)
563 __reserve_region_with_split(root, start, conflict->start-1, name);
564 if (!(conflict->flags & IORESOURCE_BUSY)) {
565 resource_size_t common_start, common_end;
566
567 common_start = max(conflict->start, start);
568 common_end = min(conflict->end, end);
569 if (common_start < common_end)
570 __reserve_region_with_split(root, common_start, common_end, name);
571 }
572 if (conflict->end < end)
573 __reserve_region_with_split(root, conflict->end+1, end, name);
574 }
575
576}
577
578void reserve_region_with_split(struct resource *root,
579 resource_size_t start, resource_size_t end,
580 const char *name)
581{
582 write_lock(&resource_lock);
583 __reserve_region_with_split(root, start, end, name);
584 write_unlock(&resource_lock);
585}
586
519EXPORT_SYMBOL(adjust_resource); 587EXPORT_SYMBOL(adjust_resource);
520 588
521/** 589/**
diff --git a/kernel/sched.c b/kernel/sched.c
index 98890807375b..6f230596bd0c 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -201,14 +201,19 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
201 hrtimer_init(&rt_b->rt_period_timer, 201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer; 203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
205}
206
207static inline int rt_bandwidth_enabled(void)
208{
209 return sysctl_sched_rt_runtime >= 0;
205} 210}
206 211
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{ 213{
209 ktime_t now; 214 ktime_t now;
210 215
211 if (rt_b->rt_runtime == RUNTIME_INF) 216 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
212 return; 217 return;
213 218
214 if (hrtimer_active(&rt_b->rt_period_timer)) 219 if (hrtimer_active(&rt_b->rt_period_timer))
@@ -298,9 +303,9 @@ static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 303static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 304static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300#endif /* CONFIG_RT_GROUP_SCHED */ 305#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */ 306#else /* !CONFIG_USER_SCHED */
302#define root_task_group init_task_group 307#define root_task_group init_task_group
303#endif /* CONFIG_FAIR_GROUP_SCHED */ 308#endif /* CONFIG_USER_SCHED */
304 309
305/* task_group_lock serializes add/remove of task groups and also changes to 310/* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares. 311 * a task group's cpu shares.
@@ -604,9 +609,9 @@ struct rq {
604 609
605static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
606 611
607static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
608{ 613{
609 rq->curr->sched_class->check_preempt_curr(rq, p); 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
610} 615}
611 616
612static inline int cpu_of(struct rq *rq) 617static inline int cpu_of(struct rq *rq)
@@ -1087,7 +1092,7 @@ hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 return NOTIFY_DONE; 1092 return NOTIFY_DONE;
1088} 1093}
1089 1094
1090static void init_hrtick(void) 1095static __init void init_hrtick(void)
1091{ 1096{
1092 hotcpu_notifier(hotplug_hrtick, 0); 1097 hotcpu_notifier(hotplug_hrtick, 0);
1093} 1098}
@@ -1102,7 +1107,7 @@ static void hrtick_start(struct rq *rq, u64 delay)
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); 1107 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103} 1108}
1104 1109
1105static void init_hrtick(void) 1110static inline void init_hrtick(void)
1106{ 1111{
1107} 1112}
1108#endif /* CONFIG_SMP */ 1113#endif /* CONFIG_SMP */
@@ -1119,9 +1124,9 @@ static void init_rq_hrtick(struct rq *rq)
1119 1124
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1125 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick; 1126 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 1127 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1123} 1128}
1124#else 1129#else /* CONFIG_SCHED_HRTICK */
1125static inline void hrtick_clear(struct rq *rq) 1130static inline void hrtick_clear(struct rq *rq)
1126{ 1131{
1127} 1132}
@@ -1133,7 +1138,7 @@ static inline void init_rq_hrtick(struct rq *rq)
1133static inline void init_hrtick(void) 1138static inline void init_hrtick(void)
1134{ 1139{
1135} 1140}
1136#endif 1141#endif /* CONFIG_SCHED_HRTICK */
1137 1142
1138/* 1143/*
1139 * resched_task - mark a task 'to be rescheduled now'. 1144 * resched_task - mark a task 'to be rescheduled now'.
@@ -1380,38 +1385,24 @@ static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1380 update_load_sub(&rq->load, load); 1385 update_load_sub(&rq->load, load);
1381} 1386}
1382 1387
1383#ifdef CONFIG_SMP 1388#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1384static unsigned long source_load(int cpu, int type); 1389typedef int (*tg_visitor)(struct task_group *, void *);
1385static unsigned long target_load(int cpu, int type);
1386static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387
1388static unsigned long cpu_avg_load_per_task(int cpu)
1389{
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396}
1397
1398#ifdef CONFIG_FAIR_GROUP_SCHED
1399
1400typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1390
1402/* 1391/*
1403 * Iterate the full tree, calling @down when first entering a node and @up when 1392 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time. 1393 * leaving it for the final time.
1405 */ 1394 */
1406static void 1395static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1407walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408{ 1396{
1409 struct task_group *parent, *child; 1397 struct task_group *parent, *child;
1398 int ret;
1410 1399
1411 rcu_read_lock(); 1400 rcu_read_lock();
1412 parent = &root_task_group; 1401 parent = &root_task_group;
1413down: 1402down:
1414 (*down)(parent, cpu, sd); 1403 ret = (*down)(parent, data);
1404 if (ret)
1405 goto out_unlock;
1415 list_for_each_entry_rcu(child, &parent->children, siblings) { 1406 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child; 1407 parent = child;
1417 goto down; 1408 goto down;
@@ -1419,15 +1410,43 @@ down:
1419up: 1410up:
1420 continue; 1411 continue;
1421 } 1412 }
1422 (*up)(parent, cpu, sd); 1413 ret = (*up)(parent, data);
1414 if (ret)
1415 goto out_unlock;
1423 1416
1424 child = parent; 1417 child = parent;
1425 parent = parent->parent; 1418 parent = parent->parent;
1426 if (parent) 1419 if (parent)
1427 goto up; 1420 goto up;
1421out_unlock:
1428 rcu_read_unlock(); 1422 rcu_read_unlock();
1423
1424 return ret;
1429} 1425}
1430 1426
1427static int tg_nop(struct task_group *tg, void *data)
1428{
1429 return 0;
1430}
1431#endif
1432
1433#ifdef CONFIG_SMP
1434static unsigned long source_load(int cpu, int type);
1435static unsigned long target_load(int cpu, int type);
1436static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1437
1438static unsigned long cpu_avg_load_per_task(int cpu)
1439{
1440 struct rq *rq = cpu_rq(cpu);
1441
1442 if (rq->nr_running)
1443 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1444
1445 return rq->avg_load_per_task;
1446}
1447
1448#ifdef CONFIG_FAIR_GROUP_SCHED
1449
1431static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1450static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432 1451
1433/* 1452/*
@@ -1486,11 +1505,11 @@ __update_group_shares_cpu(struct task_group *tg, int cpu,
1486 * This needs to be done in a bottom-up fashion because the rq weight of a 1505 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups. 1506 * parent group depends on the shares of its child groups.
1488 */ 1507 */
1489static void 1508static int tg_shares_up(struct task_group *tg, void *data)
1490tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491{ 1509{
1492 unsigned long rq_weight = 0; 1510 unsigned long rq_weight = 0;
1493 unsigned long shares = 0; 1511 unsigned long shares = 0;
1512 struct sched_domain *sd = data;
1494 int i; 1513 int i;
1495 1514
1496 for_each_cpu_mask(i, sd->span) { 1515 for_each_cpu_mask(i, sd->span) {
@@ -1515,6 +1534,8 @@ tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1515 __update_group_shares_cpu(tg, i, shares, rq_weight); 1534 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516 spin_unlock_irqrestore(&rq->lock, flags); 1535 spin_unlock_irqrestore(&rq->lock, flags);
1517 } 1536 }
1537
1538 return 0;
1518} 1539}
1519 1540
1520/* 1541/*
@@ -1522,10 +1543,10 @@ tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1522 * This needs to be done in a top-down fashion because the load of a child 1543 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load. 1544 * group is a fraction of its parents load.
1524 */ 1545 */
1525static void 1546static int tg_load_down(struct task_group *tg, void *data)
1526tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527{ 1547{
1528 unsigned long load; 1548 unsigned long load;
1549 long cpu = (long)data;
1529 1550
1530 if (!tg->parent) { 1551 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight; 1552 load = cpu_rq(cpu)->load.weight;
@@ -1536,11 +1557,8 @@ tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1536 } 1557 }
1537 1558
1538 tg->cfs_rq[cpu]->h_load = load; 1559 tg->cfs_rq[cpu]->h_load = load;
1539}
1540 1560
1541static void 1561 return 0;
1542tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543{
1544} 1562}
1545 1563
1546static void update_shares(struct sched_domain *sd) 1564static void update_shares(struct sched_domain *sd)
@@ -1550,7 +1568,7 @@ static void update_shares(struct sched_domain *sd)
1550 1568
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1569 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now; 1570 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd); 1571 walk_tg_tree(tg_nop, tg_shares_up, sd);
1554 } 1572 }
1555} 1573}
1556 1574
@@ -1561,9 +1579,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1561 spin_lock(&rq->lock); 1579 spin_lock(&rq->lock);
1562} 1580}
1563 1581
1564static void update_h_load(int cpu) 1582static void update_h_load(long cpu)
1565{ 1583{
1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL); 1584 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1567} 1585}
1568 1586
1569#else 1587#else
@@ -1921,11 +1939,8 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1921 running = task_running(rq, p); 1939 running = task_running(rq, p);
1922 on_rq = p->se.on_rq; 1940 on_rq = p->se.on_rq;
1923 ncsw = 0; 1941 ncsw = 0;
1924 if (!match_state || p->state == match_state) { 1942 if (!match_state || p->state == match_state)
1925 ncsw = p->nivcsw + p->nvcsw; 1943 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
1929 task_rq_unlock(rq, &flags); 1944 task_rq_unlock(rq, &flags);
1930 1945
1931 /* 1946 /*
@@ -2285,7 +2300,7 @@ out_running:
2285 trace_mark(kernel_sched_wakeup, 2300 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p", 2301 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr); 2302 p->pid, p->state, rq, p, rq->curr);
2288 check_preempt_curr(rq, p); 2303 check_preempt_curr(rq, p, sync);
2289 2304
2290 p->state = TASK_RUNNING; 2305 p->state = TASK_RUNNING;
2291#ifdef CONFIG_SMP 2306#ifdef CONFIG_SMP
@@ -2420,7 +2435,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2420 trace_mark(kernel_sched_wakeup_new, 2435 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p", 2436 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr); 2437 p->pid, p->state, rq, p, rq->curr);
2423 check_preempt_curr(rq, p); 2438 check_preempt_curr(rq, p, 0);
2424#ifdef CONFIG_SMP 2439#ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up) 2440 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p); 2441 p->sched_class->task_wake_up(rq, p);
@@ -2880,7 +2895,7 @@ static void pull_task(struct rq *src_rq, struct task_struct *p,
2880 * Note that idle threads have a prio of MAX_PRIO, for this test 2895 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them. 2896 * to be always true for them.
2882 */ 2897 */
2883 check_preempt_curr(this_rq, p); 2898 check_preempt_curr(this_rq, p, 0);
2884} 2899}
2885 2900
2886/* 2901/*
@@ -4627,6 +4642,15 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4627} 4642}
4628EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 4643EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4629 4644
4645/**
4646 * complete: - signals a single thread waiting on this completion
4647 * @x: holds the state of this particular completion
4648 *
4649 * This will wake up a single thread waiting on this completion. Threads will be
4650 * awakened in the same order in which they were queued.
4651 *
4652 * See also complete_all(), wait_for_completion() and related routines.
4653 */
4630void complete(struct completion *x) 4654void complete(struct completion *x)
4631{ 4655{
4632 unsigned long flags; 4656 unsigned long flags;
@@ -4638,6 +4662,12 @@ void complete(struct completion *x)
4638} 4662}
4639EXPORT_SYMBOL(complete); 4663EXPORT_SYMBOL(complete);
4640 4664
4665/**
4666 * complete_all: - signals all threads waiting on this completion
4667 * @x: holds the state of this particular completion
4668 *
4669 * This will wake up all threads waiting on this particular completion event.
4670 */
4641void complete_all(struct completion *x) 4671void complete_all(struct completion *x)
4642{ 4672{
4643 unsigned long flags; 4673 unsigned long flags;
@@ -4658,10 +4688,7 @@ do_wait_for_common(struct completion *x, long timeout, int state)
4658 wait.flags |= WQ_FLAG_EXCLUSIVE; 4688 wait.flags |= WQ_FLAG_EXCLUSIVE;
4659 __add_wait_queue_tail(&x->wait, &wait); 4689 __add_wait_queue_tail(&x->wait, &wait);
4660 do { 4690 do {
4661 if ((state == TASK_INTERRUPTIBLE && 4691 if (signal_pending_state(state, current)) {
4662 signal_pending(current)) ||
4663 (state == TASK_KILLABLE &&
4664 fatal_signal_pending(current))) {
4665 timeout = -ERESTARTSYS; 4692 timeout = -ERESTARTSYS;
4666 break; 4693 break;
4667 } 4694 }
@@ -4689,12 +4716,31 @@ wait_for_common(struct completion *x, long timeout, int state)
4689 return timeout; 4716 return timeout;
4690} 4717}
4691 4718
4719/**
4720 * wait_for_completion: - waits for completion of a task
4721 * @x: holds the state of this particular completion
4722 *
4723 * This waits to be signaled for completion of a specific task. It is NOT
4724 * interruptible and there is no timeout.
4725 *
4726 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4727 * and interrupt capability. Also see complete().
4728 */
4692void __sched wait_for_completion(struct completion *x) 4729void __sched wait_for_completion(struct completion *x)
4693{ 4730{
4694 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 4731 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4695} 4732}
4696EXPORT_SYMBOL(wait_for_completion); 4733EXPORT_SYMBOL(wait_for_completion);
4697 4734
4735/**
4736 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4737 * @x: holds the state of this particular completion
4738 * @timeout: timeout value in jiffies
4739 *
4740 * This waits for either a completion of a specific task to be signaled or for a
4741 * specified timeout to expire. The timeout is in jiffies. It is not
4742 * interruptible.
4743 */
4698unsigned long __sched 4744unsigned long __sched
4699wait_for_completion_timeout(struct completion *x, unsigned long timeout) 4745wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4700{ 4746{
@@ -4702,6 +4748,13 @@ wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4702} 4748}
4703EXPORT_SYMBOL(wait_for_completion_timeout); 4749EXPORT_SYMBOL(wait_for_completion_timeout);
4704 4750
4751/**
4752 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4753 * @x: holds the state of this particular completion
4754 *
4755 * This waits for completion of a specific task to be signaled. It is
4756 * interruptible.
4757 */
4705int __sched wait_for_completion_interruptible(struct completion *x) 4758int __sched wait_for_completion_interruptible(struct completion *x)
4706{ 4759{
4707 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 4760 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
@@ -4711,6 +4764,14 @@ int __sched wait_for_completion_interruptible(struct completion *x)
4711} 4764}
4712EXPORT_SYMBOL(wait_for_completion_interruptible); 4765EXPORT_SYMBOL(wait_for_completion_interruptible);
4713 4766
4767/**
4768 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4769 * @x: holds the state of this particular completion
4770 * @timeout: timeout value in jiffies
4771 *
4772 * This waits for either a completion of a specific task to be signaled or for a
4773 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4774 */
4714unsigned long __sched 4775unsigned long __sched
4715wait_for_completion_interruptible_timeout(struct completion *x, 4776wait_for_completion_interruptible_timeout(struct completion *x,
4716 unsigned long timeout) 4777 unsigned long timeout)
@@ -4719,6 +4780,13 @@ wait_for_completion_interruptible_timeout(struct completion *x,
4719} 4780}
4720EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 4781EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4721 4782
4783/**
4784 * wait_for_completion_killable: - waits for completion of a task (killable)
4785 * @x: holds the state of this particular completion
4786 *
4787 * This waits to be signaled for completion of a specific task. It can be
4788 * interrupted by a kill signal.
4789 */
4722int __sched wait_for_completion_killable(struct completion *x) 4790int __sched wait_for_completion_killable(struct completion *x)
4723{ 4791{
4724 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 4792 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
@@ -5121,7 +5189,8 @@ recheck:
5121 * Do not allow realtime tasks into groups that have no runtime 5189 * Do not allow realtime tasks into groups that have no runtime
5122 * assigned. 5190 * assigned.
5123 */ 5191 */
5124 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0) 5192 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5193 task_group(p)->rt_bandwidth.rt_runtime == 0)
5125 return -EPERM; 5194 return -EPERM;
5126#endif 5195#endif
5127 5196
@@ -5957,7 +6026,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5957 set_task_cpu(p, dest_cpu); 6026 set_task_cpu(p, dest_cpu);
5958 if (on_rq) { 6027 if (on_rq) {
5959 activate_task(rq_dest, p, 0); 6028 activate_task(rq_dest, p, 0);
5960 check_preempt_curr(rq_dest, p); 6029 check_preempt_curr(rq_dest, p, 0);
5961 } 6030 }
5962done: 6031done:
5963 ret = 1; 6032 ret = 1;
@@ -6282,7 +6351,7 @@ set_table_entry(struct ctl_table *entry,
6282static struct ctl_table * 6351static struct ctl_table *
6283sd_alloc_ctl_domain_table(struct sched_domain *sd) 6352sd_alloc_ctl_domain_table(struct sched_domain *sd)
6284{ 6353{
6285 struct ctl_table *table = sd_alloc_ctl_entry(12); 6354 struct ctl_table *table = sd_alloc_ctl_entry(13);
6286 6355
6287 if (table == NULL) 6356 if (table == NULL)
6288 return NULL; 6357 return NULL;
@@ -6310,7 +6379,9 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
6310 sizeof(int), 0644, proc_dointvec_minmax); 6379 sizeof(int), 0644, proc_dointvec_minmax);
6311 set_table_entry(&table[10], "flags", &sd->flags, 6380 set_table_entry(&table[10], "flags", &sd->flags,
6312 sizeof(int), 0644, proc_dointvec_minmax); 6381 sizeof(int), 0644, proc_dointvec_minmax);
6313 /* &table[11] is terminator */ 6382 set_table_entry(&table[11], "name", sd->name,
6383 CORENAME_MAX_SIZE, 0444, proc_dostring);
6384 /* &table[12] is terminator */
6314 6385
6315 return table; 6386 return table;
6316} 6387}
@@ -7194,13 +7265,21 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7194 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 7265 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7195 */ 7266 */
7196 7267
7268#ifdef CONFIG_SCHED_DEBUG
7269# define SD_INIT_NAME(sd, type) sd->name = #type
7270#else
7271# define SD_INIT_NAME(sd, type) do { } while (0)
7272#endif
7273
7197#define SD_INIT(sd, type) sd_init_##type(sd) 7274#define SD_INIT(sd, type) sd_init_##type(sd)
7275
7198#define SD_INIT_FUNC(type) \ 7276#define SD_INIT_FUNC(type) \
7199static noinline void sd_init_##type(struct sched_domain *sd) \ 7277static noinline void sd_init_##type(struct sched_domain *sd) \
7200{ \ 7278{ \
7201 memset(sd, 0, sizeof(*sd)); \ 7279 memset(sd, 0, sizeof(*sd)); \
7202 *sd = SD_##type##_INIT; \ 7280 *sd = SD_##type##_INIT; \
7203 sd->level = SD_LV_##type; \ 7281 sd->level = SD_LV_##type; \
7282 SD_INIT_NAME(sd, type); \
7204} 7283}
7205 7284
7206SD_INIT_FUNC(CPU) 7285SD_INIT_FUNC(CPU)
@@ -8242,20 +8321,25 @@ void __might_sleep(char *file, int line)
8242#ifdef in_atomic 8321#ifdef in_atomic
8243 static unsigned long prev_jiffy; /* ratelimiting */ 8322 static unsigned long prev_jiffy; /* ratelimiting */
8244 8323
8245 if ((in_atomic() || irqs_disabled()) && 8324 if ((!in_atomic() && !irqs_disabled()) ||
8246 system_state == SYSTEM_RUNNING && !oops_in_progress) { 8325 system_state != SYSTEM_RUNNING || oops_in_progress)
8247 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8326 return;
8248 return; 8327 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8249 prev_jiffy = jiffies; 8328 return;
8250 printk(KERN_ERR "BUG: sleeping function called from invalid" 8329 prev_jiffy = jiffies;
8251 " context at %s:%d\n", file, line); 8330
8252 printk("in_atomic():%d, irqs_disabled():%d\n", 8331 printk(KERN_ERR
8253 in_atomic(), irqs_disabled()); 8332 "BUG: sleeping function called from invalid context at %s:%d\n",
8254 debug_show_held_locks(current); 8333 file, line);
8255 if (irqs_disabled()) 8334 printk(KERN_ERR
8256 print_irqtrace_events(current); 8335 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8257 dump_stack(); 8336 in_atomic(), irqs_disabled(),
8258 } 8337 current->pid, current->comm);
8338
8339 debug_show_held_locks(current);
8340 if (irqs_disabled())
8341 print_irqtrace_events(current);
8342 dump_stack();
8259#endif 8343#endif
8260} 8344}
8261EXPORT_SYMBOL(__might_sleep); 8345EXPORT_SYMBOL(__might_sleep);
@@ -8753,73 +8837,95 @@ static DEFINE_MUTEX(rt_constraints_mutex);
8753static unsigned long to_ratio(u64 period, u64 runtime) 8837static unsigned long to_ratio(u64 period, u64 runtime)
8754{ 8838{
8755 if (runtime == RUNTIME_INF) 8839 if (runtime == RUNTIME_INF)
8756 return 1ULL << 16; 8840 return 1ULL << 20;
8757 8841
8758 return div64_u64(runtime << 16, period); 8842 return div64_u64(runtime << 20, period);
8759} 8843}
8760 8844
8761#ifdef CONFIG_CGROUP_SCHED 8845/* Must be called with tasklist_lock held */
8762static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8846static inline int tg_has_rt_tasks(struct task_group *tg)
8763{ 8847{
8764 struct task_group *tgi, *parent = tg->parent; 8848 struct task_struct *g, *p;
8765 unsigned long total = 0;
8766 8849
8767 if (!parent) { 8850 do_each_thread(g, p) {
8768 if (global_rt_period() < period) 8851 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8769 return 0; 8852 return 1;
8853 } while_each_thread(g, p);
8770 8854
8771 return to_ratio(period, runtime) < 8855 return 0;
8772 to_ratio(global_rt_period(), global_rt_runtime()); 8856}
8773 }
8774 8857
8775 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period) 8858struct rt_schedulable_data {
8776 return 0; 8859 struct task_group *tg;
8860 u64 rt_period;
8861 u64 rt_runtime;
8862};
8777 8863
8778 rcu_read_lock(); 8864static int tg_schedulable(struct task_group *tg, void *data)
8779 list_for_each_entry_rcu(tgi, &parent->children, siblings) { 8865{
8780 if (tgi == tg) 8866 struct rt_schedulable_data *d = data;
8781 continue; 8867 struct task_group *child;
8868 unsigned long total, sum = 0;
8869 u64 period, runtime;
8782 8870
8783 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), 8871 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8784 tgi->rt_bandwidth.rt_runtime); 8872 runtime = tg->rt_bandwidth.rt_runtime;
8873
8874 if (tg == d->tg) {
8875 period = d->rt_period;
8876 runtime = d->rt_runtime;
8785 } 8877 }
8786 rcu_read_unlock();
8787 8878
8788 return total + to_ratio(period, runtime) <= 8879 /*
8789 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period), 8880 * Cannot have more runtime than the period.
8790 parent->rt_bandwidth.rt_runtime); 8881 */
8791} 8882 if (runtime > period && runtime != RUNTIME_INF)
8792#elif defined CONFIG_USER_SCHED 8883 return -EINVAL;
8793static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8794{
8795 struct task_group *tgi;
8796 unsigned long total = 0;
8797 unsigned long global_ratio =
8798 to_ratio(global_rt_period(), global_rt_runtime());
8799 8884
8800 rcu_read_lock(); 8885 /*
8801 list_for_each_entry_rcu(tgi, &task_groups, list) { 8886 * Ensure we don't starve existing RT tasks.
8802 if (tgi == tg) 8887 */
8803 continue; 8888 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8889 return -EBUSY;
8890
8891 total = to_ratio(period, runtime);
8892
8893 /*
8894 * Nobody can have more than the global setting allows.
8895 */
8896 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8897 return -EINVAL;
8898
8899 /*
8900 * The sum of our children's runtime should not exceed our own.
8901 */
8902 list_for_each_entry_rcu(child, &tg->children, siblings) {
8903 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8904 runtime = child->rt_bandwidth.rt_runtime;
8905
8906 if (child == d->tg) {
8907 period = d->rt_period;
8908 runtime = d->rt_runtime;
8909 }
8804 8910
8805 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), 8911 sum += to_ratio(period, runtime);
8806 tgi->rt_bandwidth.rt_runtime);
8807 } 8912 }
8808 rcu_read_unlock();
8809 8913
8810 return total + to_ratio(period, runtime) < global_ratio; 8914 if (sum > total)
8915 return -EINVAL;
8916
8917 return 0;
8811} 8918}
8812#endif
8813 8919
8814/* Must be called with tasklist_lock held */ 8920static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8815static inline int tg_has_rt_tasks(struct task_group *tg)
8816{ 8921{
8817 struct task_struct *g, *p; 8922 struct rt_schedulable_data data = {
8818 do_each_thread(g, p) { 8923 .tg = tg,
8819 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) 8924 .rt_period = period,
8820 return 1; 8925 .rt_runtime = runtime,
8821 } while_each_thread(g, p); 8926 };
8822 return 0; 8927
8928 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8823} 8929}
8824 8930
8825static int tg_set_bandwidth(struct task_group *tg, 8931static int tg_set_bandwidth(struct task_group *tg,
@@ -8829,14 +8935,9 @@ static int tg_set_bandwidth(struct task_group *tg,
8829 8935
8830 mutex_lock(&rt_constraints_mutex); 8936 mutex_lock(&rt_constraints_mutex);
8831 read_lock(&tasklist_lock); 8937 read_lock(&tasklist_lock);
8832 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) { 8938 err = __rt_schedulable(tg, rt_period, rt_runtime);
8833 err = -EBUSY; 8939 if (err)
8834 goto unlock; 8940 goto unlock;
8835 }
8836 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8837 err = -EINVAL;
8838 goto unlock;
8839 }
8840 8941
8841 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8942 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8842 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8943 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
@@ -8905,19 +9006,25 @@ long sched_group_rt_period(struct task_group *tg)
8905 9006
8906static int sched_rt_global_constraints(void) 9007static int sched_rt_global_constraints(void)
8907{ 9008{
8908 struct task_group *tg = &root_task_group; 9009 u64 runtime, period;
8909 u64 rt_runtime, rt_period;
8910 int ret = 0; 9010 int ret = 0;
8911 9011
8912 if (sysctl_sched_rt_period <= 0) 9012 if (sysctl_sched_rt_period <= 0)
8913 return -EINVAL; 9013 return -EINVAL;
8914 9014
8915 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 9015 runtime = global_rt_runtime();
8916 rt_runtime = tg->rt_bandwidth.rt_runtime; 9016 period = global_rt_period();
9017
9018 /*
9019 * Sanity check on the sysctl variables.
9020 */
9021 if (runtime > period && runtime != RUNTIME_INF)
9022 return -EINVAL;
8917 9023
8918 mutex_lock(&rt_constraints_mutex); 9024 mutex_lock(&rt_constraints_mutex);
8919 if (!__rt_schedulable(tg, rt_period, rt_runtime)) 9025 read_lock(&tasklist_lock);
8920 ret = -EINVAL; 9026 ret = __rt_schedulable(NULL, 0, 0);
9027 read_unlock(&tasklist_lock);
8921 mutex_unlock(&rt_constraints_mutex); 9028 mutex_unlock(&rt_constraints_mutex);
8922 9029
8923 return ret; 9030 return ret;
@@ -8991,7 +9098,6 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8991 9098
8992 if (!cgrp->parent) { 9099 if (!cgrp->parent) {
8993 /* This is early initialization for the top cgroup */ 9100 /* This is early initialization for the top cgroup */
8994 init_task_group.css.cgroup = cgrp;
8995 return &init_task_group.css; 9101 return &init_task_group.css;
8996 } 9102 }
8997 9103
@@ -9000,9 +9106,6 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9000 if (IS_ERR(tg)) 9106 if (IS_ERR(tg))
9001 return ERR_PTR(-ENOMEM); 9107 return ERR_PTR(-ENOMEM);
9002 9108
9003 /* Bind the cgroup to task_group object we just created */
9004 tg->css.cgroup = cgrp;
9005
9006 return &tg->css; 9109 return &tg->css;
9007} 9110}
9008 9111
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index fb8994c6d4bb..18fd17172eb6 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -409,64 +409,6 @@ static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
409} 409}
410 410
411/* 411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
429
430 for_each_sched_entity(se) {
431 struct load_weight *se_lw = &se->load;
432 unsigned long rw = cfs_rq_of(se)->load.weight;
433
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
454 rw += lw.weight - se->load.weight;
455 } else
456#endif
457
458 if (se->load.weight < NICE_0_LOAD) {
459 se_lw = &lw;
460 rw += NICE_0_LOAD - se->load.weight;
461 }
462
463 delta = calc_delta_mine(delta, rw, se_lw);
464 }
465
466 return delta;
467}
468
469/*
470 * Update the current task's runtime statistics. Skip current tasks that 412 * Update the current task's runtime statistics. Skip current tasks that
471 * are not in our scheduling class. 413 * are not in our scheduling class.
472 */ 414 */
@@ -586,11 +528,12 @@ account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
586 update_load_add(&cfs_rq->load, se->load.weight); 528 update_load_add(&cfs_rq->load, se->load.weight);
587 if (!parent_entity(se)) 529 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight); 530 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589 if (entity_is_task(se)) 531 if (entity_is_task(se)) {
590 add_cfs_task_weight(cfs_rq, se->load.weight); 532 add_cfs_task_weight(cfs_rq, se->load.weight);
533 list_add(&se->group_node, &cfs_rq->tasks);
534 }
591 cfs_rq->nr_running++; 535 cfs_rq->nr_running++;
592 se->on_rq = 1; 536 se->on_rq = 1;
593 list_add(&se->group_node, &cfs_rq->tasks);
594} 537}
595 538
596static void 539static void
@@ -599,11 +542,12 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 update_load_sub(&cfs_rq->load, se->load.weight); 542 update_load_sub(&cfs_rq->load, se->load.weight);
600 if (!parent_entity(se)) 543 if (!parent_entity(se))
601 dec_cpu_load(rq_of(cfs_rq), se->load.weight); 544 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
602 if (entity_is_task(se)) 545 if (entity_is_task(se)) {
603 add_cfs_task_weight(cfs_rq, -se->load.weight); 546 add_cfs_task_weight(cfs_rq, -se->load.weight);
547 list_del_init(&se->group_node);
548 }
604 cfs_rq->nr_running--; 549 cfs_rq->nr_running--;
605 se->on_rq = 0; 550 se->on_rq = 0;
606 list_del_init(&se->group_node);
607} 551}
608 552
609static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 553static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
@@ -1085,7 +1029,6 @@ static long effective_load(struct task_group *tg, int cpu,
1085 long wl, long wg) 1029 long wl, long wg)
1086{ 1030{
1087 struct sched_entity *se = tg->se[cpu]; 1031 struct sched_entity *se = tg->se[cpu];
1088 long more_w;
1089 1032
1090 if (!tg->parent) 1033 if (!tg->parent)
1091 return wl; 1034 return wl;
@@ -1097,18 +1040,17 @@ static long effective_load(struct task_group *tg, int cpu,
1097 if (!wl && sched_feat(ASYM_EFF_LOAD)) 1040 if (!wl && sched_feat(ASYM_EFF_LOAD))
1098 return wl; 1041 return wl;
1099 1042
1100 /*
1101 * Instead of using this increment, also add the difference
1102 * between when the shares were last updated and now.
1103 */
1104 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1105 wl += more_w;
1106 wg += more_w;
1107
1108 for_each_sched_entity(se) { 1043 for_each_sched_entity(se) {
1109#define D(n) (likely(n) ? (n) : 1)
1110
1111 long S, rw, s, a, b; 1044 long S, rw, s, a, b;
1045 long more_w;
1046
1047 /*
1048 * Instead of using this increment, also add the difference
1049 * between when the shares were last updated and now.
1050 */
1051 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1052 wl += more_w;
1053 wg += more_w;
1112 1054
1113 S = se->my_q->tg->shares; 1055 S = se->my_q->tg->shares;
1114 s = se->my_q->shares; 1056 s = se->my_q->shares;
@@ -1117,7 +1059,11 @@ static long effective_load(struct task_group *tg, int cpu,
1117 a = S*(rw + wl); 1059 a = S*(rw + wl);
1118 b = S*rw + s*wg; 1060 b = S*rw + s*wg;
1119 1061
1120 wl = s*(a-b)/D(b); 1062 wl = s*(a-b);
1063
1064 if (likely(b))
1065 wl /= b;
1066
1121 /* 1067 /*
1122 * Assume the group is already running and will 1068 * Assume the group is already running and will
1123 * thus already be accounted for in the weight. 1069 * thus already be accounted for in the weight.
@@ -1126,7 +1072,6 @@ static long effective_load(struct task_group *tg, int cpu,
1126 * alter the group weight. 1072 * alter the group weight.
1127 */ 1073 */
1128 wg = 0; 1074 wg = 0;
1129#undef D
1130 } 1075 }
1131 1076
1132 return wl; 1077 return wl;
@@ -1143,7 +1088,7 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
1143#endif 1088#endif
1144 1089
1145static int 1090static int
1146wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, 1091wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1147 struct task_struct *p, int prev_cpu, int this_cpu, int sync, 1092 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1148 int idx, unsigned long load, unsigned long this_load, 1093 int idx, unsigned long load, unsigned long this_load,
1149 unsigned int imbalance) 1094 unsigned int imbalance)
@@ -1158,6 +1103,11 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1158 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) 1103 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1159 return 0; 1104 return 0;
1160 1105
1106 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1107 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1108 p->se.avg_overlap < sysctl_sched_migration_cost)
1109 sync = 1;
1110
1161 /* 1111 /*
1162 * If sync wakeup then subtract the (maximum possible) 1112 * If sync wakeup then subtract the (maximum possible)
1163 * effect of the currently running task from the load 1113 * effect of the currently running task from the load
@@ -1182,17 +1132,14 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1182 * a reasonable amount of time then attract this newly 1132 * a reasonable amount of time then attract this newly
1183 * woken task: 1133 * woken task:
1184 */ 1134 */
1185 if (sync && balanced) { 1135 if (sync && balanced)
1186 if (curr->se.avg_overlap < sysctl_sched_migration_cost && 1136 return 1;
1187 p->se.avg_overlap < sysctl_sched_migration_cost)
1188 return 1;
1189 }
1190 1137
1191 schedstat_inc(p, se.nr_wakeups_affine_attempts); 1138 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1192 tl_per_task = cpu_avg_load_per_task(this_cpu); 1139 tl_per_task = cpu_avg_load_per_task(this_cpu);
1193 1140
1194 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || 1141 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1195 balanced) { 1142 tl_per_task)) {
1196 /* 1143 /*
1197 * This domain has SD_WAKE_AFFINE and 1144 * This domain has SD_WAKE_AFFINE and
1198 * p is cache cold in this domain, and 1145 * p is cache cold in this domain, and
@@ -1211,16 +1158,17 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
1211 struct sched_domain *sd, *this_sd = NULL; 1158 struct sched_domain *sd, *this_sd = NULL;
1212 int prev_cpu, this_cpu, new_cpu; 1159 int prev_cpu, this_cpu, new_cpu;
1213 unsigned long load, this_load; 1160 unsigned long load, this_load;
1214 struct rq *rq, *this_rq; 1161 struct rq *this_rq;
1215 unsigned int imbalance; 1162 unsigned int imbalance;
1216 int idx; 1163 int idx;
1217 1164
1218 prev_cpu = task_cpu(p); 1165 prev_cpu = task_cpu(p);
1219 rq = task_rq(p);
1220 this_cpu = smp_processor_id(); 1166 this_cpu = smp_processor_id();
1221 this_rq = cpu_rq(this_cpu); 1167 this_rq = cpu_rq(this_cpu);
1222 new_cpu = prev_cpu; 1168 new_cpu = prev_cpu;
1223 1169
1170 if (prev_cpu == this_cpu)
1171 goto out;
1224 /* 1172 /*
1225 * 'this_sd' is the first domain that both 1173 * 'this_sd' is the first domain that both
1226 * this_cpu and prev_cpu are present in: 1174 * this_cpu and prev_cpu are present in:
@@ -1248,13 +1196,10 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
1248 load = source_load(prev_cpu, idx); 1196 load = source_load(prev_cpu, idx);
1249 this_load = target_load(this_cpu, idx); 1197 this_load = target_load(this_cpu, idx);
1250 1198
1251 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, 1199 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1252 load, this_load, imbalance)) 1200 load, this_load, imbalance))
1253 return this_cpu; 1201 return this_cpu;
1254 1202
1255 if (prev_cpu == this_cpu)
1256 goto out;
1257
1258 /* 1203 /*
1259 * Start passive balancing when half the imbalance_pct 1204 * Start passive balancing when half the imbalance_pct
1260 * limit is reached. 1205 * limit is reached.
@@ -1281,62 +1226,20 @@ static unsigned long wakeup_gran(struct sched_entity *se)
1281 * + nice tasks. 1226 * + nice tasks.
1282 */ 1227 */
1283 if (sched_feat(ASYM_GRAN)) 1228 if (sched_feat(ASYM_GRAN))
1284 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se); 1229 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1285 else
1286 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1287 1230
1288 return gran; 1231 return gran;
1289} 1232}
1290 1233
1291/* 1234/*
1292 * Should 'se' preempt 'curr'.
1293 *
1294 * |s1
1295 * |s2
1296 * |s3
1297 * g
1298 * |<--->|c
1299 *
1300 * w(c, s1) = -1
1301 * w(c, s2) = 0
1302 * w(c, s3) = 1
1303 *
1304 */
1305static int
1306wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1307{
1308 s64 gran, vdiff = curr->vruntime - se->vruntime;
1309
1310 if (vdiff < 0)
1311 return -1;
1312
1313 gran = wakeup_gran(curr);
1314 if (vdiff > gran)
1315 return 1;
1316
1317 return 0;
1318}
1319
1320/* return depth at which a sched entity is present in the hierarchy */
1321static inline int depth_se(struct sched_entity *se)
1322{
1323 int depth = 0;
1324
1325 for_each_sched_entity(se)
1326 depth++;
1327
1328 return depth;
1329}
1330
1331/*
1332 * Preempt the current task with a newly woken task if needed: 1235 * Preempt the current task with a newly woken task if needed:
1333 */ 1236 */
1334static void check_preempt_wakeup(struct rq *rq, struct task_struct *p) 1237static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1335{ 1238{
1336 struct task_struct *curr = rq->curr; 1239 struct task_struct *curr = rq->curr;
1337 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 1240 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1338 struct sched_entity *se = &curr->se, *pse = &p->se; 1241 struct sched_entity *se = &curr->se, *pse = &p->se;
1339 int se_depth, pse_depth; 1242 s64 delta_exec;
1340 1243
1341 if (unlikely(rt_prio(p->prio))) { 1244 if (unlikely(rt_prio(p->prio))) {
1342 update_rq_clock(rq); 1245 update_rq_clock(rq);
@@ -1351,6 +1254,13 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1351 cfs_rq_of(pse)->next = pse; 1254 cfs_rq_of(pse)->next = pse;
1352 1255
1353 /* 1256 /*
1257 * We can come here with TIF_NEED_RESCHED already set from new task
1258 * wake up path.
1259 */
1260 if (test_tsk_need_resched(curr))
1261 return;
1262
1263 /*
1354 * Batch tasks do not preempt (their preemption is driven by 1264 * Batch tasks do not preempt (their preemption is driven by
1355 * the tick): 1265 * the tick):
1356 */ 1266 */
@@ -1360,33 +1270,15 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1360 if (!sched_feat(WAKEUP_PREEMPT)) 1270 if (!sched_feat(WAKEUP_PREEMPT))
1361 return; 1271 return;
1362 1272
1363 /* 1273 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1364 * preemption test can be made between sibling entities who are in the 1274 (se->avg_overlap < sysctl_sched_migration_cost &&
1365 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 1275 pse->avg_overlap < sysctl_sched_migration_cost))) {
1366 * both tasks until we find their ancestors who are siblings of common 1276 resched_task(curr);
1367 * parent. 1277 return;
1368 */
1369
1370 /* First walk up until both entities are at same depth */
1371 se_depth = depth_se(se);
1372 pse_depth = depth_se(pse);
1373
1374 while (se_depth > pse_depth) {
1375 se_depth--;
1376 se = parent_entity(se);
1377 }
1378
1379 while (pse_depth > se_depth) {
1380 pse_depth--;
1381 pse = parent_entity(pse);
1382 }
1383
1384 while (!is_same_group(se, pse)) {
1385 se = parent_entity(se);
1386 pse = parent_entity(pse);
1387 } 1278 }
1388 1279
1389 if (wakeup_preempt_entity(se, pse) == 1) 1280 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1281 if (delta_exec > wakeup_gran(pse))
1390 resched_task(curr); 1282 resched_task(curr);
1391} 1283}
1392 1284
@@ -1445,19 +1337,9 @@ __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1445 if (next == &cfs_rq->tasks) 1337 if (next == &cfs_rq->tasks)
1446 return NULL; 1338 return NULL;
1447 1339
1448 /* Skip over entities that are not tasks */ 1340 se = list_entry(next, struct sched_entity, group_node);
1449 do { 1341 p = task_of(se);
1450 se = list_entry(next, struct sched_entity, group_node); 1342 cfs_rq->balance_iterator = next->next;
1451 next = next->next;
1452 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1453
1454 if (next == &cfs_rq->tasks)
1455 return NULL;
1456
1457 cfs_rq->balance_iterator = next;
1458
1459 if (entity_is_task(se))
1460 p = task_of(se);
1461 1343
1462 return p; 1344 return p;
1463} 1345}
@@ -1507,7 +1389,7 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1507 rcu_read_lock(); 1389 rcu_read_lock();
1508 update_h_load(busiest_cpu); 1390 update_h_load(busiest_cpu);
1509 1391
1510 list_for_each_entry(tg, &task_groups, list) { 1392 list_for_each_entry_rcu(tg, &task_groups, list) {
1511 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; 1393 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1512 unsigned long busiest_h_load = busiest_cfs_rq->h_load; 1394 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1513 unsigned long busiest_weight = busiest_cfs_rq->load.weight; 1395 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
@@ -1620,10 +1502,10 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
1620 * 'current' within the tree based on its new key value. 1502 * 'current' within the tree based on its new key value.
1621 */ 1503 */
1622 swap(curr->vruntime, se->vruntime); 1504 swap(curr->vruntime, se->vruntime);
1505 resched_task(rq->curr);
1623 } 1506 }
1624 1507
1625 enqueue_task_fair(rq, p, 0); 1508 enqueue_task_fair(rq, p, 0);
1626 resched_task(rq->curr);
1627} 1509}
1628 1510
1629/* 1511/*
@@ -1642,7 +1524,7 @@ static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1642 if (p->prio > oldprio) 1524 if (p->prio > oldprio)
1643 resched_task(rq->curr); 1525 resched_task(rq->curr);
1644 } else 1526 } else
1645 check_preempt_curr(rq, p); 1527 check_preempt_curr(rq, p, 0);
1646} 1528}
1647 1529
1648/* 1530/*
@@ -1659,7 +1541,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p,
1659 if (running) 1541 if (running)
1660 resched_task(rq->curr); 1542 resched_task(rq->curr);
1661 else 1543 else
1662 check_preempt_curr(rq, p); 1544 check_preempt_curr(rq, p, 0);
1663} 1545}
1664 1546
1665/* Account for a task changing its policy or group. 1547/* Account for a task changing its policy or group.
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index 9353ca78154e..7c9e8f4a049f 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -11,3 +11,4 @@ SCHED_FEAT(ASYM_GRAN, 1)
11SCHED_FEAT(LB_BIAS, 1) 11SCHED_FEAT(LB_BIAS, 1)
12SCHED_FEAT(LB_WAKEUP_UPDATE, 1) 12SCHED_FEAT(LB_WAKEUP_UPDATE, 1)
13SCHED_FEAT(ASYM_EFF_LOAD, 1) 13SCHED_FEAT(ASYM_EFF_LOAD, 1)
14SCHED_FEAT(WAKEUP_OVERLAP, 0)
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
index 3a4f92dbbe66..dec4ccabe2f5 100644
--- a/kernel/sched_idletask.c
+++ b/kernel/sched_idletask.c
@@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync)
14/* 14/*
15 * Idle tasks are unconditionally rescheduled: 15 * Idle tasks are unconditionally rescheduled:
16 */ 16 */
17static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p) 17static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync)
18{ 18{
19 resched_task(rq->idle); 19 resched_task(rq->idle);
20} 20}
@@ -76,7 +76,7 @@ static void switched_to_idle(struct rq *rq, struct task_struct *p,
76 if (running) 76 if (running)
77 resched_task(rq->curr); 77 resched_task(rq->curr);
78 else 78 else
79 check_preempt_curr(rq, p); 79 check_preempt_curr(rq, p, 0);
80} 80}
81 81
82static void prio_changed_idle(struct rq *rq, struct task_struct *p, 82static void prio_changed_idle(struct rq *rq, struct task_struct *p,
@@ -93,7 +93,7 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p,
93 if (p->prio > oldprio) 93 if (p->prio > oldprio)
94 resched_task(rq->curr); 94 resched_task(rq->curr);
95 } else 95 } else
96 check_preempt_curr(rq, p); 96 check_preempt_curr(rq, p, 0);
97} 97}
98 98
99/* 99/*
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 1113157b2058..cdf5740ab03e 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -102,12 +102,12 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102 102
103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104{ 104{
105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
105 struct sched_rt_entity *rt_se = rt_rq->rt_se; 106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106 107
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { 108 if (rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 109 if (rt_se && !on_rt_rq(rt_se))
109 110 enqueue_rt_entity(rt_se);
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio) 111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr); 112 resched_task(curr);
113 } 113 }
@@ -231,6 +231,9 @@ static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
231#endif /* CONFIG_RT_GROUP_SCHED */ 231#endif /* CONFIG_RT_GROUP_SCHED */
232 232
233#ifdef CONFIG_SMP 233#ifdef CONFIG_SMP
234/*
235 * We ran out of runtime, see if we can borrow some from our neighbours.
236 */
234static int do_balance_runtime(struct rt_rq *rt_rq) 237static int do_balance_runtime(struct rt_rq *rt_rq)
235{ 238{
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
@@ -250,9 +253,18 @@ static int do_balance_runtime(struct rt_rq *rt_rq)
250 continue; 253 continue;
251 254
252 spin_lock(&iter->rt_runtime_lock); 255 spin_lock(&iter->rt_runtime_lock);
256 /*
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
260 */
253 if (iter->rt_runtime == RUNTIME_INF) 261 if (iter->rt_runtime == RUNTIME_INF)
254 goto next; 262 goto next;
255 263
264 /*
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
267 */
256 diff = iter->rt_runtime - iter->rt_time; 268 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) { 269 if (diff > 0) {
258 diff = div_u64((u64)diff, weight); 270 diff = div_u64((u64)diff, weight);
@@ -274,6 +286,9 @@ next:
274 return more; 286 return more;
275} 287}
276 288
289/*
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
291 */
277static void __disable_runtime(struct rq *rq) 292static void __disable_runtime(struct rq *rq)
278{ 293{
279 struct root_domain *rd = rq->rd; 294 struct root_domain *rd = rq->rd;
@@ -289,17 +304,33 @@ static void __disable_runtime(struct rq *rq)
289 304
290 spin_lock(&rt_b->rt_runtime_lock); 305 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock); 306 spin_lock(&rt_rq->rt_runtime_lock);
307 /*
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
311 */
292 if (rt_rq->rt_runtime == RUNTIME_INF || 312 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime) 313 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced; 314 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock); 315 spin_unlock(&rt_rq->rt_runtime_lock);
296 316
317 /*
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
321 */
297 want = rt_b->rt_runtime - rt_rq->rt_runtime; 322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
298 323
324 /*
325 * Greedy reclaim, take back as much as we can.
326 */
299 for_each_cpu_mask(i, rd->span) { 327 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff; 329 s64 diff;
302 330
331 /*
332 * Can't reclaim from ourselves or disabled runqueues.
333 */
303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
304 continue; 335 continue;
305 336
@@ -319,8 +350,16 @@ static void __disable_runtime(struct rq *rq)
319 } 350 }
320 351
321 spin_lock(&rt_rq->rt_runtime_lock); 352 spin_lock(&rt_rq->rt_runtime_lock);
353 /*
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
356 */
322 BUG_ON(want); 357 BUG_ON(want);
323balanced: 358balanced:
359 /*
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
362 */
324 rt_rq->rt_runtime = RUNTIME_INF; 363 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock); 364 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock); 365 spin_unlock(&rt_b->rt_runtime_lock);
@@ -343,6 +382,9 @@ static void __enable_runtime(struct rq *rq)
343 if (unlikely(!scheduler_running)) 382 if (unlikely(!scheduler_running))
344 return; 383 return;
345 384
385 /*
386 * Reset each runqueue's bandwidth settings
387 */
346 for_each_leaf_rt_rq(rt_rq, rq) { 388 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348 390
@@ -389,7 +431,7 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
389 int i, idle = 1; 431 int i, idle = 1;
390 cpumask_t span; 432 cpumask_t span;
391 433
392 if (rt_b->rt_runtime == RUNTIME_INF) 434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
393 return 1; 435 return 1;
394 436
395 span = sched_rt_period_mask(); 437 span = sched_rt_period_mask();
@@ -487,6 +529,9 @@ static void update_curr_rt(struct rq *rq)
487 curr->se.exec_start = rq->clock; 529 curr->se.exec_start = rq->clock;
488 cpuacct_charge(curr, delta_exec); 530 cpuacct_charge(curr, delta_exec);
489 531
532 if (!rt_bandwidth_enabled())
533 return;
534
490 for_each_sched_rt_entity(rt_se) { 535 for_each_sched_rt_entity(rt_se) {
491 rt_rq = rt_rq_of_se(rt_se); 536 rt_rq = rt_rq_of_se(rt_se);
492 537
@@ -784,7 +829,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
784/* 829/*
785 * Preempt the current task with a newly woken task if needed: 830 * Preempt the current task with a newly woken task if needed:
786 */ 831 */
787static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) 832static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
788{ 833{
789 if (p->prio < rq->curr->prio) { 834 if (p->prio < rq->curr->prio) {
790 resched_task(rq->curr); 835 resched_task(rq->curr);
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c
index bd7034542399..cb01cd8f919b 100644
--- a/kernel/time/tick-broadcast.c
+++ b/kernel/time/tick-broadcast.c
@@ -235,7 +235,8 @@ static void tick_do_broadcast_on_off(void *why)
235 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 235 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 if (!cpu_isset(cpu, tick_broadcast_mask)) { 236 if (!cpu_isset(cpu, tick_broadcast_mask)) {
237 cpu_set(cpu, tick_broadcast_mask); 237 cpu_set(cpu, tick_broadcast_mask);
238 if (bc->mode == TICKDEV_MODE_PERIODIC) 238 if (tick_broadcast_device.mode ==
239 TICKDEV_MODE_PERIODIC)
239 clockevents_shutdown(dev); 240 clockevents_shutdown(dev);
240 } 241 }
241 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 242 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
@@ -245,7 +246,8 @@ static void tick_do_broadcast_on_off(void *why)
245 if (!tick_broadcast_force && 246 if (!tick_broadcast_force &&
246 cpu_isset(cpu, tick_broadcast_mask)) { 247 cpu_isset(cpu, tick_broadcast_mask)) {
247 cpu_clear(cpu, tick_broadcast_mask); 248 cpu_clear(cpu, tick_broadcast_mask);
248 if (bc->mode == TICKDEV_MODE_PERIODIC) 249 if (tick_broadcast_device.mode ==
250 TICKDEV_MODE_PERIODIC)
249 tick_setup_periodic(dev, 0); 251 tick_setup_periodic(dev, 0);
250 } 252 }
251 break; 253 break;
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 39019b3f7621..a4d219398167 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -20,6 +20,7 @@
20#include <linux/profile.h> 20#include <linux/profile.h>
21#include <linux/sched.h> 21#include <linux/sched.h>
22#include <linux/tick.h> 22#include <linux/tick.h>
23#include <linux/module.h>
23 24
24#include <asm/irq_regs.h> 25#include <asm/irq_regs.h>
25 26
@@ -190,9 +191,17 @@ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
190{ 191{
191 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
192 193
193 *last_update_time = ktime_to_us(ts->idle_lastupdate); 194 if (!tick_nohz_enabled)
195 return -1;
196
197 if (ts->idle_active)
198 *last_update_time = ktime_to_us(ts->idle_lastupdate);
199 else
200 *last_update_time = ktime_to_us(ktime_get());
201
194 return ktime_to_us(ts->idle_sleeptime); 202 return ktime_to_us(ts->idle_sleeptime);
195} 203}
204EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
196 205
197/** 206/**
198 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
@@ -625,7 +634,7 @@ void tick_setup_sched_timer(void)
625 */ 634 */
626 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 635 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
627 ts->sched_timer.function = tick_sched_timer; 636 ts->sched_timer.function = tick_sched_timer;
628 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 637 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
629 638
630 /* Get the next period (per cpu) */ 639 /* Get the next period (per cpu) */
631 ts->sched_timer.expires = tick_init_jiffy_update(); 640 ts->sched_timer.expires = tick_init_jiffy_update();
diff --git a/kernel/trace/trace_sysprof.c b/kernel/trace/trace_sysprof.c
index bb948e52ce20..db58fb66a135 100644
--- a/kernel/trace/trace_sysprof.c
+++ b/kernel/trace/trace_sysprof.c
@@ -202,7 +202,7 @@ static void start_stack_timer(int cpu)
202 202
203 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 203 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
204 hrtimer->function = stack_trace_timer_fn; 204 hrtimer->function = stack_trace_timer_fn;
205 hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 205 hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
206 206
207 hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL); 207 hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL);
208} 208}
diff --git a/kernel/user.c b/kernel/user.c
index 865ecf57a096..39d6159fae43 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -169,7 +169,7 @@ static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
169{ 169{
170 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 170 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
171 171
172 return sprintf(buf, "%lu\n", sched_group_rt_runtime(up->tg)); 172 return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
173} 173}
174 174
175static ssize_t cpu_rt_runtime_store(struct kobject *kobj, 175static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
@@ -180,7 +180,7 @@ static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
180 unsigned long rt_runtime; 180 unsigned long rt_runtime;
181 int rc; 181 int rc;
182 182
183 sscanf(buf, "%lu", &rt_runtime); 183 sscanf(buf, "%ld", &rt_runtime);
184 184
185 rc = sched_group_set_rt_runtime(up->tg, rt_runtime); 185 rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
186 186