diff options
author | Ingo Molnar <mingo@elte.hu> | 2008-06-16 05:17:19 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-06-16 05:17:19 -0400 |
commit | ed9e4996d9a123b7550e63713d563f524fa9d9f0 (patch) | |
tree | a9be05d357b407aac80118b86f25d21a5dbdfc88 /kernel | |
parent | 4d2df795f0c3eb91f97a666f47716121a2f166ed (diff) | |
parent | 066519068ad2fbe98c7f45552b1f592903a9c8c8 (diff) |
Merge branch 'linus' into tracing/sysprof
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/capability.c | 111 | ||||
-rw-r--r-- | kernel/cgroup.c | 2 | ||||
-rw-r--r-- | kernel/cpuset.c | 10 | ||||
-rw-r--r-- | kernel/exit.c | 7 | ||||
-rw-r--r-- | kernel/kgdb.c | 16 | ||||
-rw-r--r-- | kernel/kprobes.c | 15 | ||||
-rw-r--r-- | kernel/module.c | 18 | ||||
-rw-r--r-- | kernel/relay.c | 2 | ||||
-rw-r--r-- | kernel/sched.c | 469 | ||||
-rw-r--r-- | kernel/sched_clock.c | 18 | ||||
-rw-r--r-- | kernel/sched_debug.c | 5 | ||||
-rw-r--r-- | kernel/sched_fair.c | 254 | ||||
-rw-r--r-- | kernel/sched_rt.c | 4 | ||||
-rw-r--r-- | kernel/sched_stats.h | 1 | ||||
-rw-r--r-- | kernel/signal.c | 51 | ||||
-rw-r--r-- | kernel/stop_machine.c | 7 | ||||
-rw-r--r-- | kernel/sys.c | 6 |
17 files changed, 330 insertions, 666 deletions
diff --git a/kernel/capability.c b/kernel/capability.c index 39e8193b41ea..cfbe44299488 100644 --- a/kernel/capability.c +++ b/kernel/capability.c | |||
@@ -53,6 +53,69 @@ static void warn_legacy_capability_use(void) | |||
53 | } | 53 | } |
54 | 54 | ||
55 | /* | 55 | /* |
56 | * Version 2 capabilities worked fine, but the linux/capability.h file | ||
57 | * that accompanied their introduction encouraged their use without | ||
58 | * the necessary user-space source code changes. As such, we have | ||
59 | * created a version 3 with equivalent functionality to version 2, but | ||
60 | * with a header change to protect legacy source code from using | ||
61 | * version 2 when it wanted to use version 1. If your system has code | ||
62 | * that trips the following warning, it is using version 2 specific | ||
63 | * capabilities and may be doing so insecurely. | ||
64 | * | ||
65 | * The remedy is to either upgrade your version of libcap (to 2.10+, | ||
66 | * if the application is linked against it), or recompile your | ||
67 | * application with modern kernel headers and this warning will go | ||
68 | * away. | ||
69 | */ | ||
70 | |||
71 | static void warn_deprecated_v2(void) | ||
72 | { | ||
73 | static int warned; | ||
74 | |||
75 | if (!warned) { | ||
76 | char name[sizeof(current->comm)]; | ||
77 | |||
78 | printk(KERN_INFO "warning: `%s' uses deprecated v2" | ||
79 | " capabilities in a way that may be insecure.\n", | ||
80 | get_task_comm(name, current)); | ||
81 | warned = 1; | ||
82 | } | ||
83 | } | ||
84 | |||
85 | /* | ||
86 | * Version check. Return the number of u32s in each capability flag | ||
87 | * array, or a negative value on error. | ||
88 | */ | ||
89 | static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) | ||
90 | { | ||
91 | __u32 version; | ||
92 | |||
93 | if (get_user(version, &header->version)) | ||
94 | return -EFAULT; | ||
95 | |||
96 | switch (version) { | ||
97 | case _LINUX_CAPABILITY_VERSION_1: | ||
98 | warn_legacy_capability_use(); | ||
99 | *tocopy = _LINUX_CAPABILITY_U32S_1; | ||
100 | break; | ||
101 | case _LINUX_CAPABILITY_VERSION_2: | ||
102 | warn_deprecated_v2(); | ||
103 | /* | ||
104 | * fall through - v3 is otherwise equivalent to v2. | ||
105 | */ | ||
106 | case _LINUX_CAPABILITY_VERSION_3: | ||
107 | *tocopy = _LINUX_CAPABILITY_U32S_3; | ||
108 | break; | ||
109 | default: | ||
110 | if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) | ||
111 | return -EFAULT; | ||
112 | return -EINVAL; | ||
113 | } | ||
114 | |||
115 | return 0; | ||
116 | } | ||
117 | |||
118 | /* | ||
56 | * For sys_getproccap() and sys_setproccap(), any of the three | 119 | * For sys_getproccap() and sys_setproccap(), any of the three |
57 | * capability set pointers may be NULL -- indicating that that set is | 120 | * capability set pointers may be NULL -- indicating that that set is |
58 | * uninteresting and/or not to be changed. | 121 | * uninteresting and/or not to be changed. |
@@ -71,27 +134,13 @@ asmlinkage long sys_capget(cap_user_header_t header, cap_user_data_t dataptr) | |||
71 | { | 134 | { |
72 | int ret = 0; | 135 | int ret = 0; |
73 | pid_t pid; | 136 | pid_t pid; |
74 | __u32 version; | ||
75 | struct task_struct *target; | 137 | struct task_struct *target; |
76 | unsigned tocopy; | 138 | unsigned tocopy; |
77 | kernel_cap_t pE, pI, pP; | 139 | kernel_cap_t pE, pI, pP; |
78 | 140 | ||
79 | if (get_user(version, &header->version)) | 141 | ret = cap_validate_magic(header, &tocopy); |
80 | return -EFAULT; | 142 | if (ret != 0) |
81 | 143 | return ret; | |
82 | switch (version) { | ||
83 | case _LINUX_CAPABILITY_VERSION_1: | ||
84 | warn_legacy_capability_use(); | ||
85 | tocopy = _LINUX_CAPABILITY_U32S_1; | ||
86 | break; | ||
87 | case _LINUX_CAPABILITY_VERSION_2: | ||
88 | tocopy = _LINUX_CAPABILITY_U32S_2; | ||
89 | break; | ||
90 | default: | ||
91 | if (put_user(_LINUX_CAPABILITY_VERSION, &header->version)) | ||
92 | return -EFAULT; | ||
93 | return -EINVAL; | ||
94 | } | ||
95 | 144 | ||
96 | if (get_user(pid, &header->pid)) | 145 | if (get_user(pid, &header->pid)) |
97 | return -EFAULT; | 146 | return -EFAULT; |
@@ -118,7 +167,7 @@ out: | |||
118 | spin_unlock(&task_capability_lock); | 167 | spin_unlock(&task_capability_lock); |
119 | 168 | ||
120 | if (!ret) { | 169 | if (!ret) { |
121 | struct __user_cap_data_struct kdata[_LINUX_CAPABILITY_U32S]; | 170 | struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; |
122 | unsigned i; | 171 | unsigned i; |
123 | 172 | ||
124 | for (i = 0; i < tocopy; i++) { | 173 | for (i = 0; i < tocopy; i++) { |
@@ -128,7 +177,7 @@ out: | |||
128 | } | 177 | } |
129 | 178 | ||
130 | /* | 179 | /* |
131 | * Note, in the case, tocopy < _LINUX_CAPABILITY_U32S, | 180 | * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, |
132 | * we silently drop the upper capabilities here. This | 181 | * we silently drop the upper capabilities here. This |
133 | * has the effect of making older libcap | 182 | * has the effect of making older libcap |
134 | * implementations implicitly drop upper capability | 183 | * implementations implicitly drop upper capability |
@@ -240,30 +289,16 @@ static inline int cap_set_all(kernel_cap_t *effective, | |||
240 | */ | 289 | */ |
241 | asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data) | 290 | asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data) |
242 | { | 291 | { |
243 | struct __user_cap_data_struct kdata[_LINUX_CAPABILITY_U32S]; | 292 | struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; |
244 | unsigned i, tocopy; | 293 | unsigned i, tocopy; |
245 | kernel_cap_t inheritable, permitted, effective; | 294 | kernel_cap_t inheritable, permitted, effective; |
246 | __u32 version; | ||
247 | struct task_struct *target; | 295 | struct task_struct *target; |
248 | int ret; | 296 | int ret; |
249 | pid_t pid; | 297 | pid_t pid; |
250 | 298 | ||
251 | if (get_user(version, &header->version)) | 299 | ret = cap_validate_magic(header, &tocopy); |
252 | return -EFAULT; | 300 | if (ret != 0) |
253 | 301 | return ret; | |
254 | switch (version) { | ||
255 | case _LINUX_CAPABILITY_VERSION_1: | ||
256 | warn_legacy_capability_use(); | ||
257 | tocopy = _LINUX_CAPABILITY_U32S_1; | ||
258 | break; | ||
259 | case _LINUX_CAPABILITY_VERSION_2: | ||
260 | tocopy = _LINUX_CAPABILITY_U32S_2; | ||
261 | break; | ||
262 | default: | ||
263 | if (put_user(_LINUX_CAPABILITY_VERSION, &header->version)) | ||
264 | return -EFAULT; | ||
265 | return -EINVAL; | ||
266 | } | ||
267 | 302 | ||
268 | if (get_user(pid, &header->pid)) | 303 | if (get_user(pid, &header->pid)) |
269 | return -EFAULT; | 304 | return -EFAULT; |
@@ -281,7 +316,7 @@ asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data) | |||
281 | permitted.cap[i] = kdata[i].permitted; | 316 | permitted.cap[i] = kdata[i].permitted; |
282 | inheritable.cap[i] = kdata[i].inheritable; | 317 | inheritable.cap[i] = kdata[i].inheritable; |
283 | } | 318 | } |
284 | while (i < _LINUX_CAPABILITY_U32S) { | 319 | while (i < _KERNEL_CAPABILITY_U32S) { |
285 | effective.cap[i] = 0; | 320 | effective.cap[i] = 0; |
286 | permitted.cap[i] = 0; | 321 | permitted.cap[i] = 0; |
287 | inheritable.cap[i] = 0; | 322 | inheritable.cap[i] = 0; |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index fbc6fc8949b4..15ac0e1e4f4d 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -2903,7 +2903,7 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys) | |||
2903 | cg = tsk->cgroups; | 2903 | cg = tsk->cgroups; |
2904 | parent = task_cgroup(tsk, subsys->subsys_id); | 2904 | parent = task_cgroup(tsk, subsys->subsys_id); |
2905 | 2905 | ||
2906 | snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid); | 2906 | snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid); |
2907 | 2907 | ||
2908 | /* Pin the hierarchy */ | 2908 | /* Pin the hierarchy */ |
2909 | atomic_inc(&parent->root->sb->s_active); | 2909 | atomic_inc(&parent->root->sb->s_active); |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 86ea9e34e326..039baa4cd90c 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -797,8 +797,10 @@ static int update_cpumask(struct cpuset *cs, char *buf) | |||
797 | retval = cpulist_parse(buf, trialcs.cpus_allowed); | 797 | retval = cpulist_parse(buf, trialcs.cpus_allowed); |
798 | if (retval < 0) | 798 | if (retval < 0) |
799 | return retval; | 799 | return retval; |
800 | |||
801 | if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map)) | ||
802 | return -EINVAL; | ||
800 | } | 803 | } |
801 | cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); | ||
802 | retval = validate_change(cs, &trialcs); | 804 | retval = validate_change(cs, &trialcs); |
803 | if (retval < 0) | 805 | if (retval < 0) |
804 | return retval; | 806 | return retval; |
@@ -932,9 +934,11 @@ static int update_nodemask(struct cpuset *cs, char *buf) | |||
932 | retval = nodelist_parse(buf, trialcs.mems_allowed); | 934 | retval = nodelist_parse(buf, trialcs.mems_allowed); |
933 | if (retval < 0) | 935 | if (retval < 0) |
934 | goto done; | 936 | goto done; |
937 | |||
938 | if (!nodes_subset(trialcs.mems_allowed, | ||
939 | node_states[N_HIGH_MEMORY])) | ||
940 | return -EINVAL; | ||
935 | } | 941 | } |
936 | nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, | ||
937 | node_states[N_HIGH_MEMORY]); | ||
938 | oldmem = cs->mems_allowed; | 942 | oldmem = cs->mems_allowed; |
939 | if (nodes_equal(oldmem, trialcs.mems_allowed)) { | 943 | if (nodes_equal(oldmem, trialcs.mems_allowed)) { |
940 | retval = 0; /* Too easy - nothing to do */ | 944 | retval = 0; /* Too easy - nothing to do */ |
diff --git a/kernel/exit.c b/kernel/exit.c index 1510f78a0ffa..8f6185e69b69 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -126,6 +126,12 @@ static void __exit_signal(struct task_struct *tsk) | |||
126 | 126 | ||
127 | __unhash_process(tsk); | 127 | __unhash_process(tsk); |
128 | 128 | ||
129 | /* | ||
130 | * Do this under ->siglock, we can race with another thread | ||
131 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | ||
132 | */ | ||
133 | flush_sigqueue(&tsk->pending); | ||
134 | |||
129 | tsk->signal = NULL; | 135 | tsk->signal = NULL; |
130 | tsk->sighand = NULL; | 136 | tsk->sighand = NULL; |
131 | spin_unlock(&sighand->siglock); | 137 | spin_unlock(&sighand->siglock); |
@@ -133,7 +139,6 @@ static void __exit_signal(struct task_struct *tsk) | |||
133 | 139 | ||
134 | __cleanup_sighand(sighand); | 140 | __cleanup_sighand(sighand); |
135 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 141 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
136 | flush_sigqueue(&tsk->pending); | ||
137 | if (sig) { | 142 | if (sig) { |
138 | flush_sigqueue(&sig->shared_pending); | 143 | flush_sigqueue(&sig->shared_pending); |
139 | taskstats_tgid_free(sig); | 144 | taskstats_tgid_free(sig); |
diff --git a/kernel/kgdb.c b/kernel/kgdb.c index 14787de568b3..79e3c90113c2 100644 --- a/kernel/kgdb.c +++ b/kernel/kgdb.c | |||
@@ -52,6 +52,7 @@ | |||
52 | #include <asm/byteorder.h> | 52 | #include <asm/byteorder.h> |
53 | #include <asm/atomic.h> | 53 | #include <asm/atomic.h> |
54 | #include <asm/system.h> | 54 | #include <asm/system.h> |
55 | #include <asm/unaligned.h> | ||
55 | 56 | ||
56 | static int kgdb_break_asap; | 57 | static int kgdb_break_asap; |
57 | 58 | ||
@@ -227,8 +228,6 @@ void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | |||
227 | * GDB remote protocol parser: | 228 | * GDB remote protocol parser: |
228 | */ | 229 | */ |
229 | 230 | ||
230 | static const char hexchars[] = "0123456789abcdef"; | ||
231 | |||
232 | static int hex(char ch) | 231 | static int hex(char ch) |
233 | { | 232 | { |
234 | if ((ch >= 'a') && (ch <= 'f')) | 233 | if ((ch >= 'a') && (ch <= 'f')) |
@@ -316,8 +315,8 @@ static void put_packet(char *buffer) | |||
316 | } | 315 | } |
317 | 316 | ||
318 | kgdb_io_ops->write_char('#'); | 317 | kgdb_io_ops->write_char('#'); |
319 | kgdb_io_ops->write_char(hexchars[checksum >> 4]); | 318 | kgdb_io_ops->write_char(hex_asc_hi(checksum)); |
320 | kgdb_io_ops->write_char(hexchars[checksum & 0xf]); | 319 | kgdb_io_ops->write_char(hex_asc_lo(checksum)); |
321 | if (kgdb_io_ops->flush) | 320 | if (kgdb_io_ops->flush) |
322 | kgdb_io_ops->flush(); | 321 | kgdb_io_ops->flush(); |
323 | 322 | ||
@@ -478,8 +477,8 @@ static void error_packet(char *pkt, int error) | |||
478 | { | 477 | { |
479 | error = -error; | 478 | error = -error; |
480 | pkt[0] = 'E'; | 479 | pkt[0] = 'E'; |
481 | pkt[1] = hexchars[(error / 10)]; | 480 | pkt[1] = hex_asc[(error / 10)]; |
482 | pkt[2] = hexchars[(error % 10)]; | 481 | pkt[2] = hex_asc[(error % 10)]; |
483 | pkt[3] = '\0'; | 482 | pkt[3] = '\0'; |
484 | } | 483 | } |
485 | 484 | ||
@@ -510,10 +509,7 @@ static void int_to_threadref(unsigned char *id, int value) | |||
510 | scan = (unsigned char *)id; | 509 | scan = (unsigned char *)id; |
511 | while (i--) | 510 | while (i--) |
512 | *scan++ = 0; | 511 | *scan++ = 0; |
513 | *scan++ = (value >> 24) & 0xff; | 512 | put_unaligned_be32(value, scan); |
514 | *scan++ = (value >> 16) & 0xff; | ||
515 | *scan++ = (value >> 8) & 0xff; | ||
516 | *scan++ = (value & 0xff); | ||
517 | } | 513 | } |
518 | 514 | ||
519 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | 515 | static struct task_struct *getthread(struct pt_regs *regs, int tid) |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index 1e0250cb9486..d4998f81e229 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -699,8 +699,9 @@ static int __register_kprobes(struct kprobe **kps, int num, | |||
699 | return -EINVAL; | 699 | return -EINVAL; |
700 | for (i = 0; i < num; i++) { | 700 | for (i = 0; i < num; i++) { |
701 | ret = __register_kprobe(kps[i], called_from); | 701 | ret = __register_kprobe(kps[i], called_from); |
702 | if (ret < 0 && i > 0) { | 702 | if (ret < 0) { |
703 | unregister_kprobes(kps, i); | 703 | if (i > 0) |
704 | unregister_kprobes(kps, i); | ||
704 | break; | 705 | break; |
705 | } | 706 | } |
706 | } | 707 | } |
@@ -776,8 +777,9 @@ static int __register_jprobes(struct jprobe **jps, int num, | |||
776 | jp->kp.break_handler = longjmp_break_handler; | 777 | jp->kp.break_handler = longjmp_break_handler; |
777 | ret = __register_kprobe(&jp->kp, called_from); | 778 | ret = __register_kprobe(&jp->kp, called_from); |
778 | } | 779 | } |
779 | if (ret < 0 && i > 0) { | 780 | if (ret < 0) { |
780 | unregister_jprobes(jps, i); | 781 | if (i > 0) |
782 | unregister_jprobes(jps, i); | ||
781 | break; | 783 | break; |
782 | } | 784 | } |
783 | } | 785 | } |
@@ -920,8 +922,9 @@ static int __register_kretprobes(struct kretprobe **rps, int num, | |||
920 | return -EINVAL; | 922 | return -EINVAL; |
921 | for (i = 0; i < num; i++) { | 923 | for (i = 0; i < num; i++) { |
922 | ret = __register_kretprobe(rps[i], called_from); | 924 | ret = __register_kretprobe(rps[i], called_from); |
923 | if (ret < 0 && i > 0) { | 925 | if (ret < 0) { |
924 | unregister_kretprobes(rps, i); | 926 | if (i > 0) |
927 | unregister_kretprobes(rps, i); | ||
925 | break; | 928 | break; |
926 | } | 929 | } |
927 | } | 930 | } |
diff --git a/kernel/module.c b/kernel/module.c index f5e9491ef7ac..5f80478b746d 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -1337,7 +1337,19 @@ out_unreg: | |||
1337 | kobject_put(&mod->mkobj.kobj); | 1337 | kobject_put(&mod->mkobj.kobj); |
1338 | return err; | 1338 | return err; |
1339 | } | 1339 | } |
1340 | #endif | 1340 | |
1341 | static void mod_sysfs_fini(struct module *mod) | ||
1342 | { | ||
1343 | kobject_put(&mod->mkobj.kobj); | ||
1344 | } | ||
1345 | |||
1346 | #else /* CONFIG_SYSFS */ | ||
1347 | |||
1348 | static void mod_sysfs_fini(struct module *mod) | ||
1349 | { | ||
1350 | } | ||
1351 | |||
1352 | #endif /* CONFIG_SYSFS */ | ||
1341 | 1353 | ||
1342 | static void mod_kobject_remove(struct module *mod) | 1354 | static void mod_kobject_remove(struct module *mod) |
1343 | { | 1355 | { |
@@ -1345,7 +1357,7 @@ static void mod_kobject_remove(struct module *mod) | |||
1345 | module_param_sysfs_remove(mod); | 1357 | module_param_sysfs_remove(mod); |
1346 | kobject_put(mod->mkobj.drivers_dir); | 1358 | kobject_put(mod->mkobj.drivers_dir); |
1347 | kobject_put(mod->holders_dir); | 1359 | kobject_put(mod->holders_dir); |
1348 | kobject_put(&mod->mkobj.kobj); | 1360 | mod_sysfs_fini(mod); |
1349 | } | 1361 | } |
1350 | 1362 | ||
1351 | /* | 1363 | /* |
@@ -1780,7 +1792,7 @@ static struct module *load_module(void __user *umod, | |||
1780 | 1792 | ||
1781 | /* Sanity checks against insmoding binaries or wrong arch, | 1793 | /* Sanity checks against insmoding binaries or wrong arch, |
1782 | weird elf version */ | 1794 | weird elf version */ |
1783 | if (memcmp(hdr->e_ident, ELFMAG, 4) != 0 | 1795 | if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0 |
1784 | || hdr->e_type != ET_REL | 1796 | || hdr->e_type != ET_REL |
1785 | || !elf_check_arch(hdr) | 1797 | || !elf_check_arch(hdr) |
1786 | || hdr->e_shentsize != sizeof(*sechdrs)) { | 1798 | || hdr->e_shentsize != sizeof(*sechdrs)) { |
diff --git a/kernel/relay.c b/kernel/relay.c index bc24dcdc570f..7de644cdec43 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -1191,7 +1191,7 @@ static ssize_t relay_file_splice_read(struct file *in, | |||
1191 | ret = 0; | 1191 | ret = 0; |
1192 | spliced = 0; | 1192 | spliced = 0; |
1193 | 1193 | ||
1194 | while (len) { | 1194 | while (len && !spliced) { |
1195 | ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); | 1195 | ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); |
1196 | if (ret < 0) | 1196 | if (ret < 0) |
1197 | break; | 1197 | break; |
diff --git a/kernel/sched.c b/kernel/sched.c index e2e985eeee78..c994d12abbf6 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -137,7 +137,7 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | |||
137 | 137 | ||
138 | static inline int rt_policy(int policy) | 138 | static inline int rt_policy(int policy) |
139 | { | 139 | { |
140 | if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR)) | 140 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
141 | return 1; | 141 | return 1; |
142 | return 0; | 142 | return 0; |
143 | } | 143 | } |
@@ -313,12 +313,15 @@ static DEFINE_SPINLOCK(task_group_lock); | |||
313 | #endif | 313 | #endif |
314 | 314 | ||
315 | /* | 315 | /* |
316 | * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems. | 316 | * A weight of 0 or 1 can cause arithmetics problems. |
317 | * A weight of a cfs_rq is the sum of weights of which entities | ||
318 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
319 | * too large, so as the shares value of a task group. | ||
317 | * (The default weight is 1024 - so there's no practical | 320 | * (The default weight is 1024 - so there's no practical |
318 | * limitation from this.) | 321 | * limitation from this.) |
319 | */ | 322 | */ |
320 | #define MIN_SHARES 2 | 323 | #define MIN_SHARES 2 |
321 | #define MAX_SHARES (ULONG_MAX - 1) | 324 | #define MAX_SHARES (1UL << 18) |
322 | 325 | ||
323 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; | 326 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
324 | #endif | 327 | #endif |
@@ -399,43 +402,6 @@ struct cfs_rq { | |||
399 | */ | 402 | */ |
400 | struct list_head leaf_cfs_rq_list; | 403 | struct list_head leaf_cfs_rq_list; |
401 | struct task_group *tg; /* group that "owns" this runqueue */ | 404 | struct task_group *tg; /* group that "owns" this runqueue */ |
402 | |||
403 | #ifdef CONFIG_SMP | ||
404 | unsigned long task_weight; | ||
405 | unsigned long shares; | ||
406 | /* | ||
407 | * We need space to build a sched_domain wide view of the full task | ||
408 | * group tree, in order to avoid depending on dynamic memory allocation | ||
409 | * during the load balancing we place this in the per cpu task group | ||
410 | * hierarchy. This limits the load balancing to one instance per cpu, | ||
411 | * but more should not be needed anyway. | ||
412 | */ | ||
413 | struct aggregate_struct { | ||
414 | /* | ||
415 | * load = weight(cpus) * f(tg) | ||
416 | * | ||
417 | * Where f(tg) is the recursive weight fraction assigned to | ||
418 | * this group. | ||
419 | */ | ||
420 | unsigned long load; | ||
421 | |||
422 | /* | ||
423 | * part of the group weight distributed to this span. | ||
424 | */ | ||
425 | unsigned long shares; | ||
426 | |||
427 | /* | ||
428 | * The sum of all runqueue weights within this span. | ||
429 | */ | ||
430 | unsigned long rq_weight; | ||
431 | |||
432 | /* | ||
433 | * Weight contributed by tasks; this is the part we can | ||
434 | * influence by moving tasks around. | ||
435 | */ | ||
436 | unsigned long task_weight; | ||
437 | } aggregate; | ||
438 | #endif | ||
439 | #endif | 405 | #endif |
440 | }; | 406 | }; |
441 | 407 | ||
@@ -1387,17 +1353,19 @@ static void __resched_task(struct task_struct *p, int tif_bit) | |||
1387 | */ | 1353 | */ |
1388 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | 1354 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
1389 | 1355 | ||
1390 | /* | ||
1391 | * delta *= weight / lw | ||
1392 | */ | ||
1393 | static unsigned long | 1356 | static unsigned long |
1394 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 1357 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1395 | struct load_weight *lw) | 1358 | struct load_weight *lw) |
1396 | { | 1359 | { |
1397 | u64 tmp; | 1360 | u64 tmp; |
1398 | 1361 | ||
1399 | if (!lw->inv_weight) | 1362 | if (!lw->inv_weight) { |
1400 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1); | 1363 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) |
1364 | lw->inv_weight = 1; | ||
1365 | else | ||
1366 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | ||
1367 | / (lw->weight+1); | ||
1368 | } | ||
1401 | 1369 | ||
1402 | tmp = (u64)delta_exec * weight; | 1370 | tmp = (u64)delta_exec * weight; |
1403 | /* | 1371 | /* |
@@ -1412,6 +1380,12 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight, | |||
1412 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | 1380 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
1413 | } | 1381 | } |
1414 | 1382 | ||
1383 | static inline unsigned long | ||
1384 | calc_delta_fair(unsigned long delta_exec, struct load_weight *lw) | ||
1385 | { | ||
1386 | return calc_delta_mine(delta_exec, NICE_0_LOAD, lw); | ||
1387 | } | ||
1388 | |||
1415 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 1389 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
1416 | { | 1390 | { |
1417 | lw->weight += inc; | 1391 | lw->weight += inc; |
@@ -1524,326 +1498,6 @@ static unsigned long source_load(int cpu, int type); | |||
1524 | static unsigned long target_load(int cpu, int type); | 1498 | static unsigned long target_load(int cpu, int type); |
1525 | static unsigned long cpu_avg_load_per_task(int cpu); | 1499 | static unsigned long cpu_avg_load_per_task(int cpu); |
1526 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1500 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1527 | |||
1528 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1529 | |||
1530 | /* | ||
1531 | * Group load balancing. | ||
1532 | * | ||
1533 | * We calculate a few balance domain wide aggregate numbers; load and weight. | ||
1534 | * Given the pictures below, and assuming each item has equal weight: | ||
1535 | * | ||
1536 | * root 1 - thread | ||
1537 | * / | \ A - group | ||
1538 | * A 1 B | ||
1539 | * /|\ / \ | ||
1540 | * C 2 D 3 4 | ||
1541 | * | | | ||
1542 | * 5 6 | ||
1543 | * | ||
1544 | * load: | ||
1545 | * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd, | ||
1546 | * which equals 1/9-th of the total load. | ||
1547 | * | ||
1548 | * shares: | ||
1549 | * The weight of this group on the selected cpus. | ||
1550 | * | ||
1551 | * rq_weight: | ||
1552 | * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while | ||
1553 | * B would get 2. | ||
1554 | * | ||
1555 | * task_weight: | ||
1556 | * Part of the rq_weight contributed by tasks; all groups except B would | ||
1557 | * get 1, B gets 2. | ||
1558 | */ | ||
1559 | |||
1560 | static inline struct aggregate_struct * | ||
1561 | aggregate(struct task_group *tg, struct sched_domain *sd) | ||
1562 | { | ||
1563 | return &tg->cfs_rq[sd->first_cpu]->aggregate; | ||
1564 | } | ||
1565 | |||
1566 | typedef void (*aggregate_func)(struct task_group *, struct sched_domain *); | ||
1567 | |||
1568 | /* | ||
1569 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
1570 | * leaving it for the final time. | ||
1571 | */ | ||
1572 | static | ||
1573 | void aggregate_walk_tree(aggregate_func down, aggregate_func up, | ||
1574 | struct sched_domain *sd) | ||
1575 | { | ||
1576 | struct task_group *parent, *child; | ||
1577 | |||
1578 | rcu_read_lock(); | ||
1579 | parent = &root_task_group; | ||
1580 | down: | ||
1581 | (*down)(parent, sd); | ||
1582 | list_for_each_entry_rcu(child, &parent->children, siblings) { | ||
1583 | parent = child; | ||
1584 | goto down; | ||
1585 | |||
1586 | up: | ||
1587 | continue; | ||
1588 | } | ||
1589 | (*up)(parent, sd); | ||
1590 | |||
1591 | child = parent; | ||
1592 | parent = parent->parent; | ||
1593 | if (parent) | ||
1594 | goto up; | ||
1595 | rcu_read_unlock(); | ||
1596 | } | ||
1597 | |||
1598 | /* | ||
1599 | * Calculate the aggregate runqueue weight. | ||
1600 | */ | ||
1601 | static | ||
1602 | void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd) | ||
1603 | { | ||
1604 | unsigned long rq_weight = 0; | ||
1605 | unsigned long task_weight = 0; | ||
1606 | int i; | ||
1607 | |||
1608 | for_each_cpu_mask(i, sd->span) { | ||
1609 | rq_weight += tg->cfs_rq[i]->load.weight; | ||
1610 | task_weight += tg->cfs_rq[i]->task_weight; | ||
1611 | } | ||
1612 | |||
1613 | aggregate(tg, sd)->rq_weight = rq_weight; | ||
1614 | aggregate(tg, sd)->task_weight = task_weight; | ||
1615 | } | ||
1616 | |||
1617 | /* | ||
1618 | * Compute the weight of this group on the given cpus. | ||
1619 | */ | ||
1620 | static | ||
1621 | void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd) | ||
1622 | { | ||
1623 | unsigned long shares = 0; | ||
1624 | int i; | ||
1625 | |||
1626 | for_each_cpu_mask(i, sd->span) | ||
1627 | shares += tg->cfs_rq[i]->shares; | ||
1628 | |||
1629 | if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares) | ||
1630 | shares = tg->shares; | ||
1631 | |||
1632 | aggregate(tg, sd)->shares = shares; | ||
1633 | } | ||
1634 | |||
1635 | /* | ||
1636 | * Compute the load fraction assigned to this group, relies on the aggregate | ||
1637 | * weight and this group's parent's load, i.e. top-down. | ||
1638 | */ | ||
1639 | static | ||
1640 | void aggregate_group_load(struct task_group *tg, struct sched_domain *sd) | ||
1641 | { | ||
1642 | unsigned long load; | ||
1643 | |||
1644 | if (!tg->parent) { | ||
1645 | int i; | ||
1646 | |||
1647 | load = 0; | ||
1648 | for_each_cpu_mask(i, sd->span) | ||
1649 | load += cpu_rq(i)->load.weight; | ||
1650 | |||
1651 | } else { | ||
1652 | load = aggregate(tg->parent, sd)->load; | ||
1653 | |||
1654 | /* | ||
1655 | * shares is our weight in the parent's rq so | ||
1656 | * shares/parent->rq_weight gives our fraction of the load | ||
1657 | */ | ||
1658 | load *= aggregate(tg, sd)->shares; | ||
1659 | load /= aggregate(tg->parent, sd)->rq_weight + 1; | ||
1660 | } | ||
1661 | |||
1662 | aggregate(tg, sd)->load = load; | ||
1663 | } | ||
1664 | |||
1665 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | ||
1666 | |||
1667 | /* | ||
1668 | * Calculate and set the cpu's group shares. | ||
1669 | */ | ||
1670 | static void | ||
1671 | __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd, | ||
1672 | int tcpu) | ||
1673 | { | ||
1674 | int boost = 0; | ||
1675 | unsigned long shares; | ||
1676 | unsigned long rq_weight; | ||
1677 | |||
1678 | if (!tg->se[tcpu]) | ||
1679 | return; | ||
1680 | |||
1681 | rq_weight = tg->cfs_rq[tcpu]->load.weight; | ||
1682 | |||
1683 | /* | ||
1684 | * If there are currently no tasks on the cpu pretend there is one of | ||
1685 | * average load so that when a new task gets to run here it will not | ||
1686 | * get delayed by group starvation. | ||
1687 | */ | ||
1688 | if (!rq_weight) { | ||
1689 | boost = 1; | ||
1690 | rq_weight = NICE_0_LOAD; | ||
1691 | } | ||
1692 | |||
1693 | /* | ||
1694 | * \Sum shares * rq_weight | ||
1695 | * shares = ----------------------- | ||
1696 | * \Sum rq_weight | ||
1697 | * | ||
1698 | */ | ||
1699 | shares = aggregate(tg, sd)->shares * rq_weight; | ||
1700 | shares /= aggregate(tg, sd)->rq_weight + 1; | ||
1701 | |||
1702 | /* | ||
1703 | * record the actual number of shares, not the boosted amount. | ||
1704 | */ | ||
1705 | tg->cfs_rq[tcpu]->shares = boost ? 0 : shares; | ||
1706 | |||
1707 | if (shares < MIN_SHARES) | ||
1708 | shares = MIN_SHARES; | ||
1709 | else if (shares > MAX_SHARES) | ||
1710 | shares = MAX_SHARES; | ||
1711 | |||
1712 | __set_se_shares(tg->se[tcpu], shares); | ||
1713 | } | ||
1714 | |||
1715 | /* | ||
1716 | * Re-adjust the weights on the cpu the task came from and on the cpu the | ||
1717 | * task went to. | ||
1718 | */ | ||
1719 | static void | ||
1720 | __move_group_shares(struct task_group *tg, struct sched_domain *sd, | ||
1721 | int scpu, int dcpu) | ||
1722 | { | ||
1723 | unsigned long shares; | ||
1724 | |||
1725 | shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares; | ||
1726 | |||
1727 | __update_group_shares_cpu(tg, sd, scpu); | ||
1728 | __update_group_shares_cpu(tg, sd, dcpu); | ||
1729 | |||
1730 | /* | ||
1731 | * ensure we never loose shares due to rounding errors in the | ||
1732 | * above redistribution. | ||
1733 | */ | ||
1734 | shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares; | ||
1735 | if (shares) | ||
1736 | tg->cfs_rq[dcpu]->shares += shares; | ||
1737 | } | ||
1738 | |||
1739 | /* | ||
1740 | * Because changing a group's shares changes the weight of the super-group | ||
1741 | * we need to walk up the tree and change all shares until we hit the root. | ||
1742 | */ | ||
1743 | static void | ||
1744 | move_group_shares(struct task_group *tg, struct sched_domain *sd, | ||
1745 | int scpu, int dcpu) | ||
1746 | { | ||
1747 | while (tg) { | ||
1748 | __move_group_shares(tg, sd, scpu, dcpu); | ||
1749 | tg = tg->parent; | ||
1750 | } | ||
1751 | } | ||
1752 | |||
1753 | static | ||
1754 | void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd) | ||
1755 | { | ||
1756 | unsigned long shares = aggregate(tg, sd)->shares; | ||
1757 | int i; | ||
1758 | |||
1759 | for_each_cpu_mask(i, sd->span) { | ||
1760 | struct rq *rq = cpu_rq(i); | ||
1761 | unsigned long flags; | ||
1762 | |||
1763 | spin_lock_irqsave(&rq->lock, flags); | ||
1764 | __update_group_shares_cpu(tg, sd, i); | ||
1765 | spin_unlock_irqrestore(&rq->lock, flags); | ||
1766 | } | ||
1767 | |||
1768 | aggregate_group_shares(tg, sd); | ||
1769 | |||
1770 | /* | ||
1771 | * ensure we never loose shares due to rounding errors in the | ||
1772 | * above redistribution. | ||
1773 | */ | ||
1774 | shares -= aggregate(tg, sd)->shares; | ||
1775 | if (shares) { | ||
1776 | tg->cfs_rq[sd->first_cpu]->shares += shares; | ||
1777 | aggregate(tg, sd)->shares += shares; | ||
1778 | } | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * Calculate the accumulative weight and recursive load of each task group | ||
1783 | * while walking down the tree. | ||
1784 | */ | ||
1785 | static | ||
1786 | void aggregate_get_down(struct task_group *tg, struct sched_domain *sd) | ||
1787 | { | ||
1788 | aggregate_group_weight(tg, sd); | ||
1789 | aggregate_group_shares(tg, sd); | ||
1790 | aggregate_group_load(tg, sd); | ||
1791 | } | ||
1792 | |||
1793 | /* | ||
1794 | * Rebalance the cpu shares while walking back up the tree. | ||
1795 | */ | ||
1796 | static | ||
1797 | void aggregate_get_up(struct task_group *tg, struct sched_domain *sd) | ||
1798 | { | ||
1799 | aggregate_group_set_shares(tg, sd); | ||
1800 | } | ||
1801 | |||
1802 | static DEFINE_PER_CPU(spinlock_t, aggregate_lock); | ||
1803 | |||
1804 | static void __init init_aggregate(void) | ||
1805 | { | ||
1806 | int i; | ||
1807 | |||
1808 | for_each_possible_cpu(i) | ||
1809 | spin_lock_init(&per_cpu(aggregate_lock, i)); | ||
1810 | } | ||
1811 | |||
1812 | static int get_aggregate(struct sched_domain *sd) | ||
1813 | { | ||
1814 | if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu))) | ||
1815 | return 0; | ||
1816 | |||
1817 | aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd); | ||
1818 | return 1; | ||
1819 | } | ||
1820 | |||
1821 | static void put_aggregate(struct sched_domain *sd) | ||
1822 | { | ||
1823 | spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu)); | ||
1824 | } | ||
1825 | |||
1826 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | ||
1827 | { | ||
1828 | cfs_rq->shares = shares; | ||
1829 | } | ||
1830 | |||
1831 | #else | ||
1832 | |||
1833 | static inline void init_aggregate(void) | ||
1834 | { | ||
1835 | } | ||
1836 | |||
1837 | static inline int get_aggregate(struct sched_domain *sd) | ||
1838 | { | ||
1839 | return 0; | ||
1840 | } | ||
1841 | |||
1842 | static inline void put_aggregate(struct sched_domain *sd) | ||
1843 | { | ||
1844 | } | ||
1845 | #endif | ||
1846 | |||
1847 | #else /* CONFIG_SMP */ | 1501 | #else /* CONFIG_SMP */ |
1848 | 1502 | ||
1849 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1503 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1864,14 +1518,26 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1864 | 1518 | ||
1865 | #define sched_class_highest (&rt_sched_class) | 1519 | #define sched_class_highest (&rt_sched_class) |
1866 | 1520 | ||
1867 | static void inc_nr_running(struct rq *rq) | 1521 | static inline void inc_load(struct rq *rq, const struct task_struct *p) |
1522 | { | ||
1523 | update_load_add(&rq->load, p->se.load.weight); | ||
1524 | } | ||
1525 | |||
1526 | static inline void dec_load(struct rq *rq, const struct task_struct *p) | ||
1527 | { | ||
1528 | update_load_sub(&rq->load, p->se.load.weight); | ||
1529 | } | ||
1530 | |||
1531 | static void inc_nr_running(struct task_struct *p, struct rq *rq) | ||
1868 | { | 1532 | { |
1869 | rq->nr_running++; | 1533 | rq->nr_running++; |
1534 | inc_load(rq, p); | ||
1870 | } | 1535 | } |
1871 | 1536 | ||
1872 | static void dec_nr_running(struct rq *rq) | 1537 | static void dec_nr_running(struct task_struct *p, struct rq *rq) |
1873 | { | 1538 | { |
1874 | rq->nr_running--; | 1539 | rq->nr_running--; |
1540 | dec_load(rq, p); | ||
1875 | } | 1541 | } |
1876 | 1542 | ||
1877 | static void set_load_weight(struct task_struct *p) | 1543 | static void set_load_weight(struct task_struct *p) |
@@ -1963,7 +1629,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
1963 | rq->nr_uninterruptible--; | 1629 | rq->nr_uninterruptible--; |
1964 | 1630 | ||
1965 | enqueue_task(rq, p, wakeup); | 1631 | enqueue_task(rq, p, wakeup); |
1966 | inc_nr_running(rq); | 1632 | inc_nr_running(p, rq); |
1967 | } | 1633 | } |
1968 | 1634 | ||
1969 | /* | 1635 | /* |
@@ -1975,7 +1641,7 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1975 | rq->nr_uninterruptible++; | 1641 | rq->nr_uninterruptible++; |
1976 | 1642 | ||
1977 | dequeue_task(rq, p, sleep); | 1643 | dequeue_task(rq, p, sleep); |
1978 | dec_nr_running(rq); | 1644 | dec_nr_running(p, rq); |
1979 | } | 1645 | } |
1980 | 1646 | ||
1981 | /** | 1647 | /** |
@@ -2631,7 +2297,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2631 | * management (if any): | 2297 | * management (if any): |
2632 | */ | 2298 | */ |
2633 | p->sched_class->task_new(rq, p); | 2299 | p->sched_class->task_new(rq, p); |
2634 | inc_nr_running(rq); | 2300 | inc_nr_running(p, rq); |
2635 | } | 2301 | } |
2636 | trace_mark(kernel_sched_wakeup_new, | 2302 | trace_mark(kernel_sched_wakeup_new, |
2637 | "pid %d state %ld ## rq %p task %p rq->curr %p", | 2303 | "pid %d state %ld ## rq %p task %p rq->curr %p", |
@@ -3630,12 +3296,9 @@ static int load_balance(int this_cpu, struct rq *this_rq, | |||
3630 | unsigned long imbalance; | 3296 | unsigned long imbalance; |
3631 | struct rq *busiest; | 3297 | struct rq *busiest; |
3632 | unsigned long flags; | 3298 | unsigned long flags; |
3633 | int unlock_aggregate; | ||
3634 | 3299 | ||
3635 | cpus_setall(*cpus); | 3300 | cpus_setall(*cpus); |
3636 | 3301 | ||
3637 | unlock_aggregate = get_aggregate(sd); | ||
3638 | |||
3639 | /* | 3302 | /* |
3640 | * When power savings policy is enabled for the parent domain, idle | 3303 | * When power savings policy is enabled for the parent domain, idle |
3641 | * sibling can pick up load irrespective of busy siblings. In this case, | 3304 | * sibling can pick up load irrespective of busy siblings. In this case, |
@@ -3751,9 +3414,8 @@ redo: | |||
3751 | 3414 | ||
3752 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3415 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3753 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3416 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3754 | ld_moved = -1; | 3417 | return -1; |
3755 | 3418 | return ld_moved; | |
3756 | goto out; | ||
3757 | 3419 | ||
3758 | out_balanced: | 3420 | out_balanced: |
3759 | schedstat_inc(sd, lb_balanced[idle]); | 3421 | schedstat_inc(sd, lb_balanced[idle]); |
@@ -3768,13 +3430,8 @@ out_one_pinned: | |||
3768 | 3430 | ||
3769 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3431 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3770 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3432 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3771 | ld_moved = -1; | 3433 | return -1; |
3772 | else | 3434 | return 0; |
3773 | ld_moved = 0; | ||
3774 | out: | ||
3775 | if (unlock_aggregate) | ||
3776 | put_aggregate(sd); | ||
3777 | return ld_moved; | ||
3778 | } | 3435 | } |
3779 | 3436 | ||
3780 | /* | 3437 | /* |
@@ -4481,7 +4138,7 @@ static inline void schedule_debug(struct task_struct *prev) | |||
4481 | * schedule() atomically, we ignore that path for now. | 4138 | * schedule() atomically, we ignore that path for now. |
4482 | * Otherwise, whine if we are scheduling when we should not be. | 4139 | * Otherwise, whine if we are scheduling when we should not be. |
4483 | */ | 4140 | */ |
4484 | if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state)) | 4141 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
4485 | __schedule_bug(prev); | 4142 | __schedule_bug(prev); |
4486 | 4143 | ||
4487 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 4144 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
@@ -4561,12 +4218,10 @@ need_resched_nonpreemptible: | |||
4561 | clear_tsk_need_resched(prev); | 4218 | clear_tsk_need_resched(prev); |
4562 | 4219 | ||
4563 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 4220 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
4564 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 4221 | if (unlikely(signal_pending_state(prev->state, prev))) |
4565 | signal_pending(prev))) { | ||
4566 | prev->state = TASK_RUNNING; | 4222 | prev->state = TASK_RUNNING; |
4567 | } else { | 4223 | else |
4568 | deactivate_task(rq, prev, 1); | 4224 | deactivate_task(rq, prev, 1); |
4569 | } | ||
4570 | switch_count = &prev->nvcsw; | 4225 | switch_count = &prev->nvcsw; |
4571 | } | 4226 | } |
4572 | 4227 | ||
@@ -4982,8 +4637,10 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4982 | goto out_unlock; | 4637 | goto out_unlock; |
4983 | } | 4638 | } |
4984 | on_rq = p->se.on_rq; | 4639 | on_rq = p->se.on_rq; |
4985 | if (on_rq) | 4640 | if (on_rq) { |
4986 | dequeue_task(rq, p, 0); | 4641 | dequeue_task(rq, p, 0); |
4642 | dec_load(rq, p); | ||
4643 | } | ||
4987 | 4644 | ||
4988 | p->static_prio = NICE_TO_PRIO(nice); | 4645 | p->static_prio = NICE_TO_PRIO(nice); |
4989 | set_load_weight(p); | 4646 | set_load_weight(p); |
@@ -4993,6 +4650,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4993 | 4650 | ||
4994 | if (on_rq) { | 4651 | if (on_rq) { |
4995 | enqueue_task(rq, p, 0); | 4652 | enqueue_task(rq, p, 0); |
4653 | inc_load(rq, p); | ||
4996 | /* | 4654 | /* |
4997 | * If the task increased its priority or is running and | 4655 | * If the task increased its priority or is running and |
4998 | * lowered its priority, then reschedule its CPU: | 4656 | * lowered its priority, then reschedule its CPU: |
@@ -7367,7 +7025,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7367 | SD_INIT(sd, ALLNODES); | 7025 | SD_INIT(sd, ALLNODES); |
7368 | set_domain_attribute(sd, attr); | 7026 | set_domain_attribute(sd, attr); |
7369 | sd->span = *cpu_map; | 7027 | sd->span = *cpu_map; |
7370 | sd->first_cpu = first_cpu(sd->span); | ||
7371 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); | 7028 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
7372 | p = sd; | 7029 | p = sd; |
7373 | sd_allnodes = 1; | 7030 | sd_allnodes = 1; |
@@ -7378,7 +7035,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7378 | SD_INIT(sd, NODE); | 7035 | SD_INIT(sd, NODE); |
7379 | set_domain_attribute(sd, attr); | 7036 | set_domain_attribute(sd, attr); |
7380 | sched_domain_node_span(cpu_to_node(i), &sd->span); | 7037 | sched_domain_node_span(cpu_to_node(i), &sd->span); |
7381 | sd->first_cpu = first_cpu(sd->span); | ||
7382 | sd->parent = p; | 7038 | sd->parent = p; |
7383 | if (p) | 7039 | if (p) |
7384 | p->child = sd; | 7040 | p->child = sd; |
@@ -7390,7 +7046,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7390 | SD_INIT(sd, CPU); | 7046 | SD_INIT(sd, CPU); |
7391 | set_domain_attribute(sd, attr); | 7047 | set_domain_attribute(sd, attr); |
7392 | sd->span = *nodemask; | 7048 | sd->span = *nodemask; |
7393 | sd->first_cpu = first_cpu(sd->span); | ||
7394 | sd->parent = p; | 7049 | sd->parent = p; |
7395 | if (p) | 7050 | if (p) |
7396 | p->child = sd; | 7051 | p->child = sd; |
@@ -7402,7 +7057,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7402 | SD_INIT(sd, MC); | 7057 | SD_INIT(sd, MC); |
7403 | set_domain_attribute(sd, attr); | 7058 | set_domain_attribute(sd, attr); |
7404 | sd->span = cpu_coregroup_map(i); | 7059 | sd->span = cpu_coregroup_map(i); |
7405 | sd->first_cpu = first_cpu(sd->span); | ||
7406 | cpus_and(sd->span, sd->span, *cpu_map); | 7060 | cpus_and(sd->span, sd->span, *cpu_map); |
7407 | sd->parent = p; | 7061 | sd->parent = p; |
7408 | p->child = sd; | 7062 | p->child = sd; |
@@ -7415,7 +7069,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7415 | SD_INIT(sd, SIBLING); | 7069 | SD_INIT(sd, SIBLING); |
7416 | set_domain_attribute(sd, attr); | 7070 | set_domain_attribute(sd, attr); |
7417 | sd->span = per_cpu(cpu_sibling_map, i); | 7071 | sd->span = per_cpu(cpu_sibling_map, i); |
7418 | sd->first_cpu = first_cpu(sd->span); | ||
7419 | cpus_and(sd->span, sd->span, *cpu_map); | 7072 | cpus_and(sd->span, sd->span, *cpu_map); |
7420 | sd->parent = p; | 7073 | sd->parent = p; |
7421 | p->child = sd; | 7074 | p->child = sd; |
@@ -7619,8 +7272,8 @@ static int build_sched_domains(const cpumask_t *cpu_map) | |||
7619 | 7272 | ||
7620 | static cpumask_t *doms_cur; /* current sched domains */ | 7273 | static cpumask_t *doms_cur; /* current sched domains */ |
7621 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 7274 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
7622 | static struct sched_domain_attr *dattr_cur; /* attribues of custom domains | 7275 | static struct sched_domain_attr *dattr_cur; |
7623 | in 'doms_cur' */ | 7276 | /* attribues of custom domains in 'doms_cur' */ |
7624 | 7277 | ||
7625 | /* | 7278 | /* |
7626 | * Special case: If a kmalloc of a doms_cur partition (array of | 7279 | * Special case: If a kmalloc of a doms_cur partition (array of |
@@ -8085,7 +7738,6 @@ void __init sched_init(void) | |||
8085 | } | 7738 | } |
8086 | 7739 | ||
8087 | #ifdef CONFIG_SMP | 7740 | #ifdef CONFIG_SMP |
8088 | init_aggregate(); | ||
8089 | init_defrootdomain(); | 7741 | init_defrootdomain(); |
8090 | #endif | 7742 | #endif |
8091 | 7743 | ||
@@ -8650,11 +8302,14 @@ void sched_move_task(struct task_struct *tsk) | |||
8650 | #endif | 8302 | #endif |
8651 | 8303 | ||
8652 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8304 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8653 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8305 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
8654 | { | 8306 | { |
8655 | struct cfs_rq *cfs_rq = se->cfs_rq; | 8307 | struct cfs_rq *cfs_rq = se->cfs_rq; |
8308 | struct rq *rq = cfs_rq->rq; | ||
8656 | int on_rq; | 8309 | int on_rq; |
8657 | 8310 | ||
8311 | spin_lock_irq(&rq->lock); | ||
8312 | |||
8658 | on_rq = se->on_rq; | 8313 | on_rq = se->on_rq; |
8659 | if (on_rq) | 8314 | if (on_rq) |
8660 | dequeue_entity(cfs_rq, se, 0); | 8315 | dequeue_entity(cfs_rq, se, 0); |
@@ -8664,17 +8319,8 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares) | |||
8664 | 8319 | ||
8665 | if (on_rq) | 8320 | if (on_rq) |
8666 | enqueue_entity(cfs_rq, se, 0); | 8321 | enqueue_entity(cfs_rq, se, 0); |
8667 | } | ||
8668 | 8322 | ||
8669 | static void set_se_shares(struct sched_entity *se, unsigned long shares) | 8323 | spin_unlock_irq(&rq->lock); |
8670 | { | ||
8671 | struct cfs_rq *cfs_rq = se->cfs_rq; | ||
8672 | struct rq *rq = cfs_rq->rq; | ||
8673 | unsigned long flags; | ||
8674 | |||
8675 | spin_lock_irqsave(&rq->lock, flags); | ||
8676 | __set_se_shares(se, shares); | ||
8677 | spin_unlock_irqrestore(&rq->lock, flags); | ||
8678 | } | 8324 | } |
8679 | 8325 | ||
8680 | static DEFINE_MUTEX(shares_mutex); | 8326 | static DEFINE_MUTEX(shares_mutex); |
@@ -8713,13 +8359,8 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |||
8713 | * w/o tripping rebalance_share or load_balance_fair. | 8359 | * w/o tripping rebalance_share or load_balance_fair. |
8714 | */ | 8360 | */ |
8715 | tg->shares = shares; | 8361 | tg->shares = shares; |
8716 | for_each_possible_cpu(i) { | 8362 | for_each_possible_cpu(i) |
8717 | /* | ||
8718 | * force a rebalance | ||
8719 | */ | ||
8720 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | ||
8721 | set_se_shares(tg->se[i], shares); | 8363 | set_se_shares(tg->se[i], shares); |
8722 | } | ||
8723 | 8364 | ||
8724 | /* | 8365 | /* |
8725 | * Enable load balance activity on this group, by inserting it back on | 8366 | * Enable load balance activity on this group, by inserting it back on |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index 9c597e37f7de..ce05271219ab 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -59,22 +59,26 @@ static inline struct sched_clock_data *cpu_sdc(int cpu) | |||
59 | return &per_cpu(sched_clock_data, cpu); | 59 | return &per_cpu(sched_clock_data, cpu); |
60 | } | 60 | } |
61 | 61 | ||
62 | static __read_mostly int sched_clock_running; | ||
63 | |||
62 | void sched_clock_init(void) | 64 | void sched_clock_init(void) |
63 | { | 65 | { |
64 | u64 ktime_now = ktime_to_ns(ktime_get()); | 66 | u64 ktime_now = ktime_to_ns(ktime_get()); |
65 | u64 now = 0; | 67 | unsigned long now_jiffies = jiffies; |
66 | int cpu; | 68 | int cpu; |
67 | 69 | ||
68 | for_each_possible_cpu(cpu) { | 70 | for_each_possible_cpu(cpu) { |
69 | struct sched_clock_data *scd = cpu_sdc(cpu); | 71 | struct sched_clock_data *scd = cpu_sdc(cpu); |
70 | 72 | ||
71 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 73 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; |
72 | scd->prev_jiffies = jiffies; | 74 | scd->prev_jiffies = now_jiffies; |
73 | scd->prev_raw = now; | 75 | scd->prev_raw = 0; |
74 | scd->tick_raw = now; | 76 | scd->tick_raw = 0; |
75 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
76 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
77 | } | 79 | } |
80 | |||
81 | sched_clock_running = 1; | ||
78 | } | 82 | } |
79 | 83 | ||
80 | /* | 84 | /* |
@@ -136,6 +140,9 @@ u64 sched_clock_cpu(int cpu) | |||
136 | struct sched_clock_data *scd = cpu_sdc(cpu); | 140 | struct sched_clock_data *scd = cpu_sdc(cpu); |
137 | u64 now, clock; | 141 | u64 now, clock; |
138 | 142 | ||
143 | if (unlikely(!sched_clock_running)) | ||
144 | return 0ull; | ||
145 | |||
139 | WARN_ON_ONCE(!irqs_disabled()); | 146 | WARN_ON_ONCE(!irqs_disabled()); |
140 | now = sched_clock(); | 147 | now = sched_clock(); |
141 | 148 | ||
@@ -174,6 +181,9 @@ void sched_clock_tick(void) | |||
174 | struct sched_clock_data *scd = this_scd(); | 181 | struct sched_clock_data *scd = this_scd(); |
175 | u64 now, now_gtod; | 182 | u64 now, now_gtod; |
176 | 183 | ||
184 | if (unlikely(!sched_clock_running)) | ||
185 | return; | ||
186 | |||
177 | WARN_ON_ONCE(!irqs_disabled()); | 187 | WARN_ON_ONCE(!irqs_disabled()); |
178 | 188 | ||
179 | now = sched_clock(); | 189 | now = sched_clock(); |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 5f06118fbc31..8bb713040ac9 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -167,11 +167,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) | |||
167 | #endif | 167 | #endif |
168 | SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", | 168 | SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", |
169 | cfs_rq->nr_spread_over); | 169 | cfs_rq->nr_spread_over); |
170 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
171 | #ifdef CONFIG_SMP | ||
172 | SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares); | ||
173 | #endif | ||
174 | #endif | ||
175 | } | 170 | } |
176 | 171 | ||
177 | static void print_cpu(struct seq_file *m, int cpu) | 172 | static void print_cpu(struct seq_file *m, int cpu) |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index e24ecd39c4b8..08ae848b71d4 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -334,34 +334,6 @@ int sched_nr_latency_handler(struct ctl_table *table, int write, | |||
334 | #endif | 334 | #endif |
335 | 335 | ||
336 | /* | 336 | /* |
337 | * delta *= w / rw | ||
338 | */ | ||
339 | static inline unsigned long | ||
340 | calc_delta_weight(unsigned long delta, struct sched_entity *se) | ||
341 | { | ||
342 | for_each_sched_entity(se) { | ||
343 | delta = calc_delta_mine(delta, | ||
344 | se->load.weight, &cfs_rq_of(se)->load); | ||
345 | } | ||
346 | |||
347 | return delta; | ||
348 | } | ||
349 | |||
350 | /* | ||
351 | * delta *= rw / w | ||
352 | */ | ||
353 | static inline unsigned long | ||
354 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | ||
355 | { | ||
356 | for_each_sched_entity(se) { | ||
357 | delta = calc_delta_mine(delta, | ||
358 | cfs_rq_of(se)->load.weight, &se->load); | ||
359 | } | ||
360 | |||
361 | return delta; | ||
362 | } | ||
363 | |||
364 | /* | ||
365 | * The idea is to set a period in which each task runs once. | 337 | * The idea is to set a period in which each task runs once. |
366 | * | 338 | * |
367 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 339 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch |
@@ -390,54 +362,47 @@ static u64 __sched_period(unsigned long nr_running) | |||
390 | */ | 362 | */ |
391 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 363 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
392 | { | 364 | { |
393 | return calc_delta_weight(__sched_period(cfs_rq->nr_running), se); | 365 | u64 slice = __sched_period(cfs_rq->nr_running); |
366 | |||
367 | for_each_sched_entity(se) { | ||
368 | cfs_rq = cfs_rq_of(se); | ||
369 | |||
370 | slice *= se->load.weight; | ||
371 | do_div(slice, cfs_rq->load.weight); | ||
372 | } | ||
373 | |||
374 | |||
375 | return slice; | ||
394 | } | 376 | } |
395 | 377 | ||
396 | /* | 378 | /* |
397 | * We calculate the vruntime slice of a to be inserted task | 379 | * We calculate the vruntime slice of a to be inserted task |
398 | * | 380 | * |
399 | * vs = s*rw/w = p | 381 | * vs = s/w = p/rw |
400 | */ | 382 | */ |
401 | static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) | 383 | static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) |
402 | { | 384 | { |
403 | unsigned long nr_running = cfs_rq->nr_running; | 385 | unsigned long nr_running = cfs_rq->nr_running; |
386 | unsigned long weight; | ||
387 | u64 vslice; | ||
404 | 388 | ||
405 | if (!se->on_rq) | 389 | if (!se->on_rq) |
406 | nr_running++; | 390 | nr_running++; |
407 | 391 | ||
408 | return __sched_period(nr_running); | 392 | vslice = __sched_period(nr_running); |
409 | } | ||
410 | |||
411 | /* | ||
412 | * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in | ||
413 | * that it favours >=0 over <0. | ||
414 | * | ||
415 | * -20 | | ||
416 | * | | ||
417 | * 0 --------+------- | ||
418 | * .' | ||
419 | * 19 .' | ||
420 | * | ||
421 | */ | ||
422 | static unsigned long | ||
423 | calc_delta_asym(unsigned long delta, struct sched_entity *se) | ||
424 | { | ||
425 | struct load_weight lw = { | ||
426 | .weight = NICE_0_LOAD, | ||
427 | .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT) | ||
428 | }; | ||
429 | 393 | ||
430 | for_each_sched_entity(se) { | 394 | for_each_sched_entity(se) { |
431 | struct load_weight *se_lw = &se->load; | 395 | cfs_rq = cfs_rq_of(se); |
432 | 396 | ||
433 | if (se->load.weight < NICE_0_LOAD) | 397 | weight = cfs_rq->load.weight; |
434 | se_lw = &lw; | 398 | if (!se->on_rq) |
399 | weight += se->load.weight; | ||
435 | 400 | ||
436 | delta = calc_delta_mine(delta, | 401 | vslice *= NICE_0_LOAD; |
437 | cfs_rq_of(se)->load.weight, se_lw); | 402 | do_div(vslice, weight); |
438 | } | 403 | } |
439 | 404 | ||
440 | return delta; | 405 | return vslice; |
441 | } | 406 | } |
442 | 407 | ||
443 | /* | 408 | /* |
@@ -454,7 +419,11 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | |||
454 | 419 | ||
455 | curr->sum_exec_runtime += delta_exec; | 420 | curr->sum_exec_runtime += delta_exec; |
456 | schedstat_add(cfs_rq, exec_clock, delta_exec); | 421 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
457 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 422 | delta_exec_weighted = delta_exec; |
423 | if (unlikely(curr->load.weight != NICE_0_LOAD)) { | ||
424 | delta_exec_weighted = calc_delta_fair(delta_exec_weighted, | ||
425 | &curr->load); | ||
426 | } | ||
458 | curr->vruntime += delta_exec_weighted; | 427 | curr->vruntime += delta_exec_weighted; |
459 | } | 428 | } |
460 | 429 | ||
@@ -541,27 +510,10 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
541 | * Scheduling class queueing methods: | 510 | * Scheduling class queueing methods: |
542 | */ | 511 | */ |
543 | 512 | ||
544 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
545 | static void | ||
546 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
547 | { | ||
548 | cfs_rq->task_weight += weight; | ||
549 | } | ||
550 | #else | ||
551 | static inline void | ||
552 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
553 | { | ||
554 | } | ||
555 | #endif | ||
556 | |||
557 | static void | 513 | static void |
558 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 514 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
559 | { | 515 | { |
560 | update_load_add(&cfs_rq->load, se->load.weight); | 516 | update_load_add(&cfs_rq->load, se->load.weight); |
561 | if (!parent_entity(se)) | ||
562 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
563 | if (entity_is_task(se)) | ||
564 | add_cfs_task_weight(cfs_rq, se->load.weight); | ||
565 | cfs_rq->nr_running++; | 517 | cfs_rq->nr_running++; |
566 | se->on_rq = 1; | 518 | se->on_rq = 1; |
567 | list_add(&se->group_node, &cfs_rq->tasks); | 519 | list_add(&se->group_node, &cfs_rq->tasks); |
@@ -571,10 +523,6 @@ static void | |||
571 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 523 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
572 | { | 524 | { |
573 | update_load_sub(&cfs_rq->load, se->load.weight); | 525 | update_load_sub(&cfs_rq->load, se->load.weight); |
574 | if (!parent_entity(se)) | ||
575 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
576 | if (entity_is_task(se)) | ||
577 | add_cfs_task_weight(cfs_rq, -se->load.weight); | ||
578 | cfs_rq->nr_running--; | 526 | cfs_rq->nr_running--; |
579 | se->on_rq = 0; | 527 | se->on_rq = 0; |
580 | list_del_init(&se->group_node); | 528 | list_del_init(&se->group_node); |
@@ -661,17 +609,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
661 | 609 | ||
662 | if (!initial) { | 610 | if (!initial) { |
663 | /* sleeps upto a single latency don't count. */ | 611 | /* sleeps upto a single latency don't count. */ |
664 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 612 | if (sched_feat(NEW_FAIR_SLEEPERS)) |
665 | unsigned long thresh = sysctl_sched_latency; | 613 | vruntime -= sysctl_sched_latency; |
666 | |||
667 | /* | ||
668 | * convert the sleeper threshold into virtual time | ||
669 | */ | ||
670 | if (sched_feat(NORMALIZED_SLEEPER)) | ||
671 | thresh = calc_delta_fair(thresh, se); | ||
672 | |||
673 | vruntime -= thresh; | ||
674 | } | ||
675 | 614 | ||
676 | /* ensure we never gain time by being placed backwards. */ | 615 | /* ensure we never gain time by being placed backwards. */ |
677 | vruntime = max_vruntime(se->vruntime, vruntime); | 616 | vruntime = max_vruntime(se->vruntime, vruntime); |
@@ -1057,16 +996,27 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, | |||
1057 | struct task_struct *curr = this_rq->curr; | 996 | struct task_struct *curr = this_rq->curr; |
1058 | unsigned long tl = this_load; | 997 | unsigned long tl = this_load; |
1059 | unsigned long tl_per_task; | 998 | unsigned long tl_per_task; |
999 | int balanced; | ||
1060 | 1000 | ||
1061 | if (!(this_sd->flags & SD_WAKE_AFFINE)) | 1001 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) |
1062 | return 0; | 1002 | return 0; |
1063 | 1003 | ||
1064 | /* | 1004 | /* |
1005 | * If sync wakeup then subtract the (maximum possible) | ||
1006 | * effect of the currently running task from the load | ||
1007 | * of the current CPU: | ||
1008 | */ | ||
1009 | if (sync) | ||
1010 | tl -= current->se.load.weight; | ||
1011 | |||
1012 | balanced = 100*(tl + p->se.load.weight) <= imbalance*load; | ||
1013 | |||
1014 | /* | ||
1065 | * If the currently running task will sleep within | 1015 | * If the currently running task will sleep within |
1066 | * a reasonable amount of time then attract this newly | 1016 | * a reasonable amount of time then attract this newly |
1067 | * woken task: | 1017 | * woken task: |
1068 | */ | 1018 | */ |
1069 | if (sync && curr->sched_class == &fair_sched_class) { | 1019 | if (sync && balanced && curr->sched_class == &fair_sched_class) { |
1070 | if (curr->se.avg_overlap < sysctl_sched_migration_cost && | 1020 | if (curr->se.avg_overlap < sysctl_sched_migration_cost && |
1071 | p->se.avg_overlap < sysctl_sched_migration_cost) | 1021 | p->se.avg_overlap < sysctl_sched_migration_cost) |
1072 | return 1; | 1022 | return 1; |
@@ -1075,16 +1025,8 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, | |||
1075 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1025 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
1076 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1026 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1077 | 1027 | ||
1078 | /* | ||
1079 | * If sync wakeup then subtract the (maximum possible) | ||
1080 | * effect of the currently running task from the load | ||
1081 | * of the current CPU: | ||
1082 | */ | ||
1083 | if (sync) | ||
1084 | tl -= current->se.load.weight; | ||
1085 | |||
1086 | if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || | 1028 | if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || |
1087 | 100*(tl + p->se.load.weight) <= imbalance*load) { | 1029 | balanced) { |
1088 | /* | 1030 | /* |
1089 | * This domain has SD_WAKE_AFFINE and | 1031 | * This domain has SD_WAKE_AFFINE and |
1090 | * p is cache cold in this domain, and | 1032 | * p is cache cold in this domain, and |
@@ -1169,10 +1111,11 @@ static unsigned long wakeup_gran(struct sched_entity *se) | |||
1169 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1111 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1170 | 1112 | ||
1171 | /* | 1113 | /* |
1172 | * More easily preempt - nice tasks, while not making it harder for | 1114 | * More easily preempt - nice tasks, while not making |
1173 | * + nice tasks. | 1115 | * it harder for + nice tasks. |
1174 | */ | 1116 | */ |
1175 | gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se); | 1117 | if (unlikely(se->load.weight > NICE_0_LOAD)) |
1118 | gran = calc_delta_fair(gran, &se->load); | ||
1176 | 1119 | ||
1177 | return gran; | 1120 | return gran; |
1178 | } | 1121 | } |
@@ -1366,90 +1309,75 @@ static struct task_struct *load_balance_next_fair(void *arg) | |||
1366 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); | 1309 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); |
1367 | } | 1310 | } |
1368 | 1311 | ||
1369 | static unsigned long | 1312 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1370 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1313 | static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) |
1371 | unsigned long max_load_move, struct sched_domain *sd, | ||
1372 | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | ||
1373 | struct cfs_rq *cfs_rq) | ||
1374 | { | 1314 | { |
1375 | struct rq_iterator cfs_rq_iterator; | 1315 | struct sched_entity *curr; |
1316 | struct task_struct *p; | ||
1376 | 1317 | ||
1377 | cfs_rq_iterator.start = load_balance_start_fair; | 1318 | if (!cfs_rq->nr_running || !first_fair(cfs_rq)) |
1378 | cfs_rq_iterator.next = load_balance_next_fair; | 1319 | return MAX_PRIO; |
1379 | cfs_rq_iterator.arg = cfs_rq; | 1320 | |
1321 | curr = cfs_rq->curr; | ||
1322 | if (!curr) | ||
1323 | curr = __pick_next_entity(cfs_rq); | ||
1324 | |||
1325 | p = task_of(curr); | ||
1380 | 1326 | ||
1381 | return balance_tasks(this_rq, this_cpu, busiest, | 1327 | return p->prio; |
1382 | max_load_move, sd, idle, all_pinned, | ||
1383 | this_best_prio, &cfs_rq_iterator); | ||
1384 | } | 1328 | } |
1329 | #endif | ||
1385 | 1330 | ||
1386 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1387 | static unsigned long | 1331 | static unsigned long |
1388 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1332 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1389 | unsigned long max_load_move, | 1333 | unsigned long max_load_move, |
1390 | struct sched_domain *sd, enum cpu_idle_type idle, | 1334 | struct sched_domain *sd, enum cpu_idle_type idle, |
1391 | int *all_pinned, int *this_best_prio) | 1335 | int *all_pinned, int *this_best_prio) |
1392 | { | 1336 | { |
1337 | struct cfs_rq *busy_cfs_rq; | ||
1393 | long rem_load_move = max_load_move; | 1338 | long rem_load_move = max_load_move; |
1394 | int busiest_cpu = cpu_of(busiest); | 1339 | struct rq_iterator cfs_rq_iterator; |
1395 | struct task_group *tg; | ||
1396 | |||
1397 | rcu_read_lock(); | ||
1398 | list_for_each_entry(tg, &task_groups, list) { | ||
1399 | long imbalance; | ||
1400 | unsigned long this_weight, busiest_weight; | ||
1401 | long rem_load, max_load, moved_load; | ||
1402 | |||
1403 | /* | ||
1404 | * empty group | ||
1405 | */ | ||
1406 | if (!aggregate(tg, sd)->task_weight) | ||
1407 | continue; | ||
1408 | |||
1409 | rem_load = rem_load_move * aggregate(tg, sd)->rq_weight; | ||
1410 | rem_load /= aggregate(tg, sd)->load + 1; | ||
1411 | |||
1412 | this_weight = tg->cfs_rq[this_cpu]->task_weight; | ||
1413 | busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight; | ||
1414 | 1340 | ||
1415 | imbalance = (busiest_weight - this_weight) / 2; | 1341 | cfs_rq_iterator.start = load_balance_start_fair; |
1342 | cfs_rq_iterator.next = load_balance_next_fair; | ||
1416 | 1343 | ||
1417 | if (imbalance < 0) | 1344 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { |
1418 | imbalance = busiest_weight; | 1345 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1346 | struct cfs_rq *this_cfs_rq; | ||
1347 | long imbalance; | ||
1348 | unsigned long maxload; | ||
1419 | 1349 | ||
1420 | max_load = max(rem_load, imbalance); | 1350 | this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu); |
1421 | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, | ||
1422 | max_load, sd, idle, all_pinned, this_best_prio, | ||
1423 | tg->cfs_rq[busiest_cpu]); | ||
1424 | 1351 | ||
1425 | if (!moved_load) | 1352 | imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight; |
1353 | /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */ | ||
1354 | if (imbalance <= 0) | ||
1426 | continue; | 1355 | continue; |
1427 | 1356 | ||
1428 | move_group_shares(tg, sd, busiest_cpu, this_cpu); | 1357 | /* Don't pull more than imbalance/2 */ |
1358 | imbalance /= 2; | ||
1359 | maxload = min(rem_load_move, imbalance); | ||
1429 | 1360 | ||
1430 | moved_load *= aggregate(tg, sd)->load; | 1361 | *this_best_prio = cfs_rq_best_prio(this_cfs_rq); |
1431 | moved_load /= aggregate(tg, sd)->rq_weight + 1; | 1362 | #else |
1363 | # define maxload rem_load_move | ||
1364 | #endif | ||
1365 | /* | ||
1366 | * pass busy_cfs_rq argument into | ||
1367 | * load_balance_[start|next]_fair iterators | ||
1368 | */ | ||
1369 | cfs_rq_iterator.arg = busy_cfs_rq; | ||
1370 | rem_load_move -= balance_tasks(this_rq, this_cpu, busiest, | ||
1371 | maxload, sd, idle, all_pinned, | ||
1372 | this_best_prio, | ||
1373 | &cfs_rq_iterator); | ||
1432 | 1374 | ||
1433 | rem_load_move -= moved_load; | 1375 | if (rem_load_move <= 0) |
1434 | if (rem_load_move < 0) | ||
1435 | break; | 1376 | break; |
1436 | } | 1377 | } |
1437 | rcu_read_unlock(); | ||
1438 | 1378 | ||
1439 | return max_load_move - rem_load_move; | 1379 | return max_load_move - rem_load_move; |
1440 | } | 1380 | } |
1441 | #else | ||
1442 | static unsigned long | ||
1443 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1444 | unsigned long max_load_move, | ||
1445 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1446 | int *all_pinned, int *this_best_prio) | ||
1447 | { | ||
1448 | return __load_balance_fair(this_rq, this_cpu, busiest, | ||
1449 | max_load_move, sd, idle, all_pinned, | ||
1450 | this_best_prio, &busiest->cfs); | ||
1451 | } | ||
1452 | #endif | ||
1453 | 1381 | ||
1454 | static int | 1382 | static int |
1455 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1383 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 060e87b0cb1c..3432d573205d 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -513,8 +513,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
513 | */ | 513 | */ |
514 | for_each_sched_rt_entity(rt_se) | 514 | for_each_sched_rt_entity(rt_se) |
515 | enqueue_rt_entity(rt_se); | 515 | enqueue_rt_entity(rt_se); |
516 | |||
517 | inc_cpu_load(rq, p->se.load.weight); | ||
518 | } | 516 | } |
519 | 517 | ||
520 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 518 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
@@ -534,8 +532,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
534 | if (rt_rq && rt_rq->rt_nr_running) | 532 | if (rt_rq && rt_rq->rt_nr_running) |
535 | enqueue_rt_entity(rt_se); | 533 | enqueue_rt_entity(rt_se); |
536 | } | 534 | } |
537 | |||
538 | dec_cpu_load(rq, p->se.load.weight); | ||
539 | } | 535 | } |
540 | 536 | ||
541 | /* | 537 | /* |
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h index 5bae2e0c3ff2..a38878e0e49d 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched_stats.h | |||
@@ -67,6 +67,7 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
67 | preempt_enable(); | 67 | preempt_enable(); |
68 | #endif | 68 | #endif |
69 | } | 69 | } |
70 | kfree(mask_str); | ||
70 | return 0; | 71 | return 0; |
71 | } | 72 | } |
72 | 73 | ||
diff --git a/kernel/signal.c b/kernel/signal.c index 72bb4f51f963..6c0958e52ea7 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -231,6 +231,40 @@ void flush_signals(struct task_struct *t) | |||
231 | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 231 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
232 | } | 232 | } |
233 | 233 | ||
234 | static void __flush_itimer_signals(struct sigpending *pending) | ||
235 | { | ||
236 | sigset_t signal, retain; | ||
237 | struct sigqueue *q, *n; | ||
238 | |||
239 | signal = pending->signal; | ||
240 | sigemptyset(&retain); | ||
241 | |||
242 | list_for_each_entry_safe(q, n, &pending->list, list) { | ||
243 | int sig = q->info.si_signo; | ||
244 | |||
245 | if (likely(q->info.si_code != SI_TIMER)) { | ||
246 | sigaddset(&retain, sig); | ||
247 | } else { | ||
248 | sigdelset(&signal, sig); | ||
249 | list_del_init(&q->list); | ||
250 | __sigqueue_free(q); | ||
251 | } | ||
252 | } | ||
253 | |||
254 | sigorsets(&pending->signal, &signal, &retain); | ||
255 | } | ||
256 | |||
257 | void flush_itimer_signals(void) | ||
258 | { | ||
259 | struct task_struct *tsk = current; | ||
260 | unsigned long flags; | ||
261 | |||
262 | spin_lock_irqsave(&tsk->sighand->siglock, flags); | ||
263 | __flush_itimer_signals(&tsk->pending); | ||
264 | __flush_itimer_signals(&tsk->signal->shared_pending); | ||
265 | spin_unlock_irqrestore(&tsk->sighand->siglock, flags); | ||
266 | } | ||
267 | |||
234 | void ignore_signals(struct task_struct *t) | 268 | void ignore_signals(struct task_struct *t) |
235 | { | 269 | { |
236 | int i; | 270 | int i; |
@@ -1240,17 +1274,22 @@ void sigqueue_free(struct sigqueue *q) | |||
1240 | 1274 | ||
1241 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 1275 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
1242 | /* | 1276 | /* |
1243 | * If the signal is still pending remove it from the | 1277 | * We must hold ->siglock while testing q->list |
1244 | * pending queue. We must hold ->siglock while testing | 1278 | * to serialize with collect_signal() or with |
1245 | * q->list to serialize with collect_signal(). | 1279 | * __exit_signal()->flush_sigqueue(). |
1246 | */ | 1280 | */ |
1247 | spin_lock_irqsave(lock, flags); | 1281 | spin_lock_irqsave(lock, flags); |
1282 | q->flags &= ~SIGQUEUE_PREALLOC; | ||
1283 | /* | ||
1284 | * If it is queued it will be freed when dequeued, | ||
1285 | * like the "regular" sigqueue. | ||
1286 | */ | ||
1248 | if (!list_empty(&q->list)) | 1287 | if (!list_empty(&q->list)) |
1249 | list_del_init(&q->list); | 1288 | q = NULL; |
1250 | spin_unlock_irqrestore(lock, flags); | 1289 | spin_unlock_irqrestore(lock, flags); |
1251 | 1290 | ||
1252 | q->flags &= ~SIGQUEUE_PREALLOC; | 1291 | if (q) |
1253 | __sigqueue_free(q); | 1292 | __sigqueue_free(q); |
1254 | } | 1293 | } |
1255 | 1294 | ||
1256 | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) | 1295 | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) |
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 0101aeef7ed7..b7350bbfb076 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
@@ -62,8 +62,7 @@ static int stopmachine(void *cpu) | |||
62 | * help our sisters onto their CPUs. */ | 62 | * help our sisters onto their CPUs. */ |
63 | if (!prepared && !irqs_disabled) | 63 | if (!prepared && !irqs_disabled) |
64 | yield(); | 64 | yield(); |
65 | else | 65 | cpu_relax(); |
66 | cpu_relax(); | ||
67 | } | 66 | } |
68 | 67 | ||
69 | /* Ack: we are exiting. */ | 68 | /* Ack: we are exiting. */ |
@@ -106,8 +105,10 @@ static int stop_machine(void) | |||
106 | } | 105 | } |
107 | 106 | ||
108 | /* Wait for them all to come to life. */ | 107 | /* Wait for them all to come to life. */ |
109 | while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) | 108 | while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) { |
110 | yield(); | 109 | yield(); |
110 | cpu_relax(); | ||
111 | } | ||
111 | 112 | ||
112 | /* If some failed, kill them all. */ | 113 | /* If some failed, kill them all. */ |
113 | if (ret < 0) { | 114 | if (ret < 0) { |
diff --git a/kernel/sys.c b/kernel/sys.c index 895d2d4c9493..14e97282eb6c 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -1652,7 +1652,7 @@ asmlinkage long sys_umask(int mask) | |||
1652 | asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, | 1652 | asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, |
1653 | unsigned long arg4, unsigned long arg5) | 1653 | unsigned long arg4, unsigned long arg5) |
1654 | { | 1654 | { |
1655 | long uninitialized_var(error); | 1655 | long error = 0; |
1656 | 1656 | ||
1657 | if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error)) | 1657 | if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error)) |
1658 | return error; | 1658 | return error; |
@@ -1701,9 +1701,7 @@ asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, | |||
1701 | error = PR_TIMING_STATISTICAL; | 1701 | error = PR_TIMING_STATISTICAL; |
1702 | break; | 1702 | break; |
1703 | case PR_SET_TIMING: | 1703 | case PR_SET_TIMING: |
1704 | if (arg2 == PR_TIMING_STATISTICAL) | 1704 | if (arg2 != PR_TIMING_STATISTICAL) |
1705 | error = 0; | ||
1706 | else | ||
1707 | error = -EINVAL; | 1705 | error = -EINVAL; |
1708 | break; | 1706 | break; |
1709 | 1707 | ||