diff options
author | Ingo Molnar <mingo@elte.hu> | 2008-07-10 02:17:14 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-07-10 02:17:14 -0400 |
commit | 9e4144abf8a30ae221311368bbb10690ebdb4b76 (patch) | |
tree | 032289d5b7d87976675c1a1a32d512a44d234fa2 /kernel | |
parent | e17ba73b0ee6c0f24393c48b455e0d8db761782c (diff) | |
parent | 6329d3021bcfa9038621e6e917d98929421d8ec8 (diff) |
Merge branch 'linus' into core/printk
Conflicts:
kernel/printk.c
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/audit.c | 6 | ||||
-rw-r--r-- | kernel/auditfilter.c | 3 | ||||
-rw-r--r-- | kernel/capability.c | 132 | ||||
-rw-r--r-- | kernel/cgroup.c | 2 | ||||
-rw-r--r-- | kernel/cpuset.c | 20 | ||||
-rw-r--r-- | kernel/exit.c | 7 | ||||
-rw-r--r-- | kernel/futex.c | 93 | ||||
-rw-r--r-- | kernel/hrtimer.c | 8 | ||||
-rw-r--r-- | kernel/kgdb.c | 19 | ||||
-rw-r--r-- | kernel/kprobes.c | 15 | ||||
-rw-r--r-- | kernel/module.c | 18 | ||||
-rw-r--r-- | kernel/rcuclassic.c | 16 | ||||
-rw-r--r-- | kernel/rcupreempt.c | 2 | ||||
-rw-r--r-- | kernel/relay.c | 2 | ||||
-rw-r--r-- | kernel/sched.c | 521 | ||||
-rw-r--r-- | kernel/sched_clock.c | 18 | ||||
-rw-r--r-- | kernel/sched_debug.c | 5 | ||||
-rw-r--r-- | kernel/sched_fair.c | 254 | ||||
-rw-r--r-- | kernel/sched_rt.c | 70 | ||||
-rw-r--r-- | kernel/sched_stats.h | 7 | ||||
-rw-r--r-- | kernel/signal.c | 51 | ||||
-rw-r--r-- | kernel/softlockup.c | 16 | ||||
-rw-r--r-- | kernel/stop_machine.c | 7 | ||||
-rw-r--r-- | kernel/sys.c | 6 | ||||
-rw-r--r-- | kernel/workqueue.c | 2 |
25 files changed, 559 insertions, 741 deletions
diff --git a/kernel/audit.c b/kernel/audit.c index e8692a5748c2..e092f1c0ce30 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
@@ -738,7 +738,7 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
738 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) | 738 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) |
739 | return 0; | 739 | return 0; |
740 | 740 | ||
741 | err = audit_filter_user(&NETLINK_CB(skb), msg_type); | 741 | err = audit_filter_user(&NETLINK_CB(skb)); |
742 | if (err == 1) { | 742 | if (err == 1) { |
743 | err = 0; | 743 | err = 0; |
744 | if (msg_type == AUDIT_USER_TTY) { | 744 | if (msg_type == AUDIT_USER_TTY) { |
@@ -779,7 +779,7 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
779 | } | 779 | } |
780 | /* fallthrough */ | 780 | /* fallthrough */ |
781 | case AUDIT_LIST: | 781 | case AUDIT_LIST: |
782 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | 782 | err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, |
783 | uid, seq, data, nlmsg_len(nlh), | 783 | uid, seq, data, nlmsg_len(nlh), |
784 | loginuid, sessionid, sid); | 784 | loginuid, sessionid, sid); |
785 | break; | 785 | break; |
@@ -798,7 +798,7 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
798 | } | 798 | } |
799 | /* fallthrough */ | 799 | /* fallthrough */ |
800 | case AUDIT_LIST_RULES: | 800 | case AUDIT_LIST_RULES: |
801 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | 801 | err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, |
802 | uid, seq, data, nlmsg_len(nlh), | 802 | uid, seq, data, nlmsg_len(nlh), |
803 | loginuid, sessionid, sid); | 803 | loginuid, sessionid, sid); |
804 | break; | 804 | break; |
diff --git a/kernel/auditfilter.c b/kernel/auditfilter.c index 0e0bd27e6512..98c50cc671bb 100644 --- a/kernel/auditfilter.c +++ b/kernel/auditfilter.c | |||
@@ -1544,6 +1544,7 @@ static void audit_log_rule_change(uid_t loginuid, u32 sessionid, u32 sid, | |||
1544 | * @data: payload data | 1544 | * @data: payload data |
1545 | * @datasz: size of payload data | 1545 | * @datasz: size of payload data |
1546 | * @loginuid: loginuid of sender | 1546 | * @loginuid: loginuid of sender |
1547 | * @sessionid: sessionid for netlink audit message | ||
1547 | * @sid: SE Linux Security ID of sender | 1548 | * @sid: SE Linux Security ID of sender |
1548 | */ | 1549 | */ |
1549 | int audit_receive_filter(int type, int pid, int uid, int seq, void *data, | 1550 | int audit_receive_filter(int type, int pid, int uid, int seq, void *data, |
@@ -1720,7 +1721,7 @@ static int audit_filter_user_rules(struct netlink_skb_parms *cb, | |||
1720 | return 1; | 1721 | return 1; |
1721 | } | 1722 | } |
1722 | 1723 | ||
1723 | int audit_filter_user(struct netlink_skb_parms *cb, int type) | 1724 | int audit_filter_user(struct netlink_skb_parms *cb) |
1724 | { | 1725 | { |
1725 | enum audit_state state = AUDIT_DISABLED; | 1726 | enum audit_state state = AUDIT_DISABLED; |
1726 | struct audit_entry *e; | 1727 | struct audit_entry *e; |
diff --git a/kernel/capability.c b/kernel/capability.c index 39e8193b41ea..901e0fdc3fff 100644 --- a/kernel/capability.c +++ b/kernel/capability.c | |||
@@ -53,11 +53,95 @@ static void warn_legacy_capability_use(void) | |||
53 | } | 53 | } |
54 | 54 | ||
55 | /* | 55 | /* |
56 | * Version 2 capabilities worked fine, but the linux/capability.h file | ||
57 | * that accompanied their introduction encouraged their use without | ||
58 | * the necessary user-space source code changes. As such, we have | ||
59 | * created a version 3 with equivalent functionality to version 2, but | ||
60 | * with a header change to protect legacy source code from using | ||
61 | * version 2 when it wanted to use version 1. If your system has code | ||
62 | * that trips the following warning, it is using version 2 specific | ||
63 | * capabilities and may be doing so insecurely. | ||
64 | * | ||
65 | * The remedy is to either upgrade your version of libcap (to 2.10+, | ||
66 | * if the application is linked against it), or recompile your | ||
67 | * application with modern kernel headers and this warning will go | ||
68 | * away. | ||
69 | */ | ||
70 | |||
71 | static void warn_deprecated_v2(void) | ||
72 | { | ||
73 | static int warned; | ||
74 | |||
75 | if (!warned) { | ||
76 | char name[sizeof(current->comm)]; | ||
77 | |||
78 | printk(KERN_INFO "warning: `%s' uses deprecated v2" | ||
79 | " capabilities in a way that may be insecure.\n", | ||
80 | get_task_comm(name, current)); | ||
81 | warned = 1; | ||
82 | } | ||
83 | } | ||
84 | |||
85 | /* | ||
86 | * Version check. Return the number of u32s in each capability flag | ||
87 | * array, or a negative value on error. | ||
88 | */ | ||
89 | static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) | ||
90 | { | ||
91 | __u32 version; | ||
92 | |||
93 | if (get_user(version, &header->version)) | ||
94 | return -EFAULT; | ||
95 | |||
96 | switch (version) { | ||
97 | case _LINUX_CAPABILITY_VERSION_1: | ||
98 | warn_legacy_capability_use(); | ||
99 | *tocopy = _LINUX_CAPABILITY_U32S_1; | ||
100 | break; | ||
101 | case _LINUX_CAPABILITY_VERSION_2: | ||
102 | warn_deprecated_v2(); | ||
103 | /* | ||
104 | * fall through - v3 is otherwise equivalent to v2. | ||
105 | */ | ||
106 | case _LINUX_CAPABILITY_VERSION_3: | ||
107 | *tocopy = _LINUX_CAPABILITY_U32S_3; | ||
108 | break; | ||
109 | default: | ||
110 | if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) | ||
111 | return -EFAULT; | ||
112 | return -EINVAL; | ||
113 | } | ||
114 | |||
115 | return 0; | ||
116 | } | ||
117 | |||
118 | /* | ||
56 | * For sys_getproccap() and sys_setproccap(), any of the three | 119 | * For sys_getproccap() and sys_setproccap(), any of the three |
57 | * capability set pointers may be NULL -- indicating that that set is | 120 | * capability set pointers may be NULL -- indicating that that set is |
58 | * uninteresting and/or not to be changed. | 121 | * uninteresting and/or not to be changed. |
59 | */ | 122 | */ |
60 | 123 | ||
124 | /* | ||
125 | * Atomically modify the effective capabilities returning the original | ||
126 | * value. No permission check is performed here - it is assumed that the | ||
127 | * caller is permitted to set the desired effective capabilities. | ||
128 | */ | ||
129 | kernel_cap_t cap_set_effective(const kernel_cap_t pE_new) | ||
130 | { | ||
131 | kernel_cap_t pE_old; | ||
132 | |||
133 | spin_lock(&task_capability_lock); | ||
134 | |||
135 | pE_old = current->cap_effective; | ||
136 | current->cap_effective = pE_new; | ||
137 | |||
138 | spin_unlock(&task_capability_lock); | ||
139 | |||
140 | return pE_old; | ||
141 | } | ||
142 | |||
143 | EXPORT_SYMBOL(cap_set_effective); | ||
144 | |||
61 | /** | 145 | /** |
62 | * sys_capget - get the capabilities of a given process. | 146 | * sys_capget - get the capabilities of a given process. |
63 | * @header: pointer to struct that contains capability version and | 147 | * @header: pointer to struct that contains capability version and |
@@ -71,27 +155,13 @@ asmlinkage long sys_capget(cap_user_header_t header, cap_user_data_t dataptr) | |||
71 | { | 155 | { |
72 | int ret = 0; | 156 | int ret = 0; |
73 | pid_t pid; | 157 | pid_t pid; |
74 | __u32 version; | ||
75 | struct task_struct *target; | 158 | struct task_struct *target; |
76 | unsigned tocopy; | 159 | unsigned tocopy; |
77 | kernel_cap_t pE, pI, pP; | 160 | kernel_cap_t pE, pI, pP; |
78 | 161 | ||
79 | if (get_user(version, &header->version)) | 162 | ret = cap_validate_magic(header, &tocopy); |
80 | return -EFAULT; | 163 | if (ret != 0) |
81 | 164 | return ret; | |
82 | switch (version) { | ||
83 | case _LINUX_CAPABILITY_VERSION_1: | ||
84 | warn_legacy_capability_use(); | ||
85 | tocopy = _LINUX_CAPABILITY_U32S_1; | ||
86 | break; | ||
87 | case _LINUX_CAPABILITY_VERSION_2: | ||
88 | tocopy = _LINUX_CAPABILITY_U32S_2; | ||
89 | break; | ||
90 | default: | ||
91 | if (put_user(_LINUX_CAPABILITY_VERSION, &header->version)) | ||
92 | return -EFAULT; | ||
93 | return -EINVAL; | ||
94 | } | ||
95 | 165 | ||
96 | if (get_user(pid, &header->pid)) | 166 | if (get_user(pid, &header->pid)) |
97 | return -EFAULT; | 167 | return -EFAULT; |
@@ -118,7 +188,7 @@ out: | |||
118 | spin_unlock(&task_capability_lock); | 188 | spin_unlock(&task_capability_lock); |
119 | 189 | ||
120 | if (!ret) { | 190 | if (!ret) { |
121 | struct __user_cap_data_struct kdata[_LINUX_CAPABILITY_U32S]; | 191 | struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; |
122 | unsigned i; | 192 | unsigned i; |
123 | 193 | ||
124 | for (i = 0; i < tocopy; i++) { | 194 | for (i = 0; i < tocopy; i++) { |
@@ -128,7 +198,7 @@ out: | |||
128 | } | 198 | } |
129 | 199 | ||
130 | /* | 200 | /* |
131 | * Note, in the case, tocopy < _LINUX_CAPABILITY_U32S, | 201 | * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, |
132 | * we silently drop the upper capabilities here. This | 202 | * we silently drop the upper capabilities here. This |
133 | * has the effect of making older libcap | 203 | * has the effect of making older libcap |
134 | * implementations implicitly drop upper capability | 204 | * implementations implicitly drop upper capability |
@@ -240,30 +310,16 @@ static inline int cap_set_all(kernel_cap_t *effective, | |||
240 | */ | 310 | */ |
241 | asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data) | 311 | asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data) |
242 | { | 312 | { |
243 | struct __user_cap_data_struct kdata[_LINUX_CAPABILITY_U32S]; | 313 | struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; |
244 | unsigned i, tocopy; | 314 | unsigned i, tocopy; |
245 | kernel_cap_t inheritable, permitted, effective; | 315 | kernel_cap_t inheritable, permitted, effective; |
246 | __u32 version; | ||
247 | struct task_struct *target; | 316 | struct task_struct *target; |
248 | int ret; | 317 | int ret; |
249 | pid_t pid; | 318 | pid_t pid; |
250 | 319 | ||
251 | if (get_user(version, &header->version)) | 320 | ret = cap_validate_magic(header, &tocopy); |
252 | return -EFAULT; | 321 | if (ret != 0) |
253 | 322 | return ret; | |
254 | switch (version) { | ||
255 | case _LINUX_CAPABILITY_VERSION_1: | ||
256 | warn_legacy_capability_use(); | ||
257 | tocopy = _LINUX_CAPABILITY_U32S_1; | ||
258 | break; | ||
259 | case _LINUX_CAPABILITY_VERSION_2: | ||
260 | tocopy = _LINUX_CAPABILITY_U32S_2; | ||
261 | break; | ||
262 | default: | ||
263 | if (put_user(_LINUX_CAPABILITY_VERSION, &header->version)) | ||
264 | return -EFAULT; | ||
265 | return -EINVAL; | ||
266 | } | ||
267 | 323 | ||
268 | if (get_user(pid, &header->pid)) | 324 | if (get_user(pid, &header->pid)) |
269 | return -EFAULT; | 325 | return -EFAULT; |
@@ -281,7 +337,7 @@ asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data) | |||
281 | permitted.cap[i] = kdata[i].permitted; | 337 | permitted.cap[i] = kdata[i].permitted; |
282 | inheritable.cap[i] = kdata[i].inheritable; | 338 | inheritable.cap[i] = kdata[i].inheritable; |
283 | } | 339 | } |
284 | while (i < _LINUX_CAPABILITY_U32S) { | 340 | while (i < _KERNEL_CAPABILITY_U32S) { |
285 | effective.cap[i] = 0; | 341 | effective.cap[i] = 0; |
286 | permitted.cap[i] = 0; | 342 | permitted.cap[i] = 0; |
287 | inheritable.cap[i] = 0; | 343 | inheritable.cap[i] = 0; |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index fbc6fc8949b4..15ac0e1e4f4d 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -2903,7 +2903,7 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys) | |||
2903 | cg = tsk->cgroups; | 2903 | cg = tsk->cgroups; |
2904 | parent = task_cgroup(tsk, subsys->subsys_id); | 2904 | parent = task_cgroup(tsk, subsys->subsys_id); |
2905 | 2905 | ||
2906 | snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid); | 2906 | snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid); |
2907 | 2907 | ||
2908 | /* Pin the hierarchy */ | 2908 | /* Pin the hierarchy */ |
2909 | atomic_inc(&parent->root->sb->s_active); | 2909 | atomic_inc(&parent->root->sb->s_active); |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 86ea9e34e326..9fceb97e989c 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -797,8 +797,10 @@ static int update_cpumask(struct cpuset *cs, char *buf) | |||
797 | retval = cpulist_parse(buf, trialcs.cpus_allowed); | 797 | retval = cpulist_parse(buf, trialcs.cpus_allowed); |
798 | if (retval < 0) | 798 | if (retval < 0) |
799 | return retval; | 799 | return retval; |
800 | |||
801 | if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map)) | ||
802 | return -EINVAL; | ||
800 | } | 803 | } |
801 | cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); | ||
802 | retval = validate_change(cs, &trialcs); | 804 | retval = validate_change(cs, &trialcs); |
803 | if (retval < 0) | 805 | if (retval < 0) |
804 | return retval; | 806 | return retval; |
@@ -932,9 +934,11 @@ static int update_nodemask(struct cpuset *cs, char *buf) | |||
932 | retval = nodelist_parse(buf, trialcs.mems_allowed); | 934 | retval = nodelist_parse(buf, trialcs.mems_allowed); |
933 | if (retval < 0) | 935 | if (retval < 0) |
934 | goto done; | 936 | goto done; |
937 | |||
938 | if (!nodes_subset(trialcs.mems_allowed, | ||
939 | node_states[N_HIGH_MEMORY])) | ||
940 | return -EINVAL; | ||
935 | } | 941 | } |
936 | nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, | ||
937 | node_states[N_HIGH_MEMORY]); | ||
938 | oldmem = cs->mems_allowed; | 942 | oldmem = cs->mems_allowed; |
939 | if (nodes_equal(oldmem, trialcs.mems_allowed)) { | 943 | if (nodes_equal(oldmem, trialcs.mems_allowed)) { |
940 | retval = 0; /* Too easy - nothing to do */ | 944 | retval = 0; /* Too easy - nothing to do */ |
@@ -1033,8 +1037,8 @@ int current_cpuset_is_being_rebound(void) | |||
1033 | 1037 | ||
1034 | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 1038 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1035 | { | 1039 | { |
1036 | if ((int)val < 0) | 1040 | if (val < -1 || val >= SD_LV_MAX) |
1037 | val = -1; | 1041 | return -EINVAL; |
1038 | 1042 | ||
1039 | if (val != cs->relax_domain_level) { | 1043 | if (val != cs->relax_domain_level) { |
1040 | cs->relax_domain_level = val; | 1044 | cs->relax_domain_level = val; |
@@ -1886,6 +1890,12 @@ static void common_cpu_mem_hotplug_unplug(void) | |||
1886 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 1890 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
1887 | scan_for_empty_cpusets(&top_cpuset); | 1891 | scan_for_empty_cpusets(&top_cpuset); |
1888 | 1892 | ||
1893 | /* | ||
1894 | * Scheduler destroys domains on hotplug events. | ||
1895 | * Rebuild them based on the current settings. | ||
1896 | */ | ||
1897 | rebuild_sched_domains(); | ||
1898 | |||
1889 | cgroup_unlock(); | 1899 | cgroup_unlock(); |
1890 | } | 1900 | } |
1891 | 1901 | ||
diff --git a/kernel/exit.c b/kernel/exit.c index 1510f78a0ffa..8f6185e69b69 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -126,6 +126,12 @@ static void __exit_signal(struct task_struct *tsk) | |||
126 | 126 | ||
127 | __unhash_process(tsk); | 127 | __unhash_process(tsk); |
128 | 128 | ||
129 | /* | ||
130 | * Do this under ->siglock, we can race with another thread | ||
131 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | ||
132 | */ | ||
133 | flush_sigqueue(&tsk->pending); | ||
134 | |||
129 | tsk->signal = NULL; | 135 | tsk->signal = NULL; |
130 | tsk->sighand = NULL; | 136 | tsk->sighand = NULL; |
131 | spin_unlock(&sighand->siglock); | 137 | spin_unlock(&sighand->siglock); |
@@ -133,7 +139,6 @@ static void __exit_signal(struct task_struct *tsk) | |||
133 | 139 | ||
134 | __cleanup_sighand(sighand); | 140 | __cleanup_sighand(sighand); |
135 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 141 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
136 | flush_sigqueue(&tsk->pending); | ||
137 | if (sig) { | 142 | if (sig) { |
138 | flush_sigqueue(&sig->shared_pending); | 143 | flush_sigqueue(&sig->shared_pending); |
139 | taskstats_tgid_free(sig); | 144 | taskstats_tgid_free(sig); |
diff --git a/kernel/futex.c b/kernel/futex.c index 449def8074fe..7d1136e97c14 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -1096,21 +1096,64 @@ static void unqueue_me_pi(struct futex_q *q) | |||
1096 | * private futexes. | 1096 | * private futexes. |
1097 | */ | 1097 | */ |
1098 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | 1098 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
1099 | struct task_struct *newowner) | 1099 | struct task_struct *newowner, |
1100 | struct rw_semaphore *fshared) | ||
1100 | { | 1101 | { |
1101 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; | 1102 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
1102 | struct futex_pi_state *pi_state = q->pi_state; | 1103 | struct futex_pi_state *pi_state = q->pi_state; |
1104 | struct task_struct *oldowner = pi_state->owner; | ||
1103 | u32 uval, curval, newval; | 1105 | u32 uval, curval, newval; |
1104 | int ret; | 1106 | int ret, attempt = 0; |
1105 | 1107 | ||
1106 | /* Owner died? */ | 1108 | /* Owner died? */ |
1109 | if (!pi_state->owner) | ||
1110 | newtid |= FUTEX_OWNER_DIED; | ||
1111 | |||
1112 | /* | ||
1113 | * We are here either because we stole the rtmutex from the | ||
1114 | * pending owner or we are the pending owner which failed to | ||
1115 | * get the rtmutex. We have to replace the pending owner TID | ||
1116 | * in the user space variable. This must be atomic as we have | ||
1117 | * to preserve the owner died bit here. | ||
1118 | * | ||
1119 | * Note: We write the user space value _before_ changing the | ||
1120 | * pi_state because we can fault here. Imagine swapped out | ||
1121 | * pages or a fork, which was running right before we acquired | ||
1122 | * mmap_sem, that marked all the anonymous memory readonly for | ||
1123 | * cow. | ||
1124 | * | ||
1125 | * Modifying pi_state _before_ the user space value would | ||
1126 | * leave the pi_state in an inconsistent state when we fault | ||
1127 | * here, because we need to drop the hash bucket lock to | ||
1128 | * handle the fault. This might be observed in the PID check | ||
1129 | * in lookup_pi_state. | ||
1130 | */ | ||
1131 | retry: | ||
1132 | if (get_futex_value_locked(&uval, uaddr)) | ||
1133 | goto handle_fault; | ||
1134 | |||
1135 | while (1) { | ||
1136 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | ||
1137 | |||
1138 | curval = cmpxchg_futex_value_locked(uaddr, uval, newval); | ||
1139 | |||
1140 | if (curval == -EFAULT) | ||
1141 | goto handle_fault; | ||
1142 | if (curval == uval) | ||
1143 | break; | ||
1144 | uval = curval; | ||
1145 | } | ||
1146 | |||
1147 | /* | ||
1148 | * We fixed up user space. Now we need to fix the pi_state | ||
1149 | * itself. | ||
1150 | */ | ||
1107 | if (pi_state->owner != NULL) { | 1151 | if (pi_state->owner != NULL) { |
1108 | spin_lock_irq(&pi_state->owner->pi_lock); | 1152 | spin_lock_irq(&pi_state->owner->pi_lock); |
1109 | WARN_ON(list_empty(&pi_state->list)); | 1153 | WARN_ON(list_empty(&pi_state->list)); |
1110 | list_del_init(&pi_state->list); | 1154 | list_del_init(&pi_state->list); |
1111 | spin_unlock_irq(&pi_state->owner->pi_lock); | 1155 | spin_unlock_irq(&pi_state->owner->pi_lock); |
1112 | } else | 1156 | } |
1113 | newtid |= FUTEX_OWNER_DIED; | ||
1114 | 1157 | ||
1115 | pi_state->owner = newowner; | 1158 | pi_state->owner = newowner; |
1116 | 1159 | ||
@@ -1118,26 +1161,35 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | |||
1118 | WARN_ON(!list_empty(&pi_state->list)); | 1161 | WARN_ON(!list_empty(&pi_state->list)); |
1119 | list_add(&pi_state->list, &newowner->pi_state_list); | 1162 | list_add(&pi_state->list, &newowner->pi_state_list); |
1120 | spin_unlock_irq(&newowner->pi_lock); | 1163 | spin_unlock_irq(&newowner->pi_lock); |
1164 | return 0; | ||
1121 | 1165 | ||
1122 | /* | 1166 | /* |
1123 | * We own it, so we have to replace the pending owner | 1167 | * To handle the page fault we need to drop the hash bucket |
1124 | * TID. This must be atomic as we have preserve the | 1168 | * lock here. That gives the other task (either the pending |
1125 | * owner died bit here. | 1169 | * owner itself or the task which stole the rtmutex) the |
1170 | * chance to try the fixup of the pi_state. So once we are | ||
1171 | * back from handling the fault we need to check the pi_state | ||
1172 | * after reacquiring the hash bucket lock and before trying to | ||
1173 | * do another fixup. When the fixup has been done already we | ||
1174 | * simply return. | ||
1126 | */ | 1175 | */ |
1127 | ret = get_futex_value_locked(&uval, uaddr); | 1176 | handle_fault: |
1177 | spin_unlock(q->lock_ptr); | ||
1128 | 1178 | ||
1129 | while (!ret) { | 1179 | ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++); |
1130 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | ||
1131 | 1180 | ||
1132 | curval = cmpxchg_futex_value_locked(uaddr, uval, newval); | 1181 | spin_lock(q->lock_ptr); |
1133 | 1182 | ||
1134 | if (curval == -EFAULT) | 1183 | /* |
1135 | ret = -EFAULT; | 1184 | * Check if someone else fixed it for us: |
1136 | if (curval == uval) | 1185 | */ |
1137 | break; | 1186 | if (pi_state->owner != oldowner) |
1138 | uval = curval; | 1187 | return 0; |
1139 | } | 1188 | |
1140 | return ret; | 1189 | if (ret) |
1190 | return ret; | ||
1191 | |||
1192 | goto retry; | ||
1141 | } | 1193 | } |
1142 | 1194 | ||
1143 | /* | 1195 | /* |
@@ -1507,7 +1559,7 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1507 | * that case: | 1559 | * that case: |
1508 | */ | 1560 | */ |
1509 | if (q.pi_state->owner != curr) | 1561 | if (q.pi_state->owner != curr) |
1510 | ret = fixup_pi_state_owner(uaddr, &q, curr); | 1562 | ret = fixup_pi_state_owner(uaddr, &q, curr, fshared); |
1511 | } else { | 1563 | } else { |
1512 | /* | 1564 | /* |
1513 | * Catch the rare case, where the lock was released | 1565 | * Catch the rare case, where the lock was released |
@@ -1539,7 +1591,8 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1539 | int res; | 1591 | int res; |
1540 | 1592 | ||
1541 | owner = rt_mutex_owner(&q.pi_state->pi_mutex); | 1593 | owner = rt_mutex_owner(&q.pi_state->pi_mutex); |
1542 | res = fixup_pi_state_owner(uaddr, &q, owner); | 1594 | res = fixup_pi_state_owner(uaddr, &q, owner, |
1595 | fshared); | ||
1543 | 1596 | ||
1544 | /* propagate -EFAULT, if the fixup failed */ | 1597 | /* propagate -EFAULT, if the fixup failed */ |
1545 | if (res) | 1598 | if (res) |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 421be5fe5cc7..ab80515008f4 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -1003,10 +1003,18 @@ hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | |||
1003 | */ | 1003 | */ |
1004 | raise = timer->state == HRTIMER_STATE_PENDING; | 1004 | raise = timer->state == HRTIMER_STATE_PENDING; |
1005 | 1005 | ||
1006 | /* | ||
1007 | * We use preempt_disable to prevent this task from migrating after | ||
1008 | * setting up the softirq and raising it. Otherwise, if me migrate | ||
1009 | * we will raise the softirq on the wrong CPU. | ||
1010 | */ | ||
1011 | preempt_disable(); | ||
1012 | |||
1006 | unlock_hrtimer_base(timer, &flags); | 1013 | unlock_hrtimer_base(timer, &flags); |
1007 | 1014 | ||
1008 | if (raise) | 1015 | if (raise) |
1009 | hrtimer_raise_softirq(); | 1016 | hrtimer_raise_softirq(); |
1017 | preempt_enable(); | ||
1010 | 1018 | ||
1011 | return ret; | 1019 | return ret; |
1012 | } | 1020 | } |
diff --git a/kernel/kgdb.c b/kernel/kgdb.c index 14787de568b3..3ec23c3ec97f 100644 --- a/kernel/kgdb.c +++ b/kernel/kgdb.c | |||
@@ -52,6 +52,7 @@ | |||
52 | #include <asm/byteorder.h> | 52 | #include <asm/byteorder.h> |
53 | #include <asm/atomic.h> | 53 | #include <asm/atomic.h> |
54 | #include <asm/system.h> | 54 | #include <asm/system.h> |
55 | #include <asm/unaligned.h> | ||
55 | 56 | ||
56 | static int kgdb_break_asap; | 57 | static int kgdb_break_asap; |
57 | 58 | ||
@@ -227,8 +228,6 @@ void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | |||
227 | * GDB remote protocol parser: | 228 | * GDB remote protocol parser: |
228 | */ | 229 | */ |
229 | 230 | ||
230 | static const char hexchars[] = "0123456789abcdef"; | ||
231 | |||
232 | static int hex(char ch) | 231 | static int hex(char ch) |
233 | { | 232 | { |
234 | if ((ch >= 'a') && (ch <= 'f')) | 233 | if ((ch >= 'a') && (ch <= 'f')) |
@@ -316,8 +315,8 @@ static void put_packet(char *buffer) | |||
316 | } | 315 | } |
317 | 316 | ||
318 | kgdb_io_ops->write_char('#'); | 317 | kgdb_io_ops->write_char('#'); |
319 | kgdb_io_ops->write_char(hexchars[checksum >> 4]); | 318 | kgdb_io_ops->write_char(hex_asc_hi(checksum)); |
320 | kgdb_io_ops->write_char(hexchars[checksum & 0xf]); | 319 | kgdb_io_ops->write_char(hex_asc_lo(checksum)); |
321 | if (kgdb_io_ops->flush) | 320 | if (kgdb_io_ops->flush) |
322 | kgdb_io_ops->flush(); | 321 | kgdb_io_ops->flush(); |
323 | 322 | ||
@@ -478,8 +477,8 @@ static void error_packet(char *pkt, int error) | |||
478 | { | 477 | { |
479 | error = -error; | 478 | error = -error; |
480 | pkt[0] = 'E'; | 479 | pkt[0] = 'E'; |
481 | pkt[1] = hexchars[(error / 10)]; | 480 | pkt[1] = hex_asc[(error / 10)]; |
482 | pkt[2] = hexchars[(error % 10)]; | 481 | pkt[2] = hex_asc[(error % 10)]; |
483 | pkt[3] = '\0'; | 482 | pkt[3] = '\0'; |
484 | } | 483 | } |
485 | 484 | ||
@@ -510,10 +509,7 @@ static void int_to_threadref(unsigned char *id, int value) | |||
510 | scan = (unsigned char *)id; | 509 | scan = (unsigned char *)id; |
511 | while (i--) | 510 | while (i--) |
512 | *scan++ = 0; | 511 | *scan++ = 0; |
513 | *scan++ = (value >> 24) & 0xff; | 512 | put_unaligned_be32(value, scan); |
514 | *scan++ = (value >> 16) & 0xff; | ||
515 | *scan++ = (value >> 8) & 0xff; | ||
516 | *scan++ = (value & 0xff); | ||
517 | } | 513 | } |
518 | 514 | ||
519 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | 515 | static struct task_struct *getthread(struct pt_regs *regs, int tid) |
@@ -1503,7 +1499,8 @@ int kgdb_nmicallback(int cpu, void *regs) | |||
1503 | return 1; | 1499 | return 1; |
1504 | } | 1500 | } |
1505 | 1501 | ||
1506 | void kgdb_console_write(struct console *co, const char *s, unsigned count) | 1502 | static void kgdb_console_write(struct console *co, const char *s, |
1503 | unsigned count) | ||
1507 | { | 1504 | { |
1508 | unsigned long flags; | 1505 | unsigned long flags; |
1509 | 1506 | ||
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index 1e0250cb9486..d4998f81e229 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -699,8 +699,9 @@ static int __register_kprobes(struct kprobe **kps, int num, | |||
699 | return -EINVAL; | 699 | return -EINVAL; |
700 | for (i = 0; i < num; i++) { | 700 | for (i = 0; i < num; i++) { |
701 | ret = __register_kprobe(kps[i], called_from); | 701 | ret = __register_kprobe(kps[i], called_from); |
702 | if (ret < 0 && i > 0) { | 702 | if (ret < 0) { |
703 | unregister_kprobes(kps, i); | 703 | if (i > 0) |
704 | unregister_kprobes(kps, i); | ||
704 | break; | 705 | break; |
705 | } | 706 | } |
706 | } | 707 | } |
@@ -776,8 +777,9 @@ static int __register_jprobes(struct jprobe **jps, int num, | |||
776 | jp->kp.break_handler = longjmp_break_handler; | 777 | jp->kp.break_handler = longjmp_break_handler; |
777 | ret = __register_kprobe(&jp->kp, called_from); | 778 | ret = __register_kprobe(&jp->kp, called_from); |
778 | } | 779 | } |
779 | if (ret < 0 && i > 0) { | 780 | if (ret < 0) { |
780 | unregister_jprobes(jps, i); | 781 | if (i > 0) |
782 | unregister_jprobes(jps, i); | ||
781 | break; | 783 | break; |
782 | } | 784 | } |
783 | } | 785 | } |
@@ -920,8 +922,9 @@ static int __register_kretprobes(struct kretprobe **rps, int num, | |||
920 | return -EINVAL; | 922 | return -EINVAL; |
921 | for (i = 0; i < num; i++) { | 923 | for (i = 0; i < num; i++) { |
922 | ret = __register_kretprobe(rps[i], called_from); | 924 | ret = __register_kretprobe(rps[i], called_from); |
923 | if (ret < 0 && i > 0) { | 925 | if (ret < 0) { |
924 | unregister_kretprobes(rps, i); | 926 | if (i > 0) |
927 | unregister_kretprobes(rps, i); | ||
925 | break; | 928 | break; |
926 | } | 929 | } |
927 | } | 930 | } |
diff --git a/kernel/module.c b/kernel/module.c index f5e9491ef7ac..5f80478b746d 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -1337,7 +1337,19 @@ out_unreg: | |||
1337 | kobject_put(&mod->mkobj.kobj); | 1337 | kobject_put(&mod->mkobj.kobj); |
1338 | return err; | 1338 | return err; |
1339 | } | 1339 | } |
1340 | #endif | 1340 | |
1341 | static void mod_sysfs_fini(struct module *mod) | ||
1342 | { | ||
1343 | kobject_put(&mod->mkobj.kobj); | ||
1344 | } | ||
1345 | |||
1346 | #else /* CONFIG_SYSFS */ | ||
1347 | |||
1348 | static void mod_sysfs_fini(struct module *mod) | ||
1349 | { | ||
1350 | } | ||
1351 | |||
1352 | #endif /* CONFIG_SYSFS */ | ||
1341 | 1353 | ||
1342 | static void mod_kobject_remove(struct module *mod) | 1354 | static void mod_kobject_remove(struct module *mod) |
1343 | { | 1355 | { |
@@ -1345,7 +1357,7 @@ static void mod_kobject_remove(struct module *mod) | |||
1345 | module_param_sysfs_remove(mod); | 1357 | module_param_sysfs_remove(mod); |
1346 | kobject_put(mod->mkobj.drivers_dir); | 1358 | kobject_put(mod->mkobj.drivers_dir); |
1347 | kobject_put(mod->holders_dir); | 1359 | kobject_put(mod->holders_dir); |
1348 | kobject_put(&mod->mkobj.kobj); | 1360 | mod_sysfs_fini(mod); |
1349 | } | 1361 | } |
1350 | 1362 | ||
1351 | /* | 1363 | /* |
@@ -1780,7 +1792,7 @@ static struct module *load_module(void __user *umod, | |||
1780 | 1792 | ||
1781 | /* Sanity checks against insmoding binaries or wrong arch, | 1793 | /* Sanity checks against insmoding binaries or wrong arch, |
1782 | weird elf version */ | 1794 | weird elf version */ |
1783 | if (memcmp(hdr->e_ident, ELFMAG, 4) != 0 | 1795 | if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0 |
1784 | || hdr->e_type != ET_REL | 1796 | || hdr->e_type != ET_REL |
1785 | || !elf_check_arch(hdr) | 1797 | || !elf_check_arch(hdr) |
1786 | || hdr->e_shentsize != sizeof(*sechdrs)) { | 1798 | || hdr->e_shentsize != sizeof(*sechdrs)) { |
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c index f4ffbd0f306f..a38895a5b8e2 100644 --- a/kernel/rcuclassic.c +++ b/kernel/rcuclassic.c | |||
@@ -89,8 +89,22 @@ static void force_quiescent_state(struct rcu_data *rdp, | |||
89 | /* | 89 | /* |
90 | * Don't send IPI to itself. With irqs disabled, | 90 | * Don't send IPI to itself. With irqs disabled, |
91 | * rdp->cpu is the current cpu. | 91 | * rdp->cpu is the current cpu. |
92 | * | ||
93 | * cpu_online_map is updated by the _cpu_down() | ||
94 | * using stop_machine_run(). Since we're in irqs disabled | ||
95 | * section, stop_machine_run() is not exectuting, hence | ||
96 | * the cpu_online_map is stable. | ||
97 | * | ||
98 | * However, a cpu might have been offlined _just_ before | ||
99 | * we disabled irqs while entering here. | ||
100 | * And rcu subsystem might not yet have handled the CPU_DEAD | ||
101 | * notification, leading to the offlined cpu's bit | ||
102 | * being set in the rcp->cpumask. | ||
103 | * | ||
104 | * Hence cpumask = (rcp->cpumask & cpu_online_map) to prevent | ||
105 | * sending smp_reschedule() to an offlined CPU. | ||
92 | */ | 106 | */ |
93 | cpumask = rcp->cpumask; | 107 | cpus_and(cpumask, rcp->cpumask, cpu_online_map); |
94 | cpu_clear(rdp->cpu, cpumask); | 108 | cpu_clear(rdp->cpu, cpumask); |
95 | for_each_cpu_mask(cpu, cpumask) | 109 | for_each_cpu_mask(cpu, cpumask) |
96 | smp_send_reschedule(cpu); | 110 | smp_send_reschedule(cpu); |
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c index e1cdf196a515..5e02b7740702 100644 --- a/kernel/rcupreempt.c +++ b/kernel/rcupreempt.c | |||
@@ -217,8 +217,6 @@ long rcu_batches_completed(void) | |||
217 | } | 217 | } |
218 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | 218 | EXPORT_SYMBOL_GPL(rcu_batches_completed); |
219 | 219 | ||
220 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | ||
221 | |||
222 | void __rcu_read_lock(void) | 220 | void __rcu_read_lock(void) |
223 | { | 221 | { |
224 | int idx; | 222 | int idx; |
diff --git a/kernel/relay.c b/kernel/relay.c index bc24dcdc570f..7de644cdec43 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -1191,7 +1191,7 @@ static ssize_t relay_file_splice_read(struct file *in, | |||
1191 | ret = 0; | 1191 | ret = 0; |
1192 | spliced = 0; | 1192 | spliced = 0; |
1193 | 1193 | ||
1194 | while (len) { | 1194 | while (len && !spliced) { |
1195 | ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); | 1195 | ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); |
1196 | if (ret < 0) | 1196 | if (ret < 0) |
1197 | break; | 1197 | break; |
diff --git a/kernel/sched.c b/kernel/sched.c index cfa222a91539..94ead43eda62 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -136,7 +136,7 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | |||
136 | 136 | ||
137 | static inline int rt_policy(int policy) | 137 | static inline int rt_policy(int policy) |
138 | { | 138 | { |
139 | if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR)) | 139 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
140 | return 1; | 140 | return 1; |
141 | return 0; | 141 | return 0; |
142 | } | 142 | } |
@@ -312,12 +312,15 @@ static DEFINE_SPINLOCK(task_group_lock); | |||
312 | #endif | 312 | #endif |
313 | 313 | ||
314 | /* | 314 | /* |
315 | * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems. | 315 | * A weight of 0 or 1 can cause arithmetics problems. |
316 | * A weight of a cfs_rq is the sum of weights of which entities | ||
317 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
318 | * too large, so as the shares value of a task group. | ||
316 | * (The default weight is 1024 - so there's no practical | 319 | * (The default weight is 1024 - so there's no practical |
317 | * limitation from this.) | 320 | * limitation from this.) |
318 | */ | 321 | */ |
319 | #define MIN_SHARES 2 | 322 | #define MIN_SHARES 2 |
320 | #define MAX_SHARES (ULONG_MAX - 1) | 323 | #define MAX_SHARES (1UL << 18) |
321 | 324 | ||
322 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; | 325 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
323 | #endif | 326 | #endif |
@@ -398,43 +401,6 @@ struct cfs_rq { | |||
398 | */ | 401 | */ |
399 | struct list_head leaf_cfs_rq_list; | 402 | struct list_head leaf_cfs_rq_list; |
400 | struct task_group *tg; /* group that "owns" this runqueue */ | 403 | struct task_group *tg; /* group that "owns" this runqueue */ |
401 | |||
402 | #ifdef CONFIG_SMP | ||
403 | unsigned long task_weight; | ||
404 | unsigned long shares; | ||
405 | /* | ||
406 | * We need space to build a sched_domain wide view of the full task | ||
407 | * group tree, in order to avoid depending on dynamic memory allocation | ||
408 | * during the load balancing we place this in the per cpu task group | ||
409 | * hierarchy. This limits the load balancing to one instance per cpu, | ||
410 | * but more should not be needed anyway. | ||
411 | */ | ||
412 | struct aggregate_struct { | ||
413 | /* | ||
414 | * load = weight(cpus) * f(tg) | ||
415 | * | ||
416 | * Where f(tg) is the recursive weight fraction assigned to | ||
417 | * this group. | ||
418 | */ | ||
419 | unsigned long load; | ||
420 | |||
421 | /* | ||
422 | * part of the group weight distributed to this span. | ||
423 | */ | ||
424 | unsigned long shares; | ||
425 | |||
426 | /* | ||
427 | * The sum of all runqueue weights within this span. | ||
428 | */ | ||
429 | unsigned long rq_weight; | ||
430 | |||
431 | /* | ||
432 | * Weight contributed by tasks; this is the part we can | ||
433 | * influence by moving tasks around. | ||
434 | */ | ||
435 | unsigned long task_weight; | ||
436 | } aggregate; | ||
437 | #endif | ||
438 | #endif | 404 | #endif |
439 | }; | 405 | }; |
440 | 406 | ||
@@ -1161,6 +1127,7 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer) | |||
1161 | return HRTIMER_NORESTART; | 1127 | return HRTIMER_NORESTART; |
1162 | } | 1128 | } |
1163 | 1129 | ||
1130 | #ifdef CONFIG_SMP | ||
1164 | static void hotplug_hrtick_disable(int cpu) | 1131 | static void hotplug_hrtick_disable(int cpu) |
1165 | { | 1132 | { |
1166 | struct rq *rq = cpu_rq(cpu); | 1133 | struct rq *rq = cpu_rq(cpu); |
@@ -1216,6 +1183,7 @@ static void init_hrtick(void) | |||
1216 | { | 1183 | { |
1217 | hotcpu_notifier(hotplug_hrtick, 0); | 1184 | hotcpu_notifier(hotplug_hrtick, 0); |
1218 | } | 1185 | } |
1186 | #endif /* CONFIG_SMP */ | ||
1219 | 1187 | ||
1220 | static void init_rq_hrtick(struct rq *rq) | 1188 | static void init_rq_hrtick(struct rq *rq) |
1221 | { | 1189 | { |
@@ -1368,17 +1336,19 @@ static void __resched_task(struct task_struct *p, int tif_bit) | |||
1368 | */ | 1336 | */ |
1369 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | 1337 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
1370 | 1338 | ||
1371 | /* | ||
1372 | * delta *= weight / lw | ||
1373 | */ | ||
1374 | static unsigned long | 1339 | static unsigned long |
1375 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 1340 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1376 | struct load_weight *lw) | 1341 | struct load_weight *lw) |
1377 | { | 1342 | { |
1378 | u64 tmp; | 1343 | u64 tmp; |
1379 | 1344 | ||
1380 | if (!lw->inv_weight) | 1345 | if (!lw->inv_weight) { |
1381 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1); | 1346 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) |
1347 | lw->inv_weight = 1; | ||
1348 | else | ||
1349 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | ||
1350 | / (lw->weight+1); | ||
1351 | } | ||
1382 | 1352 | ||
1383 | tmp = (u64)delta_exec * weight; | 1353 | tmp = (u64)delta_exec * weight; |
1384 | /* | 1354 | /* |
@@ -1393,6 +1363,12 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight, | |||
1393 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | 1363 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
1394 | } | 1364 | } |
1395 | 1365 | ||
1366 | static inline unsigned long | ||
1367 | calc_delta_fair(unsigned long delta_exec, struct load_weight *lw) | ||
1368 | { | ||
1369 | return calc_delta_mine(delta_exec, NICE_0_LOAD, lw); | ||
1370 | } | ||
1371 | |||
1396 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 1372 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
1397 | { | 1373 | { |
1398 | lw->weight += inc; | 1374 | lw->weight += inc; |
@@ -1505,326 +1481,6 @@ static unsigned long source_load(int cpu, int type); | |||
1505 | static unsigned long target_load(int cpu, int type); | 1481 | static unsigned long target_load(int cpu, int type); |
1506 | static unsigned long cpu_avg_load_per_task(int cpu); | 1482 | static unsigned long cpu_avg_load_per_task(int cpu); |
1507 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1483 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1508 | |||
1509 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1510 | |||
1511 | /* | ||
1512 | * Group load balancing. | ||
1513 | * | ||
1514 | * We calculate a few balance domain wide aggregate numbers; load and weight. | ||
1515 | * Given the pictures below, and assuming each item has equal weight: | ||
1516 | * | ||
1517 | * root 1 - thread | ||
1518 | * / | \ A - group | ||
1519 | * A 1 B | ||
1520 | * /|\ / \ | ||
1521 | * C 2 D 3 4 | ||
1522 | * | | | ||
1523 | * 5 6 | ||
1524 | * | ||
1525 | * load: | ||
1526 | * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd, | ||
1527 | * which equals 1/9-th of the total load. | ||
1528 | * | ||
1529 | * shares: | ||
1530 | * The weight of this group on the selected cpus. | ||
1531 | * | ||
1532 | * rq_weight: | ||
1533 | * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while | ||
1534 | * B would get 2. | ||
1535 | * | ||
1536 | * task_weight: | ||
1537 | * Part of the rq_weight contributed by tasks; all groups except B would | ||
1538 | * get 1, B gets 2. | ||
1539 | */ | ||
1540 | |||
1541 | static inline struct aggregate_struct * | ||
1542 | aggregate(struct task_group *tg, struct sched_domain *sd) | ||
1543 | { | ||
1544 | return &tg->cfs_rq[sd->first_cpu]->aggregate; | ||
1545 | } | ||
1546 | |||
1547 | typedef void (*aggregate_func)(struct task_group *, struct sched_domain *); | ||
1548 | |||
1549 | /* | ||
1550 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
1551 | * leaving it for the final time. | ||
1552 | */ | ||
1553 | static | ||
1554 | void aggregate_walk_tree(aggregate_func down, aggregate_func up, | ||
1555 | struct sched_domain *sd) | ||
1556 | { | ||
1557 | struct task_group *parent, *child; | ||
1558 | |||
1559 | rcu_read_lock(); | ||
1560 | parent = &root_task_group; | ||
1561 | down: | ||
1562 | (*down)(parent, sd); | ||
1563 | list_for_each_entry_rcu(child, &parent->children, siblings) { | ||
1564 | parent = child; | ||
1565 | goto down; | ||
1566 | |||
1567 | up: | ||
1568 | continue; | ||
1569 | } | ||
1570 | (*up)(parent, sd); | ||
1571 | |||
1572 | child = parent; | ||
1573 | parent = parent->parent; | ||
1574 | if (parent) | ||
1575 | goto up; | ||
1576 | rcu_read_unlock(); | ||
1577 | } | ||
1578 | |||
1579 | /* | ||
1580 | * Calculate the aggregate runqueue weight. | ||
1581 | */ | ||
1582 | static | ||
1583 | void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd) | ||
1584 | { | ||
1585 | unsigned long rq_weight = 0; | ||
1586 | unsigned long task_weight = 0; | ||
1587 | int i; | ||
1588 | |||
1589 | for_each_cpu_mask(i, sd->span) { | ||
1590 | rq_weight += tg->cfs_rq[i]->load.weight; | ||
1591 | task_weight += tg->cfs_rq[i]->task_weight; | ||
1592 | } | ||
1593 | |||
1594 | aggregate(tg, sd)->rq_weight = rq_weight; | ||
1595 | aggregate(tg, sd)->task_weight = task_weight; | ||
1596 | } | ||
1597 | |||
1598 | /* | ||
1599 | * Compute the weight of this group on the given cpus. | ||
1600 | */ | ||
1601 | static | ||
1602 | void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd) | ||
1603 | { | ||
1604 | unsigned long shares = 0; | ||
1605 | int i; | ||
1606 | |||
1607 | for_each_cpu_mask(i, sd->span) | ||
1608 | shares += tg->cfs_rq[i]->shares; | ||
1609 | |||
1610 | if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares) | ||
1611 | shares = tg->shares; | ||
1612 | |||
1613 | aggregate(tg, sd)->shares = shares; | ||
1614 | } | ||
1615 | |||
1616 | /* | ||
1617 | * Compute the load fraction assigned to this group, relies on the aggregate | ||
1618 | * weight and this group's parent's load, i.e. top-down. | ||
1619 | */ | ||
1620 | static | ||
1621 | void aggregate_group_load(struct task_group *tg, struct sched_domain *sd) | ||
1622 | { | ||
1623 | unsigned long load; | ||
1624 | |||
1625 | if (!tg->parent) { | ||
1626 | int i; | ||
1627 | |||
1628 | load = 0; | ||
1629 | for_each_cpu_mask(i, sd->span) | ||
1630 | load += cpu_rq(i)->load.weight; | ||
1631 | |||
1632 | } else { | ||
1633 | load = aggregate(tg->parent, sd)->load; | ||
1634 | |||
1635 | /* | ||
1636 | * shares is our weight in the parent's rq so | ||
1637 | * shares/parent->rq_weight gives our fraction of the load | ||
1638 | */ | ||
1639 | load *= aggregate(tg, sd)->shares; | ||
1640 | load /= aggregate(tg->parent, sd)->rq_weight + 1; | ||
1641 | } | ||
1642 | |||
1643 | aggregate(tg, sd)->load = load; | ||
1644 | } | ||
1645 | |||
1646 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | ||
1647 | |||
1648 | /* | ||
1649 | * Calculate and set the cpu's group shares. | ||
1650 | */ | ||
1651 | static void | ||
1652 | __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd, | ||
1653 | int tcpu) | ||
1654 | { | ||
1655 | int boost = 0; | ||
1656 | unsigned long shares; | ||
1657 | unsigned long rq_weight; | ||
1658 | |||
1659 | if (!tg->se[tcpu]) | ||
1660 | return; | ||
1661 | |||
1662 | rq_weight = tg->cfs_rq[tcpu]->load.weight; | ||
1663 | |||
1664 | /* | ||
1665 | * If there are currently no tasks on the cpu pretend there is one of | ||
1666 | * average load so that when a new task gets to run here it will not | ||
1667 | * get delayed by group starvation. | ||
1668 | */ | ||
1669 | if (!rq_weight) { | ||
1670 | boost = 1; | ||
1671 | rq_weight = NICE_0_LOAD; | ||
1672 | } | ||
1673 | |||
1674 | /* | ||
1675 | * \Sum shares * rq_weight | ||
1676 | * shares = ----------------------- | ||
1677 | * \Sum rq_weight | ||
1678 | * | ||
1679 | */ | ||
1680 | shares = aggregate(tg, sd)->shares * rq_weight; | ||
1681 | shares /= aggregate(tg, sd)->rq_weight + 1; | ||
1682 | |||
1683 | /* | ||
1684 | * record the actual number of shares, not the boosted amount. | ||
1685 | */ | ||
1686 | tg->cfs_rq[tcpu]->shares = boost ? 0 : shares; | ||
1687 | |||
1688 | if (shares < MIN_SHARES) | ||
1689 | shares = MIN_SHARES; | ||
1690 | else if (shares > MAX_SHARES) | ||
1691 | shares = MAX_SHARES; | ||
1692 | |||
1693 | __set_se_shares(tg->se[tcpu], shares); | ||
1694 | } | ||
1695 | |||
1696 | /* | ||
1697 | * Re-adjust the weights on the cpu the task came from and on the cpu the | ||
1698 | * task went to. | ||
1699 | */ | ||
1700 | static void | ||
1701 | __move_group_shares(struct task_group *tg, struct sched_domain *sd, | ||
1702 | int scpu, int dcpu) | ||
1703 | { | ||
1704 | unsigned long shares; | ||
1705 | |||
1706 | shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares; | ||
1707 | |||
1708 | __update_group_shares_cpu(tg, sd, scpu); | ||
1709 | __update_group_shares_cpu(tg, sd, dcpu); | ||
1710 | |||
1711 | /* | ||
1712 | * ensure we never loose shares due to rounding errors in the | ||
1713 | * above redistribution. | ||
1714 | */ | ||
1715 | shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares; | ||
1716 | if (shares) | ||
1717 | tg->cfs_rq[dcpu]->shares += shares; | ||
1718 | } | ||
1719 | |||
1720 | /* | ||
1721 | * Because changing a group's shares changes the weight of the super-group | ||
1722 | * we need to walk up the tree and change all shares until we hit the root. | ||
1723 | */ | ||
1724 | static void | ||
1725 | move_group_shares(struct task_group *tg, struct sched_domain *sd, | ||
1726 | int scpu, int dcpu) | ||
1727 | { | ||
1728 | while (tg) { | ||
1729 | __move_group_shares(tg, sd, scpu, dcpu); | ||
1730 | tg = tg->parent; | ||
1731 | } | ||
1732 | } | ||
1733 | |||
1734 | static | ||
1735 | void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd) | ||
1736 | { | ||
1737 | unsigned long shares = aggregate(tg, sd)->shares; | ||
1738 | int i; | ||
1739 | |||
1740 | for_each_cpu_mask(i, sd->span) { | ||
1741 | struct rq *rq = cpu_rq(i); | ||
1742 | unsigned long flags; | ||
1743 | |||
1744 | spin_lock_irqsave(&rq->lock, flags); | ||
1745 | __update_group_shares_cpu(tg, sd, i); | ||
1746 | spin_unlock_irqrestore(&rq->lock, flags); | ||
1747 | } | ||
1748 | |||
1749 | aggregate_group_shares(tg, sd); | ||
1750 | |||
1751 | /* | ||
1752 | * ensure we never loose shares due to rounding errors in the | ||
1753 | * above redistribution. | ||
1754 | */ | ||
1755 | shares -= aggregate(tg, sd)->shares; | ||
1756 | if (shares) { | ||
1757 | tg->cfs_rq[sd->first_cpu]->shares += shares; | ||
1758 | aggregate(tg, sd)->shares += shares; | ||
1759 | } | ||
1760 | } | ||
1761 | |||
1762 | /* | ||
1763 | * Calculate the accumulative weight and recursive load of each task group | ||
1764 | * while walking down the tree. | ||
1765 | */ | ||
1766 | static | ||
1767 | void aggregate_get_down(struct task_group *tg, struct sched_domain *sd) | ||
1768 | { | ||
1769 | aggregate_group_weight(tg, sd); | ||
1770 | aggregate_group_shares(tg, sd); | ||
1771 | aggregate_group_load(tg, sd); | ||
1772 | } | ||
1773 | |||
1774 | /* | ||
1775 | * Rebalance the cpu shares while walking back up the tree. | ||
1776 | */ | ||
1777 | static | ||
1778 | void aggregate_get_up(struct task_group *tg, struct sched_domain *sd) | ||
1779 | { | ||
1780 | aggregate_group_set_shares(tg, sd); | ||
1781 | } | ||
1782 | |||
1783 | static DEFINE_PER_CPU(spinlock_t, aggregate_lock); | ||
1784 | |||
1785 | static void __init init_aggregate(void) | ||
1786 | { | ||
1787 | int i; | ||
1788 | |||
1789 | for_each_possible_cpu(i) | ||
1790 | spin_lock_init(&per_cpu(aggregate_lock, i)); | ||
1791 | } | ||
1792 | |||
1793 | static int get_aggregate(struct sched_domain *sd) | ||
1794 | { | ||
1795 | if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu))) | ||
1796 | return 0; | ||
1797 | |||
1798 | aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd); | ||
1799 | return 1; | ||
1800 | } | ||
1801 | |||
1802 | static void put_aggregate(struct sched_domain *sd) | ||
1803 | { | ||
1804 | spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu)); | ||
1805 | } | ||
1806 | |||
1807 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | ||
1808 | { | ||
1809 | cfs_rq->shares = shares; | ||
1810 | } | ||
1811 | |||
1812 | #else | ||
1813 | |||
1814 | static inline void init_aggregate(void) | ||
1815 | { | ||
1816 | } | ||
1817 | |||
1818 | static inline int get_aggregate(struct sched_domain *sd) | ||
1819 | { | ||
1820 | return 0; | ||
1821 | } | ||
1822 | |||
1823 | static inline void put_aggregate(struct sched_domain *sd) | ||
1824 | { | ||
1825 | } | ||
1826 | #endif | ||
1827 | |||
1828 | #else /* CONFIG_SMP */ | 1484 | #else /* CONFIG_SMP */ |
1829 | 1485 | ||
1830 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1486 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1845,14 +1501,26 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1845 | 1501 | ||
1846 | #define sched_class_highest (&rt_sched_class) | 1502 | #define sched_class_highest (&rt_sched_class) |
1847 | 1503 | ||
1848 | static void inc_nr_running(struct rq *rq) | 1504 | static inline void inc_load(struct rq *rq, const struct task_struct *p) |
1505 | { | ||
1506 | update_load_add(&rq->load, p->se.load.weight); | ||
1507 | } | ||
1508 | |||
1509 | static inline void dec_load(struct rq *rq, const struct task_struct *p) | ||
1510 | { | ||
1511 | update_load_sub(&rq->load, p->se.load.weight); | ||
1512 | } | ||
1513 | |||
1514 | static void inc_nr_running(struct task_struct *p, struct rq *rq) | ||
1849 | { | 1515 | { |
1850 | rq->nr_running++; | 1516 | rq->nr_running++; |
1517 | inc_load(rq, p); | ||
1851 | } | 1518 | } |
1852 | 1519 | ||
1853 | static void dec_nr_running(struct rq *rq) | 1520 | static void dec_nr_running(struct task_struct *p, struct rq *rq) |
1854 | { | 1521 | { |
1855 | rq->nr_running--; | 1522 | rq->nr_running--; |
1523 | dec_load(rq, p); | ||
1856 | } | 1524 | } |
1857 | 1525 | ||
1858 | static void set_load_weight(struct task_struct *p) | 1526 | static void set_load_weight(struct task_struct *p) |
@@ -1944,7 +1612,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
1944 | rq->nr_uninterruptible--; | 1612 | rq->nr_uninterruptible--; |
1945 | 1613 | ||
1946 | enqueue_task(rq, p, wakeup); | 1614 | enqueue_task(rq, p, wakeup); |
1947 | inc_nr_running(rq); | 1615 | inc_nr_running(p, rq); |
1948 | } | 1616 | } |
1949 | 1617 | ||
1950 | /* | 1618 | /* |
@@ -1956,7 +1624,7 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1956 | rq->nr_uninterruptible++; | 1624 | rq->nr_uninterruptible++; |
1957 | 1625 | ||
1958 | dequeue_task(rq, p, sleep); | 1626 | dequeue_task(rq, p, sleep); |
1959 | dec_nr_running(rq); | 1627 | dec_nr_running(p, rq); |
1960 | } | 1628 | } |
1961 | 1629 | ||
1962 | /** | 1630 | /** |
@@ -2609,7 +2277,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2609 | * management (if any): | 2277 | * management (if any): |
2610 | */ | 2278 | */ |
2611 | p->sched_class->task_new(rq, p); | 2279 | p->sched_class->task_new(rq, p); |
2612 | inc_nr_running(rq); | 2280 | inc_nr_running(p, rq); |
2613 | } | 2281 | } |
2614 | check_preempt_curr(rq, p); | 2282 | check_preempt_curr(rq, p); |
2615 | #ifdef CONFIG_SMP | 2283 | #ifdef CONFIG_SMP |
@@ -3600,12 +3268,9 @@ static int load_balance(int this_cpu, struct rq *this_rq, | |||
3600 | unsigned long imbalance; | 3268 | unsigned long imbalance; |
3601 | struct rq *busiest; | 3269 | struct rq *busiest; |
3602 | unsigned long flags; | 3270 | unsigned long flags; |
3603 | int unlock_aggregate; | ||
3604 | 3271 | ||
3605 | cpus_setall(*cpus); | 3272 | cpus_setall(*cpus); |
3606 | 3273 | ||
3607 | unlock_aggregate = get_aggregate(sd); | ||
3608 | |||
3609 | /* | 3274 | /* |
3610 | * When power savings policy is enabled for the parent domain, idle | 3275 | * When power savings policy is enabled for the parent domain, idle |
3611 | * sibling can pick up load irrespective of busy siblings. In this case, | 3276 | * sibling can pick up load irrespective of busy siblings. In this case, |
@@ -3721,9 +3386,8 @@ redo: | |||
3721 | 3386 | ||
3722 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3387 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3723 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3388 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3724 | ld_moved = -1; | 3389 | return -1; |
3725 | 3390 | return ld_moved; | |
3726 | goto out; | ||
3727 | 3391 | ||
3728 | out_balanced: | 3392 | out_balanced: |
3729 | schedstat_inc(sd, lb_balanced[idle]); | 3393 | schedstat_inc(sd, lb_balanced[idle]); |
@@ -3738,13 +3402,8 @@ out_one_pinned: | |||
3738 | 3402 | ||
3739 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3403 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3740 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3404 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3741 | ld_moved = -1; | 3405 | return -1; |
3742 | else | 3406 | return 0; |
3743 | ld_moved = 0; | ||
3744 | out: | ||
3745 | if (unlock_aggregate) | ||
3746 | put_aggregate(sd); | ||
3747 | return ld_moved; | ||
3748 | } | 3407 | } |
3749 | 3408 | ||
3750 | /* | 3409 | /* |
@@ -4430,7 +4089,7 @@ static inline void schedule_debug(struct task_struct *prev) | |||
4430 | * schedule() atomically, we ignore that path for now. | 4089 | * schedule() atomically, we ignore that path for now. |
4431 | * Otherwise, whine if we are scheduling when we should not be. | 4090 | * Otherwise, whine if we are scheduling when we should not be. |
4432 | */ | 4091 | */ |
4433 | if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state)) | 4092 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
4434 | __schedule_bug(prev); | 4093 | __schedule_bug(prev); |
4435 | 4094 | ||
4436 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 4095 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
@@ -4510,12 +4169,10 @@ need_resched_nonpreemptible: | |||
4510 | clear_tsk_need_resched(prev); | 4169 | clear_tsk_need_resched(prev); |
4511 | 4170 | ||
4512 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 4171 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
4513 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 4172 | if (unlikely(signal_pending_state(prev->state, prev))) |
4514 | signal_pending(prev))) { | ||
4515 | prev->state = TASK_RUNNING; | 4173 | prev->state = TASK_RUNNING; |
4516 | } else { | 4174 | else |
4517 | deactivate_task(rq, prev, 1); | 4175 | deactivate_task(rq, prev, 1); |
4518 | } | ||
4519 | switch_count = &prev->nvcsw; | 4176 | switch_count = &prev->nvcsw; |
4520 | } | 4177 | } |
4521 | 4178 | ||
@@ -4741,22 +4398,20 @@ do_wait_for_common(struct completion *x, long timeout, int state) | |||
4741 | signal_pending(current)) || | 4398 | signal_pending(current)) || |
4742 | (state == TASK_KILLABLE && | 4399 | (state == TASK_KILLABLE && |
4743 | fatal_signal_pending(current))) { | 4400 | fatal_signal_pending(current))) { |
4744 | __remove_wait_queue(&x->wait, &wait); | 4401 | timeout = -ERESTARTSYS; |
4745 | return -ERESTARTSYS; | 4402 | break; |
4746 | } | 4403 | } |
4747 | __set_current_state(state); | 4404 | __set_current_state(state); |
4748 | spin_unlock_irq(&x->wait.lock); | 4405 | spin_unlock_irq(&x->wait.lock); |
4749 | timeout = schedule_timeout(timeout); | 4406 | timeout = schedule_timeout(timeout); |
4750 | spin_lock_irq(&x->wait.lock); | 4407 | spin_lock_irq(&x->wait.lock); |
4751 | if (!timeout) { | 4408 | } while (!x->done && timeout); |
4752 | __remove_wait_queue(&x->wait, &wait); | ||
4753 | return timeout; | ||
4754 | } | ||
4755 | } while (!x->done); | ||
4756 | __remove_wait_queue(&x->wait, &wait); | 4409 | __remove_wait_queue(&x->wait, &wait); |
4410 | if (!x->done) | ||
4411 | return timeout; | ||
4757 | } | 4412 | } |
4758 | x->done--; | 4413 | x->done--; |
4759 | return timeout; | 4414 | return timeout ?: 1; |
4760 | } | 4415 | } |
4761 | 4416 | ||
4762 | static long __sched | 4417 | static long __sched |
@@ -4931,8 +4586,10 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4931 | goto out_unlock; | 4586 | goto out_unlock; |
4932 | } | 4587 | } |
4933 | on_rq = p->se.on_rq; | 4588 | on_rq = p->se.on_rq; |
4934 | if (on_rq) | 4589 | if (on_rq) { |
4935 | dequeue_task(rq, p, 0); | 4590 | dequeue_task(rq, p, 0); |
4591 | dec_load(rq, p); | ||
4592 | } | ||
4936 | 4593 | ||
4937 | p->static_prio = NICE_TO_PRIO(nice); | 4594 | p->static_prio = NICE_TO_PRIO(nice); |
4938 | set_load_weight(p); | 4595 | set_load_weight(p); |
@@ -4942,6 +4599,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4942 | 4599 | ||
4943 | if (on_rq) { | 4600 | if (on_rq) { |
4944 | enqueue_task(rq, p, 0); | 4601 | enqueue_task(rq, p, 0); |
4602 | inc_load(rq, p); | ||
4945 | /* | 4603 | /* |
4946 | * If the task increased its priority or is running and | 4604 | * If the task increased its priority or is running and |
4947 | * lowered its priority, then reschedule its CPU: | 4605 | * lowered its priority, then reschedule its CPU: |
@@ -6229,6 +5887,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
6229 | next = pick_next_task(rq, rq->curr); | 5887 | next = pick_next_task(rq, rq->curr); |
6230 | if (!next) | 5888 | if (!next) |
6231 | break; | 5889 | break; |
5890 | next->sched_class->put_prev_task(rq, next); | ||
6232 | migrate_dead(dead_cpu, next); | 5891 | migrate_dead(dead_cpu, next); |
6233 | 5892 | ||
6234 | } | 5893 | } |
@@ -7219,7 +6878,12 @@ static int default_relax_domain_level = -1; | |||
7219 | 6878 | ||
7220 | static int __init setup_relax_domain_level(char *str) | 6879 | static int __init setup_relax_domain_level(char *str) |
7221 | { | 6880 | { |
7222 | default_relax_domain_level = simple_strtoul(str, NULL, 0); | 6881 | unsigned long val; |
6882 | |||
6883 | val = simple_strtoul(str, NULL, 0); | ||
6884 | if (val < SD_LV_MAX) | ||
6885 | default_relax_domain_level = val; | ||
6886 | |||
7223 | return 1; | 6887 | return 1; |
7224 | } | 6888 | } |
7225 | __setup("relax_domain_level=", setup_relax_domain_level); | 6889 | __setup("relax_domain_level=", setup_relax_domain_level); |
@@ -7316,7 +6980,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7316 | SD_INIT(sd, ALLNODES); | 6980 | SD_INIT(sd, ALLNODES); |
7317 | set_domain_attribute(sd, attr); | 6981 | set_domain_attribute(sd, attr); |
7318 | sd->span = *cpu_map; | 6982 | sd->span = *cpu_map; |
7319 | sd->first_cpu = first_cpu(sd->span); | ||
7320 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); | 6983 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
7321 | p = sd; | 6984 | p = sd; |
7322 | sd_allnodes = 1; | 6985 | sd_allnodes = 1; |
@@ -7327,7 +6990,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7327 | SD_INIT(sd, NODE); | 6990 | SD_INIT(sd, NODE); |
7328 | set_domain_attribute(sd, attr); | 6991 | set_domain_attribute(sd, attr); |
7329 | sched_domain_node_span(cpu_to_node(i), &sd->span); | 6992 | sched_domain_node_span(cpu_to_node(i), &sd->span); |
7330 | sd->first_cpu = first_cpu(sd->span); | ||
7331 | sd->parent = p; | 6993 | sd->parent = p; |
7332 | if (p) | 6994 | if (p) |
7333 | p->child = sd; | 6995 | p->child = sd; |
@@ -7339,7 +7001,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7339 | SD_INIT(sd, CPU); | 7001 | SD_INIT(sd, CPU); |
7340 | set_domain_attribute(sd, attr); | 7002 | set_domain_attribute(sd, attr); |
7341 | sd->span = *nodemask; | 7003 | sd->span = *nodemask; |
7342 | sd->first_cpu = first_cpu(sd->span); | ||
7343 | sd->parent = p; | 7004 | sd->parent = p; |
7344 | if (p) | 7005 | if (p) |
7345 | p->child = sd; | 7006 | p->child = sd; |
@@ -7351,7 +7012,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7351 | SD_INIT(sd, MC); | 7012 | SD_INIT(sd, MC); |
7352 | set_domain_attribute(sd, attr); | 7013 | set_domain_attribute(sd, attr); |
7353 | sd->span = cpu_coregroup_map(i); | 7014 | sd->span = cpu_coregroup_map(i); |
7354 | sd->first_cpu = first_cpu(sd->span); | ||
7355 | cpus_and(sd->span, sd->span, *cpu_map); | 7015 | cpus_and(sd->span, sd->span, *cpu_map); |
7356 | sd->parent = p; | 7016 | sd->parent = p; |
7357 | p->child = sd; | 7017 | p->child = sd; |
@@ -7364,7 +7024,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, | |||
7364 | SD_INIT(sd, SIBLING); | 7024 | SD_INIT(sd, SIBLING); |
7365 | set_domain_attribute(sd, attr); | 7025 | set_domain_attribute(sd, attr); |
7366 | sd->span = per_cpu(cpu_sibling_map, i); | 7026 | sd->span = per_cpu(cpu_sibling_map, i); |
7367 | sd->first_cpu = first_cpu(sd->span); | ||
7368 | cpus_and(sd->span, sd->span, *cpu_map); | 7027 | cpus_and(sd->span, sd->span, *cpu_map); |
7369 | sd->parent = p; | 7028 | sd->parent = p; |
7370 | p->child = sd; | 7029 | p->child = sd; |
@@ -7568,8 +7227,8 @@ static int build_sched_domains(const cpumask_t *cpu_map) | |||
7568 | 7227 | ||
7569 | static cpumask_t *doms_cur; /* current sched domains */ | 7228 | static cpumask_t *doms_cur; /* current sched domains */ |
7570 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 7229 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
7571 | static struct sched_domain_attr *dattr_cur; /* attribues of custom domains | 7230 | static struct sched_domain_attr *dattr_cur; |
7572 | in 'doms_cur' */ | 7231 | /* attribues of custom domains in 'doms_cur' */ |
7573 | 7232 | ||
7574 | /* | 7233 | /* |
7575 | * Special case: If a kmalloc of a doms_cur partition (array of | 7234 | * Special case: If a kmalloc of a doms_cur partition (array of |
@@ -7583,6 +7242,18 @@ void __attribute__((weak)) arch_update_cpu_topology(void) | |||
7583 | } | 7242 | } |
7584 | 7243 | ||
7585 | /* | 7244 | /* |
7245 | * Free current domain masks. | ||
7246 | * Called after all cpus are attached to NULL domain. | ||
7247 | */ | ||
7248 | static void free_sched_domains(void) | ||
7249 | { | ||
7250 | ndoms_cur = 0; | ||
7251 | if (doms_cur != &fallback_doms) | ||
7252 | kfree(doms_cur); | ||
7253 | doms_cur = &fallback_doms; | ||
7254 | } | ||
7255 | |||
7256 | /* | ||
7586 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 7257 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
7587 | * For now this just excludes isolated cpus, but could be used to | 7258 | * For now this just excludes isolated cpus, but could be used to |
7588 | * exclude other special cases in the future. | 7259 | * exclude other special cases in the future. |
@@ -7729,6 +7400,7 @@ int arch_reinit_sched_domains(void) | |||
7729 | get_online_cpus(); | 7400 | get_online_cpus(); |
7730 | mutex_lock(&sched_domains_mutex); | 7401 | mutex_lock(&sched_domains_mutex); |
7731 | detach_destroy_domains(&cpu_online_map); | 7402 | detach_destroy_domains(&cpu_online_map); |
7403 | free_sched_domains(); | ||
7732 | err = arch_init_sched_domains(&cpu_online_map); | 7404 | err = arch_init_sched_domains(&cpu_online_map); |
7733 | mutex_unlock(&sched_domains_mutex); | 7405 | mutex_unlock(&sched_domains_mutex); |
7734 | put_online_cpus(); | 7406 | put_online_cpus(); |
@@ -7814,6 +7486,7 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
7814 | case CPU_DOWN_PREPARE: | 7486 | case CPU_DOWN_PREPARE: |
7815 | case CPU_DOWN_PREPARE_FROZEN: | 7487 | case CPU_DOWN_PREPARE_FROZEN: |
7816 | detach_destroy_domains(&cpu_online_map); | 7488 | detach_destroy_domains(&cpu_online_map); |
7489 | free_sched_domains(); | ||
7817 | return NOTIFY_OK; | 7490 | return NOTIFY_OK; |
7818 | 7491 | ||
7819 | case CPU_UP_CANCELED: | 7492 | case CPU_UP_CANCELED: |
@@ -7832,8 +7505,16 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
7832 | return NOTIFY_DONE; | 7505 | return NOTIFY_DONE; |
7833 | } | 7506 | } |
7834 | 7507 | ||
7508 | #ifndef CONFIG_CPUSETS | ||
7509 | /* | ||
7510 | * Create default domain partitioning if cpusets are disabled. | ||
7511 | * Otherwise we let cpusets rebuild the domains based on the | ||
7512 | * current setup. | ||
7513 | */ | ||
7514 | |||
7835 | /* The hotplug lock is already held by cpu_up/cpu_down */ | 7515 | /* The hotplug lock is already held by cpu_up/cpu_down */ |
7836 | arch_init_sched_domains(&cpu_online_map); | 7516 | arch_init_sched_domains(&cpu_online_map); |
7517 | #endif | ||
7837 | 7518 | ||
7838 | return NOTIFY_OK; | 7519 | return NOTIFY_OK; |
7839 | } | 7520 | } |
@@ -7973,7 +7654,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |||
7973 | else | 7654 | else |
7974 | rt_se->rt_rq = parent->my_q; | 7655 | rt_se->rt_rq = parent->my_q; |
7975 | 7656 | ||
7976 | rt_se->rt_rq = &rq->rt; | ||
7977 | rt_se->my_q = rt_rq; | 7657 | rt_se->my_q = rt_rq; |
7978 | rt_se->parent = parent; | 7658 | rt_se->parent = parent; |
7979 | INIT_LIST_HEAD(&rt_se->run_list); | 7659 | INIT_LIST_HEAD(&rt_se->run_list); |
@@ -8034,7 +7714,6 @@ void __init sched_init(void) | |||
8034 | } | 7714 | } |
8035 | 7715 | ||
8036 | #ifdef CONFIG_SMP | 7716 | #ifdef CONFIG_SMP |
8037 | init_aggregate(); | ||
8038 | init_defrootdomain(); | 7717 | init_defrootdomain(); |
8039 | #endif | 7718 | #endif |
8040 | 7719 | ||
@@ -8599,11 +8278,14 @@ void sched_move_task(struct task_struct *tsk) | |||
8599 | #endif | 8278 | #endif |
8600 | 8279 | ||
8601 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8280 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8602 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8281 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
8603 | { | 8282 | { |
8604 | struct cfs_rq *cfs_rq = se->cfs_rq; | 8283 | struct cfs_rq *cfs_rq = se->cfs_rq; |
8284 | struct rq *rq = cfs_rq->rq; | ||
8605 | int on_rq; | 8285 | int on_rq; |
8606 | 8286 | ||
8287 | spin_lock_irq(&rq->lock); | ||
8288 | |||
8607 | on_rq = se->on_rq; | 8289 | on_rq = se->on_rq; |
8608 | if (on_rq) | 8290 | if (on_rq) |
8609 | dequeue_entity(cfs_rq, se, 0); | 8291 | dequeue_entity(cfs_rq, se, 0); |
@@ -8613,17 +8295,8 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares) | |||
8613 | 8295 | ||
8614 | if (on_rq) | 8296 | if (on_rq) |
8615 | enqueue_entity(cfs_rq, se, 0); | 8297 | enqueue_entity(cfs_rq, se, 0); |
8616 | } | ||
8617 | 8298 | ||
8618 | static void set_se_shares(struct sched_entity *se, unsigned long shares) | 8299 | spin_unlock_irq(&rq->lock); |
8619 | { | ||
8620 | struct cfs_rq *cfs_rq = se->cfs_rq; | ||
8621 | struct rq *rq = cfs_rq->rq; | ||
8622 | unsigned long flags; | ||
8623 | |||
8624 | spin_lock_irqsave(&rq->lock, flags); | ||
8625 | __set_se_shares(se, shares); | ||
8626 | spin_unlock_irqrestore(&rq->lock, flags); | ||
8627 | } | 8300 | } |
8628 | 8301 | ||
8629 | static DEFINE_MUTEX(shares_mutex); | 8302 | static DEFINE_MUTEX(shares_mutex); |
@@ -8662,13 +8335,8 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |||
8662 | * w/o tripping rebalance_share or load_balance_fair. | 8335 | * w/o tripping rebalance_share or load_balance_fair. |
8663 | */ | 8336 | */ |
8664 | tg->shares = shares; | 8337 | tg->shares = shares; |
8665 | for_each_possible_cpu(i) { | 8338 | for_each_possible_cpu(i) |
8666 | /* | ||
8667 | * force a rebalance | ||
8668 | */ | ||
8669 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | ||
8670 | set_se_shares(tg->se[i], shares); | 8339 | set_se_shares(tg->se[i], shares); |
8671 | } | ||
8672 | 8340 | ||
8673 | /* | 8341 | /* |
8674 | * Enable load balance activity on this group, by inserting it back on | 8342 | * Enable load balance activity on this group, by inserting it back on |
@@ -8707,7 +8375,7 @@ static unsigned long to_ratio(u64 period, u64 runtime) | |||
8707 | #ifdef CONFIG_CGROUP_SCHED | 8375 | #ifdef CONFIG_CGROUP_SCHED |
8708 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 8376 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
8709 | { | 8377 | { |
8710 | struct task_group *tgi, *parent = tg->parent; | 8378 | struct task_group *tgi, *parent = tg ? tg->parent : NULL; |
8711 | unsigned long total = 0; | 8379 | unsigned long total = 0; |
8712 | 8380 | ||
8713 | if (!parent) { | 8381 | if (!parent) { |
@@ -8834,6 +8502,9 @@ int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |||
8834 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | 8502 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; |
8835 | rt_runtime = tg->rt_bandwidth.rt_runtime; | 8503 | rt_runtime = tg->rt_bandwidth.rt_runtime; |
8836 | 8504 | ||
8505 | if (rt_period == 0) | ||
8506 | return -EINVAL; | ||
8507 | |||
8837 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | 8508 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
8838 | } | 8509 | } |
8839 | 8510 | ||
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index 9c597e37f7de..ce05271219ab 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -59,22 +59,26 @@ static inline struct sched_clock_data *cpu_sdc(int cpu) | |||
59 | return &per_cpu(sched_clock_data, cpu); | 59 | return &per_cpu(sched_clock_data, cpu); |
60 | } | 60 | } |
61 | 61 | ||
62 | static __read_mostly int sched_clock_running; | ||
63 | |||
62 | void sched_clock_init(void) | 64 | void sched_clock_init(void) |
63 | { | 65 | { |
64 | u64 ktime_now = ktime_to_ns(ktime_get()); | 66 | u64 ktime_now = ktime_to_ns(ktime_get()); |
65 | u64 now = 0; | 67 | unsigned long now_jiffies = jiffies; |
66 | int cpu; | 68 | int cpu; |
67 | 69 | ||
68 | for_each_possible_cpu(cpu) { | 70 | for_each_possible_cpu(cpu) { |
69 | struct sched_clock_data *scd = cpu_sdc(cpu); | 71 | struct sched_clock_data *scd = cpu_sdc(cpu); |
70 | 72 | ||
71 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 73 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; |
72 | scd->prev_jiffies = jiffies; | 74 | scd->prev_jiffies = now_jiffies; |
73 | scd->prev_raw = now; | 75 | scd->prev_raw = 0; |
74 | scd->tick_raw = now; | 76 | scd->tick_raw = 0; |
75 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
76 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
77 | } | 79 | } |
80 | |||
81 | sched_clock_running = 1; | ||
78 | } | 82 | } |
79 | 83 | ||
80 | /* | 84 | /* |
@@ -136,6 +140,9 @@ u64 sched_clock_cpu(int cpu) | |||
136 | struct sched_clock_data *scd = cpu_sdc(cpu); | 140 | struct sched_clock_data *scd = cpu_sdc(cpu); |
137 | u64 now, clock; | 141 | u64 now, clock; |
138 | 142 | ||
143 | if (unlikely(!sched_clock_running)) | ||
144 | return 0ull; | ||
145 | |||
139 | WARN_ON_ONCE(!irqs_disabled()); | 146 | WARN_ON_ONCE(!irqs_disabled()); |
140 | now = sched_clock(); | 147 | now = sched_clock(); |
141 | 148 | ||
@@ -174,6 +181,9 @@ void sched_clock_tick(void) | |||
174 | struct sched_clock_data *scd = this_scd(); | 181 | struct sched_clock_data *scd = this_scd(); |
175 | u64 now, now_gtod; | 182 | u64 now, now_gtod; |
176 | 183 | ||
184 | if (unlikely(!sched_clock_running)) | ||
185 | return; | ||
186 | |||
177 | WARN_ON_ONCE(!irqs_disabled()); | 187 | WARN_ON_ONCE(!irqs_disabled()); |
178 | 188 | ||
179 | now = sched_clock(); | 189 | now = sched_clock(); |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 5f06118fbc31..8bb713040ac9 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -167,11 +167,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) | |||
167 | #endif | 167 | #endif |
168 | SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", | 168 | SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", |
169 | cfs_rq->nr_spread_over); | 169 | cfs_rq->nr_spread_over); |
170 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
171 | #ifdef CONFIG_SMP | ||
172 | SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares); | ||
173 | #endif | ||
174 | #endif | ||
175 | } | 170 | } |
176 | 171 | ||
177 | static void print_cpu(struct seq_file *m, int cpu) | 172 | static void print_cpu(struct seq_file *m, int cpu) |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index e24ecd39c4b8..08ae848b71d4 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -334,34 +334,6 @@ int sched_nr_latency_handler(struct ctl_table *table, int write, | |||
334 | #endif | 334 | #endif |
335 | 335 | ||
336 | /* | 336 | /* |
337 | * delta *= w / rw | ||
338 | */ | ||
339 | static inline unsigned long | ||
340 | calc_delta_weight(unsigned long delta, struct sched_entity *se) | ||
341 | { | ||
342 | for_each_sched_entity(se) { | ||
343 | delta = calc_delta_mine(delta, | ||
344 | se->load.weight, &cfs_rq_of(se)->load); | ||
345 | } | ||
346 | |||
347 | return delta; | ||
348 | } | ||
349 | |||
350 | /* | ||
351 | * delta *= rw / w | ||
352 | */ | ||
353 | static inline unsigned long | ||
354 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | ||
355 | { | ||
356 | for_each_sched_entity(se) { | ||
357 | delta = calc_delta_mine(delta, | ||
358 | cfs_rq_of(se)->load.weight, &se->load); | ||
359 | } | ||
360 | |||
361 | return delta; | ||
362 | } | ||
363 | |||
364 | /* | ||
365 | * The idea is to set a period in which each task runs once. | 337 | * The idea is to set a period in which each task runs once. |
366 | * | 338 | * |
367 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 339 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch |
@@ -390,54 +362,47 @@ static u64 __sched_period(unsigned long nr_running) | |||
390 | */ | 362 | */ |
391 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 363 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
392 | { | 364 | { |
393 | return calc_delta_weight(__sched_period(cfs_rq->nr_running), se); | 365 | u64 slice = __sched_period(cfs_rq->nr_running); |
366 | |||
367 | for_each_sched_entity(se) { | ||
368 | cfs_rq = cfs_rq_of(se); | ||
369 | |||
370 | slice *= se->load.weight; | ||
371 | do_div(slice, cfs_rq->load.weight); | ||
372 | } | ||
373 | |||
374 | |||
375 | return slice; | ||
394 | } | 376 | } |
395 | 377 | ||
396 | /* | 378 | /* |
397 | * We calculate the vruntime slice of a to be inserted task | 379 | * We calculate the vruntime slice of a to be inserted task |
398 | * | 380 | * |
399 | * vs = s*rw/w = p | 381 | * vs = s/w = p/rw |
400 | */ | 382 | */ |
401 | static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) | 383 | static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) |
402 | { | 384 | { |
403 | unsigned long nr_running = cfs_rq->nr_running; | 385 | unsigned long nr_running = cfs_rq->nr_running; |
386 | unsigned long weight; | ||
387 | u64 vslice; | ||
404 | 388 | ||
405 | if (!se->on_rq) | 389 | if (!se->on_rq) |
406 | nr_running++; | 390 | nr_running++; |
407 | 391 | ||
408 | return __sched_period(nr_running); | 392 | vslice = __sched_period(nr_running); |
409 | } | ||
410 | |||
411 | /* | ||
412 | * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in | ||
413 | * that it favours >=0 over <0. | ||
414 | * | ||
415 | * -20 | | ||
416 | * | | ||
417 | * 0 --------+------- | ||
418 | * .' | ||
419 | * 19 .' | ||
420 | * | ||
421 | */ | ||
422 | static unsigned long | ||
423 | calc_delta_asym(unsigned long delta, struct sched_entity *se) | ||
424 | { | ||
425 | struct load_weight lw = { | ||
426 | .weight = NICE_0_LOAD, | ||
427 | .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT) | ||
428 | }; | ||
429 | 393 | ||
430 | for_each_sched_entity(se) { | 394 | for_each_sched_entity(se) { |
431 | struct load_weight *se_lw = &se->load; | 395 | cfs_rq = cfs_rq_of(se); |
432 | 396 | ||
433 | if (se->load.weight < NICE_0_LOAD) | 397 | weight = cfs_rq->load.weight; |
434 | se_lw = &lw; | 398 | if (!se->on_rq) |
399 | weight += se->load.weight; | ||
435 | 400 | ||
436 | delta = calc_delta_mine(delta, | 401 | vslice *= NICE_0_LOAD; |
437 | cfs_rq_of(se)->load.weight, se_lw); | 402 | do_div(vslice, weight); |
438 | } | 403 | } |
439 | 404 | ||
440 | return delta; | 405 | return vslice; |
441 | } | 406 | } |
442 | 407 | ||
443 | /* | 408 | /* |
@@ -454,7 +419,11 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | |||
454 | 419 | ||
455 | curr->sum_exec_runtime += delta_exec; | 420 | curr->sum_exec_runtime += delta_exec; |
456 | schedstat_add(cfs_rq, exec_clock, delta_exec); | 421 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
457 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 422 | delta_exec_weighted = delta_exec; |
423 | if (unlikely(curr->load.weight != NICE_0_LOAD)) { | ||
424 | delta_exec_weighted = calc_delta_fair(delta_exec_weighted, | ||
425 | &curr->load); | ||
426 | } | ||
458 | curr->vruntime += delta_exec_weighted; | 427 | curr->vruntime += delta_exec_weighted; |
459 | } | 428 | } |
460 | 429 | ||
@@ -541,27 +510,10 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
541 | * Scheduling class queueing methods: | 510 | * Scheduling class queueing methods: |
542 | */ | 511 | */ |
543 | 512 | ||
544 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
545 | static void | ||
546 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
547 | { | ||
548 | cfs_rq->task_weight += weight; | ||
549 | } | ||
550 | #else | ||
551 | static inline void | ||
552 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
553 | { | ||
554 | } | ||
555 | #endif | ||
556 | |||
557 | static void | 513 | static void |
558 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 514 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
559 | { | 515 | { |
560 | update_load_add(&cfs_rq->load, se->load.weight); | 516 | update_load_add(&cfs_rq->load, se->load.weight); |
561 | if (!parent_entity(se)) | ||
562 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
563 | if (entity_is_task(se)) | ||
564 | add_cfs_task_weight(cfs_rq, se->load.weight); | ||
565 | cfs_rq->nr_running++; | 517 | cfs_rq->nr_running++; |
566 | se->on_rq = 1; | 518 | se->on_rq = 1; |
567 | list_add(&se->group_node, &cfs_rq->tasks); | 519 | list_add(&se->group_node, &cfs_rq->tasks); |
@@ -571,10 +523,6 @@ static void | |||
571 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 523 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
572 | { | 524 | { |
573 | update_load_sub(&cfs_rq->load, se->load.weight); | 525 | update_load_sub(&cfs_rq->load, se->load.weight); |
574 | if (!parent_entity(se)) | ||
575 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
576 | if (entity_is_task(se)) | ||
577 | add_cfs_task_weight(cfs_rq, -se->load.weight); | ||
578 | cfs_rq->nr_running--; | 526 | cfs_rq->nr_running--; |
579 | se->on_rq = 0; | 527 | se->on_rq = 0; |
580 | list_del_init(&se->group_node); | 528 | list_del_init(&se->group_node); |
@@ -661,17 +609,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
661 | 609 | ||
662 | if (!initial) { | 610 | if (!initial) { |
663 | /* sleeps upto a single latency don't count. */ | 611 | /* sleeps upto a single latency don't count. */ |
664 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 612 | if (sched_feat(NEW_FAIR_SLEEPERS)) |
665 | unsigned long thresh = sysctl_sched_latency; | 613 | vruntime -= sysctl_sched_latency; |
666 | |||
667 | /* | ||
668 | * convert the sleeper threshold into virtual time | ||
669 | */ | ||
670 | if (sched_feat(NORMALIZED_SLEEPER)) | ||
671 | thresh = calc_delta_fair(thresh, se); | ||
672 | |||
673 | vruntime -= thresh; | ||
674 | } | ||
675 | 614 | ||
676 | /* ensure we never gain time by being placed backwards. */ | 615 | /* ensure we never gain time by being placed backwards. */ |
677 | vruntime = max_vruntime(se->vruntime, vruntime); | 616 | vruntime = max_vruntime(se->vruntime, vruntime); |
@@ -1057,16 +996,27 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, | |||
1057 | struct task_struct *curr = this_rq->curr; | 996 | struct task_struct *curr = this_rq->curr; |
1058 | unsigned long tl = this_load; | 997 | unsigned long tl = this_load; |
1059 | unsigned long tl_per_task; | 998 | unsigned long tl_per_task; |
999 | int balanced; | ||
1060 | 1000 | ||
1061 | if (!(this_sd->flags & SD_WAKE_AFFINE)) | 1001 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) |
1062 | return 0; | 1002 | return 0; |
1063 | 1003 | ||
1064 | /* | 1004 | /* |
1005 | * If sync wakeup then subtract the (maximum possible) | ||
1006 | * effect of the currently running task from the load | ||
1007 | * of the current CPU: | ||
1008 | */ | ||
1009 | if (sync) | ||
1010 | tl -= current->se.load.weight; | ||
1011 | |||
1012 | balanced = 100*(tl + p->se.load.weight) <= imbalance*load; | ||
1013 | |||
1014 | /* | ||
1065 | * If the currently running task will sleep within | 1015 | * If the currently running task will sleep within |
1066 | * a reasonable amount of time then attract this newly | 1016 | * a reasonable amount of time then attract this newly |
1067 | * woken task: | 1017 | * woken task: |
1068 | */ | 1018 | */ |
1069 | if (sync && curr->sched_class == &fair_sched_class) { | 1019 | if (sync && balanced && curr->sched_class == &fair_sched_class) { |
1070 | if (curr->se.avg_overlap < sysctl_sched_migration_cost && | 1020 | if (curr->se.avg_overlap < sysctl_sched_migration_cost && |
1071 | p->se.avg_overlap < sysctl_sched_migration_cost) | 1021 | p->se.avg_overlap < sysctl_sched_migration_cost) |
1072 | return 1; | 1022 | return 1; |
@@ -1075,16 +1025,8 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, | |||
1075 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1025 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
1076 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1026 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1077 | 1027 | ||
1078 | /* | ||
1079 | * If sync wakeup then subtract the (maximum possible) | ||
1080 | * effect of the currently running task from the load | ||
1081 | * of the current CPU: | ||
1082 | */ | ||
1083 | if (sync) | ||
1084 | tl -= current->se.load.weight; | ||
1085 | |||
1086 | if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || | 1028 | if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || |
1087 | 100*(tl + p->se.load.weight) <= imbalance*load) { | 1029 | balanced) { |
1088 | /* | 1030 | /* |
1089 | * This domain has SD_WAKE_AFFINE and | 1031 | * This domain has SD_WAKE_AFFINE and |
1090 | * p is cache cold in this domain, and | 1032 | * p is cache cold in this domain, and |
@@ -1169,10 +1111,11 @@ static unsigned long wakeup_gran(struct sched_entity *se) | |||
1169 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1111 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1170 | 1112 | ||
1171 | /* | 1113 | /* |
1172 | * More easily preempt - nice tasks, while not making it harder for | 1114 | * More easily preempt - nice tasks, while not making |
1173 | * + nice tasks. | 1115 | * it harder for + nice tasks. |
1174 | */ | 1116 | */ |
1175 | gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se); | 1117 | if (unlikely(se->load.weight > NICE_0_LOAD)) |
1118 | gran = calc_delta_fair(gran, &se->load); | ||
1176 | 1119 | ||
1177 | return gran; | 1120 | return gran; |
1178 | } | 1121 | } |
@@ -1366,90 +1309,75 @@ static struct task_struct *load_balance_next_fair(void *arg) | |||
1366 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); | 1309 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); |
1367 | } | 1310 | } |
1368 | 1311 | ||
1369 | static unsigned long | 1312 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1370 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1313 | static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) |
1371 | unsigned long max_load_move, struct sched_domain *sd, | ||
1372 | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | ||
1373 | struct cfs_rq *cfs_rq) | ||
1374 | { | 1314 | { |
1375 | struct rq_iterator cfs_rq_iterator; | 1315 | struct sched_entity *curr; |
1316 | struct task_struct *p; | ||
1376 | 1317 | ||
1377 | cfs_rq_iterator.start = load_balance_start_fair; | 1318 | if (!cfs_rq->nr_running || !first_fair(cfs_rq)) |
1378 | cfs_rq_iterator.next = load_balance_next_fair; | 1319 | return MAX_PRIO; |
1379 | cfs_rq_iterator.arg = cfs_rq; | 1320 | |
1321 | curr = cfs_rq->curr; | ||
1322 | if (!curr) | ||
1323 | curr = __pick_next_entity(cfs_rq); | ||
1324 | |||
1325 | p = task_of(curr); | ||
1380 | 1326 | ||
1381 | return balance_tasks(this_rq, this_cpu, busiest, | 1327 | return p->prio; |
1382 | max_load_move, sd, idle, all_pinned, | ||
1383 | this_best_prio, &cfs_rq_iterator); | ||
1384 | } | 1328 | } |
1329 | #endif | ||
1385 | 1330 | ||
1386 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1387 | static unsigned long | 1331 | static unsigned long |
1388 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1332 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1389 | unsigned long max_load_move, | 1333 | unsigned long max_load_move, |
1390 | struct sched_domain *sd, enum cpu_idle_type idle, | 1334 | struct sched_domain *sd, enum cpu_idle_type idle, |
1391 | int *all_pinned, int *this_best_prio) | 1335 | int *all_pinned, int *this_best_prio) |
1392 | { | 1336 | { |
1337 | struct cfs_rq *busy_cfs_rq; | ||
1393 | long rem_load_move = max_load_move; | 1338 | long rem_load_move = max_load_move; |
1394 | int busiest_cpu = cpu_of(busiest); | 1339 | struct rq_iterator cfs_rq_iterator; |
1395 | struct task_group *tg; | ||
1396 | |||
1397 | rcu_read_lock(); | ||
1398 | list_for_each_entry(tg, &task_groups, list) { | ||
1399 | long imbalance; | ||
1400 | unsigned long this_weight, busiest_weight; | ||
1401 | long rem_load, max_load, moved_load; | ||
1402 | |||
1403 | /* | ||
1404 | * empty group | ||
1405 | */ | ||
1406 | if (!aggregate(tg, sd)->task_weight) | ||
1407 | continue; | ||
1408 | |||
1409 | rem_load = rem_load_move * aggregate(tg, sd)->rq_weight; | ||
1410 | rem_load /= aggregate(tg, sd)->load + 1; | ||
1411 | |||
1412 | this_weight = tg->cfs_rq[this_cpu]->task_weight; | ||
1413 | busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight; | ||
1414 | 1340 | ||
1415 | imbalance = (busiest_weight - this_weight) / 2; | 1341 | cfs_rq_iterator.start = load_balance_start_fair; |
1342 | cfs_rq_iterator.next = load_balance_next_fair; | ||
1416 | 1343 | ||
1417 | if (imbalance < 0) | 1344 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { |
1418 | imbalance = busiest_weight; | 1345 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1346 | struct cfs_rq *this_cfs_rq; | ||
1347 | long imbalance; | ||
1348 | unsigned long maxload; | ||
1419 | 1349 | ||
1420 | max_load = max(rem_load, imbalance); | 1350 | this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu); |
1421 | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, | ||
1422 | max_load, sd, idle, all_pinned, this_best_prio, | ||
1423 | tg->cfs_rq[busiest_cpu]); | ||
1424 | 1351 | ||
1425 | if (!moved_load) | 1352 | imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight; |
1353 | /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */ | ||
1354 | if (imbalance <= 0) | ||
1426 | continue; | 1355 | continue; |
1427 | 1356 | ||
1428 | move_group_shares(tg, sd, busiest_cpu, this_cpu); | 1357 | /* Don't pull more than imbalance/2 */ |
1358 | imbalance /= 2; | ||
1359 | maxload = min(rem_load_move, imbalance); | ||
1429 | 1360 | ||
1430 | moved_load *= aggregate(tg, sd)->load; | 1361 | *this_best_prio = cfs_rq_best_prio(this_cfs_rq); |
1431 | moved_load /= aggregate(tg, sd)->rq_weight + 1; | 1362 | #else |
1363 | # define maxload rem_load_move | ||
1364 | #endif | ||
1365 | /* | ||
1366 | * pass busy_cfs_rq argument into | ||
1367 | * load_balance_[start|next]_fair iterators | ||
1368 | */ | ||
1369 | cfs_rq_iterator.arg = busy_cfs_rq; | ||
1370 | rem_load_move -= balance_tasks(this_rq, this_cpu, busiest, | ||
1371 | maxload, sd, idle, all_pinned, | ||
1372 | this_best_prio, | ||
1373 | &cfs_rq_iterator); | ||
1432 | 1374 | ||
1433 | rem_load_move -= moved_load; | 1375 | if (rem_load_move <= 0) |
1434 | if (rem_load_move < 0) | ||
1435 | break; | 1376 | break; |
1436 | } | 1377 | } |
1437 | rcu_read_unlock(); | ||
1438 | 1378 | ||
1439 | return max_load_move - rem_load_move; | 1379 | return max_load_move - rem_load_move; |
1440 | } | 1380 | } |
1441 | #else | ||
1442 | static unsigned long | ||
1443 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1444 | unsigned long max_load_move, | ||
1445 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1446 | int *all_pinned, int *this_best_prio) | ||
1447 | { | ||
1448 | return __load_balance_fair(this_rq, this_cpu, busiest, | ||
1449 | max_load_move, sd, idle, all_pinned, | ||
1450 | this_best_prio, &busiest->cfs); | ||
1451 | } | ||
1452 | #endif | ||
1453 | 1381 | ||
1454 | static int | 1382 | static int |
1455 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1383 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 060e87b0cb1c..0f3c19197fa4 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -250,7 +250,8 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | |||
250 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | 250 | if (rt_rq->rt_time || rt_rq->rt_nr_running) |
251 | idle = 0; | 251 | idle = 0; |
252 | spin_unlock(&rt_rq->rt_runtime_lock); | 252 | spin_unlock(&rt_rq->rt_runtime_lock); |
253 | } | 253 | } else if (rt_rq->rt_nr_running) |
254 | idle = 0; | ||
254 | 255 | ||
255 | if (enqueue) | 256 | if (enqueue) |
256 | sched_rt_rq_enqueue(rt_rq); | 257 | sched_rt_rq_enqueue(rt_rq); |
@@ -449,13 +450,19 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |||
449 | #endif | 450 | #endif |
450 | } | 451 | } |
451 | 452 | ||
452 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se) | 453 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
453 | { | 454 | { |
454 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 455 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
455 | struct rt_prio_array *array = &rt_rq->active; | 456 | struct rt_prio_array *array = &rt_rq->active; |
456 | struct rt_rq *group_rq = group_rt_rq(rt_se); | 457 | struct rt_rq *group_rq = group_rt_rq(rt_se); |
457 | 458 | ||
458 | if (group_rq && rt_rq_throttled(group_rq)) | 459 | /* |
460 | * Don't enqueue the group if its throttled, or when empty. | ||
461 | * The latter is a consequence of the former when a child group | ||
462 | * get throttled and the current group doesn't have any other | ||
463 | * active members. | ||
464 | */ | ||
465 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | ||
459 | return; | 466 | return; |
460 | 467 | ||
461 | list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); | 468 | list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); |
@@ -464,7 +471,7 @@ static void enqueue_rt_entity(struct sched_rt_entity *rt_se) | |||
464 | inc_rt_tasks(rt_se, rt_rq); | 471 | inc_rt_tasks(rt_se, rt_rq); |
465 | } | 472 | } |
466 | 473 | ||
467 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | 474 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) |
468 | { | 475 | { |
469 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 476 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
470 | struct rt_prio_array *array = &rt_rq->active; | 477 | struct rt_prio_array *array = &rt_rq->active; |
@@ -480,11 +487,10 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |||
480 | * Because the prio of an upper entry depends on the lower | 487 | * Because the prio of an upper entry depends on the lower |
481 | * entries, we must remove entries top - down. | 488 | * entries, we must remove entries top - down. |
482 | */ | 489 | */ |
483 | static void dequeue_rt_stack(struct task_struct *p) | 490 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) |
484 | { | 491 | { |
485 | struct sched_rt_entity *rt_se, *back = NULL; | 492 | struct sched_rt_entity *back = NULL; |
486 | 493 | ||
487 | rt_se = &p->rt; | ||
488 | for_each_sched_rt_entity(rt_se) { | 494 | for_each_sched_rt_entity(rt_se) { |
489 | rt_se->back = back; | 495 | rt_se->back = back; |
490 | back = rt_se; | 496 | back = rt_se; |
@@ -492,7 +498,26 @@ static void dequeue_rt_stack(struct task_struct *p) | |||
492 | 498 | ||
493 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | 499 | for (rt_se = back; rt_se; rt_se = rt_se->back) { |
494 | if (on_rt_rq(rt_se)) | 500 | if (on_rt_rq(rt_se)) |
495 | dequeue_rt_entity(rt_se); | 501 | __dequeue_rt_entity(rt_se); |
502 | } | ||
503 | } | ||
504 | |||
505 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se) | ||
506 | { | ||
507 | dequeue_rt_stack(rt_se); | ||
508 | for_each_sched_rt_entity(rt_se) | ||
509 | __enqueue_rt_entity(rt_se); | ||
510 | } | ||
511 | |||
512 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
513 | { | ||
514 | dequeue_rt_stack(rt_se); | ||
515 | |||
516 | for_each_sched_rt_entity(rt_se) { | ||
517 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
518 | |||
519 | if (rt_rq && rt_rq->rt_nr_running) | ||
520 | __enqueue_rt_entity(rt_se); | ||
496 | } | 521 | } |
497 | } | 522 | } |
498 | 523 | ||
@@ -506,36 +531,15 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
506 | if (wakeup) | 531 | if (wakeup) |
507 | rt_se->timeout = 0; | 532 | rt_se->timeout = 0; |
508 | 533 | ||
509 | dequeue_rt_stack(p); | 534 | enqueue_rt_entity(rt_se); |
510 | |||
511 | /* | ||
512 | * enqueue everybody, bottom - up. | ||
513 | */ | ||
514 | for_each_sched_rt_entity(rt_se) | ||
515 | enqueue_rt_entity(rt_se); | ||
516 | |||
517 | inc_cpu_load(rq, p->se.load.weight); | ||
518 | } | 535 | } |
519 | 536 | ||
520 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 537 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
521 | { | 538 | { |
522 | struct sched_rt_entity *rt_se = &p->rt; | 539 | struct sched_rt_entity *rt_se = &p->rt; |
523 | struct rt_rq *rt_rq; | ||
524 | 540 | ||
525 | update_curr_rt(rq); | 541 | update_curr_rt(rq); |
526 | 542 | dequeue_rt_entity(rt_se); | |
527 | dequeue_rt_stack(p); | ||
528 | |||
529 | /* | ||
530 | * re-enqueue all non-empty rt_rq entities. | ||
531 | */ | ||
532 | for_each_sched_rt_entity(rt_se) { | ||
533 | rt_rq = group_rt_rq(rt_se); | ||
534 | if (rt_rq && rt_rq->rt_nr_running) | ||
535 | enqueue_rt_entity(rt_se); | ||
536 | } | ||
537 | |||
538 | dec_cpu_load(rq, p->se.load.weight); | ||
539 | } | 543 | } |
540 | 544 | ||
541 | /* | 545 | /* |
@@ -546,8 +550,10 @@ static | |||
546 | void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | 550 | void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) |
547 | { | 551 | { |
548 | struct rt_prio_array *array = &rt_rq->active; | 552 | struct rt_prio_array *array = &rt_rq->active; |
553 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | ||
549 | 554 | ||
550 | list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); | 555 | if (on_rt_rq(rt_se)) |
556 | list_move_tail(&rt_se->run_list, queue); | ||
551 | } | 557 | } |
552 | 558 | ||
553 | static void requeue_task_rt(struct rq *rq, struct task_struct *p) | 559 | static void requeue_task_rt(struct rq *rq, struct task_struct *p) |
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h index 5bae2e0c3ff2..80179ef7450e 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched_stats.h | |||
@@ -67,6 +67,7 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
67 | preempt_enable(); | 67 | preempt_enable(); |
68 | #endif | 68 | #endif |
69 | } | 69 | } |
70 | kfree(mask_str); | ||
70 | return 0; | 71 | return 0; |
71 | } | 72 | } |
72 | 73 | ||
@@ -197,6 +198,9 @@ static inline void sched_info_queued(struct task_struct *t) | |||
197 | /* | 198 | /* |
198 | * Called when a process ceases being the active-running process, either | 199 | * Called when a process ceases being the active-running process, either |
199 | * voluntarily or involuntarily. Now we can calculate how long we ran. | 200 | * voluntarily or involuntarily. Now we can calculate how long we ran. |
201 | * Also, if the process is still in the TASK_RUNNING state, call | ||
202 | * sched_info_queued() to mark that it has now again started waiting on | ||
203 | * the runqueue. | ||
200 | */ | 204 | */ |
201 | static inline void sched_info_depart(struct task_struct *t) | 205 | static inline void sched_info_depart(struct task_struct *t) |
202 | { | 206 | { |
@@ -205,6 +209,9 @@ static inline void sched_info_depart(struct task_struct *t) | |||
205 | 209 | ||
206 | t->sched_info.cpu_time += delta; | 210 | t->sched_info.cpu_time += delta; |
207 | rq_sched_info_depart(task_rq(t), delta); | 211 | rq_sched_info_depart(task_rq(t), delta); |
212 | |||
213 | if (t->state == TASK_RUNNING) | ||
214 | sched_info_queued(t); | ||
208 | } | 215 | } |
209 | 216 | ||
210 | /* | 217 | /* |
diff --git a/kernel/signal.c b/kernel/signal.c index 72bb4f51f963..6c0958e52ea7 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -231,6 +231,40 @@ void flush_signals(struct task_struct *t) | |||
231 | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 231 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
232 | } | 232 | } |
233 | 233 | ||
234 | static void __flush_itimer_signals(struct sigpending *pending) | ||
235 | { | ||
236 | sigset_t signal, retain; | ||
237 | struct sigqueue *q, *n; | ||
238 | |||
239 | signal = pending->signal; | ||
240 | sigemptyset(&retain); | ||
241 | |||
242 | list_for_each_entry_safe(q, n, &pending->list, list) { | ||
243 | int sig = q->info.si_signo; | ||
244 | |||
245 | if (likely(q->info.si_code != SI_TIMER)) { | ||
246 | sigaddset(&retain, sig); | ||
247 | } else { | ||
248 | sigdelset(&signal, sig); | ||
249 | list_del_init(&q->list); | ||
250 | __sigqueue_free(q); | ||
251 | } | ||
252 | } | ||
253 | |||
254 | sigorsets(&pending->signal, &signal, &retain); | ||
255 | } | ||
256 | |||
257 | void flush_itimer_signals(void) | ||
258 | { | ||
259 | struct task_struct *tsk = current; | ||
260 | unsigned long flags; | ||
261 | |||
262 | spin_lock_irqsave(&tsk->sighand->siglock, flags); | ||
263 | __flush_itimer_signals(&tsk->pending); | ||
264 | __flush_itimer_signals(&tsk->signal->shared_pending); | ||
265 | spin_unlock_irqrestore(&tsk->sighand->siglock, flags); | ||
266 | } | ||
267 | |||
234 | void ignore_signals(struct task_struct *t) | 268 | void ignore_signals(struct task_struct *t) |
235 | { | 269 | { |
236 | int i; | 270 | int i; |
@@ -1240,17 +1274,22 @@ void sigqueue_free(struct sigqueue *q) | |||
1240 | 1274 | ||
1241 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 1275 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
1242 | /* | 1276 | /* |
1243 | * If the signal is still pending remove it from the | 1277 | * We must hold ->siglock while testing q->list |
1244 | * pending queue. We must hold ->siglock while testing | 1278 | * to serialize with collect_signal() or with |
1245 | * q->list to serialize with collect_signal(). | 1279 | * __exit_signal()->flush_sigqueue(). |
1246 | */ | 1280 | */ |
1247 | spin_lock_irqsave(lock, flags); | 1281 | spin_lock_irqsave(lock, flags); |
1282 | q->flags &= ~SIGQUEUE_PREALLOC; | ||
1283 | /* | ||
1284 | * If it is queued it will be freed when dequeued, | ||
1285 | * like the "regular" sigqueue. | ||
1286 | */ | ||
1248 | if (!list_empty(&q->list)) | 1287 | if (!list_empty(&q->list)) |
1249 | list_del_init(&q->list); | 1288 | q = NULL; |
1250 | spin_unlock_irqrestore(lock, flags); | 1289 | spin_unlock_irqrestore(lock, flags); |
1251 | 1290 | ||
1252 | q->flags &= ~SIGQUEUE_PREALLOC; | 1291 | if (q) |
1253 | __sigqueue_free(q); | 1292 | __sigqueue_free(q); |
1254 | } | 1293 | } |
1255 | 1294 | ||
1256 | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) | 1295 | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index 01b6522fd92b..a272d78185eb 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
@@ -49,12 +49,17 @@ static unsigned long get_timestamp(int this_cpu) | |||
49 | return cpu_clock(this_cpu) >> 30LL; /* 2^30 ~= 10^9 */ | 49 | return cpu_clock(this_cpu) >> 30LL; /* 2^30 ~= 10^9 */ |
50 | } | 50 | } |
51 | 51 | ||
52 | void touch_softlockup_watchdog(void) | 52 | static void __touch_softlockup_watchdog(void) |
53 | { | 53 | { |
54 | int this_cpu = raw_smp_processor_id(); | 54 | int this_cpu = raw_smp_processor_id(); |
55 | 55 | ||
56 | __raw_get_cpu_var(touch_timestamp) = get_timestamp(this_cpu); | 56 | __raw_get_cpu_var(touch_timestamp) = get_timestamp(this_cpu); |
57 | } | 57 | } |
58 | |||
59 | void touch_softlockup_watchdog(void) | ||
60 | { | ||
61 | __raw_get_cpu_var(touch_timestamp) = 0; | ||
62 | } | ||
58 | EXPORT_SYMBOL(touch_softlockup_watchdog); | 63 | EXPORT_SYMBOL(touch_softlockup_watchdog); |
59 | 64 | ||
60 | void touch_all_softlockup_watchdogs(void) | 65 | void touch_all_softlockup_watchdogs(void) |
@@ -80,7 +85,7 @@ void softlockup_tick(void) | |||
80 | unsigned long now; | 85 | unsigned long now; |
81 | 86 | ||
82 | if (touch_timestamp == 0) { | 87 | if (touch_timestamp == 0) { |
83 | touch_softlockup_watchdog(); | 88 | __touch_softlockup_watchdog(); |
84 | return; | 89 | return; |
85 | } | 90 | } |
86 | 91 | ||
@@ -95,7 +100,7 @@ void softlockup_tick(void) | |||
95 | 100 | ||
96 | /* do not print during early bootup: */ | 101 | /* do not print during early bootup: */ |
97 | if (unlikely(system_state != SYSTEM_RUNNING)) { | 102 | if (unlikely(system_state != SYSTEM_RUNNING)) { |
98 | touch_softlockup_watchdog(); | 103 | __touch_softlockup_watchdog(); |
99 | return; | 104 | return; |
100 | } | 105 | } |
101 | 106 | ||
@@ -115,6 +120,7 @@ void softlockup_tick(void) | |||
115 | printk(KERN_ERR "BUG: soft lockup - CPU#%d stuck for %lus! [%s:%d]\n", | 120 | printk(KERN_ERR "BUG: soft lockup - CPU#%d stuck for %lus! [%s:%d]\n", |
116 | this_cpu, now - touch_timestamp, | 121 | this_cpu, now - touch_timestamp, |
117 | current->comm, task_pid_nr(current)); | 122 | current->comm, task_pid_nr(current)); |
123 | print_modules(); | ||
118 | if (regs) | 124 | if (regs) |
119 | show_regs(regs); | 125 | show_regs(regs); |
120 | else | 126 | else |
@@ -214,7 +220,7 @@ static int watchdog(void *__bind_cpu) | |||
214 | sched_setscheduler(current, SCHED_FIFO, ¶m); | 220 | sched_setscheduler(current, SCHED_FIFO, ¶m); |
215 | 221 | ||
216 | /* initialize timestamp */ | 222 | /* initialize timestamp */ |
217 | touch_softlockup_watchdog(); | 223 | __touch_softlockup_watchdog(); |
218 | 224 | ||
219 | set_current_state(TASK_INTERRUPTIBLE); | 225 | set_current_state(TASK_INTERRUPTIBLE); |
220 | /* | 226 | /* |
@@ -223,7 +229,7 @@ static int watchdog(void *__bind_cpu) | |||
223 | * debug-printout triggers in softlockup_tick(). | 229 | * debug-printout triggers in softlockup_tick(). |
224 | */ | 230 | */ |
225 | while (!kthread_should_stop()) { | 231 | while (!kthread_should_stop()) { |
226 | touch_softlockup_watchdog(); | 232 | __touch_softlockup_watchdog(); |
227 | schedule(); | 233 | schedule(); |
228 | 234 | ||
229 | if (kthread_should_stop()) | 235 | if (kthread_should_stop()) |
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 0101aeef7ed7..b7350bbfb076 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
@@ -62,8 +62,7 @@ static int stopmachine(void *cpu) | |||
62 | * help our sisters onto their CPUs. */ | 62 | * help our sisters onto their CPUs. */ |
63 | if (!prepared && !irqs_disabled) | 63 | if (!prepared && !irqs_disabled) |
64 | yield(); | 64 | yield(); |
65 | else | 65 | cpu_relax(); |
66 | cpu_relax(); | ||
67 | } | 66 | } |
68 | 67 | ||
69 | /* Ack: we are exiting. */ | 68 | /* Ack: we are exiting. */ |
@@ -106,8 +105,10 @@ static int stop_machine(void) | |||
106 | } | 105 | } |
107 | 106 | ||
108 | /* Wait for them all to come to life. */ | 107 | /* Wait for them all to come to life. */ |
109 | while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) | 108 | while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) { |
110 | yield(); | 109 | yield(); |
110 | cpu_relax(); | ||
111 | } | ||
111 | 112 | ||
112 | /* If some failed, kill them all. */ | 113 | /* If some failed, kill them all. */ |
113 | if (ret < 0) { | 114 | if (ret < 0) { |
diff --git a/kernel/sys.c b/kernel/sys.c index 895d2d4c9493..14e97282eb6c 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -1652,7 +1652,7 @@ asmlinkage long sys_umask(int mask) | |||
1652 | asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, | 1652 | asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, |
1653 | unsigned long arg4, unsigned long arg5) | 1653 | unsigned long arg4, unsigned long arg5) |
1654 | { | 1654 | { |
1655 | long uninitialized_var(error); | 1655 | long error = 0; |
1656 | 1656 | ||
1657 | if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error)) | 1657 | if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error)) |
1658 | return error; | 1658 | return error; |
@@ -1701,9 +1701,7 @@ asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, | |||
1701 | error = PR_TIMING_STATISTICAL; | 1701 | error = PR_TIMING_STATISTICAL; |
1702 | break; | 1702 | break; |
1703 | case PR_SET_TIMING: | 1703 | case PR_SET_TIMING: |
1704 | if (arg2 == PR_TIMING_STATISTICAL) | 1704 | if (arg2 != PR_TIMING_STATISTICAL) |
1705 | error = 0; | ||
1706 | else | ||
1707 | error = -EINVAL; | 1705 | error = -EINVAL; |
1708 | break; | 1706 | break; |
1709 | 1707 | ||
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 29fc39f1029c..ce7799540c91 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -13,7 +13,7 @@ | |||
13 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> | 13 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> |
14 | * Theodore Ts'o <tytso@mit.edu> | 14 | * Theodore Ts'o <tytso@mit.edu> |
15 | * | 15 | * |
16 | * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>. | 16 | * Made to use alloc_percpu by Christoph Lameter. |
17 | */ | 17 | */ |
18 | 18 | ||
19 | #include <linux/module.h> | 19 | #include <linux/module.h> |