aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorDmitry Adamushko <dmitry.adamushko@gmail.com>2008-06-10 18:58:30 -0400
committerIngo Molnar <mingo@elte.hu>2008-06-18 06:41:18 -0400
commit20b6331bfed1f07ba1e5006889a5d64adc53615e (patch)
tree9a98f9ccd201c875a94f8a2002f1eddcfc114d65 /kernel
parentf7d62364b2cef85cbcd4feffdd3632ef7c3b61c2 (diff)
sched: rework of "prioritize non-migratable tasks over migratable ones"
regarding this commit: 45c01e824991b2dd0a332e19efc4901acb31209f I think we can do it simpler. Please take a look at the patch below. Instead of having 2 separate arrays (which is + ~800 bytes on x86_32 and twice so on x86_64), let's add "exclusive" (the ones that are bound to this CPU) tasks to the head of the queue and "shared" ones -- to the end. In case of a few newly woken up "exclusive" tasks, they are 'stacked' (not queued as now), meaning that a task {i+1} is being placed in front of the previously woken up task {i}. But I don't think that this behavior may cause any realistic problems. There are a couple of changes on top of this one. (1) in check_preempt_curr_rt() I don't think there is a need for the "pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt" check. enqueue_task_rt(p) and check_preempt_curr_rt() are always called one after another with rq->lock being held so the following check "p->rt.nr_cpus_allowed == 1 && rq->curr->rt.nr_cpus_allowed != 1" should be enough (well, just its left part) to guarantee that 'p' has been queued in front of the 'curr'. (2) in set_cpus_allowed_rt() I don't thinks there is a need for requeue_task_rt() here. Perhaps, the only case when 'requeue' (+ reschedule) might be useful is as follows: i) weight == 1 && cpu_isset(task_cpu(p), *new_mask) i.e. a task is being bound to this CPU); ii) 'p' != rq->curr but here, 'p' has already been on this CPU for a while and was not migrated. i.e. it's possible that 'rq->curr' would not have high chances to be migrated right at this particular moment (although, has chance in a bit longer term), should we allow it to be preempted. Anyway, I think we should not perhaps make it more complex trying to address some rare corner cases. For instance, that's why a single queue approach would be preferable. Unless I'm missing something obvious, this approach gives us similar functionality at lower cost. Verified only compilation-wise. (Almost)-Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel')
-rw-r--r--kernel/sched.c6
-rw-r--r--kernel/sched_rt.c44
2 files changed, 11 insertions, 39 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 554de4009803..cc1d558406f8 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -153,8 +153,7 @@ static inline int task_has_rt_policy(struct task_struct *p)
153 */ 153 */
154struct rt_prio_array { 154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */ 156 struct list_head queue[MAX_RT_PRIO];
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
158}; 157};
159 158
160struct rt_bandwidth { 159struct rt_bandwidth {
@@ -7620,8 +7619,7 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7620 7619
7621 array = &rt_rq->active; 7620 array = &rt_rq->active;
7622 for (i = 0; i < MAX_RT_PRIO; i++) { 7621 for (i = 0; i < MAX_RT_PRIO; i++) {
7623 INIT_LIST_HEAD(array->xqueue + i); 7622 INIT_LIST_HEAD(array->queue + i);
7624 INIT_LIST_HEAD(array->squeue + i);
7625 __clear_bit(i, array->bitmap); 7623 __clear_bit(i, array->bitmap);
7626 } 7624 }
7627 /* delimiter for bitsearch: */ 7625 /* delimiter for bitsearch: */
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 8ae3416e0bb4..f721b52acd8d 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -576,16 +576,15 @@ static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
576 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 576 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
577 struct rt_prio_array *array = &rt_rq->active; 577 struct rt_prio_array *array = &rt_rq->active;
578 struct rt_rq *group_rq = group_rt_rq(rt_se); 578 struct rt_rq *group_rq = group_rt_rq(rt_se);
579 struct list_head *queue = array->queue + rt_se_prio(rt_se);
579 580
580 if (group_rq && rt_rq_throttled(group_rq)) 581 if (group_rq && rt_rq_throttled(group_rq))
581 return; 582 return;
582 583
583 if (rt_se->nr_cpus_allowed == 1) 584 if (rt_se->nr_cpus_allowed == 1)
584 list_add_tail(&rt_se->run_list, 585 list_add(&rt_se->run_list, queue);
585 array->xqueue + rt_se_prio(rt_se));
586 else 586 else
587 list_add_tail(&rt_se->run_list, 587 list_add_tail(&rt_se->run_list, queue);
588 array->squeue + rt_se_prio(rt_se));
589 588
590 __set_bit(rt_se_prio(rt_se), array->bitmap); 589 __set_bit(rt_se_prio(rt_se), array->bitmap);
591 590
@@ -598,8 +597,7 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
598 struct rt_prio_array *array = &rt_rq->active; 597 struct rt_prio_array *array = &rt_rq->active;
599 598
600 list_del_init(&rt_se->run_list); 599 list_del_init(&rt_se->run_list);
601 if (list_empty(array->squeue + rt_se_prio(rt_se)) 600 if (list_empty(array->queue + rt_se_prio(rt_se)))
602 && list_empty(array->xqueue + rt_se_prio(rt_se)))
603 __clear_bit(rt_se_prio(rt_se), array->bitmap); 601 __clear_bit(rt_se_prio(rt_se), array->bitmap);
604 602
605 dec_rt_tasks(rt_se, rt_rq); 603 dec_rt_tasks(rt_se, rt_rq);
@@ -666,11 +664,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
666/* 664/*
667 * Put task to the end of the run list without the overhead of dequeue 665 * Put task to the end of the run list without the overhead of dequeue
668 * followed by enqueue. 666 * followed by enqueue.
669 *
670 * Note: We always enqueue the task to the shared-queue, regardless of its
671 * previous position w.r.t. exclusive vs shared. This is so that exclusive RR
672 * tasks fairly round-robin with all tasks on the runqueue, not just other
673 * exclusive tasks.
674 */ 667 */
675static 668static
676void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 669void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
@@ -678,7 +671,7 @@ void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
678 struct rt_prio_array *array = &rt_rq->active; 671 struct rt_prio_array *array = &rt_rq->active;
679 672
680 list_del_init(&rt_se->run_list); 673 list_del_init(&rt_se->run_list);
681 list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se)); 674 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
682} 675}
683 676
684static void requeue_task_rt(struct rq *rq, struct task_struct *p) 677static void requeue_task_rt(struct rq *rq, struct task_struct *p)
@@ -736,9 +729,6 @@ static int select_task_rq_rt(struct task_struct *p, int sync)
736} 729}
737#endif /* CONFIG_SMP */ 730#endif /* CONFIG_SMP */
738 731
739static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
740 struct rt_rq *rt_rq);
741
742/* 732/*
743 * Preempt the current task with a newly woken task if needed: 733 * Preempt the current task with a newly woken task if needed:
744 */ 734 */
@@ -764,8 +754,7 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
764 */ 754 */
765 if((p->prio == rq->curr->prio) 755 if((p->prio == rq->curr->prio)
766 && p->rt.nr_cpus_allowed == 1 756 && p->rt.nr_cpus_allowed == 1
767 && rq->curr->rt.nr_cpus_allowed != 1 757 && rq->curr->rt.nr_cpus_allowed != 1) {
768 && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
769 cpumask_t mask; 758 cpumask_t mask;
770 759
771 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask)) 760 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
@@ -789,15 +778,8 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
789 idx = sched_find_first_bit(array->bitmap); 778 idx = sched_find_first_bit(array->bitmap);
790 BUG_ON(idx >= MAX_RT_PRIO); 779 BUG_ON(idx >= MAX_RT_PRIO);
791 780
792 queue = array->xqueue + idx; 781 queue = array->queue + idx;
793 if (!list_empty(queue)) 782 next = list_entry(queue->next, struct sched_rt_entity, run_list);
794 next = list_entry(queue->next, struct sched_rt_entity,
795 run_list);
796 else {
797 queue = array->squeue + idx;
798 next = list_entry(queue->next, struct sched_rt_entity,
799 run_list);
800 }
801 783
802 return next; 784 return next;
803} 785}
@@ -867,7 +849,7 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
867 continue; 849 continue;
868 if (next && next->prio < idx) 850 if (next && next->prio < idx)
869 continue; 851 continue;
870 list_for_each_entry(rt_se, array->squeue + idx, run_list) { 852 list_for_each_entry(rt_se, array->queue + idx, run_list) {
871 struct task_struct *p = rt_task_of(rt_se); 853 struct task_struct *p = rt_task_of(rt_se);
872 if (pick_rt_task(rq, p, cpu)) { 854 if (pick_rt_task(rq, p, cpu)) {
873 next = p; 855 next = p;
@@ -1249,14 +1231,6 @@ static void set_cpus_allowed_rt(struct task_struct *p,
1249 } 1231 }
1250 1232
1251 update_rt_migration(rq); 1233 update_rt_migration(rq);
1252
1253 if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
1254 /*
1255 * If either the new or old weight is a "1", we need
1256 * to requeue to properly move between shared and
1257 * exclusive queues.
1258 */
1259 requeue_task_rt(rq, p);
1260 } 1234 }
1261 1235
1262 p->cpus_allowed = *new_mask; 1236 p->cpus_allowed = *new_mask;