aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-07-14 10:11:02 -0400
committerIngo Molnar <mingo@elte.hu>2008-07-14 10:11:02 -0400
commitd14c8a680ccfdeb5e7b9be4d61162c2b373bd1e8 (patch)
tree38cead29b9b34b9d26b5cfe7b2c2673d6f7ac052 /kernel
parentd59fdcf2ac501de99c3dfb452af5e254d4342886 (diff)
parent873a6ed6288b6c2c0d2cc84d3b2bf2fab9ba0181 (diff)
Merge branch 'sched/for-linus' into tracing/for-linus
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile5
-rw-r--r--kernel/cpu.c24
-rw-r--r--kernel/cpuset.c14
-rw-r--r--kernel/kthread.c1
-rw-r--r--kernel/sched.c723
-rw-r--r--kernel/sched_clock.c137
-rw-r--r--kernel/sched_cpupri.c174
-rw-r--r--kernel/sched_cpupri.h36
-rw-r--r--kernel/sched_debug.c64
-rw-r--r--kernel/sched_fair.c413
-rw-r--r--kernel/sched_features.h7
-rw-r--r--kernel/sched_rt.c405
-rw-r--r--kernel/sched_stats.h42
-rw-r--r--kernel/sysctl.c8
-rw-r--r--kernel/time/tick-sched.c2
15 files changed, 1521 insertions, 534 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index 1c9938addb9d..6c55301112e0 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -3,7 +3,7 @@
3# 3#
4 4
5obj-y = sched.o fork.o exec_domain.o panic.o printk.o profile.o \ 5obj-y = sched.o fork.o exec_domain.o panic.o printk.o profile.o \
6 exit.o itimer.o time.o softirq.o resource.o \ 6 cpu.o exit.o itimer.o time.o softirq.o resource.o \
7 sysctl.o capability.o ptrace.o timer.o user.o \ 7 sysctl.o capability.o ptrace.o timer.o user.o \
8 signal.o sys.o kmod.o workqueue.o pid.o \ 8 signal.o sys.o kmod.o workqueue.o pid.o \
9 rcupdate.o extable.o params.o posix-timers.o \ 9 rcupdate.o extable.o params.o posix-timers.o \
@@ -27,7 +27,7 @@ obj-$(CONFIG_RT_MUTEXES) += rtmutex.o
27obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o 27obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o
28obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o 28obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o
29obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o 29obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o
30obj-$(CONFIG_SMP) += cpu.o spinlock.o 30obj-$(CONFIG_SMP) += spinlock.o
31obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o 31obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o
32obj-$(CONFIG_PROVE_LOCKING) += spinlock.o 32obj-$(CONFIG_PROVE_LOCKING) += spinlock.o
33obj-$(CONFIG_UID16) += uid16.o 33obj-$(CONFIG_UID16) += uid16.o
@@ -69,6 +69,7 @@ obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
69obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o 69obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
70obj-$(CONFIG_MARKERS) += marker.o 70obj-$(CONFIG_MARKERS) += marker.o
71obj-$(CONFIG_LATENCYTOP) += latencytop.o 71obj-$(CONFIG_LATENCYTOP) += latencytop.o
72obj-$(CONFIG_SMP) += sched_cpupri.o
72 73
73ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) 74ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y)
74# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is 75# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
diff --git a/kernel/cpu.c b/kernel/cpu.c
index c77bc3a1c722..b11f06dc149a 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -15,6 +15,28 @@
15#include <linux/stop_machine.h> 15#include <linux/stop_machine.h>
16#include <linux/mutex.h> 16#include <linux/mutex.h>
17 17
18/*
19 * Represents all cpu's present in the system
20 * In systems capable of hotplug, this map could dynamically grow
21 * as new cpu's are detected in the system via any platform specific
22 * method, such as ACPI for e.g.
23 */
24cpumask_t cpu_present_map __read_mostly;
25EXPORT_SYMBOL(cpu_present_map);
26
27#ifndef CONFIG_SMP
28
29/*
30 * Represents all cpu's that are currently online.
31 */
32cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
33EXPORT_SYMBOL(cpu_online_map);
34
35cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
36EXPORT_SYMBOL(cpu_possible_map);
37
38#else /* CONFIG_SMP */
39
18/* Serializes the updates to cpu_online_map, cpu_present_map */ 40/* Serializes the updates to cpu_online_map, cpu_present_map */
19static DEFINE_MUTEX(cpu_add_remove_lock); 41static DEFINE_MUTEX(cpu_add_remove_lock);
20 42
@@ -403,3 +425,5 @@ out:
403 cpu_maps_update_done(); 425 cpu_maps_update_done();
404} 426}
405#endif /* CONFIG_PM_SLEEP_SMP */ 427#endif /* CONFIG_PM_SLEEP_SMP */
428
429#endif /* CONFIG_SMP */
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 798b3ab054eb..459d601947a8 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -1194,6 +1194,15 @@ static int cpuset_can_attach(struct cgroup_subsys *ss,
1194 1194
1195 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) 1195 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1196 return -ENOSPC; 1196 return -ENOSPC;
1197 if (tsk->flags & PF_THREAD_BOUND) {
1198 cpumask_t mask;
1199
1200 mutex_lock(&callback_mutex);
1201 mask = cs->cpus_allowed;
1202 mutex_unlock(&callback_mutex);
1203 if (!cpus_equal(tsk->cpus_allowed, mask))
1204 return -EINVAL;
1205 }
1197 1206
1198 return security_task_setscheduler(tsk, 0, NULL); 1207 return security_task_setscheduler(tsk, 0, NULL);
1199} 1208}
@@ -1207,11 +1216,14 @@ static void cpuset_attach(struct cgroup_subsys *ss,
1207 struct mm_struct *mm; 1216 struct mm_struct *mm;
1208 struct cpuset *cs = cgroup_cs(cont); 1217 struct cpuset *cs = cgroup_cs(cont);
1209 struct cpuset *oldcs = cgroup_cs(oldcont); 1218 struct cpuset *oldcs = cgroup_cs(oldcont);
1219 int err;
1210 1220
1211 mutex_lock(&callback_mutex); 1221 mutex_lock(&callback_mutex);
1212 guarantee_online_cpus(cs, &cpus); 1222 guarantee_online_cpus(cs, &cpus);
1213 set_cpus_allowed_ptr(tsk, &cpus); 1223 err = set_cpus_allowed_ptr(tsk, &cpus);
1214 mutex_unlock(&callback_mutex); 1224 mutex_unlock(&callback_mutex);
1225 if (err)
1226 return;
1215 1227
1216 from = oldcs->mems_allowed; 1228 from = oldcs->mems_allowed;
1217 to = cs->mems_allowed; 1229 to = cs->mems_allowed;
diff --git a/kernel/kthread.c b/kernel/kthread.c
index bd1b9ea024e1..97747cdd37c9 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -180,6 +180,7 @@ void kthread_bind(struct task_struct *k, unsigned int cpu)
180 set_task_cpu(k, cpu); 180 set_task_cpu(k, cpu);
181 k->cpus_allowed = cpumask_of_cpu(cpu); 181 k->cpus_allowed = cpumask_of_cpu(cpu);
182 k->rt.nr_cpus_allowed = 1; 182 k->rt.nr_cpus_allowed = 1;
183 k->flags |= PF_THREAD_BOUND;
183} 184}
184EXPORT_SYMBOL(kthread_bind); 185EXPORT_SYMBOL(kthread_bind);
185 186
diff --git a/kernel/sched.c b/kernel/sched.c
index 8402944f715b..591d5e7f757a 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -74,6 +74,8 @@
74#include <asm/tlb.h> 74#include <asm/tlb.h>
75#include <asm/irq_regs.h> 75#include <asm/irq_regs.h>
76 76
77#include "sched_cpupri.h"
78
77/* 79/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ] 80 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
@@ -289,15 +291,15 @@ struct task_group root_task_group;
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); 291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */ 292/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; 293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292#endif 294#endif /* CONFIG_FAIR_GROUP_SCHED */
293 295
294#ifdef CONFIG_RT_GROUP_SCHED 296#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
297#endif 299#endif /* CONFIG_RT_GROUP_SCHED */
298#else 300#else /* !CONFIG_FAIR_GROUP_SCHED */
299#define root_task_group init_task_group 301#define root_task_group init_task_group
300#endif 302#endif /* CONFIG_FAIR_GROUP_SCHED */
301 303
302/* task_group_lock serializes add/remove of task groups and also changes to 304/* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares. 305 * a task group's cpu shares.
@@ -307,9 +309,9 @@ static DEFINE_SPINLOCK(task_group_lock);
307#ifdef CONFIG_FAIR_GROUP_SCHED 309#ifdef CONFIG_FAIR_GROUP_SCHED
308#ifdef CONFIG_USER_SCHED 310#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) 311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else 312#else /* !CONFIG_USER_SCHED */
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif 314#endif /* CONFIG_USER_SCHED */
313 315
314/* 316/*
315 * A weight of 0 or 1 can cause arithmetics problems. 317 * A weight of 0 or 1 can cause arithmetics problems.
@@ -363,6 +365,10 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
363#else 365#else
364 366
365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368static inline struct task_group *task_group(struct task_struct *p)
369{
370 return NULL;
371}
366 372
367#endif /* CONFIG_GROUP_SCHED */ 373#endif /* CONFIG_GROUP_SCHED */
368 374
@@ -373,6 +379,7 @@ struct cfs_rq {
373 379
374 u64 exec_clock; 380 u64 exec_clock;
375 u64 min_vruntime; 381 u64 min_vruntime;
382 u64 pair_start;
376 383
377 struct rb_root tasks_timeline; 384 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost; 385 struct rb_node *rb_leftmost;
@@ -401,6 +408,31 @@ struct cfs_rq {
401 */ 408 */
402 struct list_head leaf_cfs_rq_list; 409 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */ 410 struct task_group *tg; /* group that "owns" this runqueue */
411
412#ifdef CONFIG_SMP
413 /*
414 * the part of load.weight contributed by tasks
415 */
416 unsigned long task_weight;
417
418 /*
419 * h_load = weight * f(tg)
420 *
421 * Where f(tg) is the recursive weight fraction assigned to
422 * this group.
423 */
424 unsigned long h_load;
425
426 /*
427 * this cpu's part of tg->shares
428 */
429 unsigned long shares;
430
431 /*
432 * load.weight at the time we set shares
433 */
434 unsigned long rq_weight;
435#endif
404#endif 436#endif
405}; 437};
406 438
@@ -452,6 +484,9 @@ struct root_domain {
452 */ 484 */
453 cpumask_t rto_mask; 485 cpumask_t rto_mask;
454 atomic_t rto_count; 486 atomic_t rto_count;
487#ifdef CONFIG_SMP
488 struct cpupri cpupri;
489#endif
455}; 490};
456 491
457/* 492/*
@@ -526,6 +561,9 @@ struct rq {
526 int push_cpu; 561 int push_cpu;
527 /* cpu of this runqueue: */ 562 /* cpu of this runqueue: */
528 int cpu; 563 int cpu;
564 int online;
565
566 unsigned long avg_load_per_task;
529 567
530 struct task_struct *migration_thread; 568 struct task_struct *migration_thread;
531 struct list_head migration_queue; 569 struct list_head migration_queue;
@@ -749,6 +787,12 @@ late_initcall(sched_init_debug);
749const_debug unsigned int sysctl_sched_nr_migrate = 32; 787const_debug unsigned int sysctl_sched_nr_migrate = 32;
750 788
751/* 789/*
790 * ratelimit for updating the group shares.
791 * default: 0.5ms
792 */
793const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
794
795/*
752 * period over which we measure -rt task cpu usage in us. 796 * period over which we measure -rt task cpu usage in us.
753 * default: 1s 797 * default: 1s
754 */ 798 */
@@ -775,82 +819,6 @@ static inline u64 global_rt_runtime(void)
775 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 819 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
776} 820}
777 821
778unsigned long long time_sync_thresh = 100000;
779
780static DEFINE_PER_CPU(unsigned long long, time_offset);
781static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
782
783/*
784 * Global lock which we take every now and then to synchronize
785 * the CPUs time. This method is not warp-safe, but it's good
786 * enough to synchronize slowly diverging time sources and thus
787 * it's good enough for tracing:
788 */
789static DEFINE_SPINLOCK(time_sync_lock);
790static unsigned long long prev_global_time;
791
792static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
793{
794 /*
795 * We want this inlined, to not get tracer function calls
796 * in this critical section:
797 */
798 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799 __raw_spin_lock(&time_sync_lock.raw_lock);
800
801 if (time < prev_global_time) {
802 per_cpu(time_offset, cpu) += prev_global_time - time;
803 time = prev_global_time;
804 } else {
805 prev_global_time = time;
806 }
807
808 __raw_spin_unlock(&time_sync_lock.raw_lock);
809 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
810
811 return time;
812}
813
814static unsigned long long __cpu_clock(int cpu)
815{
816 unsigned long long now;
817
818 /*
819 * Only call sched_clock() if the scheduler has already been
820 * initialized (some code might call cpu_clock() very early):
821 */
822 if (unlikely(!scheduler_running))
823 return 0;
824
825 now = sched_clock_cpu(cpu);
826
827 return now;
828}
829
830/*
831 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832 * clock constructed from sched_clock():
833 */
834unsigned long long cpu_clock(int cpu)
835{
836 unsigned long long prev_cpu_time, time, delta_time;
837 unsigned long flags;
838
839 local_irq_save(flags);
840 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842 delta_time = time-prev_cpu_time;
843
844 if (unlikely(delta_time > time_sync_thresh)) {
845 time = __sync_cpu_clock(time, cpu);
846 per_cpu(prev_cpu_time, cpu) = time;
847 }
848 local_irq_restore(flags);
849
850 return time;
851}
852EXPORT_SYMBOL_GPL(cpu_clock);
853
854#ifndef prepare_arch_switch 822#ifndef prepare_arch_switch
855# define prepare_arch_switch(next) do { } while (0) 823# define prepare_arch_switch(next) do { } while (0)
856#endif 824#endif
@@ -1313,15 +1281,15 @@ void wake_up_idle_cpu(int cpu)
1313 if (!tsk_is_polling(rq->idle)) 1281 if (!tsk_is_polling(rq->idle))
1314 smp_send_reschedule(cpu); 1282 smp_send_reschedule(cpu);
1315} 1283}
1316#endif 1284#endif /* CONFIG_NO_HZ */
1317 1285
1318#else 1286#else /* !CONFIG_SMP */
1319static void __resched_task(struct task_struct *p, int tif_bit) 1287static void __resched_task(struct task_struct *p, int tif_bit)
1320{ 1288{
1321 assert_spin_locked(&task_rq(p)->lock); 1289 assert_spin_locked(&task_rq(p)->lock);
1322 set_tsk_thread_flag(p, tif_bit); 1290 set_tsk_thread_flag(p, tif_bit);
1323} 1291}
1324#endif 1292#endif /* CONFIG_SMP */
1325 1293
1326#if BITS_PER_LONG == 32 1294#if BITS_PER_LONG == 32
1327# define WMULT_CONST (~0UL) 1295# define WMULT_CONST (~0UL)
@@ -1336,6 +1304,9 @@ static void __resched_task(struct task_struct *p, int tif_bit)
1336 */ 1304 */
1337#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 1305#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1338 1306
1307/*
1308 * delta *= weight / lw
1309 */
1339static unsigned long 1310static unsigned long
1340calc_delta_mine(unsigned long delta_exec, unsigned long weight, 1311calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1341 struct load_weight *lw) 1312 struct load_weight *lw)
@@ -1363,12 +1334,6 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364} 1335}
1365 1336
1366static inline unsigned long
1367calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1368{
1369 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370}
1371
1372static inline void update_load_add(struct load_weight *lw, unsigned long inc) 1337static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1373{ 1338{
1374 lw->weight += inc; 1339 lw->weight += inc;
@@ -1479,17 +1444,211 @@ static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1479#ifdef CONFIG_SMP 1444#ifdef CONFIG_SMP
1480static unsigned long source_load(int cpu, int type); 1445static unsigned long source_load(int cpu, int type);
1481static unsigned long target_load(int cpu, int type); 1446static unsigned long target_load(int cpu, int type);
1482static unsigned long cpu_avg_load_per_task(int cpu);
1483static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); 1447static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1484#else /* CONFIG_SMP */ 1448
1449static unsigned long cpu_avg_load_per_task(int cpu)
1450{
1451 struct rq *rq = cpu_rq(cpu);
1452
1453 if (rq->nr_running)
1454 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1455
1456 return rq->avg_load_per_task;
1457}
1485 1458
1486#ifdef CONFIG_FAIR_GROUP_SCHED 1459#ifdef CONFIG_FAIR_GROUP_SCHED
1487static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) 1460
1461typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1462
1463/*
1464 * Iterate the full tree, calling @down when first entering a node and @up when
1465 * leaving it for the final time.
1466 */
1467static void
1468walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1469{
1470 struct task_group *parent, *child;
1471
1472 rcu_read_lock();
1473 parent = &root_task_group;
1474down:
1475 (*down)(parent, cpu, sd);
1476 list_for_each_entry_rcu(child, &parent->children, siblings) {
1477 parent = child;
1478 goto down;
1479
1480up:
1481 continue;
1482 }
1483 (*up)(parent, cpu, sd);
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 rcu_read_unlock();
1490}
1491
1492static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1493
1494/*
1495 * Calculate and set the cpu's group shares.
1496 */
1497static void
1498__update_group_shares_cpu(struct task_group *tg, int cpu,
1499 unsigned long sd_shares, unsigned long sd_rq_weight)
1488{ 1500{
1501 int boost = 0;
1502 unsigned long shares;
1503 unsigned long rq_weight;
1504
1505 if (!tg->se[cpu])
1506 return;
1507
1508 rq_weight = tg->cfs_rq[cpu]->load.weight;
1509
1510 /*
1511 * If there are currently no tasks on the cpu pretend there is one of
1512 * average load so that when a new task gets to run here it will not
1513 * get delayed by group starvation.
1514 */
1515 if (!rq_weight) {
1516 boost = 1;
1517 rq_weight = NICE_0_LOAD;
1518 }
1519
1520 if (unlikely(rq_weight > sd_rq_weight))
1521 rq_weight = sd_rq_weight;
1522
1523 /*
1524 * \Sum shares * rq_weight
1525 * shares = -----------------------
1526 * \Sum rq_weight
1527 *
1528 */
1529 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1530
1531 /*
1532 * record the actual number of shares, not the boosted amount.
1533 */
1534 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1535 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1536
1537 if (shares < MIN_SHARES)
1538 shares = MIN_SHARES;
1539 else if (shares > MAX_SHARES)
1540 shares = MAX_SHARES;
1541
1542 __set_se_shares(tg->se[cpu], shares);
1489} 1543}
1544
1545/*
1546 * Re-compute the task group their per cpu shares over the given domain.
1547 * This needs to be done in a bottom-up fashion because the rq weight of a
1548 * parent group depends on the shares of its child groups.
1549 */
1550static void
1551tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1552{
1553 unsigned long rq_weight = 0;
1554 unsigned long shares = 0;
1555 int i;
1556
1557 for_each_cpu_mask(i, sd->span) {
1558 rq_weight += tg->cfs_rq[i]->load.weight;
1559 shares += tg->cfs_rq[i]->shares;
1560 }
1561
1562 if ((!shares && rq_weight) || shares > tg->shares)
1563 shares = tg->shares;
1564
1565 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1566 shares = tg->shares;
1567
1568 if (!rq_weight)
1569 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1570
1571 for_each_cpu_mask(i, sd->span) {
1572 struct rq *rq = cpu_rq(i);
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(&rq->lock, flags);
1576 __update_group_shares_cpu(tg, i, shares, rq_weight);
1577 spin_unlock_irqrestore(&rq->lock, flags);
1578 }
1579}
1580
1581/*
1582 * Compute the cpu's hierarchical load factor for each task group.
1583 * This needs to be done in a top-down fashion because the load of a child
1584 * group is a fraction of its parents load.
1585 */
1586static void
1587tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1588{
1589 unsigned long load;
1590
1591 if (!tg->parent) {
1592 load = cpu_rq(cpu)->load.weight;
1593 } else {
1594 load = tg->parent->cfs_rq[cpu]->h_load;
1595 load *= tg->cfs_rq[cpu]->shares;
1596 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1597 }
1598
1599 tg->cfs_rq[cpu]->h_load = load;
1600}
1601
1602static void
1603tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1604{
1605}
1606
1607static void update_shares(struct sched_domain *sd)
1608{
1609 u64 now = cpu_clock(raw_smp_processor_id());
1610 s64 elapsed = now - sd->last_update;
1611
1612 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1613 sd->last_update = now;
1614 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1615 }
1616}
1617
1618static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1619{
1620 spin_unlock(&rq->lock);
1621 update_shares(sd);
1622 spin_lock(&rq->lock);
1623}
1624
1625static void update_h_load(int cpu)
1626{
1627 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1628}
1629
1630#else
1631
1632static inline void update_shares(struct sched_domain *sd)
1633{
1634}
1635
1636static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1637{
1638}
1639
1490#endif 1640#endif
1491 1641
1492#endif /* CONFIG_SMP */ 1642#endif
1643
1644#ifdef CONFIG_FAIR_GROUP_SCHED
1645static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1646{
1647#ifdef CONFIG_SMP
1648 cfs_rq->shares = shares;
1649#endif
1650}
1651#endif
1493 1652
1494#include "sched_stats.h" 1653#include "sched_stats.h"
1495#include "sched_idletask.c" 1654#include "sched_idletask.c"
@@ -1500,27 +1659,17 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1500#endif 1659#endif
1501 1660
1502#define sched_class_highest (&rt_sched_class) 1661#define sched_class_highest (&rt_sched_class)
1662#define for_each_class(class) \
1663 for (class = sched_class_highest; class; class = class->next)
1503 1664
1504static inline void inc_load(struct rq *rq, const struct task_struct *p) 1665static void inc_nr_running(struct rq *rq)
1505{
1506 update_load_add(&rq->load, p->se.load.weight);
1507}
1508
1509static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510{
1511 update_load_sub(&rq->load, p->se.load.weight);
1512}
1513
1514static void inc_nr_running(struct task_struct *p, struct rq *rq)
1515{ 1666{
1516 rq->nr_running++; 1667 rq->nr_running++;
1517 inc_load(rq, p);
1518} 1668}
1519 1669
1520static void dec_nr_running(struct task_struct *p, struct rq *rq) 1670static void dec_nr_running(struct rq *rq)
1521{ 1671{
1522 rq->nr_running--; 1672 rq->nr_running--;
1523 dec_load(rq, p);
1524} 1673}
1525 1674
1526static void set_load_weight(struct task_struct *p) 1675static void set_load_weight(struct task_struct *p)
@@ -1544,6 +1693,12 @@ static void set_load_weight(struct task_struct *p)
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; 1693 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1545} 1694}
1546 1695
1696static void update_avg(u64 *avg, u64 sample)
1697{
1698 s64 diff = sample - *avg;
1699 *avg += diff >> 3;
1700}
1701
1547static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) 1702static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1548{ 1703{
1549 sched_info_queued(p); 1704 sched_info_queued(p);
@@ -1553,6 +1708,13 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1553 1708
1554static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) 1709static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1555{ 1710{
1711 if (sleep && p->se.last_wakeup) {
1712 update_avg(&p->se.avg_overlap,
1713 p->se.sum_exec_runtime - p->se.last_wakeup);
1714 p->se.last_wakeup = 0;
1715 }
1716
1717 sched_info_dequeued(p);
1556 p->sched_class->dequeue_task(rq, p, sleep); 1718 p->sched_class->dequeue_task(rq, p, sleep);
1557 p->se.on_rq = 0; 1719 p->se.on_rq = 0;
1558} 1720}
@@ -1612,7 +1774,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1612 rq->nr_uninterruptible--; 1774 rq->nr_uninterruptible--;
1613 1775
1614 enqueue_task(rq, p, wakeup); 1776 enqueue_task(rq, p, wakeup);
1615 inc_nr_running(p, rq); 1777 inc_nr_running(rq);
1616} 1778}
1617 1779
1618/* 1780/*
@@ -1624,7 +1786,7 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1624 rq->nr_uninterruptible++; 1786 rq->nr_uninterruptible++;
1625 1787
1626 dequeue_task(rq, p, sleep); 1788 dequeue_task(rq, p, sleep);
1627 dec_nr_running(p, rq); 1789 dec_nr_running(rq);
1628} 1790}
1629 1791
1630/** 1792/**
@@ -1636,12 +1798,6 @@ inline int task_curr(const struct task_struct *p)
1636 return cpu_curr(task_cpu(p)) == p; 1798 return cpu_curr(task_cpu(p)) == p;
1637} 1799}
1638 1800
1639/* Used instead of source_load when we know the type == 0 */
1640unsigned long weighted_cpuload(const int cpu)
1641{
1642 return cpu_rq(cpu)->load.weight;
1643}
1644
1645static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1801static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1646{ 1802{
1647 set_task_rq(p, cpu); 1803 set_task_rq(p, cpu);
@@ -1670,6 +1826,12 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1670 1826
1671#ifdef CONFIG_SMP 1827#ifdef CONFIG_SMP
1672 1828
1829/* Used instead of source_load when we know the type == 0 */
1830static unsigned long weighted_cpuload(const int cpu)
1831{
1832 return cpu_rq(cpu)->load.weight;
1833}
1834
1673/* 1835/*
1674 * Is this task likely cache-hot: 1836 * Is this task likely cache-hot:
1675 */ 1837 */
@@ -1880,7 +2042,7 @@ static unsigned long source_load(int cpu, int type)
1880 struct rq *rq = cpu_rq(cpu); 2042 struct rq *rq = cpu_rq(cpu);
1881 unsigned long total = weighted_cpuload(cpu); 2043 unsigned long total = weighted_cpuload(cpu);
1882 2044
1883 if (type == 0) 2045 if (type == 0 || !sched_feat(LB_BIAS))
1884 return total; 2046 return total;
1885 2047
1886 return min(rq->cpu_load[type-1], total); 2048 return min(rq->cpu_load[type-1], total);
@@ -1895,25 +2057,13 @@ static unsigned long target_load(int cpu, int type)
1895 struct rq *rq = cpu_rq(cpu); 2057 struct rq *rq = cpu_rq(cpu);
1896 unsigned long total = weighted_cpuload(cpu); 2058 unsigned long total = weighted_cpuload(cpu);
1897 2059
1898 if (type == 0) 2060 if (type == 0 || !sched_feat(LB_BIAS))
1899 return total; 2061 return total;
1900 2062
1901 return max(rq->cpu_load[type-1], total); 2063 return max(rq->cpu_load[type-1], total);
1902} 2064}
1903 2065
1904/* 2066/*
1905 * Return the average load per task on the cpu's run queue
1906 */
1907static unsigned long cpu_avg_load_per_task(int cpu)
1908{
1909 struct rq *rq = cpu_rq(cpu);
1910 unsigned long total = weighted_cpuload(cpu);
1911 unsigned long n = rq->nr_running;
1912
1913 return n ? total / n : SCHED_LOAD_SCALE;
1914}
1915
1916/*
1917 * find_idlest_group finds and returns the least busy CPU group within the 2067 * find_idlest_group finds and returns the least busy CPU group within the
1918 * domain. 2068 * domain.
1919 */ 2069 */
@@ -2019,6 +2169,9 @@ static int sched_balance_self(int cpu, int flag)
2019 sd = tmp; 2169 sd = tmp;
2020 } 2170 }
2021 2171
2172 if (sd)
2173 update_shares(sd);
2174
2022 while (sd) { 2175 while (sd) {
2023 cpumask_t span, tmpmask; 2176 cpumask_t span, tmpmask;
2024 struct sched_group *group; 2177 struct sched_group *group;
@@ -2085,6 +2238,22 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2085 if (!sched_feat(SYNC_WAKEUPS)) 2238 if (!sched_feat(SYNC_WAKEUPS))
2086 sync = 0; 2239 sync = 0;
2087 2240
2241#ifdef CONFIG_SMP
2242 if (sched_feat(LB_WAKEUP_UPDATE)) {
2243 struct sched_domain *sd;
2244
2245 this_cpu = raw_smp_processor_id();
2246 cpu = task_cpu(p);
2247
2248 for_each_domain(this_cpu, sd) {
2249 if (cpu_isset(cpu, sd->span)) {
2250 update_shares(sd);
2251 break;
2252 }
2253 }
2254 }
2255#endif
2256
2088 smp_wmb(); 2257 smp_wmb();
2089 rq = task_rq_lock(p, &flags); 2258 rq = task_rq_lock(p, &flags);
2090 old_state = p->state; 2259 old_state = p->state;
@@ -2131,7 +2300,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2131 } 2300 }
2132 } 2301 }
2133 } 2302 }
2134#endif 2303#endif /* CONFIG_SCHEDSTATS */
2135 2304
2136out_activate: 2305out_activate:
2137#endif /* CONFIG_SMP */ 2306#endif /* CONFIG_SMP */
@@ -2157,6 +2326,8 @@ out_running:
2157 p->sched_class->task_wake_up(rq, p); 2326 p->sched_class->task_wake_up(rq, p);
2158#endif 2327#endif
2159out: 2328out:
2329 current->se.last_wakeup = current->se.sum_exec_runtime;
2330
2160 task_rq_unlock(rq, &flags); 2331 task_rq_unlock(rq, &flags);
2161 2332
2162 return success; 2333 return success;
@@ -2277,7 +2448,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2277 * management (if any): 2448 * management (if any):
2278 */ 2449 */
2279 p->sched_class->task_new(rq, p); 2450 p->sched_class->task_new(rq, p);
2280 inc_nr_running(p, rq); 2451 inc_nr_running(rq);
2281 } 2452 }
2282 check_preempt_curr(rq, p); 2453 check_preempt_curr(rq, p);
2283#ifdef CONFIG_SMP 2454#ifdef CONFIG_SMP
@@ -2331,7 +2502,7 @@ fire_sched_out_preempt_notifiers(struct task_struct *curr,
2331 notifier->ops->sched_out(notifier, next); 2502 notifier->ops->sched_out(notifier, next);
2332} 2503}
2333 2504
2334#else 2505#else /* !CONFIG_PREEMPT_NOTIFIERS */
2335 2506
2336static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2507static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337{ 2508{
@@ -2343,7 +2514,7 @@ fire_sched_out_preempt_notifiers(struct task_struct *curr,
2343{ 2514{
2344} 2515}
2345 2516
2346#endif 2517#endif /* CONFIG_PREEMPT_NOTIFIERS */
2347 2518
2348/** 2519/**
2349 * prepare_task_switch - prepare to switch tasks 2520 * prepare_task_switch - prepare to switch tasks
@@ -2785,7 +2956,7 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2785 enum cpu_idle_type idle, int *all_pinned, 2956 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator) 2957 int *this_best_prio, struct rq_iterator *iterator)
2787{ 2958{
2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load; 2959 int loops = 0, pulled = 0, pinned = 0;
2789 struct task_struct *p; 2960 struct task_struct *p;
2790 long rem_load_move = max_load_move; 2961 long rem_load_move = max_load_move;
2791 2962
@@ -2801,14 +2972,8 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2801next: 2972next:
2802 if (!p || loops++ > sysctl_sched_nr_migrate) 2973 if (!p || loops++ > sysctl_sched_nr_migrate)
2803 goto out; 2974 goto out;
2804 /* 2975
2805 * To help distribute high priority tasks across CPUs we don't 2976 if ((p->se.load.weight >> 1) > rem_load_move ||
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2808 */
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { 2977 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2813 p = iterator->next(iterator->arg); 2978 p = iterator->next(iterator->arg);
2814 goto next; 2979 goto next;
@@ -2863,6 +3028,10 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2863 max_load_move - total_load_moved, 3028 max_load_move - total_load_moved,
2864 sd, idle, all_pinned, &this_best_prio); 3029 sd, idle, all_pinned, &this_best_prio);
2865 class = class->next; 3030 class = class->next;
3031
3032 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3033 break;
3034
2866 } while (class && max_load_move > total_load_moved); 3035 } while (class && max_load_move > total_load_moved);
2867 3036
2868 return total_load_moved > 0; 3037 return total_load_moved > 0;
@@ -2939,6 +3108,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2939 max_load = this_load = total_load = total_pwr = 0; 3108 max_load = this_load = total_load = total_pwr = 0;
2940 busiest_load_per_task = busiest_nr_running = 0; 3109 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0; 3110 this_load_per_task = this_nr_running = 0;
3111
2942 if (idle == CPU_NOT_IDLE) 3112 if (idle == CPU_NOT_IDLE)
2943 load_idx = sd->busy_idx; 3113 load_idx = sd->busy_idx;
2944 else if (idle == CPU_NEWLY_IDLE) 3114 else if (idle == CPU_NEWLY_IDLE)
@@ -2953,6 +3123,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2953 int __group_imb = 0; 3123 int __group_imb = 0;
2954 unsigned int balance_cpu = -1, first_idle_cpu = 0; 3124 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2955 unsigned long sum_nr_running, sum_weighted_load; 3125 unsigned long sum_nr_running, sum_weighted_load;
3126 unsigned long sum_avg_load_per_task;
3127 unsigned long avg_load_per_task;
2956 3128
2957 local_group = cpu_isset(this_cpu, group->cpumask); 3129 local_group = cpu_isset(this_cpu, group->cpumask);
2958 3130
@@ -2961,6 +3133,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2961 3133
2962 /* Tally up the load of all CPUs in the group */ 3134 /* Tally up the load of all CPUs in the group */
2963 sum_weighted_load = sum_nr_running = avg_load = 0; 3135 sum_weighted_load = sum_nr_running = avg_load = 0;
3136 sum_avg_load_per_task = avg_load_per_task = 0;
3137
2964 max_cpu_load = 0; 3138 max_cpu_load = 0;
2965 min_cpu_load = ~0UL; 3139 min_cpu_load = ~0UL;
2966 3140
@@ -2994,6 +3168,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2994 avg_load += load; 3168 avg_load += load;
2995 sum_nr_running += rq->nr_running; 3169 sum_nr_running += rq->nr_running;
2996 sum_weighted_load += weighted_cpuload(i); 3170 sum_weighted_load += weighted_cpuload(i);
3171
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
2997 } 3173 }
2998 3174
2999 /* 3175 /*
@@ -3015,7 +3191,20 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3015 avg_load = sg_div_cpu_power(group, 3191 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE); 3192 avg_load * SCHED_LOAD_SCALE);
3017 3193
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE) 3194
3195 /*
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3198 *
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3202 * the hierarchy?
3203 */
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3206
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3019 __group_imb = 1; 3208 __group_imb = 1;
3020 3209
3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; 3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
@@ -3156,9 +3345,9 @@ small_imbalance:
3156 if (busiest_load_per_task > this_load_per_task) 3345 if (busiest_load_per_task > this_load_per_task)
3157 imbn = 1; 3346 imbn = 1;
3158 } else 3347 } else
3159 this_load_per_task = SCHED_LOAD_SCALE; 3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3160 3349
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >= 3350 if (max_load - this_load + 2*busiest_load_per_task >=
3162 busiest_load_per_task * imbn) { 3351 busiest_load_per_task * imbn) {
3163 *imbalance = busiest_load_per_task; 3352 *imbalance = busiest_load_per_task;
3164 return busiest; 3353 return busiest;
@@ -3284,6 +3473,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
3284 schedstat_inc(sd, lb_count[idle]); 3473 schedstat_inc(sd, lb_count[idle]);
3285 3474
3286redo: 3475redo:
3476 update_shares(sd);
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, 3477 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3288 cpus, balance); 3478 cpus, balance);
3289 3479
@@ -3386,8 +3576,9 @@ redo:
3386 3576
3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && 3577 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 3578 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3389 return -1; 3579 ld_moved = -1;
3390 return ld_moved; 3580
3581 goto out;
3391 3582
3392out_balanced: 3583out_balanced:
3393 schedstat_inc(sd, lb_balanced[idle]); 3584 schedstat_inc(sd, lb_balanced[idle]);
@@ -3402,8 +3593,13 @@ out_one_pinned:
3402 3593
3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 3594 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 3595 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3405 return -1; 3596 ld_moved = -1;
3406 return 0; 3597 else
3598 ld_moved = 0;
3599out:
3600 if (ld_moved)
3601 update_shares(sd);
3602 return ld_moved;
3407} 3603}
3408 3604
3409/* 3605/*
@@ -3438,6 +3634,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3438 3634
3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); 3635 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3440redo: 3636redo:
3637 update_shares_locked(this_rq, sd);
3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, 3638 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3442 &sd_idle, cpus, NULL); 3639 &sd_idle, cpus, NULL);
3443 if (!group) { 3640 if (!group) {
@@ -3481,6 +3678,7 @@ redo:
3481 } else 3678 } else
3482 sd->nr_balance_failed = 0; 3679 sd->nr_balance_failed = 0;
3483 3680
3681 update_shares_locked(this_rq, sd);
3484 return ld_moved; 3682 return ld_moved;
3485 3683
3486out_balanced: 3684out_balanced:
@@ -3672,6 +3870,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3672 /* Earliest time when we have to do rebalance again */ 3870 /* Earliest time when we have to do rebalance again */
3673 unsigned long next_balance = jiffies + 60*HZ; 3871 unsigned long next_balance = jiffies + 60*HZ;
3674 int update_next_balance = 0; 3872 int update_next_balance = 0;
3873 int need_serialize;
3675 cpumask_t tmp; 3874 cpumask_t tmp;
3676 3875
3677 for_each_domain(cpu, sd) { 3876 for_each_domain(cpu, sd) {
@@ -3689,8 +3888,9 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3689 if (interval > HZ*NR_CPUS/10) 3888 if (interval > HZ*NR_CPUS/10)
3690 interval = HZ*NR_CPUS/10; 3889 interval = HZ*NR_CPUS/10;
3691 3890
3891 need_serialize = sd->flags & SD_SERIALIZE;
3692 3892
3693 if (sd->flags & SD_SERIALIZE) { 3893 if (need_serialize) {
3694 if (!spin_trylock(&balancing)) 3894 if (!spin_trylock(&balancing))
3695 goto out; 3895 goto out;
3696 } 3896 }
@@ -3706,7 +3906,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3706 } 3906 }
3707 sd->last_balance = jiffies; 3907 sd->last_balance = jiffies;
3708 } 3908 }
3709 if (sd->flags & SD_SERIALIZE) 3909 if (need_serialize)
3710 spin_unlock(&balancing); 3910 spin_unlock(&balancing);
3711out: 3911out:
3712 if (time_after(next_balance, sd->last_balance + interval)) { 3912 if (time_after(next_balance, sd->last_balance + interval)) {
@@ -4070,6 +4270,7 @@ static noinline void __schedule_bug(struct task_struct *prev)
4070 prev->comm, prev->pid, preempt_count()); 4270 prev->comm, prev->pid, preempt_count());
4071 4271
4072 debug_show_held_locks(prev); 4272 debug_show_held_locks(prev);
4273 print_modules();
4073 if (irqs_disabled()) 4274 if (irqs_disabled())
4074 print_irqtrace_events(prev); 4275 print_irqtrace_events(prev);
4075 4276
@@ -4143,7 +4344,7 @@ asmlinkage void __sched schedule(void)
4143 struct task_struct *prev, *next; 4344 struct task_struct *prev, *next;
4144 unsigned long *switch_count; 4345 unsigned long *switch_count;
4145 struct rq *rq; 4346 struct rq *rq;
4146 int cpu; 4347 int cpu, hrtick = sched_feat(HRTICK);
4147 4348
4148need_resched: 4349need_resched:
4149 preempt_disable(); 4350 preempt_disable();
@@ -4158,7 +4359,8 @@ need_resched_nonpreemptible:
4158 4359
4159 schedule_debug(prev); 4360 schedule_debug(prev);
4160 4361
4161 hrtick_clear(rq); 4362 if (hrtick)
4363 hrtick_clear(rq);
4162 4364
4163 /* 4365 /*
4164 * Do the rq-clock update outside the rq lock: 4366 * Do the rq-clock update outside the rq lock:
@@ -4204,7 +4406,8 @@ need_resched_nonpreemptible:
4204 } else 4406 } else
4205 spin_unlock_irq(&rq->lock); 4407 spin_unlock_irq(&rq->lock);
4206 4408
4207 hrtick_set(rq); 4409 if (hrtick)
4410 hrtick_set(rq);
4208 4411
4209 if (unlikely(reacquire_kernel_lock(current) < 0)) 4412 if (unlikely(reacquire_kernel_lock(current) < 0))
4210 goto need_resched_nonpreemptible; 4413 goto need_resched_nonpreemptible;
@@ -4586,10 +4789,8 @@ void set_user_nice(struct task_struct *p, long nice)
4586 goto out_unlock; 4789 goto out_unlock;
4587 } 4790 }
4588 on_rq = p->se.on_rq; 4791 on_rq = p->se.on_rq;
4589 if (on_rq) { 4792 if (on_rq)
4590 dequeue_task(rq, p, 0); 4793 dequeue_task(rq, p, 0);
4591 dec_load(rq, p);
4592 }
4593 4794
4594 p->static_prio = NICE_TO_PRIO(nice); 4795 p->static_prio = NICE_TO_PRIO(nice);
4595 set_load_weight(p); 4796 set_load_weight(p);
@@ -4599,7 +4800,6 @@ void set_user_nice(struct task_struct *p, long nice)
4599 4800
4600 if (on_rq) { 4801 if (on_rq) {
4601 enqueue_task(rq, p, 0); 4802 enqueue_task(rq, p, 0);
4602 inc_load(rq, p);
4603 /* 4803 /*
4604 * If the task increased its priority or is running and 4804 * If the task increased its priority or is running and
4605 * lowered its priority, then reschedule its CPU: 4805 * lowered its priority, then reschedule its CPU:
@@ -5070,24 +5270,6 @@ asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5070 return sched_setaffinity(pid, &new_mask); 5270 return sched_setaffinity(pid, &new_mask);
5071} 5271}
5072 5272
5073/*
5074 * Represents all cpu's present in the system
5075 * In systems capable of hotplug, this map could dynamically grow
5076 * as new cpu's are detected in the system via any platform specific
5077 * method, such as ACPI for e.g.
5078 */
5079
5080cpumask_t cpu_present_map __read_mostly;
5081EXPORT_SYMBOL(cpu_present_map);
5082
5083#ifndef CONFIG_SMP
5084cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5085EXPORT_SYMBOL(cpu_online_map);
5086
5087cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5088EXPORT_SYMBOL(cpu_possible_map);
5089#endif
5090
5091long sched_getaffinity(pid_t pid, cpumask_t *mask) 5273long sched_getaffinity(pid_t pid, cpumask_t *mask)
5092{ 5274{
5093 struct task_struct *p; 5275 struct task_struct *p;
@@ -5571,6 +5753,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5571 goto out; 5753 goto out;
5572 } 5754 }
5573 5755
5756 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5757 !cpus_equal(p->cpus_allowed, *new_mask))) {
5758 ret = -EINVAL;
5759 goto out;
5760 }
5761
5574 if (p->sched_class->set_cpus_allowed) 5762 if (p->sched_class->set_cpus_allowed)
5575 p->sched_class->set_cpus_allowed(p, new_mask); 5763 p->sched_class->set_cpus_allowed(p, new_mask);
5576 else { 5764 else {
@@ -6060,6 +6248,36 @@ static void unregister_sched_domain_sysctl(void)
6060} 6248}
6061#endif 6249#endif
6062 6250
6251static void set_rq_online(struct rq *rq)
6252{
6253 if (!rq->online) {
6254 const struct sched_class *class;
6255
6256 cpu_set(rq->cpu, rq->rd->online);
6257 rq->online = 1;
6258
6259 for_each_class(class) {
6260 if (class->rq_online)
6261 class->rq_online(rq);
6262 }
6263 }
6264}
6265
6266static void set_rq_offline(struct rq *rq)
6267{
6268 if (rq->online) {
6269 const struct sched_class *class;
6270
6271 for_each_class(class) {
6272 if (class->rq_offline)
6273 class->rq_offline(rq);
6274 }
6275
6276 cpu_clear(rq->cpu, rq->rd->online);
6277 rq->online = 0;
6278 }
6279}
6280
6063/* 6281/*
6064 * migration_call - callback that gets triggered when a CPU is added. 6282 * migration_call - callback that gets triggered when a CPU is added.
6065 * Here we can start up the necessary migration thread for the new CPU. 6283 * Here we can start up the necessary migration thread for the new CPU.
@@ -6097,7 +6315,8 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6097 spin_lock_irqsave(&rq->lock, flags); 6315 spin_lock_irqsave(&rq->lock, flags);
6098 if (rq->rd) { 6316 if (rq->rd) {
6099 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6317 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6100 cpu_set(cpu, rq->rd->online); 6318
6319 set_rq_online(rq);
6101 } 6320 }
6102 spin_unlock_irqrestore(&rq->lock, flags); 6321 spin_unlock_irqrestore(&rq->lock, flags);
6103 break; 6322 break;
@@ -6158,7 +6377,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6158 spin_lock_irqsave(&rq->lock, flags); 6377 spin_lock_irqsave(&rq->lock, flags);
6159 if (rq->rd) { 6378 if (rq->rd) {
6160 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6379 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6161 cpu_clear(cpu, rq->rd->online); 6380 set_rq_offline(rq);
6162 } 6381 }
6163 spin_unlock_irqrestore(&rq->lock, flags); 6382 spin_unlock_irqrestore(&rq->lock, flags);
6164 break; 6383 break;
@@ -6192,6 +6411,28 @@ void __init migration_init(void)
6192 6411
6193#ifdef CONFIG_SCHED_DEBUG 6412#ifdef CONFIG_SCHED_DEBUG
6194 6413
6414static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6415{
6416 switch (lvl) {
6417 case SD_LV_NONE:
6418 return "NONE";
6419 case SD_LV_SIBLING:
6420 return "SIBLING";
6421 case SD_LV_MC:
6422 return "MC";
6423 case SD_LV_CPU:
6424 return "CPU";
6425 case SD_LV_NODE:
6426 return "NODE";
6427 case SD_LV_ALLNODES:
6428 return "ALLNODES";
6429 case SD_LV_MAX:
6430 return "MAX";
6431
6432 }
6433 return "MAX";
6434}
6435
6195static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 6436static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6196 cpumask_t *groupmask) 6437 cpumask_t *groupmask)
6197{ 6438{
@@ -6211,7 +6452,8 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6211 return -1; 6452 return -1;
6212 } 6453 }
6213 6454
6214 printk(KERN_CONT "span %s\n", str); 6455 printk(KERN_CONT "span %s level %s\n",
6456 str, sd_level_to_string(sd->level));
6215 6457
6216 if (!cpu_isset(cpu, sd->span)) { 6458 if (!cpu_isset(cpu, sd->span)) {
6217 printk(KERN_ERR "ERROR: domain->span does not contain " 6459 printk(KERN_ERR "ERROR: domain->span does not contain "
@@ -6295,9 +6537,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6295 } 6537 }
6296 kfree(groupmask); 6538 kfree(groupmask);
6297} 6539}
6298#else 6540#else /* !CONFIG_SCHED_DEBUG */
6299# define sched_domain_debug(sd, cpu) do { } while (0) 6541# define sched_domain_debug(sd, cpu) do { } while (0)
6300#endif 6542#endif /* CONFIG_SCHED_DEBUG */
6301 6543
6302static int sd_degenerate(struct sched_domain *sd) 6544static int sd_degenerate(struct sched_domain *sd)
6303{ 6545{
@@ -6357,20 +6599,16 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6357static void rq_attach_root(struct rq *rq, struct root_domain *rd) 6599static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6358{ 6600{
6359 unsigned long flags; 6601 unsigned long flags;
6360 const struct sched_class *class;
6361 6602
6362 spin_lock_irqsave(&rq->lock, flags); 6603 spin_lock_irqsave(&rq->lock, flags);
6363 6604
6364 if (rq->rd) { 6605 if (rq->rd) {
6365 struct root_domain *old_rd = rq->rd; 6606 struct root_domain *old_rd = rq->rd;
6366 6607
6367 for (class = sched_class_highest; class; class = class->next) { 6608 if (cpu_isset(rq->cpu, old_rd->online))
6368 if (class->leave_domain) 6609 set_rq_offline(rq);
6369 class->leave_domain(rq);
6370 }
6371 6610
6372 cpu_clear(rq->cpu, old_rd->span); 6611 cpu_clear(rq->cpu, old_rd->span);
6373 cpu_clear(rq->cpu, old_rd->online);
6374 6612
6375 if (atomic_dec_and_test(&old_rd->refcount)) 6613 if (atomic_dec_and_test(&old_rd->refcount))
6376 kfree(old_rd); 6614 kfree(old_rd);
@@ -6381,12 +6619,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6381 6619
6382 cpu_set(rq->cpu, rd->span); 6620 cpu_set(rq->cpu, rd->span);
6383 if (cpu_isset(rq->cpu, cpu_online_map)) 6621 if (cpu_isset(rq->cpu, cpu_online_map))
6384 cpu_set(rq->cpu, rd->online); 6622 set_rq_online(rq);
6385
6386 for (class = sched_class_highest; class; class = class->next) {
6387 if (class->join_domain)
6388 class->join_domain(rq);
6389 }
6390 6623
6391 spin_unlock_irqrestore(&rq->lock, flags); 6624 spin_unlock_irqrestore(&rq->lock, flags);
6392} 6625}
@@ -6397,6 +6630,8 @@ static void init_rootdomain(struct root_domain *rd)
6397 6630
6398 cpus_clear(rd->span); 6631 cpus_clear(rd->span);
6399 cpus_clear(rd->online); 6632 cpus_clear(rd->online);
6633
6634 cpupri_init(&rd->cpupri);
6400} 6635}
6401 6636
6402static void init_defrootdomain(void) 6637static void init_defrootdomain(void)
@@ -6591,7 +6826,7 @@ static void sched_domain_node_span(int node, cpumask_t *span)
6591 cpus_or(*span, *span, *nodemask); 6826 cpus_or(*span, *span, *nodemask);
6592 } 6827 }
6593} 6828}
6594#endif 6829#endif /* CONFIG_NUMA */
6595 6830
6596int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 6831int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6597 6832
@@ -6610,7 +6845,7 @@ cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6610 *sg = &per_cpu(sched_group_cpus, cpu); 6845 *sg = &per_cpu(sched_group_cpus, cpu);
6611 return cpu; 6846 return cpu;
6612} 6847}
6613#endif 6848#endif /* CONFIG_SCHED_SMT */
6614 6849
6615/* 6850/*
6616 * multi-core sched-domains: 6851 * multi-core sched-domains:
@@ -6618,7 +6853,7 @@ cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6618#ifdef CONFIG_SCHED_MC 6853#ifdef CONFIG_SCHED_MC
6619static DEFINE_PER_CPU(struct sched_domain, core_domains); 6854static DEFINE_PER_CPU(struct sched_domain, core_domains);
6620static DEFINE_PER_CPU(struct sched_group, sched_group_core); 6855static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6621#endif 6856#endif /* CONFIG_SCHED_MC */
6622 6857
6623#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 6858#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6624static int 6859static int
@@ -6720,7 +6955,7 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
6720 sg = sg->next; 6955 sg = sg->next;
6721 } while (sg != group_head); 6956 } while (sg != group_head);
6722} 6957}
6723#endif 6958#endif /* CONFIG_NUMA */
6724 6959
6725#ifdef CONFIG_NUMA 6960#ifdef CONFIG_NUMA
6726/* Free memory allocated for various sched_group structures */ 6961/* Free memory allocated for various sched_group structures */
@@ -6757,11 +6992,11 @@ next_sg:
6757 sched_group_nodes_bycpu[cpu] = NULL; 6992 sched_group_nodes_bycpu[cpu] = NULL;
6758 } 6993 }
6759} 6994}
6760#else 6995#else /* !CONFIG_NUMA */
6761static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 6996static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6762{ 6997{
6763} 6998}
6764#endif 6999#endif /* CONFIG_NUMA */
6765 7000
6766/* 7001/*
6767 * Initialize sched groups cpu_power. 7002 * Initialize sched groups cpu_power.
@@ -7470,7 +7705,7 @@ int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7470#endif 7705#endif
7471 return err; 7706 return err;
7472} 7707}
7473#endif 7708#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7474 7709
7475/* 7710/*
7476 * Force a reinitialization of the sched domains hierarchy. The domains 7711 * Force a reinitialization of the sched domains hierarchy. The domains
@@ -7481,21 +7716,28 @@ int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7481static int update_sched_domains(struct notifier_block *nfb, 7716static int update_sched_domains(struct notifier_block *nfb,
7482 unsigned long action, void *hcpu) 7717 unsigned long action, void *hcpu)
7483{ 7718{
7719 int cpu = (int)(long)hcpu;
7720
7484 switch (action) { 7721 switch (action) {
7485 case CPU_UP_PREPARE:
7486 case CPU_UP_PREPARE_FROZEN:
7487 case CPU_DOWN_PREPARE: 7722 case CPU_DOWN_PREPARE:
7488 case CPU_DOWN_PREPARE_FROZEN: 7723 case CPU_DOWN_PREPARE_FROZEN:
7724 disable_runtime(cpu_rq(cpu));
7725 /* fall-through */
7726 case CPU_UP_PREPARE:
7727 case CPU_UP_PREPARE_FROZEN:
7489 detach_destroy_domains(&cpu_online_map); 7728 detach_destroy_domains(&cpu_online_map);
7490 free_sched_domains(); 7729 free_sched_domains();
7491 return NOTIFY_OK; 7730 return NOTIFY_OK;
7492 7731
7493 case CPU_UP_CANCELED: 7732
7494 case CPU_UP_CANCELED_FROZEN:
7495 case CPU_DOWN_FAILED: 7733 case CPU_DOWN_FAILED:
7496 case CPU_DOWN_FAILED_FROZEN: 7734 case CPU_DOWN_FAILED_FROZEN:
7497 case CPU_ONLINE: 7735 case CPU_ONLINE:
7498 case CPU_ONLINE_FROZEN: 7736 case CPU_ONLINE_FROZEN:
7737 enable_runtime(cpu_rq(cpu));
7738 /* fall-through */
7739 case CPU_UP_CANCELED:
7740 case CPU_UP_CANCELED_FROZEN:
7499 case CPU_DEAD: 7741 case CPU_DEAD:
7500 case CPU_DEAD_FROZEN: 7742 case CPU_DEAD_FROZEN:
7501 /* 7743 /*
@@ -7695,8 +7937,8 @@ void __init sched_init(void)
7695 7937
7696 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7938 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7697 ptr += nr_cpu_ids * sizeof(void **); 7939 ptr += nr_cpu_ids * sizeof(void **);
7698#endif 7940#endif /* CONFIG_USER_SCHED */
7699#endif 7941#endif /* CONFIG_FAIR_GROUP_SCHED */
7700#ifdef CONFIG_RT_GROUP_SCHED 7942#ifdef CONFIG_RT_GROUP_SCHED
7701 init_task_group.rt_se = (struct sched_rt_entity **)ptr; 7943 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **); 7944 ptr += nr_cpu_ids * sizeof(void **);
@@ -7710,8 +7952,8 @@ void __init sched_init(void)
7710 7952
7711 root_task_group.rt_rq = (struct rt_rq **)ptr; 7953 root_task_group.rt_rq = (struct rt_rq **)ptr;
7712 ptr += nr_cpu_ids * sizeof(void **); 7954 ptr += nr_cpu_ids * sizeof(void **);
7713#endif 7955#endif /* CONFIG_USER_SCHED */
7714#endif 7956#endif /* CONFIG_RT_GROUP_SCHED */
7715 } 7957 }
7716 7958
7717#ifdef CONFIG_SMP 7959#ifdef CONFIG_SMP
@@ -7727,8 +7969,8 @@ void __init sched_init(void)
7727#ifdef CONFIG_USER_SCHED 7969#ifdef CONFIG_USER_SCHED
7728 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7970 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7729 global_rt_period(), RUNTIME_INF); 7971 global_rt_period(), RUNTIME_INF);
7730#endif 7972#endif /* CONFIG_USER_SCHED */
7731#endif 7973#endif /* CONFIG_RT_GROUP_SCHED */
7732 7974
7733#ifdef CONFIG_GROUP_SCHED 7975#ifdef CONFIG_GROUP_SCHED
7734 list_add(&init_task_group.list, &task_groups); 7976 list_add(&init_task_group.list, &task_groups);
@@ -7738,8 +7980,8 @@ void __init sched_init(void)
7738 INIT_LIST_HEAD(&root_task_group.children); 7980 INIT_LIST_HEAD(&root_task_group.children);
7739 init_task_group.parent = &root_task_group; 7981 init_task_group.parent = &root_task_group;
7740 list_add(&init_task_group.siblings, &root_task_group.children); 7982 list_add(&init_task_group.siblings, &root_task_group.children);
7741#endif 7983#endif /* CONFIG_USER_SCHED */
7742#endif 7984#endif /* CONFIG_GROUP_SCHED */
7743 7985
7744 for_each_possible_cpu(i) { 7986 for_each_possible_cpu(i) {
7745 struct rq *rq; 7987 struct rq *rq;
@@ -7819,6 +8061,7 @@ void __init sched_init(void)
7819 rq->next_balance = jiffies; 8061 rq->next_balance = jiffies;
7820 rq->push_cpu = 0; 8062 rq->push_cpu = 0;
7821 rq->cpu = i; 8063 rq->cpu = i;
8064 rq->online = 0;
7822 rq->migration_thread = NULL; 8065 rq->migration_thread = NULL;
7823 INIT_LIST_HEAD(&rq->migration_queue); 8066 INIT_LIST_HEAD(&rq->migration_queue);
7824 rq_attach_root(rq, &def_root_domain); 8067 rq_attach_root(rq, &def_root_domain);
@@ -8058,7 +8301,7 @@ static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8058{ 8301{
8059 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); 8302 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8060} 8303}
8061#else 8304#else /* !CONFG_FAIR_GROUP_SCHED */
8062static inline void free_fair_sched_group(struct task_group *tg) 8305static inline void free_fair_sched_group(struct task_group *tg)
8063{ 8306{
8064} 8307}
@@ -8076,7 +8319,7 @@ static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8076static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) 8319static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8077{ 8320{
8078} 8321}
8079#endif 8322#endif /* CONFIG_FAIR_GROUP_SCHED */
8080 8323
8081#ifdef CONFIG_RT_GROUP_SCHED 8324#ifdef CONFIG_RT_GROUP_SCHED
8082static void free_rt_sched_group(struct task_group *tg) 8325static void free_rt_sched_group(struct task_group *tg)
@@ -8147,7 +8390,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8147{ 8390{
8148 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); 8391 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8149} 8392}
8150#else 8393#else /* !CONFIG_RT_GROUP_SCHED */
8151static inline void free_rt_sched_group(struct task_group *tg) 8394static inline void free_rt_sched_group(struct task_group *tg)
8152{ 8395{
8153} 8396}
@@ -8165,7 +8408,7 @@ static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8165static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) 8408static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8166{ 8409{
8167} 8410}
8168#endif 8411#endif /* CONFIG_RT_GROUP_SCHED */
8169 8412
8170#ifdef CONFIG_GROUP_SCHED 8413#ifdef CONFIG_GROUP_SCHED
8171static void free_sched_group(struct task_group *tg) 8414static void free_sched_group(struct task_group *tg)
@@ -8276,17 +8519,14 @@ void sched_move_task(struct task_struct *tsk)
8276 8519
8277 task_rq_unlock(rq, &flags); 8520 task_rq_unlock(rq, &flags);
8278} 8521}
8279#endif 8522#endif /* CONFIG_GROUP_SCHED */
8280 8523
8281#ifdef CONFIG_FAIR_GROUP_SCHED 8524#ifdef CONFIG_FAIR_GROUP_SCHED
8282static void set_se_shares(struct sched_entity *se, unsigned long shares) 8525static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8283{ 8526{
8284 struct cfs_rq *cfs_rq = se->cfs_rq; 8527 struct cfs_rq *cfs_rq = se->cfs_rq;
8285 struct rq *rq = cfs_rq->rq;
8286 int on_rq; 8528 int on_rq;
8287 8529
8288 spin_lock_irq(&rq->lock);
8289
8290 on_rq = se->on_rq; 8530 on_rq = se->on_rq;
8291 if (on_rq) 8531 if (on_rq)
8292 dequeue_entity(cfs_rq, se, 0); 8532 dequeue_entity(cfs_rq, se, 0);
@@ -8296,8 +8536,17 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares)
8296 8536
8297 if (on_rq) 8537 if (on_rq)
8298 enqueue_entity(cfs_rq, se, 0); 8538 enqueue_entity(cfs_rq, se, 0);
8539}
8299 8540
8300 spin_unlock_irq(&rq->lock); 8541static void set_se_shares(struct sched_entity *se, unsigned long shares)
8542{
8543 struct cfs_rq *cfs_rq = se->cfs_rq;
8544 struct rq *rq = cfs_rq->rq;
8545 unsigned long flags;
8546
8547 spin_lock_irqsave(&rq->lock, flags);
8548 __set_se_shares(se, shares);
8549 spin_unlock_irqrestore(&rq->lock, flags);
8301} 8550}
8302 8551
8303static DEFINE_MUTEX(shares_mutex); 8552static DEFINE_MUTEX(shares_mutex);
@@ -8336,8 +8585,13 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8336 * w/o tripping rebalance_share or load_balance_fair. 8585 * w/o tripping rebalance_share or load_balance_fair.
8337 */ 8586 */
8338 tg->shares = shares; 8587 tg->shares = shares;
8339 for_each_possible_cpu(i) 8588 for_each_possible_cpu(i) {
8589 /*
8590 * force a rebalance
8591 */
8592 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8340 set_se_shares(tg->se[i], shares); 8593 set_se_shares(tg->se[i], shares);
8594 }
8341 8595
8342 /* 8596 /*
8343 * Enable load balance activity on this group, by inserting it back on 8597 * Enable load balance activity on this group, by inserting it back on
@@ -8376,7 +8630,7 @@ static unsigned long to_ratio(u64 period, u64 runtime)
8376#ifdef CONFIG_CGROUP_SCHED 8630#ifdef CONFIG_CGROUP_SCHED
8377static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8631static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8378{ 8632{
8379 struct task_group *tgi, *parent = tg ? tg->parent : NULL; 8633 struct task_group *tgi, *parent = tg->parent;
8380 unsigned long total = 0; 8634 unsigned long total = 0;
8381 8635
8382 if (!parent) { 8636 if (!parent) {
@@ -8400,7 +8654,7 @@ static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8400 } 8654 }
8401 rcu_read_unlock(); 8655 rcu_read_unlock();
8402 8656
8403 return total + to_ratio(period, runtime) < 8657 return total + to_ratio(period, runtime) <=
8404 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period), 8658 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8405 parent->rt_bandwidth.rt_runtime); 8659 parent->rt_bandwidth.rt_runtime);
8406} 8660}
@@ -8520,16 +8774,21 @@ long sched_group_rt_period(struct task_group *tg)
8520 8774
8521static int sched_rt_global_constraints(void) 8775static int sched_rt_global_constraints(void)
8522{ 8776{
8777 struct task_group *tg = &root_task_group;
8778 u64 rt_runtime, rt_period;
8523 int ret = 0; 8779 int ret = 0;
8524 8780
8781 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8782 rt_runtime = tg->rt_bandwidth.rt_runtime;
8783
8525 mutex_lock(&rt_constraints_mutex); 8784 mutex_lock(&rt_constraints_mutex);
8526 if (!__rt_schedulable(NULL, 1, 0)) 8785 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8527 ret = -EINVAL; 8786 ret = -EINVAL;
8528 mutex_unlock(&rt_constraints_mutex); 8787 mutex_unlock(&rt_constraints_mutex);
8529 8788
8530 return ret; 8789 return ret;
8531} 8790}
8532#else 8791#else /* !CONFIG_RT_GROUP_SCHED */
8533static int sched_rt_global_constraints(void) 8792static int sched_rt_global_constraints(void)
8534{ 8793{
8535 unsigned long flags; 8794 unsigned long flags;
@@ -8547,7 +8806,7 @@ static int sched_rt_global_constraints(void)
8547 8806
8548 return 0; 8807 return 0;
8549} 8808}
8550#endif 8809#endif /* CONFIG_RT_GROUP_SCHED */
8551 8810
8552int sched_rt_handler(struct ctl_table *table, int write, 8811int sched_rt_handler(struct ctl_table *table, int write,
8553 struct file *filp, void __user *buffer, size_t *lenp, 8812 struct file *filp, void __user *buffer, size_t *lenp,
@@ -8655,7 +8914,7 @@ static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8655 8914
8656 return (u64) tg->shares; 8915 return (u64) tg->shares;
8657} 8916}
8658#endif 8917#endif /* CONFIG_FAIR_GROUP_SCHED */
8659 8918
8660#ifdef CONFIG_RT_GROUP_SCHED 8919#ifdef CONFIG_RT_GROUP_SCHED
8661static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 8920static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
@@ -8679,7 +8938,7 @@ static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8679{ 8938{
8680 return sched_group_rt_period(cgroup_tg(cgrp)); 8939 return sched_group_rt_period(cgroup_tg(cgrp));
8681} 8940}
8682#endif 8941#endif /* CONFIG_RT_GROUP_SCHED */
8683 8942
8684static struct cftype cpu_files[] = { 8943static struct cftype cpu_files[] = {
8685#ifdef CONFIG_FAIR_GROUP_SCHED 8944#ifdef CONFIG_FAIR_GROUP_SCHED
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c
index ce05271219ab..22ed55d1167f 100644
--- a/kernel/sched_clock.c
+++ b/kernel/sched_clock.c
@@ -3,6 +3,9 @@
3 * 3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 * 5 *
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
6 * Based on code by: 9 * Based on code by:
7 * Ingo Molnar <mingo@redhat.com> 10 * Ingo Molnar <mingo@redhat.com>
8 * Guillaume Chazarain <guichaz@gmail.com> 11 * Guillaume Chazarain <guichaz@gmail.com>
@@ -32,6 +35,11 @@
32 35
33#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 36#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
34 37
38#define MULTI_SHIFT 15
39/* Max is double, Min is 1/2 */
40#define MAX_MULTI (2LL << MULTI_SHIFT)
41#define MIN_MULTI (1LL << (MULTI_SHIFT-1))
42
35struct sched_clock_data { 43struct sched_clock_data {
36 /* 44 /*
37 * Raw spinlock - this is a special case: this might be called 45 * Raw spinlock - this is a special case: this might be called
@@ -40,11 +48,15 @@ struct sched_clock_data {
40 */ 48 */
41 raw_spinlock_t lock; 49 raw_spinlock_t lock;
42 50
43 unsigned long prev_jiffies; 51 unsigned long tick_jiffies;
44 u64 prev_raw; 52 u64 prev_raw;
45 u64 tick_raw; 53 u64 tick_raw;
46 u64 tick_gtod; 54 u64 tick_gtod;
47 u64 clock; 55 u64 clock;
56 s64 multi;
57#ifdef CONFIG_NO_HZ
58 int check_max;
59#endif
48}; 60};
49 61
50static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 62static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
@@ -71,41 +83,91 @@ void sched_clock_init(void)
71 struct sched_clock_data *scd = cpu_sdc(cpu); 83 struct sched_clock_data *scd = cpu_sdc(cpu);
72 84
73 scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 85 scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
74 scd->prev_jiffies = now_jiffies; 86 scd->tick_jiffies = now_jiffies;
75 scd->prev_raw = 0; 87 scd->prev_raw = 0;
76 scd->tick_raw = 0; 88 scd->tick_raw = 0;
77 scd->tick_gtod = ktime_now; 89 scd->tick_gtod = ktime_now;
78 scd->clock = ktime_now; 90 scd->clock = ktime_now;
91 scd->multi = 1 << MULTI_SHIFT;
92#ifdef CONFIG_NO_HZ
93 scd->check_max = 1;
94#endif
79 } 95 }
80 96
81 sched_clock_running = 1; 97 sched_clock_running = 1;
82} 98}
83 99
100#ifdef CONFIG_NO_HZ
101/*
102 * The dynamic ticks makes the delta jiffies inaccurate. This
103 * prevents us from checking the maximum time update.
104 * Disable the maximum check during stopped ticks.
105 */
106void sched_clock_tick_stop(int cpu)
107{
108 struct sched_clock_data *scd = cpu_sdc(cpu);
109
110 scd->check_max = 0;
111}
112
113void sched_clock_tick_start(int cpu)
114{
115 struct sched_clock_data *scd = cpu_sdc(cpu);
116
117 scd->check_max = 1;
118}
119
120static int check_max(struct sched_clock_data *scd)
121{
122 return scd->check_max;
123}
124#else
125static int check_max(struct sched_clock_data *scd)
126{
127 return 1;
128}
129#endif /* CONFIG_NO_HZ */
130
84/* 131/*
85 * update the percpu scd from the raw @now value 132 * update the percpu scd from the raw @now value
86 * 133 *
87 * - filter out backward motion 134 * - filter out backward motion
88 * - use jiffies to generate a min,max window to clip the raw values 135 * - use jiffies to generate a min,max window to clip the raw values
89 */ 136 */
90static void __update_sched_clock(struct sched_clock_data *scd, u64 now) 137static void __update_sched_clock(struct sched_clock_data *scd, u64 now, u64 *time)
91{ 138{
92 unsigned long now_jiffies = jiffies; 139 unsigned long now_jiffies = jiffies;
93 long delta_jiffies = now_jiffies - scd->prev_jiffies; 140 long delta_jiffies = now_jiffies - scd->tick_jiffies;
94 u64 clock = scd->clock; 141 u64 clock = scd->clock;
95 u64 min_clock, max_clock; 142 u64 min_clock, max_clock;
96 s64 delta = now - scd->prev_raw; 143 s64 delta = now - scd->prev_raw;
97 144
98 WARN_ON_ONCE(!irqs_disabled()); 145 WARN_ON_ONCE(!irqs_disabled());
99 min_clock = scd->tick_gtod + delta_jiffies * TICK_NSEC; 146
147 /*
148 * At schedule tick the clock can be just under the gtod. We don't
149 * want to push it too prematurely.
150 */
151 min_clock = scd->tick_gtod + (delta_jiffies * TICK_NSEC);
152 if (min_clock > TICK_NSEC)
153 min_clock -= TICK_NSEC / 2;
100 154
101 if (unlikely(delta < 0)) { 155 if (unlikely(delta < 0)) {
102 clock++; 156 clock++;
103 goto out; 157 goto out;
104 } 158 }
105 159
106 max_clock = min_clock + TICK_NSEC; 160 /*
161 * The clock must stay within a jiffie of the gtod.
162 * But since we may be at the start of a jiffy or the end of one
163 * we add another jiffy buffer.
164 */
165 max_clock = scd->tick_gtod + (2 + delta_jiffies) * TICK_NSEC;
166
167 delta *= scd->multi;
168 delta >>= MULTI_SHIFT;
107 169
108 if (unlikely(clock + delta > max_clock)) { 170 if (unlikely(clock + delta > max_clock) && check_max(scd)) {
109 if (clock < max_clock) 171 if (clock < max_clock)
110 clock = max_clock; 172 clock = max_clock;
111 else 173 else
@@ -118,9 +180,12 @@ static void __update_sched_clock(struct sched_clock_data *scd, u64 now)
118 if (unlikely(clock < min_clock)) 180 if (unlikely(clock < min_clock))
119 clock = min_clock; 181 clock = min_clock;
120 182
121 scd->prev_raw = now; 183 if (time)
122 scd->prev_jiffies = now_jiffies; 184 *time = clock;
123 scd->clock = clock; 185 else {
186 scd->prev_raw = now;
187 scd->clock = clock;
188 }
124} 189}
125 190
126static void lock_double_clock(struct sched_clock_data *data1, 191static void lock_double_clock(struct sched_clock_data *data1,
@@ -160,25 +225,30 @@ u64 sched_clock_cpu(int cpu)
160 now -= my_scd->tick_raw; 225 now -= my_scd->tick_raw;
161 now += scd->tick_raw; 226 now += scd->tick_raw;
162 227
163 now -= my_scd->tick_gtod; 228 now += my_scd->tick_gtod;
164 now += scd->tick_gtod; 229 now -= scd->tick_gtod;
165 230
166 __raw_spin_unlock(&my_scd->lock); 231 __raw_spin_unlock(&my_scd->lock);
232
233 __update_sched_clock(scd, now, &clock);
234
235 __raw_spin_unlock(&scd->lock);
236
167 } else { 237 } else {
168 __raw_spin_lock(&scd->lock); 238 __raw_spin_lock(&scd->lock);
239 __update_sched_clock(scd, now, NULL);
240 clock = scd->clock;
241 __raw_spin_unlock(&scd->lock);
169 } 242 }
170 243
171 __update_sched_clock(scd, now);
172 clock = scd->clock;
173
174 __raw_spin_unlock(&scd->lock);
175
176 return clock; 244 return clock;
177} 245}
178 246
179void sched_clock_tick(void) 247void sched_clock_tick(void)
180{ 248{
181 struct sched_clock_data *scd = this_scd(); 249 struct sched_clock_data *scd = this_scd();
250 unsigned long now_jiffies = jiffies;
251 s64 mult, delta_gtod, delta_raw;
182 u64 now, now_gtod; 252 u64 now, now_gtod;
183 253
184 if (unlikely(!sched_clock_running)) 254 if (unlikely(!sched_clock_running))
@@ -186,18 +256,33 @@ void sched_clock_tick(void)
186 256
187 WARN_ON_ONCE(!irqs_disabled()); 257 WARN_ON_ONCE(!irqs_disabled());
188 258
189 now = sched_clock();
190 now_gtod = ktime_to_ns(ktime_get()); 259 now_gtod = ktime_to_ns(ktime_get());
260 now = sched_clock();
191 261
192 __raw_spin_lock(&scd->lock); 262 __raw_spin_lock(&scd->lock);
193 __update_sched_clock(scd, now); 263 __update_sched_clock(scd, now, NULL);
194 /* 264 /*
195 * update tick_gtod after __update_sched_clock() because that will 265 * update tick_gtod after __update_sched_clock() because that will
196 * already observe 1 new jiffy; adding a new tick_gtod to that would 266 * already observe 1 new jiffy; adding a new tick_gtod to that would
197 * increase the clock 2 jiffies. 267 * increase the clock 2 jiffies.
198 */ 268 */
269 delta_gtod = now_gtod - scd->tick_gtod;
270 delta_raw = now - scd->tick_raw;
271
272 if ((long)delta_raw > 0) {
273 mult = delta_gtod << MULTI_SHIFT;
274 do_div(mult, delta_raw);
275 scd->multi = mult;
276 if (scd->multi > MAX_MULTI)
277 scd->multi = MAX_MULTI;
278 else if (scd->multi < MIN_MULTI)
279 scd->multi = MIN_MULTI;
280 } else
281 scd->multi = 1 << MULTI_SHIFT;
282
199 scd->tick_raw = now; 283 scd->tick_raw = now;
200 scd->tick_gtod = now_gtod; 284 scd->tick_gtod = now_gtod;
285 scd->tick_jiffies = now_jiffies;
201 __raw_spin_unlock(&scd->lock); 286 __raw_spin_unlock(&scd->lock);
202} 287}
203 288
@@ -227,6 +312,7 @@ void sched_clock_idle_wakeup_event(u64 delta_ns)
227 __raw_spin_lock(&scd->lock); 312 __raw_spin_lock(&scd->lock);
228 scd->prev_raw = now; 313 scd->prev_raw = now;
229 scd->clock += delta_ns; 314 scd->clock += delta_ns;
315 scd->multi = 1 << MULTI_SHIFT;
230 __raw_spin_unlock(&scd->lock); 316 __raw_spin_unlock(&scd->lock);
231 317
232 touch_softlockup_watchdog(); 318 touch_softlockup_watchdog();
@@ -244,3 +330,16 @@ unsigned long long __attribute__((weak)) sched_clock(void)
244{ 330{
245 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ); 331 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
246} 332}
333
334unsigned long long cpu_clock(int cpu)
335{
336 unsigned long long clock;
337 unsigned long flags;
338
339 local_irq_save(flags);
340 clock = sched_clock_cpu(cpu);
341 local_irq_restore(flags);
342
343 return clock;
344}
345EXPORT_SYMBOL_GPL(cpu_clock);
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c
new file mode 100644
index 000000000000..52154fefab7e
--- /dev/null
+++ b/kernel/sched_cpupri.c
@@ -0,0 +1,174 @@
1/*
2 * kernel/sched_cpupri.c
3 *
4 * CPU priority management
5 *
6 * Copyright (C) 2007-2008 Novell
7 *
8 * Author: Gregory Haskins <ghaskins@novell.com>
9 *
10 * This code tracks the priority of each CPU so that global migration
11 * decisions are easy to calculate. Each CPU can be in a state as follows:
12 *
13 * (INVALID), IDLE, NORMAL, RT1, ... RT99
14 *
15 * going from the lowest priority to the highest. CPUs in the INVALID state
16 * are not eligible for routing. The system maintains this state with
17 * a 2 dimensional bitmap (the first for priority class, the second for cpus
18 * in that class). Therefore a typical application without affinity
19 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20 * searches). For tasks with affinity restrictions, the algorithm has a
21 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22 * yields the worst case search is fairly contrived.
23 *
24 * This program is free software; you can redistribute it and/or
25 * modify it under the terms of the GNU General Public License
26 * as published by the Free Software Foundation; version 2
27 * of the License.
28 */
29
30#include "sched_cpupri.h"
31
32/* Convert between a 140 based task->prio, and our 102 based cpupri */
33static int convert_prio(int prio)
34{
35 int cpupri;
36
37 if (prio == CPUPRI_INVALID)
38 cpupri = CPUPRI_INVALID;
39 else if (prio == MAX_PRIO)
40 cpupri = CPUPRI_IDLE;
41 else if (prio >= MAX_RT_PRIO)
42 cpupri = CPUPRI_NORMAL;
43 else
44 cpupri = MAX_RT_PRIO - prio + 1;
45
46 return cpupri;
47}
48
49#define for_each_cpupri_active(array, idx) \
50 for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \
51 idx < CPUPRI_NR_PRIORITIES; \
52 idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
53
54/**
55 * cpupri_find - find the best (lowest-pri) CPU in the system
56 * @cp: The cpupri context
57 * @p: The task
58 * @lowest_mask: A mask to fill in with selected CPUs
59 *
60 * Note: This function returns the recommended CPUs as calculated during the
61 * current invokation. By the time the call returns, the CPUs may have in
62 * fact changed priorities any number of times. While not ideal, it is not
63 * an issue of correctness since the normal rebalancer logic will correct
64 * any discrepancies created by racing against the uncertainty of the current
65 * priority configuration.
66 *
67 * Returns: (int)bool - CPUs were found
68 */
69int cpupri_find(struct cpupri *cp, struct task_struct *p,
70 cpumask_t *lowest_mask)
71{
72 int idx = 0;
73 int task_pri = convert_prio(p->prio);
74
75 for_each_cpupri_active(cp->pri_active, idx) {
76 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
77 cpumask_t mask;
78
79 if (idx >= task_pri)
80 break;
81
82 cpus_and(mask, p->cpus_allowed, vec->mask);
83
84 if (cpus_empty(mask))
85 continue;
86
87 *lowest_mask = mask;
88 return 1;
89 }
90
91 return 0;
92}
93
94/**
95 * cpupri_set - update the cpu priority setting
96 * @cp: The cpupri context
97 * @cpu: The target cpu
98 * @pri: The priority (INVALID-RT99) to assign to this CPU
99 *
100 * Note: Assumes cpu_rq(cpu)->lock is locked
101 *
102 * Returns: (void)
103 */
104void cpupri_set(struct cpupri *cp, int cpu, int newpri)
105{
106 int *currpri = &cp->cpu_to_pri[cpu];
107 int oldpri = *currpri;
108 unsigned long flags;
109
110 newpri = convert_prio(newpri);
111
112 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
113
114 if (newpri == oldpri)
115 return;
116
117 /*
118 * If the cpu was currently mapped to a different value, we
119 * first need to unmap the old value
120 */
121 if (likely(oldpri != CPUPRI_INVALID)) {
122 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
123
124 spin_lock_irqsave(&vec->lock, flags);
125
126 vec->count--;
127 if (!vec->count)
128 clear_bit(oldpri, cp->pri_active);
129 cpu_clear(cpu, vec->mask);
130
131 spin_unlock_irqrestore(&vec->lock, flags);
132 }
133
134 if (likely(newpri != CPUPRI_INVALID)) {
135 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
136
137 spin_lock_irqsave(&vec->lock, flags);
138
139 cpu_set(cpu, vec->mask);
140 vec->count++;
141 if (vec->count == 1)
142 set_bit(newpri, cp->pri_active);
143
144 spin_unlock_irqrestore(&vec->lock, flags);
145 }
146
147 *currpri = newpri;
148}
149
150/**
151 * cpupri_init - initialize the cpupri structure
152 * @cp: The cpupri context
153 *
154 * Returns: (void)
155 */
156void cpupri_init(struct cpupri *cp)
157{
158 int i;
159
160 memset(cp, 0, sizeof(*cp));
161
162 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
163 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
164
165 spin_lock_init(&vec->lock);
166 vec->count = 0;
167 cpus_clear(vec->mask);
168 }
169
170 for_each_possible_cpu(i)
171 cp->cpu_to_pri[i] = CPUPRI_INVALID;
172}
173
174
diff --git a/kernel/sched_cpupri.h b/kernel/sched_cpupri.h
new file mode 100644
index 000000000000..f25811b0f931
--- /dev/null
+++ b/kernel/sched_cpupri.h
@@ -0,0 +1,36 @@
1#ifndef _LINUX_CPUPRI_H
2#define _LINUX_CPUPRI_H
3
4#include <linux/sched.h>
5
6#define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO + 2)
7#define CPUPRI_NR_PRI_WORDS BITS_TO_LONGS(CPUPRI_NR_PRIORITIES)
8
9#define CPUPRI_INVALID -1
10#define CPUPRI_IDLE 0
11#define CPUPRI_NORMAL 1
12/* values 2-101 are RT priorities 0-99 */
13
14struct cpupri_vec {
15 spinlock_t lock;
16 int count;
17 cpumask_t mask;
18};
19
20struct cpupri {
21 struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];
22 long pri_active[CPUPRI_NR_PRI_WORDS];
23 int cpu_to_pri[NR_CPUS];
24};
25
26#ifdef CONFIG_SMP
27int cpupri_find(struct cpupri *cp,
28 struct task_struct *p, cpumask_t *lowest_mask);
29void cpupri_set(struct cpupri *cp, int cpu, int pri);
30void cpupri_init(struct cpupri *cp);
31#else
32#define cpupri_set(cp, cpu, pri) do { } while (0)
33#define cpupri_init() do { } while (0)
34#endif
35
36#endif /* _LINUX_CPUPRI_H */
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index 8bb713040ac9..bbe6b31c3c56 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -119,9 +119,7 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
119 struct sched_entity *last; 119 struct sched_entity *last;
120 unsigned long flags; 120 unsigned long flags;
121 121
122#if !defined(CONFIG_CGROUP_SCHED) || !defined(CONFIG_USER_SCHED) 122#if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
123 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
124#else
125 char path[128] = ""; 123 char path[128] = "";
126 struct cgroup *cgroup = NULL; 124 struct cgroup *cgroup = NULL;
127 struct task_group *tg = cfs_rq->tg; 125 struct task_group *tg = cfs_rq->tg;
@@ -133,6 +131,8 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
133 cgroup_path(cgroup, path, sizeof(path)); 131 cgroup_path(cgroup, path, sizeof(path));
134 132
135 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); 133 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
134#else
135 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
136#endif 136#endif
137 137
138 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 138 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
@@ -162,11 +162,64 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
162 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running); 162 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
163 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 163 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
164#ifdef CONFIG_SCHEDSTATS 164#ifdef CONFIG_SCHEDSTATS
165 SEQ_printf(m, " .%-30s: %d\n", "bkl_count", 165#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
166 rq->bkl_count); 166
167 P(yld_exp_empty);
168 P(yld_act_empty);
169 P(yld_both_empty);
170 P(yld_count);
171
172 P(sched_switch);
173 P(sched_count);
174 P(sched_goidle);
175
176 P(ttwu_count);
177 P(ttwu_local);
178
179 P(bkl_count);
180
181#undef P
167#endif 182#endif
168 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", 183 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
169 cfs_rq->nr_spread_over); 184 cfs_rq->nr_spread_over);
185#ifdef CONFIG_FAIR_GROUP_SCHED
186#ifdef CONFIG_SMP
187 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
188#endif
189#endif
190}
191
192void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
193{
194#if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
195 char path[128] = "";
196 struct cgroup *cgroup = NULL;
197 struct task_group *tg = rt_rq->tg;
198
199 if (tg)
200 cgroup = tg->css.cgroup;
201
202 if (cgroup)
203 cgroup_path(cgroup, path, sizeof(path));
204
205 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
206#else
207 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
208#endif
209
210
211#define P(x) \
212 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
213#define PN(x) \
214 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
215
216 P(rt_nr_running);
217 P(rt_throttled);
218 PN(rt_time);
219 PN(rt_runtime);
220
221#undef PN
222#undef P
170} 223}
171 224
172static void print_cpu(struct seq_file *m, int cpu) 225static void print_cpu(struct seq_file *m, int cpu)
@@ -208,6 +261,7 @@ static void print_cpu(struct seq_file *m, int cpu)
208#undef PN 261#undef PN
209 262
210 print_cfs_stats(m, cpu); 263 print_cfs_stats(m, cpu);
264 print_rt_stats(m, cpu);
211 265
212 print_rq(m, rq, cpu); 266 print_rq(m, rq, cpu);
213} 267}
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 08ae848b71d4..f2aa987027d6 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
63 63
64/* 64/*
65 * SCHED_OTHER wake-up granularity. 65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds) 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 * 67 *
68 * This option delays the preemption effects of decoupled workloads 68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still 69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies. 70 * have immediate wakeup/sleep latencies.
71 */ 71 */
72unsigned int sysctl_sched_wakeup_granularity = 10000000UL; 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73 73
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75 75
@@ -334,6 +334,34 @@ int sched_nr_latency_handler(struct ctl_table *table, int write,
334#endif 334#endif
335 335
336/* 336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
364/*
337 * The idea is to set a period in which each task runs once. 365 * The idea is to set a period in which each task runs once.
338 * 366 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch 367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
@@ -362,47 +390,80 @@ static u64 __sched_period(unsigned long nr_running)
362 */ 390 */
363static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364{ 392{
365 u64 slice = __sched_period(cfs_rq->nr_running); 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
366
367 for_each_sched_entity(se) {
368 cfs_rq = cfs_rq_of(se);
369
370 slice *= se->load.weight;
371 do_div(slice, cfs_rq->load.weight);
372 }
373
374
375 return slice;
376} 394}
377 395
378/* 396/*
379 * We calculate the vruntime slice of a to be inserted task 397 * We calculate the vruntime slice of a to be inserted task
380 * 398 *
381 * vs = s/w = p/rw 399 * vs = s*rw/w = p
382 */ 400 */
383static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
384{ 402{
385 unsigned long nr_running = cfs_rq->nr_running; 403 unsigned long nr_running = cfs_rq->nr_running;
386 unsigned long weight;
387 u64 vslice;
388 404
389 if (!se->on_rq) 405 if (!se->on_rq)
390 nr_running++; 406 nr_running++;
391 407
392 vslice = __sched_period(nr_running); 408 return __sched_period(nr_running);
409}
410
411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
393 429
394 for_each_sched_entity(se) { 430 for_each_sched_entity(se) {
395 cfs_rq = cfs_rq_of(se); 431 struct load_weight *se_lw = &se->load;
432 unsigned long rw = cfs_rq_of(se)->load.weight;
433
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
454 rw += lw.weight - se->load.weight;
455 } else
456#endif
396 457
397 weight = cfs_rq->load.weight; 458 if (se->load.weight < NICE_0_LOAD) {
398 if (!se->on_rq) 459 se_lw = &lw;
399 weight += se->load.weight; 460 rw += NICE_0_LOAD - se->load.weight;
461 }
400 462
401 vslice *= NICE_0_LOAD; 463 delta = calc_delta_mine(delta, rw, se_lw);
402 do_div(vslice, weight);
403 } 464 }
404 465
405 return vslice; 466 return delta;
406} 467}
407 468
408/* 469/*
@@ -419,11 +480,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
419 480
420 curr->sum_exec_runtime += delta_exec; 481 curr->sum_exec_runtime += delta_exec;
421 schedstat_add(cfs_rq, exec_clock, delta_exec); 482 schedstat_add(cfs_rq, exec_clock, delta_exec);
422 delta_exec_weighted = delta_exec; 483 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
423 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
424 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
425 &curr->load);
426 }
427 curr->vruntime += delta_exec_weighted; 484 curr->vruntime += delta_exec_weighted;
428} 485}
429 486
@@ -510,10 +567,27 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
510 * Scheduling class queueing methods: 567 * Scheduling class queueing methods:
511 */ 568 */
512 569
570#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
571static void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574 cfs_rq->task_weight += weight;
575}
576#else
577static inline void
578add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
579{
580}
581#endif
582
513static void 583static void
514account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 584account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
515{ 585{
516 update_load_add(&cfs_rq->load, se->load.weight); 586 update_load_add(&cfs_rq->load, se->load.weight);
587 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589 if (entity_is_task(se))
590 add_cfs_task_weight(cfs_rq, se->load.weight);
517 cfs_rq->nr_running++; 591 cfs_rq->nr_running++;
518 se->on_rq = 1; 592 se->on_rq = 1;
519 list_add(&se->group_node, &cfs_rq->tasks); 593 list_add(&se->group_node, &cfs_rq->tasks);
@@ -523,6 +597,10 @@ static void
523account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 597account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
524{ 598{
525 update_load_sub(&cfs_rq->load, se->load.weight); 599 update_load_sub(&cfs_rq->load, se->load.weight);
600 if (!parent_entity(se))
601 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
602 if (entity_is_task(se))
603 add_cfs_task_weight(cfs_rq, -se->load.weight);
526 cfs_rq->nr_running--; 604 cfs_rq->nr_running--;
527 se->on_rq = 0; 605 se->on_rq = 0;
528 list_del_init(&se->group_node); 606 list_del_init(&se->group_node);
@@ -609,8 +687,17 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
609 687
610 if (!initial) { 688 if (!initial) {
611 /* sleeps upto a single latency don't count. */ 689 /* sleeps upto a single latency don't count. */
612 if (sched_feat(NEW_FAIR_SLEEPERS)) 690 if (sched_feat(NEW_FAIR_SLEEPERS)) {
613 vruntime -= sysctl_sched_latency; 691 unsigned long thresh = sysctl_sched_latency;
692
693 /*
694 * convert the sleeper threshold into virtual time
695 */
696 if (sched_feat(NORMALIZED_SLEEPER))
697 thresh = calc_delta_fair(thresh, se);
698
699 vruntime -= thresh;
700 }
614 701
615 /* ensure we never gain time by being placed backwards. */ 702 /* ensure we never gain time by being placed backwards. */
616 vruntime = max_vruntime(se->vruntime, vruntime); 703 vruntime = max_vruntime(se->vruntime, vruntime);
@@ -639,21 +726,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
639 __enqueue_entity(cfs_rq, se); 726 __enqueue_entity(cfs_rq, se);
640} 727}
641 728
642static void update_avg(u64 *avg, u64 sample)
643{
644 s64 diff = sample - *avg;
645 *avg += diff >> 3;
646}
647
648static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
649{
650 if (!se->last_wakeup)
651 return;
652
653 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
654 se->last_wakeup = 0;
655}
656
657static void 729static void
658dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) 730dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
659{ 731{
@@ -664,7 +736,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
664 736
665 update_stats_dequeue(cfs_rq, se); 737 update_stats_dequeue(cfs_rq, se);
666 if (sleep) { 738 if (sleep) {
667 update_avg_stats(cfs_rq, se);
668#ifdef CONFIG_SCHEDSTATS 739#ifdef CONFIG_SCHEDSTATS
669 if (entity_is_task(se)) { 740 if (entity_is_task(se)) {
670 struct task_struct *tsk = task_of(se); 741 struct task_struct *tsk = task_of(se);
@@ -726,17 +797,16 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 se->prev_sum_exec_runtime = se->sum_exec_runtime; 797 se->prev_sum_exec_runtime = se->sum_exec_runtime;
727} 798}
728 799
729static int
730wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
731
732static struct sched_entity * 800static struct sched_entity *
733pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se) 801pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
734{ 802{
735 if (!cfs_rq->next) 803 struct rq *rq = rq_of(cfs_rq);
736 return se; 804 u64 pair_slice = rq->clock - cfs_rq->pair_start;
737 805
738 if (wakeup_preempt_entity(cfs_rq->next, se) != 0) 806 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
807 cfs_rq->pair_start = rq->clock;
739 return se; 808 return se;
809 }
740 810
741 return cfs_rq->next; 811 return cfs_rq->next;
742} 812}
@@ -835,7 +905,7 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
835 hrtick_start(rq, delta, requeue); 905 hrtick_start(rq, delta, requeue);
836 } 906 }
837} 907}
838#else 908#else /* !CONFIG_SCHED_HRTICK */
839static inline void 909static inline void
840hrtick_start_fair(struct rq *rq, struct task_struct *p) 910hrtick_start_fair(struct rq *rq, struct task_struct *p)
841{ 911{
@@ -976,7 +1046,7 @@ static int wake_idle(int cpu, struct task_struct *p)
976 } 1046 }
977 return cpu; 1047 return cpu;
978} 1048}
979#else 1049#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
980static inline int wake_idle(int cpu, struct task_struct *p) 1050static inline int wake_idle(int cpu, struct task_struct *p)
981{ 1051{
982 return cpu; 1052 return cpu;
@@ -987,6 +1057,89 @@ static inline int wake_idle(int cpu, struct task_struct *p)
987 1057
988static const struct sched_class fair_sched_class; 1058static const struct sched_class fair_sched_class;
989 1059
1060#ifdef CONFIG_FAIR_GROUP_SCHED
1061/*
1062 * effective_load() calculates the load change as seen from the root_task_group
1063 *
1064 * Adding load to a group doesn't make a group heavier, but can cause movement
1065 * of group shares between cpus. Assuming the shares were perfectly aligned one
1066 * can calculate the shift in shares.
1067 *
1068 * The problem is that perfectly aligning the shares is rather expensive, hence
1069 * we try to avoid doing that too often - see update_shares(), which ratelimits
1070 * this change.
1071 *
1072 * We compensate this by not only taking the current delta into account, but
1073 * also considering the delta between when the shares were last adjusted and
1074 * now.
1075 *
1076 * We still saw a performance dip, some tracing learned us that between
1077 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1078 * significantly. Therefore try to bias the error in direction of failing
1079 * the affine wakeup.
1080 *
1081 */
1082static long effective_load(struct task_group *tg, int cpu,
1083 long wl, long wg)
1084{
1085 struct sched_entity *se = tg->se[cpu];
1086 long more_w;
1087
1088 if (!tg->parent)
1089 return wl;
1090
1091 /*
1092 * By not taking the decrease of shares on the other cpu into
1093 * account our error leans towards reducing the affine wakeups.
1094 */
1095 if (!wl && sched_feat(ASYM_EFF_LOAD))
1096 return wl;
1097
1098 /*
1099 * Instead of using this increment, also add the difference
1100 * between when the shares were last updated and now.
1101 */
1102 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1103 wl += more_w;
1104 wg += more_w;
1105
1106 for_each_sched_entity(se) {
1107#define D(n) (likely(n) ? (n) : 1)
1108
1109 long S, rw, s, a, b;
1110
1111 S = se->my_q->tg->shares;
1112 s = se->my_q->shares;
1113 rw = se->my_q->rq_weight;
1114
1115 a = S*(rw + wl);
1116 b = S*rw + s*wg;
1117
1118 wl = s*(a-b)/D(b);
1119 /*
1120 * Assume the group is already running and will
1121 * thus already be accounted for in the weight.
1122 *
1123 * That is, moving shares between CPUs, does not
1124 * alter the group weight.
1125 */
1126 wg = 0;
1127#undef D
1128 }
1129
1130 return wl;
1131}
1132
1133#else
1134
1135static inline unsigned long effective_load(struct task_group *tg, int cpu,
1136 unsigned long wl, unsigned long wg)
1137{
1138 return wl;
1139}
1140
1141#endif
1142
990static int 1143static int
991wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, 1144wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
992 struct task_struct *p, int prev_cpu, int this_cpu, int sync, 1145 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
@@ -994,8 +1147,10 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
994 unsigned int imbalance) 1147 unsigned int imbalance)
995{ 1148{
996 struct task_struct *curr = this_rq->curr; 1149 struct task_struct *curr = this_rq->curr;
1150 struct task_group *tg;
997 unsigned long tl = this_load; 1151 unsigned long tl = this_load;
998 unsigned long tl_per_task; 1152 unsigned long tl_per_task;
1153 unsigned long weight;
999 int balanced; 1154 int balanced;
1000 1155
1001 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) 1156 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
@@ -1006,19 +1161,28 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1006 * effect of the currently running task from the load 1161 * effect of the currently running task from the load
1007 * of the current CPU: 1162 * of the current CPU:
1008 */ 1163 */
1009 if (sync) 1164 if (sync) {
1010 tl -= current->se.load.weight; 1165 tg = task_group(current);
1166 weight = current->se.load.weight;
1167
1168 tl += effective_load(tg, this_cpu, -weight, -weight);
1169 load += effective_load(tg, prev_cpu, 0, -weight);
1170 }
1011 1171
1012 balanced = 100*(tl + p->se.load.weight) <= imbalance*load; 1172 tg = task_group(p);
1173 weight = p->se.load.weight;
1174
1175 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1176 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1013 1177
1014 /* 1178 /*
1015 * If the currently running task will sleep within 1179 * If the currently running task will sleep within
1016 * a reasonable amount of time then attract this newly 1180 * a reasonable amount of time then attract this newly
1017 * woken task: 1181 * woken task:
1018 */ 1182 */
1019 if (sync && balanced && curr->sched_class == &fair_sched_class) { 1183 if (sync && balanced) {
1020 if (curr->se.avg_overlap < sysctl_sched_migration_cost && 1184 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1021 p->se.avg_overlap < sysctl_sched_migration_cost) 1185 p->se.avg_overlap < sysctl_sched_migration_cost)
1022 return 1; 1186 return 1;
1023 } 1187 }
1024 1188
@@ -1111,11 +1275,13 @@ static unsigned long wakeup_gran(struct sched_entity *se)
1111 unsigned long gran = sysctl_sched_wakeup_granularity; 1275 unsigned long gran = sysctl_sched_wakeup_granularity;
1112 1276
1113 /* 1277 /*
1114 * More easily preempt - nice tasks, while not making 1278 * More easily preempt - nice tasks, while not making it harder for
1115 * it harder for + nice tasks. 1279 * + nice tasks.
1116 */ 1280 */
1117 if (unlikely(se->load.weight > NICE_0_LOAD)) 1281 if (sched_feat(ASYM_GRAN))
1118 gran = calc_delta_fair(gran, &se->load); 1282 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1283 else
1284 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1119 1285
1120 return gran; 1286 return gran;
1121} 1287}
@@ -1177,7 +1343,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1177 return; 1343 return;
1178 } 1344 }
1179 1345
1180 se->last_wakeup = se->sum_exec_runtime;
1181 if (unlikely(se == pse)) 1346 if (unlikely(se == pse))
1182 return; 1347 return;
1183 1348
@@ -1275,23 +1440,18 @@ __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1275 struct task_struct *p = NULL; 1440 struct task_struct *p = NULL;
1276 struct sched_entity *se; 1441 struct sched_entity *se;
1277 1442
1278 if (next == &cfs_rq->tasks) 1443 while (next != &cfs_rq->tasks) {
1279 return NULL;
1280
1281 /* Skip over entities that are not tasks */
1282 do {
1283 se = list_entry(next, struct sched_entity, group_node); 1444 se = list_entry(next, struct sched_entity, group_node);
1284 next = next->next; 1445 next = next->next;
1285 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1286 1446
1287 if (next == &cfs_rq->tasks) 1447 /* Skip over entities that are not tasks */
1288 return NULL; 1448 if (entity_is_task(se)) {
1449 p = task_of(se);
1450 break;
1451 }
1452 }
1289 1453
1290 cfs_rq->balance_iterator = next; 1454 cfs_rq->balance_iterator = next;
1291
1292 if (entity_is_task(se))
1293 p = task_of(se);
1294
1295 return p; 1455 return p;
1296} 1456}
1297 1457
@@ -1309,75 +1469,82 @@ static struct task_struct *load_balance_next_fair(void *arg)
1309 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); 1469 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1310} 1470}
1311 1471
1312#ifdef CONFIG_FAIR_GROUP_SCHED 1472static unsigned long
1313static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) 1473__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1474 unsigned long max_load_move, struct sched_domain *sd,
1475 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1476 struct cfs_rq *cfs_rq)
1314{ 1477{
1315 struct sched_entity *curr; 1478 struct rq_iterator cfs_rq_iterator;
1316 struct task_struct *p;
1317
1318 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1319 return MAX_PRIO;
1320
1321 curr = cfs_rq->curr;
1322 if (!curr)
1323 curr = __pick_next_entity(cfs_rq);
1324 1479
1325 p = task_of(curr); 1480 cfs_rq_iterator.start = load_balance_start_fair;
1481 cfs_rq_iterator.next = load_balance_next_fair;
1482 cfs_rq_iterator.arg = cfs_rq;
1326 1483
1327 return p->prio; 1484 return balance_tasks(this_rq, this_cpu, busiest,
1485 max_load_move, sd, idle, all_pinned,
1486 this_best_prio, &cfs_rq_iterator);
1328} 1487}
1329#endif
1330 1488
1489#ifdef CONFIG_FAIR_GROUP_SCHED
1331static unsigned long 1490static unsigned long
1332load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 1491load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1333 unsigned long max_load_move, 1492 unsigned long max_load_move,
1334 struct sched_domain *sd, enum cpu_idle_type idle, 1493 struct sched_domain *sd, enum cpu_idle_type idle,
1335 int *all_pinned, int *this_best_prio) 1494 int *all_pinned, int *this_best_prio)
1336{ 1495{
1337 struct cfs_rq *busy_cfs_rq;
1338 long rem_load_move = max_load_move; 1496 long rem_load_move = max_load_move;
1339 struct rq_iterator cfs_rq_iterator; 1497 int busiest_cpu = cpu_of(busiest);
1340 1498 struct task_group *tg;
1341 cfs_rq_iterator.start = load_balance_start_fair;
1342 cfs_rq_iterator.next = load_balance_next_fair;
1343 1499
1344 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { 1500 rcu_read_lock();
1345#ifdef CONFIG_FAIR_GROUP_SCHED 1501 update_h_load(busiest_cpu);
1346 struct cfs_rq *this_cfs_rq;
1347 long imbalance;
1348 unsigned long maxload;
1349 1502
1350 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu); 1503 list_for_each_entry(tg, &task_groups, list) {
1504 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1505 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1506 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1507 u64 rem_load, moved_load;
1351 1508
1352 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight; 1509 /*
1353 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */ 1510 * empty group
1354 if (imbalance <= 0) 1511 */
1512 if (!busiest_cfs_rq->task_weight)
1355 continue; 1513 continue;
1356 1514
1357 /* Don't pull more than imbalance/2 */ 1515 rem_load = (u64)rem_load_move * busiest_weight;
1358 imbalance /= 2; 1516 rem_load = div_u64(rem_load, busiest_h_load + 1);
1359 maxload = min(rem_load_move, imbalance);
1360 1517
1361 *this_best_prio = cfs_rq_best_prio(this_cfs_rq); 1518 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1362#else 1519 rem_load, sd, idle, all_pinned, this_best_prio,
1363# define maxload rem_load_move 1520 tg->cfs_rq[busiest_cpu]);
1364#endif 1521
1365 /* 1522 if (!moved_load)
1366 * pass busy_cfs_rq argument into 1523 continue;
1367 * load_balance_[start|next]_fair iterators 1524
1368 */ 1525 moved_load *= busiest_h_load;
1369 cfs_rq_iterator.arg = busy_cfs_rq; 1526 moved_load = div_u64(moved_load, busiest_weight + 1);
1370 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1371 maxload, sd, idle, all_pinned,
1372 this_best_prio,
1373 &cfs_rq_iterator);
1374 1527
1375 if (rem_load_move <= 0) 1528 rem_load_move -= moved_load;
1529 if (rem_load_move < 0)
1376 break; 1530 break;
1377 } 1531 }
1532 rcu_read_unlock();
1378 1533
1379 return max_load_move - rem_load_move; 1534 return max_load_move - rem_load_move;
1380} 1535}
1536#else
1537static unsigned long
1538load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1539 unsigned long max_load_move,
1540 struct sched_domain *sd, enum cpu_idle_type idle,
1541 int *all_pinned, int *this_best_prio)
1542{
1543 return __load_balance_fair(this_rq, this_cpu, busiest,
1544 max_load_move, sd, idle, all_pinned,
1545 this_best_prio, &busiest->cfs);
1546}
1547#endif
1381 1548
1382static int 1549static int
1383move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 1550move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
@@ -1402,7 +1569,7 @@ move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1402 1569
1403 return 0; 1570 return 0;
1404} 1571}
1405#endif 1572#endif /* CONFIG_SMP */
1406 1573
1407/* 1574/*
1408 * scheduler tick hitting a task of our scheduling class: 1575 * scheduler tick hitting a task of our scheduling class:
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index 1c7283cb9581..862b06bd560a 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -1,4 +1,5 @@
1SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) 1SCHED_FEAT(NEW_FAIR_SLEEPERS, 1)
2SCHED_FEAT(NORMALIZED_SLEEPER, 1)
2SCHED_FEAT(WAKEUP_PREEMPT, 1) 3SCHED_FEAT(WAKEUP_PREEMPT, 1)
3SCHED_FEAT(START_DEBIT, 1) 4SCHED_FEAT(START_DEBIT, 1)
4SCHED_FEAT(AFFINE_WAKEUPS, 1) 5SCHED_FEAT(AFFINE_WAKEUPS, 1)
@@ -6,5 +7,7 @@ SCHED_FEAT(CACHE_HOT_BUDDY, 1)
6SCHED_FEAT(SYNC_WAKEUPS, 1) 7SCHED_FEAT(SYNC_WAKEUPS, 1)
7SCHED_FEAT(HRTICK, 1) 8SCHED_FEAT(HRTICK, 1)
8SCHED_FEAT(DOUBLE_TICK, 0) 9SCHED_FEAT(DOUBLE_TICK, 0)
9SCHED_FEAT(NORMALIZED_SLEEPER, 1) 10SCHED_FEAT(ASYM_GRAN, 1)
10SCHED_FEAT(DEADLINE, 1) 11SCHED_FEAT(LB_BIAS, 0)
12SCHED_FEAT(LB_WAKEUP_UPDATE, 1)
13SCHED_FEAT(ASYM_EFF_LOAD, 1)
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 0f3c19197fa4..47ceac9e8552 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -12,6 +12,9 @@ static inline int rt_overloaded(struct rq *rq)
12 12
13static inline void rt_set_overload(struct rq *rq) 13static inline void rt_set_overload(struct rq *rq)
14{ 14{
15 if (!rq->online)
16 return;
17
15 cpu_set(rq->cpu, rq->rd->rto_mask); 18 cpu_set(rq->cpu, rq->rd->rto_mask);
16 /* 19 /*
17 * Make sure the mask is visible before we set 20 * Make sure the mask is visible before we set
@@ -26,6 +29,9 @@ static inline void rt_set_overload(struct rq *rq)
26 29
27static inline void rt_clear_overload(struct rq *rq) 30static inline void rt_clear_overload(struct rq *rq)
28{ 31{
32 if (!rq->online)
33 return;
34
29 /* the order here really doesn't matter */ 35 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count); 36 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask); 37 cpu_clear(rq->cpu, rq->rd->rto_mask);
@@ -155,7 +161,7 @@ static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
155 return &rt_rq->tg->rt_bandwidth; 161 return &rt_rq->tg->rt_bandwidth;
156} 162}
157 163
158#else 164#else /* !CONFIG_RT_GROUP_SCHED */
159 165
160static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161{ 167{
@@ -220,49 +226,10 @@ static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
220 return &def_rt_bandwidth; 226 return &def_rt_bandwidth;
221} 227}
222 228
223#endif 229#endif /* CONFIG_RT_GROUP_SCHED */
224
225static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226{
227 int i, idle = 1;
228 cpumask_t span;
229
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
232
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
241 u64 runtime;
242
243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
249 }
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
252 spin_unlock(&rt_rq->rt_runtime_lock);
253 } else if (rt_rq->rt_nr_running)
254 idle = 0;
255
256 if (enqueue)
257 sched_rt_rq_enqueue(rt_rq);
258 spin_unlock(&rq->lock);
259 }
260
261 return idle;
262}
263 230
264#ifdef CONFIG_SMP 231#ifdef CONFIG_SMP
265static int balance_runtime(struct rt_rq *rt_rq) 232static int do_balance_runtime(struct rt_rq *rt_rq)
266{ 233{
267 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 234 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
268 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 235 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
@@ -281,6 +248,9 @@ static int balance_runtime(struct rt_rq *rt_rq)
281 continue; 248 continue;
282 249
283 spin_lock(&iter->rt_runtime_lock); 250 spin_lock(&iter->rt_runtime_lock);
251 if (iter->rt_runtime == RUNTIME_INF)
252 goto next;
253
284 diff = iter->rt_runtime - iter->rt_time; 254 diff = iter->rt_runtime - iter->rt_time;
285 if (diff > 0) { 255 if (diff > 0) {
286 do_div(diff, weight); 256 do_div(diff, weight);
@@ -294,13 +264,163 @@ static int balance_runtime(struct rt_rq *rt_rq)
294 break; 264 break;
295 } 265 }
296 } 266 }
267next:
297 spin_unlock(&iter->rt_runtime_lock); 268 spin_unlock(&iter->rt_runtime_lock);
298 } 269 }
299 spin_unlock(&rt_b->rt_runtime_lock); 270 spin_unlock(&rt_b->rt_runtime_lock);
300 271
301 return more; 272 return more;
302} 273}
303#endif 274
275static void __disable_runtime(struct rq *rq)
276{
277 struct root_domain *rd = rq->rd;
278 struct rt_rq *rt_rq;
279
280 if (unlikely(!scheduler_running))
281 return;
282
283 for_each_leaf_rt_rq(rt_rq, rq) {
284 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285 s64 want;
286 int i;
287
288 spin_lock(&rt_b->rt_runtime_lock);
289 spin_lock(&rt_rq->rt_runtime_lock);
290 if (rt_rq->rt_runtime == RUNTIME_INF ||
291 rt_rq->rt_runtime == rt_b->rt_runtime)
292 goto balanced;
293 spin_unlock(&rt_rq->rt_runtime_lock);
294
295 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297 for_each_cpu_mask(i, rd->span) {
298 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299 s64 diff;
300
301 if (iter == rt_rq)
302 continue;
303
304 spin_lock(&iter->rt_runtime_lock);
305 if (want > 0) {
306 diff = min_t(s64, iter->rt_runtime, want);
307 iter->rt_runtime -= diff;
308 want -= diff;
309 } else {
310 iter->rt_runtime -= want;
311 want -= want;
312 }
313 spin_unlock(&iter->rt_runtime_lock);
314
315 if (!want)
316 break;
317 }
318
319 spin_lock(&rt_rq->rt_runtime_lock);
320 BUG_ON(want);
321balanced:
322 rt_rq->rt_runtime = RUNTIME_INF;
323 spin_unlock(&rt_rq->rt_runtime_lock);
324 spin_unlock(&rt_b->rt_runtime_lock);
325 }
326}
327
328static void disable_runtime(struct rq *rq)
329{
330 unsigned long flags;
331
332 spin_lock_irqsave(&rq->lock, flags);
333 __disable_runtime(rq);
334 spin_unlock_irqrestore(&rq->lock, flags);
335}
336
337static void __enable_runtime(struct rq *rq)
338{
339 struct rt_rq *rt_rq;
340
341 if (unlikely(!scheduler_running))
342 return;
343
344 for_each_leaf_rt_rq(rt_rq, rq) {
345 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347 spin_lock(&rt_b->rt_runtime_lock);
348 spin_lock(&rt_rq->rt_runtime_lock);
349 rt_rq->rt_runtime = rt_b->rt_runtime;
350 rt_rq->rt_time = 0;
351 spin_unlock(&rt_rq->rt_runtime_lock);
352 spin_unlock(&rt_b->rt_runtime_lock);
353 }
354}
355
356static void enable_runtime(struct rq *rq)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(&rq->lock, flags);
361 __enable_runtime(rq);
362 spin_unlock_irqrestore(&rq->lock, flags);
363}
364
365static int balance_runtime(struct rt_rq *rt_rq)
366{
367 int more = 0;
368
369 if (rt_rq->rt_time > rt_rq->rt_runtime) {
370 spin_unlock(&rt_rq->rt_runtime_lock);
371 more = do_balance_runtime(rt_rq);
372 spin_lock(&rt_rq->rt_runtime_lock);
373 }
374
375 return more;
376}
377#else /* !CONFIG_SMP */
378static inline int balance_runtime(struct rt_rq *rt_rq)
379{
380 return 0;
381}
382#endif /* CONFIG_SMP */
383
384static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385{
386 int i, idle = 1;
387 cpumask_t span;
388
389 if (rt_b->rt_runtime == RUNTIME_INF)
390 return 1;
391
392 span = sched_rt_period_mask();
393 for_each_cpu_mask(i, span) {
394 int enqueue = 0;
395 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398 spin_lock(&rq->lock);
399 if (rt_rq->rt_time) {
400 u64 runtime;
401
402 spin_lock(&rt_rq->rt_runtime_lock);
403 if (rt_rq->rt_throttled)
404 balance_runtime(rt_rq);
405 runtime = rt_rq->rt_runtime;
406 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408 rt_rq->rt_throttled = 0;
409 enqueue = 1;
410 }
411 if (rt_rq->rt_time || rt_rq->rt_nr_running)
412 idle = 0;
413 spin_unlock(&rt_rq->rt_runtime_lock);
414 } else if (rt_rq->rt_nr_running)
415 idle = 0;
416
417 if (enqueue)
418 sched_rt_rq_enqueue(rt_rq);
419 spin_unlock(&rq->lock);
420 }
421
422 return idle;
423}
304 424
305static inline int rt_se_prio(struct sched_rt_entity *rt_se) 425static inline int rt_se_prio(struct sched_rt_entity *rt_se)
306{ 426{
@@ -327,18 +447,10 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
327 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) 447 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
328 return 0; 448 return 0;
329 449
330#ifdef CONFIG_SMP 450 balance_runtime(rt_rq);
331 if (rt_rq->rt_time > runtime) { 451 runtime = sched_rt_runtime(rt_rq);
332 int more; 452 if (runtime == RUNTIME_INF)
333 453 return 0;
334 spin_unlock(&rt_rq->rt_runtime_lock);
335 more = balance_runtime(rt_rq);
336 spin_lock(&rt_rq->rt_runtime_lock);
337
338 if (more)
339 runtime = sched_rt_runtime(rt_rq);
340 }
341#endif
342 454
343 if (rt_rq->rt_time > runtime) { 455 if (rt_rq->rt_time > runtime) {
344 rt_rq->rt_throttled = 1; 456 rt_rq->rt_throttled = 1;
@@ -392,12 +504,21 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
392 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 504 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
393 rt_rq->rt_nr_running++; 505 rt_rq->rt_nr_running++;
394#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 506#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
395 if (rt_se_prio(rt_se) < rt_rq->highest_prio) 507 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
508 struct rq *rq = rq_of_rt_rq(rt_rq);
509
396 rt_rq->highest_prio = rt_se_prio(rt_se); 510 rt_rq->highest_prio = rt_se_prio(rt_se);
511#ifdef CONFIG_SMP
512 if (rq->online)
513 cpupri_set(&rq->rd->cpupri, rq->cpu,
514 rt_se_prio(rt_se));
515#endif
516 }
397#endif 517#endif
398#ifdef CONFIG_SMP 518#ifdef CONFIG_SMP
399 if (rt_se->nr_cpus_allowed > 1) { 519 if (rt_se->nr_cpus_allowed > 1) {
400 struct rq *rq = rq_of_rt_rq(rt_rq); 520 struct rq *rq = rq_of_rt_rq(rt_rq);
521
401 rq->rt.rt_nr_migratory++; 522 rq->rt.rt_nr_migratory++;
402 } 523 }
403 524
@@ -417,6 +538,10 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417static inline 538static inline
418void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 539void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419{ 540{
541#ifdef CONFIG_SMP
542 int highest_prio = rt_rq->highest_prio;
543#endif
544
420 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 545 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
421 WARN_ON(!rt_rq->rt_nr_running); 546 WARN_ON(!rt_rq->rt_nr_running);
422 rt_rq->rt_nr_running--; 547 rt_rq->rt_nr_running--;
@@ -440,6 +565,14 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
440 rq->rt.rt_nr_migratory--; 565 rq->rt.rt_nr_migratory--;
441 } 566 }
442 567
568 if (rt_rq->highest_prio != highest_prio) {
569 struct rq *rq = rq_of_rt_rq(rt_rq);
570
571 if (rq->online)
572 cpupri_set(&rq->rd->cpupri, rq->cpu,
573 rt_rq->highest_prio);
574 }
575
443 update_rt_migration(rq_of_rt_rq(rt_rq)); 576 update_rt_migration(rq_of_rt_rq(rt_rq));
444#endif /* CONFIG_SMP */ 577#endif /* CONFIG_SMP */
445#ifdef CONFIG_RT_GROUP_SCHED 578#ifdef CONFIG_RT_GROUP_SCHED
@@ -455,6 +588,7 @@ static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
455 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 588 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
456 struct rt_prio_array *array = &rt_rq->active; 589 struct rt_prio_array *array = &rt_rq->active;
457 struct rt_rq *group_rq = group_rt_rq(rt_se); 590 struct rt_rq *group_rq = group_rt_rq(rt_se);
591 struct list_head *queue = array->queue + rt_se_prio(rt_se);
458 592
459 /* 593 /*
460 * Don't enqueue the group if its throttled, or when empty. 594 * Don't enqueue the group if its throttled, or when empty.
@@ -465,7 +599,11 @@ static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
465 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 599 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
466 return; 600 return;
467 601
468 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); 602 if (rt_se->nr_cpus_allowed == 1)
603 list_add(&rt_se->run_list, queue);
604 else
605 list_add_tail(&rt_se->run_list, queue);
606
469 __set_bit(rt_se_prio(rt_se), array->bitmap); 607 __set_bit(rt_se_prio(rt_se), array->bitmap);
470 608
471 inc_rt_tasks(rt_se, rt_rq); 609 inc_rt_tasks(rt_se, rt_rq);
@@ -532,6 +670,8 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
532 rt_se->timeout = 0; 670 rt_se->timeout = 0;
533 671
534 enqueue_rt_entity(rt_se); 672 enqueue_rt_entity(rt_se);
673
674 inc_cpu_load(rq, p->se.load.weight);
535} 675}
536 676
537static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) 677static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
@@ -540,6 +680,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
540 680
541 update_curr_rt(rq); 681 update_curr_rt(rq);
542 dequeue_rt_entity(rt_se); 682 dequeue_rt_entity(rt_se);
683
684 dec_cpu_load(rq, p->se.load.weight);
543} 685}
544 686
545/* 687/*
@@ -550,10 +692,12 @@ static
550void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 692void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
551{ 693{
552 struct rt_prio_array *array = &rt_rq->active; 694 struct rt_prio_array *array = &rt_rq->active;
553 struct list_head *queue = array->queue + rt_se_prio(rt_se);
554 695
555 if (on_rt_rq(rt_se)) 696 if (on_rt_rq(rt_se)) {
556 list_move_tail(&rt_se->run_list, queue); 697 list_del_init(&rt_se->run_list);
698 list_add_tail(&rt_se->run_list,
699 array->queue + rt_se_prio(rt_se));
700 }
557} 701}
558 702
559static void requeue_task_rt(struct rq *rq, struct task_struct *p) 703static void requeue_task_rt(struct rq *rq, struct task_struct *p)
@@ -616,8 +760,37 @@ static int select_task_rq_rt(struct task_struct *p, int sync)
616 */ 760 */
617static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) 761static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
618{ 762{
619 if (p->prio < rq->curr->prio) 763 if (p->prio < rq->curr->prio) {
620 resched_task(rq->curr); 764 resched_task(rq->curr);
765 return;
766 }
767
768#ifdef CONFIG_SMP
769 /*
770 * If:
771 *
772 * - the newly woken task is of equal priority to the current task
773 * - the newly woken task is non-migratable while current is migratable
774 * - current will be preempted on the next reschedule
775 *
776 * we should check to see if current can readily move to a different
777 * cpu. If so, we will reschedule to allow the push logic to try
778 * to move current somewhere else, making room for our non-migratable
779 * task.
780 */
781 if((p->prio == rq->curr->prio)
782 && p->rt.nr_cpus_allowed == 1
783 && rq->curr->rt.nr_cpus_allowed != 1) {
784 cpumask_t mask;
785
786 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
787 /*
788 * There appears to be other cpus that can accept
789 * current, so lets reschedule to try and push it away
790 */
791 resched_task(rq->curr);
792 }
793#endif
621} 794}
622 795
623static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 796static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
@@ -720,73 +893,6 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
720 893
721static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); 894static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
722 895
723static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
724{
725 int lowest_prio = -1;
726 int lowest_cpu = -1;
727 int count = 0;
728 int cpu;
729
730 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
731
732 /*
733 * Scan each rq for the lowest prio.
734 */
735 for_each_cpu_mask(cpu, *lowest_mask) {
736 struct rq *rq = cpu_rq(cpu);
737
738 /* We look for lowest RT prio or non-rt CPU */
739 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
740 /*
741 * if we already found a low RT queue
742 * and now we found this non-rt queue
743 * clear the mask and set our bit.
744 * Otherwise just return the queue as is
745 * and the count==1 will cause the algorithm
746 * to use the first bit found.
747 */
748 if (lowest_cpu != -1) {
749 cpus_clear(*lowest_mask);
750 cpu_set(rq->cpu, *lowest_mask);
751 }
752 return 1;
753 }
754
755 /* no locking for now */
756 if ((rq->rt.highest_prio > task->prio)
757 && (rq->rt.highest_prio >= lowest_prio)) {
758 if (rq->rt.highest_prio > lowest_prio) {
759 /* new low - clear old data */
760 lowest_prio = rq->rt.highest_prio;
761 lowest_cpu = cpu;
762 count = 0;
763 }
764 count++;
765 } else
766 cpu_clear(cpu, *lowest_mask);
767 }
768
769 /*
770 * Clear out all the set bits that represent
771 * runqueues that were of higher prio than
772 * the lowest_prio.
773 */
774 if (lowest_cpu > 0) {
775 /*
776 * Perhaps we could add another cpumask op to
777 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
778 * Then that could be optimized to use memset and such.
779 */
780 for_each_cpu_mask(cpu, *lowest_mask) {
781 if (cpu >= lowest_cpu)
782 break;
783 cpu_clear(cpu, *lowest_mask);
784 }
785 }
786
787 return count;
788}
789
790static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) 896static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
791{ 897{
792 int first; 898 int first;
@@ -808,17 +914,12 @@ static int find_lowest_rq(struct task_struct *task)
808 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); 914 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
809 int this_cpu = smp_processor_id(); 915 int this_cpu = smp_processor_id();
810 int cpu = task_cpu(task); 916 int cpu = task_cpu(task);
811 int count = find_lowest_cpus(task, lowest_mask);
812 917
813 if (!count) 918 if (task->rt.nr_cpus_allowed == 1)
814 return -1; /* No targets found */ 919 return -1; /* No other targets possible */
815 920
816 /* 921 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
817 * There is no sense in performing an optimal search if only one 922 return -1; /* No targets found */
818 * target is found.
819 */
820 if (count == 1)
821 return first_cpu(*lowest_mask);
822 923
823 /* 924 /*
824 * At this point we have built a mask of cpus representing the 925 * At this point we have built a mask of cpus representing the
@@ -1163,17 +1264,25 @@ static void set_cpus_allowed_rt(struct task_struct *p,
1163} 1264}
1164 1265
1165/* Assumes rq->lock is held */ 1266/* Assumes rq->lock is held */
1166static void join_domain_rt(struct rq *rq) 1267static void rq_online_rt(struct rq *rq)
1167{ 1268{
1168 if (rq->rt.overloaded) 1269 if (rq->rt.overloaded)
1169 rt_set_overload(rq); 1270 rt_set_overload(rq);
1271
1272 __enable_runtime(rq);
1273
1274 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1170} 1275}
1171 1276
1172/* Assumes rq->lock is held */ 1277/* Assumes rq->lock is held */
1173static void leave_domain_rt(struct rq *rq) 1278static void rq_offline_rt(struct rq *rq)
1174{ 1279{
1175 if (rq->rt.overloaded) 1280 if (rq->rt.overloaded)
1176 rt_clear_overload(rq); 1281 rt_clear_overload(rq);
1282
1283 __disable_runtime(rq);
1284
1285 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1177} 1286}
1178 1287
1179/* 1288/*
@@ -1336,8 +1445,8 @@ static const struct sched_class rt_sched_class = {
1336 .load_balance = load_balance_rt, 1445 .load_balance = load_balance_rt,
1337 .move_one_task = move_one_task_rt, 1446 .move_one_task = move_one_task_rt,
1338 .set_cpus_allowed = set_cpus_allowed_rt, 1447 .set_cpus_allowed = set_cpus_allowed_rt,
1339 .join_domain = join_domain_rt, 1448 .rq_online = rq_online_rt,
1340 .leave_domain = leave_domain_rt, 1449 .rq_offline = rq_offline_rt,
1341 .pre_schedule = pre_schedule_rt, 1450 .pre_schedule = pre_schedule_rt,
1342 .post_schedule = post_schedule_rt, 1451 .post_schedule = post_schedule_rt,
1343 .task_wake_up = task_wake_up_rt, 1452 .task_wake_up = task_wake_up_rt,
@@ -1350,3 +1459,17 @@ static const struct sched_class rt_sched_class = {
1350 .prio_changed = prio_changed_rt, 1459 .prio_changed = prio_changed_rt,
1351 .switched_to = switched_to_rt, 1460 .switched_to = switched_to_rt,
1352}; 1461};
1462
1463#ifdef CONFIG_SCHED_DEBUG
1464extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1465
1466static void print_rt_stats(struct seq_file *m, int cpu)
1467{
1468 struct rt_rq *rt_rq;
1469
1470 rcu_read_lock();
1471 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1472 print_rt_rq(m, cpu, rt_rq);
1473 rcu_read_unlock();
1474}
1475#endif /* CONFIG_SCHED_DEBUG */
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h
index 80179ef7450e..8385d43987e2 100644
--- a/kernel/sched_stats.h
+++ b/kernel/sched_stats.h
@@ -118,6 +118,13 @@ rq_sched_info_depart(struct rq *rq, unsigned long long delta)
118 if (rq) 118 if (rq)
119 rq->rq_sched_info.cpu_time += delta; 119 rq->rq_sched_info.cpu_time += delta;
120} 120}
121
122static inline void
123rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
124{
125 if (rq)
126 rq->rq_sched_info.run_delay += delta;
127}
121# define schedstat_inc(rq, field) do { (rq)->field++; } while (0) 128# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
122# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) 129# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
123# define schedstat_set(var, val) do { var = (val); } while (0) 130# define schedstat_set(var, val) do { var = (val); } while (0)
@@ -126,6 +133,9 @@ static inline void
126rq_sched_info_arrive(struct rq *rq, unsigned long long delta) 133rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
127{} 134{}
128static inline void 135static inline void
136rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
137{}
138static inline void
129rq_sched_info_depart(struct rq *rq, unsigned long long delta) 139rq_sched_info_depart(struct rq *rq, unsigned long long delta)
130{} 140{}
131# define schedstat_inc(rq, field) do { } while (0) 141# define schedstat_inc(rq, field) do { } while (0)
@@ -134,6 +144,11 @@ rq_sched_info_depart(struct rq *rq, unsigned long long delta)
134#endif 144#endif
135 145
136#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 146#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
147static inline void sched_info_reset_dequeued(struct task_struct *t)
148{
149 t->sched_info.last_queued = 0;
150}
151
137/* 152/*
138 * Called when a process is dequeued from the active array and given 153 * Called when a process is dequeued from the active array and given
139 * the cpu. We should note that with the exception of interactive 154 * the cpu. We should note that with the exception of interactive
@@ -143,15 +158,22 @@ rq_sched_info_depart(struct rq *rq, unsigned long long delta)
143 * active queue, thus delaying tasks in the expired queue from running; 158 * active queue, thus delaying tasks in the expired queue from running;
144 * see scheduler_tick()). 159 * see scheduler_tick()).
145 * 160 *
146 * This function is only called from sched_info_arrive(), rather than 161 * Though we are interested in knowing how long it was from the *first* time a
147 * dequeue_task(). Even though a task may be queued and dequeued multiple 162 * task was queued to the time that it finally hit a cpu, we call this routine
148 * times as it is shuffled about, we're really interested in knowing how 163 * from dequeue_task() to account for possible rq->clock skew across cpus. The
149 * long it was from the *first* time it was queued to the time that it 164 * delta taken on each cpu would annul the skew.
150 * finally hit a cpu.
151 */ 165 */
152static inline void sched_info_dequeued(struct task_struct *t) 166static inline void sched_info_dequeued(struct task_struct *t)
153{ 167{
154 t->sched_info.last_queued = 0; 168 unsigned long long now = task_rq(t)->clock, delta = 0;
169
170 if (unlikely(sched_info_on()))
171 if (t->sched_info.last_queued)
172 delta = now - t->sched_info.last_queued;
173 sched_info_reset_dequeued(t);
174 t->sched_info.run_delay += delta;
175
176 rq_sched_info_dequeued(task_rq(t), delta);
155} 177}
156 178
157/* 179/*
@@ -165,7 +187,7 @@ static void sched_info_arrive(struct task_struct *t)
165 187
166 if (t->sched_info.last_queued) 188 if (t->sched_info.last_queued)
167 delta = now - t->sched_info.last_queued; 189 delta = now - t->sched_info.last_queued;
168 sched_info_dequeued(t); 190 sched_info_reset_dequeued(t);
169 t->sched_info.run_delay += delta; 191 t->sched_info.run_delay += delta;
170 t->sched_info.last_arrival = now; 192 t->sched_info.last_arrival = now;
171 t->sched_info.pcount++; 193 t->sched_info.pcount++;
@@ -242,7 +264,9 @@ sched_info_switch(struct task_struct *prev, struct task_struct *next)
242 __sched_info_switch(prev, next); 264 __sched_info_switch(prev, next);
243} 265}
244#else 266#else
245#define sched_info_queued(t) do { } while (0) 267#define sched_info_queued(t) do { } while (0)
246#define sched_info_switch(t, next) do { } while (0) 268#define sched_info_reset_dequeued(t) do { } while (0)
269#define sched_info_dequeued(t) do { } while (0)
270#define sched_info_switch(t, next) do { } while (0)
247#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ 271#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
248 272
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 29116652dca8..fe8cdc80ff02 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -266,6 +266,14 @@ static struct ctl_table kern_table[] = {
266 }, 266 },
267 { 267 {
268 .ctl_name = CTL_UNNUMBERED, 268 .ctl_name = CTL_UNNUMBERED,
269 .procname = "sched_shares_ratelimit",
270 .data = &sysctl_sched_shares_ratelimit,
271 .maxlen = sizeof(unsigned int),
272 .mode = 0644,
273 .proc_handler = &proc_dointvec,
274 },
275 {
276 .ctl_name = CTL_UNNUMBERED,
269 .procname = "sched_child_runs_first", 277 .procname = "sched_child_runs_first",
270 .data = &sysctl_sched_child_runs_first, 278 .data = &sysctl_sched_child_runs_first,
271 .maxlen = sizeof(unsigned int), 279 .maxlen = sizeof(unsigned int),
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index b854a895591e..d63008b09a4c 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -276,6 +276,7 @@ void tick_nohz_stop_sched_tick(void)
276 ts->tick_stopped = 1; 276 ts->tick_stopped = 1;
277 ts->idle_jiffies = last_jiffies; 277 ts->idle_jiffies = last_jiffies;
278 rcu_enter_nohz(); 278 rcu_enter_nohz();
279 sched_clock_tick_stop(cpu);
279 } 280 }
280 281
281 /* 282 /*
@@ -375,6 +376,7 @@ void tick_nohz_restart_sched_tick(void)
375 select_nohz_load_balancer(0); 376 select_nohz_load_balancer(0);
376 now = ktime_get(); 377 now = ktime_get();
377 tick_do_update_jiffies64(now); 378 tick_do_update_jiffies64(now);
379 sched_clock_tick_start(cpu);
378 cpu_clear(cpu, nohz_cpu_mask); 380 cpu_clear(cpu, nohz_cpu_mask);
379 381
380 /* 382 /*