diff options
author | Roman Zippel <zippel@linux-m68k.org> | 2006-10-01 02:28:28 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-10-01 03:39:27 -0400 |
commit | f19923937321244e7dc334767eb4b67e0e3d5c74 (patch) | |
tree | be82956c645bab0cb13e73677116417d4c5ce311 /kernel | |
parent | 04b617e71e363e640e88be1e43f53fa6a3afef9f (diff) |
[PATCH] ntp: convert to the NTP4 reference model
This converts the kernel ntp model into a model which matches the nanokernel
reference implementations. The previous patches already increased the
resolution and precision of the computations, so that this conversion becomes
quite simple.
<linux@horizon.com> explains:
The original NTP kernel interface was defined in units of microseconds.
That's what Linux implements. As computers have gotten faster and can now
split microseconds easily, a new kernel interface using nanosecond units was
defined ("the nanokernel", confusing as that name is to OS hackers), and
there's an STA_NANO bit in the adjtimex() status field to tell the application
which units it's using.
The current ntpd supports both, but Linux loses some possible timing
resolution because of quantization effects, and the ntpd hackers would really
like to be able to drop the backwards compatibility code.
Ulrich Windl has been maintaining a patch set to do the conversion for years,
but it's hard to keep in sync.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/time/ntp.c | 51 |
1 files changed, 19 insertions, 32 deletions
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 9137b54613e0..1ab5e9d7fa50 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -145,18 +145,11 @@ void second_overflow(void) | |||
145 | } | 145 | } |
146 | 146 | ||
147 | /* | 147 | /* |
148 | * Compute the phase adjustment for the next second. In PLL mode, the | 148 | * Compute the phase adjustment for the next second. The offset is |
149 | * offset is reduced by a fixed factor times the time constant. In FLL | 149 | * reduced by a fixed factor times the time constant. |
150 | * mode the offset is used directly. In either mode, the maximum phase | ||
151 | * adjustment for each second is clamped so as to spread the adjustment | ||
152 | * over not more than the number of seconds between updates. | ||
153 | */ | 150 | */ |
154 | tick_length = tick_length_base; | 151 | tick_length = tick_length_base; |
155 | time_adj = time_offset; | 152 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); |
156 | if (!(time_status & STA_FLL)) | ||
157 | time_adj = shift_right(time_adj, SHIFT_KG + time_constant); | ||
158 | time_adj = min(time_adj, -((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC); | ||
159 | time_adj = max(time_adj, ((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC); | ||
160 | time_offset -= time_adj; | 153 | time_offset -= time_adj; |
161 | tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); | 154 | tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); |
162 | 155 | ||
@@ -200,7 +193,7 @@ void __attribute__ ((weak)) notify_arch_cmos_timer(void) | |||
200 | int do_adjtimex(struct timex *txc) | 193 | int do_adjtimex(struct timex *txc) |
201 | { | 194 | { |
202 | long ltemp, mtemp, save_adjust; | 195 | long ltemp, mtemp, save_adjust; |
203 | s64 freq_adj; | 196 | s64 freq_adj, temp64; |
204 | int result; | 197 | int result; |
205 | 198 | ||
206 | /* In order to modify anything, you gotta be super-user! */ | 199 | /* In order to modify anything, you gotta be super-user! */ |
@@ -270,7 +263,7 @@ int do_adjtimex(struct timex *txc) | |||
270 | result = -EINVAL; | 263 | result = -EINVAL; |
271 | goto leave; | 264 | goto leave; |
272 | } | 265 | } |
273 | time_constant = txc->constant; | 266 | time_constant = min(txc->constant + 4, (long)MAXTC); |
274 | } | 267 | } |
275 | 268 | ||
276 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ | 269 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ |
@@ -298,26 +291,20 @@ int do_adjtimex(struct timex *txc) | |||
298 | time_reftime = xtime.tv_sec; | 291 | time_reftime = xtime.tv_sec; |
299 | mtemp = xtime.tv_sec - time_reftime; | 292 | mtemp = xtime.tv_sec - time_reftime; |
300 | time_reftime = xtime.tv_sec; | 293 | time_reftime = xtime.tv_sec; |
301 | freq_adj = 0; | 294 | |
302 | if (time_status & STA_FLL) { | 295 | freq_adj = (s64)time_offset * mtemp; |
303 | if (mtemp >= MINSEC) { | 296 | freq_adj = shift_right(freq_adj, time_constant * 2 + |
304 | freq_adj = (s64)time_offset << (SHIFT_NSEC - SHIFT_KH); | 297 | (SHIFT_PLL + 2) * 2 - SHIFT_NSEC); |
305 | if (time_offset < 0) { | 298 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { |
306 | freq_adj = -freq_adj; | 299 | temp64 = (s64)time_offset << (SHIFT_NSEC - SHIFT_FLL); |
307 | do_div(freq_adj, mtemp); | 300 | if (time_offset < 0) { |
308 | freq_adj = -freq_adj; | 301 | temp64 = -temp64; |
309 | } else | 302 | do_div(temp64, mtemp); |
310 | do_div(freq_adj, mtemp); | 303 | freq_adj -= temp64; |
311 | } else /* calibration interval too short (p. 12) */ | 304 | } else { |
312 | result = TIME_ERROR; | 305 | do_div(temp64, mtemp); |
313 | } else { /* PLL mode */ | 306 | freq_adj += temp64; |
314 | if (mtemp < MAXSEC) { | 307 | } |
315 | freq_adj = (s64)ltemp * mtemp; | ||
316 | freq_adj = shift_right(freq_adj,(time_constant + | ||
317 | time_constant + | ||
318 | SHIFT_KF - SHIFT_NSEC)); | ||
319 | } else /* calibration interval too long (p. 12) */ | ||
320 | result = TIME_ERROR; | ||
321 | } | 308 | } |
322 | freq_adj += time_freq; | 309 | freq_adj += time_freq; |
323 | freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); | 310 | freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); |