aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-09-17 14:52:23 -0400
committerIngo Molnar <mingo@elte.hu>2009-09-17 14:53:10 -0400
commit45bd00d31de886f8425b4dd33204b911b0a466a9 (patch)
tree06204f2452e02ca916666173d50f5035d69065ef /kernel
parent40d9d82c8ab8c4e2373a23a1e31dc8d84c53aa01 (diff)
parentab86e5765d41a5eb4239a1c04d613db87bea5ed8 (diff)
Merge branch 'linus' into tracing/core
Merge reason: Pick up kernel/softirq.c update for dependent fix. Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile7
-rw-r--r--kernel/acct.c8
-rw-r--r--kernel/cgroup.c1
-rw-r--r--kernel/cpu.c15
-rw-r--r--kernel/cred.c296
-rw-r--r--kernel/dma-coherent.c176
-rw-r--r--kernel/exit.c5
-rw-r--r--kernel/fork.c11
-rw-r--r--kernel/futex.c47
-rw-r--r--kernel/gcov/Kconfig2
-rw-r--r--kernel/hrtimer.c2
-rw-r--r--kernel/irq/chip.c74
-rw-r--r--kernel/irq/handle.c5
-rw-r--r--kernel/irq/internals.h13
-rw-r--r--kernel/irq/manage.c102
-rw-r--r--kernel/irq/pm.c8
-rw-r--r--kernel/irq/resend.c3
-rw-r--r--kernel/irq/spurious.c1
-rw-r--r--kernel/kmod.c5
-rw-r--r--kernel/kthread.c4
-rw-r--r--kernel/lockdep.c792
-rw-r--r--kernel/lockdep_internals.h2
-rw-r--r--kernel/lockdep_proc.c128
-rw-r--r--kernel/module.c6
-rw-r--r--kernel/perf_counter.c180
-rw-r--r--kernel/power/Kconfig14
-rw-r--r--kernel/power/hibernate.c21
-rw-r--r--kernel/power/main.c17
-rw-r--r--kernel/power/power.h2
-rw-r--r--kernel/power/snapshot.c412
-rw-r--r--kernel/printk.c181
-rw-r--r--kernel/ptrace.c2
-rw-r--r--kernel/rcuclassic.c807
-rw-r--r--kernel/rcupdate.c44
-rw-r--r--kernel/rcupreempt.c1539
-rw-r--r--kernel/rcupreempt_trace.c334
-rw-r--r--kernel/rcutorture.c202
-rw-r--r--kernel/rcutree.c280
-rw-r--r--kernel/rcutree.h253
-rw-r--r--kernel/rcutree_plugin.h532
-rw-r--r--kernel/rcutree_trace.c88
-rw-r--r--kernel/sched.c1234
-rw-r--r--kernel/sched_cpupri.c30
-rw-r--r--kernel/sched_debug.c4
-rw-r--r--kernel/sched_fair.c84
-rw-r--r--kernel/sched_features.h2
-rw-r--r--kernel/sched_rt.c62
-rw-r--r--kernel/smp.c40
-rw-r--r--kernel/softirq.c4
-rw-r--r--kernel/spinlock.c230
-rw-r--r--kernel/sysctl.c39
-rw-r--r--kernel/taskstats.c10
-rw-r--r--kernel/timer.c3
-rw-r--r--kernel/trace/trace_events.c6
-rw-r--r--kernel/workqueue.c9
55 files changed, 4003 insertions, 4375 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index 2093a691f1c2..3d9c7e27e3f9 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -80,11 +80,9 @@ obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o
80obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ 80obj-$(CONFIG_GENERIC_HARDIRQS) += irq/
81obj-$(CONFIG_SECCOMP) += seccomp.o 81obj-$(CONFIG_SECCOMP) += seccomp.o
82obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o 82obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o
83obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o
84obj-$(CONFIG_TREE_RCU) += rcutree.o 83obj-$(CONFIG_TREE_RCU) += rcutree.o
85obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o 84obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o
86obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o 85obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o
87obj-$(CONFIG_PREEMPT_RCU_TRACE) += rcupreempt_trace.o
88obj-$(CONFIG_RELAY) += relay.o 86obj-$(CONFIG_RELAY) += relay.o
89obj-$(CONFIG_SYSCTL) += utsname_sysctl.o 87obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
90obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o 88obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
@@ -92,7 +90,6 @@ obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
92obj-$(CONFIG_MARKERS) += marker.o 90obj-$(CONFIG_MARKERS) += marker.o
93obj-$(CONFIG_TRACEPOINTS) += tracepoint.o 91obj-$(CONFIG_TRACEPOINTS) += tracepoint.o
94obj-$(CONFIG_LATENCYTOP) += latencytop.o 92obj-$(CONFIG_LATENCYTOP) += latencytop.o
95obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o
96obj-$(CONFIG_FUNCTION_TRACER) += trace/ 93obj-$(CONFIG_FUNCTION_TRACER) += trace/
97obj-$(CONFIG_TRACING) += trace/ 94obj-$(CONFIG_TRACING) += trace/
98obj-$(CONFIG_X86_DS) += trace/ 95obj-$(CONFIG_X86_DS) += trace/
@@ -119,7 +116,7 @@ $(obj)/config_data.gz: .config FORCE
119 $(call if_changed,gzip) 116 $(call if_changed,gzip)
120 117
121quiet_cmd_ikconfiggz = IKCFG $@ 118quiet_cmd_ikconfiggz = IKCFG $@
122 cmd_ikconfiggz = (echo "static const char kernel_config_data[] = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ 119 cmd_ikconfiggz = (echo "static const char kernel_config_data[] __used = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@
123targets += config_data.h 120targets += config_data.h
124$(obj)/config_data.h: $(obj)/config_data.gz FORCE 121$(obj)/config_data.h: $(obj)/config_data.gz FORCE
125 $(call if_changed,ikconfiggz) 122 $(call if_changed,ikconfiggz)
diff --git a/kernel/acct.c b/kernel/acct.c
index 9f3391090b3e..9a4715a2f6bf 100644
--- a/kernel/acct.c
+++ b/kernel/acct.c
@@ -491,13 +491,17 @@ static void do_acct_process(struct bsd_acct_struct *acct,
491 u64 run_time; 491 u64 run_time;
492 struct timespec uptime; 492 struct timespec uptime;
493 struct tty_struct *tty; 493 struct tty_struct *tty;
494 const struct cred *orig_cred;
495
496 /* Perform file operations on behalf of whoever enabled accounting */
497 orig_cred = override_creds(file->f_cred);
494 498
495 /* 499 /*
496 * First check to see if there is enough free_space to continue 500 * First check to see if there is enough free_space to continue
497 * the process accounting system. 501 * the process accounting system.
498 */ 502 */
499 if (!check_free_space(acct, file)) 503 if (!check_free_space(acct, file))
500 return; 504 goto out;
501 505
502 /* 506 /*
503 * Fill the accounting struct with the needed info as recorded 507 * Fill the accounting struct with the needed info as recorded
@@ -578,6 +582,8 @@ static void do_acct_process(struct bsd_acct_struct *acct,
578 sizeof(acct_t), &file->f_pos); 582 sizeof(acct_t), &file->f_pos);
579 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; 583 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim;
580 set_fs(fs); 584 set_fs(fs);
585out:
586 revert_creds(orig_cred);
581} 587}
582 588
583/** 589/**
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index b6eadfe30e7b..c7ece8f027f2 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -600,6 +600,7 @@ static struct inode_operations cgroup_dir_inode_operations;
600static struct file_operations proc_cgroupstats_operations; 600static struct file_operations proc_cgroupstats_operations;
601 601
602static struct backing_dev_info cgroup_backing_dev_info = { 602static struct backing_dev_info cgroup_backing_dev_info = {
603 .name = "cgroup",
603 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, 604 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
604}; 605};
605 606
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 8ce10043e4ac..6ba0f1ecb212 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -401,6 +401,7 @@ int disable_nonboot_cpus(void)
401 break; 401 break;
402 } 402 }
403 } 403 }
404
404 if (!error) { 405 if (!error) {
405 BUG_ON(num_online_cpus() > 1); 406 BUG_ON(num_online_cpus() > 1);
406 /* Make sure the CPUs won't be enabled by someone else */ 407 /* Make sure the CPUs won't be enabled by someone else */
@@ -413,6 +414,14 @@ int disable_nonboot_cpus(void)
413 return error; 414 return error;
414} 415}
415 416
417void __weak arch_enable_nonboot_cpus_begin(void)
418{
419}
420
421void __weak arch_enable_nonboot_cpus_end(void)
422{
423}
424
416void __ref enable_nonboot_cpus(void) 425void __ref enable_nonboot_cpus(void)
417{ 426{
418 int cpu, error; 427 int cpu, error;
@@ -424,6 +433,9 @@ void __ref enable_nonboot_cpus(void)
424 goto out; 433 goto out;
425 434
426 printk("Enabling non-boot CPUs ...\n"); 435 printk("Enabling non-boot CPUs ...\n");
436
437 arch_enable_nonboot_cpus_begin();
438
427 for_each_cpu(cpu, frozen_cpus) { 439 for_each_cpu(cpu, frozen_cpus) {
428 error = _cpu_up(cpu, 1); 440 error = _cpu_up(cpu, 1);
429 if (!error) { 441 if (!error) {
@@ -432,6 +444,9 @@ void __ref enable_nonboot_cpus(void)
432 } 444 }
433 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 445 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
434 } 446 }
447
448 arch_enable_nonboot_cpus_end();
449
435 cpumask_clear(frozen_cpus); 450 cpumask_clear(frozen_cpus);
436out: 451out:
437 cpu_maps_update_done(); 452 cpu_maps_update_done();
diff --git a/kernel/cred.c b/kernel/cred.c
index 1bb4d7e5d616..d7f7a01082eb 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -18,6 +18,18 @@
18#include <linux/cn_proc.h> 18#include <linux/cn_proc.h>
19#include "cred-internals.h" 19#include "cred-internals.h"
20 20
21#if 0
22#define kdebug(FMT, ...) \
23 printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__)
24#else
25static inline __attribute__((format(printf, 1, 2)))
26void no_printk(const char *fmt, ...)
27{
28}
29#define kdebug(FMT, ...) \
30 no_printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__)
31#endif
32
21static struct kmem_cache *cred_jar; 33static struct kmem_cache *cred_jar;
22 34
23/* 35/*
@@ -36,6 +48,10 @@ static struct thread_group_cred init_tgcred = {
36 */ 48 */
37struct cred init_cred = { 49struct cred init_cred = {
38 .usage = ATOMIC_INIT(4), 50 .usage = ATOMIC_INIT(4),
51#ifdef CONFIG_DEBUG_CREDENTIALS
52 .subscribers = ATOMIC_INIT(2),
53 .magic = CRED_MAGIC,
54#endif
39 .securebits = SECUREBITS_DEFAULT, 55 .securebits = SECUREBITS_DEFAULT,
40 .cap_inheritable = CAP_INIT_INH_SET, 56 .cap_inheritable = CAP_INIT_INH_SET,
41 .cap_permitted = CAP_FULL_SET, 57 .cap_permitted = CAP_FULL_SET,
@@ -48,6 +64,31 @@ struct cred init_cred = {
48#endif 64#endif
49}; 65};
50 66
67static inline void set_cred_subscribers(struct cred *cred, int n)
68{
69#ifdef CONFIG_DEBUG_CREDENTIALS
70 atomic_set(&cred->subscribers, n);
71#endif
72}
73
74static inline int read_cred_subscribers(const struct cred *cred)
75{
76#ifdef CONFIG_DEBUG_CREDENTIALS
77 return atomic_read(&cred->subscribers);
78#else
79 return 0;
80#endif
81}
82
83static inline void alter_cred_subscribers(const struct cred *_cred, int n)
84{
85#ifdef CONFIG_DEBUG_CREDENTIALS
86 struct cred *cred = (struct cred *) _cred;
87
88 atomic_add(n, &cred->subscribers);
89#endif
90}
91
51/* 92/*
52 * Dispose of the shared task group credentials 93 * Dispose of the shared task group credentials
53 */ 94 */
@@ -85,15 +126,29 @@ static void put_cred_rcu(struct rcu_head *rcu)
85{ 126{
86 struct cred *cred = container_of(rcu, struct cred, rcu); 127 struct cred *cred = container_of(rcu, struct cred, rcu);
87 128
129 kdebug("put_cred_rcu(%p)", cred);
130
131#ifdef CONFIG_DEBUG_CREDENTIALS
132 if (cred->magic != CRED_MAGIC_DEAD ||
133 atomic_read(&cred->usage) != 0 ||
134 read_cred_subscribers(cred) != 0)
135 panic("CRED: put_cred_rcu() sees %p with"
136 " mag %x, put %p, usage %d, subscr %d\n",
137 cred, cred->magic, cred->put_addr,
138 atomic_read(&cred->usage),
139 read_cred_subscribers(cred));
140#else
88 if (atomic_read(&cred->usage) != 0) 141 if (atomic_read(&cred->usage) != 0)
89 panic("CRED: put_cred_rcu() sees %p with usage %d\n", 142 panic("CRED: put_cred_rcu() sees %p with usage %d\n",
90 cred, atomic_read(&cred->usage)); 143 cred, atomic_read(&cred->usage));
144#endif
91 145
92 security_cred_free(cred); 146 security_cred_free(cred);
93 key_put(cred->thread_keyring); 147 key_put(cred->thread_keyring);
94 key_put(cred->request_key_auth); 148 key_put(cred->request_key_auth);
95 release_tgcred(cred); 149 release_tgcred(cred);
96 put_group_info(cred->group_info); 150 if (cred->group_info)
151 put_group_info(cred->group_info);
97 free_uid(cred->user); 152 free_uid(cred->user);
98 kmem_cache_free(cred_jar, cred); 153 kmem_cache_free(cred_jar, cred);
99} 154}
@@ -106,12 +161,90 @@ static void put_cred_rcu(struct rcu_head *rcu)
106 */ 161 */
107void __put_cred(struct cred *cred) 162void __put_cred(struct cred *cred)
108{ 163{
164 kdebug("__put_cred(%p{%d,%d})", cred,
165 atomic_read(&cred->usage),
166 read_cred_subscribers(cred));
167
109 BUG_ON(atomic_read(&cred->usage) != 0); 168 BUG_ON(atomic_read(&cred->usage) != 0);
169#ifdef CONFIG_DEBUG_CREDENTIALS
170 BUG_ON(read_cred_subscribers(cred) != 0);
171 cred->magic = CRED_MAGIC_DEAD;
172 cred->put_addr = __builtin_return_address(0);
173#endif
174 BUG_ON(cred == current->cred);
175 BUG_ON(cred == current->real_cred);
110 176
111 call_rcu(&cred->rcu, put_cred_rcu); 177 call_rcu(&cred->rcu, put_cred_rcu);
112} 178}
113EXPORT_SYMBOL(__put_cred); 179EXPORT_SYMBOL(__put_cred);
114 180
181/*
182 * Clean up a task's credentials when it exits
183 */
184void exit_creds(struct task_struct *tsk)
185{
186 struct cred *cred;
187
188 kdebug("exit_creds(%u,%p,%p,{%d,%d})", tsk->pid, tsk->real_cred, tsk->cred,
189 atomic_read(&tsk->cred->usage),
190 read_cred_subscribers(tsk->cred));
191
192 cred = (struct cred *) tsk->real_cred;
193 tsk->real_cred = NULL;
194 validate_creds(cred);
195 alter_cred_subscribers(cred, -1);
196 put_cred(cred);
197
198 cred = (struct cred *) tsk->cred;
199 tsk->cred = NULL;
200 validate_creds(cred);
201 alter_cred_subscribers(cred, -1);
202 put_cred(cred);
203
204 cred = (struct cred *) tsk->replacement_session_keyring;
205 if (cred) {
206 tsk->replacement_session_keyring = NULL;
207 validate_creds(cred);
208 put_cred(cred);
209 }
210}
211
212/*
213 * Allocate blank credentials, such that the credentials can be filled in at a
214 * later date without risk of ENOMEM.
215 */
216struct cred *cred_alloc_blank(void)
217{
218 struct cred *new;
219
220 new = kmem_cache_zalloc(cred_jar, GFP_KERNEL);
221 if (!new)
222 return NULL;
223
224#ifdef CONFIG_KEYS
225 new->tgcred = kzalloc(sizeof(*new->tgcred), GFP_KERNEL);
226 if (!new->tgcred) {
227 kfree(new);
228 return NULL;
229 }
230 atomic_set(&new->tgcred->usage, 1);
231#endif
232
233 atomic_set(&new->usage, 1);
234
235 if (security_cred_alloc_blank(new, GFP_KERNEL) < 0)
236 goto error;
237
238#ifdef CONFIG_DEBUG_CREDENTIALS
239 new->magic = CRED_MAGIC;
240#endif
241 return new;
242
243error:
244 abort_creds(new);
245 return NULL;
246}
247
115/** 248/**
116 * prepare_creds - Prepare a new set of credentials for modification 249 * prepare_creds - Prepare a new set of credentials for modification
117 * 250 *
@@ -132,16 +265,19 @@ struct cred *prepare_creds(void)
132 const struct cred *old; 265 const struct cred *old;
133 struct cred *new; 266 struct cred *new;
134 267
135 BUG_ON(atomic_read(&task->real_cred->usage) < 1); 268 validate_process_creds();
136 269
137 new = kmem_cache_alloc(cred_jar, GFP_KERNEL); 270 new = kmem_cache_alloc(cred_jar, GFP_KERNEL);
138 if (!new) 271 if (!new)
139 return NULL; 272 return NULL;
140 273
274 kdebug("prepare_creds() alloc %p", new);
275
141 old = task->cred; 276 old = task->cred;
142 memcpy(new, old, sizeof(struct cred)); 277 memcpy(new, old, sizeof(struct cred));
143 278
144 atomic_set(&new->usage, 1); 279 atomic_set(&new->usage, 1);
280 set_cred_subscribers(new, 0);
145 get_group_info(new->group_info); 281 get_group_info(new->group_info);
146 get_uid(new->user); 282 get_uid(new->user);
147 283
@@ -157,6 +293,7 @@ struct cred *prepare_creds(void)
157 293
158 if (security_prepare_creds(new, old, GFP_KERNEL) < 0) 294 if (security_prepare_creds(new, old, GFP_KERNEL) < 0)
159 goto error; 295 goto error;
296 validate_creds(new);
160 return new; 297 return new;
161 298
162error: 299error:
@@ -229,9 +366,12 @@ struct cred *prepare_usermodehelper_creds(void)
229 if (!new) 366 if (!new)
230 return NULL; 367 return NULL;
231 368
369 kdebug("prepare_usermodehelper_creds() alloc %p", new);
370
232 memcpy(new, &init_cred, sizeof(struct cred)); 371 memcpy(new, &init_cred, sizeof(struct cred));
233 372
234 atomic_set(&new->usage, 1); 373 atomic_set(&new->usage, 1);
374 set_cred_subscribers(new, 0);
235 get_group_info(new->group_info); 375 get_group_info(new->group_info);
236 get_uid(new->user); 376 get_uid(new->user);
237 377
@@ -250,6 +390,7 @@ struct cred *prepare_usermodehelper_creds(void)
250#endif 390#endif
251 if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) 391 if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0)
252 goto error; 392 goto error;
393 validate_creds(new);
253 394
254 BUG_ON(atomic_read(&new->usage) != 1); 395 BUG_ON(atomic_read(&new->usage) != 1);
255 return new; 396 return new;
@@ -286,6 +427,10 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags)
286 ) { 427 ) {
287 p->real_cred = get_cred(p->cred); 428 p->real_cred = get_cred(p->cred);
288 get_cred(p->cred); 429 get_cred(p->cred);
430 alter_cred_subscribers(p->cred, 2);
431 kdebug("share_creds(%p{%d,%d})",
432 p->cred, atomic_read(&p->cred->usage),
433 read_cred_subscribers(p->cred));
289 atomic_inc(&p->cred->user->processes); 434 atomic_inc(&p->cred->user->processes);
290 return 0; 435 return 0;
291 } 436 }
@@ -331,6 +476,8 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags)
331 476
332 atomic_inc(&new->user->processes); 477 atomic_inc(&new->user->processes);
333 p->cred = p->real_cred = get_cred(new); 478 p->cred = p->real_cred = get_cred(new);
479 alter_cred_subscribers(new, 2);
480 validate_creds(new);
334 return 0; 481 return 0;
335 482
336error_put: 483error_put:
@@ -355,13 +502,20 @@ error_put:
355int commit_creds(struct cred *new) 502int commit_creds(struct cred *new)
356{ 503{
357 struct task_struct *task = current; 504 struct task_struct *task = current;
358 const struct cred *old; 505 const struct cred *old = task->real_cred;
359 506
360 BUG_ON(task->cred != task->real_cred); 507 kdebug("commit_creds(%p{%d,%d})", new,
361 BUG_ON(atomic_read(&task->real_cred->usage) < 2); 508 atomic_read(&new->usage),
509 read_cred_subscribers(new));
510
511 BUG_ON(task->cred != old);
512#ifdef CONFIG_DEBUG_CREDENTIALS
513 BUG_ON(read_cred_subscribers(old) < 2);
514 validate_creds(old);
515 validate_creds(new);
516#endif
362 BUG_ON(atomic_read(&new->usage) < 1); 517 BUG_ON(atomic_read(&new->usage) < 1);
363 518
364 old = task->real_cred;
365 security_commit_creds(new, old); 519 security_commit_creds(new, old);
366 520
367 get_cred(new); /* we will require a ref for the subj creds too */ 521 get_cred(new); /* we will require a ref for the subj creds too */
@@ -390,12 +544,14 @@ int commit_creds(struct cred *new)
390 * cheaply with the new uid cache, so if it matters 544 * cheaply with the new uid cache, so if it matters
391 * we should be checking for it. -DaveM 545 * we should be checking for it. -DaveM
392 */ 546 */
547 alter_cred_subscribers(new, 2);
393 if (new->user != old->user) 548 if (new->user != old->user)
394 atomic_inc(&new->user->processes); 549 atomic_inc(&new->user->processes);
395 rcu_assign_pointer(task->real_cred, new); 550 rcu_assign_pointer(task->real_cred, new);
396 rcu_assign_pointer(task->cred, new); 551 rcu_assign_pointer(task->cred, new);
397 if (new->user != old->user) 552 if (new->user != old->user)
398 atomic_dec(&old->user->processes); 553 atomic_dec(&old->user->processes);
554 alter_cred_subscribers(old, -2);
399 555
400 sched_switch_user(task); 556 sched_switch_user(task);
401 557
@@ -428,6 +584,13 @@ EXPORT_SYMBOL(commit_creds);
428 */ 584 */
429void abort_creds(struct cred *new) 585void abort_creds(struct cred *new)
430{ 586{
587 kdebug("abort_creds(%p{%d,%d})", new,
588 atomic_read(&new->usage),
589 read_cred_subscribers(new));
590
591#ifdef CONFIG_DEBUG_CREDENTIALS
592 BUG_ON(read_cred_subscribers(new) != 0);
593#endif
431 BUG_ON(atomic_read(&new->usage) < 1); 594 BUG_ON(atomic_read(&new->usage) < 1);
432 put_cred(new); 595 put_cred(new);
433} 596}
@@ -444,7 +607,20 @@ const struct cred *override_creds(const struct cred *new)
444{ 607{
445 const struct cred *old = current->cred; 608 const struct cred *old = current->cred;
446 609
447 rcu_assign_pointer(current->cred, get_cred(new)); 610 kdebug("override_creds(%p{%d,%d})", new,
611 atomic_read(&new->usage),
612 read_cred_subscribers(new));
613
614 validate_creds(old);
615 validate_creds(new);
616 get_cred(new);
617 alter_cred_subscribers(new, 1);
618 rcu_assign_pointer(current->cred, new);
619 alter_cred_subscribers(old, -1);
620
621 kdebug("override_creds() = %p{%d,%d}", old,
622 atomic_read(&old->usage),
623 read_cred_subscribers(old));
448 return old; 624 return old;
449} 625}
450EXPORT_SYMBOL(override_creds); 626EXPORT_SYMBOL(override_creds);
@@ -460,7 +636,15 @@ void revert_creds(const struct cred *old)
460{ 636{
461 const struct cred *override = current->cred; 637 const struct cred *override = current->cred;
462 638
639 kdebug("revert_creds(%p{%d,%d})", old,
640 atomic_read(&old->usage),
641 read_cred_subscribers(old));
642
643 validate_creds(old);
644 validate_creds(override);
645 alter_cred_subscribers(old, 1);
463 rcu_assign_pointer(current->cred, old); 646 rcu_assign_pointer(current->cred, old);
647 alter_cred_subscribers(override, -1);
464 put_cred(override); 648 put_cred(override);
465} 649}
466EXPORT_SYMBOL(revert_creds); 650EXPORT_SYMBOL(revert_creds);
@@ -502,11 +686,15 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon)
502 if (!new) 686 if (!new)
503 return NULL; 687 return NULL;
504 688
689 kdebug("prepare_kernel_cred() alloc %p", new);
690
505 if (daemon) 691 if (daemon)
506 old = get_task_cred(daemon); 692 old = get_task_cred(daemon);
507 else 693 else
508 old = get_cred(&init_cred); 694 old = get_cred(&init_cred);
509 695
696 validate_creds(old);
697
510 *new = *old; 698 *new = *old;
511 get_uid(new->user); 699 get_uid(new->user);
512 get_group_info(new->group_info); 700 get_group_info(new->group_info);
@@ -526,7 +714,9 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon)
526 goto error; 714 goto error;
527 715
528 atomic_set(&new->usage, 1); 716 atomic_set(&new->usage, 1);
717 set_cred_subscribers(new, 0);
529 put_cred(old); 718 put_cred(old);
719 validate_creds(new);
530 return new; 720 return new;
531 721
532error: 722error:
@@ -589,3 +779,95 @@ int set_create_files_as(struct cred *new, struct inode *inode)
589 return security_kernel_create_files_as(new, inode); 779 return security_kernel_create_files_as(new, inode);
590} 780}
591EXPORT_SYMBOL(set_create_files_as); 781EXPORT_SYMBOL(set_create_files_as);
782
783#ifdef CONFIG_DEBUG_CREDENTIALS
784
785/*
786 * dump invalid credentials
787 */
788static void dump_invalid_creds(const struct cred *cred, const char *label,
789 const struct task_struct *tsk)
790{
791 printk(KERN_ERR "CRED: %s credentials: %p %s%s%s\n",
792 label, cred,
793 cred == &init_cred ? "[init]" : "",
794 cred == tsk->real_cred ? "[real]" : "",
795 cred == tsk->cred ? "[eff]" : "");
796 printk(KERN_ERR "CRED: ->magic=%x, put_addr=%p\n",
797 cred->magic, cred->put_addr);
798 printk(KERN_ERR "CRED: ->usage=%d, subscr=%d\n",
799 atomic_read(&cred->usage),
800 read_cred_subscribers(cred));
801 printk(KERN_ERR "CRED: ->*uid = { %d,%d,%d,%d }\n",
802 cred->uid, cred->euid, cred->suid, cred->fsuid);
803 printk(KERN_ERR "CRED: ->*gid = { %d,%d,%d,%d }\n",
804 cred->gid, cred->egid, cred->sgid, cred->fsgid);
805#ifdef CONFIG_SECURITY
806 printk(KERN_ERR "CRED: ->security is %p\n", cred->security);
807 if ((unsigned long) cred->security >= PAGE_SIZE &&
808 (((unsigned long) cred->security & 0xffffff00) !=
809 (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)))
810 printk(KERN_ERR "CRED: ->security {%x, %x}\n",
811 ((u32*)cred->security)[0],
812 ((u32*)cred->security)[1]);
813#endif
814}
815
816/*
817 * report use of invalid credentials
818 */
819void __invalid_creds(const struct cred *cred, const char *file, unsigned line)
820{
821 printk(KERN_ERR "CRED: Invalid credentials\n");
822 printk(KERN_ERR "CRED: At %s:%u\n", file, line);
823 dump_invalid_creds(cred, "Specified", current);
824 BUG();
825}
826EXPORT_SYMBOL(__invalid_creds);
827
828/*
829 * check the credentials on a process
830 */
831void __validate_process_creds(struct task_struct *tsk,
832 const char *file, unsigned line)
833{
834 if (tsk->cred == tsk->real_cred) {
835 if (unlikely(read_cred_subscribers(tsk->cred) < 2 ||
836 creds_are_invalid(tsk->cred)))
837 goto invalid_creds;
838 } else {
839 if (unlikely(read_cred_subscribers(tsk->real_cred) < 1 ||
840 read_cred_subscribers(tsk->cred) < 1 ||
841 creds_are_invalid(tsk->real_cred) ||
842 creds_are_invalid(tsk->cred)))
843 goto invalid_creds;
844 }
845 return;
846
847invalid_creds:
848 printk(KERN_ERR "CRED: Invalid process credentials\n");
849 printk(KERN_ERR "CRED: At %s:%u\n", file, line);
850
851 dump_invalid_creds(tsk->real_cred, "Real", tsk);
852 if (tsk->cred != tsk->real_cred)
853 dump_invalid_creds(tsk->cred, "Effective", tsk);
854 else
855 printk(KERN_ERR "CRED: Effective creds == Real creds\n");
856 BUG();
857}
858EXPORT_SYMBOL(__validate_process_creds);
859
860/*
861 * check creds for do_exit()
862 */
863void validate_creds_for_do_exit(struct task_struct *tsk)
864{
865 kdebug("validate_creds_for_do_exit(%p,%p{%d,%d})",
866 tsk->real_cred, tsk->cred,
867 atomic_read(&tsk->cred->usage),
868 read_cred_subscribers(tsk->cred));
869
870 __validate_process_creds(tsk, __FILE__, __LINE__);
871}
872
873#endif /* CONFIG_DEBUG_CREDENTIALS */
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c
deleted file mode 100644
index 962a3b574f21..000000000000
--- a/kernel/dma-coherent.c
+++ /dev/null
@@ -1,176 +0,0 @@
1/*
2 * Coherent per-device memory handling.
3 * Borrowed from i386
4 */
5#include <linux/kernel.h>
6#include <linux/dma-mapping.h>
7
8struct dma_coherent_mem {
9 void *virt_base;
10 u32 device_base;
11 int size;
12 int flags;
13 unsigned long *bitmap;
14};
15
16int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
17 dma_addr_t device_addr, size_t size, int flags)
18{
19 void __iomem *mem_base = NULL;
20 int pages = size >> PAGE_SHIFT;
21 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
22
23 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
24 goto out;
25 if (!size)
26 goto out;
27 if (dev->dma_mem)
28 goto out;
29
30 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
31
32 mem_base = ioremap(bus_addr, size);
33 if (!mem_base)
34 goto out;
35
36 dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
37 if (!dev->dma_mem)
38 goto out;
39 dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
40 if (!dev->dma_mem->bitmap)
41 goto free1_out;
42
43 dev->dma_mem->virt_base = mem_base;
44 dev->dma_mem->device_base = device_addr;
45 dev->dma_mem->size = pages;
46 dev->dma_mem->flags = flags;
47
48 if (flags & DMA_MEMORY_MAP)
49 return DMA_MEMORY_MAP;
50
51 return DMA_MEMORY_IO;
52
53 free1_out:
54 kfree(dev->dma_mem);
55 out:
56 if (mem_base)
57 iounmap(mem_base);
58 return 0;
59}
60EXPORT_SYMBOL(dma_declare_coherent_memory);
61
62void dma_release_declared_memory(struct device *dev)
63{
64 struct dma_coherent_mem *mem = dev->dma_mem;
65
66 if (!mem)
67 return;
68 dev->dma_mem = NULL;
69 iounmap(mem->virt_base);
70 kfree(mem->bitmap);
71 kfree(mem);
72}
73EXPORT_SYMBOL(dma_release_declared_memory);
74
75void *dma_mark_declared_memory_occupied(struct device *dev,
76 dma_addr_t device_addr, size_t size)
77{
78 struct dma_coherent_mem *mem = dev->dma_mem;
79 int pos, err;
80
81 size += device_addr & ~PAGE_MASK;
82
83 if (!mem)
84 return ERR_PTR(-EINVAL);
85
86 pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
87 err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
88 if (err != 0)
89 return ERR_PTR(err);
90 return mem->virt_base + (pos << PAGE_SHIFT);
91}
92EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
93
94/**
95 * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area
96 *
97 * @dev: device from which we allocate memory
98 * @size: size of requested memory area
99 * @dma_handle: This will be filled with the correct dma handle
100 * @ret: This pointer will be filled with the virtual address
101 * to allocated area.
102 *
103 * This function should be only called from per-arch dma_alloc_coherent()
104 * to support allocation from per-device coherent memory pools.
105 *
106 * Returns 0 if dma_alloc_coherent should continue with allocating from
107 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
108 */
109int dma_alloc_from_coherent(struct device *dev, ssize_t size,
110 dma_addr_t *dma_handle, void **ret)
111{
112 struct dma_coherent_mem *mem;
113 int order = get_order(size);
114 int pageno;
115
116 if (!dev)
117 return 0;
118 mem = dev->dma_mem;
119 if (!mem)
120 return 0;
121
122 *ret = NULL;
123
124 if (unlikely(size > (mem->size << PAGE_SHIFT)))
125 goto err;
126
127 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
128 if (unlikely(pageno < 0))
129 goto err;
130
131 /*
132 * Memory was found in the per-device area.
133 */
134 *dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
135 *ret = mem->virt_base + (pageno << PAGE_SHIFT);
136 memset(*ret, 0, size);
137
138 return 1;
139
140err:
141 /*
142 * In the case where the allocation can not be satisfied from the
143 * per-device area, try to fall back to generic memory if the
144 * constraints allow it.
145 */
146 return mem->flags & DMA_MEMORY_EXCLUSIVE;
147}
148EXPORT_SYMBOL(dma_alloc_from_coherent);
149
150/**
151 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
152 * @dev: device from which the memory was allocated
153 * @order: the order of pages allocated
154 * @vaddr: virtual address of allocated pages
155 *
156 * This checks whether the memory was allocated from the per-device
157 * coherent memory pool and if so, releases that memory.
158 *
159 * Returns 1 if we correctly released the memory, or 0 if
160 * dma_release_coherent() should proceed with releasing memory from
161 * generic pools.
162 */
163int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
164{
165 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
166
167 if (mem && vaddr >= mem->virt_base && vaddr <
168 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
169 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
170
171 bitmap_release_region(mem->bitmap, page, order);
172 return 1;
173 }
174 return 0;
175}
176EXPORT_SYMBOL(dma_release_from_coherent);
diff --git a/kernel/exit.c b/kernel/exit.c
index 869dc221733e..ae5d8660ddff 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -901,6 +901,8 @@ NORET_TYPE void do_exit(long code)
901 901
902 tracehook_report_exit(&code); 902 tracehook_report_exit(&code);
903 903
904 validate_creds_for_do_exit(tsk);
905
904 /* 906 /*
905 * We're taking recursive faults here in do_exit. Safest is to just 907 * We're taking recursive faults here in do_exit. Safest is to just
906 * leave this task alone and wait for reboot. 908 * leave this task alone and wait for reboot.
@@ -1009,7 +1011,10 @@ NORET_TYPE void do_exit(long code)
1009 if (tsk->splice_pipe) 1011 if (tsk->splice_pipe)
1010 __free_pipe_info(tsk->splice_pipe); 1012 __free_pipe_info(tsk->splice_pipe);
1011 1013
1014 validate_creds_for_do_exit(tsk);
1015
1012 preempt_disable(); 1016 preempt_disable();
1017 exit_rcu();
1013 /* causes final put_task_struct in finish_task_switch(). */ 1018 /* causes final put_task_struct in finish_task_switch(). */
1014 tsk->state = TASK_DEAD; 1019 tsk->state = TASK_DEAD;
1015 schedule(); 1020 schedule();
diff --git a/kernel/fork.c b/kernel/fork.c
index e6c04d462ab2..bfee931ee3fb 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -152,8 +152,7 @@ void __put_task_struct(struct task_struct *tsk)
152 WARN_ON(atomic_read(&tsk->usage)); 152 WARN_ON(atomic_read(&tsk->usage));
153 WARN_ON(tsk == current); 153 WARN_ON(tsk == current);
154 154
155 put_cred(tsk->real_cred); 155 exit_creds(tsk);
156 put_cred(tsk->cred);
157 delayacct_tsk_free(tsk); 156 delayacct_tsk_free(tsk);
158 157
159 if (!profile_handoff_task(tsk)) 158 if (!profile_handoff_task(tsk))
@@ -1008,10 +1007,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1008 copy_flags(clone_flags, p); 1007 copy_flags(clone_flags, p);
1009 INIT_LIST_HEAD(&p->children); 1008 INIT_LIST_HEAD(&p->children);
1010 INIT_LIST_HEAD(&p->sibling); 1009 INIT_LIST_HEAD(&p->sibling);
1011#ifdef CONFIG_PREEMPT_RCU 1010 rcu_copy_process(p);
1012 p->rcu_read_lock_nesting = 0;
1013 p->rcu_flipctr_idx = 0;
1014#endif /* #ifdef CONFIG_PREEMPT_RCU */
1015 p->vfork_done = NULL; 1011 p->vfork_done = NULL;
1016 spin_lock_init(&p->alloc_lock); 1012 spin_lock_init(&p->alloc_lock);
1017 1013
@@ -1297,8 +1293,7 @@ bad_fork_cleanup_put_domain:
1297 module_put(task_thread_info(p)->exec_domain->module); 1293 module_put(task_thread_info(p)->exec_domain->module);
1298bad_fork_cleanup_count: 1294bad_fork_cleanup_count:
1299 atomic_dec(&p->cred->user->processes); 1295 atomic_dec(&p->cred->user->processes);
1300 put_cred(p->real_cred); 1296 exit_creds(p);
1301 put_cred(p->cred);
1302bad_fork_free: 1297bad_fork_free:
1303 free_task(p); 1298 free_task(p);
1304fork_out: 1299fork_out:
diff --git a/kernel/futex.c b/kernel/futex.c
index e18cfbdc7190..248dd119a86e 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -115,6 +115,9 @@ struct futex_q {
115 /* rt_waiter storage for requeue_pi: */ 115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter; 116 struct rt_mutex_waiter *rt_waiter;
117 117
118 /* The expected requeue pi target futex key: */
119 union futex_key *requeue_pi_key;
120
118 /* Bitset for the optional bitmasked wakeup */ 121 /* Bitset for the optional bitmasked wakeup */
119 u32 bitset; 122 u32 bitset;
120}; 123};
@@ -1089,6 +1092,10 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1089 if (!top_waiter) 1092 if (!top_waiter)
1090 return 0; 1093 return 0;
1091 1094
1095 /* Ensure we requeue to the expected futex. */
1096 if (!match_futex(top_waiter->requeue_pi_key, key2))
1097 return -EINVAL;
1098
1092 /* 1099 /*
1093 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in 1100 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1094 * the contended case or if set_waiters is 1. The pi_state is returned 1101 * the contended case or if set_waiters is 1. The pi_state is returned
@@ -1276,6 +1283,12 @@ retry_private:
1276 continue; 1283 continue;
1277 } 1284 }
1278 1285
1286 /* Ensure we requeue to the expected futex for requeue_pi. */
1287 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1288 ret = -EINVAL;
1289 break;
1290 }
1291
1279 /* 1292 /*
1280 * Requeue nr_requeue waiters and possibly one more in the case 1293 * Requeue nr_requeue waiters and possibly one more in the case
1281 * of requeue_pi if we couldn't acquire the lock atomically. 1294 * of requeue_pi if we couldn't acquire the lock atomically.
@@ -1751,6 +1764,7 @@ static int futex_wait(u32 __user *uaddr, int fshared,
1751 q.pi_state = NULL; 1764 q.pi_state = NULL;
1752 q.bitset = bitset; 1765 q.bitset = bitset;
1753 q.rt_waiter = NULL; 1766 q.rt_waiter = NULL;
1767 q.requeue_pi_key = NULL;
1754 1768
1755 if (abs_time) { 1769 if (abs_time) {
1756 to = &timeout; 1770 to = &timeout;
@@ -1858,6 +1872,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
1858 1872
1859 q.pi_state = NULL; 1873 q.pi_state = NULL;
1860 q.rt_waiter = NULL; 1874 q.rt_waiter = NULL;
1875 q.requeue_pi_key = NULL;
1861retry: 1876retry:
1862 q.key = FUTEX_KEY_INIT; 1877 q.key = FUTEX_KEY_INIT;
1863 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); 1878 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
@@ -2118,11 +2133,11 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2118 * We call schedule in futex_wait_queue_me() when we enqueue and return there 2133 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2119 * via the following: 2134 * via the following:
2120 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() 2135 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2121 * 2) wakeup on uaddr2 after a requeue and subsequent unlock 2136 * 2) wakeup on uaddr2 after a requeue
2122 * 3) signal (before or after requeue) 2137 * 3) signal
2123 * 4) timeout (before or after requeue) 2138 * 4) timeout
2124 * 2139 *
2125 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function. 2140 * If 3, cleanup and return -ERESTARTNOINTR.
2126 * 2141 *
2127 * If 2, we may then block on trying to take the rt_mutex and return via: 2142 * If 2, we may then block on trying to take the rt_mutex and return via:
2128 * 5) successful lock 2143 * 5) successful lock
@@ -2130,7 +2145,7 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2130 * 7) timeout 2145 * 7) timeout
2131 * 8) other lock acquisition failure 2146 * 8) other lock acquisition failure
2132 * 2147 *
2133 * If 6, we setup a restart_block with futex_lock_pi() as the function. 2148 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2134 * 2149 *
2135 * If 4 or 7, we cleanup and return with -ETIMEDOUT. 2150 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2136 * 2151 *
@@ -2169,15 +2184,16 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2169 debug_rt_mutex_init_waiter(&rt_waiter); 2184 debug_rt_mutex_init_waiter(&rt_waiter);
2170 rt_waiter.task = NULL; 2185 rt_waiter.task = NULL;
2171 2186
2172 q.pi_state = NULL;
2173 q.bitset = bitset;
2174 q.rt_waiter = &rt_waiter;
2175
2176 key2 = FUTEX_KEY_INIT; 2187 key2 = FUTEX_KEY_INIT;
2177 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE); 2188 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2178 if (unlikely(ret != 0)) 2189 if (unlikely(ret != 0))
2179 goto out; 2190 goto out;
2180 2191
2192 q.pi_state = NULL;
2193 q.bitset = bitset;
2194 q.rt_waiter = &rt_waiter;
2195 q.requeue_pi_key = &key2;
2196
2181 /* Prepare to wait on uaddr. */ 2197 /* Prepare to wait on uaddr. */
2182 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); 2198 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2183 if (ret) 2199 if (ret)
@@ -2248,14 +2264,11 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2248 rt_mutex_unlock(pi_mutex); 2264 rt_mutex_unlock(pi_mutex);
2249 } else if (ret == -EINTR) { 2265 } else if (ret == -EINTR) {
2250 /* 2266 /*
2251 * We've already been requeued, but we have no way to 2267 * We've already been requeued, but cannot restart by calling
2252 * restart by calling futex_lock_pi() directly. We 2268 * futex_lock_pi() directly. We could restart this syscall, but
2253 * could restart the syscall, but that will look at 2269 * it would detect that the user space "val" changed and return
2254 * the user space value and return right away. So we 2270 * -EWOULDBLOCK. Save the overhead of the restart and return
2255 * drop back with EWOULDBLOCK to tell user space that 2271 * -EWOULDBLOCK directly.
2256 * "val" has been changed. That's the same what the
2257 * restart of the syscall would do in
2258 * futex_wait_setup().
2259 */ 2272 */
2260 ret = -EWOULDBLOCK; 2273 ret = -EWOULDBLOCK;
2261 } 2274 }
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig
index 22e9dcfaa3d3..654efd09f6a9 100644
--- a/kernel/gcov/Kconfig
+++ b/kernel/gcov/Kconfig
@@ -34,7 +34,7 @@ config GCOV_KERNEL
34config GCOV_PROFILE_ALL 34config GCOV_PROFILE_ALL
35 bool "Profile entire Kernel" 35 bool "Profile entire Kernel"
36 depends on GCOV_KERNEL 36 depends on GCOV_KERNEL
37 depends on S390 || X86 37 depends on S390 || X86 || (PPC && EXPERIMENTAL)
38 default n 38 default n
39 ---help--- 39 ---help---
40 This options activates profiling for the entire kernel. 40 This options activates profiling for the entire kernel.
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index 49da79ab8486..05071bf6a37b 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -485,6 +485,7 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
485 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 485 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
486 __hrtimer_init(timer, clock_id, mode); 486 __hrtimer_init(timer, clock_id, mode);
487} 487}
488EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
488 489
489void destroy_hrtimer_on_stack(struct hrtimer *timer) 490void destroy_hrtimer_on_stack(struct hrtimer *timer)
490{ 491{
@@ -1477,6 +1478,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1477 sl->timer.function = hrtimer_wakeup; 1478 sl->timer.function = hrtimer_wakeup;
1478 sl->task = task; 1479 sl->task = task;
1479} 1480}
1481EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1480 1482
1481static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1483static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482{ 1484{
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c
index 13c68e71b726..c1660194d115 100644
--- a/kernel/irq/chip.c
+++ b/kernel/irq/chip.c
@@ -222,6 +222,34 @@ int set_irq_chip_data(unsigned int irq, void *data)
222} 222}
223EXPORT_SYMBOL(set_irq_chip_data); 223EXPORT_SYMBOL(set_irq_chip_data);
224 224
225/**
226 * set_irq_nested_thread - Set/Reset the IRQ_NESTED_THREAD flag of an irq
227 *
228 * @irq: Interrupt number
229 * @nest: 0 to clear / 1 to set the IRQ_NESTED_THREAD flag
230 *
231 * The IRQ_NESTED_THREAD flag indicates that on
232 * request_threaded_irq() no separate interrupt thread should be
233 * created for the irq as the handler are called nested in the
234 * context of a demultiplexing interrupt handler thread.
235 */
236void set_irq_nested_thread(unsigned int irq, int nest)
237{
238 struct irq_desc *desc = irq_to_desc(irq);
239 unsigned long flags;
240
241 if (!desc)
242 return;
243
244 spin_lock_irqsave(&desc->lock, flags);
245 if (nest)
246 desc->status |= IRQ_NESTED_THREAD;
247 else
248 desc->status &= ~IRQ_NESTED_THREAD;
249 spin_unlock_irqrestore(&desc->lock, flags);
250}
251EXPORT_SYMBOL_GPL(set_irq_nested_thread);
252
225/* 253/*
226 * default enable function 254 * default enable function
227 */ 255 */
@@ -299,6 +327,45 @@ static inline void mask_ack_irq(struct irq_desc *desc, int irq)
299 } 327 }
300} 328}
301 329
330/*
331 * handle_nested_irq - Handle a nested irq from a irq thread
332 * @irq: the interrupt number
333 *
334 * Handle interrupts which are nested into a threaded interrupt
335 * handler. The handler function is called inside the calling
336 * threads context.
337 */
338void handle_nested_irq(unsigned int irq)
339{
340 struct irq_desc *desc = irq_to_desc(irq);
341 struct irqaction *action;
342 irqreturn_t action_ret;
343
344 might_sleep();
345
346 spin_lock_irq(&desc->lock);
347
348 kstat_incr_irqs_this_cpu(irq, desc);
349
350 action = desc->action;
351 if (unlikely(!action || (desc->status & IRQ_DISABLED)))
352 goto out_unlock;
353
354 desc->status |= IRQ_INPROGRESS;
355 spin_unlock_irq(&desc->lock);
356
357 action_ret = action->thread_fn(action->irq, action->dev_id);
358 if (!noirqdebug)
359 note_interrupt(irq, desc, action_ret);
360
361 spin_lock_irq(&desc->lock);
362 desc->status &= ~IRQ_INPROGRESS;
363
364out_unlock:
365 spin_unlock_irq(&desc->lock);
366}
367EXPORT_SYMBOL_GPL(handle_nested_irq);
368
302/** 369/**
303 * handle_simple_irq - Simple and software-decoded IRQs. 370 * handle_simple_irq - Simple and software-decoded IRQs.
304 * @irq: the interrupt number 371 * @irq: the interrupt number
@@ -382,7 +449,10 @@ handle_level_irq(unsigned int irq, struct irq_desc *desc)
382 449
383 spin_lock(&desc->lock); 450 spin_lock(&desc->lock);
384 desc->status &= ~IRQ_INPROGRESS; 451 desc->status &= ~IRQ_INPROGRESS;
385 if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) 452
453 if (unlikely(desc->status & IRQ_ONESHOT))
454 desc->status |= IRQ_MASKED;
455 else if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask)
386 desc->chip->unmask(irq); 456 desc->chip->unmask(irq);
387out_unlock: 457out_unlock:
388 spin_unlock(&desc->lock); 458 spin_unlock(&desc->lock);
@@ -572,6 +642,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
572 desc->chip = &dummy_irq_chip; 642 desc->chip = &dummy_irq_chip;
573 } 643 }
574 644
645 chip_bus_lock(irq, desc);
575 spin_lock_irqsave(&desc->lock, flags); 646 spin_lock_irqsave(&desc->lock, flags);
576 647
577 /* Uninstall? */ 648 /* Uninstall? */
@@ -591,6 +662,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
591 desc->chip->startup(irq); 662 desc->chip->startup(irq);
592 } 663 }
593 spin_unlock_irqrestore(&desc->lock, flags); 664 spin_unlock_irqrestore(&desc->lock, flags);
665 chip_bus_sync_unlock(irq, desc);
594} 666}
595EXPORT_SYMBOL_GPL(__set_irq_handler); 667EXPORT_SYMBOL_GPL(__set_irq_handler);
596 668
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c
index 065205bdd920..a81cf80554db 100644
--- a/kernel/irq/handle.c
+++ b/kernel/irq/handle.c
@@ -161,7 +161,7 @@ int __init early_irq_init(void)
161 161
162 desc = irq_desc_legacy; 162 desc = irq_desc_legacy;
163 legacy_count = ARRAY_SIZE(irq_desc_legacy); 163 legacy_count = ARRAY_SIZE(irq_desc_legacy);
164 node = first_online_node; 164 node = first_online_node;
165 165
166 /* allocate irq_desc_ptrs array based on nr_irqs */ 166 /* allocate irq_desc_ptrs array based on nr_irqs */
167 irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); 167 irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT);
@@ -172,6 +172,9 @@ int __init early_irq_init(void)
172 172
173 for (i = 0; i < legacy_count; i++) { 173 for (i = 0; i < legacy_count; i++) {
174 desc[i].irq = i; 174 desc[i].irq = i;
175#ifdef CONFIG_SMP
176 desc[i].node = node;
177#endif
175 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; 178 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
176 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); 179 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
177 alloc_desc_masks(&desc[i], node, true); 180 alloc_desc_masks(&desc[i], node, true);
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h
index e70ed5592eb9..1b5d742c6a77 100644
--- a/kernel/irq/internals.h
+++ b/kernel/irq/internals.h
@@ -44,6 +44,19 @@ extern int irq_select_affinity_usr(unsigned int irq);
44 44
45extern void irq_set_thread_affinity(struct irq_desc *desc); 45extern void irq_set_thread_affinity(struct irq_desc *desc);
46 46
47/* Inline functions for support of irq chips on slow busses */
48static inline void chip_bus_lock(unsigned int irq, struct irq_desc *desc)
49{
50 if (unlikely(desc->chip->bus_lock))
51 desc->chip->bus_lock(irq);
52}
53
54static inline void chip_bus_sync_unlock(unsigned int irq, struct irq_desc *desc)
55{
56 if (unlikely(desc->chip->bus_sync_unlock))
57 desc->chip->bus_sync_unlock(irq);
58}
59
47/* 60/*
48 * Debugging printout: 61 * Debugging printout:
49 */ 62 */
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 0ec9ed831737..bde4c667d24d 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -230,9 +230,11 @@ void disable_irq_nosync(unsigned int irq)
230 if (!desc) 230 if (!desc)
231 return; 231 return;
232 232
233 chip_bus_lock(irq, desc);
233 spin_lock_irqsave(&desc->lock, flags); 234 spin_lock_irqsave(&desc->lock, flags);
234 __disable_irq(desc, irq, false); 235 __disable_irq(desc, irq, false);
235 spin_unlock_irqrestore(&desc->lock, flags); 236 spin_unlock_irqrestore(&desc->lock, flags);
237 chip_bus_sync_unlock(irq, desc);
236} 238}
237EXPORT_SYMBOL(disable_irq_nosync); 239EXPORT_SYMBOL(disable_irq_nosync);
238 240
@@ -294,7 +296,8 @@ void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume)
294 * matches the last disable, processing of interrupts on this 296 * matches the last disable, processing of interrupts on this
295 * IRQ line is re-enabled. 297 * IRQ line is re-enabled.
296 * 298 *
297 * This function may be called from IRQ context. 299 * This function may be called from IRQ context only when
300 * desc->chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
298 */ 301 */
299void enable_irq(unsigned int irq) 302void enable_irq(unsigned int irq)
300{ 303{
@@ -304,9 +307,11 @@ void enable_irq(unsigned int irq)
304 if (!desc) 307 if (!desc)
305 return; 308 return;
306 309
310 chip_bus_lock(irq, desc);
307 spin_lock_irqsave(&desc->lock, flags); 311 spin_lock_irqsave(&desc->lock, flags);
308 __enable_irq(desc, irq, false); 312 __enable_irq(desc, irq, false);
309 spin_unlock_irqrestore(&desc->lock, flags); 313 spin_unlock_irqrestore(&desc->lock, flags);
314 chip_bus_sync_unlock(irq, desc);
310} 315}
311EXPORT_SYMBOL(enable_irq); 316EXPORT_SYMBOL(enable_irq);
312 317
@@ -436,6 +441,26 @@ int __irq_set_trigger(struct irq_desc *desc, unsigned int irq,
436 return ret; 441 return ret;
437} 442}
438 443
444/*
445 * Default primary interrupt handler for threaded interrupts. Is
446 * assigned as primary handler when request_threaded_irq is called
447 * with handler == NULL. Useful for oneshot interrupts.
448 */
449static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
450{
451 return IRQ_WAKE_THREAD;
452}
453
454/*
455 * Primary handler for nested threaded interrupts. Should never be
456 * called.
457 */
458static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
459{
460 WARN(1, "Primary handler called for nested irq %d\n", irq);
461 return IRQ_NONE;
462}
463
439static int irq_wait_for_interrupt(struct irqaction *action) 464static int irq_wait_for_interrupt(struct irqaction *action)
440{ 465{
441 while (!kthread_should_stop()) { 466 while (!kthread_should_stop()) {
@@ -451,6 +476,23 @@ static int irq_wait_for_interrupt(struct irqaction *action)
451 return -1; 476 return -1;
452} 477}
453 478
479/*
480 * Oneshot interrupts keep the irq line masked until the threaded
481 * handler finished. unmask if the interrupt has not been disabled and
482 * is marked MASKED.
483 */
484static void irq_finalize_oneshot(unsigned int irq, struct irq_desc *desc)
485{
486 chip_bus_lock(irq, desc);
487 spin_lock_irq(&desc->lock);
488 if (!(desc->status & IRQ_DISABLED) && (desc->status & IRQ_MASKED)) {
489 desc->status &= ~IRQ_MASKED;
490 desc->chip->unmask(irq);
491 }
492 spin_unlock_irq(&desc->lock);
493 chip_bus_sync_unlock(irq, desc);
494}
495
454#ifdef CONFIG_SMP 496#ifdef CONFIG_SMP
455/* 497/*
456 * Check whether we need to change the affinity of the interrupt thread. 498 * Check whether we need to change the affinity of the interrupt thread.
@@ -492,7 +534,7 @@ static int irq_thread(void *data)
492 struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; 534 struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, };
493 struct irqaction *action = data; 535 struct irqaction *action = data;
494 struct irq_desc *desc = irq_to_desc(action->irq); 536 struct irq_desc *desc = irq_to_desc(action->irq);
495 int wake; 537 int wake, oneshot = desc->status & IRQ_ONESHOT;
496 538
497 sched_setscheduler(current, SCHED_FIFO, &param); 539 sched_setscheduler(current, SCHED_FIFO, &param);
498 current->irqaction = action; 540 current->irqaction = action;
@@ -518,6 +560,9 @@ static int irq_thread(void *data)
518 spin_unlock_irq(&desc->lock); 560 spin_unlock_irq(&desc->lock);
519 561
520 action->thread_fn(action->irq, action->dev_id); 562 action->thread_fn(action->irq, action->dev_id);
563
564 if (oneshot)
565 irq_finalize_oneshot(action->irq, desc);
521 } 566 }
522 567
523 wake = atomic_dec_and_test(&desc->threads_active); 568 wake = atomic_dec_and_test(&desc->threads_active);
@@ -565,7 +610,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
565 struct irqaction *old, **old_ptr; 610 struct irqaction *old, **old_ptr;
566 const char *old_name = NULL; 611 const char *old_name = NULL;
567 unsigned long flags; 612 unsigned long flags;
568 int shared = 0; 613 int nested, shared = 0;
569 int ret; 614 int ret;
570 615
571 if (!desc) 616 if (!desc)
@@ -590,10 +635,32 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
590 rand_initialize_irq(irq); 635 rand_initialize_irq(irq);
591 } 636 }
592 637
638 /* Oneshot interrupts are not allowed with shared */
639 if ((new->flags & IRQF_ONESHOT) && (new->flags & IRQF_SHARED))
640 return -EINVAL;
641
642 /*
643 * Check whether the interrupt nests into another interrupt
644 * thread.
645 */
646 nested = desc->status & IRQ_NESTED_THREAD;
647 if (nested) {
648 if (!new->thread_fn)
649 return -EINVAL;
650 /*
651 * Replace the primary handler which was provided from
652 * the driver for non nested interrupt handling by the
653 * dummy function which warns when called.
654 */
655 new->handler = irq_nested_primary_handler;
656 }
657
593 /* 658 /*
594 * Threaded handler ? 659 * Create a handler thread when a thread function is supplied
660 * and the interrupt does not nest into another interrupt
661 * thread.
595 */ 662 */
596 if (new->thread_fn) { 663 if (new->thread_fn && !nested) {
597 struct task_struct *t; 664 struct task_struct *t;
598 665
599 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 666 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
@@ -662,9 +729,12 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
662 desc->status |= IRQ_PER_CPU; 729 desc->status |= IRQ_PER_CPU;
663#endif 730#endif
664 731
665 desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | 732 desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_ONESHOT |
666 IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); 733 IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED);
667 734
735 if (new->flags & IRQF_ONESHOT)
736 desc->status |= IRQ_ONESHOT;
737
668 if (!(desc->status & IRQ_NOAUTOEN)) { 738 if (!(desc->status & IRQ_NOAUTOEN)) {
669 desc->depth = 0; 739 desc->depth = 0;
670 desc->status &= ~IRQ_DISABLED; 740 desc->status &= ~IRQ_DISABLED;
@@ -875,7 +945,14 @@ EXPORT_SYMBOL_GPL(remove_irq);
875 */ 945 */
876void free_irq(unsigned int irq, void *dev_id) 946void free_irq(unsigned int irq, void *dev_id)
877{ 947{
948 struct irq_desc *desc = irq_to_desc(irq);
949
950 if (!desc)
951 return;
952
953 chip_bus_lock(irq, desc);
878 kfree(__free_irq(irq, dev_id)); 954 kfree(__free_irq(irq, dev_id));
955 chip_bus_sync_unlock(irq, desc);
879} 956}
880EXPORT_SYMBOL(free_irq); 957EXPORT_SYMBOL(free_irq);
881 958
@@ -884,6 +961,8 @@ EXPORT_SYMBOL(free_irq);
884 * @irq: Interrupt line to allocate 961 * @irq: Interrupt line to allocate
885 * @handler: Function to be called when the IRQ occurs. 962 * @handler: Function to be called when the IRQ occurs.
886 * Primary handler for threaded interrupts 963 * Primary handler for threaded interrupts
964 * If NULL and thread_fn != NULL the default
965 * primary handler is installed
887 * @thread_fn: Function called from the irq handler thread 966 * @thread_fn: Function called from the irq handler thread
888 * If NULL, no irq thread is created 967 * If NULL, no irq thread is created
889 * @irqflags: Interrupt type flags 968 * @irqflags: Interrupt type flags
@@ -963,8 +1042,12 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler,
963 1042
964 if (desc->status & IRQ_NOREQUEST) 1043 if (desc->status & IRQ_NOREQUEST)
965 return -EINVAL; 1044 return -EINVAL;
966 if (!handler) 1045
967 return -EINVAL; 1046 if (!handler) {
1047 if (!thread_fn)
1048 return -EINVAL;
1049 handler = irq_default_primary_handler;
1050 }
968 1051
969 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1052 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
970 if (!action) 1053 if (!action)
@@ -976,7 +1059,10 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler,
976 action->name = devname; 1059 action->name = devname;
977 action->dev_id = dev_id; 1060 action->dev_id = dev_id;
978 1061
1062 chip_bus_lock(irq, desc);
979 retval = __setup_irq(irq, desc, action); 1063 retval = __setup_irq(irq, desc, action);
1064 chip_bus_sync_unlock(irq, desc);
1065
980 if (retval) 1066 if (retval)
981 kfree(action); 1067 kfree(action);
982 1068
diff --git a/kernel/irq/pm.c b/kernel/irq/pm.c
index 638d8bedec14..a0bb09e79867 100644
--- a/kernel/irq/pm.c
+++ b/kernel/irq/pm.c
@@ -15,10 +15,10 @@
15/** 15/**
16 * suspend_device_irqs - disable all currently enabled interrupt lines 16 * suspend_device_irqs - disable all currently enabled interrupt lines
17 * 17 *
18 * During system-wide suspend or hibernation device interrupts need to be 18 * During system-wide suspend or hibernation device drivers need to be prevented
19 * disabled at the chip level and this function is provided for this purpose. 19 * from receiving interrupts and this function is provided for this purpose.
20 * It disables all interrupt lines that are enabled at the moment and sets the 20 * It marks all interrupt lines in use, except for the timer ones, as disabled
21 * IRQ_SUSPENDED flag for them. 21 * and sets the IRQ_SUSPENDED flag for each of them.
22 */ 22 */
23void suspend_device_irqs(void) 23void suspend_device_irqs(void)
24{ 24{
diff --git a/kernel/irq/resend.c b/kernel/irq/resend.c
index 89c7117acf2b..090c3763f3a2 100644
--- a/kernel/irq/resend.c
+++ b/kernel/irq/resend.c
@@ -70,8 +70,7 @@ void check_irq_resend(struct irq_desc *desc, unsigned int irq)
70 if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { 70 if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
71 desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY; 71 desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY;
72 72
73 if (!desc->chip || !desc->chip->retrigger || 73 if (!desc->chip->retrigger || !desc->chip->retrigger(irq)) {
74 !desc->chip->retrigger(irq)) {
75#ifdef CONFIG_HARDIRQS_SW_RESEND 74#ifdef CONFIG_HARDIRQS_SW_RESEND
76 /* Set it pending and activate the softirq: */ 75 /* Set it pending and activate the softirq: */
77 set_bit(irq, irqs_resend); 76 set_bit(irq, irqs_resend);
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c
index 4d568294de3e..114e704760fe 100644
--- a/kernel/irq/spurious.c
+++ b/kernel/irq/spurious.c
@@ -297,7 +297,6 @@ static int __init irqfixup_setup(char *str)
297 297
298__setup("irqfixup", irqfixup_setup); 298__setup("irqfixup", irqfixup_setup);
299module_param(irqfixup, int, 0644); 299module_param(irqfixup, int, 0644);
300MODULE_PARM_DESC("irqfixup", "0: No fixup, 1: irqfixup mode, 2: irqpoll mode");
301 300
302static int __init irqpoll_setup(char *str) 301static int __init irqpoll_setup(char *str)
303{ 302{
diff --git a/kernel/kmod.c b/kernel/kmod.c
index a92280870e30..9fcb53a11f87 100644
--- a/kernel/kmod.c
+++ b/kernel/kmod.c
@@ -80,6 +80,10 @@ int __request_module(bool wait, const char *fmt, ...)
80#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ 80#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
81 static int kmod_loop_msg; 81 static int kmod_loop_msg;
82 82
83 ret = security_kernel_module_request();
84 if (ret)
85 return ret;
86
83 va_start(args, fmt); 87 va_start(args, fmt);
84 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); 88 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
85 va_end(args); 89 va_end(args);
@@ -466,6 +470,7 @@ int call_usermodehelper_exec(struct subprocess_info *sub_info,
466 int retval = 0; 470 int retval = 0;
467 471
468 BUG_ON(atomic_read(&sub_info->cred->usage) != 1); 472 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
473 validate_creds(sub_info->cred);
469 474
470 helper_lock(); 475 helper_lock();
471 if (sub_info->path[0] == '\0') 476 if (sub_info->path[0] == '\0')
diff --git a/kernel/kthread.c b/kernel/kthread.c
index eb8751aa0418..5fe709982caa 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -16,8 +16,6 @@
16#include <linux/mutex.h> 16#include <linux/mutex.h>
17#include <trace/events/sched.h> 17#include <trace/events/sched.h>
18 18
19#define KTHREAD_NICE_LEVEL (-5)
20
21static DEFINE_SPINLOCK(kthread_create_lock); 19static DEFINE_SPINLOCK(kthread_create_lock);
22static LIST_HEAD(kthread_create_list); 20static LIST_HEAD(kthread_create_list);
23struct task_struct *kthreadd_task; 21struct task_struct *kthreadd_task;
@@ -145,7 +143,6 @@ struct task_struct *kthread_create(int (*threadfn)(void *data),
145 * The kernel thread should not inherit these properties. 143 * The kernel thread should not inherit these properties.
146 */ 144 */
147 sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param); 145 sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param);
148 set_user_nice(create.result, KTHREAD_NICE_LEVEL);
149 set_cpus_allowed_ptr(create.result, cpu_all_mask); 146 set_cpus_allowed_ptr(create.result, cpu_all_mask);
150 } 147 }
151 return create.result; 148 return create.result;
@@ -221,7 +218,6 @@ int kthreadd(void *unused)
221 /* Setup a clean context for our children to inherit. */ 218 /* Setup a clean context for our children to inherit. */
222 set_task_comm(tsk, "kthreadd"); 219 set_task_comm(tsk, "kthreadd");
223 ignore_signals(tsk); 220 ignore_signals(tsk);
224 set_user_nice(tsk, KTHREAD_NICE_LEVEL);
225 set_cpus_allowed_ptr(tsk, cpu_all_mask); 221 set_cpus_allowed_ptr(tsk, cpu_all_mask);
226 set_mems_allowed(node_possible_map); 222 set_mems_allowed(node_possible_map);
227 223
diff --git a/kernel/lockdep.c b/kernel/lockdep.c
index 8bbeef996c76..f74d2d7aa605 100644
--- a/kernel/lockdep.c
+++ b/kernel/lockdep.c
@@ -42,6 +42,7 @@
42#include <linux/hash.h> 42#include <linux/hash.h>
43#include <linux/ftrace.h> 43#include <linux/ftrace.h>
44#include <linux/stringify.h> 44#include <linux/stringify.h>
45#include <linux/bitops.h>
45 46
46#include <asm/sections.h> 47#include <asm/sections.h>
47 48
@@ -366,11 +367,21 @@ static int save_trace(struct stack_trace *trace)
366 367
367 save_stack_trace(trace); 368 save_stack_trace(trace);
368 369
370 /*
371 * Some daft arches put -1 at the end to indicate its a full trace.
372 *
373 * <rant> this is buggy anyway, since it takes a whole extra entry so a
374 * complete trace that maxes out the entries provided will be reported
375 * as incomplete, friggin useless </rant>
376 */
377 if (trace->entries[trace->nr_entries-1] == ULONG_MAX)
378 trace->nr_entries--;
379
369 trace->max_entries = trace->nr_entries; 380 trace->max_entries = trace->nr_entries;
370 381
371 nr_stack_trace_entries += trace->nr_entries; 382 nr_stack_trace_entries += trace->nr_entries;
372 383
373 if (nr_stack_trace_entries == MAX_STACK_TRACE_ENTRIES) { 384 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
374 if (!debug_locks_off_graph_unlock()) 385 if (!debug_locks_off_graph_unlock())
375 return 0; 386 return 0;
376 387
@@ -388,20 +399,6 @@ unsigned int nr_hardirq_chains;
388unsigned int nr_softirq_chains; 399unsigned int nr_softirq_chains;
389unsigned int nr_process_chains; 400unsigned int nr_process_chains;
390unsigned int max_lockdep_depth; 401unsigned int max_lockdep_depth;
391unsigned int max_recursion_depth;
392
393static unsigned int lockdep_dependency_gen_id;
394
395static bool lockdep_dependency_visit(struct lock_class *source,
396 unsigned int depth)
397{
398 if (!depth)
399 lockdep_dependency_gen_id++;
400 if (source->dep_gen_id == lockdep_dependency_gen_id)
401 return true;
402 source->dep_gen_id = lockdep_dependency_gen_id;
403 return false;
404}
405 402
406#ifdef CONFIG_DEBUG_LOCKDEP 403#ifdef CONFIG_DEBUG_LOCKDEP
407/* 404/*
@@ -431,11 +428,8 @@ atomic_t redundant_softirqs_on;
431atomic_t redundant_softirqs_off; 428atomic_t redundant_softirqs_off;
432atomic_t nr_unused_locks; 429atomic_t nr_unused_locks;
433atomic_t nr_cyclic_checks; 430atomic_t nr_cyclic_checks;
434atomic_t nr_cyclic_check_recursions;
435atomic_t nr_find_usage_forwards_checks; 431atomic_t nr_find_usage_forwards_checks;
436atomic_t nr_find_usage_forwards_recursions;
437atomic_t nr_find_usage_backwards_checks; 432atomic_t nr_find_usage_backwards_checks;
438atomic_t nr_find_usage_backwards_recursions;
439#endif 433#endif
440 434
441/* 435/*
@@ -551,58 +545,6 @@ static void lockdep_print_held_locks(struct task_struct *curr)
551 } 545 }
552} 546}
553 547
554static void print_lock_class_header(struct lock_class *class, int depth)
555{
556 int bit;
557
558 printk("%*s->", depth, "");
559 print_lock_name(class);
560 printk(" ops: %lu", class->ops);
561 printk(" {\n");
562
563 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
564 if (class->usage_mask & (1 << bit)) {
565 int len = depth;
566
567 len += printk("%*s %s", depth, "", usage_str[bit]);
568 len += printk(" at:\n");
569 print_stack_trace(class->usage_traces + bit, len);
570 }
571 }
572 printk("%*s }\n", depth, "");
573
574 printk("%*s ... key at: ",depth,"");
575 print_ip_sym((unsigned long)class->key);
576}
577
578/*
579 * printk all lock dependencies starting at <entry>:
580 */
581static void __used
582print_lock_dependencies(struct lock_class *class, int depth)
583{
584 struct lock_list *entry;
585
586 if (lockdep_dependency_visit(class, depth))
587 return;
588
589 if (DEBUG_LOCKS_WARN_ON(depth >= 20))
590 return;
591
592 print_lock_class_header(class, depth);
593
594 list_for_each_entry(entry, &class->locks_after, entry) {
595 if (DEBUG_LOCKS_WARN_ON(!entry->class))
596 return;
597
598 print_lock_dependencies(entry->class, depth + 1);
599
600 printk("%*s ... acquired at:\n",depth,"");
601 print_stack_trace(&entry->trace, 2);
602 printk("\n");
603 }
604}
605
606static void print_kernel_version(void) 548static void print_kernel_version(void)
607{ 549{
608 printk("%s %.*s\n", init_utsname()->release, 550 printk("%s %.*s\n", init_utsname()->release,
@@ -898,22 +840,203 @@ static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
898} 840}
899 841
900/* 842/*
843 * For good efficiency of modular, we use power of 2
844 */
845#define MAX_CIRCULAR_QUEUE_SIZE 4096UL
846#define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
847
848/*
849 * The circular_queue and helpers is used to implement the
850 * breadth-first search(BFS)algorithem, by which we can build
851 * the shortest path from the next lock to be acquired to the
852 * previous held lock if there is a circular between them.
853 */
854struct circular_queue {
855 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
856 unsigned int front, rear;
857};
858
859static struct circular_queue lock_cq;
860
861unsigned int max_bfs_queue_depth;
862
863static unsigned int lockdep_dependency_gen_id;
864
865static inline void __cq_init(struct circular_queue *cq)
866{
867 cq->front = cq->rear = 0;
868 lockdep_dependency_gen_id++;
869}
870
871static inline int __cq_empty(struct circular_queue *cq)
872{
873 return (cq->front == cq->rear);
874}
875
876static inline int __cq_full(struct circular_queue *cq)
877{
878 return ((cq->rear + 1) & CQ_MASK) == cq->front;
879}
880
881static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
882{
883 if (__cq_full(cq))
884 return -1;
885
886 cq->element[cq->rear] = elem;
887 cq->rear = (cq->rear + 1) & CQ_MASK;
888 return 0;
889}
890
891static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
892{
893 if (__cq_empty(cq))
894 return -1;
895
896 *elem = cq->element[cq->front];
897 cq->front = (cq->front + 1) & CQ_MASK;
898 return 0;
899}
900
901static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
902{
903 return (cq->rear - cq->front) & CQ_MASK;
904}
905
906static inline void mark_lock_accessed(struct lock_list *lock,
907 struct lock_list *parent)
908{
909 unsigned long nr;
910
911 nr = lock - list_entries;
912 WARN_ON(nr >= nr_list_entries);
913 lock->parent = parent;
914 lock->class->dep_gen_id = lockdep_dependency_gen_id;
915}
916
917static inline unsigned long lock_accessed(struct lock_list *lock)
918{
919 unsigned long nr;
920
921 nr = lock - list_entries;
922 WARN_ON(nr >= nr_list_entries);
923 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
924}
925
926static inline struct lock_list *get_lock_parent(struct lock_list *child)
927{
928 return child->parent;
929}
930
931static inline int get_lock_depth(struct lock_list *child)
932{
933 int depth = 0;
934 struct lock_list *parent;
935
936 while ((parent = get_lock_parent(child))) {
937 child = parent;
938 depth++;
939 }
940 return depth;
941}
942
943static int __bfs(struct lock_list *source_entry,
944 void *data,
945 int (*match)(struct lock_list *entry, void *data),
946 struct lock_list **target_entry,
947 int forward)
948{
949 struct lock_list *entry;
950 struct list_head *head;
951 struct circular_queue *cq = &lock_cq;
952 int ret = 1;
953
954 if (match(source_entry, data)) {
955 *target_entry = source_entry;
956 ret = 0;
957 goto exit;
958 }
959
960 if (forward)
961 head = &source_entry->class->locks_after;
962 else
963 head = &source_entry->class->locks_before;
964
965 if (list_empty(head))
966 goto exit;
967
968 __cq_init(cq);
969 __cq_enqueue(cq, (unsigned long)source_entry);
970
971 while (!__cq_empty(cq)) {
972 struct lock_list *lock;
973
974 __cq_dequeue(cq, (unsigned long *)&lock);
975
976 if (!lock->class) {
977 ret = -2;
978 goto exit;
979 }
980
981 if (forward)
982 head = &lock->class->locks_after;
983 else
984 head = &lock->class->locks_before;
985
986 list_for_each_entry(entry, head, entry) {
987 if (!lock_accessed(entry)) {
988 unsigned int cq_depth;
989 mark_lock_accessed(entry, lock);
990 if (match(entry, data)) {
991 *target_entry = entry;
992 ret = 0;
993 goto exit;
994 }
995
996 if (__cq_enqueue(cq, (unsigned long)entry)) {
997 ret = -1;
998 goto exit;
999 }
1000 cq_depth = __cq_get_elem_count(cq);
1001 if (max_bfs_queue_depth < cq_depth)
1002 max_bfs_queue_depth = cq_depth;
1003 }
1004 }
1005 }
1006exit:
1007 return ret;
1008}
1009
1010static inline int __bfs_forwards(struct lock_list *src_entry,
1011 void *data,
1012 int (*match)(struct lock_list *entry, void *data),
1013 struct lock_list **target_entry)
1014{
1015 return __bfs(src_entry, data, match, target_entry, 1);
1016
1017}
1018
1019static inline int __bfs_backwards(struct lock_list *src_entry,
1020 void *data,
1021 int (*match)(struct lock_list *entry, void *data),
1022 struct lock_list **target_entry)
1023{
1024 return __bfs(src_entry, data, match, target_entry, 0);
1025
1026}
1027
1028/*
901 * Recursive, forwards-direction lock-dependency checking, used for 1029 * Recursive, forwards-direction lock-dependency checking, used for
902 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1030 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
903 * checking. 1031 * checking.
904 *
905 * (to keep the stackframe of the recursive functions small we
906 * use these global variables, and we also mark various helper
907 * functions as noinline.)
908 */ 1032 */
909static struct held_lock *check_source, *check_target;
910 1033
911/* 1034/*
912 * Print a dependency chain entry (this is only done when a deadlock 1035 * Print a dependency chain entry (this is only done when a deadlock
913 * has been detected): 1036 * has been detected):
914 */ 1037 */
915static noinline int 1038static noinline int
916print_circular_bug_entry(struct lock_list *target, unsigned int depth) 1039print_circular_bug_entry(struct lock_list *target, int depth)
917{ 1040{
918 if (debug_locks_silent) 1041 if (debug_locks_silent)
919 return 0; 1042 return 0;
@@ -930,11 +1053,13 @@ print_circular_bug_entry(struct lock_list *target, unsigned int depth)
930 * header first: 1053 * header first:
931 */ 1054 */
932static noinline int 1055static noinline int
933print_circular_bug_header(struct lock_list *entry, unsigned int depth) 1056print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1057 struct held_lock *check_src,
1058 struct held_lock *check_tgt)
934{ 1059{
935 struct task_struct *curr = current; 1060 struct task_struct *curr = current;
936 1061
937 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1062 if (debug_locks_silent)
938 return 0; 1063 return 0;
939 1064
940 printk("\n=======================================================\n"); 1065 printk("\n=======================================================\n");
@@ -943,9 +1068,9 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth)
943 printk( "-------------------------------------------------------\n"); 1068 printk( "-------------------------------------------------------\n");
944 printk("%s/%d is trying to acquire lock:\n", 1069 printk("%s/%d is trying to acquire lock:\n",
945 curr->comm, task_pid_nr(curr)); 1070 curr->comm, task_pid_nr(curr));
946 print_lock(check_source); 1071 print_lock(check_src);
947 printk("\nbut task is already holding lock:\n"); 1072 printk("\nbut task is already holding lock:\n");
948 print_lock(check_target); 1073 print_lock(check_tgt);
949 printk("\nwhich lock already depends on the new lock.\n\n"); 1074 printk("\nwhich lock already depends on the new lock.\n\n");
950 printk("\nthe existing dependency chain (in reverse order) is:\n"); 1075 printk("\nthe existing dependency chain (in reverse order) is:\n");
951 1076
@@ -954,19 +1079,36 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth)
954 return 0; 1079 return 0;
955} 1080}
956 1081
957static noinline int print_circular_bug_tail(void) 1082static inline int class_equal(struct lock_list *entry, void *data)
1083{
1084 return entry->class == data;
1085}
1086
1087static noinline int print_circular_bug(struct lock_list *this,
1088 struct lock_list *target,
1089 struct held_lock *check_src,
1090 struct held_lock *check_tgt)
958{ 1091{
959 struct task_struct *curr = current; 1092 struct task_struct *curr = current;
960 struct lock_list this; 1093 struct lock_list *parent;
1094 int depth;
961 1095
962 if (debug_locks_silent) 1096 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
963 return 0; 1097 return 0;
964 1098
965 this.class = hlock_class(check_source); 1099 if (!save_trace(&this->trace))
966 if (!save_trace(&this.trace))
967 return 0; 1100 return 0;
968 1101
969 print_circular_bug_entry(&this, 0); 1102 depth = get_lock_depth(target);
1103
1104 print_circular_bug_header(target, depth, check_src, check_tgt);
1105
1106 parent = get_lock_parent(target);
1107
1108 while (parent) {
1109 print_circular_bug_entry(parent, --depth);
1110 parent = get_lock_parent(parent);
1111 }
970 1112
971 printk("\nother info that might help us debug this:\n\n"); 1113 printk("\nother info that might help us debug this:\n\n");
972 lockdep_print_held_locks(curr); 1114 lockdep_print_held_locks(curr);
@@ -977,73 +1119,69 @@ static noinline int print_circular_bug_tail(void)
977 return 0; 1119 return 0;
978} 1120}
979 1121
980#define RECURSION_LIMIT 40 1122static noinline int print_bfs_bug(int ret)
981
982static int noinline print_infinite_recursion_bug(void)
983{ 1123{
984 if (!debug_locks_off_graph_unlock()) 1124 if (!debug_locks_off_graph_unlock())
985 return 0; 1125 return 0;
986 1126
987 WARN_ON(1); 1127 WARN(1, "lockdep bfs error:%d\n", ret);
988 1128
989 return 0; 1129 return 0;
990} 1130}
991 1131
992unsigned long __lockdep_count_forward_deps(struct lock_class *class, 1132static int noop_count(struct lock_list *entry, void *data)
993 unsigned int depth)
994{ 1133{
995 struct lock_list *entry; 1134 (*(unsigned long *)data)++;
996 unsigned long ret = 1; 1135 return 0;
1136}
997 1137
998 if (lockdep_dependency_visit(class, depth)) 1138unsigned long __lockdep_count_forward_deps(struct lock_list *this)
999 return 0; 1139{
1140 unsigned long count = 0;
1141 struct lock_list *uninitialized_var(target_entry);
1000 1142
1001 /* 1143 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1002 * Recurse this class's dependency list:
1003 */
1004 list_for_each_entry(entry, &class->locks_after, entry)
1005 ret += __lockdep_count_forward_deps(entry->class, depth + 1);
1006 1144
1007 return ret; 1145 return count;
1008} 1146}
1009
1010unsigned long lockdep_count_forward_deps(struct lock_class *class) 1147unsigned long lockdep_count_forward_deps(struct lock_class *class)
1011{ 1148{
1012 unsigned long ret, flags; 1149 unsigned long ret, flags;
1150 struct lock_list this;
1151
1152 this.parent = NULL;
1153 this.class = class;
1013 1154
1014 local_irq_save(flags); 1155 local_irq_save(flags);
1015 __raw_spin_lock(&lockdep_lock); 1156 __raw_spin_lock(&lockdep_lock);
1016 ret = __lockdep_count_forward_deps(class, 0); 1157 ret = __lockdep_count_forward_deps(&this);
1017 __raw_spin_unlock(&lockdep_lock); 1158 __raw_spin_unlock(&lockdep_lock);
1018 local_irq_restore(flags); 1159 local_irq_restore(flags);
1019 1160
1020 return ret; 1161 return ret;
1021} 1162}
1022 1163
1023unsigned long __lockdep_count_backward_deps(struct lock_class *class, 1164unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1024 unsigned int depth)
1025{ 1165{
1026 struct lock_list *entry; 1166 unsigned long count = 0;
1027 unsigned long ret = 1; 1167 struct lock_list *uninitialized_var(target_entry);
1028 1168
1029 if (lockdep_dependency_visit(class, depth)) 1169 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1030 return 0;
1031 /*
1032 * Recurse this class's dependency list:
1033 */
1034 list_for_each_entry(entry, &class->locks_before, entry)
1035 ret += __lockdep_count_backward_deps(entry->class, depth + 1);
1036 1170
1037 return ret; 1171 return count;
1038} 1172}
1039 1173
1040unsigned long lockdep_count_backward_deps(struct lock_class *class) 1174unsigned long lockdep_count_backward_deps(struct lock_class *class)
1041{ 1175{
1042 unsigned long ret, flags; 1176 unsigned long ret, flags;
1177 struct lock_list this;
1178
1179 this.parent = NULL;
1180 this.class = class;
1043 1181
1044 local_irq_save(flags); 1182 local_irq_save(flags);
1045 __raw_spin_lock(&lockdep_lock); 1183 __raw_spin_lock(&lockdep_lock);
1046 ret = __lockdep_count_backward_deps(class, 0); 1184 ret = __lockdep_count_backward_deps(&this);
1047 __raw_spin_unlock(&lockdep_lock); 1185 __raw_spin_unlock(&lockdep_lock);
1048 local_irq_restore(flags); 1186 local_irq_restore(flags);
1049 1187
@@ -1055,29 +1193,16 @@ unsigned long lockdep_count_backward_deps(struct lock_class *class)
1055 * lead to <target>. Print an error and return 0 if it does. 1193 * lead to <target>. Print an error and return 0 if it does.
1056 */ 1194 */
1057static noinline int 1195static noinline int
1058check_noncircular(struct lock_class *source, unsigned int depth) 1196check_noncircular(struct lock_list *root, struct lock_class *target,
1197 struct lock_list **target_entry)
1059{ 1198{
1060 struct lock_list *entry; 1199 int result;
1061 1200
1062 if (lockdep_dependency_visit(source, depth)) 1201 debug_atomic_inc(&nr_cyclic_checks);
1063 return 1;
1064 1202
1065 debug_atomic_inc(&nr_cyclic_check_recursions); 1203 result = __bfs_forwards(root, target, class_equal, target_entry);
1066 if (depth > max_recursion_depth) 1204
1067 max_recursion_depth = depth; 1205 return result;
1068 if (depth >= RECURSION_LIMIT)
1069 return print_infinite_recursion_bug();
1070 /*
1071 * Check this lock's dependency list:
1072 */
1073 list_for_each_entry(entry, &source->locks_after, entry) {
1074 if (entry->class == hlock_class(check_target))
1075 return print_circular_bug_header(entry, depth+1);
1076 debug_atomic_inc(&nr_cyclic_checks);
1077 if (!check_noncircular(entry->class, depth+1))
1078 return print_circular_bug_entry(entry, depth+1);
1079 }
1080 return 1;
1081} 1206}
1082 1207
1083#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1208#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
@@ -1086,103 +1211,121 @@ check_noncircular(struct lock_class *source, unsigned int depth)
1086 * proving that two subgraphs can be connected by a new dependency 1211 * proving that two subgraphs can be connected by a new dependency
1087 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1212 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1088 */ 1213 */
1089static enum lock_usage_bit find_usage_bit; 1214
1090static struct lock_class *forwards_match, *backwards_match; 1215static inline int usage_match(struct lock_list *entry, void *bit)
1216{
1217 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1218}
1219
1220
1091 1221
1092/* 1222/*
1093 * Find a node in the forwards-direction dependency sub-graph starting 1223 * Find a node in the forwards-direction dependency sub-graph starting
1094 * at <source> that matches <find_usage_bit>. 1224 * at @root->class that matches @bit.
1095 * 1225 *
1096 * Return 2 if such a node exists in the subgraph, and put that node 1226 * Return 0 if such a node exists in the subgraph, and put that node
1097 * into <forwards_match>. 1227 * into *@target_entry.
1098 * 1228 *
1099 * Return 1 otherwise and keep <forwards_match> unchanged. 1229 * Return 1 otherwise and keep *@target_entry unchanged.
1100 * Return 0 on error. 1230 * Return <0 on error.
1101 */ 1231 */
1102static noinline int 1232static int
1103find_usage_forwards(struct lock_class *source, unsigned int depth) 1233find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1234 struct lock_list **target_entry)
1104{ 1235{
1105 struct lock_list *entry; 1236 int result;
1106 int ret;
1107
1108 if (lockdep_dependency_visit(source, depth))
1109 return 1;
1110
1111 if (depth > max_recursion_depth)
1112 max_recursion_depth = depth;
1113 if (depth >= RECURSION_LIMIT)
1114 return print_infinite_recursion_bug();
1115 1237
1116 debug_atomic_inc(&nr_find_usage_forwards_checks); 1238 debug_atomic_inc(&nr_find_usage_forwards_checks);
1117 if (source->usage_mask & (1 << find_usage_bit)) {
1118 forwards_match = source;
1119 return 2;
1120 }
1121 1239
1122 /* 1240 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1123 * Check this lock's dependency list: 1241
1124 */ 1242 return result;
1125 list_for_each_entry(entry, &source->locks_after, entry) {
1126 debug_atomic_inc(&nr_find_usage_forwards_recursions);
1127 ret = find_usage_forwards(entry->class, depth+1);
1128 if (ret == 2 || ret == 0)
1129 return ret;
1130 }
1131 return 1;
1132} 1243}
1133 1244
1134/* 1245/*
1135 * Find a node in the backwards-direction dependency sub-graph starting 1246 * Find a node in the backwards-direction dependency sub-graph starting
1136 * at <source> that matches <find_usage_bit>. 1247 * at @root->class that matches @bit.
1137 * 1248 *
1138 * Return 2 if such a node exists in the subgraph, and put that node 1249 * Return 0 if such a node exists in the subgraph, and put that node
1139 * into <backwards_match>. 1250 * into *@target_entry.
1140 * 1251 *
1141 * Return 1 otherwise and keep <backwards_match> unchanged. 1252 * Return 1 otherwise and keep *@target_entry unchanged.
1142 * Return 0 on error. 1253 * Return <0 on error.
1143 */ 1254 */
1144static noinline int 1255static int
1145find_usage_backwards(struct lock_class *source, unsigned int depth) 1256find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1257 struct lock_list **target_entry)
1146{ 1258{
1147 struct lock_list *entry; 1259 int result;
1148 int ret;
1149 1260
1150 if (lockdep_dependency_visit(source, depth)) 1261 debug_atomic_inc(&nr_find_usage_backwards_checks);
1151 return 1;
1152 1262
1153 if (!__raw_spin_is_locked(&lockdep_lock)) 1263 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1154 return DEBUG_LOCKS_WARN_ON(1);
1155 1264
1156 if (depth > max_recursion_depth) 1265 return result;
1157 max_recursion_depth = depth; 1266}
1158 if (depth >= RECURSION_LIMIT)
1159 return print_infinite_recursion_bug();
1160 1267
1161 debug_atomic_inc(&nr_find_usage_backwards_checks); 1268static void print_lock_class_header(struct lock_class *class, int depth)
1162 if (source->usage_mask & (1 << find_usage_bit)) { 1269{
1163 backwards_match = source; 1270 int bit;
1164 return 2;
1165 }
1166 1271
1167 if (!source && debug_locks_off_graph_unlock()) { 1272 printk("%*s->", depth, "");
1168 WARN_ON(1); 1273 print_lock_name(class);
1169 return 0; 1274 printk(" ops: %lu", class->ops);
1170 } 1275 printk(" {\n");
1171 1276
1172 /* 1277 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1173 * Check this lock's dependency list: 1278 if (class->usage_mask & (1 << bit)) {
1174 */ 1279 int len = depth;
1175 list_for_each_entry(entry, &source->locks_before, entry) { 1280
1176 debug_atomic_inc(&nr_find_usage_backwards_recursions); 1281 len += printk("%*s %s", depth, "", usage_str[bit]);
1177 ret = find_usage_backwards(entry->class, depth+1); 1282 len += printk(" at:\n");
1178 if (ret == 2 || ret == 0) 1283 print_stack_trace(class->usage_traces + bit, len);
1179 return ret; 1284 }
1180 } 1285 }
1181 return 1; 1286 printk("%*s }\n", depth, "");
1287
1288 printk("%*s ... key at: ",depth,"");
1289 print_ip_sym((unsigned long)class->key);
1290}
1291
1292/*
1293 * printk the shortest lock dependencies from @start to @end in reverse order:
1294 */
1295static void __used
1296print_shortest_lock_dependencies(struct lock_list *leaf,
1297 struct lock_list *root)
1298{
1299 struct lock_list *entry = leaf;
1300 int depth;
1301
1302 /*compute depth from generated tree by BFS*/
1303 depth = get_lock_depth(leaf);
1304
1305 do {
1306 print_lock_class_header(entry->class, depth);
1307 printk("%*s ... acquired at:\n", depth, "");
1308 print_stack_trace(&entry->trace, 2);
1309 printk("\n");
1310
1311 if (depth == 0 && (entry != root)) {
1312 printk("lockdep:%s bad BFS generated tree\n", __func__);
1313 break;
1314 }
1315
1316 entry = get_lock_parent(entry);
1317 depth--;
1318 } while (entry && (depth >= 0));
1319
1320 return;
1182} 1321}
1183 1322
1184static int 1323static int
1185print_bad_irq_dependency(struct task_struct *curr, 1324print_bad_irq_dependency(struct task_struct *curr,
1325 struct lock_list *prev_root,
1326 struct lock_list *next_root,
1327 struct lock_list *backwards_entry,
1328 struct lock_list *forwards_entry,
1186 struct held_lock *prev, 1329 struct held_lock *prev,
1187 struct held_lock *next, 1330 struct held_lock *next,
1188 enum lock_usage_bit bit1, 1331 enum lock_usage_bit bit1,
@@ -1215,26 +1358,32 @@ print_bad_irq_dependency(struct task_struct *curr,
1215 1358
1216 printk("\nbut this new dependency connects a %s-irq-safe lock:\n", 1359 printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1217 irqclass); 1360 irqclass);
1218 print_lock_name(backwards_match); 1361 print_lock_name(backwards_entry->class);
1219 printk("\n... which became %s-irq-safe at:\n", irqclass); 1362 printk("\n... which became %s-irq-safe at:\n", irqclass);
1220 1363
1221 print_stack_trace(backwards_match->usage_traces + bit1, 1); 1364 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1222 1365
1223 printk("\nto a %s-irq-unsafe lock:\n", irqclass); 1366 printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1224 print_lock_name(forwards_match); 1367 print_lock_name(forwards_entry->class);
1225 printk("\n... which became %s-irq-unsafe at:\n", irqclass); 1368 printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1226 printk("..."); 1369 printk("...");
1227 1370
1228 print_stack_trace(forwards_match->usage_traces + bit2, 1); 1371 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1229 1372
1230 printk("\nother info that might help us debug this:\n\n"); 1373 printk("\nother info that might help us debug this:\n\n");
1231 lockdep_print_held_locks(curr); 1374 lockdep_print_held_locks(curr);
1232 1375
1233 printk("\nthe %s-irq-safe lock's dependencies:\n", irqclass); 1376 printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1234 print_lock_dependencies(backwards_match, 0); 1377 printk(" and the holding lock:\n");
1378 if (!save_trace(&prev_root->trace))
1379 return 0;
1380 print_shortest_lock_dependencies(backwards_entry, prev_root);
1235 1381
1236 printk("\nthe %s-irq-unsafe lock's dependencies:\n", irqclass); 1382 printk("\nthe dependencies between the lock to be acquired");
1237 print_lock_dependencies(forwards_match, 0); 1383 printk(" and %s-irq-unsafe lock:\n", irqclass);
1384 if (!save_trace(&next_root->trace))
1385 return 0;
1386 print_shortest_lock_dependencies(forwards_entry, next_root);
1238 1387
1239 printk("\nstack backtrace:\n"); 1388 printk("\nstack backtrace:\n");
1240 dump_stack(); 1389 dump_stack();
@@ -1248,19 +1397,30 @@ check_usage(struct task_struct *curr, struct held_lock *prev,
1248 enum lock_usage_bit bit_forwards, const char *irqclass) 1397 enum lock_usage_bit bit_forwards, const char *irqclass)
1249{ 1398{
1250 int ret; 1399 int ret;
1400 struct lock_list this, that;
1401 struct lock_list *uninitialized_var(target_entry);
1402 struct lock_list *uninitialized_var(target_entry1);
1251 1403
1252 find_usage_bit = bit_backwards; 1404 this.parent = NULL;
1253 /* fills in <backwards_match> */ 1405
1254 ret = find_usage_backwards(hlock_class(prev), 0); 1406 this.class = hlock_class(prev);
1255 if (!ret || ret == 1) 1407 ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1408 if (ret < 0)
1409 return print_bfs_bug(ret);
1410 if (ret == 1)
1256 return ret; 1411 return ret;
1257 1412
1258 find_usage_bit = bit_forwards; 1413 that.parent = NULL;
1259 ret = find_usage_forwards(hlock_class(next), 0); 1414 that.class = hlock_class(next);
1260 if (!ret || ret == 1) 1415 ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1416 if (ret < 0)
1417 return print_bfs_bug(ret);
1418 if (ret == 1)
1261 return ret; 1419 return ret;
1262 /* ret == 2 */ 1420
1263 return print_bad_irq_dependency(curr, prev, next, 1421 return print_bad_irq_dependency(curr, &this, &that,
1422 target_entry, target_entry1,
1423 prev, next,
1264 bit_backwards, bit_forwards, irqclass); 1424 bit_backwards, bit_forwards, irqclass);
1265} 1425}
1266 1426
@@ -1472,6 +1632,8 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
1472{ 1632{
1473 struct lock_list *entry; 1633 struct lock_list *entry;
1474 int ret; 1634 int ret;
1635 struct lock_list this;
1636 struct lock_list *uninitialized_var(target_entry);
1475 1637
1476 /* 1638 /*
1477 * Prove that the new <prev> -> <next> dependency would not 1639 * Prove that the new <prev> -> <next> dependency would not
@@ -1482,10 +1644,13 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
1482 * We are using global variables to control the recursion, to 1644 * We are using global variables to control the recursion, to
1483 * keep the stackframe size of the recursive functions low: 1645 * keep the stackframe size of the recursive functions low:
1484 */ 1646 */
1485 check_source = next; 1647 this.class = hlock_class(next);
1486 check_target = prev; 1648 this.parent = NULL;
1487 if (!(check_noncircular(hlock_class(next), 0))) 1649 ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1488 return print_circular_bug_tail(); 1650 if (unlikely(!ret))
1651 return print_circular_bug(&this, target_entry, next, prev);
1652 else if (unlikely(ret < 0))
1653 return print_bfs_bug(ret);
1489 1654
1490 if (!check_prev_add_irq(curr, prev, next)) 1655 if (!check_prev_add_irq(curr, prev, next))
1491 return 0; 1656 return 0;
@@ -1884,7 +2049,8 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this,
1884 * print irq inversion bug: 2049 * print irq inversion bug:
1885 */ 2050 */
1886static int 2051static int
1887print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, 2052print_irq_inversion_bug(struct task_struct *curr,
2053 struct lock_list *root, struct lock_list *other,
1888 struct held_lock *this, int forwards, 2054 struct held_lock *this, int forwards,
1889 const char *irqclass) 2055 const char *irqclass)
1890{ 2056{
@@ -1902,17 +2068,16 @@ print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other,
1902 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2068 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
1903 else 2069 else
1904 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2070 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
1905 print_lock_name(other); 2071 print_lock_name(other->class);
1906 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2072 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
1907 2073
1908 printk("\nother info that might help us debug this:\n"); 2074 printk("\nother info that might help us debug this:\n");
1909 lockdep_print_held_locks(curr); 2075 lockdep_print_held_locks(curr);
1910 2076
1911 printk("\nthe first lock's dependencies:\n"); 2077 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
1912 print_lock_dependencies(hlock_class(this), 0); 2078 if (!save_trace(&root->trace))
1913 2079 return 0;
1914 printk("\nthe second lock's dependencies:\n"); 2080 print_shortest_lock_dependencies(other, root);
1915 print_lock_dependencies(other, 0);
1916 2081
1917 printk("\nstack backtrace:\n"); 2082 printk("\nstack backtrace:\n");
1918 dump_stack(); 2083 dump_stack();
@@ -1929,14 +2094,19 @@ check_usage_forwards(struct task_struct *curr, struct held_lock *this,
1929 enum lock_usage_bit bit, const char *irqclass) 2094 enum lock_usage_bit bit, const char *irqclass)
1930{ 2095{
1931 int ret; 2096 int ret;
1932 2097 struct lock_list root;
1933 find_usage_bit = bit; 2098 struct lock_list *uninitialized_var(target_entry);
1934 /* fills in <forwards_match> */ 2099
1935 ret = find_usage_forwards(hlock_class(this), 0); 2100 root.parent = NULL;
1936 if (!ret || ret == 1) 2101 root.class = hlock_class(this);
2102 ret = find_usage_forwards(&root, bit, &target_entry);
2103 if (ret < 0)
2104 return print_bfs_bug(ret);
2105 if (ret == 1)
1937 return ret; 2106 return ret;
1938 2107
1939 return print_irq_inversion_bug(curr, forwards_match, this, 1, irqclass); 2108 return print_irq_inversion_bug(curr, &root, target_entry,
2109 this, 1, irqclass);
1940} 2110}
1941 2111
1942/* 2112/*
@@ -1948,14 +2118,19 @@ check_usage_backwards(struct task_struct *curr, struct held_lock *this,
1948 enum lock_usage_bit bit, const char *irqclass) 2118 enum lock_usage_bit bit, const char *irqclass)
1949{ 2119{
1950 int ret; 2120 int ret;
1951 2121 struct lock_list root;
1952 find_usage_bit = bit; 2122 struct lock_list *uninitialized_var(target_entry);
1953 /* fills in <backwards_match> */ 2123
1954 ret = find_usage_backwards(hlock_class(this), 0); 2124 root.parent = NULL;
1955 if (!ret || ret == 1) 2125 root.class = hlock_class(this);
2126 ret = find_usage_backwards(&root, bit, &target_entry);
2127 if (ret < 0)
2128 return print_bfs_bug(ret);
2129 if (ret == 1)
1956 return ret; 2130 return ret;
1957 2131
1958 return print_irq_inversion_bug(curr, backwards_match, this, 0, irqclass); 2132 return print_irq_inversion_bug(curr, &root, target_entry,
2133 this, 1, irqclass);
1959} 2134}
1960 2135
1961void print_irqtrace_events(struct task_struct *curr) 2136void print_irqtrace_events(struct task_struct *curr)
@@ -2530,13 +2705,15 @@ EXPORT_SYMBOL_GPL(lockdep_init_map);
2530 */ 2705 */
2531static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 2706static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2532 int trylock, int read, int check, int hardirqs_off, 2707 int trylock, int read, int check, int hardirqs_off,
2533 struct lockdep_map *nest_lock, unsigned long ip) 2708 struct lockdep_map *nest_lock, unsigned long ip,
2709 int references)
2534{ 2710{
2535 struct task_struct *curr = current; 2711 struct task_struct *curr = current;
2536 struct lock_class *class = NULL; 2712 struct lock_class *class = NULL;
2537 struct held_lock *hlock; 2713 struct held_lock *hlock;
2538 unsigned int depth, id; 2714 unsigned int depth, id;
2539 int chain_head = 0; 2715 int chain_head = 0;
2716 int class_idx;
2540 u64 chain_key; 2717 u64 chain_key;
2541 2718
2542 if (!prove_locking) 2719 if (!prove_locking)
@@ -2584,10 +2761,24 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2584 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 2761 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
2585 return 0; 2762 return 0;
2586 2763
2764 class_idx = class - lock_classes + 1;
2765
2766 if (depth) {
2767 hlock = curr->held_locks + depth - 1;
2768 if (hlock->class_idx == class_idx && nest_lock) {
2769 if (hlock->references)
2770 hlock->references++;
2771 else
2772 hlock->references = 2;
2773
2774 return 1;
2775 }
2776 }
2777
2587 hlock = curr->held_locks + depth; 2778 hlock = curr->held_locks + depth;
2588 if (DEBUG_LOCKS_WARN_ON(!class)) 2779 if (DEBUG_LOCKS_WARN_ON(!class))
2589 return 0; 2780 return 0;
2590 hlock->class_idx = class - lock_classes + 1; 2781 hlock->class_idx = class_idx;
2591 hlock->acquire_ip = ip; 2782 hlock->acquire_ip = ip;
2592 hlock->instance = lock; 2783 hlock->instance = lock;
2593 hlock->nest_lock = nest_lock; 2784 hlock->nest_lock = nest_lock;
@@ -2595,6 +2786,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2595 hlock->read = read; 2786 hlock->read = read;
2596 hlock->check = check; 2787 hlock->check = check;
2597 hlock->hardirqs_off = !!hardirqs_off; 2788 hlock->hardirqs_off = !!hardirqs_off;
2789 hlock->references = references;
2598#ifdef CONFIG_LOCK_STAT 2790#ifdef CONFIG_LOCK_STAT
2599 hlock->waittime_stamp = 0; 2791 hlock->waittime_stamp = 0;
2600 hlock->holdtime_stamp = sched_clock(); 2792 hlock->holdtime_stamp = sched_clock();
@@ -2703,6 +2895,30 @@ static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
2703 return 1; 2895 return 1;
2704} 2896}
2705 2897
2898static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
2899{
2900 if (hlock->instance == lock)
2901 return 1;
2902
2903 if (hlock->references) {
2904 struct lock_class *class = lock->class_cache;
2905
2906 if (!class)
2907 class = look_up_lock_class(lock, 0);
2908
2909 if (DEBUG_LOCKS_WARN_ON(!class))
2910 return 0;
2911
2912 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
2913 return 0;
2914
2915 if (hlock->class_idx == class - lock_classes + 1)
2916 return 1;
2917 }
2918
2919 return 0;
2920}
2921
2706static int 2922static int
2707__lock_set_class(struct lockdep_map *lock, const char *name, 2923__lock_set_class(struct lockdep_map *lock, const char *name,
2708 struct lock_class_key *key, unsigned int subclass, 2924 struct lock_class_key *key, unsigned int subclass,
@@ -2726,7 +2942,7 @@ __lock_set_class(struct lockdep_map *lock, const char *name,
2726 */ 2942 */
2727 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 2943 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2728 break; 2944 break;
2729 if (hlock->instance == lock) 2945 if (match_held_lock(hlock, lock))
2730 goto found_it; 2946 goto found_it;
2731 prev_hlock = hlock; 2947 prev_hlock = hlock;
2732 } 2948 }
@@ -2745,7 +2961,8 @@ found_it:
2745 if (!__lock_acquire(hlock->instance, 2961 if (!__lock_acquire(hlock->instance,
2746 hlock_class(hlock)->subclass, hlock->trylock, 2962 hlock_class(hlock)->subclass, hlock->trylock,
2747 hlock->read, hlock->check, hlock->hardirqs_off, 2963 hlock->read, hlock->check, hlock->hardirqs_off,
2748 hlock->nest_lock, hlock->acquire_ip)) 2964 hlock->nest_lock, hlock->acquire_ip,
2965 hlock->references))
2749 return 0; 2966 return 0;
2750 } 2967 }
2751 2968
@@ -2784,20 +3001,34 @@ lock_release_non_nested(struct task_struct *curr,
2784 */ 3001 */
2785 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3002 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2786 break; 3003 break;
2787 if (hlock->instance == lock) 3004 if (match_held_lock(hlock, lock))
2788 goto found_it; 3005 goto found_it;
2789 prev_hlock = hlock; 3006 prev_hlock = hlock;
2790 } 3007 }
2791 return print_unlock_inbalance_bug(curr, lock, ip); 3008 return print_unlock_inbalance_bug(curr, lock, ip);
2792 3009
2793found_it: 3010found_it:
2794 lock_release_holdtime(hlock); 3011 if (hlock->instance == lock)
3012 lock_release_holdtime(hlock);
3013
3014 if (hlock->references) {
3015 hlock->references--;
3016 if (hlock->references) {
3017 /*
3018 * We had, and after removing one, still have
3019 * references, the current lock stack is still
3020 * valid. We're done!
3021 */
3022 return 1;
3023 }
3024 }
2795 3025
2796 /* 3026 /*
2797 * We have the right lock to unlock, 'hlock' points to it. 3027 * We have the right lock to unlock, 'hlock' points to it.
2798 * Now we remove it from the stack, and add back the other 3028 * Now we remove it from the stack, and add back the other
2799 * entries (if any), recalculating the hash along the way: 3029 * entries (if any), recalculating the hash along the way:
2800 */ 3030 */
3031
2801 curr->lockdep_depth = i; 3032 curr->lockdep_depth = i;
2802 curr->curr_chain_key = hlock->prev_chain_key; 3033 curr->curr_chain_key = hlock->prev_chain_key;
2803 3034
@@ -2806,7 +3037,8 @@ found_it:
2806 if (!__lock_acquire(hlock->instance, 3037 if (!__lock_acquire(hlock->instance,
2807 hlock_class(hlock)->subclass, hlock->trylock, 3038 hlock_class(hlock)->subclass, hlock->trylock,
2808 hlock->read, hlock->check, hlock->hardirqs_off, 3039 hlock->read, hlock->check, hlock->hardirqs_off,
2809 hlock->nest_lock, hlock->acquire_ip)) 3040 hlock->nest_lock, hlock->acquire_ip,
3041 hlock->references))
2810 return 0; 3042 return 0;
2811 } 3043 }
2812 3044
@@ -2836,7 +3068,7 @@ static int lock_release_nested(struct task_struct *curr,
2836 /* 3068 /*
2837 * Is the unlock non-nested: 3069 * Is the unlock non-nested:
2838 */ 3070 */
2839 if (hlock->instance != lock) 3071 if (hlock->instance != lock || hlock->references)
2840 return lock_release_non_nested(curr, lock, ip); 3072 return lock_release_non_nested(curr, lock, ip);
2841 curr->lockdep_depth--; 3073 curr->lockdep_depth--;
2842 3074
@@ -2881,6 +3113,21 @@ __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
2881 check_chain_key(curr); 3113 check_chain_key(curr);
2882} 3114}
2883 3115
3116static int __lock_is_held(struct lockdep_map *lock)
3117{
3118 struct task_struct *curr = current;
3119 int i;
3120
3121 for (i = 0; i < curr->lockdep_depth; i++) {
3122 struct held_lock *hlock = curr->held_locks + i;
3123
3124 if (match_held_lock(hlock, lock))
3125 return 1;
3126 }
3127
3128 return 0;
3129}
3130
2884/* 3131/*
2885 * Check whether we follow the irq-flags state precisely: 3132 * Check whether we follow the irq-flags state precisely:
2886 */ 3133 */
@@ -2957,7 +3204,7 @@ void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2957 3204
2958 current->lockdep_recursion = 1; 3205 current->lockdep_recursion = 1;
2959 __lock_acquire(lock, subclass, trylock, read, check, 3206 __lock_acquire(lock, subclass, trylock, read, check,
2960 irqs_disabled_flags(flags), nest_lock, ip); 3207 irqs_disabled_flags(flags), nest_lock, ip, 0);
2961 current->lockdep_recursion = 0; 3208 current->lockdep_recursion = 0;
2962 raw_local_irq_restore(flags); 3209 raw_local_irq_restore(flags);
2963} 3210}
@@ -2982,6 +3229,26 @@ void lock_release(struct lockdep_map *lock, int nested,
2982} 3229}
2983EXPORT_SYMBOL_GPL(lock_release); 3230EXPORT_SYMBOL_GPL(lock_release);
2984 3231
3232int lock_is_held(struct lockdep_map *lock)
3233{
3234 unsigned long flags;
3235 int ret = 0;
3236
3237 if (unlikely(current->lockdep_recursion))
3238 return ret;
3239
3240 raw_local_irq_save(flags);
3241 check_flags(flags);
3242
3243 current->lockdep_recursion = 1;
3244 ret = __lock_is_held(lock);
3245 current->lockdep_recursion = 0;
3246 raw_local_irq_restore(flags);
3247
3248 return ret;
3249}
3250EXPORT_SYMBOL_GPL(lock_is_held);
3251
2985void lockdep_set_current_reclaim_state(gfp_t gfp_mask) 3252void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
2986{ 3253{
2987 current->lockdep_reclaim_gfp = gfp_mask; 3254 current->lockdep_reclaim_gfp = gfp_mask;
@@ -3041,7 +3308,7 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip)
3041 */ 3308 */
3042 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3309 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3043 break; 3310 break;
3044 if (hlock->instance == lock) 3311 if (match_held_lock(hlock, lock))
3045 goto found_it; 3312 goto found_it;
3046 prev_hlock = hlock; 3313 prev_hlock = hlock;
3047 } 3314 }
@@ -3049,6 +3316,9 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip)
3049 return; 3316 return;
3050 3317
3051found_it: 3318found_it:
3319 if (hlock->instance != lock)
3320 return;
3321
3052 hlock->waittime_stamp = sched_clock(); 3322 hlock->waittime_stamp = sched_clock();
3053 3323
3054 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 3324 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
@@ -3088,7 +3358,7 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3088 */ 3358 */
3089 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3359 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3090 break; 3360 break;
3091 if (hlock->instance == lock) 3361 if (match_held_lock(hlock, lock))
3092 goto found_it; 3362 goto found_it;
3093 prev_hlock = hlock; 3363 prev_hlock = hlock;
3094 } 3364 }
@@ -3096,6 +3366,9 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3096 return; 3366 return;
3097 3367
3098found_it: 3368found_it:
3369 if (hlock->instance != lock)
3370 return;
3371
3099 cpu = smp_processor_id(); 3372 cpu = smp_processor_id();
3100 if (hlock->waittime_stamp) { 3373 if (hlock->waittime_stamp) {
3101 now = sched_clock(); 3374 now = sched_clock();
@@ -3326,7 +3599,12 @@ void __init lockdep_info(void)
3326 sizeof(struct list_head) * CLASSHASH_SIZE + 3599 sizeof(struct list_head) * CLASSHASH_SIZE +
3327 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 3600 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
3328 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 3601 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
3329 sizeof(struct list_head) * CHAINHASH_SIZE) / 1024); 3602 sizeof(struct list_head) * CHAINHASH_SIZE
3603#ifdef CONFIG_PROVE_LOCKING
3604 + sizeof(struct circular_queue)
3605#endif
3606 ) / 1024
3607 );
3330 3608
3331 printk(" per task-struct memory footprint: %lu bytes\n", 3609 printk(" per task-struct memory footprint: %lu bytes\n",
3332 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 3610 sizeof(struct held_lock) * MAX_LOCK_DEPTH);
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h
index 699a2ac3a0d7..a2ee95ad1313 100644
--- a/kernel/lockdep_internals.h
+++ b/kernel/lockdep_internals.h
@@ -91,6 +91,8 @@ extern unsigned int nr_process_chains;
91extern unsigned int max_lockdep_depth; 91extern unsigned int max_lockdep_depth;
92extern unsigned int max_recursion_depth; 92extern unsigned int max_recursion_depth;
93 93
94extern unsigned int max_bfs_queue_depth;
95
94#ifdef CONFIG_PROVE_LOCKING 96#ifdef CONFIG_PROVE_LOCKING
95extern unsigned long lockdep_count_forward_deps(struct lock_class *); 97extern unsigned long lockdep_count_forward_deps(struct lock_class *);
96extern unsigned long lockdep_count_backward_deps(struct lock_class *); 98extern unsigned long lockdep_count_backward_deps(struct lock_class *);
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c
index e94caa666dba..d4b3dbc79fdb 100644
--- a/kernel/lockdep_proc.c
+++ b/kernel/lockdep_proc.c
@@ -25,38 +25,12 @@
25 25
26static void *l_next(struct seq_file *m, void *v, loff_t *pos) 26static void *l_next(struct seq_file *m, void *v, loff_t *pos)
27{ 27{
28 struct lock_class *class; 28 return seq_list_next(v, &all_lock_classes, pos);
29
30 (*pos)++;
31
32 if (v == SEQ_START_TOKEN)
33 class = m->private;
34 else {
35 class = v;
36
37 if (class->lock_entry.next != &all_lock_classes)
38 class = list_entry(class->lock_entry.next,
39 struct lock_class, lock_entry);
40 else
41 class = NULL;
42 }
43
44 return class;
45} 29}
46 30
47static void *l_start(struct seq_file *m, loff_t *pos) 31static void *l_start(struct seq_file *m, loff_t *pos)
48{ 32{
49 struct lock_class *class; 33 return seq_list_start_head(&all_lock_classes, *pos);
50 loff_t i = 0;
51
52 if (*pos == 0)
53 return SEQ_START_TOKEN;
54
55 list_for_each_entry(class, &all_lock_classes, lock_entry) {
56 if (++i == *pos)
57 return class;
58 }
59 return NULL;
60} 34}
61 35
62static void l_stop(struct seq_file *m, void *v) 36static void l_stop(struct seq_file *m, void *v)
@@ -82,11 +56,11 @@ static void print_name(struct seq_file *m, struct lock_class *class)
82 56
83static int l_show(struct seq_file *m, void *v) 57static int l_show(struct seq_file *m, void *v)
84{ 58{
85 struct lock_class *class = v; 59 struct lock_class *class = list_entry(v, struct lock_class, lock_entry);
86 struct lock_list *entry; 60 struct lock_list *entry;
87 char usage[LOCK_USAGE_CHARS]; 61 char usage[LOCK_USAGE_CHARS];
88 62
89 if (v == SEQ_START_TOKEN) { 63 if (v == &all_lock_classes) {
90 seq_printf(m, "all lock classes:\n"); 64 seq_printf(m, "all lock classes:\n");
91 return 0; 65 return 0;
92 } 66 }
@@ -128,17 +102,7 @@ static const struct seq_operations lockdep_ops = {
128 102
129static int lockdep_open(struct inode *inode, struct file *file) 103static int lockdep_open(struct inode *inode, struct file *file)
130{ 104{
131 int res = seq_open(file, &lockdep_ops); 105 return seq_open(file, &lockdep_ops);
132 if (!res) {
133 struct seq_file *m = file->private_data;
134
135 if (!list_empty(&all_lock_classes))
136 m->private = list_entry(all_lock_classes.next,
137 struct lock_class, lock_entry);
138 else
139 m->private = NULL;
140 }
141 return res;
142} 106}
143 107
144static const struct file_operations proc_lockdep_operations = { 108static const struct file_operations proc_lockdep_operations = {
@@ -149,37 +113,23 @@ static const struct file_operations proc_lockdep_operations = {
149}; 113};
150 114
151#ifdef CONFIG_PROVE_LOCKING 115#ifdef CONFIG_PROVE_LOCKING
152static void *lc_next(struct seq_file *m, void *v, loff_t *pos)
153{
154 struct lock_chain *chain;
155
156 (*pos)++;
157
158 if (v == SEQ_START_TOKEN)
159 chain = m->private;
160 else {
161 chain = v;
162
163 if (*pos < nr_lock_chains)
164 chain = lock_chains + *pos;
165 else
166 chain = NULL;
167 }
168
169 return chain;
170}
171
172static void *lc_start(struct seq_file *m, loff_t *pos) 116static void *lc_start(struct seq_file *m, loff_t *pos)
173{ 117{
174 if (*pos == 0) 118 if (*pos == 0)
175 return SEQ_START_TOKEN; 119 return SEQ_START_TOKEN;
176 120
177 if (*pos < nr_lock_chains) 121 if (*pos - 1 < nr_lock_chains)
178 return lock_chains + *pos; 122 return lock_chains + (*pos - 1);
179 123
180 return NULL; 124 return NULL;
181} 125}
182 126
127static void *lc_next(struct seq_file *m, void *v, loff_t *pos)
128{
129 (*pos)++;
130 return lc_start(m, pos);
131}
132
183static void lc_stop(struct seq_file *m, void *v) 133static void lc_stop(struct seq_file *m, void *v)
184{ 134{
185} 135}
@@ -220,16 +170,7 @@ static const struct seq_operations lockdep_chains_ops = {
220 170
221static int lockdep_chains_open(struct inode *inode, struct file *file) 171static int lockdep_chains_open(struct inode *inode, struct file *file)
222{ 172{
223 int res = seq_open(file, &lockdep_chains_ops); 173 return seq_open(file, &lockdep_chains_ops);
224 if (!res) {
225 struct seq_file *m = file->private_data;
226
227 if (nr_lock_chains)
228 m->private = lock_chains;
229 else
230 m->private = NULL;
231 }
232 return res;
233} 174}
234 175
235static const struct file_operations proc_lockdep_chains_operations = { 176static const struct file_operations proc_lockdep_chains_operations = {
@@ -258,16 +199,10 @@ static void lockdep_stats_debug_show(struct seq_file *m)
258 debug_atomic_read(&chain_lookup_hits)); 199 debug_atomic_read(&chain_lookup_hits));
259 seq_printf(m, " cyclic checks: %11u\n", 200 seq_printf(m, " cyclic checks: %11u\n",
260 debug_atomic_read(&nr_cyclic_checks)); 201 debug_atomic_read(&nr_cyclic_checks));
261 seq_printf(m, " cyclic-check recursions: %11u\n",
262 debug_atomic_read(&nr_cyclic_check_recursions));
263 seq_printf(m, " find-mask forwards checks: %11u\n", 202 seq_printf(m, " find-mask forwards checks: %11u\n",
264 debug_atomic_read(&nr_find_usage_forwards_checks)); 203 debug_atomic_read(&nr_find_usage_forwards_checks));
265 seq_printf(m, " find-mask forwards recursions: %11u\n",
266 debug_atomic_read(&nr_find_usage_forwards_recursions));
267 seq_printf(m, " find-mask backwards checks: %11u\n", 204 seq_printf(m, " find-mask backwards checks: %11u\n",
268 debug_atomic_read(&nr_find_usage_backwards_checks)); 205 debug_atomic_read(&nr_find_usage_backwards_checks));
269 seq_printf(m, " find-mask backwards recursions:%11u\n",
270 debug_atomic_read(&nr_find_usage_backwards_recursions));
271 206
272 seq_printf(m, " hardirq on events: %11u\n", hi1); 207 seq_printf(m, " hardirq on events: %11u\n", hi1);
273 seq_printf(m, " hardirq off events: %11u\n", hi2); 208 seq_printf(m, " hardirq off events: %11u\n", hi2);
@@ -409,8 +344,10 @@ static int lockdep_stats_show(struct seq_file *m, void *v)
409 nr_unused); 344 nr_unused);
410 seq_printf(m, " max locking depth: %11u\n", 345 seq_printf(m, " max locking depth: %11u\n",
411 max_lockdep_depth); 346 max_lockdep_depth);
412 seq_printf(m, " max recursion depth: %11u\n", 347#ifdef CONFIG_PROVE_LOCKING
413 max_recursion_depth); 348 seq_printf(m, " max bfs queue depth: %11u\n",
349 max_bfs_queue_depth);
350#endif
414 lockdep_stats_debug_show(m); 351 lockdep_stats_debug_show(m);
415 seq_printf(m, " debug_locks: %11u\n", 352 seq_printf(m, " debug_locks: %11u\n",
416 debug_locks); 353 debug_locks);
@@ -438,7 +375,6 @@ struct lock_stat_data {
438}; 375};
439 376
440struct lock_stat_seq { 377struct lock_stat_seq {
441 struct lock_stat_data *iter;
442 struct lock_stat_data *iter_end; 378 struct lock_stat_data *iter_end;
443 struct lock_stat_data stats[MAX_LOCKDEP_KEYS]; 379 struct lock_stat_data stats[MAX_LOCKDEP_KEYS];
444}; 380};
@@ -626,34 +562,22 @@ static void seq_header(struct seq_file *m)
626static void *ls_start(struct seq_file *m, loff_t *pos) 562static void *ls_start(struct seq_file *m, loff_t *pos)
627{ 563{
628 struct lock_stat_seq *data = m->private; 564 struct lock_stat_seq *data = m->private;
565 struct lock_stat_data *iter;
629 566
630 if (*pos == 0) 567 if (*pos == 0)
631 return SEQ_START_TOKEN; 568 return SEQ_START_TOKEN;
632 569
633 data->iter = data->stats + *pos; 570 iter = data->stats + (*pos - 1);
634 if (data->iter >= data->iter_end) 571 if (iter >= data->iter_end)
635 data->iter = NULL; 572 iter = NULL;
636 573
637 return data->iter; 574 return iter;
638} 575}
639 576
640static void *ls_next(struct seq_file *m, void *v, loff_t *pos) 577static void *ls_next(struct seq_file *m, void *v, loff_t *pos)
641{ 578{
642 struct lock_stat_seq *data = m->private;
643
644 (*pos)++; 579 (*pos)++;
645 580 return ls_start(m, pos);
646 if (v == SEQ_START_TOKEN)
647 data->iter = data->stats;
648 else {
649 data->iter = v;
650 data->iter++;
651 }
652
653 if (data->iter == data->iter_end)
654 data->iter = NULL;
655
656 return data->iter;
657} 581}
658 582
659static void ls_stop(struct seq_file *m, void *v) 583static void ls_stop(struct seq_file *m, void *v)
@@ -691,7 +615,6 @@ static int lock_stat_open(struct inode *inode, struct file *file)
691 struct lock_stat_data *iter = data->stats; 615 struct lock_stat_data *iter = data->stats;
692 struct seq_file *m = file->private_data; 616 struct seq_file *m = file->private_data;
693 617
694 data->iter = iter;
695 list_for_each_entry(class, &all_lock_classes, lock_entry) { 618 list_for_each_entry(class, &all_lock_classes, lock_entry) {
696 iter->class = class; 619 iter->class = class;
697 iter->stats = lock_stats(class); 620 iter->stats = lock_stats(class);
@@ -699,7 +622,7 @@ static int lock_stat_open(struct inode *inode, struct file *file)
699 } 622 }
700 data->iter_end = iter; 623 data->iter_end = iter;
701 624
702 sort(data->stats, data->iter_end - data->iter, 625 sort(data->stats, data->iter_end - data->stats,
703 sizeof(struct lock_stat_data), 626 sizeof(struct lock_stat_data),
704 lock_stat_cmp, NULL); 627 lock_stat_cmp, NULL);
705 628
@@ -734,7 +657,6 @@ static int lock_stat_release(struct inode *inode, struct file *file)
734 struct seq_file *seq = file->private_data; 657 struct seq_file *seq = file->private_data;
735 658
736 vfree(seq->private); 659 vfree(seq->private);
737 seq->private = NULL;
738 return seq_release(inode, file); 660 return seq_release(inode, file);
739} 661}
740 662
diff --git a/kernel/module.c b/kernel/module.c
index 46580edff0cb..05ce49ced8f6 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -369,7 +369,7 @@ EXPORT_SYMBOL_GPL(find_module);
369 369
370#ifdef CONFIG_SMP 370#ifdef CONFIG_SMP
371 371
372#ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA 372#ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
373 373
374static void *percpu_modalloc(unsigned long size, unsigned long align, 374static void *percpu_modalloc(unsigned long size, unsigned long align,
375 const char *name) 375 const char *name)
@@ -394,7 +394,7 @@ static void percpu_modfree(void *freeme)
394 free_percpu(freeme); 394 free_percpu(freeme);
395} 395}
396 396
397#else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ 397#else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */
398 398
399/* Number of blocks used and allocated. */ 399/* Number of blocks used and allocated. */
400static unsigned int pcpu_num_used, pcpu_num_allocated; 400static unsigned int pcpu_num_used, pcpu_num_allocated;
@@ -540,7 +540,7 @@ static int percpu_modinit(void)
540} 540}
541__initcall(percpu_modinit); 541__initcall(percpu_modinit);
542 542
543#endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ 543#endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
544 544
545static unsigned int find_pcpusec(Elf_Ehdr *hdr, 545static unsigned int find_pcpusec(Elf_Ehdr *hdr,
546 Elf_Shdr *sechdrs, 546 Elf_Shdr *sechdrs,
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c
index d7cbc579fc80..8cb94a52d1bb 100644
--- a/kernel/perf_counter.c
+++ b/kernel/perf_counter.c
@@ -46,12 +46,18 @@ static atomic_t nr_task_counters __read_mostly;
46 46
47/* 47/*
48 * perf counter paranoia level: 48 * perf counter paranoia level:
49 * 0 - not paranoid 49 * -1 - not paranoid at all
50 * 1 - disallow cpu counters to unpriv 50 * 0 - disallow raw tracepoint access for unpriv
51 * 2 - disallow kernel profiling to unpriv 51 * 1 - disallow cpu counters for unpriv
52 * 2 - disallow kernel profiling for unpriv
52 */ 53 */
53int sysctl_perf_counter_paranoid __read_mostly = 1; 54int sysctl_perf_counter_paranoid __read_mostly = 1;
54 55
56static inline bool perf_paranoid_tracepoint_raw(void)
57{
58 return sysctl_perf_counter_paranoid > -1;
59}
60
55static inline bool perf_paranoid_cpu(void) 61static inline bool perf_paranoid_cpu(void)
56{ 62{
57 return sysctl_perf_counter_paranoid > 0; 63 return sysctl_perf_counter_paranoid > 0;
@@ -100,16 +106,16 @@ hw_perf_group_sched_in(struct perf_counter *group_leader,
100 106
101void __weak perf_counter_print_debug(void) { } 107void __weak perf_counter_print_debug(void) { }
102 108
103static DEFINE_PER_CPU(int, disable_count); 109static DEFINE_PER_CPU(int, perf_disable_count);
104 110
105void __perf_disable(void) 111void __perf_disable(void)
106{ 112{
107 __get_cpu_var(disable_count)++; 113 __get_cpu_var(perf_disable_count)++;
108} 114}
109 115
110bool __perf_enable(void) 116bool __perf_enable(void)
111{ 117{
112 return !--__get_cpu_var(disable_count); 118 return !--__get_cpu_var(perf_disable_count);
113} 119}
114 120
115void perf_disable(void) 121void perf_disable(void)
@@ -469,7 +475,8 @@ static void update_counter_times(struct perf_counter *counter)
469 struct perf_counter_context *ctx = counter->ctx; 475 struct perf_counter_context *ctx = counter->ctx;
470 u64 run_end; 476 u64 run_end;
471 477
472 if (counter->state < PERF_COUNTER_STATE_INACTIVE) 478 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
479 counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
473 return; 480 return;
474 481
475 counter->total_time_enabled = ctx->time - counter->tstamp_enabled; 482 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
@@ -518,7 +525,7 @@ static void __perf_counter_disable(void *info)
518 */ 525 */
519 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { 526 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
520 update_context_time(ctx); 527 update_context_time(ctx);
521 update_counter_times(counter); 528 update_group_times(counter);
522 if (counter == counter->group_leader) 529 if (counter == counter->group_leader)
523 group_sched_out(counter, cpuctx, ctx); 530 group_sched_out(counter, cpuctx, ctx);
524 else 531 else
@@ -573,7 +580,7 @@ static void perf_counter_disable(struct perf_counter *counter)
573 * in, so we can change the state safely. 580 * in, so we can change the state safely.
574 */ 581 */
575 if (counter->state == PERF_COUNTER_STATE_INACTIVE) { 582 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
576 update_counter_times(counter); 583 update_group_times(counter);
577 counter->state = PERF_COUNTER_STATE_OFF; 584 counter->state = PERF_COUNTER_STATE_OFF;
578 } 585 }
579 586
@@ -851,6 +858,27 @@ retry:
851} 858}
852 859
853/* 860/*
861 * Put a counter into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868static void __perf_counter_mark_enabled(struct perf_counter *counter,
869 struct perf_counter_context *ctx)
870{
871 struct perf_counter *sub;
872
873 counter->state = PERF_COUNTER_STATE_INACTIVE;
874 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
875 list_for_each_entry(sub, &counter->sibling_list, list_entry)
876 if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879}
880
881/*
854 * Cross CPU call to enable a performance counter 882 * Cross CPU call to enable a performance counter
855 */ 883 */
856static void __perf_counter_enable(void *info) 884static void __perf_counter_enable(void *info)
@@ -877,8 +905,7 @@ static void __perf_counter_enable(void *info)
877 905
878 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) 906 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
879 goto unlock; 907 goto unlock;
880 counter->state = PERF_COUNTER_STATE_INACTIVE; 908 __perf_counter_mark_enabled(counter, ctx);
881 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
882 909
883 /* 910 /*
884 * If the counter is in a group and isn't the group leader, 911 * If the counter is in a group and isn't the group leader,
@@ -971,11 +998,9 @@ static void perf_counter_enable(struct perf_counter *counter)
971 * Since we have the lock this context can't be scheduled 998 * Since we have the lock this context can't be scheduled
972 * in, so we can change the state safely. 999 * in, so we can change the state safely.
973 */ 1000 */
974 if (counter->state == PERF_COUNTER_STATE_OFF) { 1001 if (counter->state == PERF_COUNTER_STATE_OFF)
975 counter->state = PERF_COUNTER_STATE_INACTIVE; 1002 __perf_counter_mark_enabled(counter, ctx);
976 counter->tstamp_enabled = 1003
977 ctx->time - counter->total_time_enabled;
978 }
979 out: 1004 out:
980 spin_unlock_irq(&ctx->lock); 1005 spin_unlock_irq(&ctx->lock);
981} 1006}
@@ -1479,9 +1504,7 @@ static void perf_counter_enable_on_exec(struct task_struct *task)
1479 counter->attr.enable_on_exec = 0; 1504 counter->attr.enable_on_exec = 0;
1480 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) 1505 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1481 continue; 1506 continue;
1482 counter->state = PERF_COUNTER_STATE_INACTIVE; 1507 __perf_counter_mark_enabled(counter, ctx);
1483 counter->tstamp_enabled =
1484 ctx->time - counter->total_time_enabled;
1485 enabled = 1; 1508 enabled = 1;
1486 } 1509 }
1487 1510
@@ -1675,6 +1698,11 @@ static void free_counter(struct perf_counter *counter)
1675 atomic_dec(&nr_task_counters); 1698 atomic_dec(&nr_task_counters);
1676 } 1699 }
1677 1700
1701 if (counter->output) {
1702 fput(counter->output->filp);
1703 counter->output = NULL;
1704 }
1705
1678 if (counter->destroy) 1706 if (counter->destroy)
1679 counter->destroy(counter); 1707 counter->destroy(counter);
1680 1708
@@ -1960,6 +1988,8 @@ unlock:
1960 return ret; 1988 return ret;
1961} 1989}
1962 1990
1991int perf_counter_set_output(struct perf_counter *counter, int output_fd);
1992
1963static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1993static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1964{ 1994{
1965 struct perf_counter *counter = file->private_data; 1995 struct perf_counter *counter = file->private_data;
@@ -1983,6 +2013,9 @@ static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1983 case PERF_COUNTER_IOC_PERIOD: 2013 case PERF_COUNTER_IOC_PERIOD:
1984 return perf_counter_period(counter, (u64 __user *)arg); 2014 return perf_counter_period(counter, (u64 __user *)arg);
1985 2015
2016 case PERF_COUNTER_IOC_SET_OUTPUT:
2017 return perf_counter_set_output(counter, arg);
2018
1986 default: 2019 default:
1987 return -ENOTTY; 2020 return -ENOTTY;
1988 } 2021 }
@@ -2253,6 +2286,11 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2253 2286
2254 WARN_ON_ONCE(counter->ctx->parent_ctx); 2287 WARN_ON_ONCE(counter->ctx->parent_ctx);
2255 mutex_lock(&counter->mmap_mutex); 2288 mutex_lock(&counter->mmap_mutex);
2289 if (counter->output) {
2290 ret = -EINVAL;
2291 goto unlock;
2292 }
2293
2256 if (atomic_inc_not_zero(&counter->mmap_count)) { 2294 if (atomic_inc_not_zero(&counter->mmap_count)) {
2257 if (nr_pages != counter->data->nr_pages) 2295 if (nr_pages != counter->data->nr_pages)
2258 ret = -EINVAL; 2296 ret = -EINVAL;
@@ -2638,6 +2676,7 @@ static int perf_output_begin(struct perf_output_handle *handle,
2638 struct perf_counter *counter, unsigned int size, 2676 struct perf_counter *counter, unsigned int size,
2639 int nmi, int sample) 2677 int nmi, int sample)
2640{ 2678{
2679 struct perf_counter *output_counter;
2641 struct perf_mmap_data *data; 2680 struct perf_mmap_data *data;
2642 unsigned int offset, head; 2681 unsigned int offset, head;
2643 int have_lost; 2682 int have_lost;
@@ -2647,13 +2686,17 @@ static int perf_output_begin(struct perf_output_handle *handle,
2647 u64 lost; 2686 u64 lost;
2648 } lost_event; 2687 } lost_event;
2649 2688
2689 rcu_read_lock();
2650 /* 2690 /*
2651 * For inherited counters we send all the output towards the parent. 2691 * For inherited counters we send all the output towards the parent.
2652 */ 2692 */
2653 if (counter->parent) 2693 if (counter->parent)
2654 counter = counter->parent; 2694 counter = counter->parent;
2655 2695
2656 rcu_read_lock(); 2696 output_counter = rcu_dereference(counter->output);
2697 if (output_counter)
2698 counter = output_counter;
2699
2657 data = rcu_dereference(counter->data); 2700 data = rcu_dereference(counter->data);
2658 if (!data) 2701 if (!data)
2659 goto out; 2702 goto out;
@@ -3934,6 +3977,7 @@ static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3934 * have these. 3977 * have these.
3935 */ 3978 */
3936 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && 3979 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3980 perf_paranoid_tracepoint_raw() &&
3937 !capable(CAP_SYS_ADMIN)) 3981 !capable(CAP_SYS_ADMIN))
3938 return ERR_PTR(-EPERM); 3982 return ERR_PTR(-EPERM);
3939 3983
@@ -4171,6 +4215,7 @@ static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4171 if (val) 4215 if (val)
4172 goto err_size; 4216 goto err_size;
4173 } 4217 }
4218 size = sizeof(*attr);
4174 } 4219 }
4175 4220
4176 ret = copy_from_user(attr, uattr, size); 4221 ret = copy_from_user(attr, uattr, size);
@@ -4202,6 +4247,57 @@ err_size:
4202 goto out; 4247 goto out;
4203} 4248}
4204 4249
4250int perf_counter_set_output(struct perf_counter *counter, int output_fd)
4251{
4252 struct perf_counter *output_counter = NULL;
4253 struct file *output_file = NULL;
4254 struct perf_counter *old_output;
4255 int fput_needed = 0;
4256 int ret = -EINVAL;
4257
4258 if (!output_fd)
4259 goto set;
4260
4261 output_file = fget_light(output_fd, &fput_needed);
4262 if (!output_file)
4263 return -EBADF;
4264
4265 if (output_file->f_op != &perf_fops)
4266 goto out;
4267
4268 output_counter = output_file->private_data;
4269
4270 /* Don't chain output fds */
4271 if (output_counter->output)
4272 goto out;
4273
4274 /* Don't set an output fd when we already have an output channel */
4275 if (counter->data)
4276 goto out;
4277
4278 atomic_long_inc(&output_file->f_count);
4279
4280set:
4281 mutex_lock(&counter->mmap_mutex);
4282 old_output = counter->output;
4283 rcu_assign_pointer(counter->output, output_counter);
4284 mutex_unlock(&counter->mmap_mutex);
4285
4286 if (old_output) {
4287 /*
4288 * we need to make sure no existing perf_output_*()
4289 * is still referencing this counter.
4290 */
4291 synchronize_rcu();
4292 fput(old_output->filp);
4293 }
4294
4295 ret = 0;
4296out:
4297 fput_light(output_file, fput_needed);
4298 return ret;
4299}
4300
4205/** 4301/**
4206 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu 4302 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4207 * 4303 *
@@ -4221,15 +4317,15 @@ SYSCALL_DEFINE5(perf_counter_open,
4221 struct file *group_file = NULL; 4317 struct file *group_file = NULL;
4222 int fput_needed = 0; 4318 int fput_needed = 0;
4223 int fput_needed2 = 0; 4319 int fput_needed2 = 0;
4224 int ret; 4320 int err;
4225 4321
4226 /* for future expandability... */ 4322 /* for future expandability... */
4227 if (flags) 4323 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4228 return -EINVAL; 4324 return -EINVAL;
4229 4325
4230 ret = perf_copy_attr(attr_uptr, &attr); 4326 err = perf_copy_attr(attr_uptr, &attr);
4231 if (ret) 4327 if (err)
4232 return ret; 4328 return err;
4233 4329
4234 if (!attr.exclude_kernel) { 4330 if (!attr.exclude_kernel) {
4235 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 4331 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
@@ -4252,8 +4348,8 @@ SYSCALL_DEFINE5(perf_counter_open,
4252 * Look up the group leader (we will attach this counter to it): 4348 * Look up the group leader (we will attach this counter to it):
4253 */ 4349 */
4254 group_leader = NULL; 4350 group_leader = NULL;
4255 if (group_fd != -1) { 4351 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4256 ret = -EINVAL; 4352 err = -EINVAL;
4257 group_file = fget_light(group_fd, &fput_needed); 4353 group_file = fget_light(group_fd, &fput_needed);
4258 if (!group_file) 4354 if (!group_file)
4259 goto err_put_context; 4355 goto err_put_context;
@@ -4282,18 +4378,24 @@ SYSCALL_DEFINE5(perf_counter_open,
4282 4378
4283 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, 4379 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4284 NULL, GFP_KERNEL); 4380 NULL, GFP_KERNEL);
4285 ret = PTR_ERR(counter); 4381 err = PTR_ERR(counter);
4286 if (IS_ERR(counter)) 4382 if (IS_ERR(counter))
4287 goto err_put_context; 4383 goto err_put_context;
4288 4384
4289 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); 4385 err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4290 if (ret < 0) 4386 if (err < 0)
4291 goto err_free_put_context; 4387 goto err_free_put_context;
4292 4388
4293 counter_file = fget_light(ret, &fput_needed2); 4389 counter_file = fget_light(err, &fput_needed2);
4294 if (!counter_file) 4390 if (!counter_file)
4295 goto err_free_put_context; 4391 goto err_free_put_context;
4296 4392
4393 if (flags & PERF_FLAG_FD_OUTPUT) {
4394 err = perf_counter_set_output(counter, group_fd);
4395 if (err)
4396 goto err_fput_free_put_context;
4397 }
4398
4297 counter->filp = counter_file; 4399 counter->filp = counter_file;
4298 WARN_ON_ONCE(ctx->parent_ctx); 4400 WARN_ON_ONCE(ctx->parent_ctx);
4299 mutex_lock(&ctx->mutex); 4401 mutex_lock(&ctx->mutex);
@@ -4307,20 +4409,20 @@ SYSCALL_DEFINE5(perf_counter_open,
4307 list_add_tail(&counter->owner_entry, &current->perf_counter_list); 4409 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4308 mutex_unlock(&current->perf_counter_mutex); 4410 mutex_unlock(&current->perf_counter_mutex);
4309 4411
4412err_fput_free_put_context:
4310 fput_light(counter_file, fput_needed2); 4413 fput_light(counter_file, fput_needed2);
4311 4414
4312out_fput:
4313 fput_light(group_file, fput_needed);
4314
4315 return ret;
4316
4317err_free_put_context: 4415err_free_put_context:
4318 kfree(counter); 4416 if (err < 0)
4417 kfree(counter);
4319 4418
4320err_put_context: 4419err_put_context:
4321 put_ctx(ctx); 4420 if (err < 0)
4421 put_ctx(ctx);
4422
4423 fput_light(group_file, fput_needed);
4322 4424
4323 goto out_fput; 4425 return err;
4324} 4426}
4325 4427
4326/* 4428/*
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig
index 72067cbdb37f..91e09d3b2eb2 100644
--- a/kernel/power/Kconfig
+++ b/kernel/power/Kconfig
@@ -208,3 +208,17 @@ config APM_EMULATION
208 random kernel OOPSes or reboots that don't seem to be related to 208 random kernel OOPSes or reboots that don't seem to be related to
209 anything, try disabling/enabling this option (or disabling/enabling 209 anything, try disabling/enabling this option (or disabling/enabling
210 APM in your BIOS). 210 APM in your BIOS).
211
212config PM_RUNTIME
213 bool "Run-time PM core functionality"
214 depends on PM
215 ---help---
216 Enable functionality allowing I/O devices to be put into energy-saving
217 (low power) states at run time (or autosuspended) after a specified
218 period of inactivity and woken up in response to a hardware-generated
219 wake-up event or a driver's request.
220
221 Hardware support is generally required for this functionality to work
222 and the bus type drivers of the buses the devices are on are
223 responsible for the actual handling of the autosuspend requests and
224 wake-up events.
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c
index 81d2e7464893..04b3a83d686f 100644
--- a/kernel/power/hibernate.c
+++ b/kernel/power/hibernate.c
@@ -298,8 +298,8 @@ int hibernation_snapshot(int platform_mode)
298 if (error) 298 if (error)
299 return error; 299 return error;
300 300
301 /* Free memory before shutting down devices. */ 301 /* Preallocate image memory before shutting down devices. */
302 error = swsusp_shrink_memory(); 302 error = hibernate_preallocate_memory();
303 if (error) 303 if (error)
304 goto Close; 304 goto Close;
305 305
@@ -315,6 +315,10 @@ int hibernation_snapshot(int platform_mode)
315 /* Control returns here after successful restore */ 315 /* Control returns here after successful restore */
316 316
317 Resume_devices: 317 Resume_devices:
318 /* We may need to release the preallocated image pages here. */
319 if (error || !in_suspend)
320 swsusp_free();
321
318 dpm_resume_end(in_suspend ? 322 dpm_resume_end(in_suspend ?
319 (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); 323 (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE);
320 resume_console(); 324 resume_console();
@@ -460,11 +464,11 @@ int hibernation_platform_enter(void)
460 464
461 error = hibernation_ops->prepare(); 465 error = hibernation_ops->prepare();
462 if (error) 466 if (error)
463 goto Platofrm_finish; 467 goto Platform_finish;
464 468
465 error = disable_nonboot_cpus(); 469 error = disable_nonboot_cpus();
466 if (error) 470 if (error)
467 goto Platofrm_finish; 471 goto Platform_finish;
468 472
469 local_irq_disable(); 473 local_irq_disable();
470 sysdev_suspend(PMSG_HIBERNATE); 474 sysdev_suspend(PMSG_HIBERNATE);
@@ -476,7 +480,7 @@ int hibernation_platform_enter(void)
476 * We don't need to reenable the nonboot CPUs or resume consoles, since 480 * We don't need to reenable the nonboot CPUs or resume consoles, since
477 * the system is going to be halted anyway. 481 * the system is going to be halted anyway.
478 */ 482 */
479 Platofrm_finish: 483 Platform_finish:
480 hibernation_ops->finish(); 484 hibernation_ops->finish();
481 485
482 dpm_suspend_noirq(PMSG_RESTORE); 486 dpm_suspend_noirq(PMSG_RESTORE);
@@ -578,7 +582,10 @@ int hibernate(void)
578 goto Thaw; 582 goto Thaw;
579 583
580 error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); 584 error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM);
581 if (in_suspend && !error) { 585 if (error)
586 goto Thaw;
587
588 if (in_suspend) {
582 unsigned int flags = 0; 589 unsigned int flags = 0;
583 590
584 if (hibernation_mode == HIBERNATION_PLATFORM) 591 if (hibernation_mode == HIBERNATION_PLATFORM)
@@ -590,8 +597,8 @@ int hibernate(void)
590 power_down(); 597 power_down();
591 } else { 598 } else {
592 pr_debug("PM: Image restored successfully.\n"); 599 pr_debug("PM: Image restored successfully.\n");
593 swsusp_free();
594 } 600 }
601
595 Thaw: 602 Thaw:
596 thaw_processes(); 603 thaw_processes();
597 Finish: 604 Finish:
diff --git a/kernel/power/main.c b/kernel/power/main.c
index f710e36930cc..347d2cc88cd0 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -11,6 +11,7 @@
11#include <linux/kobject.h> 11#include <linux/kobject.h>
12#include <linux/string.h> 12#include <linux/string.h>
13#include <linux/resume-trace.h> 13#include <linux/resume-trace.h>
14#include <linux/workqueue.h>
14 15
15#include "power.h" 16#include "power.h"
16 17
@@ -217,8 +218,24 @@ static struct attribute_group attr_group = {
217 .attrs = g, 218 .attrs = g,
218}; 219};
219 220
221#ifdef CONFIG_PM_RUNTIME
222struct workqueue_struct *pm_wq;
223
224static int __init pm_start_workqueue(void)
225{
226 pm_wq = create_freezeable_workqueue("pm");
227
228 return pm_wq ? 0 : -ENOMEM;
229}
230#else
231static inline int pm_start_workqueue(void) { return 0; }
232#endif
233
220static int __init pm_init(void) 234static int __init pm_init(void)
221{ 235{
236 int error = pm_start_workqueue();
237 if (error)
238 return error;
222 power_kobj = kobject_create_and_add("power", NULL); 239 power_kobj = kobject_create_and_add("power", NULL);
223 if (!power_kobj) 240 if (!power_kobj)
224 return -ENOMEM; 241 return -ENOMEM;
diff --git a/kernel/power/power.h b/kernel/power/power.h
index 26d5a26f82e3..46c5a26630a3 100644
--- a/kernel/power/power.h
+++ b/kernel/power/power.h
@@ -74,7 +74,7 @@ extern asmlinkage int swsusp_arch_resume(void);
74 74
75extern int create_basic_memory_bitmaps(void); 75extern int create_basic_memory_bitmaps(void);
76extern void free_basic_memory_bitmaps(void); 76extern void free_basic_memory_bitmaps(void);
77extern int swsusp_shrink_memory(void); 77extern int hibernate_preallocate_memory(void);
78 78
79/** 79/**
80 * Auxiliary structure used for reading the snapshot image data and 80 * Auxiliary structure used for reading the snapshot image data and
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 523a451b45d3..97955b0e44f4 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -233,7 +233,7 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
233 233
234#define BM_END_OF_MAP (~0UL) 234#define BM_END_OF_MAP (~0UL)
235 235
236#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 236#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
237 237
238struct bm_block { 238struct bm_block {
239 struct list_head hook; /* hook into a list of bitmap blocks */ 239 struct list_head hook; /* hook into a list of bitmap blocks */
@@ -275,7 +275,7 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275 275
276/** 276/**
277 * create_bm_block_list - create a list of block bitmap objects 277 * create_bm_block_list - create a list of block bitmap objects
278 * @nr_blocks - number of blocks to allocate 278 * @pages - number of pages to track
279 * @list - list to put the allocated blocks into 279 * @list - list to put the allocated blocks into
280 * @ca - chain allocator to be used for allocating memory 280 * @ca - chain allocator to be used for allocating memory
281 */ 281 */
@@ -853,7 +853,7 @@ static unsigned int count_highmem_pages(void)
853 struct zone *zone; 853 struct zone *zone;
854 unsigned int n = 0; 854 unsigned int n = 0;
855 855
856 for_each_zone(zone) { 856 for_each_populated_zone(zone) {
857 unsigned long pfn, max_zone_pfn; 857 unsigned long pfn, max_zone_pfn;
858 858
859 if (!is_highmem(zone)) 859 if (!is_highmem(zone))
@@ -916,7 +916,7 @@ static unsigned int count_data_pages(void)
916 unsigned long pfn, max_zone_pfn; 916 unsigned long pfn, max_zone_pfn;
917 unsigned int n = 0; 917 unsigned int n = 0;
918 918
919 for_each_zone(zone) { 919 for_each_populated_zone(zone) {
920 if (is_highmem(zone)) 920 if (is_highmem(zone))
921 continue; 921 continue;
922 922
@@ -1010,7 +1010,7 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1010 struct zone *zone; 1010 struct zone *zone;
1011 unsigned long pfn; 1011 unsigned long pfn;
1012 1012
1013 for_each_zone(zone) { 1013 for_each_populated_zone(zone) {
1014 unsigned long max_zone_pfn; 1014 unsigned long max_zone_pfn;
1015 1015
1016 mark_free_pages(zone); 1016 mark_free_pages(zone);
@@ -1033,6 +1033,25 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1033static unsigned int nr_copy_pages; 1033static unsigned int nr_copy_pages;
1034/* Number of pages needed for saving the original pfns of the image pages */ 1034/* Number of pages needed for saving the original pfns of the image pages */
1035static unsigned int nr_meta_pages; 1035static unsigned int nr_meta_pages;
1036/*
1037 * Numbers of normal and highmem page frames allocated for hibernation image
1038 * before suspending devices.
1039 */
1040unsigned int alloc_normal, alloc_highmem;
1041/*
1042 * Memory bitmap used for marking saveable pages (during hibernation) or
1043 * hibernation image pages (during restore)
1044 */
1045static struct memory_bitmap orig_bm;
1046/*
1047 * Memory bitmap used during hibernation for marking allocated page frames that
1048 * will contain copies of saveable pages. During restore it is initially used
1049 * for marking hibernation image pages, but then the set bits from it are
1050 * duplicated in @orig_bm and it is released. On highmem systems it is next
1051 * used for marking "safe" highmem pages, but it has to be reinitialized for
1052 * this purpose.
1053 */
1054static struct memory_bitmap copy_bm;
1036 1055
1037/** 1056/**
1038 * swsusp_free - free pages allocated for the suspend. 1057 * swsusp_free - free pages allocated for the suspend.
@@ -1046,7 +1065,7 @@ void swsusp_free(void)
1046 struct zone *zone; 1065 struct zone *zone;
1047 unsigned long pfn, max_zone_pfn; 1066 unsigned long pfn, max_zone_pfn;
1048 1067
1049 for_each_zone(zone) { 1068 for_each_populated_zone(zone) {
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1069 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1070 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) { 1071 if (pfn_valid(pfn)) {
@@ -1064,74 +1083,286 @@ void swsusp_free(void)
1064 nr_meta_pages = 0; 1083 nr_meta_pages = 0;
1065 restore_pblist = NULL; 1084 restore_pblist = NULL;
1066 buffer = NULL; 1085 buffer = NULL;
1086 alloc_normal = 0;
1087 alloc_highmem = 0;
1067} 1088}
1068 1089
1090/* Helper functions used for the shrinking of memory. */
1091
1092#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1093
1069/** 1094/**
1070 * swsusp_shrink_memory - Try to free as much memory as needed 1095 * preallocate_image_pages - Allocate a number of pages for hibernation image
1071 * 1096 * @nr_pages: Number of page frames to allocate.
1072 * ... but do not OOM-kill anyone 1097 * @mask: GFP flags to use for the allocation.
1073 * 1098 *
1074 * Notice: all userland should be stopped before it is called, or 1099 * Return value: Number of page frames actually allocated
1075 * livelock is possible. 1100 */
1101static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1102{
1103 unsigned long nr_alloc = 0;
1104
1105 while (nr_pages > 0) {
1106 struct page *page;
1107
1108 page = alloc_image_page(mask);
1109 if (!page)
1110 break;
1111 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1112 if (PageHighMem(page))
1113 alloc_highmem++;
1114 else
1115 alloc_normal++;
1116 nr_pages--;
1117 nr_alloc++;
1118 }
1119
1120 return nr_alloc;
1121}
1122
1123static unsigned long preallocate_image_memory(unsigned long nr_pages)
1124{
1125 return preallocate_image_pages(nr_pages, GFP_IMAGE);
1126}
1127
1128#ifdef CONFIG_HIGHMEM
1129static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1130{
1131 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1132}
1133
1134/**
1135 * __fraction - Compute (an approximation of) x * (multiplier / base)
1076 */ 1136 */
1137static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1138{
1139 x *= multiplier;
1140 do_div(x, base);
1141 return (unsigned long)x;
1142}
1143
1144static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1145 unsigned long highmem,
1146 unsigned long total)
1147{
1148 unsigned long alloc = __fraction(nr_pages, highmem, total);
1077 1149
1078#define SHRINK_BITE 10000 1150 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1079static inline unsigned long __shrink_memory(long tmp) 1151}
1152#else /* CONFIG_HIGHMEM */
1153static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1080{ 1154{
1081 if (tmp > SHRINK_BITE) 1155 return 0;
1082 tmp = SHRINK_BITE;
1083 return shrink_all_memory(tmp);
1084} 1156}
1085 1157
1086int swsusp_shrink_memory(void) 1158static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1159 unsigned long highmem,
1160 unsigned long total)
1161{
1162 return 0;
1163}
1164#endif /* CONFIG_HIGHMEM */
1165
1166/**
1167 * free_unnecessary_pages - Release preallocated pages not needed for the image
1168 */
1169static void free_unnecessary_pages(void)
1170{
1171 unsigned long save_highmem, to_free_normal, to_free_highmem;
1172
1173 to_free_normal = alloc_normal - count_data_pages();
1174 save_highmem = count_highmem_pages();
1175 if (alloc_highmem > save_highmem) {
1176 to_free_highmem = alloc_highmem - save_highmem;
1177 } else {
1178 to_free_highmem = 0;
1179 to_free_normal -= save_highmem - alloc_highmem;
1180 }
1181
1182 memory_bm_position_reset(&copy_bm);
1183
1184 while (to_free_normal > 0 && to_free_highmem > 0) {
1185 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1186 struct page *page = pfn_to_page(pfn);
1187
1188 if (PageHighMem(page)) {
1189 if (!to_free_highmem)
1190 continue;
1191 to_free_highmem--;
1192 alloc_highmem--;
1193 } else {
1194 if (!to_free_normal)
1195 continue;
1196 to_free_normal--;
1197 alloc_normal--;
1198 }
1199 memory_bm_clear_bit(&copy_bm, pfn);
1200 swsusp_unset_page_forbidden(page);
1201 swsusp_unset_page_free(page);
1202 __free_page(page);
1203 }
1204}
1205
1206/**
1207 * minimum_image_size - Estimate the minimum acceptable size of an image
1208 * @saveable: Number of saveable pages in the system.
1209 *
1210 * We want to avoid attempting to free too much memory too hard, so estimate the
1211 * minimum acceptable size of a hibernation image to use as the lower limit for
1212 * preallocating memory.
1213 *
1214 * We assume that the minimum image size should be proportional to
1215 *
1216 * [number of saveable pages] - [number of pages that can be freed in theory]
1217 *
1218 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1219 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1220 * minus mapped file pages.
1221 */
1222static unsigned long minimum_image_size(unsigned long saveable)
1223{
1224 unsigned long size;
1225
1226 size = global_page_state(NR_SLAB_RECLAIMABLE)
1227 + global_page_state(NR_ACTIVE_ANON)
1228 + global_page_state(NR_INACTIVE_ANON)
1229 + global_page_state(NR_ACTIVE_FILE)
1230 + global_page_state(NR_INACTIVE_FILE)
1231 - global_page_state(NR_FILE_MAPPED);
1232
1233 return saveable <= size ? 0 : saveable - size;
1234}
1235
1236/**
1237 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1238 *
1239 * To create a hibernation image it is necessary to make a copy of every page
1240 * frame in use. We also need a number of page frames to be free during
1241 * hibernation for allocations made while saving the image and for device
1242 * drivers, in case they need to allocate memory from their hibernation
1243 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1244 * respectively, both of which are rough estimates). To make this happen, we
1245 * compute the total number of available page frames and allocate at least
1246 *
1247 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1248 *
1249 * of them, which corresponds to the maximum size of a hibernation image.
1250 *
1251 * If image_size is set below the number following from the above formula,
1252 * the preallocation of memory is continued until the total number of saveable
1253 * pages in the system is below the requested image size or the minimum
1254 * acceptable image size returned by minimum_image_size(), whichever is greater.
1255 */
1256int hibernate_preallocate_memory(void)
1087{ 1257{
1088 long tmp;
1089 struct zone *zone; 1258 struct zone *zone;
1090 unsigned long pages = 0; 1259 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1091 unsigned int i = 0; 1260 unsigned long alloc, save_highmem, pages_highmem;
1092 char *p = "-\\|/";
1093 struct timeval start, stop; 1261 struct timeval start, stop;
1262 int error;
1094 1263
1095 printk(KERN_INFO "PM: Shrinking memory... "); 1264 printk(KERN_INFO "PM: Preallocating image memory... ");
1096 do_gettimeofday(&start); 1265 do_gettimeofday(&start);
1097 do {
1098 long size, highmem_size;
1099
1100 highmem_size = count_highmem_pages();
1101 size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
1102 tmp = size;
1103 size += highmem_size;
1104 for_each_populated_zone(zone) {
1105 tmp += snapshot_additional_pages(zone);
1106 if (is_highmem(zone)) {
1107 highmem_size -=
1108 zone_page_state(zone, NR_FREE_PAGES);
1109 } else {
1110 tmp -= zone_page_state(zone, NR_FREE_PAGES);
1111 tmp += zone->lowmem_reserve[ZONE_NORMAL];
1112 }
1113 }
1114 1266
1115 if (highmem_size < 0) 1267 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1116 highmem_size = 0; 1268 if (error)
1269 goto err_out;
1117 1270
1118 tmp += highmem_size; 1271 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1119 if (tmp > 0) { 1272 if (error)
1120 tmp = __shrink_memory(tmp); 1273 goto err_out;
1121 if (!tmp) 1274
1122 return -ENOMEM; 1275 alloc_normal = 0;
1123 pages += tmp; 1276 alloc_highmem = 0;
1124 } else if (size > image_size / PAGE_SIZE) { 1277
1125 tmp = __shrink_memory(size - (image_size / PAGE_SIZE)); 1278 /* Count the number of saveable data pages. */
1126 pages += tmp; 1279 save_highmem = count_highmem_pages();
1127 } 1280 saveable = count_data_pages();
1128 printk("\b%c", p[i++%4]); 1281
1129 } while (tmp > 0); 1282 /*
1283 * Compute the total number of page frames we can use (count) and the
1284 * number of pages needed for image metadata (size).
1285 */
1286 count = saveable;
1287 saveable += save_highmem;
1288 highmem = save_highmem;
1289 size = 0;
1290 for_each_populated_zone(zone) {
1291 size += snapshot_additional_pages(zone);
1292 if (is_highmem(zone))
1293 highmem += zone_page_state(zone, NR_FREE_PAGES);
1294 else
1295 count += zone_page_state(zone, NR_FREE_PAGES);
1296 }
1297 count += highmem;
1298 count -= totalreserve_pages;
1299
1300 /* Compute the maximum number of saveable pages to leave in memory. */
1301 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1302 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1303 if (size > max_size)
1304 size = max_size;
1305 /*
1306 * If the maximum is not less than the current number of saveable pages
1307 * in memory, allocate page frames for the image and we're done.
1308 */
1309 if (size >= saveable) {
1310 pages = preallocate_image_highmem(save_highmem);
1311 pages += preallocate_image_memory(saveable - pages);
1312 goto out;
1313 }
1314
1315 /* Estimate the minimum size of the image. */
1316 pages = minimum_image_size(saveable);
1317 if (size < pages)
1318 size = min_t(unsigned long, pages, max_size);
1319
1320 /*
1321 * Let the memory management subsystem know that we're going to need a
1322 * large number of page frames to allocate and make it free some memory.
1323 * NOTE: If this is not done, performance will be hurt badly in some
1324 * test cases.
1325 */
1326 shrink_all_memory(saveable - size);
1327
1328 /*
1329 * The number of saveable pages in memory was too high, so apply some
1330 * pressure to decrease it. First, make room for the largest possible
1331 * image and fail if that doesn't work. Next, try to decrease the size
1332 * of the image as much as indicated by 'size' using allocations from
1333 * highmem and non-highmem zones separately.
1334 */
1335 pages_highmem = preallocate_image_highmem(highmem / 2);
1336 alloc = (count - max_size) - pages_highmem;
1337 pages = preallocate_image_memory(alloc);
1338 if (pages < alloc)
1339 goto err_out;
1340 size = max_size - size;
1341 alloc = size;
1342 size = preallocate_highmem_fraction(size, highmem, count);
1343 pages_highmem += size;
1344 alloc -= size;
1345 pages += preallocate_image_memory(alloc);
1346 pages += pages_highmem;
1347
1348 /*
1349 * We only need as many page frames for the image as there are saveable
1350 * pages in memory, but we have allocated more. Release the excessive
1351 * ones now.
1352 */
1353 free_unnecessary_pages();
1354
1355 out:
1130 do_gettimeofday(&stop); 1356 do_gettimeofday(&stop);
1131 printk("\bdone (%lu pages freed)\n", pages); 1357 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1132 swsusp_show_speed(&start, &stop, pages, "Freed"); 1358 swsusp_show_speed(&start, &stop, pages, "Allocated");
1133 1359
1134 return 0; 1360 return 0;
1361
1362 err_out:
1363 printk(KERN_CONT "\n");
1364 swsusp_free();
1365 return -ENOMEM;
1135} 1366}
1136 1367
1137#ifdef CONFIG_HIGHMEM 1368#ifdef CONFIG_HIGHMEM
@@ -1142,7 +1373,7 @@ int swsusp_shrink_memory(void)
1142 1373
1143static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1374static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1144{ 1375{
1145 unsigned int free_highmem = count_free_highmem_pages(); 1376 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1146 1377
1147 if (free_highmem >= nr_highmem) 1378 if (free_highmem >= nr_highmem)
1148 nr_highmem = 0; 1379 nr_highmem = 0;
@@ -1164,19 +1395,17 @@ count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1164static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1395static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1165{ 1396{
1166 struct zone *zone; 1397 struct zone *zone;
1167 unsigned int free = 0, meta = 0; 1398 unsigned int free = alloc_normal;
1168 1399
1169 for_each_zone(zone) { 1400 for_each_populated_zone(zone)
1170 meta += snapshot_additional_pages(zone);
1171 if (!is_highmem(zone)) 1401 if (!is_highmem(zone))
1172 free += zone_page_state(zone, NR_FREE_PAGES); 1402 free += zone_page_state(zone, NR_FREE_PAGES);
1173 }
1174 1403
1175 nr_pages += count_pages_for_highmem(nr_highmem); 1404 nr_pages += count_pages_for_highmem(nr_highmem);
1176 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", 1405 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1177 nr_pages, PAGES_FOR_IO, meta, free); 1406 nr_pages, PAGES_FOR_IO, free);
1178 1407
1179 return free > nr_pages + PAGES_FOR_IO + meta; 1408 return free > nr_pages + PAGES_FOR_IO;
1180} 1409}
1181 1410
1182#ifdef CONFIG_HIGHMEM 1411#ifdef CONFIG_HIGHMEM
@@ -1198,7 +1427,7 @@ static inline int get_highmem_buffer(int safe_needed)
1198 */ 1427 */
1199 1428
1200static inline unsigned int 1429static inline unsigned int
1201alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1430alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1202{ 1431{
1203 unsigned int to_alloc = count_free_highmem_pages(); 1432 unsigned int to_alloc = count_free_highmem_pages();
1204 1433
@@ -1218,7 +1447,7 @@ alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1218static inline int get_highmem_buffer(int safe_needed) { return 0; } 1447static inline int get_highmem_buffer(int safe_needed) { return 0; }
1219 1448
1220static inline unsigned int 1449static inline unsigned int
1221alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1450alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1222#endif /* CONFIG_HIGHMEM */ 1451#endif /* CONFIG_HIGHMEM */
1223 1452
1224/** 1453/**
@@ -1237,51 +1466,36 @@ static int
1237swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1466swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1238 unsigned int nr_pages, unsigned int nr_highmem) 1467 unsigned int nr_pages, unsigned int nr_highmem)
1239{ 1468{
1240 int error; 1469 int error = 0;
1241
1242 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1243 if (error)
1244 goto Free;
1245
1246 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1247 if (error)
1248 goto Free;
1249 1470
1250 if (nr_highmem > 0) { 1471 if (nr_highmem > 0) {
1251 error = get_highmem_buffer(PG_ANY); 1472 error = get_highmem_buffer(PG_ANY);
1252 if (error) 1473 if (error)
1253 goto Free; 1474 goto err_out;
1254 1475 if (nr_highmem > alloc_highmem) {
1255 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1476 nr_highmem -= alloc_highmem;
1477 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1478 }
1256 } 1479 }
1257 while (nr_pages-- > 0) { 1480 if (nr_pages > alloc_normal) {
1258 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1481 nr_pages -= alloc_normal;
1259 1482 while (nr_pages-- > 0) {
1260 if (!page) 1483 struct page *page;
1261 goto Free;
1262 1484
1263 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1485 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1486 if (!page)
1487 goto err_out;
1488 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1489 }
1264 } 1490 }
1491
1265 return 0; 1492 return 0;
1266 1493
1267 Free: 1494 err_out:
1268 swsusp_free(); 1495 swsusp_free();
1269 return -ENOMEM; 1496 return error;
1270} 1497}
1271 1498
1272/* Memory bitmap used for marking saveable pages (during suspend) or the
1273 * suspend image pages (during resume)
1274 */
1275static struct memory_bitmap orig_bm;
1276/* Memory bitmap used on suspend for marking allocated pages that will contain
1277 * the copies of saveable pages. During resume it is initially used for
1278 * marking the suspend image pages, but then its set bits are duplicated in
1279 * @orig_bm and it is released. Next, on systems with high memory, it may be
1280 * used for marking "safe" highmem pages, but it has to be reinitialized for
1281 * this purpose.
1282 */
1283static struct memory_bitmap copy_bm;
1284
1285asmlinkage int swsusp_save(void) 1499asmlinkage int swsusp_save(void)
1286{ 1500{
1287 unsigned int nr_pages, nr_highmem; 1501 unsigned int nr_pages, nr_highmem;
@@ -1474,7 +1688,7 @@ static int mark_unsafe_pages(struct memory_bitmap *bm)
1474 unsigned long pfn, max_zone_pfn; 1688 unsigned long pfn, max_zone_pfn;
1475 1689
1476 /* Clear page flags */ 1690 /* Clear page flags */
1477 for_each_zone(zone) { 1691 for_each_populated_zone(zone) {
1478 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1692 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1479 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1480 if (pfn_valid(pfn)) 1694 if (pfn_valid(pfn))
diff --git a/kernel/printk.c b/kernel/printk.c
index b4d97b54c1ec..602033acd6c7 100644
--- a/kernel/printk.c
+++ b/kernel/printk.c
@@ -37,6 +37,12 @@
37#include <asm/uaccess.h> 37#include <asm/uaccess.h>
38 38
39/* 39/*
40 * for_each_console() allows you to iterate on each console
41 */
42#define for_each_console(con) \
43 for (con = console_drivers; con != NULL; con = con->next)
44
45/*
40 * Architectures can override it: 46 * Architectures can override it:
41 */ 47 */
42void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...) 48void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
@@ -61,6 +67,8 @@ int console_printk[4] = {
61 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ 67 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
62}; 68};
63 69
70static int saved_console_loglevel = -1;
71
64/* 72/*
65 * Low level drivers may need that to know if they can schedule in 73 * Low level drivers may need that to know if they can schedule in
66 * their unblank() callback or not. So let's export it. 74 * their unblank() callback or not. So let's export it.
@@ -372,10 +380,15 @@ int do_syslog(int type, char __user *buf, int len)
372 logged_chars = 0; 380 logged_chars = 0;
373 break; 381 break;
374 case 6: /* Disable logging to console */ 382 case 6: /* Disable logging to console */
383 if (saved_console_loglevel == -1)
384 saved_console_loglevel = console_loglevel;
375 console_loglevel = minimum_console_loglevel; 385 console_loglevel = minimum_console_loglevel;
376 break; 386 break;
377 case 7: /* Enable logging to console */ 387 case 7: /* Enable logging to console */
378 console_loglevel = default_console_loglevel; 388 if (saved_console_loglevel != -1) {
389 console_loglevel = saved_console_loglevel;
390 saved_console_loglevel = -1;
391 }
379 break; 392 break;
380 case 8: /* Set level of messages printed to console */ 393 case 8: /* Set level of messages printed to console */
381 error = -EINVAL; 394 error = -EINVAL;
@@ -384,6 +397,8 @@ int do_syslog(int type, char __user *buf, int len)
384 if (len < minimum_console_loglevel) 397 if (len < minimum_console_loglevel)
385 len = minimum_console_loglevel; 398 len = minimum_console_loglevel;
386 console_loglevel = len; 399 console_loglevel = len;
400 /* Implicitly re-enable logging to console */
401 saved_console_loglevel = -1;
387 error = 0; 402 error = 0;
388 break; 403 break;
389 case 9: /* Number of chars in the log buffer */ 404 case 9: /* Number of chars in the log buffer */
@@ -412,7 +427,7 @@ static void __call_console_drivers(unsigned start, unsigned end)
412{ 427{
413 struct console *con; 428 struct console *con;
414 429
415 for (con = console_drivers; con; con = con->next) { 430 for_each_console(con) {
416 if ((con->flags & CON_ENABLED) && con->write && 431 if ((con->flags & CON_ENABLED) && con->write &&
417 (cpu_online(smp_processor_id()) || 432 (cpu_online(smp_processor_id()) ||
418 (con->flags & CON_ANYTIME))) 433 (con->flags & CON_ANYTIME)))
@@ -544,7 +559,7 @@ static int have_callable_console(void)
544{ 559{
545 struct console *con; 560 struct console *con;
546 561
547 for (con = console_drivers; con; con = con->next) 562 for_each_console(con)
548 if (con->flags & CON_ANYTIME) 563 if (con->flags & CON_ANYTIME)
549 return 1; 564 return 1;
550 565
@@ -1060,12 +1075,6 @@ void __sched console_conditional_schedule(void)
1060} 1075}
1061EXPORT_SYMBOL(console_conditional_schedule); 1076EXPORT_SYMBOL(console_conditional_schedule);
1062 1077
1063void console_print(const char *s)
1064{
1065 printk(KERN_EMERG "%s", s);
1066}
1067EXPORT_SYMBOL(console_print);
1068
1069void console_unblank(void) 1078void console_unblank(void)
1070{ 1079{
1071 struct console *c; 1080 struct console *c;
@@ -1082,7 +1091,7 @@ void console_unblank(void)
1082 1091
1083 console_locked = 1; 1092 console_locked = 1;
1084 console_may_schedule = 0; 1093 console_may_schedule = 0;
1085 for (c = console_drivers; c != NULL; c = c->next) 1094 for_each_console(c)
1086 if ((c->flags & CON_ENABLED) && c->unblank) 1095 if ((c->flags & CON_ENABLED) && c->unblank)
1087 c->unblank(); 1096 c->unblank();
1088 release_console_sem(); 1097 release_console_sem();
@@ -1097,7 +1106,7 @@ struct tty_driver *console_device(int *index)
1097 struct tty_driver *driver = NULL; 1106 struct tty_driver *driver = NULL;
1098 1107
1099 acquire_console_sem(); 1108 acquire_console_sem();
1100 for (c = console_drivers; c != NULL; c = c->next) { 1109 for_each_console(c) {
1101 if (!c->device) 1110 if (!c->device)
1102 continue; 1111 continue;
1103 driver = c->device(c, index); 1112 driver = c->device(c, index);
@@ -1134,25 +1143,49 @@ EXPORT_SYMBOL(console_start);
1134 * to register the console printing procedure with printk() and to 1143 * to register the console printing procedure with printk() and to
1135 * print any messages that were printed by the kernel before the 1144 * print any messages that were printed by the kernel before the
1136 * console driver was initialized. 1145 * console driver was initialized.
1146 *
1147 * This can happen pretty early during the boot process (because of
1148 * early_printk) - sometimes before setup_arch() completes - be careful
1149 * of what kernel features are used - they may not be initialised yet.
1150 *
1151 * There are two types of consoles - bootconsoles (early_printk) and
1152 * "real" consoles (everything which is not a bootconsole) which are
1153 * handled differently.
1154 * - Any number of bootconsoles can be registered at any time.
1155 * - As soon as a "real" console is registered, all bootconsoles
1156 * will be unregistered automatically.
1157 * - Once a "real" console is registered, any attempt to register a
1158 * bootconsoles will be rejected
1137 */ 1159 */
1138void register_console(struct console *console) 1160void register_console(struct console *newcon)
1139{ 1161{
1140 int i; 1162 int i;
1141 unsigned long flags; 1163 unsigned long flags;
1142 struct console *bootconsole = NULL; 1164 struct console *bcon = NULL;
1143 1165
1144 if (console_drivers) { 1166 /*
1145 if (console->flags & CON_BOOT) 1167 * before we register a new CON_BOOT console, make sure we don't
1146 return; 1168 * already have a valid console
1147 if (console_drivers->flags & CON_BOOT) 1169 */
1148 bootconsole = console_drivers; 1170 if (console_drivers && newcon->flags & CON_BOOT) {
1171 /* find the last or real console */
1172 for_each_console(bcon) {
1173 if (!(bcon->flags & CON_BOOT)) {
1174 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
1175 newcon->name, newcon->index);
1176 return;
1177 }
1178 }
1149 } 1179 }
1150 1180
1151 if (preferred_console < 0 || bootconsole || !console_drivers) 1181 if (console_drivers && console_drivers->flags & CON_BOOT)
1182 bcon = console_drivers;
1183
1184 if (preferred_console < 0 || bcon || !console_drivers)
1152 preferred_console = selected_console; 1185 preferred_console = selected_console;
1153 1186
1154 if (console->early_setup) 1187 if (newcon->early_setup)
1155 console->early_setup(); 1188 newcon->early_setup();
1156 1189
1157 /* 1190 /*
1158 * See if we want to use this console driver. If we 1191 * See if we want to use this console driver. If we
@@ -1160,13 +1193,13 @@ void register_console(struct console *console)
1160 * that registers here. 1193 * that registers here.
1161 */ 1194 */
1162 if (preferred_console < 0) { 1195 if (preferred_console < 0) {
1163 if (console->index < 0) 1196 if (newcon->index < 0)
1164 console->index = 0; 1197 newcon->index = 0;
1165 if (console->setup == NULL || 1198 if (newcon->setup == NULL ||
1166 console->setup(console, NULL) == 0) { 1199 newcon->setup(newcon, NULL) == 0) {
1167 console->flags |= CON_ENABLED; 1200 newcon->flags |= CON_ENABLED;
1168 if (console->device) { 1201 if (newcon->device) {
1169 console->flags |= CON_CONSDEV; 1202 newcon->flags |= CON_CONSDEV;
1170 preferred_console = 0; 1203 preferred_console = 0;
1171 } 1204 }
1172 } 1205 }
@@ -1178,64 +1211,62 @@ void register_console(struct console *console)
1178 */ 1211 */
1179 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; 1212 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
1180 i++) { 1213 i++) {
1181 if (strcmp(console_cmdline[i].name, console->name) != 0) 1214 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
1182 continue; 1215 continue;
1183 if (console->index >= 0 && 1216 if (newcon->index >= 0 &&
1184 console->index != console_cmdline[i].index) 1217 newcon->index != console_cmdline[i].index)
1185 continue; 1218 continue;
1186 if (console->index < 0) 1219 if (newcon->index < 0)
1187 console->index = console_cmdline[i].index; 1220 newcon->index = console_cmdline[i].index;
1188#ifdef CONFIG_A11Y_BRAILLE_CONSOLE 1221#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1189 if (console_cmdline[i].brl_options) { 1222 if (console_cmdline[i].brl_options) {
1190 console->flags |= CON_BRL; 1223 newcon->flags |= CON_BRL;
1191 braille_register_console(console, 1224 braille_register_console(newcon,
1192 console_cmdline[i].index, 1225 console_cmdline[i].index,
1193 console_cmdline[i].options, 1226 console_cmdline[i].options,
1194 console_cmdline[i].brl_options); 1227 console_cmdline[i].brl_options);
1195 return; 1228 return;
1196 } 1229 }
1197#endif 1230#endif
1198 if (console->setup && 1231 if (newcon->setup &&
1199 console->setup(console, console_cmdline[i].options) != 0) 1232 newcon->setup(newcon, console_cmdline[i].options) != 0)
1200 break; 1233 break;
1201 console->flags |= CON_ENABLED; 1234 newcon->flags |= CON_ENABLED;
1202 console->index = console_cmdline[i].index; 1235 newcon->index = console_cmdline[i].index;
1203 if (i == selected_console) { 1236 if (i == selected_console) {
1204 console->flags |= CON_CONSDEV; 1237 newcon->flags |= CON_CONSDEV;
1205 preferred_console = selected_console; 1238 preferred_console = selected_console;
1206 } 1239 }
1207 break; 1240 break;
1208 } 1241 }
1209 1242
1210 if (!(console->flags & CON_ENABLED)) 1243 if (!(newcon->flags & CON_ENABLED))
1211 return; 1244 return;
1212 1245
1213 if (bootconsole && (console->flags & CON_CONSDEV)) { 1246 /*
1214 printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]\n", 1247 * If we have a bootconsole, and are switching to a real console,
1215 bootconsole->name, bootconsole->index, 1248 * don't print everything out again, since when the boot console, and
1216 console->name, console->index); 1249 * the real console are the same physical device, it's annoying to
1217 unregister_console(bootconsole); 1250 * see the beginning boot messages twice
1218 console->flags &= ~CON_PRINTBUFFER; 1251 */
1219 } else { 1252 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
1220 printk(KERN_INFO "console [%s%d] enabled\n", 1253 newcon->flags &= ~CON_PRINTBUFFER;
1221 console->name, console->index);
1222 }
1223 1254
1224 /* 1255 /*
1225 * Put this console in the list - keep the 1256 * Put this console in the list - keep the
1226 * preferred driver at the head of the list. 1257 * preferred driver at the head of the list.
1227 */ 1258 */
1228 acquire_console_sem(); 1259 acquire_console_sem();
1229 if ((console->flags & CON_CONSDEV) || console_drivers == NULL) { 1260 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
1230 console->next = console_drivers; 1261 newcon->next = console_drivers;
1231 console_drivers = console; 1262 console_drivers = newcon;
1232 if (console->next) 1263 if (newcon->next)
1233 console->next->flags &= ~CON_CONSDEV; 1264 newcon->next->flags &= ~CON_CONSDEV;
1234 } else { 1265 } else {
1235 console->next = console_drivers->next; 1266 newcon->next = console_drivers->next;
1236 console_drivers->next = console; 1267 console_drivers->next = newcon;
1237 } 1268 }
1238 if (console->flags & CON_PRINTBUFFER) { 1269 if (newcon->flags & CON_PRINTBUFFER) {
1239 /* 1270 /*
1240 * release_console_sem() will print out the buffered messages 1271 * release_console_sem() will print out the buffered messages
1241 * for us. 1272 * for us.
@@ -1245,6 +1276,28 @@ void register_console(struct console *console)
1245 spin_unlock_irqrestore(&logbuf_lock, flags); 1276 spin_unlock_irqrestore(&logbuf_lock, flags);
1246 } 1277 }
1247 release_console_sem(); 1278 release_console_sem();
1279
1280 /*
1281 * By unregistering the bootconsoles after we enable the real console
1282 * we get the "console xxx enabled" message on all the consoles -
1283 * boot consoles, real consoles, etc - this is to ensure that end
1284 * users know there might be something in the kernel's log buffer that
1285 * went to the bootconsole (that they do not see on the real console)
1286 */
1287 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
1288 /* we need to iterate through twice, to make sure we print
1289 * everything out, before we unregister the console(s)
1290 */
1291 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
1292 newcon->name, newcon->index);
1293 for_each_console(bcon)
1294 if (bcon->flags & CON_BOOT)
1295 unregister_console(bcon);
1296 } else {
1297 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
1298 (newcon->flags & CON_BOOT) ? "boot" : "" ,
1299 newcon->name, newcon->index);
1300 }
1248} 1301}
1249EXPORT_SYMBOL(register_console); 1302EXPORT_SYMBOL(register_console);
1250 1303
@@ -1287,11 +1340,13 @@ EXPORT_SYMBOL(unregister_console);
1287 1340
1288static int __init disable_boot_consoles(void) 1341static int __init disable_boot_consoles(void)
1289{ 1342{
1290 if (console_drivers != NULL) { 1343 struct console *con;
1291 if (console_drivers->flags & CON_BOOT) { 1344
1345 for_each_console(con) {
1346 if (con->flags & CON_BOOT) {
1292 printk(KERN_INFO "turn off boot console %s%d\n", 1347 printk(KERN_INFO "turn off boot console %s%d\n",
1293 console_drivers->name, console_drivers->index); 1348 con->name, con->index);
1294 return unregister_console(console_drivers); 1349 unregister_console(con);
1295 } 1350 }
1296 } 1351 }
1297 return 0; 1352 return 0;
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 082c320e4dbf..307c285af59e 100644
--- a/kernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -152,7 +152,7 @@ int __ptrace_may_access(struct task_struct *task, unsigned int mode)
152 if (!dumpable && !capable(CAP_SYS_PTRACE)) 152 if (!dumpable && !capable(CAP_SYS_PTRACE))
153 return -EPERM; 153 return -EPERM;
154 154
155 return security_ptrace_may_access(task, mode); 155 return security_ptrace_access_check(task, mode);
156} 156}
157 157
158bool ptrace_may_access(struct task_struct *task, unsigned int mode) 158bool ptrace_may_access(struct task_struct *task, unsigned int mode)
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c
deleted file mode 100644
index 0f2b0b311304..000000000000
--- a/kernel/rcuclassic.c
+++ /dev/null
@@ -1,807 +0,0 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * Documentation/RCU
31 *
32 */
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
38#include <linux/rcupdate.h>
39#include <linux/interrupt.h>
40#include <linux/sched.h>
41#include <asm/atomic.h>
42#include <linux/bitops.h>
43#include <linux/module.h>
44#include <linux/completion.h>
45#include <linux/moduleparam.h>
46#include <linux/percpu.h>
47#include <linux/notifier.h>
48#include <linux/cpu.h>
49#include <linux/mutex.h>
50#include <linux/time.h>
51
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53static struct lock_class_key rcu_lock_key;
54struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56EXPORT_SYMBOL_GPL(rcu_lock_map);
57#endif
58
59
60/* Definition for rcupdate control block. */
61static struct rcu_ctrlblk rcu_ctrlblk = {
62 .cur = -300,
63 .completed = -300,
64 .pending = -300,
65 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock),
66 .cpumask = CPU_BITS_NONE,
67};
68
69static struct rcu_ctrlblk rcu_bh_ctrlblk = {
70 .cur = -300,
71 .completed = -300,
72 .pending = -300,
73 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock),
74 .cpumask = CPU_BITS_NONE,
75};
76
77static DEFINE_PER_CPU(struct rcu_data, rcu_data);
78static DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
79
80/*
81 * Increment the quiescent state counter.
82 * The counter is a bit degenerated: We do not need to know
83 * how many quiescent states passed, just if there was at least
84 * one since the start of the grace period. Thus just a flag.
85 */
86void rcu_qsctr_inc(int cpu)
87{
88 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
89 rdp->passed_quiesc = 1;
90}
91
92void rcu_bh_qsctr_inc(int cpu)
93{
94 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
95 rdp->passed_quiesc = 1;
96}
97
98static int blimit = 10;
99static int qhimark = 10000;
100static int qlowmark = 100;
101
102#ifdef CONFIG_SMP
103static void force_quiescent_state(struct rcu_data *rdp,
104 struct rcu_ctrlblk *rcp)
105{
106 int cpu;
107 unsigned long flags;
108
109 set_need_resched();
110 spin_lock_irqsave(&rcp->lock, flags);
111 if (unlikely(!rcp->signaled)) {
112 rcp->signaled = 1;
113 /*
114 * Don't send IPI to itself. With irqs disabled,
115 * rdp->cpu is the current cpu.
116 *
117 * cpu_online_mask is updated by the _cpu_down()
118 * using __stop_machine(). Since we're in irqs disabled
119 * section, __stop_machine() is not exectuting, hence
120 * the cpu_online_mask is stable.
121 *
122 * However, a cpu might have been offlined _just_ before
123 * we disabled irqs while entering here.
124 * And rcu subsystem might not yet have handled the CPU_DEAD
125 * notification, leading to the offlined cpu's bit
126 * being set in the rcp->cpumask.
127 *
128 * Hence cpumask = (rcp->cpumask & cpu_online_mask) to prevent
129 * sending smp_reschedule() to an offlined CPU.
130 */
131 for_each_cpu_and(cpu,
132 to_cpumask(rcp->cpumask), cpu_online_mask) {
133 if (cpu != rdp->cpu)
134 smp_send_reschedule(cpu);
135 }
136 }
137 spin_unlock_irqrestore(&rcp->lock, flags);
138}
139#else
140static inline void force_quiescent_state(struct rcu_data *rdp,
141 struct rcu_ctrlblk *rcp)
142{
143 set_need_resched();
144}
145#endif
146
147static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp,
148 struct rcu_data *rdp)
149{
150 long batch;
151
152 head->next = NULL;
153 smp_mb(); /* Read of rcu->cur must happen after any change by caller. */
154
155 /*
156 * Determine the batch number of this callback.
157 *
158 * Using ACCESS_ONCE to avoid the following error when gcc eliminates
159 * local variable "batch" and emits codes like this:
160 * 1) rdp->batch = rcp->cur + 1 # gets old value
161 * ......
162 * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value
163 * then [*nxttail[0], *nxttail[1]) may contain callbacks
164 * that batch# = rdp->batch, see the comment of struct rcu_data.
165 */
166 batch = ACCESS_ONCE(rcp->cur) + 1;
167
168 if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) {
169 /* process callbacks */
170 rdp->nxttail[0] = rdp->nxttail[1];
171 rdp->nxttail[1] = rdp->nxttail[2];
172 if (rcu_batch_after(batch - 1, rdp->batch))
173 rdp->nxttail[0] = rdp->nxttail[2];
174 }
175
176 rdp->batch = batch;
177 *rdp->nxttail[2] = head;
178 rdp->nxttail[2] = &head->next;
179
180 if (unlikely(++rdp->qlen > qhimark)) {
181 rdp->blimit = INT_MAX;
182 force_quiescent_state(rdp, &rcu_ctrlblk);
183 }
184}
185
186#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
187
188static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
189{
190 rcp->gp_start = jiffies;
191 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
192}
193
194static void print_other_cpu_stall(struct rcu_ctrlblk *rcp)
195{
196 int cpu;
197 long delta;
198 unsigned long flags;
199
200 /* Only let one CPU complain about others per time interval. */
201
202 spin_lock_irqsave(&rcp->lock, flags);
203 delta = jiffies - rcp->jiffies_stall;
204 if (delta < 2 || rcp->cur != rcp->completed) {
205 spin_unlock_irqrestore(&rcp->lock, flags);
206 return;
207 }
208 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
209 spin_unlock_irqrestore(&rcp->lock, flags);
210
211 /* OK, time to rat on our buddy... */
212
213 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
214 for_each_possible_cpu(cpu) {
215 if (cpumask_test_cpu(cpu, to_cpumask(rcp->cpumask)))
216 printk(" %d", cpu);
217 }
218 printk(" (detected by %d, t=%ld jiffies)\n",
219 smp_processor_id(), (long)(jiffies - rcp->gp_start));
220}
221
222static void print_cpu_stall(struct rcu_ctrlblk *rcp)
223{
224 unsigned long flags;
225
226 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu/%lu jiffies)\n",
227 smp_processor_id(), jiffies,
228 jiffies - rcp->gp_start);
229 dump_stack();
230 spin_lock_irqsave(&rcp->lock, flags);
231 if ((long)(jiffies - rcp->jiffies_stall) >= 0)
232 rcp->jiffies_stall =
233 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
234 spin_unlock_irqrestore(&rcp->lock, flags);
235 set_need_resched(); /* kick ourselves to get things going. */
236}
237
238static void check_cpu_stall(struct rcu_ctrlblk *rcp)
239{
240 long delta;
241
242 delta = jiffies - rcp->jiffies_stall;
243 if (cpumask_test_cpu(smp_processor_id(), to_cpumask(rcp->cpumask)) &&
244 delta >= 0) {
245
246 /* We haven't checked in, so go dump stack. */
247 print_cpu_stall(rcp);
248
249 } else if (rcp->cur != rcp->completed && delta >= 2) {
250
251 /* They had two seconds to dump stack, so complain. */
252 print_other_cpu_stall(rcp);
253 }
254}
255
256#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
257
258static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
259{
260}
261
262static inline void check_cpu_stall(struct rcu_ctrlblk *rcp)
263{
264}
265
266#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
267
268/**
269 * call_rcu - Queue an RCU callback for invocation after a grace period.
270 * @head: structure to be used for queueing the RCU updates.
271 * @func: actual update function to be invoked after the grace period
272 *
273 * The update function will be invoked some time after a full grace
274 * period elapses, in other words after all currently executing RCU
275 * read-side critical sections have completed. RCU read-side critical
276 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
277 * and may be nested.
278 */
279void call_rcu(struct rcu_head *head,
280 void (*func)(struct rcu_head *rcu))
281{
282 unsigned long flags;
283
284 head->func = func;
285 local_irq_save(flags);
286 __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data));
287 local_irq_restore(flags);
288}
289EXPORT_SYMBOL_GPL(call_rcu);
290
291/**
292 * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
293 * @head: structure to be used for queueing the RCU updates.
294 * @func: actual update function to be invoked after the grace period
295 *
296 * The update function will be invoked some time after a full grace
297 * period elapses, in other words after all currently executing RCU
298 * read-side critical sections have completed. call_rcu_bh() assumes
299 * that the read-side critical sections end on completion of a softirq
300 * handler. This means that read-side critical sections in process
301 * context must not be interrupted by softirqs. This interface is to be
302 * used when most of the read-side critical sections are in softirq context.
303 * RCU read-side critical sections are delimited by rcu_read_lock() and
304 * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
305 * and rcu_read_unlock_bh(), if in process context. These may be nested.
306 */
307void call_rcu_bh(struct rcu_head *head,
308 void (*func)(struct rcu_head *rcu))
309{
310 unsigned long flags;
311
312 head->func = func;
313 local_irq_save(flags);
314 __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
315 local_irq_restore(flags);
316}
317EXPORT_SYMBOL_GPL(call_rcu_bh);
318
319/*
320 * Return the number of RCU batches processed thus far. Useful
321 * for debug and statistics.
322 */
323long rcu_batches_completed(void)
324{
325 return rcu_ctrlblk.completed;
326}
327EXPORT_SYMBOL_GPL(rcu_batches_completed);
328
329/*
330 * Return the number of RCU batches processed thus far. Useful
331 * for debug and statistics.
332 */
333long rcu_batches_completed_bh(void)
334{
335 return rcu_bh_ctrlblk.completed;
336}
337EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
338
339/* Raises the softirq for processing rcu_callbacks. */
340static inline void raise_rcu_softirq(void)
341{
342 raise_softirq(RCU_SOFTIRQ);
343}
344
345/*
346 * Invoke the completed RCU callbacks. They are expected to be in
347 * a per-cpu list.
348 */
349static void rcu_do_batch(struct rcu_data *rdp)
350{
351 unsigned long flags;
352 struct rcu_head *next, *list;
353 int count = 0;
354
355 list = rdp->donelist;
356 while (list) {
357 next = list->next;
358 prefetch(next);
359 list->func(list);
360 list = next;
361 if (++count >= rdp->blimit)
362 break;
363 }
364 rdp->donelist = list;
365
366 local_irq_save(flags);
367 rdp->qlen -= count;
368 local_irq_restore(flags);
369 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark)
370 rdp->blimit = blimit;
371
372 if (!rdp->donelist)
373 rdp->donetail = &rdp->donelist;
374 else
375 raise_rcu_softirq();
376}
377
378/*
379 * Grace period handling:
380 * The grace period handling consists out of two steps:
381 * - A new grace period is started.
382 * This is done by rcu_start_batch. The start is not broadcasted to
383 * all cpus, they must pick this up by comparing rcp->cur with
384 * rdp->quiescbatch. All cpus are recorded in the
385 * rcu_ctrlblk.cpumask bitmap.
386 * - All cpus must go through a quiescent state.
387 * Since the start of the grace period is not broadcasted, at least two
388 * calls to rcu_check_quiescent_state are required:
389 * The first call just notices that a new grace period is running. The
390 * following calls check if there was a quiescent state since the beginning
391 * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If
392 * the bitmap is empty, then the grace period is completed.
393 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
394 * period (if necessary).
395 */
396
397/*
398 * Register a new batch of callbacks, and start it up if there is currently no
399 * active batch and the batch to be registered has not already occurred.
400 * Caller must hold rcu_ctrlblk.lock.
401 */
402static void rcu_start_batch(struct rcu_ctrlblk *rcp)
403{
404 if (rcp->cur != rcp->pending &&
405 rcp->completed == rcp->cur) {
406 rcp->cur++;
407 record_gp_stall_check_time(rcp);
408
409 /*
410 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a
411 * Barrier Otherwise it can cause tickless idle CPUs to be
412 * included in rcp->cpumask, which will extend graceperiods
413 * unnecessarily.
414 */
415 smp_mb();
416 cpumask_andnot(to_cpumask(rcp->cpumask),
417 cpu_online_mask, nohz_cpu_mask);
418
419 rcp->signaled = 0;
420 }
421}
422
423/*
424 * cpu went through a quiescent state since the beginning of the grace period.
425 * Clear it from the cpu mask and complete the grace period if it was the last
426 * cpu. Start another grace period if someone has further entries pending
427 */
428static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
429{
430 cpumask_clear_cpu(cpu, to_cpumask(rcp->cpumask));
431 if (cpumask_empty(to_cpumask(rcp->cpumask))) {
432 /* batch completed ! */
433 rcp->completed = rcp->cur;
434 rcu_start_batch(rcp);
435 }
436}
437
438/*
439 * Check if the cpu has gone through a quiescent state (say context
440 * switch). If so and if it already hasn't done so in this RCU
441 * quiescent cycle, then indicate that it has done so.
442 */
443static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
444 struct rcu_data *rdp)
445{
446 unsigned long flags;
447
448 if (rdp->quiescbatch != rcp->cur) {
449 /* start new grace period: */
450 rdp->qs_pending = 1;
451 rdp->passed_quiesc = 0;
452 rdp->quiescbatch = rcp->cur;
453 return;
454 }
455
456 /* Grace period already completed for this cpu?
457 * qs_pending is checked instead of the actual bitmap to avoid
458 * cacheline trashing.
459 */
460 if (!rdp->qs_pending)
461 return;
462
463 /*
464 * Was there a quiescent state since the beginning of the grace
465 * period? If no, then exit and wait for the next call.
466 */
467 if (!rdp->passed_quiesc)
468 return;
469 rdp->qs_pending = 0;
470
471 spin_lock_irqsave(&rcp->lock, flags);
472 /*
473 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
474 * during cpu startup. Ignore the quiescent state.
475 */
476 if (likely(rdp->quiescbatch == rcp->cur))
477 cpu_quiet(rdp->cpu, rcp);
478
479 spin_unlock_irqrestore(&rcp->lock, flags);
480}
481
482
483#ifdef CONFIG_HOTPLUG_CPU
484
485/* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing
486 * locking requirements, the list it's pulling from has to belong to a cpu
487 * which is dead and hence not processing interrupts.
488 */
489static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
490 struct rcu_head **tail, long batch)
491{
492 unsigned long flags;
493
494 if (list) {
495 local_irq_save(flags);
496 this_rdp->batch = batch;
497 *this_rdp->nxttail[2] = list;
498 this_rdp->nxttail[2] = tail;
499 local_irq_restore(flags);
500 }
501}
502
503static void __rcu_offline_cpu(struct rcu_data *this_rdp,
504 struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
505{
506 unsigned long flags;
507
508 /*
509 * if the cpu going offline owns the grace period
510 * we can block indefinitely waiting for it, so flush
511 * it here
512 */
513 spin_lock_irqsave(&rcp->lock, flags);
514 if (rcp->cur != rcp->completed)
515 cpu_quiet(rdp->cpu, rcp);
516 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1);
517 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1);
518 spin_unlock(&rcp->lock);
519
520 this_rdp->qlen += rdp->qlen;
521 local_irq_restore(flags);
522}
523
524static void rcu_offline_cpu(int cpu)
525{
526 struct rcu_data *this_rdp = &get_cpu_var(rcu_data);
527 struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data);
528
529 __rcu_offline_cpu(this_rdp, &rcu_ctrlblk,
530 &per_cpu(rcu_data, cpu));
531 __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk,
532 &per_cpu(rcu_bh_data, cpu));
533 put_cpu_var(rcu_data);
534 put_cpu_var(rcu_bh_data);
535}
536
537#else
538
539static void rcu_offline_cpu(int cpu)
540{
541}
542
543#endif
544
545/*
546 * This does the RCU processing work from softirq context.
547 */
548static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
549 struct rcu_data *rdp)
550{
551 unsigned long flags;
552 long completed_snap;
553
554 if (rdp->nxtlist) {
555 local_irq_save(flags);
556 completed_snap = ACCESS_ONCE(rcp->completed);
557
558 /*
559 * move the other grace-period-completed entries to
560 * [rdp->nxtlist, *rdp->nxttail[0]) temporarily
561 */
562 if (!rcu_batch_before(completed_snap, rdp->batch))
563 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2];
564 else if (!rcu_batch_before(completed_snap, rdp->batch - 1))
565 rdp->nxttail[0] = rdp->nxttail[1];
566
567 /*
568 * the grace period for entries in
569 * [rdp->nxtlist, *rdp->nxttail[0]) has completed and
570 * move these entries to donelist
571 */
572 if (rdp->nxttail[0] != &rdp->nxtlist) {
573 *rdp->donetail = rdp->nxtlist;
574 rdp->donetail = rdp->nxttail[0];
575 rdp->nxtlist = *rdp->nxttail[0];
576 *rdp->donetail = NULL;
577
578 if (rdp->nxttail[1] == rdp->nxttail[0])
579 rdp->nxttail[1] = &rdp->nxtlist;
580 if (rdp->nxttail[2] == rdp->nxttail[0])
581 rdp->nxttail[2] = &rdp->nxtlist;
582 rdp->nxttail[0] = &rdp->nxtlist;
583 }
584
585 local_irq_restore(flags);
586
587 if (rcu_batch_after(rdp->batch, rcp->pending)) {
588 unsigned long flags2;
589
590 /* and start it/schedule start if it's a new batch */
591 spin_lock_irqsave(&rcp->lock, flags2);
592 if (rcu_batch_after(rdp->batch, rcp->pending)) {
593 rcp->pending = rdp->batch;
594 rcu_start_batch(rcp);
595 }
596 spin_unlock_irqrestore(&rcp->lock, flags2);
597 }
598 }
599
600 rcu_check_quiescent_state(rcp, rdp);
601 if (rdp->donelist)
602 rcu_do_batch(rdp);
603}
604
605static void rcu_process_callbacks(struct softirq_action *unused)
606{
607 /*
608 * Memory references from any prior RCU read-side critical sections
609 * executed by the interrupted code must be see before any RCU
610 * grace-period manupulations below.
611 */
612
613 smp_mb(); /* See above block comment. */
614
615 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data));
616 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
617
618 /*
619 * Memory references from any later RCU read-side critical sections
620 * executed by the interrupted code must be see after any RCU
621 * grace-period manupulations above.
622 */
623
624 smp_mb(); /* See above block comment. */
625}
626
627static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
628{
629 /* Check for CPU stalls, if enabled. */
630 check_cpu_stall(rcp);
631
632 if (rdp->nxtlist) {
633 long completed_snap = ACCESS_ONCE(rcp->completed);
634
635 /*
636 * This cpu has pending rcu entries and the grace period
637 * for them has completed.
638 */
639 if (!rcu_batch_before(completed_snap, rdp->batch))
640 return 1;
641 if (!rcu_batch_before(completed_snap, rdp->batch - 1) &&
642 rdp->nxttail[0] != rdp->nxttail[1])
643 return 1;
644 if (rdp->nxttail[0] != &rdp->nxtlist)
645 return 1;
646
647 /*
648 * This cpu has pending rcu entries and the new batch
649 * for then hasn't been started nor scheduled start
650 */
651 if (rcu_batch_after(rdp->batch, rcp->pending))
652 return 1;
653 }
654
655 /* This cpu has finished callbacks to invoke */
656 if (rdp->donelist)
657 return 1;
658
659 /* The rcu core waits for a quiescent state from the cpu */
660 if (rdp->quiescbatch != rcp->cur || rdp->qs_pending)
661 return 1;
662
663 /* nothing to do */
664 return 0;
665}
666
667/*
668 * Check to see if there is any immediate RCU-related work to be done
669 * by the current CPU, returning 1 if so. This function is part of the
670 * RCU implementation; it is -not- an exported member of the RCU API.
671 */
672int rcu_pending(int cpu)
673{
674 return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) ||
675 __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu));
676}
677
678/*
679 * Check to see if any future RCU-related work will need to be done
680 * by the current CPU, even if none need be done immediately, returning
681 * 1 if so. This function is part of the RCU implementation; it is -not-
682 * an exported member of the RCU API.
683 */
684int rcu_needs_cpu(int cpu)
685{
686 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
687 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu);
688
689 return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu);
690}
691
692/*
693 * Top-level function driving RCU grace-period detection, normally
694 * invoked from the scheduler-clock interrupt. This function simply
695 * increments counters that are read only from softirq by this same
696 * CPU, so there are no memory barriers required.
697 */
698void rcu_check_callbacks(int cpu, int user)
699{
700 if (user ||
701 (idle_cpu(cpu) && rcu_scheduler_active &&
702 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
703
704 /*
705 * Get here if this CPU took its interrupt from user
706 * mode or from the idle loop, and if this is not a
707 * nested interrupt. In this case, the CPU is in
708 * a quiescent state, so count it.
709 *
710 * Also do a memory barrier. This is needed to handle
711 * the case where writes from a preempt-disable section
712 * of code get reordered into schedule() by this CPU's
713 * write buffer. The memory barrier makes sure that
714 * the rcu_qsctr_inc() and rcu_bh_qsctr_inc() are see
715 * by other CPUs to happen after any such write.
716 */
717
718 smp_mb(); /* See above block comment. */
719 rcu_qsctr_inc(cpu);
720 rcu_bh_qsctr_inc(cpu);
721
722 } else if (!in_softirq()) {
723
724 /*
725 * Get here if this CPU did not take its interrupt from
726 * softirq, in other words, if it is not interrupting
727 * a rcu_bh read-side critical section. This is an _bh
728 * critical section, so count it. The memory barrier
729 * is needed for the same reason as is the above one.
730 */
731
732 smp_mb(); /* See above block comment. */
733 rcu_bh_qsctr_inc(cpu);
734 }
735 raise_rcu_softirq();
736}
737
738static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
739 struct rcu_data *rdp)
740{
741 unsigned long flags;
742
743 spin_lock_irqsave(&rcp->lock, flags);
744 memset(rdp, 0, sizeof(*rdp));
745 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist;
746 rdp->donetail = &rdp->donelist;
747 rdp->quiescbatch = rcp->completed;
748 rdp->qs_pending = 0;
749 rdp->cpu = cpu;
750 rdp->blimit = blimit;
751 spin_unlock_irqrestore(&rcp->lock, flags);
752}
753
754static void __cpuinit rcu_online_cpu(int cpu)
755{
756 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
757 struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu);
758
759 rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp);
760 rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp);
761 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
762}
763
764static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
765 unsigned long action, void *hcpu)
766{
767 long cpu = (long)hcpu;
768
769 switch (action) {
770 case CPU_UP_PREPARE:
771 case CPU_UP_PREPARE_FROZEN:
772 rcu_online_cpu(cpu);
773 break;
774 case CPU_DEAD:
775 case CPU_DEAD_FROZEN:
776 rcu_offline_cpu(cpu);
777 break;
778 default:
779 break;
780 }
781 return NOTIFY_OK;
782}
783
784static struct notifier_block __cpuinitdata rcu_nb = {
785 .notifier_call = rcu_cpu_notify,
786};
787
788/*
789 * Initializes rcu mechanism. Assumed to be called early.
790 * That is before local timer(SMP) or jiffie timer (uniproc) is setup.
791 * Note that rcu_qsctr and friends are implicitly
792 * initialized due to the choice of ``0'' for RCU_CTR_INVALID.
793 */
794void __init __rcu_init(void)
795{
796#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
797 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
798#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
799 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
800 (void *)(long)smp_processor_id());
801 /* Register notifier for non-boot CPUs */
802 register_cpu_notifier(&rcu_nb);
803}
804
805module_param(blimit, int, 0);
806module_param(qhimark, int, 0);
807module_param(qlowmark, int, 0);
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index a967c9feb90a..bd5d5c8e5140 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -98,6 +98,30 @@ void synchronize_rcu(void)
98} 98}
99EXPORT_SYMBOL_GPL(synchronize_rcu); 99EXPORT_SYMBOL_GPL(synchronize_rcu);
100 100
101/**
102 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
103 *
104 * Control will return to the caller some time after a full rcu_bh grace
105 * period has elapsed, in other words after all currently executing rcu_bh
106 * read-side critical sections have completed. RCU read-side critical
107 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
108 * and may be nested.
109 */
110void synchronize_rcu_bh(void)
111{
112 struct rcu_synchronize rcu;
113
114 if (rcu_blocking_is_gp())
115 return;
116
117 init_completion(&rcu.completion);
118 /* Will wake me after RCU finished. */
119 call_rcu_bh(&rcu.head, wakeme_after_rcu);
120 /* Wait for it. */
121 wait_for_completion(&rcu.completion);
122}
123EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
124
101static void rcu_barrier_callback(struct rcu_head *notused) 125static void rcu_barrier_callback(struct rcu_head *notused)
102{ 126{
103 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) 127 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
@@ -129,6 +153,7 @@ static void rcu_barrier_func(void *type)
129static inline void wait_migrated_callbacks(void) 153static inline void wait_migrated_callbacks(void)
130{ 154{
131 wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); 155 wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count));
156 smp_mb(); /* In case we didn't sleep. */
132} 157}
133 158
134/* 159/*
@@ -192,9 +217,13 @@ static void rcu_migrate_callback(struct rcu_head *notused)
192 wake_up(&rcu_migrate_wq); 217 wake_up(&rcu_migrate_wq);
193} 218}
194 219
220extern int rcu_cpu_notify(struct notifier_block *self,
221 unsigned long action, void *hcpu);
222
195static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, 223static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
196 unsigned long action, void *hcpu) 224 unsigned long action, void *hcpu)
197{ 225{
226 rcu_cpu_notify(self, action, hcpu);
198 if (action == CPU_DYING) { 227 if (action == CPU_DYING) {
199 /* 228 /*
200 * preempt_disable() in on_each_cpu() prevents stop_machine(), 229 * preempt_disable() in on_each_cpu() prevents stop_machine(),
@@ -209,7 +238,8 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
209 call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); 238 call_rcu_bh(rcu_migrate_head, rcu_migrate_callback);
210 call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); 239 call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback);
211 call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); 240 call_rcu(rcu_migrate_head + 2, rcu_migrate_callback);
212 } else if (action == CPU_POST_DEAD) { 241 } else if (action == CPU_DOWN_PREPARE) {
242 /* Don't need to wait until next removal operation. */
213 /* rcu_migrate_head is protected by cpu_add_remove_lock */ 243 /* rcu_migrate_head is protected by cpu_add_remove_lock */
214 wait_migrated_callbacks(); 244 wait_migrated_callbacks();
215 } 245 }
@@ -219,8 +249,18 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
219 249
220void __init rcu_init(void) 250void __init rcu_init(void)
221{ 251{
252 int i;
253
222 __rcu_init(); 254 __rcu_init();
223 hotcpu_notifier(rcu_barrier_cpu_hotplug, 0); 255 cpu_notifier(rcu_barrier_cpu_hotplug, 0);
256
257 /*
258 * We don't need protection against CPU-hotplug here because
259 * this is called early in boot, before either interrupts
260 * or the scheduler are operational.
261 */
262 for_each_online_cpu(i)
263 rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i);
224} 264}
225 265
226void rcu_scheduler_starting(void) 266void rcu_scheduler_starting(void)
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c
deleted file mode 100644
index beb0e659adcc..000000000000
--- a/kernel/rcupreempt.c
+++ /dev/null
@@ -1,1539 +0,0 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2006
19 *
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
25 *
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
29 *
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
31 *
32 * Design Document: http://lwn.net/Articles/253651/
33 *
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
36 *
37 */
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/init.h>
41#include <linux/spinlock.h>
42#include <linux/smp.h>
43#include <linux/rcupdate.h>
44#include <linux/interrupt.h>
45#include <linux/sched.h>
46#include <asm/atomic.h>
47#include <linux/bitops.h>
48#include <linux/module.h>
49#include <linux/kthread.h>
50#include <linux/completion.h>
51#include <linux/moduleparam.h>
52#include <linux/percpu.h>
53#include <linux/notifier.h>
54#include <linux/cpu.h>
55#include <linux/random.h>
56#include <linux/delay.h>
57#include <linux/cpumask.h>
58#include <linux/rcupreempt_trace.h>
59#include <asm/byteorder.h>
60
61/*
62 * PREEMPT_RCU data structures.
63 */
64
65/*
66 * GP_STAGES specifies the number of times the state machine has
67 * to go through the all the rcu_try_flip_states (see below)
68 * in a single Grace Period.
69 *
70 * GP in GP_STAGES stands for Grace Period ;)
71 */
72#define GP_STAGES 2
73struct rcu_data {
74 spinlock_t lock; /* Protect rcu_data fields. */
75 long completed; /* Number of last completed batch. */
76 int waitlistcount;
77 struct rcu_head *nextlist;
78 struct rcu_head **nexttail;
79 struct rcu_head *waitlist[GP_STAGES];
80 struct rcu_head **waittail[GP_STAGES];
81 struct rcu_head *donelist; /* from waitlist & waitschedlist */
82 struct rcu_head **donetail;
83 long rcu_flipctr[2];
84 struct rcu_head *nextschedlist;
85 struct rcu_head **nextschedtail;
86 struct rcu_head *waitschedlist;
87 struct rcu_head **waitschedtail;
88 int rcu_sched_sleeping;
89#ifdef CONFIG_RCU_TRACE
90 struct rcupreempt_trace trace;
91#endif /* #ifdef CONFIG_RCU_TRACE */
92};
93
94/*
95 * States for rcu_try_flip() and friends.
96 */
97
98enum rcu_try_flip_states {
99
100 /*
101 * Stay here if nothing is happening. Flip the counter if somthing
102 * starts happening. Denoted by "I"
103 */
104 rcu_try_flip_idle_state,
105
106 /*
107 * Wait here for all CPUs to notice that the counter has flipped. This
108 * prevents the old set of counters from ever being incremented once
109 * we leave this state, which in turn is necessary because we cannot
110 * test any individual counter for zero -- we can only check the sum.
111 * Denoted by "A".
112 */
113 rcu_try_flip_waitack_state,
114
115 /*
116 * Wait here for the sum of the old per-CPU counters to reach zero.
117 * Denoted by "Z".
118 */
119 rcu_try_flip_waitzero_state,
120
121 /*
122 * Wait here for each of the other CPUs to execute a memory barrier.
123 * This is necessary to ensure that these other CPUs really have
124 * completed executing their RCU read-side critical sections, despite
125 * their CPUs wildly reordering memory. Denoted by "M".
126 */
127 rcu_try_flip_waitmb_state,
128};
129
130/*
131 * States for rcu_ctrlblk.rcu_sched_sleep.
132 */
133
134enum rcu_sched_sleep_states {
135 rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */
136 rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */
137 rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */
138};
139
140struct rcu_ctrlblk {
141 spinlock_t fliplock; /* Protect state-machine transitions. */
142 long completed; /* Number of last completed batch. */
143 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
144 the rcu state machine */
145 spinlock_t schedlock; /* Protect rcu_sched sleep state. */
146 enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
147 wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */
148};
149
150struct rcu_dyntick_sched {
151 int dynticks;
152 int dynticks_snap;
153 int sched_qs;
154 int sched_qs_snap;
155 int sched_dynticks_snap;
156};
157
158static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
159 .dynticks = 1,
160};
161
162void rcu_qsctr_inc(int cpu)
163{
164 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
165
166 rdssp->sched_qs++;
167}
168
169#ifdef CONFIG_NO_HZ
170
171void rcu_enter_nohz(void)
172{
173 static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
174
175 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
176 __get_cpu_var(rcu_dyntick_sched).dynticks++;
177 WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs);
178}
179
180void rcu_exit_nohz(void)
181{
182 static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
183
184 __get_cpu_var(rcu_dyntick_sched).dynticks++;
185 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
186 WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1),
187 &rs);
188}
189
190#endif /* CONFIG_NO_HZ */
191
192
193static DEFINE_PER_CPU(struct rcu_data, rcu_data);
194
195static struct rcu_ctrlblk rcu_ctrlblk = {
196 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
197 .completed = 0,
198 .rcu_try_flip_state = rcu_try_flip_idle_state,
199 .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
200 .sched_sleep = rcu_sched_not_sleeping,
201 .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
202};
203
204static struct task_struct *rcu_sched_grace_period_task;
205
206#ifdef CONFIG_RCU_TRACE
207static char *rcu_try_flip_state_names[] =
208 { "idle", "waitack", "waitzero", "waitmb" };
209#endif /* #ifdef CONFIG_RCU_TRACE */
210
211static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly
212 = CPU_BITS_NONE;
213
214/*
215 * Enum and per-CPU flag to determine when each CPU has seen
216 * the most recent counter flip.
217 */
218
219enum rcu_flip_flag_values {
220 rcu_flip_seen, /* Steady/initial state, last flip seen. */
221 /* Only GP detector can update. */
222 rcu_flipped /* Flip just completed, need confirmation. */
223 /* Only corresponding CPU can update. */
224};
225static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
226 = rcu_flip_seen;
227
228/*
229 * Enum and per-CPU flag to determine when each CPU has executed the
230 * needed memory barrier to fence in memory references from its last RCU
231 * read-side critical section in the just-completed grace period.
232 */
233
234enum rcu_mb_flag_values {
235 rcu_mb_done, /* Steady/initial state, no mb()s required. */
236 /* Only GP detector can update. */
237 rcu_mb_needed /* Flip just completed, need an mb(). */
238 /* Only corresponding CPU can update. */
239};
240static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
241 = rcu_mb_done;
242
243/*
244 * RCU_DATA_ME: find the current CPU's rcu_data structure.
245 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
246 */
247#define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
248#define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
249
250/*
251 * Helper macro for tracing when the appropriate rcu_data is not
252 * cached in a local variable, but where the CPU number is so cached.
253 */
254#define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
255
256/*
257 * Helper macro for tracing when the appropriate rcu_data is not
258 * cached in a local variable.
259 */
260#define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
261
262/*
263 * Helper macro for tracing when the appropriate rcu_data is pointed
264 * to by a local variable.
265 */
266#define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
267
268#define RCU_SCHED_BATCH_TIME (HZ / 50)
269
270/*
271 * Return the number of RCU batches processed thus far. Useful
272 * for debug and statistics.
273 */
274long rcu_batches_completed(void)
275{
276 return rcu_ctrlblk.completed;
277}
278EXPORT_SYMBOL_GPL(rcu_batches_completed);
279
280void __rcu_read_lock(void)
281{
282 int idx;
283 struct task_struct *t = current;
284 int nesting;
285
286 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
287 if (nesting != 0) {
288
289 /* An earlier rcu_read_lock() covers us, just count it. */
290
291 t->rcu_read_lock_nesting = nesting + 1;
292
293 } else {
294 unsigned long flags;
295
296 /*
297 * We disable interrupts for the following reasons:
298 * - If we get scheduling clock interrupt here, and we
299 * end up acking the counter flip, it's like a promise
300 * that we will never increment the old counter again.
301 * Thus we will break that promise if that
302 * scheduling clock interrupt happens between the time
303 * we pick the .completed field and the time that we
304 * increment our counter.
305 *
306 * - We don't want to be preempted out here.
307 *
308 * NMIs can still occur, of course, and might themselves
309 * contain rcu_read_lock().
310 */
311
312 local_irq_save(flags);
313
314 /*
315 * Outermost nesting of rcu_read_lock(), so increment
316 * the current counter for the current CPU. Use volatile
317 * casts to prevent the compiler from reordering.
318 */
319
320 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
321 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
322
323 /*
324 * Now that the per-CPU counter has been incremented, we
325 * are protected from races with rcu_read_lock() invoked
326 * from NMI handlers on this CPU. We can therefore safely
327 * increment the nesting counter, relieving further NMIs
328 * of the need to increment the per-CPU counter.
329 */
330
331 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
332
333 /*
334 * Now that we have preventing any NMIs from storing
335 * to the ->rcu_flipctr_idx, we can safely use it to
336 * remember which counter to decrement in the matching
337 * rcu_read_unlock().
338 */
339
340 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
341 local_irq_restore(flags);
342 }
343}
344EXPORT_SYMBOL_GPL(__rcu_read_lock);
345
346void __rcu_read_unlock(void)
347{
348 int idx;
349 struct task_struct *t = current;
350 int nesting;
351
352 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
353 if (nesting > 1) {
354
355 /*
356 * We are still protected by the enclosing rcu_read_lock(),
357 * so simply decrement the counter.
358 */
359
360 t->rcu_read_lock_nesting = nesting - 1;
361
362 } else {
363 unsigned long flags;
364
365 /*
366 * Disable local interrupts to prevent the grace-period
367 * detection state machine from seeing us half-done.
368 * NMIs can still occur, of course, and might themselves
369 * contain rcu_read_lock() and rcu_read_unlock().
370 */
371
372 local_irq_save(flags);
373
374 /*
375 * Outermost nesting of rcu_read_unlock(), so we must
376 * decrement the current counter for the current CPU.
377 * This must be done carefully, because NMIs can
378 * occur at any point in this code, and any rcu_read_lock()
379 * and rcu_read_unlock() pairs in the NMI handlers
380 * must interact non-destructively with this code.
381 * Lots of volatile casts, and -very- careful ordering.
382 *
383 * Changes to this code, including this one, must be
384 * inspected, validated, and tested extremely carefully!!!
385 */
386
387 /*
388 * First, pick up the index.
389 */
390
391 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
392
393 /*
394 * Now that we have fetched the counter index, it is
395 * safe to decrement the per-task RCU nesting counter.
396 * After this, any interrupts or NMIs will increment and
397 * decrement the per-CPU counters.
398 */
399 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
400
401 /*
402 * It is now safe to decrement this task's nesting count.
403 * NMIs that occur after this statement will route their
404 * rcu_read_lock() calls through this "else" clause, and
405 * will thus start incrementing the per-CPU counter on
406 * their own. They will also clobber ->rcu_flipctr_idx,
407 * but that is OK, since we have already fetched it.
408 */
409
410 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
411 local_irq_restore(flags);
412 }
413}
414EXPORT_SYMBOL_GPL(__rcu_read_unlock);
415
416/*
417 * If a global counter flip has occurred since the last time that we
418 * advanced callbacks, advance them. Hardware interrupts must be
419 * disabled when calling this function.
420 */
421static void __rcu_advance_callbacks(struct rcu_data *rdp)
422{
423 int cpu;
424 int i;
425 int wlc = 0;
426
427 if (rdp->completed != rcu_ctrlblk.completed) {
428 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
429 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
430 rdp->donetail = rdp->waittail[GP_STAGES - 1];
431 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
432 }
433 for (i = GP_STAGES - 2; i >= 0; i--) {
434 if (rdp->waitlist[i] != NULL) {
435 rdp->waitlist[i + 1] = rdp->waitlist[i];
436 rdp->waittail[i + 1] = rdp->waittail[i];
437 wlc++;
438 } else {
439 rdp->waitlist[i + 1] = NULL;
440 rdp->waittail[i + 1] =
441 &rdp->waitlist[i + 1];
442 }
443 }
444 if (rdp->nextlist != NULL) {
445 rdp->waitlist[0] = rdp->nextlist;
446 rdp->waittail[0] = rdp->nexttail;
447 wlc++;
448 rdp->nextlist = NULL;
449 rdp->nexttail = &rdp->nextlist;
450 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
451 } else {
452 rdp->waitlist[0] = NULL;
453 rdp->waittail[0] = &rdp->waitlist[0];
454 }
455 rdp->waitlistcount = wlc;
456 rdp->completed = rcu_ctrlblk.completed;
457 }
458
459 /*
460 * Check to see if this CPU needs to report that it has seen
461 * the most recent counter flip, thereby declaring that all
462 * subsequent rcu_read_lock() invocations will respect this flip.
463 */
464
465 cpu = raw_smp_processor_id();
466 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
467 smp_mb(); /* Subsequent counter accesses must see new value */
468 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
469 smp_mb(); /* Subsequent RCU read-side critical sections */
470 /* seen -after- acknowledgement. */
471 }
472}
473
474#ifdef CONFIG_NO_HZ
475static DEFINE_PER_CPU(int, rcu_update_flag);
476
477/**
478 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
479 *
480 * If the CPU was idle with dynamic ticks active, this updates the
481 * rcu_dyntick_sched.dynticks to let the RCU handling know that the
482 * CPU is active.
483 */
484void rcu_irq_enter(void)
485{
486 int cpu = smp_processor_id();
487 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
488
489 if (per_cpu(rcu_update_flag, cpu))
490 per_cpu(rcu_update_flag, cpu)++;
491
492 /*
493 * Only update if we are coming from a stopped ticks mode
494 * (rcu_dyntick_sched.dynticks is even).
495 */
496 if (!in_interrupt() &&
497 (rdssp->dynticks & 0x1) == 0) {
498 /*
499 * The following might seem like we could have a race
500 * with NMI/SMIs. But this really isn't a problem.
501 * Here we do a read/modify/write, and the race happens
502 * when an NMI/SMI comes in after the read and before
503 * the write. But NMI/SMIs will increment this counter
504 * twice before returning, so the zero bit will not
505 * be corrupted by the NMI/SMI which is the most important
506 * part.
507 *
508 * The only thing is that we would bring back the counter
509 * to a postion that it was in during the NMI/SMI.
510 * But the zero bit would be set, so the rest of the
511 * counter would again be ignored.
512 *
513 * On return from the IRQ, the counter may have the zero
514 * bit be 0 and the counter the same as the return from
515 * the NMI/SMI. If the state machine was so unlucky to
516 * see that, it still doesn't matter, since all
517 * RCU read-side critical sections on this CPU would
518 * have already completed.
519 */
520 rdssp->dynticks++;
521 /*
522 * The following memory barrier ensures that any
523 * rcu_read_lock() primitives in the irq handler
524 * are seen by other CPUs to follow the above
525 * increment to rcu_dyntick_sched.dynticks. This is
526 * required in order for other CPUs to correctly
527 * determine when it is safe to advance the RCU
528 * grace-period state machine.
529 */
530 smp_mb(); /* see above block comment. */
531 /*
532 * Since we can't determine the dynamic tick mode from
533 * the rcu_dyntick_sched.dynticks after this routine,
534 * we use a second flag to acknowledge that we came
535 * from an idle state with ticks stopped.
536 */
537 per_cpu(rcu_update_flag, cpu)++;
538 /*
539 * If we take an NMI/SMI now, they will also increment
540 * the rcu_update_flag, and will not update the
541 * rcu_dyntick_sched.dynticks on exit. That is for
542 * this IRQ to do.
543 */
544 }
545}
546
547/**
548 * rcu_irq_exit - Called from exiting Hard irq context.
549 *
550 * If the CPU was idle with dynamic ticks active, update the
551 * rcu_dyntick_sched.dynticks to put let the RCU handling be
552 * aware that the CPU is going back to idle with no ticks.
553 */
554void rcu_irq_exit(void)
555{
556 int cpu = smp_processor_id();
557 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
558
559 /*
560 * rcu_update_flag is set if we interrupted the CPU
561 * when it was idle with ticks stopped.
562 * Once this occurs, we keep track of interrupt nesting
563 * because a NMI/SMI could also come in, and we still
564 * only want the IRQ that started the increment of the
565 * rcu_dyntick_sched.dynticks to be the one that modifies
566 * it on exit.
567 */
568 if (per_cpu(rcu_update_flag, cpu)) {
569 if (--per_cpu(rcu_update_flag, cpu))
570 return;
571
572 /* This must match the interrupt nesting */
573 WARN_ON(in_interrupt());
574
575 /*
576 * If an NMI/SMI happens now we are still
577 * protected by the rcu_dyntick_sched.dynticks being odd.
578 */
579
580 /*
581 * The following memory barrier ensures that any
582 * rcu_read_unlock() primitives in the irq handler
583 * are seen by other CPUs to preceed the following
584 * increment to rcu_dyntick_sched.dynticks. This
585 * is required in order for other CPUs to determine
586 * when it is safe to advance the RCU grace-period
587 * state machine.
588 */
589 smp_mb(); /* see above block comment. */
590 rdssp->dynticks++;
591 WARN_ON(rdssp->dynticks & 0x1);
592 }
593}
594
595void rcu_nmi_enter(void)
596{
597 rcu_irq_enter();
598}
599
600void rcu_nmi_exit(void)
601{
602 rcu_irq_exit();
603}
604
605static void dyntick_save_progress_counter(int cpu)
606{
607 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
608
609 rdssp->dynticks_snap = rdssp->dynticks;
610}
611
612static inline int
613rcu_try_flip_waitack_needed(int cpu)
614{
615 long curr;
616 long snap;
617 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
618
619 curr = rdssp->dynticks;
620 snap = rdssp->dynticks_snap;
621 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
622
623 /*
624 * If the CPU remained in dynticks mode for the entire time
625 * and didn't take any interrupts, NMIs, SMIs, or whatever,
626 * then it cannot be in the middle of an rcu_read_lock(), so
627 * the next rcu_read_lock() it executes must use the new value
628 * of the counter. So we can safely pretend that this CPU
629 * already acknowledged the counter.
630 */
631
632 if ((curr == snap) && ((curr & 0x1) == 0))
633 return 0;
634
635 /*
636 * If the CPU passed through or entered a dynticks idle phase with
637 * no active irq handlers, then, as above, we can safely pretend
638 * that this CPU already acknowledged the counter.
639 */
640
641 if ((curr - snap) > 2 || (curr & 0x1) == 0)
642 return 0;
643
644 /* We need this CPU to explicitly acknowledge the counter flip. */
645
646 return 1;
647}
648
649static inline int
650rcu_try_flip_waitmb_needed(int cpu)
651{
652 long curr;
653 long snap;
654 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
655
656 curr = rdssp->dynticks;
657 snap = rdssp->dynticks_snap;
658 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
659
660 /*
661 * If the CPU remained in dynticks mode for the entire time
662 * and didn't take any interrupts, NMIs, SMIs, or whatever,
663 * then it cannot have executed an RCU read-side critical section
664 * during that time, so there is no need for it to execute a
665 * memory barrier.
666 */
667
668 if ((curr == snap) && ((curr & 0x1) == 0))
669 return 0;
670
671 /*
672 * If the CPU either entered or exited an outermost interrupt,
673 * SMI, NMI, or whatever handler, then we know that it executed
674 * a memory barrier when doing so. So we don't need another one.
675 */
676 if (curr != snap)
677 return 0;
678
679 /* We need the CPU to execute a memory barrier. */
680
681 return 1;
682}
683
684static void dyntick_save_progress_counter_sched(int cpu)
685{
686 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
687
688 rdssp->sched_dynticks_snap = rdssp->dynticks;
689}
690
691static int rcu_qsctr_inc_needed_dyntick(int cpu)
692{
693 long curr;
694 long snap;
695 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
696
697 curr = rdssp->dynticks;
698 snap = rdssp->sched_dynticks_snap;
699 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
700
701 /*
702 * If the CPU remained in dynticks mode for the entire time
703 * and didn't take any interrupts, NMIs, SMIs, or whatever,
704 * then it cannot be in the middle of an rcu_read_lock(), so
705 * the next rcu_read_lock() it executes must use the new value
706 * of the counter. Therefore, this CPU has been in a quiescent
707 * state the entire time, and we don't need to wait for it.
708 */
709
710 if ((curr == snap) && ((curr & 0x1) == 0))
711 return 0;
712
713 /*
714 * If the CPU passed through or entered a dynticks idle phase with
715 * no active irq handlers, then, as above, this CPU has already
716 * passed through a quiescent state.
717 */
718
719 if ((curr - snap) > 2 || (snap & 0x1) == 0)
720 return 0;
721
722 /* We need this CPU to go through a quiescent state. */
723
724 return 1;
725}
726
727#else /* !CONFIG_NO_HZ */
728
729# define dyntick_save_progress_counter(cpu) do { } while (0)
730# define rcu_try_flip_waitack_needed(cpu) (1)
731# define rcu_try_flip_waitmb_needed(cpu) (1)
732
733# define dyntick_save_progress_counter_sched(cpu) do { } while (0)
734# define rcu_qsctr_inc_needed_dyntick(cpu) (1)
735
736#endif /* CONFIG_NO_HZ */
737
738static void save_qsctr_sched(int cpu)
739{
740 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
741
742 rdssp->sched_qs_snap = rdssp->sched_qs;
743}
744
745static inline int rcu_qsctr_inc_needed(int cpu)
746{
747 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
748
749 /*
750 * If there has been a quiescent state, no more need to wait
751 * on this CPU.
752 */
753
754 if (rdssp->sched_qs != rdssp->sched_qs_snap) {
755 smp_mb(); /* force ordering with cpu entering schedule(). */
756 return 0;
757 }
758
759 /* We need this CPU to go through a quiescent state. */
760
761 return 1;
762}
763
764/*
765 * Get here when RCU is idle. Decide whether we need to
766 * move out of idle state, and return non-zero if so.
767 * "Straightforward" approach for the moment, might later
768 * use callback-list lengths, grace-period duration, or
769 * some such to determine when to exit idle state.
770 * Might also need a pre-idle test that does not acquire
771 * the lock, but let's get the simple case working first...
772 */
773
774static int
775rcu_try_flip_idle(void)
776{
777 int cpu;
778
779 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
780 if (!rcu_pending(smp_processor_id())) {
781 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
782 return 0;
783 }
784
785 /*
786 * Do the flip.
787 */
788
789 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
790 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
791
792 /*
793 * Need a memory barrier so that other CPUs see the new
794 * counter value before they see the subsequent change of all
795 * the rcu_flip_flag instances to rcu_flipped.
796 */
797
798 smp_mb(); /* see above block comment. */
799
800 /* Now ask each CPU for acknowledgement of the flip. */
801
802 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
803 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
804 dyntick_save_progress_counter(cpu);
805 }
806
807 return 1;
808}
809
810/*
811 * Wait for CPUs to acknowledge the flip.
812 */
813
814static int
815rcu_try_flip_waitack(void)
816{
817 int cpu;
818
819 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
820 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
821 if (rcu_try_flip_waitack_needed(cpu) &&
822 per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
823 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
824 return 0;
825 }
826
827 /*
828 * Make sure our checks above don't bleed into subsequent
829 * waiting for the sum of the counters to reach zero.
830 */
831
832 smp_mb(); /* see above block comment. */
833 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
834 return 1;
835}
836
837/*
838 * Wait for collective ``last'' counter to reach zero,
839 * then tell all CPUs to do an end-of-grace-period memory barrier.
840 */
841
842static int
843rcu_try_flip_waitzero(void)
844{
845 int cpu;
846 int lastidx = !(rcu_ctrlblk.completed & 0x1);
847 int sum = 0;
848
849 /* Check to see if the sum of the "last" counters is zero. */
850
851 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
852 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
853 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
854 if (sum != 0) {
855 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
856 return 0;
857 }
858
859 /*
860 * This ensures that the other CPUs see the call for
861 * memory barriers -after- the sum to zero has been
862 * detected here
863 */
864 smp_mb(); /* ^^^^^^^^^^^^ */
865
866 /* Call for a memory barrier from each CPU. */
867 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
868 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
869 dyntick_save_progress_counter(cpu);
870 }
871
872 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
873 return 1;
874}
875
876/*
877 * Wait for all CPUs to do their end-of-grace-period memory barrier.
878 * Return 0 once all CPUs have done so.
879 */
880
881static int
882rcu_try_flip_waitmb(void)
883{
884 int cpu;
885
886 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
887 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
888 if (rcu_try_flip_waitmb_needed(cpu) &&
889 per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
890 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
891 return 0;
892 }
893
894 smp_mb(); /* Ensure that the above checks precede any following flip. */
895 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
896 return 1;
897}
898
899/*
900 * Attempt a single flip of the counters. Remember, a single flip does
901 * -not- constitute a grace period. Instead, the interval between
902 * at least GP_STAGES consecutive flips is a grace period.
903 *
904 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
905 * on a large SMP, they might want to use a hierarchical organization of
906 * the per-CPU-counter pairs.
907 */
908static void rcu_try_flip(void)
909{
910 unsigned long flags;
911
912 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
913 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
914 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
915 return;
916 }
917
918 /*
919 * Take the next transition(s) through the RCU grace-period
920 * flip-counter state machine.
921 */
922
923 switch (rcu_ctrlblk.rcu_try_flip_state) {
924 case rcu_try_flip_idle_state:
925 if (rcu_try_flip_idle())
926 rcu_ctrlblk.rcu_try_flip_state =
927 rcu_try_flip_waitack_state;
928 break;
929 case rcu_try_flip_waitack_state:
930 if (rcu_try_flip_waitack())
931 rcu_ctrlblk.rcu_try_flip_state =
932 rcu_try_flip_waitzero_state;
933 break;
934 case rcu_try_flip_waitzero_state:
935 if (rcu_try_flip_waitzero())
936 rcu_ctrlblk.rcu_try_flip_state =
937 rcu_try_flip_waitmb_state;
938 break;
939 case rcu_try_flip_waitmb_state:
940 if (rcu_try_flip_waitmb())
941 rcu_ctrlblk.rcu_try_flip_state =
942 rcu_try_flip_idle_state;
943 }
944 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
945}
946
947/*
948 * Check to see if this CPU needs to do a memory barrier in order to
949 * ensure that any prior RCU read-side critical sections have committed
950 * their counter manipulations and critical-section memory references
951 * before declaring the grace period to be completed.
952 */
953static void rcu_check_mb(int cpu)
954{
955 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
956 smp_mb(); /* Ensure RCU read-side accesses are visible. */
957 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
958 }
959}
960
961void rcu_check_callbacks(int cpu, int user)
962{
963 unsigned long flags;
964 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
965
966 /*
967 * If this CPU took its interrupt from user mode or from the
968 * idle loop, and this is not a nested interrupt, then
969 * this CPU has to have exited all prior preept-disable
970 * sections of code. So increment the counter to note this.
971 *
972 * The memory barrier is needed to handle the case where
973 * writes from a preempt-disable section of code get reordered
974 * into schedule() by this CPU's write buffer. So the memory
975 * barrier makes sure that the rcu_qsctr_inc() is seen by other
976 * CPUs to happen after any such write.
977 */
978
979 if (user ||
980 (idle_cpu(cpu) && !in_softirq() &&
981 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
982 smp_mb(); /* Guard against aggressive schedule(). */
983 rcu_qsctr_inc(cpu);
984 }
985
986 rcu_check_mb(cpu);
987 if (rcu_ctrlblk.completed == rdp->completed)
988 rcu_try_flip();
989 spin_lock_irqsave(&rdp->lock, flags);
990 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
991 __rcu_advance_callbacks(rdp);
992 if (rdp->donelist == NULL) {
993 spin_unlock_irqrestore(&rdp->lock, flags);
994 } else {
995 spin_unlock_irqrestore(&rdp->lock, flags);
996 raise_softirq(RCU_SOFTIRQ);
997 }
998}
999
1000/*
1001 * Needed by dynticks, to make sure all RCU processing has finished
1002 * when we go idle:
1003 */
1004void rcu_advance_callbacks(int cpu, int user)
1005{
1006 unsigned long flags;
1007 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1008
1009 if (rcu_ctrlblk.completed == rdp->completed) {
1010 rcu_try_flip();
1011 if (rcu_ctrlblk.completed == rdp->completed)
1012 return;
1013 }
1014 spin_lock_irqsave(&rdp->lock, flags);
1015 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
1016 __rcu_advance_callbacks(rdp);
1017 spin_unlock_irqrestore(&rdp->lock, flags);
1018}
1019
1020#ifdef CONFIG_HOTPLUG_CPU
1021#define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
1022 *dsttail = srclist; \
1023 if (srclist != NULL) { \
1024 dsttail = srctail; \
1025 srclist = NULL; \
1026 srctail = &srclist;\
1027 } \
1028 } while (0)
1029
1030void rcu_offline_cpu(int cpu)
1031{
1032 int i;
1033 struct rcu_head *list = NULL;
1034 unsigned long flags;
1035 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1036 struct rcu_head *schedlist = NULL;
1037 struct rcu_head **schedtail = &schedlist;
1038 struct rcu_head **tail = &list;
1039
1040 /*
1041 * Remove all callbacks from the newly dead CPU, retaining order.
1042 * Otherwise rcu_barrier() will fail
1043 */
1044
1045 spin_lock_irqsave(&rdp->lock, flags);
1046 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
1047 for (i = GP_STAGES - 1; i >= 0; i--)
1048 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
1049 list, tail);
1050 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
1051 rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
1052 schedlist, schedtail);
1053 rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
1054 schedlist, schedtail);
1055 rdp->rcu_sched_sleeping = 0;
1056 spin_unlock_irqrestore(&rdp->lock, flags);
1057 rdp->waitlistcount = 0;
1058
1059 /* Disengage the newly dead CPU from the grace-period computation. */
1060
1061 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1062 rcu_check_mb(cpu);
1063 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
1064 smp_mb(); /* Subsequent counter accesses must see new value */
1065 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
1066 smp_mb(); /* Subsequent RCU read-side critical sections */
1067 /* seen -after- acknowledgement. */
1068 }
1069
1070 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1071 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
1072
1073 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
1074 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
1075
1076 cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map));
1077
1078 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1079
1080 /*
1081 * Place the removed callbacks on the current CPU's queue.
1082 * Make them all start a new grace period: simple approach,
1083 * in theory could starve a given set of callbacks, but
1084 * you would need to be doing some serious CPU hotplugging
1085 * to make this happen. If this becomes a problem, adding
1086 * a synchronize_rcu() to the hotplug path would be a simple
1087 * fix.
1088 */
1089
1090 local_irq_save(flags); /* disable preempt till we know what lock. */
1091 rdp = RCU_DATA_ME();
1092 spin_lock(&rdp->lock);
1093 *rdp->nexttail = list;
1094 if (list)
1095 rdp->nexttail = tail;
1096 *rdp->nextschedtail = schedlist;
1097 if (schedlist)
1098 rdp->nextschedtail = schedtail;
1099 spin_unlock_irqrestore(&rdp->lock, flags);
1100}
1101
1102#else /* #ifdef CONFIG_HOTPLUG_CPU */
1103
1104void rcu_offline_cpu(int cpu)
1105{
1106}
1107
1108#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1109
1110void __cpuinit rcu_online_cpu(int cpu)
1111{
1112 unsigned long flags;
1113 struct rcu_data *rdp;
1114
1115 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1116 cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map));
1117 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1118
1119 /*
1120 * The rcu_sched grace-period processing might have bypassed
1121 * this CPU, given that it was not in the rcu_cpu_online_map
1122 * when the grace-period scan started. This means that the
1123 * grace-period task might sleep. So make sure that if this
1124 * should happen, the first callback posted to this CPU will
1125 * wake up the grace-period task if need be.
1126 */
1127
1128 rdp = RCU_DATA_CPU(cpu);
1129 spin_lock_irqsave(&rdp->lock, flags);
1130 rdp->rcu_sched_sleeping = 1;
1131 spin_unlock_irqrestore(&rdp->lock, flags);
1132}
1133
1134static void rcu_process_callbacks(struct softirq_action *unused)
1135{
1136 unsigned long flags;
1137 struct rcu_head *next, *list;
1138 struct rcu_data *rdp;
1139
1140 local_irq_save(flags);
1141 rdp = RCU_DATA_ME();
1142 spin_lock(&rdp->lock);
1143 list = rdp->donelist;
1144 if (list == NULL) {
1145 spin_unlock_irqrestore(&rdp->lock, flags);
1146 return;
1147 }
1148 rdp->donelist = NULL;
1149 rdp->donetail = &rdp->donelist;
1150 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
1151 spin_unlock_irqrestore(&rdp->lock, flags);
1152 while (list) {
1153 next = list->next;
1154 list->func(list);
1155 list = next;
1156 RCU_TRACE_ME(rcupreempt_trace_invoke);
1157 }
1158}
1159
1160void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1161{
1162 unsigned long flags;
1163 struct rcu_data *rdp;
1164
1165 head->func = func;
1166 head->next = NULL;
1167 local_irq_save(flags);
1168 rdp = RCU_DATA_ME();
1169 spin_lock(&rdp->lock);
1170 __rcu_advance_callbacks(rdp);
1171 *rdp->nexttail = head;
1172 rdp->nexttail = &head->next;
1173 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
1174 spin_unlock_irqrestore(&rdp->lock, flags);
1175}
1176EXPORT_SYMBOL_GPL(call_rcu);
1177
1178void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1179{
1180 unsigned long flags;
1181 struct rcu_data *rdp;
1182 int wake_gp = 0;
1183
1184 head->func = func;
1185 head->next = NULL;
1186 local_irq_save(flags);
1187 rdp = RCU_DATA_ME();
1188 spin_lock(&rdp->lock);
1189 *rdp->nextschedtail = head;
1190 rdp->nextschedtail = &head->next;
1191 if (rdp->rcu_sched_sleeping) {
1192
1193 /* Grace-period processing might be sleeping... */
1194
1195 rdp->rcu_sched_sleeping = 0;
1196 wake_gp = 1;
1197 }
1198 spin_unlock_irqrestore(&rdp->lock, flags);
1199 if (wake_gp) {
1200
1201 /* Wake up grace-period processing, unless someone beat us. */
1202
1203 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1204 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping)
1205 wake_gp = 0;
1206 rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping;
1207 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1208 if (wake_gp)
1209 wake_up_interruptible(&rcu_ctrlblk.sched_wq);
1210 }
1211}
1212EXPORT_SYMBOL_GPL(call_rcu_sched);
1213
1214/*
1215 * Wait until all currently running preempt_disable() code segments
1216 * (including hardware-irq-disable segments) complete. Note that
1217 * in -rt this does -not- necessarily result in all currently executing
1218 * interrupt -handlers- having completed.
1219 */
1220void __synchronize_sched(void)
1221{
1222 struct rcu_synchronize rcu;
1223
1224 if (num_online_cpus() == 1)
1225 return; /* blocking is gp if only one CPU! */
1226
1227 init_completion(&rcu.completion);
1228 /* Will wake me after RCU finished. */
1229 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1230 /* Wait for it. */
1231 wait_for_completion(&rcu.completion);
1232}
1233EXPORT_SYMBOL_GPL(__synchronize_sched);
1234
1235/*
1236 * kthread function that manages call_rcu_sched grace periods.
1237 */
1238static int rcu_sched_grace_period(void *arg)
1239{
1240 int couldsleep; /* might sleep after current pass. */
1241 int couldsleepnext = 0; /* might sleep after next pass. */
1242 int cpu;
1243 unsigned long flags;
1244 struct rcu_data *rdp;
1245 int ret;
1246
1247 /*
1248 * Each pass through the following loop handles one
1249 * rcu_sched grace period cycle.
1250 */
1251 do {
1252 /* Save each CPU's current state. */
1253
1254 for_each_online_cpu(cpu) {
1255 dyntick_save_progress_counter_sched(cpu);
1256 save_qsctr_sched(cpu);
1257 }
1258
1259 /*
1260 * Sleep for about an RCU grace-period's worth to
1261 * allow better batching and to consume less CPU.
1262 */
1263 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME);
1264
1265 /*
1266 * If there was nothing to do last time, prepare to
1267 * sleep at the end of the current grace period cycle.
1268 */
1269 couldsleep = couldsleepnext;
1270 couldsleepnext = 1;
1271 if (couldsleep) {
1272 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1273 rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep;
1274 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1275 }
1276
1277 /*
1278 * Wait on each CPU in turn to have either visited
1279 * a quiescent state or been in dynticks-idle mode.
1280 */
1281 for_each_online_cpu(cpu) {
1282 while (rcu_qsctr_inc_needed(cpu) &&
1283 rcu_qsctr_inc_needed_dyntick(cpu)) {
1284 /* resched_cpu(cpu); @@@ */
1285 schedule_timeout_interruptible(1);
1286 }
1287 }
1288
1289 /* Advance callbacks for each CPU. */
1290
1291 for_each_online_cpu(cpu) {
1292
1293 rdp = RCU_DATA_CPU(cpu);
1294 spin_lock_irqsave(&rdp->lock, flags);
1295
1296 /*
1297 * We are running on this CPU irq-disabled, so no
1298 * CPU can go offline until we re-enable irqs.
1299 * The current CPU might have already gone
1300 * offline (between the for_each_offline_cpu and
1301 * the spin_lock_irqsave), but in that case all its
1302 * callback lists will be empty, so no harm done.
1303 *
1304 * Advance the callbacks! We share normal RCU's
1305 * donelist, since callbacks are invoked the
1306 * same way in either case.
1307 */
1308 if (rdp->waitschedlist != NULL) {
1309 *rdp->donetail = rdp->waitschedlist;
1310 rdp->donetail = rdp->waitschedtail;
1311
1312 /*
1313 * Next rcu_check_callbacks() will
1314 * do the required raise_softirq().
1315 */
1316 }
1317 if (rdp->nextschedlist != NULL) {
1318 rdp->waitschedlist = rdp->nextschedlist;
1319 rdp->waitschedtail = rdp->nextschedtail;
1320 couldsleep = 0;
1321 couldsleepnext = 0;
1322 } else {
1323 rdp->waitschedlist = NULL;
1324 rdp->waitschedtail = &rdp->waitschedlist;
1325 }
1326 rdp->nextschedlist = NULL;
1327 rdp->nextschedtail = &rdp->nextschedlist;
1328
1329 /* Mark sleep intention. */
1330
1331 rdp->rcu_sched_sleeping = couldsleep;
1332
1333 spin_unlock_irqrestore(&rdp->lock, flags);
1334 }
1335
1336 /* If we saw callbacks on the last scan, go deal with them. */
1337
1338 if (!couldsleep)
1339 continue;
1340
1341 /* Attempt to block... */
1342
1343 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1344 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) {
1345
1346 /*
1347 * Someone posted a callback after we scanned.
1348 * Go take care of it.
1349 */
1350 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1351 couldsleepnext = 0;
1352 continue;
1353 }
1354
1355 /* Block until the next person posts a callback. */
1356
1357 rcu_ctrlblk.sched_sleep = rcu_sched_sleeping;
1358 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1359 ret = 0; /* unused */
1360 __wait_event_interruptible(rcu_ctrlblk.sched_wq,
1361 rcu_ctrlblk.sched_sleep != rcu_sched_sleeping,
1362 ret);
1363
1364 couldsleepnext = 0;
1365
1366 } while (!kthread_should_stop());
1367
1368 return (0);
1369}
1370
1371/*
1372 * Check to see if any future RCU-related work will need to be done
1373 * by the current CPU, even if none need be done immediately, returning
1374 * 1 if so. Assumes that notifiers would take care of handling any
1375 * outstanding requests from the RCU core.
1376 *
1377 * This function is part of the RCU implementation; it is -not-
1378 * an exported member of the RCU API.
1379 */
1380int rcu_needs_cpu(int cpu)
1381{
1382 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1383
1384 return (rdp->donelist != NULL ||
1385 !!rdp->waitlistcount ||
1386 rdp->nextlist != NULL ||
1387 rdp->nextschedlist != NULL ||
1388 rdp->waitschedlist != NULL);
1389}
1390
1391int rcu_pending(int cpu)
1392{
1393 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1394
1395 /* The CPU has at least one callback queued somewhere. */
1396
1397 if (rdp->donelist != NULL ||
1398 !!rdp->waitlistcount ||
1399 rdp->nextlist != NULL ||
1400 rdp->nextschedlist != NULL ||
1401 rdp->waitschedlist != NULL)
1402 return 1;
1403
1404 /* The RCU core needs an acknowledgement from this CPU. */
1405
1406 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
1407 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
1408 return 1;
1409
1410 /* This CPU has fallen behind the global grace-period number. */
1411
1412 if (rdp->completed != rcu_ctrlblk.completed)
1413 return 1;
1414
1415 /* Nothing needed from this CPU. */
1416
1417 return 0;
1418}
1419
1420static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1421 unsigned long action, void *hcpu)
1422{
1423 long cpu = (long)hcpu;
1424
1425 switch (action) {
1426 case CPU_UP_PREPARE:
1427 case CPU_UP_PREPARE_FROZEN:
1428 rcu_online_cpu(cpu);
1429 break;
1430 case CPU_UP_CANCELED:
1431 case CPU_UP_CANCELED_FROZEN:
1432 case CPU_DEAD:
1433 case CPU_DEAD_FROZEN:
1434 rcu_offline_cpu(cpu);
1435 break;
1436 default:
1437 break;
1438 }
1439 return NOTIFY_OK;
1440}
1441
1442static struct notifier_block __cpuinitdata rcu_nb = {
1443 .notifier_call = rcu_cpu_notify,
1444};
1445
1446void __init __rcu_init(void)
1447{
1448 int cpu;
1449 int i;
1450 struct rcu_data *rdp;
1451
1452 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
1453 for_each_possible_cpu(cpu) {
1454 rdp = RCU_DATA_CPU(cpu);
1455 spin_lock_init(&rdp->lock);
1456 rdp->completed = 0;
1457 rdp->waitlistcount = 0;
1458 rdp->nextlist = NULL;
1459 rdp->nexttail = &rdp->nextlist;
1460 for (i = 0; i < GP_STAGES; i++) {
1461 rdp->waitlist[i] = NULL;
1462 rdp->waittail[i] = &rdp->waitlist[i];
1463 }
1464 rdp->donelist = NULL;
1465 rdp->donetail = &rdp->donelist;
1466 rdp->rcu_flipctr[0] = 0;
1467 rdp->rcu_flipctr[1] = 0;
1468 rdp->nextschedlist = NULL;
1469 rdp->nextschedtail = &rdp->nextschedlist;
1470 rdp->waitschedlist = NULL;
1471 rdp->waitschedtail = &rdp->waitschedlist;
1472 rdp->rcu_sched_sleeping = 0;
1473 }
1474 register_cpu_notifier(&rcu_nb);
1475
1476 /*
1477 * We don't need protection against CPU-Hotplug here
1478 * since
1479 * a) If a CPU comes online while we are iterating over the
1480 * cpu_online_mask below, we would only end up making a
1481 * duplicate call to rcu_online_cpu() which sets the corresponding
1482 * CPU's mask in the rcu_cpu_online_map.
1483 *
1484 * b) A CPU cannot go offline at this point in time since the user
1485 * does not have access to the sysfs interface, nor do we
1486 * suspend the system.
1487 */
1488 for_each_online_cpu(cpu)
1489 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
1490
1491 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1492}
1493
1494/*
1495 * Late-boot-time RCU initialization that must wait until after scheduler
1496 * has been initialized.
1497 */
1498void __init rcu_init_sched(void)
1499{
1500 rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period,
1501 NULL,
1502 "rcu_sched_grace_period");
1503 WARN_ON(IS_ERR(rcu_sched_grace_period_task));
1504}
1505
1506#ifdef CONFIG_RCU_TRACE
1507long *rcupreempt_flipctr(int cpu)
1508{
1509 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1510}
1511EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
1512
1513int rcupreempt_flip_flag(int cpu)
1514{
1515 return per_cpu(rcu_flip_flag, cpu);
1516}
1517EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
1518
1519int rcupreempt_mb_flag(int cpu)
1520{
1521 return per_cpu(rcu_mb_flag, cpu);
1522}
1523EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
1524
1525char *rcupreempt_try_flip_state_name(void)
1526{
1527 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
1528}
1529EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
1530
1531struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
1532{
1533 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1534
1535 return &rdp->trace;
1536}
1537EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
1538
1539#endif /* #ifdef RCU_TRACE */
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c
deleted file mode 100644
index 7c2665cac172..000000000000
--- a/kernel/rcupreempt_trace.c
+++ /dev/null
@@ -1,334 +0,0 @@
1/*
2 * Read-Copy Update tracing for realtime implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2006
19 *
20 * Papers: http://www.rdrop.com/users/paulmck/RCU
21 *
22 * For detailed explanation of Read-Copy Update mechanism see -
23 * Documentation/RCU/ *.txt
24 *
25 */
26#include <linux/types.h>
27#include <linux/kernel.h>
28#include <linux/init.h>
29#include <linux/spinlock.h>
30#include <linux/smp.h>
31#include <linux/rcupdate.h>
32#include <linux/interrupt.h>
33#include <linux/sched.h>
34#include <asm/atomic.h>
35#include <linux/bitops.h>
36#include <linux/module.h>
37#include <linux/completion.h>
38#include <linux/moduleparam.h>
39#include <linux/percpu.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/mutex.h>
43#include <linux/rcupreempt_trace.h>
44#include <linux/debugfs.h>
45
46static struct mutex rcupreempt_trace_mutex;
47static char *rcupreempt_trace_buf;
48#define RCUPREEMPT_TRACE_BUF_SIZE 4096
49
50void rcupreempt_trace_move2done(struct rcupreempt_trace *trace)
51{
52 trace->done_length += trace->wait_length;
53 trace->done_add += trace->wait_length;
54 trace->wait_length = 0;
55}
56void rcupreempt_trace_move2wait(struct rcupreempt_trace *trace)
57{
58 trace->wait_length += trace->next_length;
59 trace->wait_add += trace->next_length;
60 trace->next_length = 0;
61}
62void rcupreempt_trace_try_flip_1(struct rcupreempt_trace *trace)
63{
64 atomic_inc(&trace->rcu_try_flip_1);
65}
66void rcupreempt_trace_try_flip_e1(struct rcupreempt_trace *trace)
67{
68 atomic_inc(&trace->rcu_try_flip_e1);
69}
70void rcupreempt_trace_try_flip_i1(struct rcupreempt_trace *trace)
71{
72 trace->rcu_try_flip_i1++;
73}
74void rcupreempt_trace_try_flip_ie1(struct rcupreempt_trace *trace)
75{
76 trace->rcu_try_flip_ie1++;
77}
78void rcupreempt_trace_try_flip_g1(struct rcupreempt_trace *trace)
79{
80 trace->rcu_try_flip_g1++;
81}
82void rcupreempt_trace_try_flip_a1(struct rcupreempt_trace *trace)
83{
84 trace->rcu_try_flip_a1++;
85}
86void rcupreempt_trace_try_flip_ae1(struct rcupreempt_trace *trace)
87{
88 trace->rcu_try_flip_ae1++;
89}
90void rcupreempt_trace_try_flip_a2(struct rcupreempt_trace *trace)
91{
92 trace->rcu_try_flip_a2++;
93}
94void rcupreempt_trace_try_flip_z1(struct rcupreempt_trace *trace)
95{
96 trace->rcu_try_flip_z1++;
97}
98void rcupreempt_trace_try_flip_ze1(struct rcupreempt_trace *trace)
99{
100 trace->rcu_try_flip_ze1++;
101}
102void rcupreempt_trace_try_flip_z2(struct rcupreempt_trace *trace)
103{
104 trace->rcu_try_flip_z2++;
105}
106void rcupreempt_trace_try_flip_m1(struct rcupreempt_trace *trace)
107{
108 trace->rcu_try_flip_m1++;
109}
110void rcupreempt_trace_try_flip_me1(struct rcupreempt_trace *trace)
111{
112 trace->rcu_try_flip_me1++;
113}
114void rcupreempt_trace_try_flip_m2(struct rcupreempt_trace *trace)
115{
116 trace->rcu_try_flip_m2++;
117}
118void rcupreempt_trace_check_callbacks(struct rcupreempt_trace *trace)
119{
120 trace->rcu_check_callbacks++;
121}
122void rcupreempt_trace_done_remove(struct rcupreempt_trace *trace)
123{
124 trace->done_remove += trace->done_length;
125 trace->done_length = 0;
126}
127void rcupreempt_trace_invoke(struct rcupreempt_trace *trace)
128{
129 atomic_inc(&trace->done_invoked);
130}
131void rcupreempt_trace_next_add(struct rcupreempt_trace *trace)
132{
133 trace->next_add++;
134 trace->next_length++;
135}
136
137static void rcupreempt_trace_sum(struct rcupreempt_trace *sp)
138{
139 struct rcupreempt_trace *cp;
140 int cpu;
141
142 memset(sp, 0, sizeof(*sp));
143 for_each_possible_cpu(cpu) {
144 cp = rcupreempt_trace_cpu(cpu);
145 sp->next_length += cp->next_length;
146 sp->next_add += cp->next_add;
147 sp->wait_length += cp->wait_length;
148 sp->wait_add += cp->wait_add;
149 sp->done_length += cp->done_length;
150 sp->done_add += cp->done_add;
151 sp->done_remove += cp->done_remove;
152 atomic_add(atomic_read(&cp->done_invoked), &sp->done_invoked);
153 sp->rcu_check_callbacks += cp->rcu_check_callbacks;
154 atomic_add(atomic_read(&cp->rcu_try_flip_1),
155 &sp->rcu_try_flip_1);
156 atomic_add(atomic_read(&cp->rcu_try_flip_e1),
157 &sp->rcu_try_flip_e1);
158 sp->rcu_try_flip_i1 += cp->rcu_try_flip_i1;
159 sp->rcu_try_flip_ie1 += cp->rcu_try_flip_ie1;
160 sp->rcu_try_flip_g1 += cp->rcu_try_flip_g1;
161 sp->rcu_try_flip_a1 += cp->rcu_try_flip_a1;
162 sp->rcu_try_flip_ae1 += cp->rcu_try_flip_ae1;
163 sp->rcu_try_flip_a2 += cp->rcu_try_flip_a2;
164 sp->rcu_try_flip_z1 += cp->rcu_try_flip_z1;
165 sp->rcu_try_flip_ze1 += cp->rcu_try_flip_ze1;
166 sp->rcu_try_flip_z2 += cp->rcu_try_flip_z2;
167 sp->rcu_try_flip_m1 += cp->rcu_try_flip_m1;
168 sp->rcu_try_flip_me1 += cp->rcu_try_flip_me1;
169 sp->rcu_try_flip_m2 += cp->rcu_try_flip_m2;
170 }
171}
172
173static ssize_t rcustats_read(struct file *filp, char __user *buffer,
174 size_t count, loff_t *ppos)
175{
176 struct rcupreempt_trace trace;
177 ssize_t bcount;
178 int cnt = 0;
179
180 rcupreempt_trace_sum(&trace);
181 mutex_lock(&rcupreempt_trace_mutex);
182 snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt,
183 "ggp=%ld rcc=%ld\n",
184 rcu_batches_completed(),
185 trace.rcu_check_callbacks);
186 snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt,
187 "na=%ld nl=%ld wa=%ld wl=%ld da=%ld dl=%ld dr=%ld di=%d\n"
188 "1=%d e1=%d i1=%ld ie1=%ld g1=%ld a1=%ld ae1=%ld a2=%ld\n"
189 "z1=%ld ze1=%ld z2=%ld m1=%ld me1=%ld m2=%ld\n",
190
191 trace.next_add, trace.next_length,
192 trace.wait_add, trace.wait_length,
193 trace.done_add, trace.done_length,
194 trace.done_remove, atomic_read(&trace.done_invoked),
195 atomic_read(&trace.rcu_try_flip_1),
196 atomic_read(&trace.rcu_try_flip_e1),
197 trace.rcu_try_flip_i1, trace.rcu_try_flip_ie1,
198 trace.rcu_try_flip_g1,
199 trace.rcu_try_flip_a1, trace.rcu_try_flip_ae1,
200 trace.rcu_try_flip_a2,
201 trace.rcu_try_flip_z1, trace.rcu_try_flip_ze1,
202 trace.rcu_try_flip_z2,
203 trace.rcu_try_flip_m1, trace.rcu_try_flip_me1,
204 trace.rcu_try_flip_m2);
205 bcount = simple_read_from_buffer(buffer, count, ppos,
206 rcupreempt_trace_buf, strlen(rcupreempt_trace_buf));
207 mutex_unlock(&rcupreempt_trace_mutex);
208 return bcount;
209}
210
211static ssize_t rcugp_read(struct file *filp, char __user *buffer,
212 size_t count, loff_t *ppos)
213{
214 long oldgp = rcu_batches_completed();
215 ssize_t bcount;
216
217 mutex_lock(&rcupreempt_trace_mutex);
218 synchronize_rcu();
219 snprintf(rcupreempt_trace_buf, RCUPREEMPT_TRACE_BUF_SIZE,
220 "oldggp=%ld newggp=%ld\n", oldgp, rcu_batches_completed());
221 bcount = simple_read_from_buffer(buffer, count, ppos,
222 rcupreempt_trace_buf, strlen(rcupreempt_trace_buf));
223 mutex_unlock(&rcupreempt_trace_mutex);
224 return bcount;
225}
226
227static ssize_t rcuctrs_read(struct file *filp, char __user *buffer,
228 size_t count, loff_t *ppos)
229{
230 int cnt = 0;
231 int cpu;
232 int f = rcu_batches_completed() & 0x1;
233 ssize_t bcount;
234
235 mutex_lock(&rcupreempt_trace_mutex);
236
237 cnt += snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE,
238 "CPU last cur F M\n");
239 for_each_online_cpu(cpu) {
240 long *flipctr = rcupreempt_flipctr(cpu);
241 cnt += snprintf(&rcupreempt_trace_buf[cnt],
242 RCUPREEMPT_TRACE_BUF_SIZE - cnt,
243 "%3d %4ld %3ld %d %d\n",
244 cpu,
245 flipctr[!f],
246 flipctr[f],
247 rcupreempt_flip_flag(cpu),
248 rcupreempt_mb_flag(cpu));
249 }
250 cnt += snprintf(&rcupreempt_trace_buf[cnt],
251 RCUPREEMPT_TRACE_BUF_SIZE - cnt,
252 "ggp = %ld, state = %s\n",
253 rcu_batches_completed(),
254 rcupreempt_try_flip_state_name());
255 cnt += snprintf(&rcupreempt_trace_buf[cnt],
256 RCUPREEMPT_TRACE_BUF_SIZE - cnt,
257 "\n");
258 bcount = simple_read_from_buffer(buffer, count, ppos,
259 rcupreempt_trace_buf, strlen(rcupreempt_trace_buf));
260 mutex_unlock(&rcupreempt_trace_mutex);
261 return bcount;
262}
263
264static struct file_operations rcustats_fops = {
265 .owner = THIS_MODULE,
266 .read = rcustats_read,
267};
268
269static struct file_operations rcugp_fops = {
270 .owner = THIS_MODULE,
271 .read = rcugp_read,
272};
273
274static struct file_operations rcuctrs_fops = {
275 .owner = THIS_MODULE,
276 .read = rcuctrs_read,
277};
278
279static struct dentry *rcudir, *statdir, *ctrsdir, *gpdir;
280static int rcupreempt_debugfs_init(void)
281{
282 rcudir = debugfs_create_dir("rcu", NULL);
283 if (!rcudir)
284 goto out;
285 statdir = debugfs_create_file("rcustats", 0444, rcudir,
286 NULL, &rcustats_fops);
287 if (!statdir)
288 goto free_out;
289
290 gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops);
291 if (!gpdir)
292 goto free_out;
293
294 ctrsdir = debugfs_create_file("rcuctrs", 0444, rcudir,
295 NULL, &rcuctrs_fops);
296 if (!ctrsdir)
297 goto free_out;
298 return 0;
299free_out:
300 if (statdir)
301 debugfs_remove(statdir);
302 if (gpdir)
303 debugfs_remove(gpdir);
304 debugfs_remove(rcudir);
305out:
306 return 1;
307}
308
309static int __init rcupreempt_trace_init(void)
310{
311 int ret;
312
313 mutex_init(&rcupreempt_trace_mutex);
314 rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL);
315 if (!rcupreempt_trace_buf)
316 return 1;
317 ret = rcupreempt_debugfs_init();
318 if (ret)
319 kfree(rcupreempt_trace_buf);
320 return ret;
321}
322
323static void __exit rcupreempt_trace_cleanup(void)
324{
325 debugfs_remove(statdir);
326 debugfs_remove(gpdir);
327 debugfs_remove(ctrsdir);
328 debugfs_remove(rcudir);
329 kfree(rcupreempt_trace_buf);
330}
331
332
333module_init(rcupreempt_trace_init);
334module_exit(rcupreempt_trace_cleanup);
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c
index 9b4a975a4b4a..b33db539a8ad 100644
--- a/kernel/rcutorture.c
+++ b/kernel/rcutorture.c
@@ -257,14 +257,14 @@ struct rcu_torture_ops {
257 void (*init)(void); 257 void (*init)(void);
258 void (*cleanup)(void); 258 void (*cleanup)(void);
259 int (*readlock)(void); 259 int (*readlock)(void);
260 void (*readdelay)(struct rcu_random_state *rrsp); 260 void (*read_delay)(struct rcu_random_state *rrsp);
261 void (*readunlock)(int idx); 261 void (*readunlock)(int idx);
262 int (*completed)(void); 262 int (*completed)(void);
263 void (*deferredfree)(struct rcu_torture *p); 263 void (*deferred_free)(struct rcu_torture *p);
264 void (*sync)(void); 264 void (*sync)(void);
265 void (*cb_barrier)(void); 265 void (*cb_barrier)(void);
266 int (*stats)(char *page); 266 int (*stats)(char *page);
267 int irqcapable; 267 int irq_capable;
268 char *name; 268 char *name;
269}; 269};
270static struct rcu_torture_ops *cur_ops = NULL; 270static struct rcu_torture_ops *cur_ops = NULL;
@@ -320,7 +320,7 @@ rcu_torture_cb(struct rcu_head *p)
320 rp->rtort_mbtest = 0; 320 rp->rtort_mbtest = 0;
321 rcu_torture_free(rp); 321 rcu_torture_free(rp);
322 } else 322 } else
323 cur_ops->deferredfree(rp); 323 cur_ops->deferred_free(rp);
324} 324}
325 325
326static void rcu_torture_deferred_free(struct rcu_torture *p) 326static void rcu_torture_deferred_free(struct rcu_torture *p)
@@ -329,18 +329,18 @@ static void rcu_torture_deferred_free(struct rcu_torture *p)
329} 329}
330 330
331static struct rcu_torture_ops rcu_ops = { 331static struct rcu_torture_ops rcu_ops = {
332 .init = NULL, 332 .init = NULL,
333 .cleanup = NULL, 333 .cleanup = NULL,
334 .readlock = rcu_torture_read_lock, 334 .readlock = rcu_torture_read_lock,
335 .readdelay = rcu_read_delay, 335 .read_delay = rcu_read_delay,
336 .readunlock = rcu_torture_read_unlock, 336 .readunlock = rcu_torture_read_unlock,
337 .completed = rcu_torture_completed, 337 .completed = rcu_torture_completed,
338 .deferredfree = rcu_torture_deferred_free, 338 .deferred_free = rcu_torture_deferred_free,
339 .sync = synchronize_rcu, 339 .sync = synchronize_rcu,
340 .cb_barrier = rcu_barrier, 340 .cb_barrier = rcu_barrier,
341 .stats = NULL, 341 .stats = NULL,
342 .irqcapable = 1, 342 .irq_capable = 1,
343 .name = "rcu" 343 .name = "rcu"
344}; 344};
345 345
346static void rcu_sync_torture_deferred_free(struct rcu_torture *p) 346static void rcu_sync_torture_deferred_free(struct rcu_torture *p)
@@ -370,18 +370,18 @@ static void rcu_sync_torture_init(void)
370} 370}
371 371
372static struct rcu_torture_ops rcu_sync_ops = { 372static struct rcu_torture_ops rcu_sync_ops = {
373 .init = rcu_sync_torture_init, 373 .init = rcu_sync_torture_init,
374 .cleanup = NULL, 374 .cleanup = NULL,
375 .readlock = rcu_torture_read_lock, 375 .readlock = rcu_torture_read_lock,
376 .readdelay = rcu_read_delay, 376 .read_delay = rcu_read_delay,
377 .readunlock = rcu_torture_read_unlock, 377 .readunlock = rcu_torture_read_unlock,
378 .completed = rcu_torture_completed, 378 .completed = rcu_torture_completed,
379 .deferredfree = rcu_sync_torture_deferred_free, 379 .deferred_free = rcu_sync_torture_deferred_free,
380 .sync = synchronize_rcu, 380 .sync = synchronize_rcu,
381 .cb_barrier = NULL, 381 .cb_barrier = NULL,
382 .stats = NULL, 382 .stats = NULL,
383 .irqcapable = 1, 383 .irq_capable = 1,
384 .name = "rcu_sync" 384 .name = "rcu_sync"
385}; 385};
386 386
387/* 387/*
@@ -432,33 +432,33 @@ static void rcu_bh_torture_synchronize(void)
432} 432}
433 433
434static struct rcu_torture_ops rcu_bh_ops = { 434static struct rcu_torture_ops rcu_bh_ops = {
435 .init = NULL, 435 .init = NULL,
436 .cleanup = NULL, 436 .cleanup = NULL,
437 .readlock = rcu_bh_torture_read_lock, 437 .readlock = rcu_bh_torture_read_lock,
438 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 438 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
439 .readunlock = rcu_bh_torture_read_unlock, 439 .readunlock = rcu_bh_torture_read_unlock,
440 .completed = rcu_bh_torture_completed, 440 .completed = rcu_bh_torture_completed,
441 .deferredfree = rcu_bh_torture_deferred_free, 441 .deferred_free = rcu_bh_torture_deferred_free,
442 .sync = rcu_bh_torture_synchronize, 442 .sync = rcu_bh_torture_synchronize,
443 .cb_barrier = rcu_barrier_bh, 443 .cb_barrier = rcu_barrier_bh,
444 .stats = NULL, 444 .stats = NULL,
445 .irqcapable = 1, 445 .irq_capable = 1,
446 .name = "rcu_bh" 446 .name = "rcu_bh"
447}; 447};
448 448
449static struct rcu_torture_ops rcu_bh_sync_ops = { 449static struct rcu_torture_ops rcu_bh_sync_ops = {
450 .init = rcu_sync_torture_init, 450 .init = rcu_sync_torture_init,
451 .cleanup = NULL, 451 .cleanup = NULL,
452 .readlock = rcu_bh_torture_read_lock, 452 .readlock = rcu_bh_torture_read_lock,
453 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 453 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
454 .readunlock = rcu_bh_torture_read_unlock, 454 .readunlock = rcu_bh_torture_read_unlock,
455 .completed = rcu_bh_torture_completed, 455 .completed = rcu_bh_torture_completed,
456 .deferredfree = rcu_sync_torture_deferred_free, 456 .deferred_free = rcu_sync_torture_deferred_free,
457 .sync = rcu_bh_torture_synchronize, 457 .sync = rcu_bh_torture_synchronize,
458 .cb_barrier = NULL, 458 .cb_barrier = NULL,
459 .stats = NULL, 459 .stats = NULL,
460 .irqcapable = 1, 460 .irq_capable = 1,
461 .name = "rcu_bh_sync" 461 .name = "rcu_bh_sync"
462}; 462};
463 463
464/* 464/*
@@ -530,17 +530,17 @@ static int srcu_torture_stats(char *page)
530} 530}
531 531
532static struct rcu_torture_ops srcu_ops = { 532static struct rcu_torture_ops srcu_ops = {
533 .init = srcu_torture_init, 533 .init = srcu_torture_init,
534 .cleanup = srcu_torture_cleanup, 534 .cleanup = srcu_torture_cleanup,
535 .readlock = srcu_torture_read_lock, 535 .readlock = srcu_torture_read_lock,
536 .readdelay = srcu_read_delay, 536 .read_delay = srcu_read_delay,
537 .readunlock = srcu_torture_read_unlock, 537 .readunlock = srcu_torture_read_unlock,
538 .completed = srcu_torture_completed, 538 .completed = srcu_torture_completed,
539 .deferredfree = rcu_sync_torture_deferred_free, 539 .deferred_free = rcu_sync_torture_deferred_free,
540 .sync = srcu_torture_synchronize, 540 .sync = srcu_torture_synchronize,
541 .cb_barrier = NULL, 541 .cb_barrier = NULL,
542 .stats = srcu_torture_stats, 542 .stats = srcu_torture_stats,
543 .name = "srcu" 543 .name = "srcu"
544}; 544};
545 545
546/* 546/*
@@ -574,32 +574,49 @@ static void sched_torture_synchronize(void)
574} 574}
575 575
576static struct rcu_torture_ops sched_ops = { 576static struct rcu_torture_ops sched_ops = {
577 .init = rcu_sync_torture_init, 577 .init = rcu_sync_torture_init,
578 .cleanup = NULL, 578 .cleanup = NULL,
579 .readlock = sched_torture_read_lock, 579 .readlock = sched_torture_read_lock,
580 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 580 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
581 .readunlock = sched_torture_read_unlock, 581 .readunlock = sched_torture_read_unlock,
582 .completed = sched_torture_completed, 582 .completed = sched_torture_completed,
583 .deferredfree = rcu_sched_torture_deferred_free, 583 .deferred_free = rcu_sched_torture_deferred_free,
584 .sync = sched_torture_synchronize, 584 .sync = sched_torture_synchronize,
585 .cb_barrier = rcu_barrier_sched, 585 .cb_barrier = rcu_barrier_sched,
586 .stats = NULL, 586 .stats = NULL,
587 .irqcapable = 1, 587 .irq_capable = 1,
588 .name = "sched" 588 .name = "sched"
589}; 589};
590 590
591static struct rcu_torture_ops sched_ops_sync = { 591static struct rcu_torture_ops sched_ops_sync = {
592 .init = rcu_sync_torture_init, 592 .init = rcu_sync_torture_init,
593 .cleanup = NULL, 593 .cleanup = NULL,
594 .readlock = sched_torture_read_lock, 594 .readlock = sched_torture_read_lock,
595 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 595 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
596 .readunlock = sched_torture_read_unlock, 596 .readunlock = sched_torture_read_unlock,
597 .completed = sched_torture_completed, 597 .completed = sched_torture_completed,
598 .deferredfree = rcu_sync_torture_deferred_free, 598 .deferred_free = rcu_sync_torture_deferred_free,
599 .sync = sched_torture_synchronize, 599 .sync = sched_torture_synchronize,
600 .cb_barrier = NULL, 600 .cb_barrier = NULL,
601 .stats = NULL, 601 .stats = NULL,
602 .name = "sched_sync" 602 .name = "sched_sync"
603};
604
605extern int rcu_expedited_torture_stats(char *page);
606
607static struct rcu_torture_ops sched_expedited_ops = {
608 .init = rcu_sync_torture_init,
609 .cleanup = NULL,
610 .readlock = sched_torture_read_lock,
611 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
612 .readunlock = sched_torture_read_unlock,
613 .completed = sched_torture_completed,
614 .deferred_free = rcu_sync_torture_deferred_free,
615 .sync = synchronize_sched_expedited,
616 .cb_barrier = NULL,
617 .stats = rcu_expedited_torture_stats,
618 .irq_capable = 1,
619 .name = "sched_expedited"
603}; 620};
604 621
605/* 622/*
@@ -635,7 +652,7 @@ rcu_torture_writer(void *arg)
635 i = RCU_TORTURE_PIPE_LEN; 652 i = RCU_TORTURE_PIPE_LEN;
636 atomic_inc(&rcu_torture_wcount[i]); 653 atomic_inc(&rcu_torture_wcount[i]);
637 old_rp->rtort_pipe_count++; 654 old_rp->rtort_pipe_count++;
638 cur_ops->deferredfree(old_rp); 655 cur_ops->deferred_free(old_rp);
639 } 656 }
640 rcu_torture_current_version++; 657 rcu_torture_current_version++;
641 oldbatch = cur_ops->completed(); 658 oldbatch = cur_ops->completed();
@@ -700,7 +717,7 @@ static void rcu_torture_timer(unsigned long unused)
700 if (p->rtort_mbtest == 0) 717 if (p->rtort_mbtest == 0)
701 atomic_inc(&n_rcu_torture_mberror); 718 atomic_inc(&n_rcu_torture_mberror);
702 spin_lock(&rand_lock); 719 spin_lock(&rand_lock);
703 cur_ops->readdelay(&rand); 720 cur_ops->read_delay(&rand);
704 n_rcu_torture_timers++; 721 n_rcu_torture_timers++;
705 spin_unlock(&rand_lock); 722 spin_unlock(&rand_lock);
706 preempt_disable(); 723 preempt_disable();
@@ -738,11 +755,11 @@ rcu_torture_reader(void *arg)
738 755
739 VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); 756 VERBOSE_PRINTK_STRING("rcu_torture_reader task started");
740 set_user_nice(current, 19); 757 set_user_nice(current, 19);
741 if (irqreader && cur_ops->irqcapable) 758 if (irqreader && cur_ops->irq_capable)
742 setup_timer_on_stack(&t, rcu_torture_timer, 0); 759 setup_timer_on_stack(&t, rcu_torture_timer, 0);
743 760
744 do { 761 do {
745 if (irqreader && cur_ops->irqcapable) { 762 if (irqreader && cur_ops->irq_capable) {
746 if (!timer_pending(&t)) 763 if (!timer_pending(&t))
747 mod_timer(&t, 1); 764 mod_timer(&t, 1);
748 } 765 }
@@ -757,7 +774,7 @@ rcu_torture_reader(void *arg)
757 } 774 }
758 if (p->rtort_mbtest == 0) 775 if (p->rtort_mbtest == 0)
759 atomic_inc(&n_rcu_torture_mberror); 776 atomic_inc(&n_rcu_torture_mberror);
760 cur_ops->readdelay(&rand); 777 cur_ops->read_delay(&rand);
761 preempt_disable(); 778 preempt_disable();
762 pipe_count = p->rtort_pipe_count; 779 pipe_count = p->rtort_pipe_count;
763 if (pipe_count > RCU_TORTURE_PIPE_LEN) { 780 if (pipe_count > RCU_TORTURE_PIPE_LEN) {
@@ -778,7 +795,7 @@ rcu_torture_reader(void *arg)
778 } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); 795 } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP);
779 VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); 796 VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping");
780 rcutorture_shutdown_absorb("rcu_torture_reader"); 797 rcutorture_shutdown_absorb("rcu_torture_reader");
781 if (irqreader && cur_ops->irqcapable) 798 if (irqreader && cur_ops->irq_capable)
782 del_timer_sync(&t); 799 del_timer_sync(&t);
783 while (!kthread_should_stop()) 800 while (!kthread_should_stop())
784 schedule_timeout_uninterruptible(1); 801 schedule_timeout_uninterruptible(1);
@@ -1078,6 +1095,7 @@ rcu_torture_init(void)
1078 int firsterr = 0; 1095 int firsterr = 0;
1079 static struct rcu_torture_ops *torture_ops[] = 1096 static struct rcu_torture_ops *torture_ops[] =
1080 { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, 1097 { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops,
1098 &sched_expedited_ops,
1081 &srcu_ops, &sched_ops, &sched_ops_sync, }; 1099 &srcu_ops, &sched_ops, &sched_ops_sync, };
1082 1100
1083 mutex_lock(&fullstop_mutex); 1101 mutex_lock(&fullstop_mutex);
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 7717b95c2027..6b11b07cfe7f 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -35,6 +35,7 @@
35#include <linux/rcupdate.h> 35#include <linux/rcupdate.h>
36#include <linux/interrupt.h> 36#include <linux/interrupt.h>
37#include <linux/sched.h> 37#include <linux/sched.h>
38#include <linux/nmi.h>
38#include <asm/atomic.h> 39#include <asm/atomic.h>
39#include <linux/bitops.h> 40#include <linux/bitops.h>
40#include <linux/module.h> 41#include <linux/module.h>
@@ -46,6 +47,8 @@
46#include <linux/mutex.h> 47#include <linux/mutex.h>
47#include <linux/time.h> 48#include <linux/time.h>
48 49
50#include "rcutree.h"
51
49#ifdef CONFIG_DEBUG_LOCK_ALLOC 52#ifdef CONFIG_DEBUG_LOCK_ALLOC
50static struct lock_class_key rcu_lock_key; 53static struct lock_class_key rcu_lock_key;
51struct lockdep_map rcu_lock_map = 54struct lockdep_map rcu_lock_map =
@@ -72,30 +75,59 @@ EXPORT_SYMBOL_GPL(rcu_lock_map);
72 .n_force_qs_ngp = 0, \ 75 .n_force_qs_ngp = 0, \
73} 76}
74 77
75struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); 78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
76DEFINE_PER_CPU(struct rcu_data, rcu_data); 79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
77 80
78struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); 81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
80 83
84extern long rcu_batches_completed_sched(void);
85static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
86static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
89#ifdef CONFIG_HOTPLUG_CPU
90static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
91#endif /* #ifdef CONFIG_HOTPLUG_CPU */
92static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101#include "rcutree_plugin.h"
102
81/* 103/*
82 * Increment the quiescent state counter. 104 * Note a quiescent state. Because we do not need to know
83 * The counter is a bit degenerated: We do not need to know
84 * how many quiescent states passed, just if there was at least 105 * how many quiescent states passed, just if there was at least
85 * one since the start of the grace period. Thus just a flag. 106 * one since the start of the grace period, this just sets a flag.
86 */ 107 */
87void rcu_qsctr_inc(int cpu) 108void rcu_sched_qs(int cpu)
88{ 109{
89 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 110 unsigned long flags;
111 struct rcu_data *rdp;
112
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu);
90 rdp->passed_quiesc = 1; 115 rdp->passed_quiesc = 1;
91 rdp->passed_quiesc_completed = rdp->completed; 116 rdp->passed_quiesc_completed = rdp->completed;
117 rcu_preempt_qs(cpu);
118 local_irq_restore(flags);
92} 119}
93 120
94void rcu_bh_qsctr_inc(int cpu) 121void rcu_bh_qs(int cpu)
95{ 122{
96 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 123 unsigned long flags;
124 struct rcu_data *rdp;
125
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu);
97 rdp->passed_quiesc = 1; 128 rdp->passed_quiesc = 1;
98 rdp->passed_quiesc_completed = rdp->completed; 129 rdp->passed_quiesc_completed = rdp->completed;
130 local_irq_restore(flags);
99} 131}
100 132
101#ifdef CONFIG_NO_HZ 133#ifdef CONFIG_NO_HZ
@@ -110,15 +142,16 @@ static int qhimark = 10000; /* If this many pending, ignore blimit. */
110static int qlowmark = 100; /* Once only this many pending, use blimit. */ 142static int qlowmark = 100; /* Once only this many pending, use blimit. */
111 143
112static void force_quiescent_state(struct rcu_state *rsp, int relaxed); 144static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
145static int rcu_pending(int cpu);
113 146
114/* 147/*
115 * Return the number of RCU batches processed thus far for debug & stats. 148 * Return the number of RCU-sched batches processed thus far for debug & stats.
116 */ 149 */
117long rcu_batches_completed(void) 150long rcu_batches_completed_sched(void)
118{ 151{
119 return rcu_state.completed; 152 return rcu_sched_state.completed;
120} 153}
121EXPORT_SYMBOL_GPL(rcu_batches_completed); 154EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
122 155
123/* 156/*
124 * Return the number of RCU BH batches processed thus far for debug & stats. 157 * Return the number of RCU BH batches processed thus far for debug & stats.
@@ -181,6 +214,10 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp)
181 return 1; 214 return 1;
182 } 215 }
183 216
217 /* If preemptable RCU, no point in sending reschedule IPI. */
218 if (rdp->preemptable)
219 return 0;
220
184 /* The CPU is online, so send it a reschedule IPI. */ 221 /* The CPU is online, so send it a reschedule IPI. */
185 if (rdp->cpu != smp_processor_id()) 222 if (rdp->cpu != smp_processor_id())
186 smp_send_reschedule(rdp->cpu); 223 smp_send_reschedule(rdp->cpu);
@@ -193,7 +230,6 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp)
193#endif /* #ifdef CONFIG_SMP */ 230#endif /* #ifdef CONFIG_SMP */
194 231
195#ifdef CONFIG_NO_HZ 232#ifdef CONFIG_NO_HZ
196static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
197 233
198/** 234/**
199 * rcu_enter_nohz - inform RCU that current CPU is entering nohz 235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
@@ -213,7 +249,7 @@ void rcu_enter_nohz(void)
213 rdtp = &__get_cpu_var(rcu_dynticks); 249 rdtp = &__get_cpu_var(rcu_dynticks);
214 rdtp->dynticks++; 250 rdtp->dynticks++;
215 rdtp->dynticks_nesting--; 251 rdtp->dynticks_nesting--;
216 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); 252 WARN_ON_ONCE(rdtp->dynticks & 0x1);
217 local_irq_restore(flags); 253 local_irq_restore(flags);
218} 254}
219 255
@@ -232,7 +268,7 @@ void rcu_exit_nohz(void)
232 rdtp = &__get_cpu_var(rcu_dynticks); 268 rdtp = &__get_cpu_var(rcu_dynticks);
233 rdtp->dynticks++; 269 rdtp->dynticks++;
234 rdtp->dynticks_nesting++; 270 rdtp->dynticks_nesting++;
235 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); 271 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
236 local_irq_restore(flags); 272 local_irq_restore(flags);
237 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
238} 274}
@@ -251,7 +287,7 @@ void rcu_nmi_enter(void)
251 if (rdtp->dynticks & 0x1) 287 if (rdtp->dynticks & 0x1)
252 return; 288 return;
253 rdtp->dynticks_nmi++; 289 rdtp->dynticks_nmi++;
254 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); 290 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
255 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
256} 292}
257 293
@@ -270,7 +306,7 @@ void rcu_nmi_exit(void)
270 return; 306 return;
271 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
272 rdtp->dynticks_nmi++; 308 rdtp->dynticks_nmi++;
273 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); 309 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
274} 310}
275 311
276/** 312/**
@@ -286,7 +322,7 @@ void rcu_irq_enter(void)
286 if (rdtp->dynticks_nesting++) 322 if (rdtp->dynticks_nesting++)
287 return; 323 return;
288 rdtp->dynticks++; 324 rdtp->dynticks++;
289 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); 325 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
291} 327}
292 328
@@ -305,10 +341,10 @@ void rcu_irq_exit(void)
305 return; 341 return;
306 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
307 rdtp->dynticks++; 343 rdtp->dynticks++;
308 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); 344 WARN_ON_ONCE(rdtp->dynticks & 0x1);
309 345
310 /* If the interrupt queued a callback, get out of dyntick mode. */ 346 /* If the interrupt queued a callback, get out of dyntick mode. */
311 if (__get_cpu_var(rcu_data).nxtlist || 347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
312 __get_cpu_var(rcu_bh_data).nxtlist) 348 __get_cpu_var(rcu_bh_data).nxtlist)
313 set_need_resched(); 349 set_need_resched();
314} 350}
@@ -461,6 +497,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
461 497
462 printk(KERN_ERR "INFO: RCU detected CPU stalls:"); 498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
463 for (; rnp_cur < rnp_end; rnp_cur++) { 499 for (; rnp_cur < rnp_end; rnp_cur++) {
500 rcu_print_task_stall(rnp);
464 if (rnp_cur->qsmask == 0) 501 if (rnp_cur->qsmask == 0)
465 continue; 502 continue;
466 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) 503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
@@ -469,6 +506,8 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
469 } 506 }
470 printk(" (detected by %d, t=%ld jiffies)\n", 507 printk(" (detected by %d, t=%ld jiffies)\n",
471 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
509 trigger_all_cpu_backtrace();
510
472 force_quiescent_state(rsp, 0); /* Kick them all. */ 511 force_quiescent_state(rsp, 0); /* Kick them all. */
473} 512}
474 513
@@ -479,12 +518,14 @@ static void print_cpu_stall(struct rcu_state *rsp)
479 518
480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", 519 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies - rsp->gp_start); 520 smp_processor_id(), jiffies - rsp->gp_start);
482 dump_stack(); 521 trigger_all_cpu_backtrace();
522
483 spin_lock_irqsave(&rnp->lock, flags); 523 spin_lock_irqsave(&rnp->lock, flags);
484 if ((long)(jiffies - rsp->jiffies_stall) >= 0) 524 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
485 rsp->jiffies_stall = 525 rsp->jiffies_stall =
486 jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 526 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
487 spin_unlock_irqrestore(&rnp->lock, flags); 527 spin_unlock_irqrestore(&rnp->lock, flags);
528
488 set_need_resched(); /* kick ourselves to get things going. */ 529 set_need_resched(); /* kick ourselves to get things going. */
489} 530}
490 531
@@ -674,6 +715,19 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
674} 715}
675 716
676/* 717/*
718 * Clean up after the prior grace period and let rcu_start_gp() start up
719 * the next grace period if one is needed. Note that the caller must
720 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
721 */
722static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
723 __releases(rnp->lock)
724{
725 rsp->completed = rsp->gpnum;
726 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
727 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
728}
729
730/*
677 * Similar to cpu_quiet(), for which it is a helper function. Allows 731 * Similar to cpu_quiet(), for which it is a helper function. Allows
678 * a group of CPUs to be quieted at one go, though all the CPUs in the 732 * a group of CPUs to be quieted at one go, though all the CPUs in the
679 * group must be represented by the same leaf rcu_node structure. 733 * group must be represented by the same leaf rcu_node structure.
@@ -694,7 +748,7 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
694 return; 748 return;
695 } 749 }
696 rnp->qsmask &= ~mask; 750 rnp->qsmask &= ~mask;
697 if (rnp->qsmask != 0) { 751 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
698 752
699 /* Other bits still set at this level, so done. */ 753 /* Other bits still set at this level, so done. */
700 spin_unlock_irqrestore(&rnp->lock, flags); 754 spin_unlock_irqrestore(&rnp->lock, flags);
@@ -714,14 +768,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
714 768
715 /* 769 /*
716 * Get here if we are the last CPU to pass through a quiescent 770 * Get here if we are the last CPU to pass through a quiescent
717 * state for this grace period. Clean up and let rcu_start_gp() 771 * state for this grace period. Invoke cpu_quiet_msk_finish()
718 * start up the next grace period if one is needed. Note that 772 * to clean up and start the next grace period if one is needed.
719 * we still hold rnp->lock, as required by rcu_start_gp(), which
720 * will release it.
721 */ 773 */
722 rsp->completed = rsp->gpnum; 774 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
723 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
724 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
725} 775}
726 776
727/* 777/*
@@ -828,11 +878,12 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
828 spin_lock(&rnp->lock); /* irqs already disabled. */ 878 spin_lock(&rnp->lock); /* irqs already disabled. */
829 rnp->qsmaskinit &= ~mask; 879 rnp->qsmaskinit &= ~mask;
830 if (rnp->qsmaskinit != 0) { 880 if (rnp->qsmaskinit != 0) {
831 spin_unlock(&rnp->lock); /* irqs already disabled. */ 881 spin_unlock(&rnp->lock); /* irqs remain disabled. */
832 break; 882 break;
833 } 883 }
884 rcu_preempt_offline_tasks(rsp, rnp);
834 mask = rnp->grpmask; 885 mask = rnp->grpmask;
835 spin_unlock(&rnp->lock); /* irqs already disabled. */ 886 spin_unlock(&rnp->lock); /* irqs remain disabled. */
836 rnp = rnp->parent; 887 rnp = rnp->parent;
837 } while (rnp != NULL); 888 } while (rnp != NULL);
838 lastcomp = rsp->completed; 889 lastcomp = rsp->completed;
@@ -845,7 +896,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
845 /* 896 /*
846 * Move callbacks from the outgoing CPU to the running CPU. 897 * Move callbacks from the outgoing CPU to the running CPU.
847 * Note that the outgoing CPU is now quiscent, so it is now 898 * Note that the outgoing CPU is now quiscent, so it is now
848 * (uncharacteristically) safe to access it rcu_data structure. 899 * (uncharacteristically) safe to access its rcu_data structure.
849 * Note also that we must carefully retain the order of the 900 * Note also that we must carefully retain the order of the
850 * outgoing CPU's callbacks in order for rcu_barrier() to work 901 * outgoing CPU's callbacks in order for rcu_barrier() to work
851 * correctly. Finally, note that we start all the callbacks 902 * correctly. Finally, note that we start all the callbacks
@@ -876,8 +927,9 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
876 */ 927 */
877static void rcu_offline_cpu(int cpu) 928static void rcu_offline_cpu(int cpu)
878{ 929{
879 __rcu_offline_cpu(cpu, &rcu_state); 930 __rcu_offline_cpu(cpu, &rcu_sched_state);
880 __rcu_offline_cpu(cpu, &rcu_bh_state); 931 __rcu_offline_cpu(cpu, &rcu_bh_state);
932 rcu_preempt_offline_cpu(cpu);
881} 933}
882 934
883#else /* #ifdef CONFIG_HOTPLUG_CPU */ 935#else /* #ifdef CONFIG_HOTPLUG_CPU */
@@ -963,6 +1015,8 @@ static void rcu_do_batch(struct rcu_data *rdp)
963 */ 1015 */
964void rcu_check_callbacks(int cpu, int user) 1016void rcu_check_callbacks(int cpu, int user)
965{ 1017{
1018 if (!rcu_pending(cpu))
1019 return; /* if nothing for RCU to do. */
966 if (user || 1020 if (user ||
967 (idle_cpu(cpu) && rcu_scheduler_active && 1021 (idle_cpu(cpu) && rcu_scheduler_active &&
968 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { 1022 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
@@ -971,17 +1025,16 @@ void rcu_check_callbacks(int cpu, int user)
971 * Get here if this CPU took its interrupt from user 1025 * Get here if this CPU took its interrupt from user
972 * mode or from the idle loop, and if this is not a 1026 * mode or from the idle loop, and if this is not a
973 * nested interrupt. In this case, the CPU is in 1027 * nested interrupt. In this case, the CPU is in
974 * a quiescent state, so count it. 1028 * a quiescent state, so note it.
975 * 1029 *
976 * No memory barrier is required here because both 1030 * No memory barrier is required here because both
977 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference 1031 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
978 * only CPU-local variables that other CPUs neither 1032 * variables that other CPUs neither access nor modify,
979 * access nor modify, at least not while the corresponding 1033 * at least not while the corresponding CPU is online.
980 * CPU is online.
981 */ 1034 */
982 1035
983 rcu_qsctr_inc(cpu); 1036 rcu_sched_qs(cpu);
984 rcu_bh_qsctr_inc(cpu); 1037 rcu_bh_qs(cpu);
985 1038
986 } else if (!in_softirq()) { 1039 } else if (!in_softirq()) {
987 1040
@@ -989,11 +1042,12 @@ void rcu_check_callbacks(int cpu, int user)
989 * Get here if this CPU did not take its interrupt from 1042 * Get here if this CPU did not take its interrupt from
990 * softirq, in other words, if it is not interrupting 1043 * softirq, in other words, if it is not interrupting
991 * a rcu_bh read-side critical section. This is an _bh 1044 * a rcu_bh read-side critical section. This is an _bh
992 * critical section, so count it. 1045 * critical section, so note it.
993 */ 1046 */
994 1047
995 rcu_bh_qsctr_inc(cpu); 1048 rcu_bh_qs(cpu);
996 } 1049 }
1050 rcu_preempt_check_callbacks(cpu);
997 raise_softirq(RCU_SOFTIRQ); 1051 raise_softirq(RCU_SOFTIRQ);
998} 1052}
999 1053
@@ -1132,6 +1186,8 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1132{ 1186{
1133 unsigned long flags; 1187 unsigned long flags;
1134 1188
1189 WARN_ON_ONCE(rdp->beenonline == 0);
1190
1135 /* 1191 /*
1136 * If an RCU GP has gone long enough, go check for dyntick 1192 * If an RCU GP has gone long enough, go check for dyntick
1137 * idle CPUs and, if needed, send resched IPIs. 1193 * idle CPUs and, if needed, send resched IPIs.
@@ -1170,8 +1226,10 @@ static void rcu_process_callbacks(struct softirq_action *unused)
1170 */ 1226 */
1171 smp_mb(); /* See above block comment. */ 1227 smp_mb(); /* See above block comment. */
1172 1228
1173 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); 1229 __rcu_process_callbacks(&rcu_sched_state,
1230 &__get_cpu_var(rcu_sched_data));
1174 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); 1231 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1232 rcu_preempt_process_callbacks();
1175 1233
1176 /* 1234 /*
1177 * Memory references from any later RCU read-side critical sections 1235 * Memory references from any later RCU read-side critical sections
@@ -1227,13 +1285,13 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1227} 1285}
1228 1286
1229/* 1287/*
1230 * Queue an RCU callback for invocation after a grace period. 1288 * Queue an RCU-sched callback for invocation after a grace period.
1231 */ 1289 */
1232void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1290void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1233{ 1291{
1234 __call_rcu(head, func, &rcu_state); 1292 __call_rcu(head, func, &rcu_sched_state);
1235} 1293}
1236EXPORT_SYMBOL_GPL(call_rcu); 1294EXPORT_SYMBOL_GPL(call_rcu_sched);
1237 1295
1238/* 1296/*
1239 * Queue an RCU for invocation after a quicker grace period. 1297 * Queue an RCU for invocation after a quicker grace period.
@@ -1305,10 +1363,11 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1305 * by the current CPU, returning 1 if so. This function is part of the 1363 * by the current CPU, returning 1 if so. This function is part of the
1306 * RCU implementation; it is -not- an exported member of the RCU API. 1364 * RCU implementation; it is -not- an exported member of the RCU API.
1307 */ 1365 */
1308int rcu_pending(int cpu) 1366static int rcu_pending(int cpu)
1309{ 1367{
1310 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || 1368 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1311 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); 1369 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1370 rcu_preempt_pending(cpu);
1312} 1371}
1313 1372
1314/* 1373/*
@@ -1320,27 +1379,46 @@ int rcu_pending(int cpu)
1320int rcu_needs_cpu(int cpu) 1379int rcu_needs_cpu(int cpu)
1321{ 1380{
1322 /* RCU callbacks either ready or pending? */ 1381 /* RCU callbacks either ready or pending? */
1323 return per_cpu(rcu_data, cpu).nxtlist || 1382 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1324 per_cpu(rcu_bh_data, cpu).nxtlist; 1383 per_cpu(rcu_bh_data, cpu).nxtlist ||
1384 rcu_preempt_needs_cpu(cpu);
1325} 1385}
1326 1386
1327/* 1387/*
1328 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" 1388 * Do boot-time initialization of a CPU's per-CPU RCU data.
1329 * approach so that we don't have to worry about how long the CPU has
1330 * been gone, or whether it ever was online previously. We do trust the
1331 * ->mynode field, as it is constant for a given struct rcu_data and
1332 * initialized during early boot.
1333 *
1334 * Note that only one online or offline event can be happening at a given
1335 * time. Note also that we can accept some slop in the rsp->completed
1336 * access due to the fact that this CPU cannot possibly have any RCU
1337 * callbacks in flight yet.
1338 */ 1389 */
1339static void __cpuinit 1390static void __init
1340rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 1391rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1341{ 1392{
1342 unsigned long flags; 1393 unsigned long flags;
1343 int i; 1394 int i;
1395 struct rcu_data *rdp = rsp->rda[cpu];
1396 struct rcu_node *rnp = rcu_get_root(rsp);
1397
1398 /* Set up local state, ensuring consistent view of global state. */
1399 spin_lock_irqsave(&rnp->lock, flags);
1400 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1401 rdp->nxtlist = NULL;
1402 for (i = 0; i < RCU_NEXT_SIZE; i++)
1403 rdp->nxttail[i] = &rdp->nxtlist;
1404 rdp->qlen = 0;
1405#ifdef CONFIG_NO_HZ
1406 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1407#endif /* #ifdef CONFIG_NO_HZ */
1408 rdp->cpu = cpu;
1409 spin_unlock_irqrestore(&rnp->lock, flags);
1410}
1411
1412/*
1413 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1414 * offline event can be happening at a given time. Note also that we
1415 * can accept some slop in the rsp->completed access due to the fact
1416 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1417 */
1418static void __cpuinit
1419rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1420{
1421 unsigned long flags;
1344 long lastcomp; 1422 long lastcomp;
1345 unsigned long mask; 1423 unsigned long mask;
1346 struct rcu_data *rdp = rsp->rda[cpu]; 1424 struct rcu_data *rdp = rsp->rda[cpu];
@@ -1354,17 +1432,9 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1354 rdp->passed_quiesc = 0; /* We could be racing with new GP, */ 1432 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1355 rdp->qs_pending = 1; /* so set up to respond to current GP. */ 1433 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1356 rdp->beenonline = 1; /* We have now been online. */ 1434 rdp->beenonline = 1; /* We have now been online. */
1435 rdp->preemptable = preemptable;
1357 rdp->passed_quiesc_completed = lastcomp - 1; 1436 rdp->passed_quiesc_completed = lastcomp - 1;
1358 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1359 rdp->nxtlist = NULL;
1360 for (i = 0; i < RCU_NEXT_SIZE; i++)
1361 rdp->nxttail[i] = &rdp->nxtlist;
1362 rdp->qlen = 0;
1363 rdp->blimit = blimit; 1437 rdp->blimit = blimit;
1364#ifdef CONFIG_NO_HZ
1365 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1366#endif /* #ifdef CONFIG_NO_HZ */
1367 rdp->cpu = cpu;
1368 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1438 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1369 1439
1370 /* 1440 /*
@@ -1405,16 +1475,16 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1405 1475
1406static void __cpuinit rcu_online_cpu(int cpu) 1476static void __cpuinit rcu_online_cpu(int cpu)
1407{ 1477{
1408 rcu_init_percpu_data(cpu, &rcu_state); 1478 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1409 rcu_init_percpu_data(cpu, &rcu_bh_state); 1479 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1410 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 1480 rcu_preempt_init_percpu_data(cpu);
1411} 1481}
1412 1482
1413/* 1483/*
1414 * Handle CPU online/offline notifcation events. 1484 * Handle CPU online/offline notification events.
1415 */ 1485 */
1416static int __cpuinit rcu_cpu_notify(struct notifier_block *self, 1486int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1417 unsigned long action, void *hcpu) 1487 unsigned long action, void *hcpu)
1418{ 1488{
1419 long cpu = (long)hcpu; 1489 long cpu = (long)hcpu;
1420 1490
@@ -1486,6 +1556,7 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1486 rnp = rsp->level[i]; 1556 rnp = rsp->level[i];
1487 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 1557 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1488 spin_lock_init(&rnp->lock); 1558 spin_lock_init(&rnp->lock);
1559 rnp->gpnum = 0;
1489 rnp->qsmask = 0; 1560 rnp->qsmask = 0;
1490 rnp->qsmaskinit = 0; 1561 rnp->qsmaskinit = 0;
1491 rnp->grplo = j * cpustride; 1562 rnp->grplo = j * cpustride;
@@ -1503,16 +1574,20 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1503 j / rsp->levelspread[i - 1]; 1574 j / rsp->levelspread[i - 1];
1504 } 1575 }
1505 rnp->level = i; 1576 rnp->level = i;
1577 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1578 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1506 } 1579 }
1507 } 1580 }
1508} 1581}
1509 1582
1510/* 1583/*
1511 * Helper macro for __rcu_init(). To be used nowhere else! 1584 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1512 * Assigns leaf node pointers into each CPU's rcu_data structure. 1585 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1586 * structure.
1513 */ 1587 */
1514#define RCU_DATA_PTR_INIT(rsp, rcu_data) \ 1588#define RCU_INIT_FLAVOR(rsp, rcu_data) \
1515do { \ 1589do { \
1590 rcu_init_one(rsp); \
1516 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ 1591 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1517 j = 0; \ 1592 j = 0; \
1518 for_each_possible_cpu(i) { \ 1593 for_each_possible_cpu(i) { \
@@ -1520,32 +1595,43 @@ do { \
1520 j++; \ 1595 j++; \
1521 per_cpu(rcu_data, i).mynode = &rnp[j]; \ 1596 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1522 (rsp)->rda[i] = &per_cpu(rcu_data, i); \ 1597 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1598 rcu_boot_init_percpu_data(i, rsp); \
1523 } \ 1599 } \
1524} while (0) 1600} while (0)
1525 1601
1526static struct notifier_block __cpuinitdata rcu_nb = { 1602#ifdef CONFIG_TREE_PREEMPT_RCU
1527 .notifier_call = rcu_cpu_notify, 1603
1528}; 1604void __init __rcu_init_preempt(void)
1605{
1606 int i; /* All used by RCU_INIT_FLAVOR(). */
1607 int j;
1608 struct rcu_node *rnp;
1609
1610 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1611}
1612
1613#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1614
1615void __init __rcu_init_preempt(void)
1616{
1617}
1618
1619#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1529 1620
1530void __init __rcu_init(void) 1621void __init __rcu_init(void)
1531{ 1622{
1532 int i; /* All used by RCU_DATA_PTR_INIT(). */ 1623 int i; /* All used by RCU_INIT_FLAVOR(). */
1533 int j; 1624 int j;
1534 struct rcu_node *rnp; 1625 struct rcu_node *rnp;
1535 1626
1536 printk(KERN_INFO "Hierarchical RCU implementation.\n"); 1627 rcu_bootup_announce();
1537#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 1628#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1538 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); 1629 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1539#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 1630#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1540 rcu_init_one(&rcu_state); 1631 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1541 RCU_DATA_PTR_INIT(&rcu_state, rcu_data); 1632 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1542 rcu_init_one(&rcu_bh_state); 1633 __rcu_init_preempt();
1543 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); 1634 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1544
1545 for_each_online_cpu(i)
1546 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1547 /* Register notifier for non-boot CPUs */
1548 register_cpu_notifier(&rcu_nb);
1549} 1635}
1550 1636
1551module_param(blimit, int, 0); 1637module_param(blimit, int, 0);
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index 5e872bbf07f5..bf8a6f9f134d 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -1,10 +1,259 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright IBM Corporation, 2008
20 *
21 * Author: Ingo Molnar <mingo@elte.hu>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25#include <linux/cache.h>
26#include <linux/spinlock.h>
27#include <linux/threads.h>
28#include <linux/cpumask.h>
29#include <linux/seqlock.h>
30
31/*
32 * Define shape of hierarchy based on NR_CPUS and CONFIG_RCU_FANOUT.
33 * In theory, it should be possible to add more levels straightforwardly.
34 * In practice, this has not been tested, so there is probably some
35 * bug somewhere.
36 */
37#define MAX_RCU_LVLS 3
38#define RCU_FANOUT (CONFIG_RCU_FANOUT)
39#define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT)
40#define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT)
41
42#if NR_CPUS <= RCU_FANOUT
43# define NUM_RCU_LVLS 1
44# define NUM_RCU_LVL_0 1
45# define NUM_RCU_LVL_1 (NR_CPUS)
46# define NUM_RCU_LVL_2 0
47# define NUM_RCU_LVL_3 0
48#elif NR_CPUS <= RCU_FANOUT_SQ
49# define NUM_RCU_LVLS 2
50# define NUM_RCU_LVL_0 1
51# define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT)
52# define NUM_RCU_LVL_2 (NR_CPUS)
53# define NUM_RCU_LVL_3 0
54#elif NR_CPUS <= RCU_FANOUT_CUBE
55# define NUM_RCU_LVLS 3
56# define NUM_RCU_LVL_0 1
57# define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ)
58# define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT))
59# define NUM_RCU_LVL_3 NR_CPUS
60#else
61# error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
62#endif /* #if (NR_CPUS) <= RCU_FANOUT */
63
64#define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3)
65#define NUM_RCU_NODES (RCU_SUM - NR_CPUS)
66
67/*
68 * Dynticks per-CPU state.
69 */
70struct rcu_dynticks {
71 int dynticks_nesting; /* Track nesting level, sort of. */
72 int dynticks; /* Even value for dynticks-idle, else odd. */
73 int dynticks_nmi; /* Even value for either dynticks-idle or */
74 /* not in nmi handler, else odd. So this */
75 /* remains even for nmi from irq handler. */
76};
77
78/*
79 * Definition for node within the RCU grace-period-detection hierarchy.
80 */
81struct rcu_node {
82 spinlock_t lock;
83 long gpnum; /* Current grace period for this node. */
84 /* This will either be equal to or one */
85 /* behind the root rcu_node's gpnum. */
86 unsigned long qsmask; /* CPUs or groups that need to switch in */
87 /* order for current grace period to proceed.*/
88 unsigned long qsmaskinit;
89 /* Per-GP initialization for qsmask. */
90 unsigned long grpmask; /* Mask to apply to parent qsmask. */
91 int grplo; /* lowest-numbered CPU or group here. */
92 int grphi; /* highest-numbered CPU or group here. */
93 u8 grpnum; /* CPU/group number for next level up. */
94 u8 level; /* root is at level 0. */
95 struct rcu_node *parent;
96 struct list_head blocked_tasks[2];
97 /* Tasks blocked in RCU read-side critsect. */
98} ____cacheline_internodealigned_in_smp;
99
100/* Index values for nxttail array in struct rcu_data. */
101#define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */
102#define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */
103#define RCU_NEXT_READY_TAIL 2 /* Also RCU_NEXT head. */
104#define RCU_NEXT_TAIL 3
105#define RCU_NEXT_SIZE 4
106
107/* Per-CPU data for read-copy update. */
108struct rcu_data {
109 /* 1) quiescent-state and grace-period handling : */
110 long completed; /* Track rsp->completed gp number */
111 /* in order to detect GP end. */
112 long gpnum; /* Highest gp number that this CPU */
113 /* is aware of having started. */
114 long passed_quiesc_completed;
115 /* Value of completed at time of qs. */
116 bool passed_quiesc; /* User-mode/idle loop etc. */
117 bool qs_pending; /* Core waits for quiesc state. */
118 bool beenonline; /* CPU online at least once. */
119 bool preemptable; /* Preemptable RCU? */
120 struct rcu_node *mynode; /* This CPU's leaf of hierarchy */
121 unsigned long grpmask; /* Mask to apply to leaf qsmask. */
122
123 /* 2) batch handling */
124 /*
125 * If nxtlist is not NULL, it is partitioned as follows.
126 * Any of the partitions might be empty, in which case the
127 * pointer to that partition will be equal to the pointer for
128 * the following partition. When the list is empty, all of
129 * the nxttail elements point to nxtlist, which is NULL.
130 *
131 * [*nxttail[RCU_NEXT_READY_TAIL], NULL = *nxttail[RCU_NEXT_TAIL]):
132 * Entries that might have arrived after current GP ended
133 * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]):
134 * Entries known to have arrived before current GP ended
135 * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]):
136 * Entries that batch # <= ->completed - 1: waiting for current GP
137 * [nxtlist, *nxttail[RCU_DONE_TAIL]):
138 * Entries that batch # <= ->completed
139 * The grace period for these entries has completed, and
140 * the other grace-period-completed entries may be moved
141 * here temporarily in rcu_process_callbacks().
142 */
143 struct rcu_head *nxtlist;
144 struct rcu_head **nxttail[RCU_NEXT_SIZE];
145 long qlen; /* # of queued callbacks */
146 long blimit; /* Upper limit on a processed batch */
147
148#ifdef CONFIG_NO_HZ
149 /* 3) dynticks interface. */
150 struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */
151 int dynticks_snap; /* Per-GP tracking for dynticks. */
152 int dynticks_nmi_snap; /* Per-GP tracking for dynticks_nmi. */
153#endif /* #ifdef CONFIG_NO_HZ */
154
155 /* 4) reasons this CPU needed to be kicked by force_quiescent_state */
156#ifdef CONFIG_NO_HZ
157 unsigned long dynticks_fqs; /* Kicked due to dynticks idle. */
158#endif /* #ifdef CONFIG_NO_HZ */
159 unsigned long offline_fqs; /* Kicked due to being offline. */
160 unsigned long resched_ipi; /* Sent a resched IPI. */
161
162 /* 5) __rcu_pending() statistics. */
163 long n_rcu_pending; /* rcu_pending() calls since boot. */
164 long n_rp_qs_pending;
165 long n_rp_cb_ready;
166 long n_rp_cpu_needs_gp;
167 long n_rp_gp_completed;
168 long n_rp_gp_started;
169 long n_rp_need_fqs;
170 long n_rp_need_nothing;
171
172 int cpu;
173};
174
175/* Values for signaled field in struct rcu_state. */
176#define RCU_GP_INIT 0 /* Grace period being initialized. */
177#define RCU_SAVE_DYNTICK 1 /* Need to scan dyntick state. */
178#define RCU_FORCE_QS 2 /* Need to force quiescent state. */
179#ifdef CONFIG_NO_HZ
180#define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK
181#else /* #ifdef CONFIG_NO_HZ */
182#define RCU_SIGNAL_INIT RCU_FORCE_QS
183#endif /* #else #ifdef CONFIG_NO_HZ */
184
185#define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */
186#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
187#define RCU_SECONDS_TILL_STALL_CHECK (10 * HZ) /* for rsp->jiffies_stall */
188#define RCU_SECONDS_TILL_STALL_RECHECK (30 * HZ) /* for rsp->jiffies_stall */
189#define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time */
190 /* to take at least one */
191 /* scheduling clock irq */
192 /* before ratting on them. */
193
194#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
195
196/*
197 * RCU global state, including node hierarchy. This hierarchy is
198 * represented in "heap" form in a dense array. The root (first level)
199 * of the hierarchy is in ->node[0] (referenced by ->level[0]), the second
200 * level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]),
201 * and the third level in ->node[m+1] and following (->node[m+1] referenced
202 * by ->level[2]). The number of levels is determined by the number of
203 * CPUs and by CONFIG_RCU_FANOUT. Small systems will have a "hierarchy"
204 * consisting of a single rcu_node.
205 */
206struct rcu_state {
207 struct rcu_node node[NUM_RCU_NODES]; /* Hierarchy. */
208 struct rcu_node *level[NUM_RCU_LVLS]; /* Hierarchy levels. */
209 u32 levelcnt[MAX_RCU_LVLS + 1]; /* # nodes in each level. */
210 u8 levelspread[NUM_RCU_LVLS]; /* kids/node in each level. */
211 struct rcu_data *rda[NR_CPUS]; /* array of rdp pointers. */
212
213 /* The following fields are guarded by the root rcu_node's lock. */
214
215 u8 signaled ____cacheline_internodealigned_in_smp;
216 /* Force QS state. */
217 long gpnum; /* Current gp number. */
218 long completed; /* # of last completed gp. */
219 spinlock_t onofflock; /* exclude on/offline and */
220 /* starting new GP. */
221 spinlock_t fqslock; /* Only one task forcing */
222 /* quiescent states. */
223 unsigned long jiffies_force_qs; /* Time at which to invoke */
224 /* force_quiescent_state(). */
225 unsigned long n_force_qs; /* Number of calls to */
226 /* force_quiescent_state(). */
227 unsigned long n_force_qs_lh; /* ~Number of calls leaving */
228 /* due to lock unavailable. */
229 unsigned long n_force_qs_ngp; /* Number of calls leaving */
230 /* due to no GP active. */
231#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
232 unsigned long gp_start; /* Time at which GP started, */
233 /* but in jiffies. */
234 unsigned long jiffies_stall; /* Time at which to check */
235 /* for CPU stalls. */
236#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
237#ifdef CONFIG_NO_HZ
238 long dynticks_completed; /* Value of completed @ snap. */
239#endif /* #ifdef CONFIG_NO_HZ */
240};
241
242#ifdef RCU_TREE_NONCORE
1 243
2/* 244/*
3 * RCU implementation internal declarations: 245 * RCU implementation internal declarations:
4 */ 246 */
5extern struct rcu_state rcu_state; 247extern struct rcu_state rcu_sched_state;
6DECLARE_PER_CPU(struct rcu_data, rcu_data); 248DECLARE_PER_CPU(struct rcu_data, rcu_sched_data);
7 249
8extern struct rcu_state rcu_bh_state; 250extern struct rcu_state rcu_bh_state;
9DECLARE_PER_CPU(struct rcu_data, rcu_bh_data); 251DECLARE_PER_CPU(struct rcu_data, rcu_bh_data);
10 252
253#ifdef CONFIG_TREE_PREEMPT_RCU
254extern struct rcu_state rcu_preempt_state;
255DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data);
256#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
257
258#endif /* #ifdef RCU_TREE_NONCORE */
259
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
new file mode 100644
index 000000000000..47789369ea59
--- /dev/null
+++ b/kernel/rcutree_plugin.h
@@ -0,0 +1,532 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28#ifdef CONFIG_TREE_PREEMPT_RCU
29
30struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33/*
34 * Tell them what RCU they are running.
35 */
36static inline void rcu_bootup_announce(void)
37{
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40}
41
42/*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46long rcu_batches_completed_preempt(void)
47{
48 return rcu_preempt_state.completed;
49}
50EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52/*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55long rcu_batches_completed(void)
56{
57 return rcu_batches_completed_preempt();
58}
59EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61/*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67static void rcu_preempt_qs_record(int cpu)
68{
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc = 1;
71 rdp->passed_quiesc_completed = rdp->completed;
72}
73
74/*
75 * We have entered the scheduler or are between softirqs in ksoftirqd.
76 * If we are in an RCU read-side critical section, we need to reflect
77 * that in the state of the rcu_node structure corresponding to this CPU.
78 * Caller must disable hardirqs.
79 */
80static void rcu_preempt_qs(int cpu)
81{
82 struct task_struct *t = current;
83 int phase;
84 struct rcu_data *rdp;
85 struct rcu_node *rnp;
86
87 if (t->rcu_read_lock_nesting &&
88 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
89
90 /* Possibly blocking in an RCU read-side critical section. */
91 rdp = rcu_preempt_state.rda[cpu];
92 rnp = rdp->mynode;
93 spin_lock(&rnp->lock);
94 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
95 t->rcu_blocked_node = rnp;
96
97 /*
98 * If this CPU has already checked in, then this task
99 * will hold up the next grace period rather than the
100 * current grace period. Queue the task accordingly.
101 * If the task is queued for the current grace period
102 * (i.e., this CPU has not yet passed through a quiescent
103 * state for the current grace period), then as long
104 * as that task remains queued, the current grace period
105 * cannot end.
106 */
107 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
108 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
109 smp_mb(); /* Ensure later ctxt swtch seen after above. */
110 spin_unlock(&rnp->lock);
111 }
112
113 /*
114 * Either we were not in an RCU read-side critical section to
115 * begin with, or we have now recorded that critical section
116 * globally. Either way, we can now note a quiescent state
117 * for this CPU. Again, if we were in an RCU read-side critical
118 * section, and if that critical section was blocking the current
119 * grace period, then the fact that the task has been enqueued
120 * means that we continue to block the current grace period.
121 */
122 rcu_preempt_qs_record(cpu);
123 t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
124 RCU_READ_UNLOCK_GOT_QS);
125}
126
127/*
128 * Tree-preemptable RCU implementation for rcu_read_lock().
129 * Just increment ->rcu_read_lock_nesting, shared state will be updated
130 * if we block.
131 */
132void __rcu_read_lock(void)
133{
134 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
135 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
136}
137EXPORT_SYMBOL_GPL(__rcu_read_lock);
138
139static void rcu_read_unlock_special(struct task_struct *t)
140{
141 int empty;
142 unsigned long flags;
143 unsigned long mask;
144 struct rcu_node *rnp;
145 int special;
146
147 /* NMI handlers cannot block and cannot safely manipulate state. */
148 if (in_nmi())
149 return;
150
151 local_irq_save(flags);
152
153 /*
154 * If RCU core is waiting for this CPU to exit critical section,
155 * let it know that we have done so.
156 */
157 special = t->rcu_read_unlock_special;
158 if (special & RCU_READ_UNLOCK_NEED_QS) {
159 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
161 }
162
163 /* Hardware IRQ handlers cannot block. */
164 if (in_irq()) {
165 local_irq_restore(flags);
166 return;
167 }
168
169 /* Clean up if blocked during RCU read-side critical section. */
170 if (special & RCU_READ_UNLOCK_BLOCKED) {
171 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
172
173 /*
174 * Remove this task from the list it blocked on. The
175 * task can migrate while we acquire the lock, but at
176 * most one time. So at most two passes through loop.
177 */
178 for (;;) {
179 rnp = t->rcu_blocked_node;
180 spin_lock(&rnp->lock);
181 if (rnp == t->rcu_blocked_node)
182 break;
183 spin_unlock(&rnp->lock);
184 }
185 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
186 list_del_init(&t->rcu_node_entry);
187 t->rcu_blocked_node = NULL;
188
189 /*
190 * If this was the last task on the current list, and if
191 * we aren't waiting on any CPUs, report the quiescent state.
192 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
193 * drop rnp->lock and restore irq.
194 */
195 if (!empty && rnp->qsmask == 0 &&
196 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
197 t->rcu_read_unlock_special &=
198 ~(RCU_READ_UNLOCK_NEED_QS |
199 RCU_READ_UNLOCK_GOT_QS);
200 if (rnp->parent == NULL) {
201 /* Only one rcu_node in the tree. */
202 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
203 return;
204 }
205 /* Report up the rest of the hierarchy. */
206 mask = rnp->grpmask;
207 spin_unlock_irqrestore(&rnp->lock, flags);
208 rnp = rnp->parent;
209 spin_lock_irqsave(&rnp->lock, flags);
210 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
211 return;
212 }
213 spin_unlock(&rnp->lock);
214 }
215 local_irq_restore(flags);
216}
217
218/*
219 * Tree-preemptable RCU implementation for rcu_read_unlock().
220 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
221 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
222 * invoke rcu_read_unlock_special() to clean up after a context switch
223 * in an RCU read-side critical section and other special cases.
224 */
225void __rcu_read_unlock(void)
226{
227 struct task_struct *t = current;
228
229 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
230 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
231 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
232 rcu_read_unlock_special(t);
233}
234EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235
236#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
237
238/*
239 * Scan the current list of tasks blocked within RCU read-side critical
240 * sections, printing out the tid of each.
241 */
242static void rcu_print_task_stall(struct rcu_node *rnp)
243{
244 unsigned long flags;
245 struct list_head *lp;
246 int phase = rnp->gpnum & 0x1;
247 struct task_struct *t;
248
249 if (!list_empty(&rnp->blocked_tasks[phase])) {
250 spin_lock_irqsave(&rnp->lock, flags);
251 phase = rnp->gpnum & 0x1; /* re-read under lock. */
252 lp = &rnp->blocked_tasks[phase];
253 list_for_each_entry(t, lp, rcu_node_entry)
254 printk(" P%d", t->pid);
255 spin_unlock_irqrestore(&rnp->lock, flags);
256 }
257}
258
259#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
260
261/*
262 * Check for preempted RCU readers for the specified rcu_node structure.
263 * If the caller needs a reliable answer, it must hold the rcu_node's
264 * >lock.
265 */
266static int rcu_preempted_readers(struct rcu_node *rnp)
267{
268 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
269}
270
271#ifdef CONFIG_HOTPLUG_CPU
272
273/*
274 * Handle tasklist migration for case in which all CPUs covered by the
275 * specified rcu_node have gone offline. Move them up to the root
276 * rcu_node. The reason for not just moving them to the immediate
277 * parent is to remove the need for rcu_read_unlock_special() to
278 * make more than two attempts to acquire the target rcu_node's lock.
279 *
280 * The caller must hold rnp->lock with irqs disabled.
281 */
282static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
283 struct rcu_node *rnp)
284{
285 int i;
286 struct list_head *lp;
287 struct list_head *lp_root;
288 struct rcu_node *rnp_root = rcu_get_root(rsp);
289 struct task_struct *tp;
290
291 if (rnp == rnp_root) {
292 WARN_ONCE(1, "Last CPU thought to be offlined?");
293 return; /* Shouldn't happen: at least one CPU online. */
294 }
295
296 /*
297 * Move tasks up to root rcu_node. Rely on the fact that the
298 * root rcu_node can be at most one ahead of the rest of the
299 * rcu_nodes in terms of gp_num value. This fact allows us to
300 * move the blocked_tasks[] array directly, element by element.
301 */
302 for (i = 0; i < 2; i++) {
303 lp = &rnp->blocked_tasks[i];
304 lp_root = &rnp_root->blocked_tasks[i];
305 while (!list_empty(lp)) {
306 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
307 spin_lock(&rnp_root->lock); /* irqs already disabled */
308 list_del(&tp->rcu_node_entry);
309 tp->rcu_blocked_node = rnp_root;
310 list_add(&tp->rcu_node_entry, lp_root);
311 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
312 }
313 }
314}
315
316/*
317 * Do CPU-offline processing for preemptable RCU.
318 */
319static void rcu_preempt_offline_cpu(int cpu)
320{
321 __rcu_offline_cpu(cpu, &rcu_preempt_state);
322}
323
324#endif /* #ifdef CONFIG_HOTPLUG_CPU */
325
326/*
327 * Check for a quiescent state from the current CPU. When a task blocks,
328 * the task is recorded in the corresponding CPU's rcu_node structure,
329 * which is checked elsewhere.
330 *
331 * Caller must disable hard irqs.
332 */
333static void rcu_preempt_check_callbacks(int cpu)
334{
335 struct task_struct *t = current;
336
337 if (t->rcu_read_lock_nesting == 0) {
338 t->rcu_read_unlock_special &=
339 ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
340 rcu_preempt_qs_record(cpu);
341 return;
342 }
343 if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
344 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
345 rcu_preempt_qs_record(cpu);
346 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
347 } else if (!(t->rcu_read_unlock_special &
348 RCU_READ_UNLOCK_NEED_QS)) {
349 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
350 }
351 }
352}
353
354/*
355 * Process callbacks for preemptable RCU.
356 */
357static void rcu_preempt_process_callbacks(void)
358{
359 __rcu_process_callbacks(&rcu_preempt_state,
360 &__get_cpu_var(rcu_preempt_data));
361}
362
363/*
364 * Queue a preemptable-RCU callback for invocation after a grace period.
365 */
366void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
367{
368 __call_rcu(head, func, &rcu_preempt_state);
369}
370EXPORT_SYMBOL_GPL(call_rcu);
371
372/*
373 * Check to see if there is any immediate preemptable-RCU-related work
374 * to be done.
375 */
376static int rcu_preempt_pending(int cpu)
377{
378 return __rcu_pending(&rcu_preempt_state,
379 &per_cpu(rcu_preempt_data, cpu));
380}
381
382/*
383 * Does preemptable RCU need the CPU to stay out of dynticks mode?
384 */
385static int rcu_preempt_needs_cpu(int cpu)
386{
387 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
388}
389
390/*
391 * Initialize preemptable RCU's per-CPU data.
392 */
393static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
394{
395 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
396}
397
398/*
399 * Check for a task exiting while in a preemptable-RCU read-side
400 * critical section, clean up if so. No need to issue warnings,
401 * as debug_check_no_locks_held() already does this if lockdep
402 * is enabled.
403 */
404void exit_rcu(void)
405{
406 struct task_struct *t = current;
407
408 if (t->rcu_read_lock_nesting == 0)
409 return;
410 t->rcu_read_lock_nesting = 1;
411 rcu_read_unlock();
412}
413
414#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
415
416/*
417 * Tell them what RCU they are running.
418 */
419static inline void rcu_bootup_announce(void)
420{
421 printk(KERN_INFO "Hierarchical RCU implementation.\n");
422}
423
424/*
425 * Return the number of RCU batches processed thus far for debug & stats.
426 */
427long rcu_batches_completed(void)
428{
429 return rcu_batches_completed_sched();
430}
431EXPORT_SYMBOL_GPL(rcu_batches_completed);
432
433/*
434 * Because preemptable RCU does not exist, we never have to check for
435 * CPUs being in quiescent states.
436 */
437static void rcu_preempt_qs(int cpu)
438{
439}
440
441#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
442
443/*
444 * Because preemptable RCU does not exist, we never have to check for
445 * tasks blocked within RCU read-side critical sections.
446 */
447static void rcu_print_task_stall(struct rcu_node *rnp)
448{
449}
450
451#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
452
453/*
454 * Because preemptable RCU does not exist, there are never any preempted
455 * RCU readers.
456 */
457static int rcu_preempted_readers(struct rcu_node *rnp)
458{
459 return 0;
460}
461
462#ifdef CONFIG_HOTPLUG_CPU
463
464/*
465 * Because preemptable RCU does not exist, it never needs to migrate
466 * tasks that were blocked within RCU read-side critical sections.
467 */
468static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
469 struct rcu_node *rnp)
470{
471}
472
473/*
474 * Because preemptable RCU does not exist, it never needs CPU-offline
475 * processing.
476 */
477static void rcu_preempt_offline_cpu(int cpu)
478{
479}
480
481#endif /* #ifdef CONFIG_HOTPLUG_CPU */
482
483/*
484 * Because preemptable RCU does not exist, it never has any callbacks
485 * to check.
486 */
487void rcu_preempt_check_callbacks(int cpu)
488{
489}
490
491/*
492 * Because preemptable RCU does not exist, it never has any callbacks
493 * to process.
494 */
495void rcu_preempt_process_callbacks(void)
496{
497}
498
499/*
500 * In classic RCU, call_rcu() is just call_rcu_sched().
501 */
502void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
503{
504 call_rcu_sched(head, func);
505}
506EXPORT_SYMBOL_GPL(call_rcu);
507
508/*
509 * Because preemptable RCU does not exist, it never has any work to do.
510 */
511static int rcu_preempt_pending(int cpu)
512{
513 return 0;
514}
515
516/*
517 * Because preemptable RCU does not exist, it never needs any CPU.
518 */
519static int rcu_preempt_needs_cpu(int cpu)
520{
521 return 0;
522}
523
524/*
525 * Because preemptable RCU does not exist, there is no per-CPU
526 * data to initialize.
527 */
528static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
529{
530}
531
532#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c
index fe1dcdbf1ca3..0ea1bff69727 100644
--- a/kernel/rcutree_trace.c
+++ b/kernel/rcutree_trace.c
@@ -43,6 +43,7 @@
43#include <linux/debugfs.h> 43#include <linux/debugfs.h>
44#include <linux/seq_file.h> 44#include <linux/seq_file.h>
45 45
46#define RCU_TREE_NONCORE
46#include "rcutree.h" 47#include "rcutree.h"
47 48
48static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) 49static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
@@ -76,8 +77,12 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
76 77
77static int show_rcudata(struct seq_file *m, void *unused) 78static int show_rcudata(struct seq_file *m, void *unused)
78{ 79{
79 seq_puts(m, "rcu:\n"); 80#ifdef CONFIG_TREE_PREEMPT_RCU
80 PRINT_RCU_DATA(rcu_data, print_one_rcu_data, m); 81 seq_puts(m, "rcu_preempt:\n");
82 PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data, m);
83#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
84 seq_puts(m, "rcu_sched:\n");
85 PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data, m);
81 seq_puts(m, "rcu_bh:\n"); 86 seq_puts(m, "rcu_bh:\n");
82 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); 87 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m);
83 return 0; 88 return 0;
@@ -102,7 +107,7 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp)
102 return; 107 return;
103 seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", 108 seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d",
104 rdp->cpu, 109 rdp->cpu,
105 cpu_is_offline(rdp->cpu) ? "\"Y\"" : "\"N\"", 110 cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"",
106 rdp->completed, rdp->gpnum, 111 rdp->completed, rdp->gpnum,
107 rdp->passed_quiesc, rdp->passed_quiesc_completed, 112 rdp->passed_quiesc, rdp->passed_quiesc_completed,
108 rdp->qs_pending); 113 rdp->qs_pending);
@@ -124,8 +129,12 @@ static int show_rcudata_csv(struct seq_file *m, void *unused)
124 seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); 129 seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\",");
125#endif /* #ifdef CONFIG_NO_HZ */ 130#endif /* #ifdef CONFIG_NO_HZ */
126 seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); 131 seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n");
127 seq_puts(m, "\"rcu:\"\n"); 132#ifdef CONFIG_TREE_PREEMPT_RCU
128 PRINT_RCU_DATA(rcu_data, print_one_rcu_data_csv, m); 133 seq_puts(m, "\"rcu_preempt:\"\n");
134 PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data_csv, m);
135#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
136 seq_puts(m, "\"rcu_sched:\"\n");
137 PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data_csv, m);
129 seq_puts(m, "\"rcu_bh:\"\n"); 138 seq_puts(m, "\"rcu_bh:\"\n");
130 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); 139 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m);
131 return 0; 140 return 0;
@@ -171,8 +180,12 @@ static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp)
171 180
172static int show_rcuhier(struct seq_file *m, void *unused) 181static int show_rcuhier(struct seq_file *m, void *unused)
173{ 182{
174 seq_puts(m, "rcu:\n"); 183#ifdef CONFIG_TREE_PREEMPT_RCU
175 print_one_rcu_state(m, &rcu_state); 184 seq_puts(m, "rcu_preempt:\n");
185 print_one_rcu_state(m, &rcu_preempt_state);
186#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
187 seq_puts(m, "rcu_sched:\n");
188 print_one_rcu_state(m, &rcu_sched_state);
176 seq_puts(m, "rcu_bh:\n"); 189 seq_puts(m, "rcu_bh:\n");
177 print_one_rcu_state(m, &rcu_bh_state); 190 print_one_rcu_state(m, &rcu_bh_state);
178 return 0; 191 return 0;
@@ -193,8 +206,12 @@ static struct file_operations rcuhier_fops = {
193 206
194static int show_rcugp(struct seq_file *m, void *unused) 207static int show_rcugp(struct seq_file *m, void *unused)
195{ 208{
196 seq_printf(m, "rcu: completed=%ld gpnum=%ld\n", 209#ifdef CONFIG_TREE_PREEMPT_RCU
197 rcu_state.completed, rcu_state.gpnum); 210 seq_printf(m, "rcu_preempt: completed=%ld gpnum=%ld\n",
211 rcu_preempt_state.completed, rcu_preempt_state.gpnum);
212#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
213 seq_printf(m, "rcu_sched: completed=%ld gpnum=%ld\n",
214 rcu_sched_state.completed, rcu_sched_state.gpnum);
198 seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", 215 seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n",
199 rcu_bh_state.completed, rcu_bh_state.gpnum); 216 rcu_bh_state.completed, rcu_bh_state.gpnum);
200 return 0; 217 return 0;
@@ -243,8 +260,12 @@ static void print_rcu_pendings(struct seq_file *m, struct rcu_state *rsp)
243 260
244static int show_rcu_pending(struct seq_file *m, void *unused) 261static int show_rcu_pending(struct seq_file *m, void *unused)
245{ 262{
246 seq_puts(m, "rcu:\n"); 263#ifdef CONFIG_TREE_PREEMPT_RCU
247 print_rcu_pendings(m, &rcu_state); 264 seq_puts(m, "rcu_preempt:\n");
265 print_rcu_pendings(m, &rcu_preempt_state);
266#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
267 seq_puts(m, "rcu_sched:\n");
268 print_rcu_pendings(m, &rcu_sched_state);
248 seq_puts(m, "rcu_bh:\n"); 269 seq_puts(m, "rcu_bh:\n");
249 print_rcu_pendings(m, &rcu_bh_state); 270 print_rcu_pendings(m, &rcu_bh_state);
250 return 0; 271 return 0;
@@ -264,62 +285,47 @@ static struct file_operations rcu_pending_fops = {
264}; 285};
265 286
266static struct dentry *rcudir; 287static struct dentry *rcudir;
267static struct dentry *datadir;
268static struct dentry *datadir_csv;
269static struct dentry *gpdir;
270static struct dentry *hierdir;
271static struct dentry *rcu_pendingdir;
272 288
273static int __init rcuclassic_trace_init(void) 289static int __init rcuclassic_trace_init(void)
274{ 290{
291 struct dentry *retval;
292
275 rcudir = debugfs_create_dir("rcu", NULL); 293 rcudir = debugfs_create_dir("rcu", NULL);
276 if (!rcudir) 294 if (!rcudir)
277 goto out; 295 goto free_out;
278 296
279 datadir = debugfs_create_file("rcudata", 0444, rcudir, 297 retval = debugfs_create_file("rcudata", 0444, rcudir,
280 NULL, &rcudata_fops); 298 NULL, &rcudata_fops);
281 if (!datadir) 299 if (!retval)
282 goto free_out; 300 goto free_out;
283 301
284 datadir_csv = debugfs_create_file("rcudata.csv", 0444, rcudir, 302 retval = debugfs_create_file("rcudata.csv", 0444, rcudir,
285 NULL, &rcudata_csv_fops); 303 NULL, &rcudata_csv_fops);
286 if (!datadir_csv) 304 if (!retval)
287 goto free_out; 305 goto free_out;
288 306
289 gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); 307 retval = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops);
290 if (!gpdir) 308 if (!retval)
291 goto free_out; 309 goto free_out;
292 310
293 hierdir = debugfs_create_file("rcuhier", 0444, rcudir, 311 retval = debugfs_create_file("rcuhier", 0444, rcudir,
294 NULL, &rcuhier_fops); 312 NULL, &rcuhier_fops);
295 if (!hierdir) 313 if (!retval)
296 goto free_out; 314 goto free_out;
297 315
298 rcu_pendingdir = debugfs_create_file("rcu_pending", 0444, rcudir, 316 retval = debugfs_create_file("rcu_pending", 0444, rcudir,
299 NULL, &rcu_pending_fops); 317 NULL, &rcu_pending_fops);
300 if (!rcu_pendingdir) 318 if (!retval)
301 goto free_out; 319 goto free_out;
302 return 0; 320 return 0;
303free_out: 321free_out:
304 if (datadir) 322 debugfs_remove_recursive(rcudir);
305 debugfs_remove(datadir);
306 if (datadir_csv)
307 debugfs_remove(datadir_csv);
308 if (gpdir)
309 debugfs_remove(gpdir);
310 debugfs_remove(rcudir);
311out:
312 return 1; 323 return 1;
313} 324}
314 325
315static void __exit rcuclassic_trace_cleanup(void) 326static void __exit rcuclassic_trace_cleanup(void)
316{ 327{
317 debugfs_remove(datadir); 328 debugfs_remove_recursive(rcudir);
318 debugfs_remove(datadir_csv);
319 debugfs_remove(gpdir);
320 debugfs_remove(hierdir);
321 debugfs_remove(rcu_pendingdir);
322 debugfs_remove(rcudir);
323} 329}
324 330
325 331
diff --git a/kernel/sched.c b/kernel/sched.c
index 1b59e265273b..d9db3fb17573 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -64,7 +64,6 @@
64#include <linux/tsacct_kern.h> 64#include <linux/tsacct_kern.h>
65#include <linux/kprobes.h> 65#include <linux/kprobes.h>
66#include <linux/delayacct.h> 66#include <linux/delayacct.h>
67#include <linux/reciprocal_div.h>
68#include <linux/unistd.h> 67#include <linux/unistd.h>
69#include <linux/pagemap.h> 68#include <linux/pagemap.h>
70#include <linux/hrtimer.h> 69#include <linux/hrtimer.h>
@@ -120,30 +119,8 @@
120 */ 119 */
121#define RUNTIME_INF ((u64)~0ULL) 120#define RUNTIME_INF ((u64)~0ULL)
122 121
123#ifdef CONFIG_SMP
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2); 122static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126 123
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
147static inline int rt_policy(int policy) 124static inline int rt_policy(int policy)
148{ 125{
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
@@ -309,8 +286,8 @@ void set_tg_uid(struct user_struct *user)
309 286
310/* 287/*
311 * Root task group. 288 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will 289 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group. 290 * be a child to this group.
314 */ 291 */
315struct task_group root_task_group; 292struct task_group root_task_group;
316 293
@@ -318,12 +295,12 @@ struct task_group root_task_group;
318/* Default task group's sched entity on each cpu */ 295/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); 296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */ 297/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
322#endif /* CONFIG_FAIR_GROUP_SCHED */ 299#endif /* CONFIG_FAIR_GROUP_SCHED */
323 300
324#ifdef CONFIG_RT_GROUP_SCHED 301#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
327#endif /* CONFIG_RT_GROUP_SCHED */ 304#endif /* CONFIG_RT_GROUP_SCHED */
328#else /* !CONFIG_USER_SCHED */ 305#else /* !CONFIG_USER_SCHED */
329#define root_task_group init_task_group 306#define root_task_group init_task_group
@@ -616,6 +593,7 @@ struct rq {
616 593
617 unsigned char idle_at_tick; 594 unsigned char idle_at_tick;
618 /* For active balancing */ 595 /* For active balancing */
596 int post_schedule;
619 int active_balance; 597 int active_balance;
620 int push_cpu; 598 int push_cpu;
621 /* cpu of this runqueue: */ 599 /* cpu of this runqueue: */
@@ -626,6 +604,9 @@ struct rq {
626 604
627 struct task_struct *migration_thread; 605 struct task_struct *migration_thread;
628 struct list_head migration_queue; 606 struct list_head migration_queue;
607
608 u64 rt_avg;
609 u64 age_stamp;
629#endif 610#endif
630 611
631 /* calc_load related fields */ 612 /* calc_load related fields */
@@ -693,6 +674,7 @@ static inline int cpu_of(struct rq *rq)
693#define this_rq() (&__get_cpu_var(runqueues)) 674#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p)) 675#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr) 676#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
677#define raw_rq() (&__raw_get_cpu_var(runqueues))
696 678
697inline void update_rq_clock(struct rq *rq) 679inline void update_rq_clock(struct rq *rq)
698{ 680{
@@ -861,6 +843,14 @@ unsigned int sysctl_sched_shares_ratelimit = 250000;
861unsigned int sysctl_sched_shares_thresh = 4; 843unsigned int sysctl_sched_shares_thresh = 4;
862 844
863/* 845/*
846 * period over which we average the RT time consumption, measured
847 * in ms.
848 *
849 * default: 1s
850 */
851const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
852
853/*
864 * period over which we measure -rt task cpu usage in us. 854 * period over which we measure -rt task cpu usage in us.
865 * default: 1s 855 * default: 1s
866 */ 856 */
@@ -1278,12 +1268,37 @@ void wake_up_idle_cpu(int cpu)
1278} 1268}
1279#endif /* CONFIG_NO_HZ */ 1269#endif /* CONFIG_NO_HZ */
1280 1270
1271static u64 sched_avg_period(void)
1272{
1273 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1274}
1275
1276static void sched_avg_update(struct rq *rq)
1277{
1278 s64 period = sched_avg_period();
1279
1280 while ((s64)(rq->clock - rq->age_stamp) > period) {
1281 rq->age_stamp += period;
1282 rq->rt_avg /= 2;
1283 }
1284}
1285
1286static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287{
1288 rq->rt_avg += rt_delta;
1289 sched_avg_update(rq);
1290}
1291
1281#else /* !CONFIG_SMP */ 1292#else /* !CONFIG_SMP */
1282static void resched_task(struct task_struct *p) 1293static void resched_task(struct task_struct *p)
1283{ 1294{
1284 assert_spin_locked(&task_rq(p)->lock); 1295 assert_spin_locked(&task_rq(p)->lock);
1285 set_tsk_need_resched(p); 1296 set_tsk_need_resched(p);
1286} 1297}
1298
1299static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300{
1301}
1287#endif /* CONFIG_SMP */ 1302#endif /* CONFIG_SMP */
1288 1303
1289#if BITS_PER_LONG == 32 1304#if BITS_PER_LONG == 32
@@ -1513,28 +1528,35 @@ static unsigned long cpu_avg_load_per_task(int cpu)
1513 1528
1514#ifdef CONFIG_FAIR_GROUP_SCHED 1529#ifdef CONFIG_FAIR_GROUP_SCHED
1515 1530
1531struct update_shares_data {
1532 unsigned long rq_weight[NR_CPUS];
1533};
1534
1535static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1536
1516static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1537static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517 1538
1518/* 1539/*
1519 * Calculate and set the cpu's group shares. 1540 * Calculate and set the cpu's group shares.
1520 */ 1541 */
1521static void 1542static void update_group_shares_cpu(struct task_group *tg, int cpu,
1522update_group_shares_cpu(struct task_group *tg, int cpu, 1543 unsigned long sd_shares,
1523 unsigned long sd_shares, unsigned long sd_rq_weight) 1544 unsigned long sd_rq_weight,
1545 struct update_shares_data *usd)
1524{ 1546{
1525 unsigned long shares; 1547 unsigned long shares, rq_weight;
1526 unsigned long rq_weight; 1548 int boost = 0;
1527
1528 if (!tg->se[cpu])
1529 return;
1530 1549
1531 rq_weight = tg->cfs_rq[cpu]->rq_weight; 1550 rq_weight = usd->rq_weight[cpu];
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1554 }
1532 1555
1533 /* 1556 /*
1534 * \Sum shares * rq_weight 1557 * \Sum_j shares_j * rq_weight_i
1535 * shares = ----------------------- 1558 * shares_i = -----------------------------
1536 * \Sum rq_weight 1559 * \Sum_j rq_weight_j
1537 *
1538 */ 1560 */
1539 shares = (sd_shares * rq_weight) / sd_rq_weight; 1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
1540 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); 1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
@@ -1545,8 +1567,8 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1545 unsigned long flags; 1567 unsigned long flags;
1546 1568
1547 spin_lock_irqsave(&rq->lock, flags); 1569 spin_lock_irqsave(&rq->lock, flags);
1548 tg->cfs_rq[cpu]->shares = shares; 1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1549 1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1550 __set_se_shares(tg->se[cpu], shares); 1572 __set_se_shares(tg->se[cpu], shares);
1551 spin_unlock_irqrestore(&rq->lock, flags); 1573 spin_unlock_irqrestore(&rq->lock, flags);
1552 } 1574 }
@@ -1559,22 +1581,30 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1559 */ 1581 */
1560static int tg_shares_up(struct task_group *tg, void *data) 1582static int tg_shares_up(struct task_group *tg, void *data)
1561{ 1583{
1562 unsigned long weight, rq_weight = 0; 1584 unsigned long weight, rq_weight = 0, shares = 0;
1563 unsigned long shares = 0; 1585 struct update_shares_data *usd;
1564 struct sched_domain *sd = data; 1586 struct sched_domain *sd = data;
1587 unsigned long flags;
1565 int i; 1588 int i;
1566 1589
1590 if (!tg->se[0])
1591 return 0;
1592
1593 local_irq_save(flags);
1594 usd = &__get_cpu_var(update_shares_data);
1595
1567 for_each_cpu(i, sched_domain_span(sd)) { 1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 weight = tg->cfs_rq[i]->load.weight;
1598 usd->rq_weight[i] = weight;
1599
1568 /* 1600 /*
1569 * If there are currently no tasks on the cpu pretend there 1601 * If there are currently no tasks on the cpu pretend there
1570 * is one of average load so that when a new task gets to 1602 * is one of average load so that when a new task gets to
1571 * run here it will not get delayed by group starvation. 1603 * run here it will not get delayed by group starvation.
1572 */ 1604 */
1573 weight = tg->cfs_rq[i]->load.weight;
1574 if (!weight) 1605 if (!weight)
1575 weight = NICE_0_LOAD; 1606 weight = NICE_0_LOAD;
1576 1607
1577 tg->cfs_rq[i]->rq_weight = weight;
1578 rq_weight += weight; 1608 rq_weight += weight;
1579 shares += tg->cfs_rq[i]->shares; 1609 shares += tg->cfs_rq[i]->shares;
1580 } 1610 }
@@ -1586,7 +1616,9 @@ static int tg_shares_up(struct task_group *tg, void *data)
1586 shares = tg->shares; 1616 shares = tg->shares;
1587 1617
1588 for_each_cpu(i, sched_domain_span(sd)) 1618 for_each_cpu(i, sched_domain_span(sd))
1589 update_group_shares_cpu(tg, i, shares, rq_weight); 1619 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1620
1621 local_irq_restore(flags);
1590 1622
1591 return 0; 1623 return 0;
1592} 1624}
@@ -1616,8 +1648,14 @@ static int tg_load_down(struct task_group *tg, void *data)
1616 1648
1617static void update_shares(struct sched_domain *sd) 1649static void update_shares(struct sched_domain *sd)
1618{ 1650{
1619 u64 now = cpu_clock(raw_smp_processor_id()); 1651 s64 elapsed;
1620 s64 elapsed = now - sd->last_update; 1652 u64 now;
1653
1654 if (root_task_group_empty())
1655 return;
1656
1657 now = cpu_clock(raw_smp_processor_id());
1658 elapsed = now - sd->last_update;
1621 1659
1622 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1660 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1623 sd->last_update = now; 1661 sd->last_update = now;
@@ -1627,6 +1665,9 @@ static void update_shares(struct sched_domain *sd)
1627 1665
1628static void update_shares_locked(struct rq *rq, struct sched_domain *sd) 1666static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629{ 1667{
1668 if (root_task_group_empty())
1669 return;
1670
1630 spin_unlock(&rq->lock); 1671 spin_unlock(&rq->lock);
1631 update_shares(sd); 1672 update_shares(sd);
1632 spin_lock(&rq->lock); 1673 spin_lock(&rq->lock);
@@ -1634,6 +1675,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1634 1675
1635static void update_h_load(long cpu) 1676static void update_h_load(long cpu)
1636{ 1677{
1678 if (root_task_group_empty())
1679 return;
1680
1637 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 1681 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1638} 1682}
1639 1683
@@ -2268,8 +2312,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2268 } 2312 }
2269 2313
2270 /* Adjust by relative CPU power of the group */ 2314 /* Adjust by relative CPU power of the group */
2271 avg_load = sg_div_cpu_power(group, 2315 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2272 avg_load * SCHED_LOAD_SCALE);
2273 2316
2274 if (local_group) { 2317 if (local_group) {
2275 this_load = avg_load; 2318 this_load = avg_load;
@@ -2637,9 +2680,32 @@ void sched_fork(struct task_struct *p, int clone_flags)
2637 set_task_cpu(p, cpu); 2680 set_task_cpu(p, cpu);
2638 2681
2639 /* 2682 /*
2640 * Make sure we do not leak PI boosting priority to the child: 2683 * Make sure we do not leak PI boosting priority to the child.
2641 */ 2684 */
2642 p->prio = current->normal_prio; 2685 p->prio = current->normal_prio;
2686
2687 /*
2688 * Revert to default priority/policy on fork if requested.
2689 */
2690 if (unlikely(p->sched_reset_on_fork)) {
2691 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2692 p->policy = SCHED_NORMAL;
2693
2694 if (p->normal_prio < DEFAULT_PRIO)
2695 p->prio = DEFAULT_PRIO;
2696
2697 if (PRIO_TO_NICE(p->static_prio) < 0) {
2698 p->static_prio = NICE_TO_PRIO(0);
2699 set_load_weight(p);
2700 }
2701
2702 /*
2703 * We don't need the reset flag anymore after the fork. It has
2704 * fulfilled its duty:
2705 */
2706 p->sched_reset_on_fork = 0;
2707 }
2708
2643 if (!rt_prio(p->prio)) 2709 if (!rt_prio(p->prio))
2644 p->sched_class = &fair_sched_class; 2710 p->sched_class = &fair_sched_class;
2645 2711
@@ -2796,12 +2862,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2796{ 2862{
2797 struct mm_struct *mm = rq->prev_mm; 2863 struct mm_struct *mm = rq->prev_mm;
2798 long prev_state; 2864 long prev_state;
2799#ifdef CONFIG_SMP
2800 int post_schedule = 0;
2801
2802 if (current->sched_class->needs_post_schedule)
2803 post_schedule = current->sched_class->needs_post_schedule(rq);
2804#endif
2805 2865
2806 rq->prev_mm = NULL; 2866 rq->prev_mm = NULL;
2807 2867
@@ -2820,10 +2880,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2820 finish_arch_switch(prev); 2880 finish_arch_switch(prev);
2821 perf_counter_task_sched_in(current, cpu_of(rq)); 2881 perf_counter_task_sched_in(current, cpu_of(rq));
2822 finish_lock_switch(rq, prev); 2882 finish_lock_switch(rq, prev);
2823#ifdef CONFIG_SMP
2824 if (post_schedule)
2825 current->sched_class->post_schedule(rq);
2826#endif
2827 2883
2828 fire_sched_in_preempt_notifiers(current); 2884 fire_sched_in_preempt_notifiers(current);
2829 if (mm) 2885 if (mm)
@@ -2838,6 +2894,42 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2838 } 2894 }
2839} 2895}
2840 2896
2897#ifdef CONFIG_SMP
2898
2899/* assumes rq->lock is held */
2900static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2901{
2902 if (prev->sched_class->pre_schedule)
2903 prev->sched_class->pre_schedule(rq, prev);
2904}
2905
2906/* rq->lock is NOT held, but preemption is disabled */
2907static inline void post_schedule(struct rq *rq)
2908{
2909 if (rq->post_schedule) {
2910 unsigned long flags;
2911
2912 spin_lock_irqsave(&rq->lock, flags);
2913 if (rq->curr->sched_class->post_schedule)
2914 rq->curr->sched_class->post_schedule(rq);
2915 spin_unlock_irqrestore(&rq->lock, flags);
2916
2917 rq->post_schedule = 0;
2918 }
2919}
2920
2921#else
2922
2923static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2924{
2925}
2926
2927static inline void post_schedule(struct rq *rq)
2928{
2929}
2930
2931#endif
2932
2841/** 2933/**
2842 * schedule_tail - first thing a freshly forked thread must call. 2934 * schedule_tail - first thing a freshly forked thread must call.
2843 * @prev: the thread we just switched away from. 2935 * @prev: the thread we just switched away from.
@@ -2848,6 +2940,13 @@ asmlinkage void schedule_tail(struct task_struct *prev)
2848 struct rq *rq = this_rq(); 2940 struct rq *rq = this_rq();
2849 2941
2850 finish_task_switch(rq, prev); 2942 finish_task_switch(rq, prev);
2943
2944 /*
2945 * FIXME: do we need to worry about rq being invalidated by the
2946 * task_switch?
2947 */
2948 post_schedule(rq);
2949
2851#ifdef __ARCH_WANT_UNLOCKED_CTXSW 2950#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2852 /* In this case, finish_task_switch does not reenable preemption */ 2951 /* In this case, finish_task_switch does not reenable preemption */
2853 preempt_enable(); 2952 preempt_enable();
@@ -3379,9 +3478,10 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3379{ 3478{
3380 const struct sched_class *class; 3479 const struct sched_class *class;
3381 3480
3382 for (class = sched_class_highest; class; class = class->next) 3481 for_each_class(class) {
3383 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) 3482 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3384 return 1; 3483 return 1;
3484 }
3385 3485
3386 return 0; 3486 return 0;
3387} 3487}
@@ -3544,7 +3644,7 @@ static inline void update_sd_power_savings_stats(struct sched_group *group,
3544 * capacity but still has some space to pick up some load 3644 * capacity but still has some space to pick up some load
3545 * from other group and save more power 3645 * from other group and save more power
3546 */ 3646 */
3547 if (sgs->sum_nr_running > sgs->group_capacity - 1) 3647 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3548 return; 3648 return;
3549 3649
3550 if (sgs->sum_nr_running > sds->leader_nr_running || 3650 if (sgs->sum_nr_running > sds->leader_nr_running ||
@@ -3611,6 +3711,77 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3611} 3711}
3612#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3712#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3613 3713
3714unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3715{
3716 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3717 unsigned long smt_gain = sd->smt_gain;
3718
3719 smt_gain /= weight;
3720
3721 return smt_gain;
3722}
3723
3724unsigned long scale_rt_power(int cpu)
3725{
3726 struct rq *rq = cpu_rq(cpu);
3727 u64 total, available;
3728
3729 sched_avg_update(rq);
3730
3731 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3732 available = total - rq->rt_avg;
3733
3734 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3735 total = SCHED_LOAD_SCALE;
3736
3737 total >>= SCHED_LOAD_SHIFT;
3738
3739 return div_u64(available, total);
3740}
3741
3742static void update_cpu_power(struct sched_domain *sd, int cpu)
3743{
3744 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3745 unsigned long power = SCHED_LOAD_SCALE;
3746 struct sched_group *sdg = sd->groups;
3747
3748 /* here we could scale based on cpufreq */
3749
3750 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3751 power *= arch_scale_smt_power(sd, cpu);
3752 power >>= SCHED_LOAD_SHIFT;
3753 }
3754
3755 power *= scale_rt_power(cpu);
3756 power >>= SCHED_LOAD_SHIFT;
3757
3758 if (!power)
3759 power = 1;
3760
3761 sdg->cpu_power = power;
3762}
3763
3764static void update_group_power(struct sched_domain *sd, int cpu)
3765{
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group, *sdg = sd->groups;
3768 unsigned long power;
3769
3770 if (!child) {
3771 update_cpu_power(sd, cpu);
3772 return;
3773 }
3774
3775 power = 0;
3776
3777 group = child->groups;
3778 do {
3779 power += group->cpu_power;
3780 group = group->next;
3781 } while (group != child->groups);
3782
3783 sdg->cpu_power = power;
3784}
3614 3785
3615/** 3786/**
3616 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3787 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
@@ -3624,7 +3795,8 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3624 * @balance: Should we balance. 3795 * @balance: Should we balance.
3625 * @sgs: variable to hold the statistics for this group. 3796 * @sgs: variable to hold the statistics for this group.
3626 */ 3797 */
3627static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, 3798static inline void update_sg_lb_stats(struct sched_domain *sd,
3799 struct sched_group *group, int this_cpu,
3628 enum cpu_idle_type idle, int load_idx, int *sd_idle, 3800 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3629 int local_group, const struct cpumask *cpus, 3801 int local_group, const struct cpumask *cpus,
3630 int *balance, struct sg_lb_stats *sgs) 3802 int *balance, struct sg_lb_stats *sgs)
@@ -3635,8 +3807,11 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3635 unsigned long sum_avg_load_per_task; 3807 unsigned long sum_avg_load_per_task;
3636 unsigned long avg_load_per_task; 3808 unsigned long avg_load_per_task;
3637 3809
3638 if (local_group) 3810 if (local_group) {
3639 balance_cpu = group_first_cpu(group); 3811 balance_cpu = group_first_cpu(group);
3812 if (balance_cpu == this_cpu)
3813 update_group_power(sd, this_cpu);
3814 }
3640 3815
3641 /* Tally up the load of all CPUs in the group */ 3816 /* Tally up the load of all CPUs in the group */
3642 sum_avg_load_per_task = avg_load_per_task = 0; 3817 sum_avg_load_per_task = avg_load_per_task = 0;
@@ -3685,8 +3860,7 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3685 } 3860 }
3686 3861
3687 /* Adjust by relative CPU power of the group */ 3862 /* Adjust by relative CPU power of the group */
3688 sgs->avg_load = sg_div_cpu_power(group, 3863 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3689 sgs->group_load * SCHED_LOAD_SCALE);
3690 3864
3691 3865
3692 /* 3866 /*
@@ -3698,14 +3872,14 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3698 * normalized nr_running number somewhere that negates 3872 * normalized nr_running number somewhere that negates
3699 * the hierarchy? 3873 * the hierarchy?
3700 */ 3874 */
3701 avg_load_per_task = sg_div_cpu_power(group, 3875 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3702 sum_avg_load_per_task * SCHED_LOAD_SCALE); 3876 group->cpu_power;
3703 3877
3704 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) 3878 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3705 sgs->group_imb = 1; 3879 sgs->group_imb = 1;
3706 3880
3707 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; 3881 sgs->group_capacity =
3708 3882 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3709} 3883}
3710 3884
3711/** 3885/**
@@ -3723,9 +3897,13 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3723 const struct cpumask *cpus, int *balance, 3897 const struct cpumask *cpus, int *balance,
3724 struct sd_lb_stats *sds) 3898 struct sd_lb_stats *sds)
3725{ 3899{
3900 struct sched_domain *child = sd->child;
3726 struct sched_group *group = sd->groups; 3901 struct sched_group *group = sd->groups;
3727 struct sg_lb_stats sgs; 3902 struct sg_lb_stats sgs;
3728 int load_idx; 3903 int load_idx, prefer_sibling = 0;
3904
3905 if (child && child->flags & SD_PREFER_SIBLING)
3906 prefer_sibling = 1;
3729 3907
3730 init_sd_power_savings_stats(sd, sds, idle); 3908 init_sd_power_savings_stats(sd, sds, idle);
3731 load_idx = get_sd_load_idx(sd, idle); 3909 load_idx = get_sd_load_idx(sd, idle);
@@ -3736,14 +3914,22 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3736 local_group = cpumask_test_cpu(this_cpu, 3914 local_group = cpumask_test_cpu(this_cpu,
3737 sched_group_cpus(group)); 3915 sched_group_cpus(group));
3738 memset(&sgs, 0, sizeof(sgs)); 3916 memset(&sgs, 0, sizeof(sgs));
3739 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, 3917 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3740 local_group, cpus, balance, &sgs); 3918 local_group, cpus, balance, &sgs);
3741 3919
3742 if (local_group && balance && !(*balance)) 3920 if (local_group && balance && !(*balance))
3743 return; 3921 return;
3744 3922
3745 sds->total_load += sgs.group_load; 3923 sds->total_load += sgs.group_load;
3746 sds->total_pwr += group->__cpu_power; 3924 sds->total_pwr += group->cpu_power;
3925
3926 /*
3927 * In case the child domain prefers tasks go to siblings
3928 * first, lower the group capacity to one so that we'll try
3929 * and move all the excess tasks away.
3930 */
3931 if (prefer_sibling)
3932 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3747 3933
3748 if (local_group) { 3934 if (local_group) {
3749 sds->this_load = sgs.avg_load; 3935 sds->this_load = sgs.avg_load;
@@ -3763,7 +3949,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3763 update_sd_power_savings_stats(group, sds, local_group, &sgs); 3949 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3764 group = group->next; 3950 group = group->next;
3765 } while (group != sd->groups); 3951 } while (group != sd->groups);
3766
3767} 3952}
3768 3953
3769/** 3954/**
@@ -3801,28 +3986,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3801 * moving them. 3986 * moving them.
3802 */ 3987 */
3803 3988
3804 pwr_now += sds->busiest->__cpu_power * 3989 pwr_now += sds->busiest->cpu_power *
3805 min(sds->busiest_load_per_task, sds->max_load); 3990 min(sds->busiest_load_per_task, sds->max_load);
3806 pwr_now += sds->this->__cpu_power * 3991 pwr_now += sds->this->cpu_power *
3807 min(sds->this_load_per_task, sds->this_load); 3992 min(sds->this_load_per_task, sds->this_load);
3808 pwr_now /= SCHED_LOAD_SCALE; 3993 pwr_now /= SCHED_LOAD_SCALE;
3809 3994
3810 /* Amount of load we'd subtract */ 3995 /* Amount of load we'd subtract */
3811 tmp = sg_div_cpu_power(sds->busiest, 3996 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3812 sds->busiest_load_per_task * SCHED_LOAD_SCALE); 3997 sds->busiest->cpu_power;
3813 if (sds->max_load > tmp) 3998 if (sds->max_load > tmp)
3814 pwr_move += sds->busiest->__cpu_power * 3999 pwr_move += sds->busiest->cpu_power *
3815 min(sds->busiest_load_per_task, sds->max_load - tmp); 4000 min(sds->busiest_load_per_task, sds->max_load - tmp);
3816 4001
3817 /* Amount of load we'd add */ 4002 /* Amount of load we'd add */
3818 if (sds->max_load * sds->busiest->__cpu_power < 4003 if (sds->max_load * sds->busiest->cpu_power <
3819 sds->busiest_load_per_task * SCHED_LOAD_SCALE) 4004 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3820 tmp = sg_div_cpu_power(sds->this, 4005 tmp = (sds->max_load * sds->busiest->cpu_power) /
3821 sds->max_load * sds->busiest->__cpu_power); 4006 sds->this->cpu_power;
3822 else 4007 else
3823 tmp = sg_div_cpu_power(sds->this, 4008 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3824 sds->busiest_load_per_task * SCHED_LOAD_SCALE); 4009 sds->this->cpu_power;
3825 pwr_move += sds->this->__cpu_power * 4010 pwr_move += sds->this->cpu_power *
3826 min(sds->this_load_per_task, sds->this_load + tmp); 4011 min(sds->this_load_per_task, sds->this_load + tmp);
3827 pwr_move /= SCHED_LOAD_SCALE; 4012 pwr_move /= SCHED_LOAD_SCALE;
3828 4013
@@ -3857,8 +4042,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3857 sds->max_load - sds->busiest_load_per_task); 4042 sds->max_load - sds->busiest_load_per_task);
3858 4043
3859 /* How much load to actually move to equalise the imbalance */ 4044 /* How much load to actually move to equalise the imbalance */
3860 *imbalance = min(max_pull * sds->busiest->__cpu_power, 4045 *imbalance = min(max_pull * sds->busiest->cpu_power,
3861 (sds->avg_load - sds->this_load) * sds->this->__cpu_power) 4046 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3862 / SCHED_LOAD_SCALE; 4047 / SCHED_LOAD_SCALE;
3863 4048
3864 /* 4049 /*
@@ -3976,6 +4161,26 @@ ret:
3976 return NULL; 4161 return NULL;
3977} 4162}
3978 4163
4164static struct sched_group *group_of(int cpu)
4165{
4166 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4167
4168 if (!sd)
4169 return NULL;
4170
4171 return sd->groups;
4172}
4173
4174static unsigned long power_of(int cpu)
4175{
4176 struct sched_group *group = group_of(cpu);
4177
4178 if (!group)
4179 return SCHED_LOAD_SCALE;
4180
4181 return group->cpu_power;
4182}
4183
3979/* 4184/*
3980 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4185 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3981 */ 4186 */
@@ -3988,15 +4193,18 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3988 int i; 4193 int i;
3989 4194
3990 for_each_cpu(i, sched_group_cpus(group)) { 4195 for_each_cpu(i, sched_group_cpus(group)) {
4196 unsigned long power = power_of(i);
4197 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3991 unsigned long wl; 4198 unsigned long wl;
3992 4199
3993 if (!cpumask_test_cpu(i, cpus)) 4200 if (!cpumask_test_cpu(i, cpus))
3994 continue; 4201 continue;
3995 4202
3996 rq = cpu_rq(i); 4203 rq = cpu_rq(i);
3997 wl = weighted_cpuload(i); 4204 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4205 wl /= power;
3998 4206
3999 if (rq->nr_running == 1 && wl > imbalance) 4207 if (capacity && rq->nr_running == 1 && wl > imbalance)
4000 continue; 4208 continue;
4001 4209
4002 if (wl > max_load) { 4210 if (wl > max_load) {
@@ -5325,7 +5533,7 @@ need_resched:
5325 preempt_disable(); 5533 preempt_disable();
5326 cpu = smp_processor_id(); 5534 cpu = smp_processor_id();
5327 rq = cpu_rq(cpu); 5535 rq = cpu_rq(cpu);
5328 rcu_qsctr_inc(cpu); 5536 rcu_sched_qs(cpu);
5329 prev = rq->curr; 5537 prev = rq->curr;
5330 switch_count = &prev->nivcsw; 5538 switch_count = &prev->nivcsw;
5331 5539
@@ -5349,10 +5557,7 @@ need_resched_nonpreemptible:
5349 switch_count = &prev->nvcsw; 5557 switch_count = &prev->nvcsw;
5350 } 5558 }
5351 5559
5352#ifdef CONFIG_SMP 5560 pre_schedule(rq, prev);
5353 if (prev->sched_class->pre_schedule)
5354 prev->sched_class->pre_schedule(rq, prev);
5355#endif
5356 5561
5357 if (unlikely(!rq->nr_running)) 5562 if (unlikely(!rq->nr_running))
5358 idle_balance(cpu, rq); 5563 idle_balance(cpu, rq);
@@ -5378,6 +5583,8 @@ need_resched_nonpreemptible:
5378 } else 5583 } else
5379 spin_unlock_irq(&rq->lock); 5584 spin_unlock_irq(&rq->lock);
5380 5585
5586 post_schedule(rq);
5587
5381 if (unlikely(reacquire_kernel_lock(current) < 0)) 5588 if (unlikely(reacquire_kernel_lock(current) < 0))
5382 goto need_resched_nonpreemptible; 5589 goto need_resched_nonpreemptible;
5383 5590
@@ -6123,17 +6330,25 @@ static int __sched_setscheduler(struct task_struct *p, int policy,
6123 unsigned long flags; 6330 unsigned long flags;
6124 const struct sched_class *prev_class = p->sched_class; 6331 const struct sched_class *prev_class = p->sched_class;
6125 struct rq *rq; 6332 struct rq *rq;
6333 int reset_on_fork;
6126 6334
6127 /* may grab non-irq protected spin_locks */ 6335 /* may grab non-irq protected spin_locks */
6128 BUG_ON(in_interrupt()); 6336 BUG_ON(in_interrupt());
6129recheck: 6337recheck:
6130 /* double check policy once rq lock held */ 6338 /* double check policy once rq lock held */
6131 if (policy < 0) 6339 if (policy < 0) {
6340 reset_on_fork = p->sched_reset_on_fork;
6132 policy = oldpolicy = p->policy; 6341 policy = oldpolicy = p->policy;
6133 else if (policy != SCHED_FIFO && policy != SCHED_RR && 6342 } else {
6134 policy != SCHED_NORMAL && policy != SCHED_BATCH && 6343 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6135 policy != SCHED_IDLE) 6344 policy &= ~SCHED_RESET_ON_FORK;
6136 return -EINVAL; 6345
6346 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6347 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6348 policy != SCHED_IDLE)
6349 return -EINVAL;
6350 }
6351
6137 /* 6352 /*
6138 * Valid priorities for SCHED_FIFO and SCHED_RR are 6353 * Valid priorities for SCHED_FIFO and SCHED_RR are
6139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 6354 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
@@ -6177,6 +6392,10 @@ recheck:
6177 /* can't change other user's priorities */ 6392 /* can't change other user's priorities */
6178 if (!check_same_owner(p)) 6393 if (!check_same_owner(p))
6179 return -EPERM; 6394 return -EPERM;
6395
6396 /* Normal users shall not reset the sched_reset_on_fork flag */
6397 if (p->sched_reset_on_fork && !reset_on_fork)
6398 return -EPERM;
6180 } 6399 }
6181 6400
6182 if (user) { 6401 if (user) {
@@ -6220,6 +6439,8 @@ recheck:
6220 if (running) 6439 if (running)
6221 p->sched_class->put_prev_task(rq, p); 6440 p->sched_class->put_prev_task(rq, p);
6222 6441
6442 p->sched_reset_on_fork = reset_on_fork;
6443
6223 oldprio = p->prio; 6444 oldprio = p->prio;
6224 __setscheduler(rq, p, policy, param->sched_priority); 6445 __setscheduler(rq, p, policy, param->sched_priority);
6225 6446
@@ -6336,14 +6557,15 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6336 if (p) { 6557 if (p) {
6337 retval = security_task_getscheduler(p); 6558 retval = security_task_getscheduler(p);
6338 if (!retval) 6559 if (!retval)
6339 retval = p->policy; 6560 retval = p->policy
6561 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6340 } 6562 }
6341 read_unlock(&tasklist_lock); 6563 read_unlock(&tasklist_lock);
6342 return retval; 6564 return retval;
6343} 6565}
6344 6566
6345/** 6567/**
6346 * sys_sched_getscheduler - get the RT priority of a thread 6568 * sys_sched_getparam - get the RT priority of a thread
6347 * @pid: the pid in question. 6569 * @pid: the pid in question.
6348 * @param: structure containing the RT priority. 6570 * @param: structure containing the RT priority.
6349 */ 6571 */
@@ -6571,19 +6793,9 @@ static inline int should_resched(void)
6571 6793
6572static void __cond_resched(void) 6794static void __cond_resched(void)
6573{ 6795{
6574#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 6796 add_preempt_count(PREEMPT_ACTIVE);
6575 __might_sleep(__FILE__, __LINE__); 6797 schedule();
6576#endif 6798 sub_preempt_count(PREEMPT_ACTIVE);
6577 /*
6578 * The BKS might be reacquired before we have dropped
6579 * PREEMPT_ACTIVE, which could trigger a second
6580 * cond_resched() call.
6581 */
6582 do {
6583 add_preempt_count(PREEMPT_ACTIVE);
6584 schedule();
6585 sub_preempt_count(PREEMPT_ACTIVE);
6586 } while (need_resched());
6587} 6799}
6588 6800
6589int __sched _cond_resched(void) 6801int __sched _cond_resched(void)
@@ -6597,18 +6809,20 @@ int __sched _cond_resched(void)
6597EXPORT_SYMBOL(_cond_resched); 6809EXPORT_SYMBOL(_cond_resched);
6598 6810
6599/* 6811/*
6600 * cond_resched_lock() - if a reschedule is pending, drop the given lock, 6812 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6601 * call schedule, and on return reacquire the lock. 6813 * call schedule, and on return reacquire the lock.
6602 * 6814 *
6603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 6815 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6604 * operations here to prevent schedule() from being called twice (once via 6816 * operations here to prevent schedule() from being called twice (once via
6605 * spin_unlock(), once by hand). 6817 * spin_unlock(), once by hand).
6606 */ 6818 */
6607int cond_resched_lock(spinlock_t *lock) 6819int __cond_resched_lock(spinlock_t *lock)
6608{ 6820{
6609 int resched = should_resched(); 6821 int resched = should_resched();
6610 int ret = 0; 6822 int ret = 0;
6611 6823
6824 lockdep_assert_held(lock);
6825
6612 if (spin_needbreak(lock) || resched) { 6826 if (spin_needbreak(lock) || resched) {
6613 spin_unlock(lock); 6827 spin_unlock(lock);
6614 if (resched) 6828 if (resched)
@@ -6620,9 +6834,9 @@ int cond_resched_lock(spinlock_t *lock)
6620 } 6834 }
6621 return ret; 6835 return ret;
6622} 6836}
6623EXPORT_SYMBOL(cond_resched_lock); 6837EXPORT_SYMBOL(__cond_resched_lock);
6624 6838
6625int __sched cond_resched_softirq(void) 6839int __sched __cond_resched_softirq(void)
6626{ 6840{
6627 BUG_ON(!in_softirq()); 6841 BUG_ON(!in_softirq());
6628 6842
@@ -6634,7 +6848,7 @@ int __sched cond_resched_softirq(void)
6634 } 6848 }
6635 return 0; 6849 return 0;
6636} 6850}
6637EXPORT_SYMBOL(cond_resched_softirq); 6851EXPORT_SYMBOL(__cond_resched_softirq);
6638 6852
6639/** 6853/**
6640 * yield - yield the current processor to other threads. 6854 * yield - yield the current processor to other threads.
@@ -6658,11 +6872,13 @@ EXPORT_SYMBOL(yield);
6658 */ 6872 */
6659void __sched io_schedule(void) 6873void __sched io_schedule(void)
6660{ 6874{
6661 struct rq *rq = &__raw_get_cpu_var(runqueues); 6875 struct rq *rq = raw_rq();
6662 6876
6663 delayacct_blkio_start(); 6877 delayacct_blkio_start();
6664 atomic_inc(&rq->nr_iowait); 6878 atomic_inc(&rq->nr_iowait);
6879 current->in_iowait = 1;
6665 schedule(); 6880 schedule();
6881 current->in_iowait = 0;
6666 atomic_dec(&rq->nr_iowait); 6882 atomic_dec(&rq->nr_iowait);
6667 delayacct_blkio_end(); 6883 delayacct_blkio_end();
6668} 6884}
@@ -6670,12 +6886,14 @@ EXPORT_SYMBOL(io_schedule);
6670 6886
6671long __sched io_schedule_timeout(long timeout) 6887long __sched io_schedule_timeout(long timeout)
6672{ 6888{
6673 struct rq *rq = &__raw_get_cpu_var(runqueues); 6889 struct rq *rq = raw_rq();
6674 long ret; 6890 long ret;
6675 6891
6676 delayacct_blkio_start(); 6892 delayacct_blkio_start();
6677 atomic_inc(&rq->nr_iowait); 6893 atomic_inc(&rq->nr_iowait);
6894 current->in_iowait = 1;
6678 ret = schedule_timeout(timeout); 6895 ret = schedule_timeout(timeout);
6896 current->in_iowait = 0;
6679 atomic_dec(&rq->nr_iowait); 6897 atomic_dec(&rq->nr_iowait);
6680 delayacct_blkio_end(); 6898 delayacct_blkio_end();
6681 return ret; 6899 return ret;
@@ -6992,8 +7210,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6992 7210
6993 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { 7211 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6994 /* Need help from migration thread: drop lock and wait. */ 7212 /* Need help from migration thread: drop lock and wait. */
7213 struct task_struct *mt = rq->migration_thread;
7214
7215 get_task_struct(mt);
6995 task_rq_unlock(rq, &flags); 7216 task_rq_unlock(rq, &flags);
6996 wake_up_process(rq->migration_thread); 7217 wake_up_process(rq->migration_thread);
7218 put_task_struct(mt);
6997 wait_for_completion(&req.done); 7219 wait_for_completion(&req.done);
6998 tlb_migrate_finish(p->mm); 7220 tlb_migrate_finish(p->mm);
6999 return 0; 7221 return 0;
@@ -7051,6 +7273,11 @@ fail:
7051 return ret; 7273 return ret;
7052} 7274}
7053 7275
7276#define RCU_MIGRATION_IDLE 0
7277#define RCU_MIGRATION_NEED_QS 1
7278#define RCU_MIGRATION_GOT_QS 2
7279#define RCU_MIGRATION_MUST_SYNC 3
7280
7054/* 7281/*
7055 * migration_thread - this is a highprio system thread that performs 7282 * migration_thread - this is a highprio system thread that performs
7056 * thread migration by bumping thread off CPU then 'pushing' onto 7283 * thread migration by bumping thread off CPU then 'pushing' onto
@@ -7058,6 +7285,7 @@ fail:
7058 */ 7285 */
7059static int migration_thread(void *data) 7286static int migration_thread(void *data)
7060{ 7287{
7288 int badcpu;
7061 int cpu = (long)data; 7289 int cpu = (long)data;
7062 struct rq *rq; 7290 struct rq *rq;
7063 7291
@@ -7092,8 +7320,17 @@ static int migration_thread(void *data)
7092 req = list_entry(head->next, struct migration_req, list); 7320 req = list_entry(head->next, struct migration_req, list);
7093 list_del_init(head->next); 7321 list_del_init(head->next);
7094 7322
7095 spin_unlock(&rq->lock); 7323 if (req->task != NULL) {
7096 __migrate_task(req->task, cpu, req->dest_cpu); 7324 spin_unlock(&rq->lock);
7325 __migrate_task(req->task, cpu, req->dest_cpu);
7326 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7327 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7328 spin_unlock(&rq->lock);
7329 } else {
7330 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7331 spin_unlock(&rq->lock);
7332 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7333 }
7097 local_irq_enable(); 7334 local_irq_enable();
7098 7335
7099 complete(&req->done); 7336 complete(&req->done);
@@ -7625,7 +7862,7 @@ static int __init migration_init(void)
7625 migration_call(&migration_notifier, CPU_ONLINE, cpu); 7862 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7626 register_cpu_notifier(&migration_notifier); 7863 register_cpu_notifier(&migration_notifier);
7627 7864
7628 return err; 7865 return 0;
7629} 7866}
7630early_initcall(migration_init); 7867early_initcall(migration_init);
7631#endif 7868#endif
@@ -7672,7 +7909,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7672 break; 7909 break;
7673 } 7910 }
7674 7911
7675 if (!group->__cpu_power) { 7912 if (!group->cpu_power) {
7676 printk(KERN_CONT "\n"); 7913 printk(KERN_CONT "\n");
7677 printk(KERN_ERR "ERROR: domain->cpu_power not " 7914 printk(KERN_ERR "ERROR: domain->cpu_power not "
7678 "set\n"); 7915 "set\n");
@@ -7696,9 +7933,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7696 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 7933 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7697 7934
7698 printk(KERN_CONT " %s", str); 7935 printk(KERN_CONT " %s", str);
7699 if (group->__cpu_power != SCHED_LOAD_SCALE) { 7936 if (group->cpu_power != SCHED_LOAD_SCALE) {
7700 printk(KERN_CONT " (__cpu_power = %d)", 7937 printk(KERN_CONT " (cpu_power = %d)",
7701 group->__cpu_power); 7938 group->cpu_power);
7702 } 7939 }
7703 7940
7704 group = group->next; 7941 group = group->next;
@@ -7841,7 +8078,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7841 rq->rd = rd; 8078 rq->rd = rd;
7842 8079
7843 cpumask_set_cpu(rq->cpu, rd->span); 8080 cpumask_set_cpu(rq->cpu, rd->span);
7844 if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) 8081 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7845 set_rq_online(rq); 8082 set_rq_online(rq);
7846 8083
7847 spin_unlock_irqrestore(&rq->lock, flags); 8084 spin_unlock_irqrestore(&rq->lock, flags);
@@ -7983,7 +8220,7 @@ init_sched_build_groups(const struct cpumask *span,
7983 continue; 8220 continue;
7984 8221
7985 cpumask_clear(sched_group_cpus(sg)); 8222 cpumask_clear(sched_group_cpus(sg));
7986 sg->__cpu_power = 0; 8223 sg->cpu_power = 0;
7987 8224
7988 for_each_cpu(j, span) { 8225 for_each_cpu(j, span) {
7989 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 8226 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
@@ -8091,6 +8328,39 @@ struct static_sched_domain {
8091 DECLARE_BITMAP(span, CONFIG_NR_CPUS); 8328 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8092}; 8329};
8093 8330
8331struct s_data {
8332#ifdef CONFIG_NUMA
8333 int sd_allnodes;
8334 cpumask_var_t domainspan;
8335 cpumask_var_t covered;
8336 cpumask_var_t notcovered;
8337#endif
8338 cpumask_var_t nodemask;
8339 cpumask_var_t this_sibling_map;
8340 cpumask_var_t this_core_map;
8341 cpumask_var_t send_covered;
8342 cpumask_var_t tmpmask;
8343 struct sched_group **sched_group_nodes;
8344 struct root_domain *rd;
8345};
8346
8347enum s_alloc {
8348 sa_sched_groups = 0,
8349 sa_rootdomain,
8350 sa_tmpmask,
8351 sa_send_covered,
8352 sa_this_core_map,
8353 sa_this_sibling_map,
8354 sa_nodemask,
8355 sa_sched_group_nodes,
8356#ifdef CONFIG_NUMA
8357 sa_notcovered,
8358 sa_covered,
8359 sa_domainspan,
8360#endif
8361 sa_none,
8362};
8363
8094/* 8364/*
8095 * SMT sched-domains: 8365 * SMT sched-domains:
8096 */ 8366 */
@@ -8208,11 +8478,76 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
8208 continue; 8478 continue;
8209 } 8479 }
8210 8480
8211 sg_inc_cpu_power(sg, sd->groups->__cpu_power); 8481 sg->cpu_power += sd->groups->cpu_power;
8212 } 8482 }
8213 sg = sg->next; 8483 sg = sg->next;
8214 } while (sg != group_head); 8484 } while (sg != group_head);
8215} 8485}
8486
8487static int build_numa_sched_groups(struct s_data *d,
8488 const struct cpumask *cpu_map, int num)
8489{
8490 struct sched_domain *sd;
8491 struct sched_group *sg, *prev;
8492 int n, j;
8493
8494 cpumask_clear(d->covered);
8495 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8496 if (cpumask_empty(d->nodemask)) {
8497 d->sched_group_nodes[num] = NULL;
8498 goto out;
8499 }
8500
8501 sched_domain_node_span(num, d->domainspan);
8502 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8503
8504 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8505 GFP_KERNEL, num);
8506 if (!sg) {
8507 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8508 num);
8509 return -ENOMEM;
8510 }
8511 d->sched_group_nodes[num] = sg;
8512
8513 for_each_cpu(j, d->nodemask) {
8514 sd = &per_cpu(node_domains, j).sd;
8515 sd->groups = sg;
8516 }
8517
8518 sg->cpu_power = 0;
8519 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8520 sg->next = sg;
8521 cpumask_or(d->covered, d->covered, d->nodemask);
8522
8523 prev = sg;
8524 for (j = 0; j < nr_node_ids; j++) {
8525 n = (num + j) % nr_node_ids;
8526 cpumask_complement(d->notcovered, d->covered);
8527 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8528 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8529 if (cpumask_empty(d->tmpmask))
8530 break;
8531 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8532 if (cpumask_empty(d->tmpmask))
8533 continue;
8534 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8535 GFP_KERNEL, num);
8536 if (!sg) {
8537 printk(KERN_WARNING
8538 "Can not alloc domain group for node %d\n", j);
8539 return -ENOMEM;
8540 }
8541 sg->cpu_power = 0;
8542 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8543 sg->next = prev->next;
8544 cpumask_or(d->covered, d->covered, d->tmpmask);
8545 prev->next = sg;
8546 prev = sg;
8547 }
8548out:
8549 return 0;
8550}
8216#endif /* CONFIG_NUMA */ 8551#endif /* CONFIG_NUMA */
8217 8552
8218#ifdef CONFIG_NUMA 8553#ifdef CONFIG_NUMA
@@ -8266,15 +8601,13 @@ static void free_sched_groups(const struct cpumask *cpu_map,
8266 * there are asymmetries in the topology. If there are asymmetries, group 8601 * there are asymmetries in the topology. If there are asymmetries, group
8267 * having more cpu_power will pickup more load compared to the group having 8602 * having more cpu_power will pickup more load compared to the group having
8268 * less cpu_power. 8603 * less cpu_power.
8269 *
8270 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8271 * the maximum number of tasks a group can handle in the presence of other idle
8272 * or lightly loaded groups in the same sched domain.
8273 */ 8604 */
8274static void init_sched_groups_power(int cpu, struct sched_domain *sd) 8605static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8275{ 8606{
8276 struct sched_domain *child; 8607 struct sched_domain *child;
8277 struct sched_group *group; 8608 struct sched_group *group;
8609 long power;
8610 int weight;
8278 8611
8279 WARN_ON(!sd || !sd->groups); 8612 WARN_ON(!sd || !sd->groups);
8280 8613
@@ -8283,28 +8616,32 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8283 8616
8284 child = sd->child; 8617 child = sd->child;
8285 8618
8286 sd->groups->__cpu_power = 0; 8619 sd->groups->cpu_power = 0;
8287 8620
8288 /* 8621 if (!child) {
8289 * For perf policy, if the groups in child domain share resources 8622 power = SCHED_LOAD_SCALE;
8290 * (for example cores sharing some portions of the cache hierarchy 8623 weight = cpumask_weight(sched_domain_span(sd));
8291 * or SMT), then set this domain groups cpu_power such that each group 8624 /*
8292 * can handle only one task, when there are other idle groups in the 8625 * SMT siblings share the power of a single core.
8293 * same sched domain. 8626 * Usually multiple threads get a better yield out of
8294 */ 8627 * that one core than a single thread would have,
8295 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && 8628 * reflect that in sd->smt_gain.
8296 (child->flags & 8629 */
8297 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { 8630 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8298 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); 8631 power *= sd->smt_gain;
8632 power /= weight;
8633 power >>= SCHED_LOAD_SHIFT;
8634 }
8635 sd->groups->cpu_power += power;
8299 return; 8636 return;
8300 } 8637 }
8301 8638
8302 /* 8639 /*
8303 * add cpu_power of each child group to this groups cpu_power 8640 * Add cpu_power of each child group to this groups cpu_power.
8304 */ 8641 */
8305 group = child->groups; 8642 group = child->groups;
8306 do { 8643 do {
8307 sg_inc_cpu_power(sd->groups, group->__cpu_power); 8644 sd->groups->cpu_power += group->cpu_power;
8308 group = group->next; 8645 group = group->next;
8309 } while (group != child->groups); 8646 } while (group != child->groups);
8310} 8647}
@@ -8378,280 +8715,285 @@ static void set_domain_attribute(struct sched_domain *sd,
8378 } 8715 }
8379} 8716}
8380 8717
8381/* 8718static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8382 * Build sched domains for a given set of cpus and attach the sched domains 8719 const struct cpumask *cpu_map)
8383 * to the individual cpus 8720{
8384 */ 8721 switch (what) {
8385static int __build_sched_domains(const struct cpumask *cpu_map, 8722 case sa_sched_groups:
8386 struct sched_domain_attr *attr) 8723 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8387{ 8724 d->sched_group_nodes = NULL;
8388 int i, err = -ENOMEM; 8725 case sa_rootdomain:
8389 struct root_domain *rd; 8726 free_rootdomain(d->rd); /* fall through */
8390 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, 8727 case sa_tmpmask:
8391 tmpmask; 8728 free_cpumask_var(d->tmpmask); /* fall through */
8729 case sa_send_covered:
8730 free_cpumask_var(d->send_covered); /* fall through */
8731 case sa_this_core_map:
8732 free_cpumask_var(d->this_core_map); /* fall through */
8733 case sa_this_sibling_map:
8734 free_cpumask_var(d->this_sibling_map); /* fall through */
8735 case sa_nodemask:
8736 free_cpumask_var(d->nodemask); /* fall through */
8737 case sa_sched_group_nodes:
8392#ifdef CONFIG_NUMA 8738#ifdef CONFIG_NUMA
8393 cpumask_var_t domainspan, covered, notcovered; 8739 kfree(d->sched_group_nodes); /* fall through */
8394 struct sched_group **sched_group_nodes = NULL; 8740 case sa_notcovered:
8395 int sd_allnodes = 0; 8741 free_cpumask_var(d->notcovered); /* fall through */
8396 8742 case sa_covered:
8397 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) 8743 free_cpumask_var(d->covered); /* fall through */
8398 goto out; 8744 case sa_domainspan:
8399 if (!alloc_cpumask_var(&covered, GFP_KERNEL)) 8745 free_cpumask_var(d->domainspan); /* fall through */
8400 goto free_domainspan; 8746#endif
8401 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL)) 8747 case sa_none:
8402 goto free_covered; 8748 break;
8403#endif 8749 }
8404 8750}
8405 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8406 goto free_notcovered;
8407 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8408 goto free_nodemask;
8409 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8410 goto free_this_sibling_map;
8411 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8412 goto free_this_core_map;
8413 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8414 goto free_send_covered;
8415 8751
8752static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8753 const struct cpumask *cpu_map)
8754{
8416#ifdef CONFIG_NUMA 8755#ifdef CONFIG_NUMA
8417 /* 8756 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8418 * Allocate the per-node list of sched groups 8757 return sa_none;
8419 */ 8758 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8420 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), 8759 return sa_domainspan;
8421 GFP_KERNEL); 8760 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8422 if (!sched_group_nodes) { 8761 return sa_covered;
8762 /* Allocate the per-node list of sched groups */
8763 d->sched_group_nodes = kcalloc(nr_node_ids,
8764 sizeof(struct sched_group *), GFP_KERNEL);
8765 if (!d->sched_group_nodes) {
8423 printk(KERN_WARNING "Can not alloc sched group node list\n"); 8766 printk(KERN_WARNING "Can not alloc sched group node list\n");
8424 goto free_tmpmask; 8767 return sa_notcovered;
8425 } 8768 }
8426#endif 8769 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8427 8770#endif
8428 rd = alloc_rootdomain(); 8771 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8429 if (!rd) { 8772 return sa_sched_group_nodes;
8773 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8774 return sa_nodemask;
8775 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8776 return sa_this_sibling_map;
8777 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8778 return sa_this_core_map;
8779 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8780 return sa_send_covered;
8781 d->rd = alloc_rootdomain();
8782 if (!d->rd) {
8430 printk(KERN_WARNING "Cannot alloc root domain\n"); 8783 printk(KERN_WARNING "Cannot alloc root domain\n");
8431 goto free_sched_groups; 8784 return sa_tmpmask;
8432 } 8785 }
8786 return sa_rootdomain;
8787}
8433 8788
8789static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8790 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8791{
8792 struct sched_domain *sd = NULL;
8434#ifdef CONFIG_NUMA 8793#ifdef CONFIG_NUMA
8435 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; 8794 struct sched_domain *parent;
8436#endif
8437
8438 /*
8439 * Set up domains for cpus specified by the cpu_map.
8440 */
8441 for_each_cpu(i, cpu_map) {
8442 struct sched_domain *sd = NULL, *p;
8443
8444 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8445
8446#ifdef CONFIG_NUMA
8447 if (cpumask_weight(cpu_map) >
8448 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8449 sd = &per_cpu(allnodes_domains, i).sd;
8450 SD_INIT(sd, ALLNODES);
8451 set_domain_attribute(sd, attr);
8452 cpumask_copy(sched_domain_span(sd), cpu_map);
8453 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8454 p = sd;
8455 sd_allnodes = 1;
8456 } else
8457 p = NULL;
8458 8795
8459 sd = &per_cpu(node_domains, i).sd; 8796 d->sd_allnodes = 0;
8460 SD_INIT(sd, NODE); 8797 if (cpumask_weight(cpu_map) >
8798 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8799 sd = &per_cpu(allnodes_domains, i).sd;
8800 SD_INIT(sd, ALLNODES);
8461 set_domain_attribute(sd, attr); 8801 set_domain_attribute(sd, attr);
8462 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); 8802 cpumask_copy(sched_domain_span(sd), cpu_map);
8463 sd->parent = p; 8803 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8464 if (p) 8804 d->sd_allnodes = 1;
8465 p->child = sd; 8805 }
8466 cpumask_and(sched_domain_span(sd), 8806 parent = sd;
8467 sched_domain_span(sd), cpu_map); 8807
8808 sd = &per_cpu(node_domains, i).sd;
8809 SD_INIT(sd, NODE);
8810 set_domain_attribute(sd, attr);
8811 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8812 sd->parent = parent;
8813 if (parent)
8814 parent->child = sd;
8815 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8468#endif 8816#endif
8817 return sd;
8818}
8469 8819
8470 p = sd; 8820static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8471 sd = &per_cpu(phys_domains, i).sd; 8821 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8472 SD_INIT(sd, CPU); 8822 struct sched_domain *parent, int i)
8473 set_domain_attribute(sd, attr); 8823{
8474 cpumask_copy(sched_domain_span(sd), nodemask); 8824 struct sched_domain *sd;
8475 sd->parent = p; 8825 sd = &per_cpu(phys_domains, i).sd;
8476 if (p) 8826 SD_INIT(sd, CPU);
8477 p->child = sd; 8827 set_domain_attribute(sd, attr);
8478 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); 8828 cpumask_copy(sched_domain_span(sd), d->nodemask);
8829 sd->parent = parent;
8830 if (parent)
8831 parent->child = sd;
8832 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8833 return sd;
8834}
8479 8835
8836static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8837 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8838 struct sched_domain *parent, int i)
8839{
8840 struct sched_domain *sd = parent;
8480#ifdef CONFIG_SCHED_MC 8841#ifdef CONFIG_SCHED_MC
8481 p = sd; 8842 sd = &per_cpu(core_domains, i).sd;
8482 sd = &per_cpu(core_domains, i).sd; 8843 SD_INIT(sd, MC);
8483 SD_INIT(sd, MC); 8844 set_domain_attribute(sd, attr);
8484 set_domain_attribute(sd, attr); 8845 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8485 cpumask_and(sched_domain_span(sd), cpu_map, 8846 sd->parent = parent;
8486 cpu_coregroup_mask(i)); 8847 parent->child = sd;
8487 sd->parent = p; 8848 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8488 p->child = sd;
8489 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8490#endif 8849#endif
8850 return sd;
8851}
8491 8852
8853static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8854 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8855 struct sched_domain *parent, int i)
8856{
8857 struct sched_domain *sd = parent;
8492#ifdef CONFIG_SCHED_SMT 8858#ifdef CONFIG_SCHED_SMT
8493 p = sd; 8859 sd = &per_cpu(cpu_domains, i).sd;
8494 sd = &per_cpu(cpu_domains, i).sd; 8860 SD_INIT(sd, SIBLING);
8495 SD_INIT(sd, SIBLING); 8861 set_domain_attribute(sd, attr);
8496 set_domain_attribute(sd, attr); 8862 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8497 cpumask_and(sched_domain_span(sd), 8863 sd->parent = parent;
8498 topology_thread_cpumask(i), cpu_map); 8864 parent->child = sd;
8499 sd->parent = p; 8865 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8500 p->child = sd;
8501 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8502#endif 8866#endif
8503 } 8867 return sd;
8868}
8504 8869
8870static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8871 const struct cpumask *cpu_map, int cpu)
8872{
8873 switch (l) {
8505#ifdef CONFIG_SCHED_SMT 8874#ifdef CONFIG_SCHED_SMT
8506 /* Set up CPU (sibling) groups */ 8875 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8507 for_each_cpu(i, cpu_map) { 8876 cpumask_and(d->this_sibling_map, cpu_map,
8508 cpumask_and(this_sibling_map, 8877 topology_thread_cpumask(cpu));
8509 topology_thread_cpumask(i), cpu_map); 8878 if (cpu == cpumask_first(d->this_sibling_map))
8510 if (i != cpumask_first(this_sibling_map)) 8879 init_sched_build_groups(d->this_sibling_map, cpu_map,
8511 continue; 8880 &cpu_to_cpu_group,
8512 8881 d->send_covered, d->tmpmask);
8513 init_sched_build_groups(this_sibling_map, cpu_map, 8882 break;
8514 &cpu_to_cpu_group,
8515 send_covered, tmpmask);
8516 }
8517#endif 8883#endif
8518
8519#ifdef CONFIG_SCHED_MC 8884#ifdef CONFIG_SCHED_MC
8520 /* Set up multi-core groups */ 8885 case SD_LV_MC: /* set up multi-core groups */
8521 for_each_cpu(i, cpu_map) { 8886 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8522 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); 8887 if (cpu == cpumask_first(d->this_core_map))
8523 if (i != cpumask_first(this_core_map)) 8888 init_sched_build_groups(d->this_core_map, cpu_map,
8524 continue; 8889 &cpu_to_core_group,
8525 8890 d->send_covered, d->tmpmask);
8526 init_sched_build_groups(this_core_map, cpu_map, 8891 break;
8527 &cpu_to_core_group,
8528 send_covered, tmpmask);
8529 }
8530#endif 8892#endif
8531 8893 case SD_LV_CPU: /* set up physical groups */
8532 /* Set up physical groups */ 8894 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8533 for (i = 0; i < nr_node_ids; i++) { 8895 if (!cpumask_empty(d->nodemask))
8534 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8896 init_sched_build_groups(d->nodemask, cpu_map,
8535 if (cpumask_empty(nodemask)) 8897 &cpu_to_phys_group,
8536 continue; 8898 d->send_covered, d->tmpmask);
8537 8899 break;
8538 init_sched_build_groups(nodemask, cpu_map,
8539 &cpu_to_phys_group,
8540 send_covered, tmpmask);
8541 }
8542
8543#ifdef CONFIG_NUMA 8900#ifdef CONFIG_NUMA
8544 /* Set up node groups */ 8901 case SD_LV_ALLNODES:
8545 if (sd_allnodes) { 8902 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8546 init_sched_build_groups(cpu_map, cpu_map, 8903 d->send_covered, d->tmpmask);
8547 &cpu_to_allnodes_group, 8904 break;
8548 send_covered, tmpmask); 8905#endif
8906 default:
8907 break;
8549 } 8908 }
8909}
8550 8910
8551 for (i = 0; i < nr_node_ids; i++) { 8911/*
8552 /* Set up node groups */ 8912 * Build sched domains for a given set of cpus and attach the sched domains
8553 struct sched_group *sg, *prev; 8913 * to the individual cpus
8554 int j; 8914 */
8555 8915static int __build_sched_domains(const struct cpumask *cpu_map,
8556 cpumask_clear(covered); 8916 struct sched_domain_attr *attr)
8557 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8917{
8558 if (cpumask_empty(nodemask)) { 8918 enum s_alloc alloc_state = sa_none;
8559 sched_group_nodes[i] = NULL; 8919 struct s_data d;
8560 continue; 8920 struct sched_domain *sd;
8561 } 8921 int i;
8922#ifdef CONFIG_NUMA
8923 d.sd_allnodes = 0;
8924#endif
8562 8925
8563 sched_domain_node_span(i, domainspan); 8926 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8564 cpumask_and(domainspan, domainspan, cpu_map); 8927 if (alloc_state != sa_rootdomain)
8928 goto error;
8929 alloc_state = sa_sched_groups;
8565 8930
8566 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), 8931 /*
8567 GFP_KERNEL, i); 8932 * Set up domains for cpus specified by the cpu_map.
8568 if (!sg) { 8933 */
8569 printk(KERN_WARNING "Can not alloc domain group for " 8934 for_each_cpu(i, cpu_map) {
8570 "node %d\n", i); 8935 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8571 goto error; 8936 cpu_map);
8572 }
8573 sched_group_nodes[i] = sg;
8574 for_each_cpu(j, nodemask) {
8575 struct sched_domain *sd;
8576 8937
8577 sd = &per_cpu(node_domains, j).sd; 8938 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8578 sd->groups = sg; 8939 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8579 } 8940 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8580 sg->__cpu_power = 0; 8941 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8581 cpumask_copy(sched_group_cpus(sg), nodemask); 8942 }
8582 sg->next = sg;
8583 cpumask_or(covered, covered, nodemask);
8584 prev = sg;
8585 8943
8586 for (j = 0; j < nr_node_ids; j++) { 8944 for_each_cpu(i, cpu_map) {
8587 int n = (i + j) % nr_node_ids; 8945 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8946 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8947 }
8588 8948
8589 cpumask_complement(notcovered, covered); 8949 /* Set up physical groups */
8590 cpumask_and(tmpmask, notcovered, cpu_map); 8950 for (i = 0; i < nr_node_ids; i++)
8591 cpumask_and(tmpmask, tmpmask, domainspan); 8951 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8592 if (cpumask_empty(tmpmask))
8593 break;
8594 8952
8595 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); 8953#ifdef CONFIG_NUMA
8596 if (cpumask_empty(tmpmask)) 8954 /* Set up node groups */
8597 continue; 8955 if (d.sd_allnodes)
8956 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8598 8957
8599 sg = kmalloc_node(sizeof(struct sched_group) + 8958 for (i = 0; i < nr_node_ids; i++)
8600 cpumask_size(), 8959 if (build_numa_sched_groups(&d, cpu_map, i))
8601 GFP_KERNEL, i); 8960 goto error;
8602 if (!sg) {
8603 printk(KERN_WARNING
8604 "Can not alloc domain group for node %d\n", j);
8605 goto error;
8606 }
8607 sg->__cpu_power = 0;
8608 cpumask_copy(sched_group_cpus(sg), tmpmask);
8609 sg->next = prev->next;
8610 cpumask_or(covered, covered, tmpmask);
8611 prev->next = sg;
8612 prev = sg;
8613 }
8614 }
8615#endif 8961#endif
8616 8962
8617 /* Calculate CPU power for physical packages and nodes */ 8963 /* Calculate CPU power for physical packages and nodes */
8618#ifdef CONFIG_SCHED_SMT 8964#ifdef CONFIG_SCHED_SMT
8619 for_each_cpu(i, cpu_map) { 8965 for_each_cpu(i, cpu_map) {
8620 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; 8966 sd = &per_cpu(cpu_domains, i).sd;
8621
8622 init_sched_groups_power(i, sd); 8967 init_sched_groups_power(i, sd);
8623 } 8968 }
8624#endif 8969#endif
8625#ifdef CONFIG_SCHED_MC 8970#ifdef CONFIG_SCHED_MC
8626 for_each_cpu(i, cpu_map) { 8971 for_each_cpu(i, cpu_map) {
8627 struct sched_domain *sd = &per_cpu(core_domains, i).sd; 8972 sd = &per_cpu(core_domains, i).sd;
8628
8629 init_sched_groups_power(i, sd); 8973 init_sched_groups_power(i, sd);
8630 } 8974 }
8631#endif 8975#endif
8632 8976
8633 for_each_cpu(i, cpu_map) { 8977 for_each_cpu(i, cpu_map) {
8634 struct sched_domain *sd = &per_cpu(phys_domains, i).sd; 8978 sd = &per_cpu(phys_domains, i).sd;
8635
8636 init_sched_groups_power(i, sd); 8979 init_sched_groups_power(i, sd);
8637 } 8980 }
8638 8981
8639#ifdef CONFIG_NUMA 8982#ifdef CONFIG_NUMA
8640 for (i = 0; i < nr_node_ids; i++) 8983 for (i = 0; i < nr_node_ids; i++)
8641 init_numa_sched_groups_power(sched_group_nodes[i]); 8984 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8642 8985
8643 if (sd_allnodes) { 8986 if (d.sd_allnodes) {
8644 struct sched_group *sg; 8987 struct sched_group *sg;
8645 8988
8646 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, 8989 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8647 tmpmask); 8990 d.tmpmask);
8648 init_numa_sched_groups_power(sg); 8991 init_numa_sched_groups_power(sg);
8649 } 8992 }
8650#endif 8993#endif
8651 8994
8652 /* Attach the domains */ 8995 /* Attach the domains */
8653 for_each_cpu(i, cpu_map) { 8996 for_each_cpu(i, cpu_map) {
8654 struct sched_domain *sd;
8655#ifdef CONFIG_SCHED_SMT 8997#ifdef CONFIG_SCHED_SMT
8656 sd = &per_cpu(cpu_domains, i).sd; 8998 sd = &per_cpu(cpu_domains, i).sd;
8657#elif defined(CONFIG_SCHED_MC) 8999#elif defined(CONFIG_SCHED_MC)
@@ -8659,44 +9001,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map,
8659#else 9001#else
8660 sd = &per_cpu(phys_domains, i).sd; 9002 sd = &per_cpu(phys_domains, i).sd;
8661#endif 9003#endif
8662 cpu_attach_domain(sd, rd, i); 9004 cpu_attach_domain(sd, d.rd, i);
8663 } 9005 }
8664 9006
8665 err = 0; 9007 d.sched_group_nodes = NULL; /* don't free this we still need it */
8666 9008 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8667free_tmpmask: 9009 return 0;
8668 free_cpumask_var(tmpmask);
8669free_send_covered:
8670 free_cpumask_var(send_covered);
8671free_this_core_map:
8672 free_cpumask_var(this_core_map);
8673free_this_sibling_map:
8674 free_cpumask_var(this_sibling_map);
8675free_nodemask:
8676 free_cpumask_var(nodemask);
8677free_notcovered:
8678#ifdef CONFIG_NUMA
8679 free_cpumask_var(notcovered);
8680free_covered:
8681 free_cpumask_var(covered);
8682free_domainspan:
8683 free_cpumask_var(domainspan);
8684out:
8685#endif
8686 return err;
8687
8688free_sched_groups:
8689#ifdef CONFIG_NUMA
8690 kfree(sched_group_nodes);
8691#endif
8692 goto free_tmpmask;
8693 9010
8694#ifdef CONFIG_NUMA
8695error: 9011error:
8696 free_sched_groups(cpu_map, tmpmask); 9012 __free_domain_allocs(&d, alloc_state, cpu_map);
8697 free_rootdomain(rd); 9013 return -ENOMEM;
8698 goto free_tmpmask;
8699#endif
8700} 9014}
8701 9015
8702static int build_sched_domains(const struct cpumask *cpu_map) 9016static int build_sched_domains(const struct cpumask *cpu_map)
@@ -9304,11 +9618,11 @@ void __init sched_init(void)
9304 * system cpu resource, based on the weight assigned to root 9618 * system cpu resource, based on the weight assigned to root
9305 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished 9619 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9306 * by letting tasks of init_task_group sit in a separate cfs_rq 9620 * by letting tasks of init_task_group sit in a separate cfs_rq
9307 * (init_cfs_rq) and having one entity represent this group of 9621 * (init_tg_cfs_rq) and having one entity represent this group of
9308 * tasks in rq->cfs (i.e init_task_group->se[] != NULL). 9622 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9309 */ 9623 */
9310 init_tg_cfs_entry(&init_task_group, 9624 init_tg_cfs_entry(&init_task_group,
9311 &per_cpu(init_cfs_rq, i), 9625 &per_cpu(init_tg_cfs_rq, i),
9312 &per_cpu(init_sched_entity, i), i, 1, 9626 &per_cpu(init_sched_entity, i), i, 1,
9313 root_task_group.se[i]); 9627 root_task_group.se[i]);
9314 9628
@@ -9334,6 +9648,7 @@ void __init sched_init(void)
9334#ifdef CONFIG_SMP 9648#ifdef CONFIG_SMP
9335 rq->sd = NULL; 9649 rq->sd = NULL;
9336 rq->rd = NULL; 9650 rq->rd = NULL;
9651 rq->post_schedule = 0;
9337 rq->active_balance = 0; 9652 rq->active_balance = 0;
9338 rq->next_balance = jiffies; 9653 rq->next_balance = jiffies;
9339 rq->push_cpu = 0; 9654 rq->push_cpu = 0;
@@ -9398,13 +9713,20 @@ void __init sched_init(void)
9398} 9713}
9399 9714
9400#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 9715#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9401void __might_sleep(char *file, int line) 9716static inline int preempt_count_equals(int preempt_offset)
9717{
9718 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9719
9720 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9721}
9722
9723void __might_sleep(char *file, int line, int preempt_offset)
9402{ 9724{
9403#ifdef in_atomic 9725#ifdef in_atomic
9404 static unsigned long prev_jiffy; /* ratelimiting */ 9726 static unsigned long prev_jiffy; /* ratelimiting */
9405 9727
9406 if ((!in_atomic() && !irqs_disabled()) || 9728 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9407 system_state != SYSTEM_RUNNING || oops_in_progress) 9729 system_state != SYSTEM_RUNNING || oops_in_progress)
9408 return; 9730 return;
9409 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9731 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9410 return; 9732 return;
@@ -10581,3 +10903,113 @@ struct cgroup_subsys cpuacct_subsys = {
10581 .subsys_id = cpuacct_subsys_id, 10903 .subsys_id = cpuacct_subsys_id,
10582}; 10904};
10583#endif /* CONFIG_CGROUP_CPUACCT */ 10905#endif /* CONFIG_CGROUP_CPUACCT */
10906
10907#ifndef CONFIG_SMP
10908
10909int rcu_expedited_torture_stats(char *page)
10910{
10911 return 0;
10912}
10913EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10914
10915void synchronize_sched_expedited(void)
10916{
10917}
10918EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10919
10920#else /* #ifndef CONFIG_SMP */
10921
10922static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10923static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10924
10925#define RCU_EXPEDITED_STATE_POST -2
10926#define RCU_EXPEDITED_STATE_IDLE -1
10927
10928static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10929
10930int rcu_expedited_torture_stats(char *page)
10931{
10932 int cnt = 0;
10933 int cpu;
10934
10935 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10936 for_each_online_cpu(cpu) {
10937 cnt += sprintf(&page[cnt], " %d:%d",
10938 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10939 }
10940 cnt += sprintf(&page[cnt], "\n");
10941 return cnt;
10942}
10943EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10944
10945static long synchronize_sched_expedited_count;
10946
10947/*
10948 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10949 * approach to force grace period to end quickly. This consumes
10950 * significant time on all CPUs, and is thus not recommended for
10951 * any sort of common-case code.
10952 *
10953 * Note that it is illegal to call this function while holding any
10954 * lock that is acquired by a CPU-hotplug notifier. Failing to
10955 * observe this restriction will result in deadlock.
10956 */
10957void synchronize_sched_expedited(void)
10958{
10959 int cpu;
10960 unsigned long flags;
10961 bool need_full_sync = 0;
10962 struct rq *rq;
10963 struct migration_req *req;
10964 long snap;
10965 int trycount = 0;
10966
10967 smp_mb(); /* ensure prior mod happens before capturing snap. */
10968 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10969 get_online_cpus();
10970 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10971 put_online_cpus();
10972 if (trycount++ < 10)
10973 udelay(trycount * num_online_cpus());
10974 else {
10975 synchronize_sched();
10976 return;
10977 }
10978 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10979 smp_mb(); /* ensure test happens before caller kfree */
10980 return;
10981 }
10982 get_online_cpus();
10983 }
10984 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10985 for_each_online_cpu(cpu) {
10986 rq = cpu_rq(cpu);
10987 req = &per_cpu(rcu_migration_req, cpu);
10988 init_completion(&req->done);
10989 req->task = NULL;
10990 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10991 spin_lock_irqsave(&rq->lock, flags);
10992 list_add(&req->list, &rq->migration_queue);
10993 spin_unlock_irqrestore(&rq->lock, flags);
10994 wake_up_process(rq->migration_thread);
10995 }
10996 for_each_online_cpu(cpu) {
10997 rcu_expedited_state = cpu;
10998 req = &per_cpu(rcu_migration_req, cpu);
10999 rq = cpu_rq(cpu);
11000 wait_for_completion(&req->done);
11001 spin_lock_irqsave(&rq->lock, flags);
11002 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11003 need_full_sync = 1;
11004 req->dest_cpu = RCU_MIGRATION_IDLE;
11005 spin_unlock_irqrestore(&rq->lock, flags);
11006 }
11007 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11008 mutex_unlock(&rcu_sched_expedited_mutex);
11009 put_online_cpus();
11010 if (need_full_sync)
11011 synchronize_sched();
11012}
11013EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11014
11015#endif /* #else #ifndef CONFIG_SMP */
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c
index d014efbf947a..0f052fc674d5 100644
--- a/kernel/sched_cpupri.c
+++ b/kernel/sched_cpupri.c
@@ -127,21 +127,11 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri)
127 127
128 /* 128 /*
129 * If the cpu was currently mapped to a different value, we 129 * If the cpu was currently mapped to a different value, we
130 * first need to unmap the old value 130 * need to map it to the new value then remove the old value.
131 * Note, we must add the new value first, otherwise we risk the
132 * cpu being cleared from pri_active, and this cpu could be
133 * missed for a push or pull.
131 */ 134 */
132 if (likely(oldpri != CPUPRI_INVALID)) {
133 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
134
135 spin_lock_irqsave(&vec->lock, flags);
136
137 vec->count--;
138 if (!vec->count)
139 clear_bit(oldpri, cp->pri_active);
140 cpumask_clear_cpu(cpu, vec->mask);
141
142 spin_unlock_irqrestore(&vec->lock, flags);
143 }
144
145 if (likely(newpri != CPUPRI_INVALID)) { 135 if (likely(newpri != CPUPRI_INVALID)) {
146 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; 136 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
147 137
@@ -154,6 +144,18 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri)
154 144
155 spin_unlock_irqrestore(&vec->lock, flags); 145 spin_unlock_irqrestore(&vec->lock, flags);
156 } 146 }
147 if (likely(oldpri != CPUPRI_INVALID)) {
148 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
149
150 spin_lock_irqsave(&vec->lock, flags);
151
152 vec->count--;
153 if (!vec->count)
154 clear_bit(oldpri, cp->pri_active);
155 cpumask_clear_cpu(cpu, vec->mask);
156
157 spin_unlock_irqrestore(&vec->lock, flags);
158 }
157 159
158 *currpri = newpri; 160 *currpri = newpri;
159} 161}
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index 70c7e0b79946..5ddbd0891267 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -409,6 +409,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
409 PN(se.wait_max); 409 PN(se.wait_max);
410 PN(se.wait_sum); 410 PN(se.wait_sum);
411 P(se.wait_count); 411 P(se.wait_count);
412 PN(se.iowait_sum);
413 P(se.iowait_count);
412 P(sched_info.bkl_count); 414 P(sched_info.bkl_count);
413 P(se.nr_migrations); 415 P(se.nr_migrations);
414 P(se.nr_migrations_cold); 416 P(se.nr_migrations_cold);
@@ -479,6 +481,8 @@ void proc_sched_set_task(struct task_struct *p)
479 p->se.wait_max = 0; 481 p->se.wait_max = 0;
480 p->se.wait_sum = 0; 482 p->se.wait_sum = 0;
481 p->se.wait_count = 0; 483 p->se.wait_count = 0;
484 p->se.iowait_sum = 0;
485 p->se.iowait_count = 0;
482 p->se.sleep_max = 0; 486 p->se.sleep_max = 0;
483 p->se.sum_sleep_runtime = 0; 487 p->se.sum_sleep_runtime = 0;
484 p->se.block_max = 0; 488 p->se.block_max = 0;
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 652e8bdef9aa..aa7f84121016 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -24,7 +24,7 @@
24 24
25/* 25/*
26 * Targeted preemption latency for CPU-bound tasks: 26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) 27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 * 28 *
29 * NOTE: this latency value is not the same as the concept of 29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length 30 * 'timeslice length' - timeslices in CFS are of variable length
@@ -34,13 +34,13 @@
34 * (to see the precise effective timeslice length of your workload, 34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field) 35 * run vmstat and monitor the context-switches (cs) field)
36 */ 36 */
37unsigned int sysctl_sched_latency = 20000000ULL; 37unsigned int sysctl_sched_latency = 5000000ULL;
38 38
39/* 39/*
40 * Minimal preemption granularity for CPU-bound tasks: 40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) 41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */ 42 */
43unsigned int sysctl_sched_min_granularity = 4000000ULL; 43unsigned int sysctl_sched_min_granularity = 1000000ULL;
44 44
45/* 45/*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
@@ -48,10 +48,10 @@ unsigned int sysctl_sched_min_granularity = 4000000ULL;
48static unsigned int sched_nr_latency = 5; 48static unsigned int sched_nr_latency = 5;
49 49
50/* 50/*
51 * After fork, child runs first. (default) If set to 0 then 51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first. 52 * parent will (try to) run first.
53 */ 53 */
54const_debug unsigned int sysctl_sched_child_runs_first = 1; 54unsigned int sysctl_sched_child_runs_first __read_mostly;
55 55
56/* 56/*
57 * sys_sched_yield() compat mode 57 * sys_sched_yield() compat mode
@@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
63 63
64/* 64/*
65 * SCHED_OTHER wake-up granularity. 65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) 66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 * 67 *
68 * This option delays the preemption effects of decoupled workloads 68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still 69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies. 70 * have immediate wakeup/sleep latencies.
71 */ 71 */
72unsigned int sysctl_sched_wakeup_granularity = 5000000UL; 72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73 73
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75 75
@@ -79,11 +79,6 @@ static const struct sched_class fair_sched_class;
79 * CFS operations on generic schedulable entities: 79 * CFS operations on generic schedulable entities:
80 */ 80 */
81 81
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
87#ifdef CONFIG_FAIR_GROUP_SCHED 82#ifdef CONFIG_FAIR_GROUP_SCHED
88 83
89/* cpu runqueue to which this cfs_rq is attached */ 84/* cpu runqueue to which this cfs_rq is attached */
@@ -95,6 +90,14 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95/* An entity is a task if it doesn't "own" a runqueue */ 90/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q) 91#define entity_is_task(se) (!se->my_q)
97 92
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
98/* Walk up scheduling entities hierarchy */ 101/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \ 102#define for_each_sched_entity(se) \
100 for (; se; se = se->parent) 103 for (; se; se = se->parent)
@@ -186,7 +189,12 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse)
186 } 189 }
187} 190}
188 191
189#else /* CONFIG_FAIR_GROUP_SCHED */ 192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
190 198
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{ 200{
@@ -537,6 +545,12 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
537 schedstat_set(se->wait_count, se->wait_count + 1); 545 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum + 546 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start); 547 rq_of(cfs_rq)->clock - se->wait_start);
548#ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553#endif
540 schedstat_set(se->wait_start, 0); 554 schedstat_set(se->wait_start, 0);
541} 555}
542 556
@@ -628,8 +642,10 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 se->sleep_start = 0; 642 se->sleep_start = 0;
629 se->sum_sleep_runtime += delta; 643 se->sum_sleep_runtime += delta;
630 644
631 if (tsk) 645 if (tsk) {
632 account_scheduler_latency(tsk, delta >> 10, 1); 646 account_scheduler_latency(tsk, delta >> 10, 1);
647 trace_sched_stat_sleep(tsk, delta);
648 }
633 } 649 }
634 if (se->block_start) { 650 if (se->block_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->block_start; 651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
@@ -644,6 +660,12 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 se->sum_sleep_runtime += delta; 660 se->sum_sleep_runtime += delta;
645 661
646 if (tsk) { 662 if (tsk) {
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
666 trace_sched_stat_iowait(tsk, delta);
667 }
668
647 /* 669 /*
648 * Blocking time is in units of nanosecs, so shift by 670 * Blocking time is in units of nanosecs, so shift by
649 * 20 to get a milliseconds-range estimation of the 671 * 20 to get a milliseconds-range estimation of the
@@ -705,11 +727,11 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
705 727
706 vruntime -= thresh; 728 vruntime -= thresh;
707 } 729 }
708
709 /* ensure we never gain time by being placed backwards. */
710 vruntime = max_vruntime(se->vruntime, vruntime);
711 } 730 }
712 731
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
734
713 se->vruntime = vruntime; 735 se->vruntime = vruntime;
714} 736}
715 737
@@ -1046,17 +1068,21 @@ static void yield_task_fair(struct rq *rq)
1046 * search starts with cpus closest then further out as needed, 1068 * search starts with cpus closest then further out as needed,
1047 * so we always favor a closer, idle cpu. 1069 * so we always favor a closer, idle cpu.
1048 * Domains may include CPUs that are not usable for migration, 1070 * Domains may include CPUs that are not usable for migration,
1049 * hence we need to mask them out (cpu_active_mask) 1071 * hence we need to mask them out (rq->rd->online)
1050 * 1072 *
1051 * Returns the CPU we should wake onto. 1073 * Returns the CPU we should wake onto.
1052 */ 1074 */
1053#if defined(ARCH_HAS_SCHED_WAKE_IDLE) 1075#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1076
1077#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1078
1054static int wake_idle(int cpu, struct task_struct *p) 1079static int wake_idle(int cpu, struct task_struct *p)
1055{ 1080{
1056 struct sched_domain *sd; 1081 struct sched_domain *sd;
1057 int i; 1082 int i;
1058 unsigned int chosen_wakeup_cpu; 1083 unsigned int chosen_wakeup_cpu;
1059 int this_cpu; 1084 int this_cpu;
1085 struct rq *task_rq = task_rq(p);
1060 1086
1061 /* 1087 /*
1062 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu 1088 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
@@ -1089,10 +1115,10 @@ static int wake_idle(int cpu, struct task_struct *p)
1089 for_each_domain(cpu, sd) { 1115 for_each_domain(cpu, sd) {
1090 if ((sd->flags & SD_WAKE_IDLE) 1116 if ((sd->flags & SD_WAKE_IDLE)
1091 || ((sd->flags & SD_WAKE_IDLE_FAR) 1117 || ((sd->flags & SD_WAKE_IDLE_FAR)
1092 && !task_hot(p, task_rq(p)->clock, sd))) { 1118 && !task_hot(p, task_rq->clock, sd))) {
1093 for_each_cpu_and(i, sched_domain_span(sd), 1119 for_each_cpu_and(i, sched_domain_span(sd),
1094 &p->cpus_allowed) { 1120 &p->cpus_allowed) {
1095 if (cpu_active(i) && idle_cpu(i)) { 1121 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1096 if (i != task_cpu(p)) { 1122 if (i != task_cpu(p)) {
1097 schedstat_inc(p, 1123 schedstat_inc(p,
1098 se.nr_wakeups_idle); 1124 se.nr_wakeups_idle);
@@ -1235,7 +1261,17 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1235 tg = task_group(p); 1261 tg = task_group(p);
1236 weight = p->se.load.weight; 1262 weight = p->se.load.weight;
1237 1263
1238 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= 1264 /*
1265 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1266 * due to the sync cause above having dropped tl to 0, we'll always have
1267 * an imbalance, but there's really nothing you can do about that, so
1268 * that's good too.
1269 *
1270 * Otherwise check if either cpus are near enough in load to allow this
1271 * task to be woken on this_cpu.
1272 */
1273 balanced = !tl ||
1274 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1239 imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); 1275 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1240 1276
1241 /* 1277 /*
@@ -1278,8 +1314,6 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
1278 this_rq = cpu_rq(this_cpu); 1314 this_rq = cpu_rq(this_cpu);
1279 new_cpu = prev_cpu; 1315 new_cpu = prev_cpu;
1280 1316
1281 if (prev_cpu == this_cpu)
1282 goto out;
1283 /* 1317 /*
1284 * 'this_sd' is the first domain that both 1318 * 'this_sd' is the first domain that both
1285 * this_cpu and prev_cpu are present in: 1319 * this_cpu and prev_cpu are present in:
@@ -1721,6 +1755,8 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
1721 sched_info_queued(p); 1755 sched_info_queued(p);
1722 1756
1723 update_curr(cfs_rq); 1757 update_curr(cfs_rq);
1758 if (curr)
1759 se->vruntime = curr->vruntime;
1724 place_entity(cfs_rq, se, 1); 1760 place_entity(cfs_rq, se, 1);
1725 1761
1726 /* 'curr' will be NULL if the child belongs to a different group */ 1762 /* 'curr' will be NULL if the child belongs to a different group */
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index 4569bfa7df9b..e2dc63a5815d 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -1,4 +1,4 @@
1SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) 1SCHED_FEAT(NEW_FAIR_SLEEPERS, 0)
2SCHED_FEAT(NORMALIZED_SLEEPER, 0) 2SCHED_FEAT(NORMALIZED_SLEEPER, 0)
3SCHED_FEAT(ADAPTIVE_GRAN, 1) 3SCHED_FEAT(ADAPTIVE_GRAN, 1)
4SCHED_FEAT(WAKEUP_PREEMPT, 1) 4SCHED_FEAT(WAKEUP_PREEMPT, 1)
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 3918e01994e0..2eb4bd6a526c 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -3,15 +3,18 @@
3 * policies) 3 * policies)
4 */ 4 */
5 5
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
6static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
7{ 11{
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
8 return container_of(rt_se, struct task_struct, rt); 15 return container_of(rt_se, struct task_struct, rt);
9} 16}
10 17
11#ifdef CONFIG_RT_GROUP_SCHED
12
13#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
14
15static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
16{ 19{
17 return rt_rq->rq; 20 return rt_rq->rq;
@@ -26,6 +29,11 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
26 29
27#define rt_entity_is_task(rt_se) (1) 30#define rt_entity_is_task(rt_se) (1)
28 31
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
29static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
30{ 38{
31 return container_of(rt_rq, struct rq, rt); 39 return container_of(rt_rq, struct rq, rt);
@@ -128,6 +136,11 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
128 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
129} 137}
130 138
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
131#else 144#else
132 145
133static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
@@ -602,6 +615,8 @@ static void update_curr_rt(struct rq *rq)
602 curr->se.exec_start = rq->clock; 615 curr->se.exec_start = rq->clock;
603 cpuacct_charge(curr, delta_exec); 616 cpuacct_charge(curr, delta_exec);
604 617
618 sched_rt_avg_update(rq, delta_exec);
619
605 if (!rt_bandwidth_enabled()) 620 if (!rt_bandwidth_enabled())
606 return; 621 return;
607 622
@@ -874,8 +889,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
874 889
875 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) 890 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
876 enqueue_pushable_task(rq, p); 891 enqueue_pushable_task(rq, p);
877
878 inc_cpu_load(rq, p->se.load.weight);
879} 892}
880 893
881static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) 894static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
@@ -886,8 +899,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
886 dequeue_rt_entity(rt_se); 899 dequeue_rt_entity(rt_se);
887 900
888 dequeue_pushable_task(rq, p); 901 dequeue_pushable_task(rq, p);
889
890 dec_cpu_load(rq, p->se.load.weight);
891} 902}
892 903
893/* 904/*
@@ -1064,6 +1075,14 @@ static struct task_struct *pick_next_task_rt(struct rq *rq)
1064 if (p) 1075 if (p)
1065 dequeue_pushable_task(rq, p); 1076 dequeue_pushable_task(rq, p);
1066 1077
1078#ifdef CONFIG_SMP
1079 /*
1080 * We detect this state here so that we can avoid taking the RQ
1081 * lock again later if there is no need to push
1082 */
1083 rq->post_schedule = has_pushable_tasks(rq);
1084#endif
1085
1067 return p; 1086 return p;
1068} 1087}
1069 1088
@@ -1162,13 +1181,6 @@ static int find_lowest_rq(struct task_struct *task)
1162 return -1; /* No targets found */ 1181 return -1; /* No targets found */
1163 1182
1164 /* 1183 /*
1165 * Only consider CPUs that are usable for migration.
1166 * I guess we might want to change cpupri_find() to ignore those
1167 * in the first place.
1168 */
1169 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1170
1171 /*
1172 * At this point we have built a mask of cpus representing the 1184 * At this point we have built a mask of cpus representing the
1173 * lowest priority tasks in the system. Now we want to elect 1185 * lowest priority tasks in the system. Now we want to elect
1174 * the best one based on our affinity and topology. 1186 * the best one based on our affinity and topology.
@@ -1262,11 +1274,6 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1262 return lowest_rq; 1274 return lowest_rq;
1263} 1275}
1264 1276
1265static inline int has_pushable_tasks(struct rq *rq)
1266{
1267 return !plist_head_empty(&rq->rt.pushable_tasks);
1268}
1269
1270static struct task_struct *pick_next_pushable_task(struct rq *rq) 1277static struct task_struct *pick_next_pushable_task(struct rq *rq)
1271{ 1278{
1272 struct task_struct *p; 1279 struct task_struct *p;
@@ -1466,23 +1473,9 @@ static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1466 pull_rt_task(rq); 1473 pull_rt_task(rq);
1467} 1474}
1468 1475
1469/*
1470 * assumes rq->lock is held
1471 */
1472static int needs_post_schedule_rt(struct rq *rq)
1473{
1474 return has_pushable_tasks(rq);
1475}
1476
1477static void post_schedule_rt(struct rq *rq) 1476static void post_schedule_rt(struct rq *rq)
1478{ 1477{
1479 /*
1480 * This is only called if needs_post_schedule_rt() indicates that
1481 * we need to push tasks away
1482 */
1483 spin_lock_irq(&rq->lock);
1484 push_rt_tasks(rq); 1478 push_rt_tasks(rq);
1485 spin_unlock_irq(&rq->lock);
1486} 1479}
1487 1480
1488/* 1481/*
@@ -1758,7 +1751,6 @@ static const struct sched_class rt_sched_class = {
1758 .rq_online = rq_online_rt, 1751 .rq_online = rq_online_rt,
1759 .rq_offline = rq_offline_rt, 1752 .rq_offline = rq_offline_rt,
1760 .pre_schedule = pre_schedule_rt, 1753 .pre_schedule = pre_schedule_rt,
1761 .needs_post_schedule = needs_post_schedule_rt,
1762 .post_schedule = post_schedule_rt, 1754 .post_schedule = post_schedule_rt,
1763 .task_wake_up = task_wake_up_rt, 1755 .task_wake_up = task_wake_up_rt,
1764 .switched_from = switched_from_rt, 1756 .switched_from = switched_from_rt,
diff --git a/kernel/smp.c b/kernel/smp.c
index 94188b8ecc33..8e218500ab14 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -177,6 +177,11 @@ void generic_smp_call_function_interrupt(void)
177 int cpu = get_cpu(); 177 int cpu = get_cpu();
178 178
179 /* 179 /*
180 * Shouldn't receive this interrupt on a cpu that is not yet online.
181 */
182 WARN_ON_ONCE(!cpu_online(cpu));
183
184 /*
180 * Ensure entry is visible on call_function_queue after we have 185 * Ensure entry is visible on call_function_queue after we have
181 * entered the IPI. See comment in smp_call_function_many. 186 * entered the IPI. See comment in smp_call_function_many.
182 * If we don't have this, then we may miss an entry on the list 187 * If we don't have this, then we may miss an entry on the list
@@ -230,6 +235,11 @@ void generic_smp_call_function_single_interrupt(void)
230 unsigned int data_flags; 235 unsigned int data_flags;
231 LIST_HEAD(list); 236 LIST_HEAD(list);
232 237
238 /*
239 * Shouldn't receive this interrupt on a cpu that is not yet online.
240 */
241 WARN_ON_ONCE(!cpu_online(smp_processor_id()));
242
233 spin_lock(&q->lock); 243 spin_lock(&q->lock);
234 list_replace_init(&q->list, &list); 244 list_replace_init(&q->list, &list);
235 spin_unlock(&q->lock); 245 spin_unlock(&q->lock);
@@ -285,8 +295,14 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
285 */ 295 */
286 this_cpu = get_cpu(); 296 this_cpu = get_cpu();
287 297
288 /* Can deadlock when called with interrupts disabled */ 298 /*
289 WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); 299 * Can deadlock when called with interrupts disabled.
300 * We allow cpu's that are not yet online though, as no one else can
301 * send smp call function interrupt to this cpu and as such deadlocks
302 * can't happen.
303 */
304 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
305 && !oops_in_progress);
290 306
291 if (cpu == this_cpu) { 307 if (cpu == this_cpu) {
292 local_irq_save(flags); 308 local_irq_save(flags);
@@ -329,8 +345,14 @@ void __smp_call_function_single(int cpu, struct call_single_data *data,
329{ 345{
330 csd_lock(data); 346 csd_lock(data);
331 347
332 /* Can deadlock when called with interrupts disabled */ 348 /*
333 WARN_ON_ONCE(wait && irqs_disabled() && !oops_in_progress); 349 * Can deadlock when called with interrupts disabled.
350 * We allow cpu's that are not yet online though, as no one else can
351 * send smp call function interrupt to this cpu and as such deadlocks
352 * can't happen.
353 */
354 WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled()
355 && !oops_in_progress);
334 356
335 generic_exec_single(cpu, data, wait); 357 generic_exec_single(cpu, data, wait);
336} 358}
@@ -365,8 +387,14 @@ void smp_call_function_many(const struct cpumask *mask,
365 unsigned long flags; 387 unsigned long flags;
366 int cpu, next_cpu, this_cpu = smp_processor_id(); 388 int cpu, next_cpu, this_cpu = smp_processor_id();
367 389
368 /* Can deadlock when called with interrupts disabled */ 390 /*
369 WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); 391 * Can deadlock when called with interrupts disabled.
392 * We allow cpu's that are not yet online though, as no one else can
393 * send smp call function interrupt to this cpu and as such deadlocks
394 * can't happen.
395 */
396 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
397 && !oops_in_progress);
370 398
371 /* So, what's a CPU they want? Ignoring this one. */ 399 /* So, what's a CPU they want? Ignoring this one. */
372 cpu = cpumask_first_and(mask, cpu_online_mask); 400 cpu = cpumask_first_and(mask, cpu_online_mask);
diff --git a/kernel/softirq.c b/kernel/softirq.c
index eb5e131a0485..7db25067cd2d 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -227,7 +227,7 @@ restart:
227 preempt_count() = prev_count; 227 preempt_count() = prev_count;
228 } 228 }
229 229
230 rcu_bh_qsctr_inc(cpu); 230 rcu_bh_qs(cpu);
231 } 231 }
232 h++; 232 h++;
233 pending >>= 1; 233 pending >>= 1;
@@ -721,7 +721,7 @@ static int ksoftirqd(void * __bind_cpu)
721 preempt_enable_no_resched(); 721 preempt_enable_no_resched();
722 cond_resched(); 722 cond_resched();
723 preempt_disable(); 723 preempt_disable();
724 rcu_qsctr_inc((long)__bind_cpu); 724 rcu_sched_qs((long)__bind_cpu);
725 } 725 }
726 preempt_enable(); 726 preempt_enable();
727 set_current_state(TASK_INTERRUPTIBLE); 727 set_current_state(TASK_INTERRUPTIBLE);
diff --git a/kernel/spinlock.c b/kernel/spinlock.c
index 7932653c4ebd..5ddab730cb2f 100644
--- a/kernel/spinlock.c
+++ b/kernel/spinlock.c
@@ -21,44 +21,29 @@
21#include <linux/debug_locks.h> 21#include <linux/debug_locks.h>
22#include <linux/module.h> 22#include <linux/module.h>
23 23
24#ifndef _spin_trylock
24int __lockfunc _spin_trylock(spinlock_t *lock) 25int __lockfunc _spin_trylock(spinlock_t *lock)
25{ 26{
26 preempt_disable(); 27 return __spin_trylock(lock);
27 if (_raw_spin_trylock(lock)) {
28 spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
29 return 1;
30 }
31
32 preempt_enable();
33 return 0;
34} 28}
35EXPORT_SYMBOL(_spin_trylock); 29EXPORT_SYMBOL(_spin_trylock);
30#endif
36 31
32#ifndef _read_trylock
37int __lockfunc _read_trylock(rwlock_t *lock) 33int __lockfunc _read_trylock(rwlock_t *lock)
38{ 34{
39 preempt_disable(); 35 return __read_trylock(lock);
40 if (_raw_read_trylock(lock)) {
41 rwlock_acquire_read(&lock->dep_map, 0, 1, _RET_IP_);
42 return 1;
43 }
44
45 preempt_enable();
46 return 0;
47} 36}
48EXPORT_SYMBOL(_read_trylock); 37EXPORT_SYMBOL(_read_trylock);
38#endif
49 39
40#ifndef _write_trylock
50int __lockfunc _write_trylock(rwlock_t *lock) 41int __lockfunc _write_trylock(rwlock_t *lock)
51{ 42{
52 preempt_disable(); 43 return __write_trylock(lock);
53 if (_raw_write_trylock(lock)) {
54 rwlock_acquire(&lock->dep_map, 0, 1, _RET_IP_);
55 return 1;
56 }
57
58 preempt_enable();
59 return 0;
60} 44}
61EXPORT_SYMBOL(_write_trylock); 45EXPORT_SYMBOL(_write_trylock);
46#endif
62 47
63/* 48/*
64 * If lockdep is enabled then we use the non-preemption spin-ops 49 * If lockdep is enabled then we use the non-preemption spin-ops
@@ -67,132 +52,101 @@ EXPORT_SYMBOL(_write_trylock);
67 */ 52 */
68#if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) 53#if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC)
69 54
55#ifndef _read_lock
70void __lockfunc _read_lock(rwlock_t *lock) 56void __lockfunc _read_lock(rwlock_t *lock)
71{ 57{
72 preempt_disable(); 58 __read_lock(lock);
73 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
74 LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock);
75} 59}
76EXPORT_SYMBOL(_read_lock); 60EXPORT_SYMBOL(_read_lock);
61#endif
77 62
63#ifndef _spin_lock_irqsave
78unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) 64unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock)
79{ 65{
80 unsigned long flags; 66 return __spin_lock_irqsave(lock);
81
82 local_irq_save(flags);
83 preempt_disable();
84 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
85 /*
86 * On lockdep we dont want the hand-coded irq-enable of
87 * _raw_spin_lock_flags() code, because lockdep assumes
88 * that interrupts are not re-enabled during lock-acquire:
89 */
90#ifdef CONFIG_LOCKDEP
91 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
92#else
93 _raw_spin_lock_flags(lock, &flags);
94#endif
95 return flags;
96} 67}
97EXPORT_SYMBOL(_spin_lock_irqsave); 68EXPORT_SYMBOL(_spin_lock_irqsave);
69#endif
98 70
71#ifndef _spin_lock_irq
99void __lockfunc _spin_lock_irq(spinlock_t *lock) 72void __lockfunc _spin_lock_irq(spinlock_t *lock)
100{ 73{
101 local_irq_disable(); 74 __spin_lock_irq(lock);
102 preempt_disable();
103 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
104 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
105} 75}
106EXPORT_SYMBOL(_spin_lock_irq); 76EXPORT_SYMBOL(_spin_lock_irq);
77#endif
107 78
79#ifndef _spin_lock_bh
108void __lockfunc _spin_lock_bh(spinlock_t *lock) 80void __lockfunc _spin_lock_bh(spinlock_t *lock)
109{ 81{
110 local_bh_disable(); 82 __spin_lock_bh(lock);
111 preempt_disable();
112 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
113 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
114} 83}
115EXPORT_SYMBOL(_spin_lock_bh); 84EXPORT_SYMBOL(_spin_lock_bh);
85#endif
116 86
87#ifndef _read_lock_irqsave
117unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) 88unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock)
118{ 89{
119 unsigned long flags; 90 return __read_lock_irqsave(lock);
120
121 local_irq_save(flags);
122 preempt_disable();
123 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
124 LOCK_CONTENDED_FLAGS(lock, _raw_read_trylock, _raw_read_lock,
125 _raw_read_lock_flags, &flags);
126 return flags;
127} 91}
128EXPORT_SYMBOL(_read_lock_irqsave); 92EXPORT_SYMBOL(_read_lock_irqsave);
93#endif
129 94
95#ifndef _read_lock_irq
130void __lockfunc _read_lock_irq(rwlock_t *lock) 96void __lockfunc _read_lock_irq(rwlock_t *lock)
131{ 97{
132 local_irq_disable(); 98 __read_lock_irq(lock);
133 preempt_disable();
134 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
135 LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock);
136} 99}
137EXPORT_SYMBOL(_read_lock_irq); 100EXPORT_SYMBOL(_read_lock_irq);
101#endif
138 102
103#ifndef _read_lock_bh
139void __lockfunc _read_lock_bh(rwlock_t *lock) 104void __lockfunc _read_lock_bh(rwlock_t *lock)
140{ 105{
141 local_bh_disable(); 106 __read_lock_bh(lock);
142 preempt_disable();
143 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
144 LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock);
145} 107}
146EXPORT_SYMBOL(_read_lock_bh); 108EXPORT_SYMBOL(_read_lock_bh);
109#endif
147 110
111#ifndef _write_lock_irqsave
148unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) 112unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock)
149{ 113{
150 unsigned long flags; 114 return __write_lock_irqsave(lock);
151
152 local_irq_save(flags);
153 preempt_disable();
154 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
155 LOCK_CONTENDED_FLAGS(lock, _raw_write_trylock, _raw_write_lock,
156 _raw_write_lock_flags, &flags);
157 return flags;
158} 115}
159EXPORT_SYMBOL(_write_lock_irqsave); 116EXPORT_SYMBOL(_write_lock_irqsave);
117#endif
160 118
119#ifndef _write_lock_irq
161void __lockfunc _write_lock_irq(rwlock_t *lock) 120void __lockfunc _write_lock_irq(rwlock_t *lock)
162{ 121{
163 local_irq_disable(); 122 __write_lock_irq(lock);
164 preempt_disable();
165 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
166 LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock);
167} 123}
168EXPORT_SYMBOL(_write_lock_irq); 124EXPORT_SYMBOL(_write_lock_irq);
125#endif
169 126
127#ifndef _write_lock_bh
170void __lockfunc _write_lock_bh(rwlock_t *lock) 128void __lockfunc _write_lock_bh(rwlock_t *lock)
171{ 129{
172 local_bh_disable(); 130 __write_lock_bh(lock);
173 preempt_disable();
174 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
175 LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock);
176} 131}
177EXPORT_SYMBOL(_write_lock_bh); 132EXPORT_SYMBOL(_write_lock_bh);
133#endif
178 134
135#ifndef _spin_lock
179void __lockfunc _spin_lock(spinlock_t *lock) 136void __lockfunc _spin_lock(spinlock_t *lock)
180{ 137{
181 preempt_disable(); 138 __spin_lock(lock);
182 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
183 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
184} 139}
185
186EXPORT_SYMBOL(_spin_lock); 140EXPORT_SYMBOL(_spin_lock);
141#endif
187 142
143#ifndef _write_lock
188void __lockfunc _write_lock(rwlock_t *lock) 144void __lockfunc _write_lock(rwlock_t *lock)
189{ 145{
190 preempt_disable(); 146 __write_lock(lock);
191 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
192 LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock);
193} 147}
194
195EXPORT_SYMBOL(_write_lock); 148EXPORT_SYMBOL(_write_lock);
149#endif
196 150
197#else /* CONFIG_PREEMPT: */ 151#else /* CONFIG_PREEMPT: */
198 152
@@ -318,125 +272,109 @@ EXPORT_SYMBOL(_spin_lock_nest_lock);
318 272
319#endif 273#endif
320 274
275#ifndef _spin_unlock
321void __lockfunc _spin_unlock(spinlock_t *lock) 276void __lockfunc _spin_unlock(spinlock_t *lock)
322{ 277{
323 spin_release(&lock->dep_map, 1, _RET_IP_); 278 __spin_unlock(lock);
324 _raw_spin_unlock(lock);
325 preempt_enable();
326} 279}
327EXPORT_SYMBOL(_spin_unlock); 280EXPORT_SYMBOL(_spin_unlock);
281#endif
328 282
283#ifndef _write_unlock
329void __lockfunc _write_unlock(rwlock_t *lock) 284void __lockfunc _write_unlock(rwlock_t *lock)
330{ 285{
331 rwlock_release(&lock->dep_map, 1, _RET_IP_); 286 __write_unlock(lock);
332 _raw_write_unlock(lock);
333 preempt_enable();
334} 287}
335EXPORT_SYMBOL(_write_unlock); 288EXPORT_SYMBOL(_write_unlock);
289#endif
336 290
291#ifndef _read_unlock
337void __lockfunc _read_unlock(rwlock_t *lock) 292void __lockfunc _read_unlock(rwlock_t *lock)
338{ 293{
339 rwlock_release(&lock->dep_map, 1, _RET_IP_); 294 __read_unlock(lock);
340 _raw_read_unlock(lock);
341 preempt_enable();
342} 295}
343EXPORT_SYMBOL(_read_unlock); 296EXPORT_SYMBOL(_read_unlock);
297#endif
344 298
299#ifndef _spin_unlock_irqrestore
345void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) 300void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
346{ 301{
347 spin_release(&lock->dep_map, 1, _RET_IP_); 302 __spin_unlock_irqrestore(lock, flags);
348 _raw_spin_unlock(lock);
349 local_irq_restore(flags);
350 preempt_enable();
351} 303}
352EXPORT_SYMBOL(_spin_unlock_irqrestore); 304EXPORT_SYMBOL(_spin_unlock_irqrestore);
305#endif
353 306
307#ifndef _spin_unlock_irq
354void __lockfunc _spin_unlock_irq(spinlock_t *lock) 308void __lockfunc _spin_unlock_irq(spinlock_t *lock)
355{ 309{
356 spin_release(&lock->dep_map, 1, _RET_IP_); 310 __spin_unlock_irq(lock);
357 _raw_spin_unlock(lock);
358 local_irq_enable();
359 preempt_enable();
360} 311}
361EXPORT_SYMBOL(_spin_unlock_irq); 312EXPORT_SYMBOL(_spin_unlock_irq);
313#endif
362 314
315#ifndef _spin_unlock_bh
363void __lockfunc _spin_unlock_bh(spinlock_t *lock) 316void __lockfunc _spin_unlock_bh(spinlock_t *lock)
364{ 317{
365 spin_release(&lock->dep_map, 1, _RET_IP_); 318 __spin_unlock_bh(lock);
366 _raw_spin_unlock(lock);
367 preempt_enable_no_resched();
368 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
369} 319}
370EXPORT_SYMBOL(_spin_unlock_bh); 320EXPORT_SYMBOL(_spin_unlock_bh);
321#endif
371 322
323#ifndef _read_unlock_irqrestore
372void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) 324void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags)
373{ 325{
374 rwlock_release(&lock->dep_map, 1, _RET_IP_); 326 __read_unlock_irqrestore(lock, flags);
375 _raw_read_unlock(lock);
376 local_irq_restore(flags);
377 preempt_enable();
378} 327}
379EXPORT_SYMBOL(_read_unlock_irqrestore); 328EXPORT_SYMBOL(_read_unlock_irqrestore);
329#endif
380 330
331#ifndef _read_unlock_irq
381void __lockfunc _read_unlock_irq(rwlock_t *lock) 332void __lockfunc _read_unlock_irq(rwlock_t *lock)
382{ 333{
383 rwlock_release(&lock->dep_map, 1, _RET_IP_); 334 __read_unlock_irq(lock);
384 _raw_read_unlock(lock);
385 local_irq_enable();
386 preempt_enable();
387} 335}
388EXPORT_SYMBOL(_read_unlock_irq); 336EXPORT_SYMBOL(_read_unlock_irq);
337#endif
389 338
339#ifndef _read_unlock_bh
390void __lockfunc _read_unlock_bh(rwlock_t *lock) 340void __lockfunc _read_unlock_bh(rwlock_t *lock)
391{ 341{
392 rwlock_release(&lock->dep_map, 1, _RET_IP_); 342 __read_unlock_bh(lock);
393 _raw_read_unlock(lock);
394 preempt_enable_no_resched();
395 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
396} 343}
397EXPORT_SYMBOL(_read_unlock_bh); 344EXPORT_SYMBOL(_read_unlock_bh);
345#endif
398 346
347#ifndef _write_unlock_irqrestore
399void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) 348void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags)
400{ 349{
401 rwlock_release(&lock->dep_map, 1, _RET_IP_); 350 __write_unlock_irqrestore(lock, flags);
402 _raw_write_unlock(lock);
403 local_irq_restore(flags);
404 preempt_enable();
405} 351}
406EXPORT_SYMBOL(_write_unlock_irqrestore); 352EXPORT_SYMBOL(_write_unlock_irqrestore);
353#endif
407 354
355#ifndef _write_unlock_irq
408void __lockfunc _write_unlock_irq(rwlock_t *lock) 356void __lockfunc _write_unlock_irq(rwlock_t *lock)
409{ 357{
410 rwlock_release(&lock->dep_map, 1, _RET_IP_); 358 __write_unlock_irq(lock);
411 _raw_write_unlock(lock);
412 local_irq_enable();
413 preempt_enable();
414} 359}
415EXPORT_SYMBOL(_write_unlock_irq); 360EXPORT_SYMBOL(_write_unlock_irq);
361#endif
416 362
363#ifndef _write_unlock_bh
417void __lockfunc _write_unlock_bh(rwlock_t *lock) 364void __lockfunc _write_unlock_bh(rwlock_t *lock)
418{ 365{
419 rwlock_release(&lock->dep_map, 1, _RET_IP_); 366 __write_unlock_bh(lock);
420 _raw_write_unlock(lock);
421 preempt_enable_no_resched();
422 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
423} 367}
424EXPORT_SYMBOL(_write_unlock_bh); 368EXPORT_SYMBOL(_write_unlock_bh);
369#endif
425 370
371#ifndef _spin_trylock_bh
426int __lockfunc _spin_trylock_bh(spinlock_t *lock) 372int __lockfunc _spin_trylock_bh(spinlock_t *lock)
427{ 373{
428 local_bh_disable(); 374 return __spin_trylock_bh(lock);
429 preempt_disable();
430 if (_raw_spin_trylock(lock)) {
431 spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
432 return 1;
433 }
434
435 preempt_enable_no_resched();
436 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
437 return 0;
438} 375}
439EXPORT_SYMBOL(_spin_trylock_bh); 376EXPORT_SYMBOL(_spin_trylock_bh);
377#endif
440 378
441notrace int in_lock_functions(unsigned long addr) 379notrace int in_lock_functions(unsigned long addr)
442{ 380{
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 58be76017fd0..1a631ba684a4 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -49,7 +49,6 @@
49#include <linux/acpi.h> 49#include <linux/acpi.h>
50#include <linux/reboot.h> 50#include <linux/reboot.h>
51#include <linux/ftrace.h> 51#include <linux/ftrace.h>
52#include <linux/security.h>
53#include <linux/slow-work.h> 52#include <linux/slow-work.h>
54#include <linux/perf_counter.h> 53#include <linux/perf_counter.h>
55 54
@@ -92,6 +91,9 @@ extern int sysctl_nr_trim_pages;
92#ifdef CONFIG_RCU_TORTURE_TEST 91#ifdef CONFIG_RCU_TORTURE_TEST
93extern int rcutorture_runnable; 92extern int rcutorture_runnable;
94#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 93#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
94#ifdef CONFIG_BLOCK
95extern int blk_iopoll_enabled;
96#endif
95 97
96/* Constants used for minimum and maximum */ 98/* Constants used for minimum and maximum */
97#ifdef CONFIG_DETECT_SOFTLOCKUP 99#ifdef CONFIG_DETECT_SOFTLOCKUP
@@ -246,6 +248,14 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */
246#endif 248#endif
247 249
248static struct ctl_table kern_table[] = { 250static struct ctl_table kern_table[] = {
251 {
252 .ctl_name = CTL_UNNUMBERED,
253 .procname = "sched_child_runs_first",
254 .data = &sysctl_sched_child_runs_first,
255 .maxlen = sizeof(unsigned int),
256 .mode = 0644,
257 .proc_handler = &proc_dointvec,
258 },
249#ifdef CONFIG_SCHED_DEBUG 259#ifdef CONFIG_SCHED_DEBUG
250 { 260 {
251 .ctl_name = CTL_UNNUMBERED, 261 .ctl_name = CTL_UNNUMBERED,
@@ -300,14 +310,6 @@ static struct ctl_table kern_table[] = {
300 }, 310 },
301 { 311 {
302 .ctl_name = CTL_UNNUMBERED, 312 .ctl_name = CTL_UNNUMBERED,
303 .procname = "sched_child_runs_first",
304 .data = &sysctl_sched_child_runs_first,
305 .maxlen = sizeof(unsigned int),
306 .mode = 0644,
307 .proc_handler = &proc_dointvec,
308 },
309 {
310 .ctl_name = CTL_UNNUMBERED,
311 .procname = "sched_features", 313 .procname = "sched_features",
312 .data = &sysctl_sched_features, 314 .data = &sysctl_sched_features,
313 .maxlen = sizeof(unsigned int), 315 .maxlen = sizeof(unsigned int),
@@ -332,6 +334,14 @@ static struct ctl_table kern_table[] = {
332 }, 334 },
333 { 335 {
334 .ctl_name = CTL_UNNUMBERED, 336 .ctl_name = CTL_UNNUMBERED,
337 .procname = "sched_time_avg",
338 .data = &sysctl_sched_time_avg,
339 .maxlen = sizeof(unsigned int),
340 .mode = 0644,
341 .proc_handler = &proc_dointvec,
342 },
343 {
344 .ctl_name = CTL_UNNUMBERED,
335 .procname = "timer_migration", 345 .procname = "timer_migration",
336 .data = &sysctl_timer_migration, 346 .data = &sysctl_timer_migration,
337 .maxlen = sizeof(unsigned int), 347 .maxlen = sizeof(unsigned int),
@@ -990,7 +1000,16 @@ static struct ctl_table kern_table[] = {
990 .proc_handler = &proc_dointvec, 1000 .proc_handler = &proc_dointvec,
991 }, 1001 },
992#endif 1002#endif
993 1003#ifdef CONFIG_BLOCK
1004 {
1005 .ctl_name = CTL_UNNUMBERED,
1006 .procname = "blk_iopoll",
1007 .data = &blk_iopoll_enabled,
1008 .maxlen = sizeof(int),
1009 .mode = 0644,
1010 .proc_handler = &proc_dointvec,
1011 },
1012#endif
994/* 1013/*
995 * NOTE: do not add new entries to this table unless you have read 1014 * NOTE: do not add new entries to this table unless you have read
996 * Documentation/sysctl/ctl_unnumbered.txt 1015 * Documentation/sysctl/ctl_unnumbered.txt
diff --git a/kernel/taskstats.c b/kernel/taskstats.c
index 888adbcca30c..ea8384d3caa7 100644
--- a/kernel/taskstats.c
+++ b/kernel/taskstats.c
@@ -108,7 +108,7 @@ static int prepare_reply(struct genl_info *info, u8 cmd, struct sk_buff **skbp,
108/* 108/*
109 * Send taskstats data in @skb to listener with nl_pid @pid 109 * Send taskstats data in @skb to listener with nl_pid @pid
110 */ 110 */
111static int send_reply(struct sk_buff *skb, pid_t pid) 111static int send_reply(struct sk_buff *skb, struct genl_info *info)
112{ 112{
113 struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); 113 struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb));
114 void *reply = genlmsg_data(genlhdr); 114 void *reply = genlmsg_data(genlhdr);
@@ -120,7 +120,7 @@ static int send_reply(struct sk_buff *skb, pid_t pid)
120 return rc; 120 return rc;
121 } 121 }
122 122
123 return genlmsg_unicast(skb, pid); 123 return genlmsg_reply(skb, info);
124} 124}
125 125
126/* 126/*
@@ -150,7 +150,7 @@ static void send_cpu_listeners(struct sk_buff *skb,
150 if (!skb_next) 150 if (!skb_next)
151 break; 151 break;
152 } 152 }
153 rc = genlmsg_unicast(skb_cur, s->pid); 153 rc = genlmsg_unicast(&init_net, skb_cur, s->pid);
154 if (rc == -ECONNREFUSED) { 154 if (rc == -ECONNREFUSED) {
155 s->valid = 0; 155 s->valid = 0;
156 delcount++; 156 delcount++;
@@ -418,7 +418,7 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
418 goto err; 418 goto err;
419 } 419 }
420 420
421 rc = send_reply(rep_skb, info->snd_pid); 421 rc = send_reply(rep_skb, info);
422 422
423err: 423err:
424 fput_light(file, fput_needed); 424 fput_light(file, fput_needed);
@@ -487,7 +487,7 @@ free_return_rc:
487 } else 487 } else
488 goto err; 488 goto err;
489 489
490 return send_reply(rep_skb, info->snd_pid); 490 return send_reply(rep_skb, info);
491err: 491err:
492 nlmsg_free(rep_skb); 492 nlmsg_free(rep_skb);
493 return rc; 493 return rc;
diff --git a/kernel/timer.c b/kernel/timer.c
index a7f07d5a6241..a3d25f415019 100644
--- a/kernel/timer.c
+++ b/kernel/timer.c
@@ -1156,8 +1156,7 @@ void update_process_times(int user_tick)
1156 /* Note: this timer irq context must be accounted for as well. */ 1156 /* Note: this timer irq context must be accounted for as well. */
1157 account_process_tick(p, user_tick); 1157 account_process_tick(p, user_tick);
1158 run_local_timers(); 1158 run_local_timers();
1159 if (rcu_pending(cpu)) 1159 rcu_check_callbacks(cpu, user_tick);
1160 rcu_check_callbacks(cpu, user_tick);
1161 printk_tick(); 1160 printk_tick();
1162 scheduler_tick(); 1161 scheduler_tick();
1163 run_posix_cpu_timers(p); 1162 run_posix_cpu_timers(p);
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c
index 787f0fb0994e..56c260b83a9c 100644
--- a/kernel/trace/trace_events.c
+++ b/kernel/trace/trace_events.c
@@ -1411,7 +1411,7 @@ static __init void event_trace_self_tests(void)
1411 1411
1412#ifdef CONFIG_FUNCTION_TRACER 1412#ifdef CONFIG_FUNCTION_TRACER
1413 1413
1414static DEFINE_PER_CPU(atomic_t, test_event_disable); 1414static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable);
1415 1415
1416static void 1416static void
1417function_test_events_call(unsigned long ip, unsigned long parent_ip) 1417function_test_events_call(unsigned long ip, unsigned long parent_ip)
@@ -1428,7 +1428,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip)
1428 pc = preempt_count(); 1428 pc = preempt_count();
1429 resched = ftrace_preempt_disable(); 1429 resched = ftrace_preempt_disable();
1430 cpu = raw_smp_processor_id(); 1430 cpu = raw_smp_processor_id();
1431 disabled = atomic_inc_return(&per_cpu(test_event_disable, cpu)); 1431 disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu));
1432 1432
1433 if (disabled != 1) 1433 if (disabled != 1)
1434 goto out; 1434 goto out;
@@ -1447,7 +1447,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip)
1447 trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); 1447 trace_nowake_buffer_unlock_commit(buffer, event, flags, pc);
1448 1448
1449 out: 1449 out:
1450 atomic_dec(&per_cpu(test_event_disable, cpu)); 1450 atomic_dec(&per_cpu(ftrace_test_event_disable, cpu));
1451 ftrace_preempt_enable(resched); 1451 ftrace_preempt_enable(resched);
1452} 1452}
1453 1453
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 0668795d8818..addfe2df93b1 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -317,8 +317,6 @@ static int worker_thread(void *__cwq)
317 if (cwq->wq->freezeable) 317 if (cwq->wq->freezeable)
318 set_freezable(); 318 set_freezable();
319 319
320 set_user_nice(current, -5);
321
322 for (;;) { 320 for (;;) {
323 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 321 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
324 if (!freezing(current) && 322 if (!freezing(current) &&
@@ -600,7 +598,12 @@ static struct workqueue_struct *keventd_wq __read_mostly;
600 * schedule_work - put work task in global workqueue 598 * schedule_work - put work task in global workqueue
601 * @work: job to be done 599 * @work: job to be done
602 * 600 *
603 * This puts a job in the kernel-global workqueue. 601 * Returns zero if @work was already on the kernel-global workqueue and
602 * non-zero otherwise.
603 *
604 * This puts a job in the kernel-global workqueue if it was not already
605 * queued and leaves it in the same position on the kernel-global
606 * workqueue otherwise.
604 */ 607 */
605int schedule_work(struct work_struct *work) 608int schedule_work(struct work_struct *work)
606{ 609{