diff options
author | Peter Zijlstra <a.p.zijlstra@chello.nl> | 2011-10-13 10:52:28 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2011-11-14 06:50:32 -0500 |
commit | cf5f0acf3935c91379e709a71ecf68805d366659 (patch) | |
tree | 66bbd968ec8031c33e7134b6c7f9387c796d6873 /kernel | |
parent | 7f80850d3f9fd8fda23a317044aef3a6bafab06b (diff) |
sched: Add a comment to effective_load() since it's a pain
Every time I have to stare at this function I need to completely
reverse engineer its workings, about time I write a comment
explaining the thing.
Collected bits and pieces from previous changelogs, mostly:
4be9daaa1b33701f011f4117f22dc1e45a3e6e34
83378269a5fad98f562ebc0f09c349575e6cbfe1
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1318518057.27731.2.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/sched_fair.c | 113 |
1 files changed, 95 insertions, 18 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 5c9e67923b7c..aba20f495188 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -772,19 +772,32 @@ static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | |||
772 | list_del_leaf_cfs_rq(cfs_rq); | 772 | list_del_leaf_cfs_rq(cfs_rq); |
773 | } | 773 | } |
774 | 774 | ||
775 | static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) | ||
776 | { | ||
777 | long tg_weight; | ||
778 | |||
779 | /* | ||
780 | * Use this CPU's actual weight instead of the last load_contribution | ||
781 | * to gain a more accurate current total weight. See | ||
782 | * update_cfs_rq_load_contribution(). | ||
783 | */ | ||
784 | tg_weight = atomic_read(&tg->load_weight); | ||
785 | tg_weight -= cfs_rq->load_contribution; | ||
786 | tg_weight += cfs_rq->load.weight; | ||
787 | |||
788 | return tg_weight; | ||
789 | } | ||
790 | |||
775 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 791 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) |
776 | { | 792 | { |
777 | long load_weight, load, shares; | 793 | long tg_weight, load, shares; |
778 | 794 | ||
795 | tg_weight = calc_tg_weight(tg, cfs_rq); | ||
779 | load = cfs_rq->load.weight; | 796 | load = cfs_rq->load.weight; |
780 | 797 | ||
781 | load_weight = atomic_read(&tg->load_weight); | ||
782 | load_weight += load; | ||
783 | load_weight -= cfs_rq->load_contribution; | ||
784 | |||
785 | shares = (tg->shares * load); | 798 | shares = (tg->shares * load); |
786 | if (load_weight) | 799 | if (tg_weight) |
787 | shares /= load_weight; | 800 | shares /= tg_weight; |
788 | 801 | ||
789 | if (shares < MIN_SHARES) | 802 | if (shares < MIN_SHARES) |
790 | shares = MIN_SHARES; | 803 | shares = MIN_SHARES; |
@@ -2036,36 +2049,100 @@ static void task_waking_fair(struct task_struct *p) | |||
2036 | * Adding load to a group doesn't make a group heavier, but can cause movement | 2049 | * Adding load to a group doesn't make a group heavier, but can cause movement |
2037 | * of group shares between cpus. Assuming the shares were perfectly aligned one | 2050 | * of group shares between cpus. Assuming the shares were perfectly aligned one |
2038 | * can calculate the shift in shares. | 2051 | * can calculate the shift in shares. |
2052 | * | ||
2053 | * Calculate the effective load difference if @wl is added (subtracted) to @tg | ||
2054 | * on this @cpu and results in a total addition (subtraction) of @wg to the | ||
2055 | * total group weight. | ||
2056 | * | ||
2057 | * Given a runqueue weight distribution (rw_i) we can compute a shares | ||
2058 | * distribution (s_i) using: | ||
2059 | * | ||
2060 | * s_i = rw_i / \Sum rw_j (1) | ||
2061 | * | ||
2062 | * Suppose we have 4 CPUs and our @tg is a direct child of the root group and | ||
2063 | * has 7 equal weight tasks, distributed as below (rw_i), with the resulting | ||
2064 | * shares distribution (s_i): | ||
2065 | * | ||
2066 | * rw_i = { 2, 4, 1, 0 } | ||
2067 | * s_i = { 2/7, 4/7, 1/7, 0 } | ||
2068 | * | ||
2069 | * As per wake_affine() we're interested in the load of two CPUs (the CPU the | ||
2070 | * task used to run on and the CPU the waker is running on), we need to | ||
2071 | * compute the effect of waking a task on either CPU and, in case of a sync | ||
2072 | * wakeup, compute the effect of the current task going to sleep. | ||
2073 | * | ||
2074 | * So for a change of @wl to the local @cpu with an overall group weight change | ||
2075 | * of @wl we can compute the new shares distribution (s'_i) using: | ||
2076 | * | ||
2077 | * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) | ||
2078 | * | ||
2079 | * Suppose we're interested in CPUs 0 and 1, and want to compute the load | ||
2080 | * differences in waking a task to CPU 0. The additional task changes the | ||
2081 | * weight and shares distributions like: | ||
2082 | * | ||
2083 | * rw'_i = { 3, 4, 1, 0 } | ||
2084 | * s'_i = { 3/8, 4/8, 1/8, 0 } | ||
2085 | * | ||
2086 | * We can then compute the difference in effective weight by using: | ||
2087 | * | ||
2088 | * dw_i = S * (s'_i - s_i) (3) | ||
2089 | * | ||
2090 | * Where 'S' is the group weight as seen by its parent. | ||
2091 | * | ||
2092 | * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) | ||
2093 | * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - | ||
2094 | * 4/7) times the weight of the group. | ||
2039 | */ | 2095 | */ |
2040 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | 2096 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) |
2041 | { | 2097 | { |
2042 | struct sched_entity *se = tg->se[cpu]; | 2098 | struct sched_entity *se = tg->se[cpu]; |
2043 | 2099 | ||
2044 | if (!tg->parent) | 2100 | if (!tg->parent) /* the trivial, non-cgroup case */ |
2045 | return wl; | 2101 | return wl; |
2046 | 2102 | ||
2047 | for_each_sched_entity(se) { | 2103 | for_each_sched_entity(se) { |
2048 | long lw, w; | 2104 | long w, W; |
2049 | 2105 | ||
2050 | tg = se->my_q->tg; | 2106 | tg = se->my_q->tg; |
2051 | w = se->my_q->load.weight; | ||
2052 | 2107 | ||
2053 | /* use this cpu's instantaneous contribution */ | 2108 | /* |
2054 | lw = atomic_read(&tg->load_weight); | 2109 | * W = @wg + \Sum rw_j |
2055 | lw -= se->my_q->load_contribution; | 2110 | */ |
2056 | lw += w + wg; | 2111 | W = wg + calc_tg_weight(tg, se->my_q); |
2057 | 2112 | ||
2058 | wl += w; | 2113 | /* |
2114 | * w = rw_i + @wl | ||
2115 | */ | ||
2116 | w = se->my_q->load.weight + wl; | ||
2059 | 2117 | ||
2060 | if (lw > 0 && wl < lw) | 2118 | /* |
2061 | wl = (wl * tg->shares) / lw; | 2119 | * wl = S * s'_i; see (2) |
2120 | */ | ||
2121 | if (W > 0 && w < W) | ||
2122 | wl = (w * tg->shares) / W; | ||
2062 | else | 2123 | else |
2063 | wl = tg->shares; | 2124 | wl = tg->shares; |
2064 | 2125 | ||
2065 | /* zero point is MIN_SHARES */ | 2126 | /* |
2127 | * Per the above, wl is the new se->load.weight value; since | ||
2128 | * those are clipped to [MIN_SHARES, ...) do so now. See | ||
2129 | * calc_cfs_shares(). | ||
2130 | */ | ||
2066 | if (wl < MIN_SHARES) | 2131 | if (wl < MIN_SHARES) |
2067 | wl = MIN_SHARES; | 2132 | wl = MIN_SHARES; |
2133 | |||
2134 | /* | ||
2135 | * wl = dw_i = S * (s'_i - s_i); see (3) | ||
2136 | */ | ||
2068 | wl -= se->load.weight; | 2137 | wl -= se->load.weight; |
2138 | |||
2139 | /* | ||
2140 | * Recursively apply this logic to all parent groups to compute | ||
2141 | * the final effective load change on the root group. Since | ||
2142 | * only the @tg group gets extra weight, all parent groups can | ||
2143 | * only redistribute existing shares. @wl is the shift in shares | ||
2144 | * resulting from this level per the above. | ||
2145 | */ | ||
2069 | wg = 0; | 2146 | wg = 0; |
2070 | } | 2147 | } |
2071 | 2148 | ||