diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2006-01-09 23:52:38 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-01-10 11:01:39 -0500 |
commit | becf8b5d00f4b47e847f98322cdaf8cd16243861 (patch) | |
tree | 152ba7583324c64d34ecc70d5401957ca7225761 /kernel | |
parent | 97735f25d2ba898ec5e13746451525580631c834 (diff) |
[PATCH] hrtimer: convert posix timers completely
- convert posix-timers.c to use hrtimers
- remove the now obsolete abslist code
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/posix-timers.c | 717 |
1 files changed, 135 insertions, 582 deletions
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index ba900587b815..9e66e614862a 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
@@ -35,7 +35,6 @@ | |||
35 | #include <linux/interrupt.h> | 35 | #include <linux/interrupt.h> |
36 | #include <linux/slab.h> | 36 | #include <linux/slab.h> |
37 | #include <linux/time.h> | 37 | #include <linux/time.h> |
38 | #include <linux/calc64.h> | ||
39 | 38 | ||
40 | #include <asm/uaccess.h> | 39 | #include <asm/uaccess.h> |
41 | #include <asm/semaphore.h> | 40 | #include <asm/semaphore.h> |
@@ -49,12 +48,6 @@ | |||
49 | #include <linux/workqueue.h> | 48 | #include <linux/workqueue.h> |
50 | #include <linux/module.h> | 49 | #include <linux/module.h> |
51 | 50 | ||
52 | #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */ | ||
53 | |||
54 | static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) | ||
55 | { | ||
56 | return (u64)mpy1 * mpy2; | ||
57 | } | ||
58 | /* | 51 | /* |
59 | * Management arrays for POSIX timers. Timers are kept in slab memory | 52 | * Management arrays for POSIX timers. Timers are kept in slab memory |
60 | * Timer ids are allocated by an external routine that keeps track of the | 53 | * Timer ids are allocated by an external routine that keeps track of the |
@@ -140,18 +133,18 @@ static DEFINE_SPINLOCK(idr_lock); | |||
140 | */ | 133 | */ |
141 | 134 | ||
142 | static struct k_clock posix_clocks[MAX_CLOCKS]; | 135 | static struct k_clock posix_clocks[MAX_CLOCKS]; |
136 | |||
143 | /* | 137 | /* |
144 | * We only have one real clock that can be set so we need only one abs list, | 138 | * These ones are defined below. |
145 | * even if we should want to have several clocks with differing resolutions. | ||
146 | */ | 139 | */ |
147 | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), | 140 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, |
148 | .lock = SPIN_LOCK_UNLOCKED}; | 141 | struct timespec __user *rmtp); |
142 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | ||
143 | static int common_timer_set(struct k_itimer *, int, | ||
144 | struct itimerspec *, struct itimerspec *); | ||
145 | static int common_timer_del(struct k_itimer *timer); | ||
149 | 146 | ||
150 | static void posix_timer_fn(unsigned long); | 147 | static int posix_timer_fn(void *data); |
151 | static u64 do_posix_clock_monotonic_gettime_parts( | ||
152 | struct timespec *tp, struct timespec *mo); | ||
153 | int do_posix_clock_monotonic_gettime(struct timespec *tp); | ||
154 | static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp); | ||
155 | 148 | ||
156 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 149 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); |
157 | 150 | ||
@@ -184,10 +177,12 @@ static inline int common_clock_getres(const clockid_t which_clock, | |||
184 | return 0; | 177 | return 0; |
185 | } | 178 | } |
186 | 179 | ||
187 | static inline int common_clock_get(const clockid_t which_clock, | 180 | /* |
188 | struct timespec *tp) | 181 | * Get real time for posix timers |
182 | */ | ||
183 | static int common_clock_get(clockid_t which_clock, struct timespec *tp) | ||
189 | { | 184 | { |
190 | getnstimeofday(tp); | 185 | ktime_get_real_ts(tp); |
191 | return 0; | 186 | return 0; |
192 | } | 187 | } |
193 | 188 | ||
@@ -199,25 +194,14 @@ static inline int common_clock_set(const clockid_t which_clock, | |||
199 | 194 | ||
200 | static inline int common_timer_create(struct k_itimer *new_timer) | 195 | static inline int common_timer_create(struct k_itimer *new_timer) |
201 | { | 196 | { |
202 | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); | 197 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock); |
203 | init_timer(&new_timer->it.real.timer); | 198 | new_timer->it.real.timer.data = new_timer; |
204 | new_timer->it.real.timer.data = (unsigned long) new_timer; | ||
205 | new_timer->it.real.timer.function = posix_timer_fn; | 199 | new_timer->it.real.timer.function = posix_timer_fn; |
206 | return 0; | 200 | return 0; |
207 | } | 201 | } |
208 | 202 | ||
209 | /* | 203 | /* |
210 | * These ones are defined below. | 204 | * Return nonzero if we know a priori this clockid_t value is bogus. |
211 | */ | ||
212 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, | ||
213 | struct timespec __user *rmtp); | ||
214 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | ||
215 | static int common_timer_set(struct k_itimer *, int, | ||
216 | struct itimerspec *, struct itimerspec *); | ||
217 | static int common_timer_del(struct k_itimer *timer); | ||
218 | |||
219 | /* | ||
220 | * Return nonzero iff we know a priori this clockid_t value is bogus. | ||
221 | */ | 205 | */ |
222 | static inline int invalid_clockid(const clockid_t which_clock) | 206 | static inline int invalid_clockid(const clockid_t which_clock) |
223 | { | 207 | { |
@@ -227,26 +211,32 @@ static inline int invalid_clockid(const clockid_t which_clock) | |||
227 | return 1; | 211 | return 1; |
228 | if (posix_clocks[which_clock].clock_getres != NULL) | 212 | if (posix_clocks[which_clock].clock_getres != NULL) |
229 | return 0; | 213 | return 0; |
230 | #ifndef CLOCK_DISPATCH_DIRECT | ||
231 | if (posix_clocks[which_clock].res != 0) | 214 | if (posix_clocks[which_clock].res != 0) |
232 | return 0; | 215 | return 0; |
233 | #endif | ||
234 | return 1; | 216 | return 1; |
235 | } | 217 | } |
236 | 218 | ||
219 | /* | ||
220 | * Get monotonic time for posix timers | ||
221 | */ | ||
222 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | ||
223 | { | ||
224 | ktime_get_ts(tp); | ||
225 | return 0; | ||
226 | } | ||
237 | 227 | ||
238 | /* | 228 | /* |
239 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 229 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
240 | */ | 230 | */ |
241 | static __init int init_posix_timers(void) | 231 | static __init int init_posix_timers(void) |
242 | { | 232 | { |
243 | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, | 233 | struct k_clock clock_realtime = { |
244 | .abs_struct = &abs_list | 234 | .clock_getres = hrtimer_get_res, |
245 | }; | 235 | }; |
246 | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, | 236 | struct k_clock clock_monotonic = { |
247 | .abs_struct = NULL, | 237 | .clock_getres = hrtimer_get_res, |
248 | .clock_get = do_posix_clock_monotonic_get, | 238 | .clock_get = posix_ktime_get_ts, |
249 | .clock_set = do_posix_clock_nosettime | 239 | .clock_set = do_posix_clock_nosettime, |
250 | }; | 240 | }; |
251 | 241 | ||
252 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 242 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
@@ -260,117 +250,17 @@ static __init int init_posix_timers(void) | |||
260 | 250 | ||
261 | __initcall(init_posix_timers); | 251 | __initcall(init_posix_timers); |
262 | 252 | ||
263 | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) | ||
264 | { | ||
265 | long sec = tp->tv_sec; | ||
266 | long nsec = tp->tv_nsec + res - 1; | ||
267 | |||
268 | if (nsec >= NSEC_PER_SEC) { | ||
269 | sec++; | ||
270 | nsec -= NSEC_PER_SEC; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * The scaling constants are defined in <linux/time.h> | ||
275 | * The difference between there and here is that we do the | ||
276 | * res rounding and compute a 64-bit result (well so does that | ||
277 | * but it then throws away the high bits). | ||
278 | */ | ||
279 | *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) + | ||
280 | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> | ||
281 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
282 | } | ||
283 | |||
284 | /* | ||
285 | * This function adjusts the timer as needed as a result of the clock | ||
286 | * being set. It should only be called for absolute timers, and then | ||
287 | * under the abs_list lock. It computes the time difference and sets | ||
288 | * the new jiffies value in the timer. It also updates the timers | ||
289 | * reference wall_to_monotonic value. It is complicated by the fact | ||
290 | * that tstojiffies() only handles positive times and it needs to work | ||
291 | * with both positive and negative times. Also, for negative offsets, | ||
292 | * we need to defeat the res round up. | ||
293 | * | ||
294 | * Return is true if there is a new time, else false. | ||
295 | */ | ||
296 | static long add_clockset_delta(struct k_itimer *timr, | ||
297 | struct timespec *new_wall_to) | ||
298 | { | ||
299 | struct timespec delta; | ||
300 | int sign = 0; | ||
301 | u64 exp; | ||
302 | |||
303 | set_normalized_timespec(&delta, | ||
304 | new_wall_to->tv_sec - | ||
305 | timr->it.real.wall_to_prev.tv_sec, | ||
306 | new_wall_to->tv_nsec - | ||
307 | timr->it.real.wall_to_prev.tv_nsec); | ||
308 | if (likely(!(delta.tv_sec | delta.tv_nsec))) | ||
309 | return 0; | ||
310 | if (delta.tv_sec < 0) { | ||
311 | set_normalized_timespec(&delta, | ||
312 | -delta.tv_sec, | ||
313 | 1 - delta.tv_nsec - | ||
314 | posix_clocks[timr->it_clock].res); | ||
315 | sign++; | ||
316 | } | ||
317 | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); | ||
318 | timr->it.real.wall_to_prev = *new_wall_to; | ||
319 | timr->it.real.timer.expires += (sign ? -exp : exp); | ||
320 | return 1; | ||
321 | } | ||
322 | |||
323 | static void remove_from_abslist(struct k_itimer *timr) | ||
324 | { | ||
325 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
326 | spin_lock(&abs_list.lock); | ||
327 | list_del_init(&timr->it.real.abs_timer_entry); | ||
328 | spin_unlock(&abs_list.lock); | ||
329 | } | ||
330 | } | ||
331 | |||
332 | static void schedule_next_timer(struct k_itimer *timr) | 253 | static void schedule_next_timer(struct k_itimer *timr) |
333 | { | 254 | { |
334 | struct timespec new_wall_to; | 255 | if (timr->it.real.interval.tv64 == 0) |
335 | struct now_struct now; | ||
336 | unsigned long seq; | ||
337 | |||
338 | /* | ||
339 | * Set up the timer for the next interval (if there is one). | ||
340 | * Note: this code uses the abs_timer_lock to protect | ||
341 | * it.real.wall_to_prev and must hold it until exp is set, not exactly | ||
342 | * obvious... | ||
343 | |||
344 | * This function is used for CLOCK_REALTIME* and | ||
345 | * CLOCK_MONOTONIC* timers. If we ever want to handle other | ||
346 | * CLOCKs, the calling code (do_schedule_next_timer) would need | ||
347 | * to pull the "clock" info from the timer and dispatch the | ||
348 | * "other" CLOCKs "next timer" code (which, I suppose should | ||
349 | * also be added to the k_clock structure). | ||
350 | */ | ||
351 | if (!timr->it.real.incr) | ||
352 | return; | 256 | return; |
353 | 257 | ||
354 | do { | 258 | timr->it_overrun += hrtimer_forward(&timr->it.real.timer, |
355 | seq = read_seqbegin(&xtime_lock); | 259 | timr->it.real.interval); |
356 | new_wall_to = wall_to_monotonic; | ||
357 | posix_get_now(&now); | ||
358 | } while (read_seqretry(&xtime_lock, seq)); | ||
359 | |||
360 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
361 | spin_lock(&abs_list.lock); | ||
362 | add_clockset_delta(timr, &new_wall_to); | ||
363 | |||
364 | posix_bump_timer(timr, now); | ||
365 | |||
366 | spin_unlock(&abs_list.lock); | ||
367 | } else { | ||
368 | posix_bump_timer(timr, now); | ||
369 | } | ||
370 | timr->it_overrun_last = timr->it_overrun; | 260 | timr->it_overrun_last = timr->it_overrun; |
371 | timr->it_overrun = -1; | 261 | timr->it_overrun = -1; |
372 | ++timr->it_requeue_pending; | 262 | ++timr->it_requeue_pending; |
373 | add_timer(&timr->it.real.timer); | 263 | hrtimer_restart(&timr->it.real.timer); |
374 | } | 264 | } |
375 | 265 | ||
376 | /* | 266 | /* |
@@ -391,31 +281,23 @@ void do_schedule_next_timer(struct siginfo *info) | |||
391 | 281 | ||
392 | timr = lock_timer(info->si_tid, &flags); | 282 | timr = lock_timer(info->si_tid, &flags); |
393 | 283 | ||
394 | if (!timr || timr->it_requeue_pending != info->si_sys_private) | 284 | if (timr && timr->it_requeue_pending == info->si_sys_private) { |
395 | goto exit; | 285 | if (timr->it_clock < 0) |
286 | posix_cpu_timer_schedule(timr); | ||
287 | else | ||
288 | schedule_next_timer(timr); | ||
396 | 289 | ||
397 | if (timr->it_clock < 0) /* CPU clock */ | 290 | info->si_overrun = timr->it_overrun_last; |
398 | posix_cpu_timer_schedule(timr); | 291 | } |
399 | else | 292 | |
400 | schedule_next_timer(timr); | 293 | unlock_timer(timr, flags); |
401 | info->si_overrun = timr->it_overrun_last; | ||
402 | exit: | ||
403 | if (timr) | ||
404 | unlock_timer(timr, flags); | ||
405 | } | 294 | } |
406 | 295 | ||
407 | int posix_timer_event(struct k_itimer *timr,int si_private) | 296 | int posix_timer_event(struct k_itimer *timr,int si_private) |
408 | { | 297 | { |
409 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); | 298 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); |
410 | timr->sigq->info.si_sys_private = si_private; | 299 | timr->sigq->info.si_sys_private = si_private; |
411 | /* | 300 | /* Send signal to the process that owns this timer.*/ |
412 | * Send signal to the process that owns this timer. | ||
413 | |||
414 | * This code assumes that all the possible abs_lists share the | ||
415 | * same lock (there is only one list at this time). If this is | ||
416 | * not the case, the CLOCK info would need to be used to find | ||
417 | * the proper abs list lock. | ||
418 | */ | ||
419 | 301 | ||
420 | timr->sigq->info.si_signo = timr->it_sigev_signo; | 302 | timr->sigq->info.si_signo = timr->it_sigev_signo; |
421 | timr->sigq->info.si_errno = 0; | 303 | timr->sigq->info.si_errno = 0; |
@@ -449,64 +331,35 @@ EXPORT_SYMBOL_GPL(posix_timer_event); | |||
449 | 331 | ||
450 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 332 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
451 | */ | 333 | */ |
452 | static void posix_timer_fn(unsigned long __data) | 334 | static int posix_timer_fn(void *data) |
453 | { | 335 | { |
454 | struct k_itimer *timr = (struct k_itimer *) __data; | 336 | struct k_itimer *timr = data; |
455 | unsigned long flags; | 337 | unsigned long flags; |
456 | unsigned long seq; | 338 | int si_private = 0; |
457 | struct timespec delta, new_wall_to; | 339 | int ret = HRTIMER_NORESTART; |
458 | u64 exp = 0; | ||
459 | int do_notify = 1; | ||
460 | 340 | ||
461 | spin_lock_irqsave(&timr->it_lock, flags); | 341 | spin_lock_irqsave(&timr->it_lock, flags); |
462 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
463 | spin_lock(&abs_list.lock); | ||
464 | do { | ||
465 | seq = read_seqbegin(&xtime_lock); | ||
466 | new_wall_to = wall_to_monotonic; | ||
467 | } while (read_seqretry(&xtime_lock, seq)); | ||
468 | set_normalized_timespec(&delta, | ||
469 | new_wall_to.tv_sec - | ||
470 | timr->it.real.wall_to_prev.tv_sec, | ||
471 | new_wall_to.tv_nsec - | ||
472 | timr->it.real.wall_to_prev.tv_nsec); | ||
473 | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { | ||
474 | /* do nothing, timer is on time */ | ||
475 | } else if (delta.tv_sec < 0) { | ||
476 | /* do nothing, timer is already late */ | ||
477 | } else { | ||
478 | /* timer is early due to a clock set */ | ||
479 | tstojiffie(&delta, | ||
480 | posix_clocks[timr->it_clock].res, | ||
481 | &exp); | ||
482 | timr->it.real.wall_to_prev = new_wall_to; | ||
483 | timr->it.real.timer.expires += exp; | ||
484 | add_timer(&timr->it.real.timer); | ||
485 | do_notify = 0; | ||
486 | } | ||
487 | spin_unlock(&abs_list.lock); | ||
488 | 342 | ||
489 | } | 343 | if (timr->it.real.interval.tv64 != 0) |
490 | if (do_notify) { | 344 | si_private = ++timr->it_requeue_pending; |
491 | int si_private=0; | ||
492 | 345 | ||
493 | if (timr->it.real.incr) | 346 | if (posix_timer_event(timr, si_private)) { |
494 | si_private = ++timr->it_requeue_pending; | 347 | /* |
495 | else { | 348 | * signal was not sent because of sig_ignor |
496 | remove_from_abslist(timr); | 349 | * we will not get a call back to restart it AND |
350 | * it should be restarted. | ||
351 | */ | ||
352 | if (timr->it.real.interval.tv64 != 0) { | ||
353 | timr->it_overrun += | ||
354 | hrtimer_forward(&timr->it.real.timer, | ||
355 | timr->it.real.interval); | ||
356 | ret = HRTIMER_RESTART; | ||
497 | } | 357 | } |
498 | |||
499 | if (posix_timer_event(timr, si_private)) | ||
500 | /* | ||
501 | * signal was not sent because of sig_ignor | ||
502 | * we will not get a call back to restart it AND | ||
503 | * it should be restarted. | ||
504 | */ | ||
505 | schedule_next_timer(timr); | ||
506 | } | 358 | } |
507 | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ | ||
508 | } | ||
509 | 359 | ||
360 | unlock_timer(timr, flags); | ||
361 | return ret; | ||
362 | } | ||
510 | 363 | ||
511 | static inline struct task_struct * good_sigevent(sigevent_t * event) | 364 | static inline struct task_struct * good_sigevent(sigevent_t * event) |
512 | { | 365 | { |
@@ -597,8 +450,7 @@ sys_timer_create(const clockid_t which_clock, | |||
597 | goto out; | 450 | goto out; |
598 | } | 451 | } |
599 | spin_lock_irq(&idr_lock); | 452 | spin_lock_irq(&idr_lock); |
600 | error = idr_get_new(&posix_timers_id, | 453 | error = idr_get_new(&posix_timers_id, (void *) new_timer, |
601 | (void *) new_timer, | ||
602 | &new_timer_id); | 454 | &new_timer_id); |
603 | spin_unlock_irq(&idr_lock); | 455 | spin_unlock_irq(&idr_lock); |
604 | if (error == -EAGAIN) | 456 | if (error == -EAGAIN) |
@@ -699,26 +551,6 @@ out: | |||
699 | } | 551 | } |
700 | 552 | ||
701 | /* | 553 | /* |
702 | * good_timespec | ||
703 | * | ||
704 | * This function checks the elements of a timespec structure. | ||
705 | * | ||
706 | * Arguments: | ||
707 | * ts : Pointer to the timespec structure to check | ||
708 | * | ||
709 | * Return value: | ||
710 | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 | ||
711 | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, | ||
712 | * this function returns 0. Otherwise it returns 1. | ||
713 | */ | ||
714 | static int good_timespec(const struct timespec *ts) | ||
715 | { | ||
716 | if ((!ts) || !timespec_valid(ts)) | ||
717 | return 0; | ||
718 | return 1; | ||
719 | } | ||
720 | |||
721 | /* | ||
722 | * Locking issues: We need to protect the result of the id look up until | 554 | * Locking issues: We need to protect the result of the id look up until |
723 | * we get the timer locked down so it is not deleted under us. The | 555 | * we get the timer locked down so it is not deleted under us. The |
724 | * removal is done under the idr spinlock so we use that here to bridge | 556 | * removal is done under the idr spinlock so we use that here to bridge |
@@ -770,39 +602,39 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | |||
770 | static void | 602 | static void |
771 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 603 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
772 | { | 604 | { |
773 | unsigned long expires; | 605 | ktime_t remaining; |
774 | struct now_struct now; | 606 | struct hrtimer *timer = &timr->it.real.timer; |
775 | |||
776 | do | ||
777 | expires = timr->it.real.timer.expires; | ||
778 | while ((volatile long) (timr->it.real.timer.expires) != expires); | ||
779 | |||
780 | posix_get_now(&now); | ||
781 | |||
782 | if (expires && | ||
783 | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && | ||
784 | !timr->it.real.incr && | ||
785 | posix_time_before(&timr->it.real.timer, &now)) | ||
786 | timr->it.real.timer.expires = expires = 0; | ||
787 | if (expires) { | ||
788 | if (timr->it_requeue_pending & REQUEUE_PENDING || | ||
789 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
790 | posix_bump_timer(timr, now); | ||
791 | expires = timr->it.real.timer.expires; | ||
792 | } | ||
793 | else | ||
794 | if (!timer_pending(&timr->it.real.timer)) | ||
795 | expires = 0; | ||
796 | if (expires) | ||
797 | expires -= now.jiffies; | ||
798 | } | ||
799 | jiffies_to_timespec(expires, &cur_setting->it_value); | ||
800 | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); | ||
801 | 607 | ||
802 | if (cur_setting->it_value.tv_sec < 0) { | 608 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
803 | cur_setting->it_value.tv_nsec = 1; | 609 | remaining = hrtimer_get_remaining(timer); |
804 | cur_setting->it_value.tv_sec = 0; | 610 | |
611 | /* Time left ? or timer pending */ | ||
612 | if (remaining.tv64 > 0 || hrtimer_active(timer)) | ||
613 | goto calci; | ||
614 | /* interval timer ? */ | ||
615 | if (timr->it.real.interval.tv64 == 0) | ||
616 | return; | ||
617 | /* | ||
618 | * When a requeue is pending or this is a SIGEV_NONE timer | ||
619 | * move the expiry time forward by intervals, so expiry is > | ||
620 | * now. | ||
621 | */ | ||
622 | if (timr->it_requeue_pending & REQUEUE_PENDING || | ||
623 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
624 | timr->it_overrun += | ||
625 | hrtimer_forward(timer, timr->it.real.interval); | ||
626 | remaining = hrtimer_get_remaining(timer); | ||
805 | } | 627 | } |
628 | calci: | ||
629 | /* interval timer ? */ | ||
630 | if (timr->it.real.interval.tv64 != 0) | ||
631 | cur_setting->it_interval = | ||
632 | ktime_to_timespec(timr->it.real.interval); | ||
633 | /* Return 0 only, when the timer is expired and not pending */ | ||
634 | if (remaining.tv64 <= 0) | ||
635 | cur_setting->it_value.tv_nsec = 1; | ||
636 | else | ||
637 | cur_setting->it_value = ktime_to_timespec(remaining); | ||
806 | } | 638 | } |
807 | 639 | ||
808 | /* Get the time remaining on a POSIX.1b interval timer. */ | 640 | /* Get the time remaining on a POSIX.1b interval timer. */ |
@@ -826,6 +658,7 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |||
826 | 658 | ||
827 | return 0; | 659 | return 0; |
828 | } | 660 | } |
661 | |||
829 | /* | 662 | /* |
830 | * Get the number of overruns of a POSIX.1b interval timer. This is to | 663 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
831 | * be the overrun of the timer last delivered. At the same time we are | 664 | * be the overrun of the timer last delivered. At the same time we are |
@@ -835,7 +668,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |||
835 | * the call back to do_schedule_next_timer(). So all we need to do is | 668 | * the call back to do_schedule_next_timer(). So all we need to do is |
836 | * to pick up the frozen overrun. | 669 | * to pick up the frozen overrun. |
837 | */ | 670 | */ |
838 | |||
839 | asmlinkage long | 671 | asmlinkage long |
840 | sys_timer_getoverrun(timer_t timer_id) | 672 | sys_timer_getoverrun(timer_t timer_id) |
841 | { | 673 | { |
@@ -852,84 +684,6 @@ sys_timer_getoverrun(timer_t timer_id) | |||
852 | 684 | ||
853 | return overrun; | 685 | return overrun; |
854 | } | 686 | } |
855 | /* | ||
856 | * Adjust for absolute time | ||
857 | * | ||
858 | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to | ||
859 | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and | ||
860 | * what ever clock he is using. | ||
861 | * | ||
862 | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) | ||
863 | * time to it to get the proper time for the timer. | ||
864 | */ | ||
865 | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, | ||
866 | int abs, u64 *exp, struct timespec *wall_to) | ||
867 | { | ||
868 | struct timespec now; | ||
869 | struct timespec oc = *tp; | ||
870 | u64 jiffies_64_f; | ||
871 | int rtn =0; | ||
872 | |||
873 | if (abs) { | ||
874 | /* | ||
875 | * The mask pick up the 4 basic clocks | ||
876 | */ | ||
877 | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { | ||
878 | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( | ||
879 | &now, wall_to); | ||
880 | /* | ||
881 | * If we are doing a MONOTONIC clock | ||
882 | */ | ||
883 | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ | ||
884 | now.tv_sec += wall_to->tv_sec; | ||
885 | now.tv_nsec += wall_to->tv_nsec; | ||
886 | } | ||
887 | } else { | ||
888 | /* | ||
889 | * Not one of the basic clocks | ||
890 | */ | ||
891 | clock->clock_get(clock - posix_clocks, &now); | ||
892 | jiffies_64_f = get_jiffies_64(); | ||
893 | } | ||
894 | /* | ||
895 | * Take away now to get delta and normalize | ||
896 | */ | ||
897 | set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec, | ||
898 | oc.tv_nsec - now.tv_nsec); | ||
899 | }else{ | ||
900 | jiffies_64_f = get_jiffies_64(); | ||
901 | } | ||
902 | /* | ||
903 | * Check if the requested time is prior to now (if so set now) | ||
904 | */ | ||
905 | if (oc.tv_sec < 0) | ||
906 | oc.tv_sec = oc.tv_nsec = 0; | ||
907 | |||
908 | if (oc.tv_sec | oc.tv_nsec) | ||
909 | set_normalized_timespec(&oc, oc.tv_sec, | ||
910 | oc.tv_nsec + clock->res); | ||
911 | tstojiffie(&oc, clock->res, exp); | ||
912 | |||
913 | /* | ||
914 | * Check if the requested time is more than the timer code | ||
915 | * can handle (if so we error out but return the value too). | ||
916 | */ | ||
917 | if (*exp > ((u64)MAX_JIFFY_OFFSET)) | ||
918 | /* | ||
919 | * This is a considered response, not exactly in | ||
920 | * line with the standard (in fact it is silent on | ||
921 | * possible overflows). We assume such a large | ||
922 | * value is ALMOST always a programming error and | ||
923 | * try not to compound it by setting a really dumb | ||
924 | * value. | ||
925 | */ | ||
926 | rtn = -EINVAL; | ||
927 | /* | ||
928 | * return the actual jiffies expire time, full 64 bits | ||
929 | */ | ||
930 | *exp += jiffies_64_f; | ||
931 | return rtn; | ||
932 | } | ||
933 | 687 | ||
934 | /* Set a POSIX.1b interval timer. */ | 688 | /* Set a POSIX.1b interval timer. */ |
935 | /* timr->it_lock is taken. */ | 689 | /* timr->it_lock is taken. */ |
@@ -937,68 +691,48 @@ static inline int | |||
937 | common_timer_set(struct k_itimer *timr, int flags, | 691 | common_timer_set(struct k_itimer *timr, int flags, |
938 | struct itimerspec *new_setting, struct itimerspec *old_setting) | 692 | struct itimerspec *new_setting, struct itimerspec *old_setting) |
939 | { | 693 | { |
940 | struct k_clock *clock = &posix_clocks[timr->it_clock]; | 694 | struct hrtimer *timer = &timr->it.real.timer; |
941 | u64 expire_64; | ||
942 | 695 | ||
943 | if (old_setting) | 696 | if (old_setting) |
944 | common_timer_get(timr, old_setting); | 697 | common_timer_get(timr, old_setting); |
945 | 698 | ||
946 | /* disable the timer */ | 699 | /* disable the timer */ |
947 | timr->it.real.incr = 0; | 700 | timr->it.real.interval.tv64 = 0; |
948 | /* | 701 | /* |
949 | * careful here. If smp we could be in the "fire" routine which will | 702 | * careful here. If smp we could be in the "fire" routine which will |
950 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | 703 | * be spinning as we hold the lock. But this is ONLY an SMP issue. |
951 | */ | 704 | */ |
952 | if (try_to_del_timer_sync(&timr->it.real.timer) < 0) { | 705 | if (hrtimer_try_to_cancel(timer) < 0) |
953 | #ifdef CONFIG_SMP | ||
954 | /* | ||
955 | * It can only be active if on an other cpu. Since | ||
956 | * we have cleared the interval stuff above, it should | ||
957 | * clear once we release the spin lock. Of course once | ||
958 | * we do that anything could happen, including the | ||
959 | * complete melt down of the timer. So return with | ||
960 | * a "retry" exit status. | ||
961 | */ | ||
962 | return TIMER_RETRY; | 706 | return TIMER_RETRY; |
963 | #endif | ||
964 | } | ||
965 | |||
966 | remove_from_abslist(timr); | ||
967 | 707 | ||
968 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 708 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
969 | ~REQUEUE_PENDING; | 709 | ~REQUEUE_PENDING; |
970 | timr->it_overrun_last = 0; | 710 | timr->it_overrun_last = 0; |
971 | timr->it_overrun = -1; | ||
972 | /* | ||
973 | *switch off the timer when it_value is zero | ||
974 | */ | ||
975 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { | ||
976 | timr->it.real.timer.expires = 0; | ||
977 | return 0; | ||
978 | } | ||
979 | 711 | ||
980 | if (adjust_abs_time(clock, | 712 | /* switch off the timer when it_value is zero */ |
981 | &new_setting->it_value, flags & TIMER_ABSTIME, | 713 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
982 | &expire_64, &(timr->it.real.wall_to_prev))) { | 714 | return 0; |
983 | return -EINVAL; | ||
984 | } | ||
985 | timr->it.real.timer.expires = (unsigned long)expire_64; | ||
986 | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); | ||
987 | timr->it.real.incr = (unsigned long)expire_64; | ||
988 | 715 | ||
989 | /* | 716 | /* Posix madness. Only absolute CLOCK_REALTIME timers |
990 | * We do not even queue SIGEV_NONE timers! But we do put them | 717 | * are affected by clock sets. So we must reiniatilize |
991 | * in the abs list so we can do that right. | 718 | * the timer. |
992 | */ | 719 | */ |
993 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) | 720 | if (timr->it_clock == CLOCK_REALTIME && (flags & TIMER_ABSTIME)) |
994 | add_timer(&timr->it.real.timer); | 721 | hrtimer_rebase(timer, CLOCK_REALTIME); |
995 | 722 | else | |
996 | if (flags & TIMER_ABSTIME && clock->abs_struct) { | 723 | hrtimer_rebase(timer, CLOCK_MONOTONIC); |
997 | spin_lock(&clock->abs_struct->lock); | 724 | |
998 | list_add_tail(&(timr->it.real.abs_timer_entry), | 725 | timer->expires = timespec_to_ktime(new_setting->it_value); |
999 | &(clock->abs_struct->list)); | 726 | |
1000 | spin_unlock(&clock->abs_struct->lock); | 727 | /* Convert interval */ |
1001 | } | 728 | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); |
729 | |||
730 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | ||
731 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | ||
732 | return 0; | ||
733 | |||
734 | hrtimer_start(timer, timer->expires, (flags & TIMER_ABSTIME) ? | ||
735 | HRTIMER_ABS : HRTIMER_REL); | ||
1002 | return 0; | 736 | return 0; |
1003 | } | 737 | } |
1004 | 738 | ||
@@ -1020,8 +754,8 @@ sys_timer_settime(timer_t timer_id, int flags, | |||
1020 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 754 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) |
1021 | return -EFAULT; | 755 | return -EFAULT; |
1022 | 756 | ||
1023 | if ((!good_timespec(&new_spec.it_interval)) || | 757 | if (!timespec_valid(&new_spec.it_interval) || |
1024 | (!good_timespec(&new_spec.it_value))) | 758 | !timespec_valid(&new_spec.it_value)) |
1025 | return -EINVAL; | 759 | return -EINVAL; |
1026 | retry: | 760 | retry: |
1027 | timr = lock_timer(timer_id, &flag); | 761 | timr = lock_timer(timer_id, &flag); |
@@ -1037,8 +771,8 @@ retry: | |||
1037 | goto retry; | 771 | goto retry; |
1038 | } | 772 | } |
1039 | 773 | ||
1040 | if (old_setting && !error && copy_to_user(old_setting, | 774 | if (old_setting && !error && |
1041 | &old_spec, sizeof (old_spec))) | 775 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) |
1042 | error = -EFAULT; | 776 | error = -EFAULT; |
1043 | 777 | ||
1044 | return error; | 778 | return error; |
@@ -1046,24 +780,10 @@ retry: | |||
1046 | 780 | ||
1047 | static inline int common_timer_del(struct k_itimer *timer) | 781 | static inline int common_timer_del(struct k_itimer *timer) |
1048 | { | 782 | { |
1049 | timer->it.real.incr = 0; | 783 | timer->it.real.interval.tv64 = 0; |
1050 | 784 | ||
1051 | if (try_to_del_timer_sync(&timer->it.real.timer) < 0) { | 785 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1052 | #ifdef CONFIG_SMP | ||
1053 | /* | ||
1054 | * It can only be active if on an other cpu. Since | ||
1055 | * we have cleared the interval stuff above, it should | ||
1056 | * clear once we release the spin lock. Of course once | ||
1057 | * we do that anything could happen, including the | ||
1058 | * complete melt down of the timer. So return with | ||
1059 | * a "retry" exit status. | ||
1060 | */ | ||
1061 | return TIMER_RETRY; | 786 | return TIMER_RETRY; |
1062 | #endif | ||
1063 | } | ||
1064 | |||
1065 | remove_from_abslist(timer); | ||
1066 | |||
1067 | return 0; | 787 | return 0; |
1068 | } | 788 | } |
1069 | 789 | ||
@@ -1079,24 +799,16 @@ sys_timer_delete(timer_t timer_id) | |||
1079 | struct k_itimer *timer; | 799 | struct k_itimer *timer; |
1080 | long flags; | 800 | long flags; |
1081 | 801 | ||
1082 | #ifdef CONFIG_SMP | ||
1083 | int error; | ||
1084 | retry_delete: | 802 | retry_delete: |
1085 | #endif | ||
1086 | timer = lock_timer(timer_id, &flags); | 803 | timer = lock_timer(timer_id, &flags); |
1087 | if (!timer) | 804 | if (!timer) |
1088 | return -EINVAL; | 805 | return -EINVAL; |
1089 | 806 | ||
1090 | #ifdef CONFIG_SMP | 807 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1091 | error = timer_delete_hook(timer); | ||
1092 | |||
1093 | if (error == TIMER_RETRY) { | ||
1094 | unlock_timer(timer, flags); | 808 | unlock_timer(timer, flags); |
1095 | goto retry_delete; | 809 | goto retry_delete; |
1096 | } | 810 | } |
1097 | #else | 811 | |
1098 | timer_delete_hook(timer); | ||
1099 | #endif | ||
1100 | spin_lock(¤t->sighand->siglock); | 812 | spin_lock(¤t->sighand->siglock); |
1101 | list_del(&timer->list); | 813 | list_del(&timer->list); |
1102 | spin_unlock(¤t->sighand->siglock); | 814 | spin_unlock(¤t->sighand->siglock); |
@@ -1113,6 +825,7 @@ retry_delete: | |||
1113 | release_posix_timer(timer, IT_ID_SET); | 825 | release_posix_timer(timer, IT_ID_SET); |
1114 | return 0; | 826 | return 0; |
1115 | } | 827 | } |
828 | |||
1116 | /* | 829 | /* |
1117 | * return timer owned by the process, used by exit_itimers | 830 | * return timer owned by the process, used by exit_itimers |
1118 | */ | 831 | */ |
@@ -1120,22 +833,13 @@ static inline void itimer_delete(struct k_itimer *timer) | |||
1120 | { | 833 | { |
1121 | unsigned long flags; | 834 | unsigned long flags; |
1122 | 835 | ||
1123 | #ifdef CONFIG_SMP | ||
1124 | int error; | ||
1125 | retry_delete: | 836 | retry_delete: |
1126 | #endif | ||
1127 | spin_lock_irqsave(&timer->it_lock, flags); | 837 | spin_lock_irqsave(&timer->it_lock, flags); |
1128 | 838 | ||
1129 | #ifdef CONFIG_SMP | 839 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1130 | error = timer_delete_hook(timer); | ||
1131 | |||
1132 | if (error == TIMER_RETRY) { | ||
1133 | unlock_timer(timer, flags); | 840 | unlock_timer(timer, flags); |
1134 | goto retry_delete; | 841 | goto retry_delete; |
1135 | } | 842 | } |
1136 | #else | ||
1137 | timer_delete_hook(timer); | ||
1138 | #endif | ||
1139 | list_del(&timer->list); | 843 | list_del(&timer->list); |
1140 | /* | 844 | /* |
1141 | * This keeps any tasks waiting on the spin lock from thinking | 845 | * This keeps any tasks waiting on the spin lock from thinking |
@@ -1164,57 +868,7 @@ void exit_itimers(struct signal_struct *sig) | |||
1164 | } | 868 | } |
1165 | } | 869 | } |
1166 | 870 | ||
1167 | /* | 871 | /* Not available / possible... functions */ |
1168 | * And now for the "clock" calls | ||
1169 | * | ||
1170 | * These functions are called both from timer functions (with the timer | ||
1171 | * spin_lock_irq() held and from clock calls with no locking. They must | ||
1172 | * use the save flags versions of locks. | ||
1173 | */ | ||
1174 | |||
1175 | /* | ||
1176 | * We do ticks here to avoid the irq lock ( they take sooo long). | ||
1177 | * The seqlock is great here. Since we a reader, we don't really care | ||
1178 | * if we are interrupted since we don't take lock that will stall us or | ||
1179 | * any other cpu. Voila, no irq lock is needed. | ||
1180 | * | ||
1181 | */ | ||
1182 | |||
1183 | static u64 do_posix_clock_monotonic_gettime_parts( | ||
1184 | struct timespec *tp, struct timespec *mo) | ||
1185 | { | ||
1186 | u64 jiff; | ||
1187 | unsigned int seq; | ||
1188 | |||
1189 | do { | ||
1190 | seq = read_seqbegin(&xtime_lock); | ||
1191 | getnstimeofday(tp); | ||
1192 | *mo = wall_to_monotonic; | ||
1193 | jiff = jiffies_64; | ||
1194 | |||
1195 | } while(read_seqretry(&xtime_lock, seq)); | ||
1196 | |||
1197 | return jiff; | ||
1198 | } | ||
1199 | |||
1200 | static int do_posix_clock_monotonic_get(const clockid_t clock, | ||
1201 | struct timespec *tp) | ||
1202 | { | ||
1203 | struct timespec wall_to_mono; | ||
1204 | |||
1205 | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); | ||
1206 | |||
1207 | set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec, | ||
1208 | tp->tv_nsec + wall_to_mono.tv_nsec); | ||
1209 | |||
1210 | return 0; | ||
1211 | } | ||
1212 | |||
1213 | int do_posix_clock_monotonic_gettime(struct timespec *tp) | ||
1214 | { | ||
1215 | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); | ||
1216 | } | ||
1217 | |||
1218 | int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp) | 872 | int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp) |
1219 | { | 873 | { |
1220 | return -EINVAL; | 874 | return -EINVAL; |
@@ -1288,107 +942,6 @@ sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp) | |||
1288 | } | 942 | } |
1289 | 943 | ||
1290 | /* | 944 | /* |
1291 | * The standard says that an absolute nanosleep call MUST wake up at | ||
1292 | * the requested time in spite of clock settings. Here is what we do: | ||
1293 | * For each nanosleep call that needs it (only absolute and not on | ||
1294 | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure | ||
1295 | * into the "nanosleep_abs_list". All we need is the task_struct pointer. | ||
1296 | * When ever the clock is set we just wake up all those tasks. The rest | ||
1297 | * is done by the while loop in clock_nanosleep(). | ||
1298 | * | ||
1299 | * On locking, clock_was_set() is called from update_wall_clock which | ||
1300 | * holds (or has held for it) a write_lock_irq( xtime_lock) and is | ||
1301 | * called from the timer bh code. Thus we need the irq save locks. | ||
1302 | * | ||
1303 | * Also, on the call from update_wall_clock, that is done as part of a | ||
1304 | * softirq thing. We don't want to delay the system that much (possibly | ||
1305 | * long list of timers to fix), so we defer that work to keventd. | ||
1306 | */ | ||
1307 | |||
1308 | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); | ||
1309 | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); | ||
1310 | |||
1311 | static DECLARE_MUTEX(clock_was_set_lock); | ||
1312 | |||
1313 | void clock_was_set(void) | ||
1314 | { | ||
1315 | struct k_itimer *timr; | ||
1316 | struct timespec new_wall_to; | ||
1317 | LIST_HEAD(cws_list); | ||
1318 | unsigned long seq; | ||
1319 | |||
1320 | |||
1321 | if (unlikely(in_interrupt())) { | ||
1322 | schedule_work(&clock_was_set_work); | ||
1323 | return; | ||
1324 | } | ||
1325 | wake_up_all(&nanosleep_abs_wqueue); | ||
1326 | |||
1327 | /* | ||
1328 | * Check if there exist TIMER_ABSTIME timers to correct. | ||
1329 | * | ||
1330 | * Notes on locking: This code is run in task context with irq | ||
1331 | * on. We CAN be interrupted! All other usage of the abs list | ||
1332 | * lock is under the timer lock which holds the irq lock as | ||
1333 | * well. We REALLY don't want to scan the whole list with the | ||
1334 | * interrupt system off, AND we would like a sequence lock on | ||
1335 | * this code as well. Since we assume that the clock will not | ||
1336 | * be set often, it seems ok to take and release the irq lock | ||
1337 | * for each timer. In fact add_timer will do this, so this is | ||
1338 | * not an issue. So we know when we are done, we will move the | ||
1339 | * whole list to a new location. Then as we process each entry, | ||
1340 | * we will move it to the actual list again. This way, when our | ||
1341 | * copy is empty, we are done. We are not all that concerned | ||
1342 | * about preemption so we will use a semaphore lock to protect | ||
1343 | * aginst reentry. This way we will not stall another | ||
1344 | * processor. It is possible that this may delay some timers | ||
1345 | * that should have expired, given the new clock, but even this | ||
1346 | * will be minimal as we will always update to the current time, | ||
1347 | * even if it was set by a task that is waiting for entry to | ||
1348 | * this code. Timers that expire too early will be caught by | ||
1349 | * the expire code and restarted. | ||
1350 | |||
1351 | * Absolute timers that repeat are left in the abs list while | ||
1352 | * waiting for the task to pick up the signal. This means we | ||
1353 | * may find timers that are not in the "add_timer" list, but are | ||
1354 | * in the abs list. We do the same thing for these, save | ||
1355 | * putting them back in the "add_timer" list. (Note, these are | ||
1356 | * left in the abs list mainly to indicate that they are | ||
1357 | * ABSOLUTE timers, a fact that is used by the re-arm code, and | ||
1358 | * for which we have no other flag.) | ||
1359 | |||
1360 | */ | ||
1361 | |||
1362 | down(&clock_was_set_lock); | ||
1363 | spin_lock_irq(&abs_list.lock); | ||
1364 | list_splice_init(&abs_list.list, &cws_list); | ||
1365 | spin_unlock_irq(&abs_list.lock); | ||
1366 | do { | ||
1367 | do { | ||
1368 | seq = read_seqbegin(&xtime_lock); | ||
1369 | new_wall_to = wall_to_monotonic; | ||
1370 | } while (read_seqretry(&xtime_lock, seq)); | ||
1371 | |||
1372 | spin_lock_irq(&abs_list.lock); | ||
1373 | if (list_empty(&cws_list)) { | ||
1374 | spin_unlock_irq(&abs_list.lock); | ||
1375 | break; | ||
1376 | } | ||
1377 | timr = list_entry(cws_list.next, struct k_itimer, | ||
1378 | it.real.abs_timer_entry); | ||
1379 | |||
1380 | list_del_init(&timr->it.real.abs_timer_entry); | ||
1381 | if (add_clockset_delta(timr, &new_wall_to) && | ||
1382 | del_timer(&timr->it.real.timer)) /* timer run yet? */ | ||
1383 | add_timer(&timr->it.real.timer); | ||
1384 | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); | ||
1385 | spin_unlock_irq(&abs_list.lock); | ||
1386 | } while (1); | ||
1387 | |||
1388 | up(&clock_was_set_lock); | ||
1389 | } | ||
1390 | |||
1391 | /* | ||
1392 | * nanosleep for monotonic and realtime clocks | 945 | * nanosleep for monotonic and realtime clocks |
1393 | */ | 946 | */ |
1394 | static int common_nsleep(const clockid_t which_clock, int flags, | 947 | static int common_nsleep(const clockid_t which_clock, int flags, |
@@ -1401,7 +954,7 @@ static int common_nsleep(const clockid_t which_clock, int flags, | |||
1401 | case CLOCK_REALTIME: | 954 | case CLOCK_REALTIME: |
1402 | /* Posix madness. Only absolute timers on clock realtime | 955 | /* Posix madness. Only absolute timers on clock realtime |
1403 | are affected by clock set. */ | 956 | are affected by clock set. */ |
1404 | if (mode == HRTIMER_ABS) | 957 | if (mode != HRTIMER_ABS) |
1405 | clockid = CLOCK_MONOTONIC; | 958 | clockid = CLOCK_MONOTONIC; |
1406 | case CLOCK_MONOTONIC: | 959 | case CLOCK_MONOTONIC: |
1407 | break; | 960 | break; |