aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2009-09-24 18:13:11 -0400
committerDavid S. Miller <davem@davemloft.net>2009-09-24 18:13:11 -0400
commit8b3f6af86378d0a10ca2f1ded1da124aef13b62c (patch)
treede6ca90295730343c495be8d98be8efa322140ef /kernel
parent139d6065c83071d5f66cd013a274a43699f8e2c1 (diff)
parent94e0fb086fc5663c38bbc0fe86d698be8314f82f (diff)
Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
Conflicts: drivers/staging/Kconfig drivers/staging/Makefile drivers/staging/cpc-usb/TODO drivers/staging/cpc-usb/cpc-usb_drv.c drivers/staging/cpc-usb/cpc.h drivers/staging/cpc-usb/cpc_int.h drivers/staging/cpc-usb/cpcusb.h
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile7
-rw-r--r--kernel/audit.c18
-rw-r--r--kernel/audit_watch.c2
-rw-r--r--kernel/auditsc.c6
-rw-r--r--kernel/cgroup.c1113
-rw-r--r--kernel/cgroup_debug.c105
-rw-r--r--kernel/cgroup_freezer.c15
-rw-r--r--kernel/cpu.c15
-rw-r--r--kernel/cpuset.c66
-rw-r--r--kernel/cred.c22
-rw-r--r--kernel/delayacct.c1
-rw-r--r--kernel/dma-coherent.c176
-rw-r--r--kernel/exit.c164
-rw-r--r--kernel/fork.c75
-rw-r--r--kernel/gcov/Kconfig2
-rw-r--r--kernel/hrtimer.c95
-rw-r--r--kernel/hung_task.c4
-rw-r--r--kernel/itimer.c169
-rw-r--r--kernel/kallsyms.c3
-rw-r--r--kernel/kfifo.c2
-rw-r--r--kernel/kprobes.c2
-rw-r--r--kernel/lockdep.c3
-rw-r--r--kernel/lockdep_proc.c2
-rw-r--r--kernel/marker.c930
-rw-r--r--kernel/module.c188
-rw-r--r--kernel/ns_cgroup.c16
-rw-r--r--kernel/panic.c2
-rw-r--r--kernel/params.c7
-rw-r--r--kernel/perf_counter.c4962
-rw-r--r--kernel/perf_event.c5000
-rw-r--r--kernel/pid.c15
-rw-r--r--kernel/pid_namespace.c2
-rw-r--r--kernel/posix-cpu-timers.c155
-rw-r--r--kernel/posix-timers.c35
-rw-r--r--kernel/power/Kconfig14
-rw-r--r--kernel/power/console.c63
-rw-r--r--kernel/power/hibernate.c21
-rw-r--r--kernel/power/main.c17
-rw-r--r--kernel/power/power.h2
-rw-r--r--kernel/power/process.c1
-rw-r--r--kernel/power/snapshot.c414
-rw-r--r--kernel/power/swap.c1
-rw-r--r--kernel/printk.c33
-rw-r--r--kernel/profile.c45
-rw-r--r--kernel/ptrace.c11
-rw-r--r--kernel/rcupdate.c48
-rw-r--r--kernel/rcutorture.c43
-rw-r--r--kernel/rcutree.c105
-rw-r--r--kernel/rcutree.h2
-rw-r--r--kernel/rcutree_plugin.h110
-rw-r--r--kernel/rcutree_trace.c2
-rw-r--r--kernel/res_counter.c21
-rw-r--r--kernel/resource.c23
-rw-r--r--kernel/sched.c552
-rw-r--r--kernel/sched_clock.c122
-rw-r--r--kernel/sched_debug.c1
-rw-r--r--kernel/sched_fair.c468
-rw-r--r--kernel/sched_features.h122
-rw-r--r--kernel/sched_idletask.c11
-rw-r--r--kernel/sched_rt.c20
-rw-r--r--kernel/signal.c168
-rw-r--r--kernel/slow-work.c12
-rw-r--r--kernel/smp.c76
-rw-r--r--kernel/softirq.c2
-rw-r--r--kernel/softlockup.c4
-rw-r--r--kernel/sys.c46
-rw-r--r--kernel/sys_ni.c2
-rw-r--r--kernel/sysctl.c163
-rw-r--r--kernel/time.c9
-rw-r--r--kernel/time/Makefile2
-rw-r--r--kernel/time/clocksource.c529
-rw-r--r--kernel/time/jiffies.c6
-rw-r--r--kernel/time/ntp.c7
-rw-r--r--kernel/time/timeconv.c127
-rw-r--r--kernel/time/timekeeping.c535
-rw-r--r--kernel/timer.c64
-rw-r--r--kernel/trace/Kconfig30
-rw-r--r--kernel/trace/Makefile2
-rw-r--r--kernel/trace/ftrace.c187
-rw-r--r--kernel/trace/power-traces.c20
-rw-r--r--kernel/trace/ring_buffer.c19
-rw-r--r--kernel/trace/trace.c195
-rw-r--r--kernel/trace/trace.h279
-rw-r--r--kernel/trace/trace_boot.c8
-rw-r--r--kernel/trace/trace_clock.c24
-rw-r--r--kernel/trace/trace_entries.h366
-rw-r--r--kernel/trace/trace_event_profile.c87
-rw-r--r--kernel/trace/trace_event_types.h178
-rw-r--r--kernel/trace/trace_events.c134
-rw-r--r--kernel/trace/trace_events_filter.c41
-rw-r--r--kernel/trace/trace_export.c284
-rw-r--r--kernel/trace/trace_functions.c2
-rw-r--r--kernel/trace/trace_functions_graph.c66
-rw-r--r--kernel/trace/trace_hw_branches.c2
-rw-r--r--kernel/trace/trace_irqsoff.c16
-rw-r--r--kernel/trace/trace_mmiotrace.c10
-rw-r--r--kernel/trace/trace_output.c42
-rw-r--r--kernel/trace/trace_output.h2
-rw-r--r--kernel/trace/trace_power.c218
-rw-r--r--kernel/trace/trace_printk.c1
-rw-r--r--kernel/trace/trace_sched_wakeup.c52
-rw-r--r--kernel/trace/trace_stack.c4
-rw-r--r--kernel/trace/trace_syscalls.c99
-rw-r--r--kernel/tracepoint.c2
-rw-r--r--kernel/uid16.c1
-rw-r--r--kernel/utsname_sysctl.c4
106 files changed, 10283 insertions, 9495 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index b833bd5cc127..b8d4cd8ac0b9 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -58,7 +58,6 @@ obj-$(CONFIG_KEXEC) += kexec.o
58obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o 58obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o
59obj-$(CONFIG_COMPAT) += compat.o 59obj-$(CONFIG_COMPAT) += compat.o
60obj-$(CONFIG_CGROUPS) += cgroup.o 60obj-$(CONFIG_CGROUPS) += cgroup.o
61obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o
62obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o 61obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o
63obj-$(CONFIG_CPUSETS) += cpuset.o 62obj-$(CONFIG_CPUSETS) += cpuset.o
64obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o 63obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o
@@ -87,17 +86,15 @@ obj-$(CONFIG_RELAY) += relay.o
87obj-$(CONFIG_SYSCTL) += utsname_sysctl.o 86obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
88obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o 87obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
89obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o 88obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
90obj-$(CONFIG_MARKERS) += marker.o
91obj-$(CONFIG_TRACEPOINTS) += tracepoint.o 89obj-$(CONFIG_TRACEPOINTS) += tracepoint.o
92obj-$(CONFIG_LATENCYTOP) += latencytop.o 90obj-$(CONFIG_LATENCYTOP) += latencytop.o
93obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o
94obj-$(CONFIG_FUNCTION_TRACER) += trace/ 91obj-$(CONFIG_FUNCTION_TRACER) += trace/
95obj-$(CONFIG_TRACING) += trace/ 92obj-$(CONFIG_TRACING) += trace/
96obj-$(CONFIG_X86_DS) += trace/ 93obj-$(CONFIG_X86_DS) += trace/
97obj-$(CONFIG_RING_BUFFER) += trace/ 94obj-$(CONFIG_RING_BUFFER) += trace/
98obj-$(CONFIG_SMP) += sched_cpupri.o 95obj-$(CONFIG_SMP) += sched_cpupri.o
99obj-$(CONFIG_SLOW_WORK) += slow-work.o 96obj-$(CONFIG_SLOW_WORK) += slow-work.o
100obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o 97obj-$(CONFIG_PERF_EVENTS) += perf_event.o
101 98
102ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) 99ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
103# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is 100# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
@@ -117,7 +114,7 @@ $(obj)/config_data.gz: .config FORCE
117 $(call if_changed,gzip) 114 $(call if_changed,gzip)
118 115
119quiet_cmd_ikconfiggz = IKCFG $@ 116quiet_cmd_ikconfiggz = IKCFG $@
120 cmd_ikconfiggz = (echo "static const char kernel_config_data[] = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ 117 cmd_ikconfiggz = (echo "static const char kernel_config_data[] __used = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@
121targets += config_data.h 118targets += config_data.h
122$(obj)/config_data.h: $(obj)/config_data.gz FORCE 119$(obj)/config_data.h: $(obj)/config_data.gz FORCE
123 $(call if_changed,ikconfiggz) 120 $(call if_changed,ikconfiggz)
diff --git a/kernel/audit.c b/kernel/audit.c
index defc2e6f1e3b..5feed232be9d 100644
--- a/kernel/audit.c
+++ b/kernel/audit.c
@@ -855,18 +855,24 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
855 break; 855 break;
856 } 856 }
857 case AUDIT_SIGNAL_INFO: 857 case AUDIT_SIGNAL_INFO:
858 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 858 len = 0;
859 if (err) 859 if (audit_sig_sid) {
860 return err; 860 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
861 if (err)
862 return err;
863 }
861 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 864 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
862 if (!sig_data) { 865 if (!sig_data) {
863 security_release_secctx(ctx, len); 866 if (audit_sig_sid)
867 security_release_secctx(ctx, len);
864 return -ENOMEM; 868 return -ENOMEM;
865 } 869 }
866 sig_data->uid = audit_sig_uid; 870 sig_data->uid = audit_sig_uid;
867 sig_data->pid = audit_sig_pid; 871 sig_data->pid = audit_sig_pid;
868 memcpy(sig_data->ctx, ctx, len); 872 if (audit_sig_sid) {
869 security_release_secctx(ctx, len); 873 memcpy(sig_data->ctx, ctx, len);
874 security_release_secctx(ctx, len);
875 }
870 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 876 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
871 0, 0, sig_data, sizeof(*sig_data) + len); 877 0, 0, sig_data, sizeof(*sig_data) + len);
872 kfree(sig_data); 878 kfree(sig_data);
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c
index 0e96dbc60ea9..cc7e87936cbc 100644
--- a/kernel/audit_watch.c
+++ b/kernel/audit_watch.c
@@ -45,8 +45,8 @@
45 45
46struct audit_watch { 46struct audit_watch {
47 atomic_t count; /* reference count */ 47 atomic_t count; /* reference count */
48 char *path; /* insertion path */
49 dev_t dev; /* associated superblock device */ 48 dev_t dev; /* associated superblock device */
49 char *path; /* insertion path */
50 unsigned long ino; /* associated inode number */ 50 unsigned long ino; /* associated inode number */
51 struct audit_parent *parent; /* associated parent */ 51 struct audit_parent *parent; /* associated parent */
52 struct list_head wlist; /* entry in parent->watches list */ 52 struct list_head wlist; /* entry in parent->watches list */
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
index 68d3c6a0ecd6..267e484f0198 100644
--- a/kernel/auditsc.c
+++ b/kernel/auditsc.c
@@ -168,12 +168,12 @@ struct audit_context {
168 int in_syscall; /* 1 if task is in a syscall */ 168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state; 169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */ 170 unsigned int serial; /* serial number for record */
171 struct timespec ctime; /* time of syscall entry */
172 int major; /* syscall number */ 171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */ 173 unsigned long argv[4]; /* syscall arguments */
174 int return_valid; /* return code is valid */
175 long return_code;/* syscall return code */ 174 long return_code;/* syscall return code */
176 u64 prio; 175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count; 177 int name_count;
178 struct audit_names names[AUDIT_NAMES]; 178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */ 179 char * filterkey; /* key for rule that triggered record */
@@ -198,8 +198,8 @@ struct audit_context {
198 char target_comm[TASK_COMM_LEN]; 198 char target_comm[TASK_COMM_LEN];
199 199
200 struct audit_tree_refs *trees, *first_trees; 200 struct audit_tree_refs *trees, *first_trees;
201 int tree_count;
202 struct list_head killed_trees; 201 struct list_head killed_trees;
202 int tree_count;
203 203
204 int type; 204 int type;
205 union { 205 union {
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index c7ece8f027f2..7ccba4bc5e3b 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -23,6 +23,7 @@
23 */ 23 */
24 24
25#include <linux/cgroup.h> 25#include <linux/cgroup.h>
26#include <linux/ctype.h>
26#include <linux/errno.h> 27#include <linux/errno.h>
27#include <linux/fs.h> 28#include <linux/fs.h>
28#include <linux/kernel.h> 29#include <linux/kernel.h>
@@ -48,6 +49,8 @@
48#include <linux/namei.h> 49#include <linux/namei.h>
49#include <linux/smp_lock.h> 50#include <linux/smp_lock.h>
50#include <linux/pid_namespace.h> 51#include <linux/pid_namespace.h>
52#include <linux/idr.h>
53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
51 54
52#include <asm/atomic.h> 55#include <asm/atomic.h>
53 56
@@ -60,6 +63,8 @@ static struct cgroup_subsys *subsys[] = {
60#include <linux/cgroup_subsys.h> 63#include <linux/cgroup_subsys.h>
61}; 64};
62 65
66#define MAX_CGROUP_ROOT_NAMELEN 64
67
63/* 68/*
64 * A cgroupfs_root represents the root of a cgroup hierarchy, 69 * A cgroupfs_root represents the root of a cgroup hierarchy,
65 * and may be associated with a superblock to form an active 70 * and may be associated with a superblock to form an active
@@ -74,6 +79,9 @@ struct cgroupfs_root {
74 */ 79 */
75 unsigned long subsys_bits; 80 unsigned long subsys_bits;
76 81
82 /* Unique id for this hierarchy. */
83 int hierarchy_id;
84
77 /* The bitmask of subsystems currently attached to this hierarchy */ 85 /* The bitmask of subsystems currently attached to this hierarchy */
78 unsigned long actual_subsys_bits; 86 unsigned long actual_subsys_bits;
79 87
@@ -94,6 +102,9 @@ struct cgroupfs_root {
94 102
95 /* The path to use for release notifications. */ 103 /* The path to use for release notifications. */
96 char release_agent_path[PATH_MAX]; 104 char release_agent_path[PATH_MAX];
105
106 /* The name for this hierarchy - may be empty */
107 char name[MAX_CGROUP_ROOT_NAMELEN];
97}; 108};
98 109
99/* 110/*
@@ -141,6 +152,10 @@ struct css_id {
141static LIST_HEAD(roots); 152static LIST_HEAD(roots);
142static int root_count; 153static int root_count;
143 154
155static DEFINE_IDA(hierarchy_ida);
156static int next_hierarchy_id;
157static DEFINE_SPINLOCK(hierarchy_id_lock);
158
144/* dummytop is a shorthand for the dummy hierarchy's top cgroup */ 159/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
145#define dummytop (&rootnode.top_cgroup) 160#define dummytop (&rootnode.top_cgroup)
146 161
@@ -201,6 +216,7 @@ struct cg_cgroup_link {
201 * cgroup, anchored on cgroup->css_sets 216 * cgroup, anchored on cgroup->css_sets
202 */ 217 */
203 struct list_head cgrp_link_list; 218 struct list_head cgrp_link_list;
219 struct cgroup *cgrp;
204 /* 220 /*
205 * List running through cg_cgroup_links pointing at a 221 * List running through cg_cgroup_links pointing at a
206 * single css_set object, anchored on css_set->cg_links 222 * single css_set object, anchored on css_set->cg_links
@@ -227,8 +243,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
227static DEFINE_RWLOCK(css_set_lock); 243static DEFINE_RWLOCK(css_set_lock);
228static int css_set_count; 244static int css_set_count;
229 245
230/* hash table for cgroup groups. This improves the performance to 246/*
231 * find an existing css_set */ 247 * hash table for cgroup groups. This improves the performance to find
248 * an existing css_set. This hash doesn't (currently) take into
249 * account cgroups in empty hierarchies.
250 */
232#define CSS_SET_HASH_BITS 7 251#define CSS_SET_HASH_BITS 7
233#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) 252#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
234static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; 253static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
@@ -248,48 +267,22 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
248 return &css_set_table[index]; 267 return &css_set_table[index];
249} 268}
250 269
270static void free_css_set_rcu(struct rcu_head *obj)
271{
272 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
273 kfree(cg);
274}
275
251/* We don't maintain the lists running through each css_set to its 276/* We don't maintain the lists running through each css_set to its
252 * task until after the first call to cgroup_iter_start(). This 277 * task until after the first call to cgroup_iter_start(). This
253 * reduces the fork()/exit() overhead for people who have cgroups 278 * reduces the fork()/exit() overhead for people who have cgroups
254 * compiled into their kernel but not actually in use */ 279 * compiled into their kernel but not actually in use */
255static int use_task_css_set_links __read_mostly; 280static int use_task_css_set_links __read_mostly;
256 281
257/* When we create or destroy a css_set, the operation simply 282static void __put_css_set(struct css_set *cg, int taskexit)
258 * takes/releases a reference count on all the cgroups referenced
259 * by subsystems in this css_set. This can end up multiple-counting
260 * some cgroups, but that's OK - the ref-count is just a
261 * busy/not-busy indicator; ensuring that we only count each cgroup
262 * once would require taking a global lock to ensure that no
263 * subsystems moved between hierarchies while we were doing so.
264 *
265 * Possible TODO: decide at boot time based on the number of
266 * registered subsystems and the number of CPUs or NUMA nodes whether
267 * it's better for performance to ref-count every subsystem, or to
268 * take a global lock and only add one ref count to each hierarchy.
269 */
270
271/*
272 * unlink a css_set from the list and free it
273 */
274static void unlink_css_set(struct css_set *cg)
275{ 283{
276 struct cg_cgroup_link *link; 284 struct cg_cgroup_link *link;
277 struct cg_cgroup_link *saved_link; 285 struct cg_cgroup_link *saved_link;
278
279 hlist_del(&cg->hlist);
280 css_set_count--;
281
282 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
283 cg_link_list) {
284 list_del(&link->cg_link_list);
285 list_del(&link->cgrp_link_list);
286 kfree(link);
287 }
288}
289
290static void __put_css_set(struct css_set *cg, int taskexit)
291{
292 int i;
293 /* 286 /*
294 * Ensure that the refcount doesn't hit zero while any readers 287 * Ensure that the refcount doesn't hit zero while any readers
295 * can see it. Similar to atomic_dec_and_lock(), but for an 288 * can see it. Similar to atomic_dec_and_lock(), but for an
@@ -302,21 +295,28 @@ static void __put_css_set(struct css_set *cg, int taskexit)
302 write_unlock(&css_set_lock); 295 write_unlock(&css_set_lock);
303 return; 296 return;
304 } 297 }
305 unlink_css_set(cg);
306 write_unlock(&css_set_lock);
307 298
308 rcu_read_lock(); 299 /* This css_set is dead. unlink it and release cgroup refcounts */
309 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { 300 hlist_del(&cg->hlist);
310 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup); 301 css_set_count--;
302
303 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
304 cg_link_list) {
305 struct cgroup *cgrp = link->cgrp;
306 list_del(&link->cg_link_list);
307 list_del(&link->cgrp_link_list);
311 if (atomic_dec_and_test(&cgrp->count) && 308 if (atomic_dec_and_test(&cgrp->count) &&
312 notify_on_release(cgrp)) { 309 notify_on_release(cgrp)) {
313 if (taskexit) 310 if (taskexit)
314 set_bit(CGRP_RELEASABLE, &cgrp->flags); 311 set_bit(CGRP_RELEASABLE, &cgrp->flags);
315 check_for_release(cgrp); 312 check_for_release(cgrp);
316 } 313 }
314
315 kfree(link);
317 } 316 }
318 rcu_read_unlock(); 317
319 kfree(cg); 318 write_unlock(&css_set_lock);
319 call_rcu(&cg->rcu_head, free_css_set_rcu);
320} 320}
321 321
322/* 322/*
@@ -338,6 +338,78 @@ static inline void put_css_set_taskexit(struct css_set *cg)
338} 338}
339 339
340/* 340/*
341 * compare_css_sets - helper function for find_existing_css_set().
342 * @cg: candidate css_set being tested
343 * @old_cg: existing css_set for a task
344 * @new_cgrp: cgroup that's being entered by the task
345 * @template: desired set of css pointers in css_set (pre-calculated)
346 *
347 * Returns true if "cg" matches "old_cg" except for the hierarchy
348 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
349 */
350static bool compare_css_sets(struct css_set *cg,
351 struct css_set *old_cg,
352 struct cgroup *new_cgrp,
353 struct cgroup_subsys_state *template[])
354{
355 struct list_head *l1, *l2;
356
357 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
358 /* Not all subsystems matched */
359 return false;
360 }
361
362 /*
363 * Compare cgroup pointers in order to distinguish between
364 * different cgroups in heirarchies with no subsystems. We
365 * could get by with just this check alone (and skip the
366 * memcmp above) but on most setups the memcmp check will
367 * avoid the need for this more expensive check on almost all
368 * candidates.
369 */
370
371 l1 = &cg->cg_links;
372 l2 = &old_cg->cg_links;
373 while (1) {
374 struct cg_cgroup_link *cgl1, *cgl2;
375 struct cgroup *cg1, *cg2;
376
377 l1 = l1->next;
378 l2 = l2->next;
379 /* See if we reached the end - both lists are equal length. */
380 if (l1 == &cg->cg_links) {
381 BUG_ON(l2 != &old_cg->cg_links);
382 break;
383 } else {
384 BUG_ON(l2 == &old_cg->cg_links);
385 }
386 /* Locate the cgroups associated with these links. */
387 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
388 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
389 cg1 = cgl1->cgrp;
390 cg2 = cgl2->cgrp;
391 /* Hierarchies should be linked in the same order. */
392 BUG_ON(cg1->root != cg2->root);
393
394 /*
395 * If this hierarchy is the hierarchy of the cgroup
396 * that's changing, then we need to check that this
397 * css_set points to the new cgroup; if it's any other
398 * hierarchy, then this css_set should point to the
399 * same cgroup as the old css_set.
400 */
401 if (cg1->root == new_cgrp->root) {
402 if (cg1 != new_cgrp)
403 return false;
404 } else {
405 if (cg1 != cg2)
406 return false;
407 }
408 }
409 return true;
410}
411
412/*
341 * find_existing_css_set() is a helper for 413 * find_existing_css_set() is a helper for
342 * find_css_set(), and checks to see whether an existing 414 * find_css_set(), and checks to see whether an existing
343 * css_set is suitable. 415 * css_set is suitable.
@@ -378,10 +450,11 @@ static struct css_set *find_existing_css_set(
378 450
379 hhead = css_set_hash(template); 451 hhead = css_set_hash(template);
380 hlist_for_each_entry(cg, node, hhead, hlist) { 452 hlist_for_each_entry(cg, node, hhead, hlist) {
381 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { 453 if (!compare_css_sets(cg, oldcg, cgrp, template))
382 /* All subsystems matched */ 454 continue;
383 return cg; 455
384 } 456 /* This css_set matches what we need */
457 return cg;
385 } 458 }
386 459
387 /* No existing cgroup group matched */ 460 /* No existing cgroup group matched */
@@ -435,8 +508,14 @@ static void link_css_set(struct list_head *tmp_cg_links,
435 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, 508 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
436 cgrp_link_list); 509 cgrp_link_list);
437 link->cg = cg; 510 link->cg = cg;
511 link->cgrp = cgrp;
512 atomic_inc(&cgrp->count);
438 list_move(&link->cgrp_link_list, &cgrp->css_sets); 513 list_move(&link->cgrp_link_list, &cgrp->css_sets);
439 list_add(&link->cg_link_list, &cg->cg_links); 514 /*
515 * Always add links to the tail of the list so that the list
516 * is sorted by order of hierarchy creation
517 */
518 list_add_tail(&link->cg_link_list, &cg->cg_links);
440} 519}
441 520
442/* 521/*
@@ -451,11 +530,11 @@ static struct css_set *find_css_set(
451{ 530{
452 struct css_set *res; 531 struct css_set *res;
453 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; 532 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
454 int i;
455 533
456 struct list_head tmp_cg_links; 534 struct list_head tmp_cg_links;
457 535
458 struct hlist_head *hhead; 536 struct hlist_head *hhead;
537 struct cg_cgroup_link *link;
459 538
460 /* First see if we already have a cgroup group that matches 539 /* First see if we already have a cgroup group that matches
461 * the desired set */ 540 * the desired set */
@@ -489,20 +568,12 @@ static struct css_set *find_css_set(
489 568
490 write_lock(&css_set_lock); 569 write_lock(&css_set_lock);
491 /* Add reference counts and links from the new css_set. */ 570 /* Add reference counts and links from the new css_set. */
492 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { 571 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
493 struct cgroup *cgrp = res->subsys[i]->cgroup; 572 struct cgroup *c = link->cgrp;
494 struct cgroup_subsys *ss = subsys[i]; 573 if (c->root == cgrp->root)
495 atomic_inc(&cgrp->count); 574 c = cgrp;
496 /* 575 link_css_set(&tmp_cg_links, res, c);
497 * We want to add a link once per cgroup, so we
498 * only do it for the first subsystem in each
499 * hierarchy
500 */
501 if (ss->root->subsys_list.next == &ss->sibling)
502 link_css_set(&tmp_cg_links, res, cgrp);
503 } 576 }
504 if (list_empty(&rootnode.subsys_list))
505 link_css_set(&tmp_cg_links, res, dummytop);
506 577
507 BUG_ON(!list_empty(&tmp_cg_links)); 578 BUG_ON(!list_empty(&tmp_cg_links));
508 579
@@ -518,6 +589,41 @@ static struct css_set *find_css_set(
518} 589}
519 590
520/* 591/*
592 * Return the cgroup for "task" from the given hierarchy. Must be
593 * called with cgroup_mutex held.
594 */
595static struct cgroup *task_cgroup_from_root(struct task_struct *task,
596 struct cgroupfs_root *root)
597{
598 struct css_set *css;
599 struct cgroup *res = NULL;
600
601 BUG_ON(!mutex_is_locked(&cgroup_mutex));
602 read_lock(&css_set_lock);
603 /*
604 * No need to lock the task - since we hold cgroup_mutex the
605 * task can't change groups, so the only thing that can happen
606 * is that it exits and its css is set back to init_css_set.
607 */
608 css = task->cgroups;
609 if (css == &init_css_set) {
610 res = &root->top_cgroup;
611 } else {
612 struct cg_cgroup_link *link;
613 list_for_each_entry(link, &css->cg_links, cg_link_list) {
614 struct cgroup *c = link->cgrp;
615 if (c->root == root) {
616 res = c;
617 break;
618 }
619 }
620 }
621 read_unlock(&css_set_lock);
622 BUG_ON(!res);
623 return res;
624}
625
626/*
521 * There is one global cgroup mutex. We also require taking 627 * There is one global cgroup mutex. We also require taking
522 * task_lock() when dereferencing a task's cgroup subsys pointers. 628 * task_lock() when dereferencing a task's cgroup subsys pointers.
523 * See "The task_lock() exception", at the end of this comment. 629 * See "The task_lock() exception", at the end of this comment.
@@ -596,7 +702,7 @@ void cgroup_unlock(void)
596static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); 702static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
597static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); 703static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
598static int cgroup_populate_dir(struct cgroup *cgrp); 704static int cgroup_populate_dir(struct cgroup *cgrp);
599static struct inode_operations cgroup_dir_inode_operations; 705static const struct inode_operations cgroup_dir_inode_operations;
600static struct file_operations proc_cgroupstats_operations; 706static struct file_operations proc_cgroupstats_operations;
601 707
602static struct backing_dev_info cgroup_backing_dev_info = { 708static struct backing_dev_info cgroup_backing_dev_info = {
@@ -677,6 +783,12 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode)
677 */ 783 */
678 deactivate_super(cgrp->root->sb); 784 deactivate_super(cgrp->root->sb);
679 785
786 /*
787 * if we're getting rid of the cgroup, refcount should ensure
788 * that there are no pidlists left.
789 */
790 BUG_ON(!list_empty(&cgrp->pidlists));
791
680 call_rcu(&cgrp->rcu_head, free_cgroup_rcu); 792 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
681 } 793 }
682 iput(inode); 794 iput(inode);
@@ -841,6 +953,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
841 seq_puts(seq, ",noprefix"); 953 seq_puts(seq, ",noprefix");
842 if (strlen(root->release_agent_path)) 954 if (strlen(root->release_agent_path))
843 seq_printf(seq, ",release_agent=%s", root->release_agent_path); 955 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
956 if (strlen(root->name))
957 seq_printf(seq, ",name=%s", root->name);
844 mutex_unlock(&cgroup_mutex); 958 mutex_unlock(&cgroup_mutex);
845 return 0; 959 return 0;
846} 960}
@@ -849,6 +963,12 @@ struct cgroup_sb_opts {
849 unsigned long subsys_bits; 963 unsigned long subsys_bits;
850 unsigned long flags; 964 unsigned long flags;
851 char *release_agent; 965 char *release_agent;
966 char *name;
967 /* User explicitly requested empty subsystem */
968 bool none;
969
970 struct cgroupfs_root *new_root;
971
852}; 972};
853 973
854/* Convert a hierarchy specifier into a bitmask of subsystems and 974/* Convert a hierarchy specifier into a bitmask of subsystems and
@@ -863,9 +983,7 @@ static int parse_cgroupfs_options(char *data,
863 mask = ~(1UL << cpuset_subsys_id); 983 mask = ~(1UL << cpuset_subsys_id);
864#endif 984#endif
865 985
866 opts->subsys_bits = 0; 986 memset(opts, 0, sizeof(*opts));
867 opts->flags = 0;
868 opts->release_agent = NULL;
869 987
870 while ((token = strsep(&o, ",")) != NULL) { 988 while ((token = strsep(&o, ",")) != NULL) {
871 if (!*token) 989 if (!*token)
@@ -879,17 +997,42 @@ static int parse_cgroupfs_options(char *data,
879 if (!ss->disabled) 997 if (!ss->disabled)
880 opts->subsys_bits |= 1ul << i; 998 opts->subsys_bits |= 1ul << i;
881 } 999 }
1000 } else if (!strcmp(token, "none")) {
1001 /* Explicitly have no subsystems */
1002 opts->none = true;
882 } else if (!strcmp(token, "noprefix")) { 1003 } else if (!strcmp(token, "noprefix")) {
883 set_bit(ROOT_NOPREFIX, &opts->flags); 1004 set_bit(ROOT_NOPREFIX, &opts->flags);
884 } else if (!strncmp(token, "release_agent=", 14)) { 1005 } else if (!strncmp(token, "release_agent=", 14)) {
885 /* Specifying two release agents is forbidden */ 1006 /* Specifying two release agents is forbidden */
886 if (opts->release_agent) 1007 if (opts->release_agent)
887 return -EINVAL; 1008 return -EINVAL;
888 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); 1009 opts->release_agent =
1010 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
889 if (!opts->release_agent) 1011 if (!opts->release_agent)
890 return -ENOMEM; 1012 return -ENOMEM;
891 strncpy(opts->release_agent, token + 14, PATH_MAX - 1); 1013 } else if (!strncmp(token, "name=", 5)) {
892 opts->release_agent[PATH_MAX - 1] = 0; 1014 int i;
1015 const char *name = token + 5;
1016 /* Can't specify an empty name */
1017 if (!strlen(name))
1018 return -EINVAL;
1019 /* Must match [\w.-]+ */
1020 for (i = 0; i < strlen(name); i++) {
1021 char c = name[i];
1022 if (isalnum(c))
1023 continue;
1024 if ((c == '.') || (c == '-') || (c == '_'))
1025 continue;
1026 return -EINVAL;
1027 }
1028 /* Specifying two names is forbidden */
1029 if (opts->name)
1030 return -EINVAL;
1031 opts->name = kstrndup(name,
1032 MAX_CGROUP_ROOT_NAMELEN,
1033 GFP_KERNEL);
1034 if (!opts->name)
1035 return -ENOMEM;
893 } else { 1036 } else {
894 struct cgroup_subsys *ss; 1037 struct cgroup_subsys *ss;
895 int i; 1038 int i;
@@ -906,6 +1049,8 @@ static int parse_cgroupfs_options(char *data,
906 } 1049 }
907 } 1050 }
908 1051
1052 /* Consistency checks */
1053
909 /* 1054 /*
910 * Option noprefix was introduced just for backward compatibility 1055 * Option noprefix was introduced just for backward compatibility
911 * with the old cpuset, so we allow noprefix only if mounting just 1056 * with the old cpuset, so we allow noprefix only if mounting just
@@ -915,8 +1060,16 @@ static int parse_cgroupfs_options(char *data,
915 (opts->subsys_bits & mask)) 1060 (opts->subsys_bits & mask))
916 return -EINVAL; 1061 return -EINVAL;
917 1062
918 /* We can't have an empty hierarchy */ 1063
919 if (!opts->subsys_bits) 1064 /* Can't specify "none" and some subsystems */
1065 if (opts->subsys_bits && opts->none)
1066 return -EINVAL;
1067
1068 /*
1069 * We either have to specify by name or by subsystems. (So all
1070 * empty hierarchies must have a name).
1071 */
1072 if (!opts->subsys_bits && !opts->name)
920 return -EINVAL; 1073 return -EINVAL;
921 1074
922 return 0; 1075 return 0;
@@ -944,6 +1097,12 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)
944 goto out_unlock; 1097 goto out_unlock;
945 } 1098 }
946 1099
1100 /* Don't allow name to change at remount */
1101 if (opts.name && strcmp(opts.name, root->name)) {
1102 ret = -EINVAL;
1103 goto out_unlock;
1104 }
1105
947 ret = rebind_subsystems(root, opts.subsys_bits); 1106 ret = rebind_subsystems(root, opts.subsys_bits);
948 if (ret) 1107 if (ret)
949 goto out_unlock; 1108 goto out_unlock;
@@ -955,13 +1114,14 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)
955 strcpy(root->release_agent_path, opts.release_agent); 1114 strcpy(root->release_agent_path, opts.release_agent);
956 out_unlock: 1115 out_unlock:
957 kfree(opts.release_agent); 1116 kfree(opts.release_agent);
1117 kfree(opts.name);
958 mutex_unlock(&cgroup_mutex); 1118 mutex_unlock(&cgroup_mutex);
959 mutex_unlock(&cgrp->dentry->d_inode->i_mutex); 1119 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
960 unlock_kernel(); 1120 unlock_kernel();
961 return ret; 1121 return ret;
962} 1122}
963 1123
964static struct super_operations cgroup_ops = { 1124static const struct super_operations cgroup_ops = {
965 .statfs = simple_statfs, 1125 .statfs = simple_statfs,
966 .drop_inode = generic_delete_inode, 1126 .drop_inode = generic_delete_inode,
967 .show_options = cgroup_show_options, 1127 .show_options = cgroup_show_options,
@@ -974,9 +1134,10 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp)
974 INIT_LIST_HEAD(&cgrp->children); 1134 INIT_LIST_HEAD(&cgrp->children);
975 INIT_LIST_HEAD(&cgrp->css_sets); 1135 INIT_LIST_HEAD(&cgrp->css_sets);
976 INIT_LIST_HEAD(&cgrp->release_list); 1136 INIT_LIST_HEAD(&cgrp->release_list);
977 INIT_LIST_HEAD(&cgrp->pids_list); 1137 INIT_LIST_HEAD(&cgrp->pidlists);
978 init_rwsem(&cgrp->pids_mutex); 1138 mutex_init(&cgrp->pidlist_mutex);
979} 1139}
1140
980static void init_cgroup_root(struct cgroupfs_root *root) 1141static void init_cgroup_root(struct cgroupfs_root *root)
981{ 1142{
982 struct cgroup *cgrp = &root->top_cgroup; 1143 struct cgroup *cgrp = &root->top_cgroup;
@@ -988,33 +1149,106 @@ static void init_cgroup_root(struct cgroupfs_root *root)
988 init_cgroup_housekeeping(cgrp); 1149 init_cgroup_housekeeping(cgrp);
989} 1150}
990 1151
1152static bool init_root_id(struct cgroupfs_root *root)
1153{
1154 int ret = 0;
1155
1156 do {
1157 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1158 return false;
1159 spin_lock(&hierarchy_id_lock);
1160 /* Try to allocate the next unused ID */
1161 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1162 &root->hierarchy_id);
1163 if (ret == -ENOSPC)
1164 /* Try again starting from 0 */
1165 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1166 if (!ret) {
1167 next_hierarchy_id = root->hierarchy_id + 1;
1168 } else if (ret != -EAGAIN) {
1169 /* Can only get here if the 31-bit IDR is full ... */
1170 BUG_ON(ret);
1171 }
1172 spin_unlock(&hierarchy_id_lock);
1173 } while (ret);
1174 return true;
1175}
1176
991static int cgroup_test_super(struct super_block *sb, void *data) 1177static int cgroup_test_super(struct super_block *sb, void *data)
992{ 1178{
993 struct cgroupfs_root *new = data; 1179 struct cgroup_sb_opts *opts = data;
994 struct cgroupfs_root *root = sb->s_fs_info; 1180 struct cgroupfs_root *root = sb->s_fs_info;
995 1181
996 /* First check subsystems */ 1182 /* If we asked for a name then it must match */
997 if (new->subsys_bits != root->subsys_bits) 1183 if (opts->name && strcmp(opts->name, root->name))
998 return 0; 1184 return 0;
999 1185
1000 /* Next check flags */ 1186 /*
1001 if (new->flags != root->flags) 1187 * If we asked for subsystems (or explicitly for no
1188 * subsystems) then they must match
1189 */
1190 if ((opts->subsys_bits || opts->none)
1191 && (opts->subsys_bits != root->subsys_bits))
1002 return 0; 1192 return 0;
1003 1193
1004 return 1; 1194 return 1;
1005} 1195}
1006 1196
1197static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1198{
1199 struct cgroupfs_root *root;
1200
1201 if (!opts->subsys_bits && !opts->none)
1202 return NULL;
1203
1204 root = kzalloc(sizeof(*root), GFP_KERNEL);
1205 if (!root)
1206 return ERR_PTR(-ENOMEM);
1207
1208 if (!init_root_id(root)) {
1209 kfree(root);
1210 return ERR_PTR(-ENOMEM);
1211 }
1212 init_cgroup_root(root);
1213
1214 root->subsys_bits = opts->subsys_bits;
1215 root->flags = opts->flags;
1216 if (opts->release_agent)
1217 strcpy(root->release_agent_path, opts->release_agent);
1218 if (opts->name)
1219 strcpy(root->name, opts->name);
1220 return root;
1221}
1222
1223static void cgroup_drop_root(struct cgroupfs_root *root)
1224{
1225 if (!root)
1226 return;
1227
1228 BUG_ON(!root->hierarchy_id);
1229 spin_lock(&hierarchy_id_lock);
1230 ida_remove(&hierarchy_ida, root->hierarchy_id);
1231 spin_unlock(&hierarchy_id_lock);
1232 kfree(root);
1233}
1234
1007static int cgroup_set_super(struct super_block *sb, void *data) 1235static int cgroup_set_super(struct super_block *sb, void *data)
1008{ 1236{
1009 int ret; 1237 int ret;
1010 struct cgroupfs_root *root = data; 1238 struct cgroup_sb_opts *opts = data;
1239
1240 /* If we don't have a new root, we can't set up a new sb */
1241 if (!opts->new_root)
1242 return -EINVAL;
1243
1244 BUG_ON(!opts->subsys_bits && !opts->none);
1011 1245
1012 ret = set_anon_super(sb, NULL); 1246 ret = set_anon_super(sb, NULL);
1013 if (ret) 1247 if (ret)
1014 return ret; 1248 return ret;
1015 1249
1016 sb->s_fs_info = root; 1250 sb->s_fs_info = opts->new_root;
1017 root->sb = sb; 1251 opts->new_root->sb = sb;
1018 1252
1019 sb->s_blocksize = PAGE_CACHE_SIZE; 1253 sb->s_blocksize = PAGE_CACHE_SIZE;
1020 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 1254 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
@@ -1051,48 +1285,43 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
1051 void *data, struct vfsmount *mnt) 1285 void *data, struct vfsmount *mnt)
1052{ 1286{
1053 struct cgroup_sb_opts opts; 1287 struct cgroup_sb_opts opts;
1288 struct cgroupfs_root *root;
1054 int ret = 0; 1289 int ret = 0;
1055 struct super_block *sb; 1290 struct super_block *sb;
1056 struct cgroupfs_root *root; 1291 struct cgroupfs_root *new_root;
1057 struct list_head tmp_cg_links;
1058 1292
1059 /* First find the desired set of subsystems */ 1293 /* First find the desired set of subsystems */
1060 ret = parse_cgroupfs_options(data, &opts); 1294 ret = parse_cgroupfs_options(data, &opts);
1061 if (ret) { 1295 if (ret)
1062 kfree(opts.release_agent); 1296 goto out_err;
1063 return ret;
1064 }
1065
1066 root = kzalloc(sizeof(*root), GFP_KERNEL);
1067 if (!root) {
1068 kfree(opts.release_agent);
1069 return -ENOMEM;
1070 }
1071 1297
1072 init_cgroup_root(root); 1298 /*
1073 root->subsys_bits = opts.subsys_bits; 1299 * Allocate a new cgroup root. We may not need it if we're
1074 root->flags = opts.flags; 1300 * reusing an existing hierarchy.
1075 if (opts.release_agent) { 1301 */
1076 strcpy(root->release_agent_path, opts.release_agent); 1302 new_root = cgroup_root_from_opts(&opts);
1077 kfree(opts.release_agent); 1303 if (IS_ERR(new_root)) {
1304 ret = PTR_ERR(new_root);
1305 goto out_err;
1078 } 1306 }
1307 opts.new_root = new_root;
1079 1308
1080 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); 1309 /* Locate an existing or new sb for this hierarchy */
1081 1310 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1082 if (IS_ERR(sb)) { 1311 if (IS_ERR(sb)) {
1083 kfree(root); 1312 ret = PTR_ERR(sb);
1084 return PTR_ERR(sb); 1313 cgroup_drop_root(opts.new_root);
1314 goto out_err;
1085 } 1315 }
1086 1316
1087 if (sb->s_fs_info != root) { 1317 root = sb->s_fs_info;
1088 /* Reusing an existing superblock */ 1318 BUG_ON(!root);
1089 BUG_ON(sb->s_root == NULL); 1319 if (root == opts.new_root) {
1090 kfree(root); 1320 /* We used the new root structure, so this is a new hierarchy */
1091 root = NULL; 1321 struct list_head tmp_cg_links;
1092 } else {
1093 /* New superblock */
1094 struct cgroup *root_cgrp = &root->top_cgroup; 1322 struct cgroup *root_cgrp = &root->top_cgroup;
1095 struct inode *inode; 1323 struct inode *inode;
1324 struct cgroupfs_root *existing_root;
1096 int i; 1325 int i;
1097 1326
1098 BUG_ON(sb->s_root != NULL); 1327 BUG_ON(sb->s_root != NULL);
@@ -1105,6 +1334,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
1105 mutex_lock(&inode->i_mutex); 1334 mutex_lock(&inode->i_mutex);
1106 mutex_lock(&cgroup_mutex); 1335 mutex_lock(&cgroup_mutex);
1107 1336
1337 if (strlen(root->name)) {
1338 /* Check for name clashes with existing mounts */
1339 for_each_active_root(existing_root) {
1340 if (!strcmp(existing_root->name, root->name)) {
1341 ret = -EBUSY;
1342 mutex_unlock(&cgroup_mutex);
1343 mutex_unlock(&inode->i_mutex);
1344 goto drop_new_super;
1345 }
1346 }
1347 }
1348
1108 /* 1349 /*
1109 * We're accessing css_set_count without locking 1350 * We're accessing css_set_count without locking
1110 * css_set_lock here, but that's OK - it can only be 1351 * css_set_lock here, but that's OK - it can only be
@@ -1123,7 +1364,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
1123 if (ret == -EBUSY) { 1364 if (ret == -EBUSY) {
1124 mutex_unlock(&cgroup_mutex); 1365 mutex_unlock(&cgroup_mutex);
1125 mutex_unlock(&inode->i_mutex); 1366 mutex_unlock(&inode->i_mutex);
1126 goto free_cg_links; 1367 free_cg_links(&tmp_cg_links);
1368 goto drop_new_super;
1127 } 1369 }
1128 1370
1129 /* EBUSY should be the only error here */ 1371 /* EBUSY should be the only error here */
@@ -1155,17 +1397,27 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
1155 BUG_ON(root->number_of_cgroups != 1); 1397 BUG_ON(root->number_of_cgroups != 1);
1156 1398
1157 cgroup_populate_dir(root_cgrp); 1399 cgroup_populate_dir(root_cgrp);
1158 mutex_unlock(&inode->i_mutex);
1159 mutex_unlock(&cgroup_mutex); 1400 mutex_unlock(&cgroup_mutex);
1401 mutex_unlock(&inode->i_mutex);
1402 } else {
1403 /*
1404 * We re-used an existing hierarchy - the new root (if
1405 * any) is not needed
1406 */
1407 cgroup_drop_root(opts.new_root);
1160 } 1408 }
1161 1409
1162 simple_set_mnt(mnt, sb); 1410 simple_set_mnt(mnt, sb);
1411 kfree(opts.release_agent);
1412 kfree(opts.name);
1163 return 0; 1413 return 0;
1164 1414
1165 free_cg_links:
1166 free_cg_links(&tmp_cg_links);
1167 drop_new_super: 1415 drop_new_super:
1168 deactivate_locked_super(sb); 1416 deactivate_locked_super(sb);
1417 out_err:
1418 kfree(opts.release_agent);
1419 kfree(opts.name);
1420
1169 return ret; 1421 return ret;
1170} 1422}
1171 1423
@@ -1211,7 +1463,7 @@ static void cgroup_kill_sb(struct super_block *sb) {
1211 mutex_unlock(&cgroup_mutex); 1463 mutex_unlock(&cgroup_mutex);
1212 1464
1213 kill_litter_super(sb); 1465 kill_litter_super(sb);
1214 kfree(root); 1466 cgroup_drop_root(root);
1215} 1467}
1216 1468
1217static struct file_system_type cgroup_fs_type = { 1469static struct file_system_type cgroup_fs_type = {
@@ -1276,27 +1528,6 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1276 return 0; 1528 return 0;
1277} 1529}
1278 1530
1279/*
1280 * Return the first subsystem attached to a cgroup's hierarchy, and
1281 * its subsystem id.
1282 */
1283
1284static void get_first_subsys(const struct cgroup *cgrp,
1285 struct cgroup_subsys_state **css, int *subsys_id)
1286{
1287 const struct cgroupfs_root *root = cgrp->root;
1288 const struct cgroup_subsys *test_ss;
1289 BUG_ON(list_empty(&root->subsys_list));
1290 test_ss = list_entry(root->subsys_list.next,
1291 struct cgroup_subsys, sibling);
1292 if (css) {
1293 *css = cgrp->subsys[test_ss->subsys_id];
1294 BUG_ON(!*css);
1295 }
1296 if (subsys_id)
1297 *subsys_id = test_ss->subsys_id;
1298}
1299
1300/** 1531/**
1301 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' 1532 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1302 * @cgrp: the cgroup the task is attaching to 1533 * @cgrp: the cgroup the task is attaching to
@@ -1313,18 +1544,15 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1313 struct css_set *cg; 1544 struct css_set *cg;
1314 struct css_set *newcg; 1545 struct css_set *newcg;
1315 struct cgroupfs_root *root = cgrp->root; 1546 struct cgroupfs_root *root = cgrp->root;
1316 int subsys_id;
1317
1318 get_first_subsys(cgrp, NULL, &subsys_id);
1319 1547
1320 /* Nothing to do if the task is already in that cgroup */ 1548 /* Nothing to do if the task is already in that cgroup */
1321 oldcgrp = task_cgroup(tsk, subsys_id); 1549 oldcgrp = task_cgroup_from_root(tsk, root);
1322 if (cgrp == oldcgrp) 1550 if (cgrp == oldcgrp)
1323 return 0; 1551 return 0;
1324 1552
1325 for_each_subsys(root, ss) { 1553 for_each_subsys(root, ss) {
1326 if (ss->can_attach) { 1554 if (ss->can_attach) {
1327 retval = ss->can_attach(ss, cgrp, tsk); 1555 retval = ss->can_attach(ss, cgrp, tsk, false);
1328 if (retval) 1556 if (retval)
1329 return retval; 1557 return retval;
1330 } 1558 }
@@ -1362,7 +1590,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1362 1590
1363 for_each_subsys(root, ss) { 1591 for_each_subsys(root, ss) {
1364 if (ss->attach) 1592 if (ss->attach)
1365 ss->attach(ss, cgrp, oldcgrp, tsk); 1593 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1366 } 1594 }
1367 set_bit(CGRP_RELEASABLE, &oldcgrp->flags); 1595 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1368 synchronize_rcu(); 1596 synchronize_rcu();
@@ -1423,15 +1651,6 @@ static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1423 return ret; 1651 return ret;
1424} 1652}
1425 1653
1426/* The various types of files and directories in a cgroup file system */
1427enum cgroup_filetype {
1428 FILE_ROOT,
1429 FILE_DIR,
1430 FILE_TASKLIST,
1431 FILE_NOTIFY_ON_RELEASE,
1432 FILE_RELEASE_AGENT,
1433};
1434
1435/** 1654/**
1436 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. 1655 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1437 * @cgrp: the cgroup to be checked for liveness 1656 * @cgrp: the cgroup to be checked for liveness
@@ -1711,7 +1930,7 @@ static struct file_operations cgroup_file_operations = {
1711 .release = cgroup_file_release, 1930 .release = cgroup_file_release,
1712}; 1931};
1713 1932
1714static struct inode_operations cgroup_dir_inode_operations = { 1933static const struct inode_operations cgroup_dir_inode_operations = {
1715 .lookup = simple_lookup, 1934 .lookup = simple_lookup,
1716 .mkdir = cgroup_mkdir, 1935 .mkdir = cgroup_mkdir,
1717 .rmdir = cgroup_rmdir, 1936 .rmdir = cgroup_rmdir,
@@ -1876,7 +2095,7 @@ int cgroup_task_count(const struct cgroup *cgrp)
1876 * the start of a css_set 2095 * the start of a css_set
1877 */ 2096 */
1878static void cgroup_advance_iter(struct cgroup *cgrp, 2097static void cgroup_advance_iter(struct cgroup *cgrp,
1879 struct cgroup_iter *it) 2098 struct cgroup_iter *it)
1880{ 2099{
1881 struct list_head *l = it->cg_link; 2100 struct list_head *l = it->cg_link;
1882 struct cg_cgroup_link *link; 2101 struct cg_cgroup_link *link;
@@ -2129,7 +2348,7 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan)
2129} 2348}
2130 2349
2131/* 2350/*
2132 * Stuff for reading the 'tasks' file. 2351 * Stuff for reading the 'tasks'/'procs' files.
2133 * 2352 *
2134 * Reading this file can return large amounts of data if a cgroup has 2353 * Reading this file can return large amounts of data if a cgroup has
2135 * *lots* of attached tasks. So it may need several calls to read(), 2354 * *lots* of attached tasks. So it may need several calls to read(),
@@ -2139,27 +2358,196 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan)
2139 */ 2358 */
2140 2359
2141/* 2360/*
2142 * Load into 'pidarray' up to 'npids' of the tasks using cgroup 2361 * The following two functions "fix" the issue where there are more pids
2143 * 'cgrp'. Return actual number of pids loaded. No need to 2362 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2144 * task_lock(p) when reading out p->cgroup, since we're in an RCU 2363 * TODO: replace with a kernel-wide solution to this problem
2145 * read section, so the css_set can't go away, and is 2364 */
2146 * immutable after creation. 2365#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2366static void *pidlist_allocate(int count)
2367{
2368 if (PIDLIST_TOO_LARGE(count))
2369 return vmalloc(count * sizeof(pid_t));
2370 else
2371 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2372}
2373static void pidlist_free(void *p)
2374{
2375 if (is_vmalloc_addr(p))
2376 vfree(p);
2377 else
2378 kfree(p);
2379}
2380static void *pidlist_resize(void *p, int newcount)
2381{
2382 void *newlist;
2383 /* note: if new alloc fails, old p will still be valid either way */
2384 if (is_vmalloc_addr(p)) {
2385 newlist = vmalloc(newcount * sizeof(pid_t));
2386 if (!newlist)
2387 return NULL;
2388 memcpy(newlist, p, newcount * sizeof(pid_t));
2389 vfree(p);
2390 } else {
2391 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2392 }
2393 return newlist;
2394}
2395
2396/*
2397 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2398 * If the new stripped list is sufficiently smaller and there's enough memory
2399 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2400 * number of unique elements.
2401 */
2402/* is the size difference enough that we should re-allocate the array? */
2403#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2404static int pidlist_uniq(pid_t **p, int length)
2405{
2406 int src, dest = 1;
2407 pid_t *list = *p;
2408 pid_t *newlist;
2409
2410 /*
2411 * we presume the 0th element is unique, so i starts at 1. trivial
2412 * edge cases first; no work needs to be done for either
2413 */
2414 if (length == 0 || length == 1)
2415 return length;
2416 /* src and dest walk down the list; dest counts unique elements */
2417 for (src = 1; src < length; src++) {
2418 /* find next unique element */
2419 while (list[src] == list[src-1]) {
2420 src++;
2421 if (src == length)
2422 goto after;
2423 }
2424 /* dest always points to where the next unique element goes */
2425 list[dest] = list[src];
2426 dest++;
2427 }
2428after:
2429 /*
2430 * if the length difference is large enough, we want to allocate a
2431 * smaller buffer to save memory. if this fails due to out of memory,
2432 * we'll just stay with what we've got.
2433 */
2434 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2435 newlist = pidlist_resize(list, dest);
2436 if (newlist)
2437 *p = newlist;
2438 }
2439 return dest;
2440}
2441
2442static int cmppid(const void *a, const void *b)
2443{
2444 return *(pid_t *)a - *(pid_t *)b;
2445}
2446
2447/*
2448 * find the appropriate pidlist for our purpose (given procs vs tasks)
2449 * returns with the lock on that pidlist already held, and takes care
2450 * of the use count, or returns NULL with no locks held if we're out of
2451 * memory.
2147 */ 2452 */
2148static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) 2453static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2454 enum cgroup_filetype type)
2149{ 2455{
2150 int n = 0, pid; 2456 struct cgroup_pidlist *l;
2457 /* don't need task_nsproxy() if we're looking at ourself */
2458 struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns);
2459 /*
2460 * We can't drop the pidlist_mutex before taking the l->mutex in case
2461 * the last ref-holder is trying to remove l from the list at the same
2462 * time. Holding the pidlist_mutex precludes somebody taking whichever
2463 * list we find out from under us - compare release_pid_array().
2464 */
2465 mutex_lock(&cgrp->pidlist_mutex);
2466 list_for_each_entry(l, &cgrp->pidlists, links) {
2467 if (l->key.type == type && l->key.ns == ns) {
2468 /* found a matching list - drop the extra refcount */
2469 put_pid_ns(ns);
2470 /* make sure l doesn't vanish out from under us */
2471 down_write(&l->mutex);
2472 mutex_unlock(&cgrp->pidlist_mutex);
2473 l->use_count++;
2474 return l;
2475 }
2476 }
2477 /* entry not found; create a new one */
2478 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2479 if (!l) {
2480 mutex_unlock(&cgrp->pidlist_mutex);
2481 put_pid_ns(ns);
2482 return l;
2483 }
2484 init_rwsem(&l->mutex);
2485 down_write(&l->mutex);
2486 l->key.type = type;
2487 l->key.ns = ns;
2488 l->use_count = 0; /* don't increment here */
2489 l->list = NULL;
2490 l->owner = cgrp;
2491 list_add(&l->links, &cgrp->pidlists);
2492 mutex_unlock(&cgrp->pidlist_mutex);
2493 return l;
2494}
2495
2496/*
2497 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2498 */
2499static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2500 struct cgroup_pidlist **lp)
2501{
2502 pid_t *array;
2503 int length;
2504 int pid, n = 0; /* used for populating the array */
2151 struct cgroup_iter it; 2505 struct cgroup_iter it;
2152 struct task_struct *tsk; 2506 struct task_struct *tsk;
2507 struct cgroup_pidlist *l;
2508
2509 /*
2510 * If cgroup gets more users after we read count, we won't have
2511 * enough space - tough. This race is indistinguishable to the
2512 * caller from the case that the additional cgroup users didn't
2513 * show up until sometime later on.
2514 */
2515 length = cgroup_task_count(cgrp);
2516 array = pidlist_allocate(length);
2517 if (!array)
2518 return -ENOMEM;
2519 /* now, populate the array */
2153 cgroup_iter_start(cgrp, &it); 2520 cgroup_iter_start(cgrp, &it);
2154 while ((tsk = cgroup_iter_next(cgrp, &it))) { 2521 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2155 if (unlikely(n == npids)) 2522 if (unlikely(n == length))
2156 break; 2523 break;
2157 pid = task_pid_vnr(tsk); 2524 /* get tgid or pid for procs or tasks file respectively */
2158 if (pid > 0) 2525 if (type == CGROUP_FILE_PROCS)
2159 pidarray[n++] = pid; 2526 pid = task_tgid_vnr(tsk);
2527 else
2528 pid = task_pid_vnr(tsk);
2529 if (pid > 0) /* make sure to only use valid results */
2530 array[n++] = pid;
2160 } 2531 }
2161 cgroup_iter_end(cgrp, &it); 2532 cgroup_iter_end(cgrp, &it);
2162 return n; 2533 length = n;
2534 /* now sort & (if procs) strip out duplicates */
2535 sort(array, length, sizeof(pid_t), cmppid, NULL);
2536 if (type == CGROUP_FILE_PROCS)
2537 length = pidlist_uniq(&array, length);
2538 l = cgroup_pidlist_find(cgrp, type);
2539 if (!l) {
2540 pidlist_free(array);
2541 return -ENOMEM;
2542 }
2543 /* store array, freeing old if necessary - lock already held */
2544 pidlist_free(l->list);
2545 l->list = array;
2546 l->length = length;
2547 l->use_count++;
2548 up_write(&l->mutex);
2549 *lp = l;
2550 return 0;
2163} 2551}
2164 2552
2165/** 2553/**
@@ -2216,37 +2604,14 @@ err:
2216 return ret; 2604 return ret;
2217} 2605}
2218 2606
2219/*
2220 * Cache pids for all threads in the same pid namespace that are
2221 * opening the same "tasks" file.
2222 */
2223struct cgroup_pids {
2224 /* The node in cgrp->pids_list */
2225 struct list_head list;
2226 /* The cgroup those pids belong to */
2227 struct cgroup *cgrp;
2228 /* The namepsace those pids belong to */
2229 struct pid_namespace *ns;
2230 /* Array of process ids in the cgroup */
2231 pid_t *tasks_pids;
2232 /* How many files are using the this tasks_pids array */
2233 int use_count;
2234 /* Length of the current tasks_pids array */
2235 int length;
2236};
2237
2238static int cmppid(const void *a, const void *b)
2239{
2240 return *(pid_t *)a - *(pid_t *)b;
2241}
2242 2607
2243/* 2608/*
2244 * seq_file methods for the "tasks" file. The seq_file position is the 2609 * seq_file methods for the tasks/procs files. The seq_file position is the
2245 * next pid to display; the seq_file iterator is a pointer to the pid 2610 * next pid to display; the seq_file iterator is a pointer to the pid
2246 * in the cgroup->tasks_pids array. 2611 * in the cgroup->l->list array.
2247 */ 2612 */
2248 2613
2249static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) 2614static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2250{ 2615{
2251 /* 2616 /*
2252 * Initially we receive a position value that corresponds to 2617 * Initially we receive a position value that corresponds to
@@ -2254,48 +2619,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2254 * after a seek to the start). Use a binary-search to find the 2619 * after a seek to the start). Use a binary-search to find the
2255 * next pid to display, if any 2620 * next pid to display, if any
2256 */ 2621 */
2257 struct cgroup_pids *cp = s->private; 2622 struct cgroup_pidlist *l = s->private;
2258 struct cgroup *cgrp = cp->cgrp;
2259 int index = 0, pid = *pos; 2623 int index = 0, pid = *pos;
2260 int *iter; 2624 int *iter;
2261 2625
2262 down_read(&cgrp->pids_mutex); 2626 down_read(&l->mutex);
2263 if (pid) { 2627 if (pid) {
2264 int end = cp->length; 2628 int end = l->length;
2265 2629
2266 while (index < end) { 2630 while (index < end) {
2267 int mid = (index + end) / 2; 2631 int mid = (index + end) / 2;
2268 if (cp->tasks_pids[mid] == pid) { 2632 if (l->list[mid] == pid) {
2269 index = mid; 2633 index = mid;
2270 break; 2634 break;
2271 } else if (cp->tasks_pids[mid] <= pid) 2635 } else if (l->list[mid] <= pid)
2272 index = mid + 1; 2636 index = mid + 1;
2273 else 2637 else
2274 end = mid; 2638 end = mid;
2275 } 2639 }
2276 } 2640 }
2277 /* If we're off the end of the array, we're done */ 2641 /* If we're off the end of the array, we're done */
2278 if (index >= cp->length) 2642 if (index >= l->length)
2279 return NULL; 2643 return NULL;
2280 /* Update the abstract position to be the actual pid that we found */ 2644 /* Update the abstract position to be the actual pid that we found */
2281 iter = cp->tasks_pids + index; 2645 iter = l->list + index;
2282 *pos = *iter; 2646 *pos = *iter;
2283 return iter; 2647 return iter;
2284} 2648}
2285 2649
2286static void cgroup_tasks_stop(struct seq_file *s, void *v) 2650static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2287{ 2651{
2288 struct cgroup_pids *cp = s->private; 2652 struct cgroup_pidlist *l = s->private;
2289 struct cgroup *cgrp = cp->cgrp; 2653 up_read(&l->mutex);
2290 up_read(&cgrp->pids_mutex);
2291} 2654}
2292 2655
2293static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) 2656static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2294{ 2657{
2295 struct cgroup_pids *cp = s->private; 2658 struct cgroup_pidlist *l = s->private;
2296 int *p = v; 2659 pid_t *p = v;
2297 int *end = cp->tasks_pids + cp->length; 2660 pid_t *end = l->list + l->length;
2298
2299 /* 2661 /*
2300 * Advance to the next pid in the array. If this goes off the 2662 * Advance to the next pid in the array. If this goes off the
2301 * end, we're done 2663 * end, we're done
@@ -2309,124 +2671,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2309 } 2671 }
2310} 2672}
2311 2673
2312static int cgroup_tasks_show(struct seq_file *s, void *v) 2674static int cgroup_pidlist_show(struct seq_file *s, void *v)
2313{ 2675{
2314 return seq_printf(s, "%d\n", *(int *)v); 2676 return seq_printf(s, "%d\n", *(int *)v);
2315} 2677}
2316 2678
2317static struct seq_operations cgroup_tasks_seq_operations = { 2679/*
2318 .start = cgroup_tasks_start, 2680 * seq_operations functions for iterating on pidlists through seq_file -
2319 .stop = cgroup_tasks_stop, 2681 * independent of whether it's tasks or procs
2320 .next = cgroup_tasks_next, 2682 */
2321 .show = cgroup_tasks_show, 2683static const struct seq_operations cgroup_pidlist_seq_operations = {
2684 .start = cgroup_pidlist_start,
2685 .stop = cgroup_pidlist_stop,
2686 .next = cgroup_pidlist_next,
2687 .show = cgroup_pidlist_show,
2322}; 2688};
2323 2689
2324static void release_cgroup_pid_array(struct cgroup_pids *cp) 2690static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2325{ 2691{
2326 struct cgroup *cgrp = cp->cgrp; 2692 /*
2327 2693 * the case where we're the last user of this particular pidlist will
2328 down_write(&cgrp->pids_mutex); 2694 * have us remove it from the cgroup's list, which entails taking the
2329 BUG_ON(!cp->use_count); 2695 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2330 if (!--cp->use_count) { 2696 * pidlist_mutex, we have to take pidlist_mutex first.
2331 list_del(&cp->list); 2697 */
2332 put_pid_ns(cp->ns); 2698 mutex_lock(&l->owner->pidlist_mutex);
2333 kfree(cp->tasks_pids); 2699 down_write(&l->mutex);
2334 kfree(cp); 2700 BUG_ON(!l->use_count);
2701 if (!--l->use_count) {
2702 /* we're the last user if refcount is 0; remove and free */
2703 list_del(&l->links);
2704 mutex_unlock(&l->owner->pidlist_mutex);
2705 pidlist_free(l->list);
2706 put_pid_ns(l->key.ns);
2707 up_write(&l->mutex);
2708 kfree(l);
2709 return;
2335 } 2710 }
2336 up_write(&cgrp->pids_mutex); 2711 mutex_unlock(&l->owner->pidlist_mutex);
2712 up_write(&l->mutex);
2337} 2713}
2338 2714
2339static int cgroup_tasks_release(struct inode *inode, struct file *file) 2715static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2340{ 2716{
2341 struct seq_file *seq; 2717 struct cgroup_pidlist *l;
2342 struct cgroup_pids *cp;
2343
2344 if (!(file->f_mode & FMODE_READ)) 2718 if (!(file->f_mode & FMODE_READ))
2345 return 0; 2719 return 0;
2346 2720 /*
2347 seq = file->private_data; 2721 * the seq_file will only be initialized if the file was opened for
2348 cp = seq->private; 2722 * reading; hence we check if it's not null only in that case.
2349 2723 */
2350 release_cgroup_pid_array(cp); 2724 l = ((struct seq_file *)file->private_data)->private;
2725 cgroup_release_pid_array(l);
2351 return seq_release(inode, file); 2726 return seq_release(inode, file);
2352} 2727}
2353 2728
2354static struct file_operations cgroup_tasks_operations = { 2729static const struct file_operations cgroup_pidlist_operations = {
2355 .read = seq_read, 2730 .read = seq_read,
2356 .llseek = seq_lseek, 2731 .llseek = seq_lseek,
2357 .write = cgroup_file_write, 2732 .write = cgroup_file_write,
2358 .release = cgroup_tasks_release, 2733 .release = cgroup_pidlist_release,
2359}; 2734};
2360 2735
2361/* 2736/*
2362 * Handle an open on 'tasks' file. Prepare an array containing the 2737 * The following functions handle opens on a file that displays a pidlist
2363 * process id's of tasks currently attached to the cgroup being opened. 2738 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2739 * in the cgroup.
2364 */ 2740 */
2365 2741/* helper function for the two below it */
2366static int cgroup_tasks_open(struct inode *unused, struct file *file) 2742static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2367{ 2743{
2368 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); 2744 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2369 struct pid_namespace *ns = current->nsproxy->pid_ns; 2745 struct cgroup_pidlist *l;
2370 struct cgroup_pids *cp;
2371 pid_t *pidarray;
2372 int npids;
2373 int retval; 2746 int retval;
2374 2747
2375 /* Nothing to do for write-only files */ 2748 /* Nothing to do for write-only files */
2376 if (!(file->f_mode & FMODE_READ)) 2749 if (!(file->f_mode & FMODE_READ))
2377 return 0; 2750 return 0;
2378 2751
2379 /* 2752 /* have the array populated */
2380 * If cgroup gets more users after we read count, we won't have 2753 retval = pidlist_array_load(cgrp, type, &l);
2381 * enough space - tough. This race is indistinguishable to the 2754 if (retval)
2382 * caller from the case that the additional cgroup users didn't 2755 return retval;
2383 * show up until sometime later on. 2756 /* configure file information */
2384 */ 2757 file->f_op = &cgroup_pidlist_operations;
2385 npids = cgroup_task_count(cgrp);
2386 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2387 if (!pidarray)
2388 return -ENOMEM;
2389 npids = pid_array_load(pidarray, npids, cgrp);
2390 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2391
2392 /*
2393 * Store the array in the cgroup, freeing the old
2394 * array if necessary
2395 */
2396 down_write(&cgrp->pids_mutex);
2397
2398 list_for_each_entry(cp, &cgrp->pids_list, list) {
2399 if (ns == cp->ns)
2400 goto found;
2401 }
2402
2403 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
2404 if (!cp) {
2405 up_write(&cgrp->pids_mutex);
2406 kfree(pidarray);
2407 return -ENOMEM;
2408 }
2409 cp->cgrp = cgrp;
2410 cp->ns = ns;
2411 get_pid_ns(ns);
2412 list_add(&cp->list, &cgrp->pids_list);
2413found:
2414 kfree(cp->tasks_pids);
2415 cp->tasks_pids = pidarray;
2416 cp->length = npids;
2417 cp->use_count++;
2418 up_write(&cgrp->pids_mutex);
2419
2420 file->f_op = &cgroup_tasks_operations;
2421 2758
2422 retval = seq_open(file, &cgroup_tasks_seq_operations); 2759 retval = seq_open(file, &cgroup_pidlist_seq_operations);
2423 if (retval) { 2760 if (retval) {
2424 release_cgroup_pid_array(cp); 2761 cgroup_release_pid_array(l);
2425 return retval; 2762 return retval;
2426 } 2763 }
2427 ((struct seq_file *)file->private_data)->private = cp; 2764 ((struct seq_file *)file->private_data)->private = l;
2428 return 0; 2765 return 0;
2429} 2766}
2767static int cgroup_tasks_open(struct inode *unused, struct file *file)
2768{
2769 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2770}
2771static int cgroup_procs_open(struct inode *unused, struct file *file)
2772{
2773 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2774}
2430 2775
2431static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, 2776static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2432 struct cftype *cft) 2777 struct cftype *cft)
@@ -2449,21 +2794,27 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2449/* 2794/*
2450 * for the common functions, 'private' gives the type of file 2795 * for the common functions, 'private' gives the type of file
2451 */ 2796 */
2797/* for hysterical raisins, we can't put this on the older files */
2798#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
2452static struct cftype files[] = { 2799static struct cftype files[] = {
2453 { 2800 {
2454 .name = "tasks", 2801 .name = "tasks",
2455 .open = cgroup_tasks_open, 2802 .open = cgroup_tasks_open,
2456 .write_u64 = cgroup_tasks_write, 2803 .write_u64 = cgroup_tasks_write,
2457 .release = cgroup_tasks_release, 2804 .release = cgroup_pidlist_release,
2458 .private = FILE_TASKLIST,
2459 .mode = S_IRUGO | S_IWUSR, 2805 .mode = S_IRUGO | S_IWUSR,
2460 }, 2806 },
2461 2807 {
2808 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
2809 .open = cgroup_procs_open,
2810 /* .write_u64 = cgroup_procs_write, TODO */
2811 .release = cgroup_pidlist_release,
2812 .mode = S_IRUGO,
2813 },
2462 { 2814 {
2463 .name = "notify_on_release", 2815 .name = "notify_on_release",
2464 .read_u64 = cgroup_read_notify_on_release, 2816 .read_u64 = cgroup_read_notify_on_release,
2465 .write_u64 = cgroup_write_notify_on_release, 2817 .write_u64 = cgroup_write_notify_on_release,
2466 .private = FILE_NOTIFY_ON_RELEASE,
2467 }, 2818 },
2468}; 2819};
2469 2820
@@ -2472,7 +2823,6 @@ static struct cftype cft_release_agent = {
2472 .read_seq_string = cgroup_release_agent_show, 2823 .read_seq_string = cgroup_release_agent_show,
2473 .write_string = cgroup_release_agent_write, 2824 .write_string = cgroup_release_agent_write,
2474 .max_write_len = PATH_MAX, 2825 .max_write_len = PATH_MAX,
2475 .private = FILE_RELEASE_AGENT,
2476}; 2826};
2477 2827
2478static int cgroup_populate_dir(struct cgroup *cgrp) 2828static int cgroup_populate_dir(struct cgroup *cgrp)
@@ -2879,6 +3229,7 @@ int __init cgroup_init_early(void)
2879 init_task.cgroups = &init_css_set; 3229 init_task.cgroups = &init_css_set;
2880 3230
2881 init_css_set_link.cg = &init_css_set; 3231 init_css_set_link.cg = &init_css_set;
3232 init_css_set_link.cgrp = dummytop;
2882 list_add(&init_css_set_link.cgrp_link_list, 3233 list_add(&init_css_set_link.cgrp_link_list,
2883 &rootnode.top_cgroup.css_sets); 3234 &rootnode.top_cgroup.css_sets);
2884 list_add(&init_css_set_link.cg_link_list, 3235 list_add(&init_css_set_link.cg_link_list,
@@ -2933,7 +3284,7 @@ int __init cgroup_init(void)
2933 /* Add init_css_set to the hash table */ 3284 /* Add init_css_set to the hash table */
2934 hhead = css_set_hash(init_css_set.subsys); 3285 hhead = css_set_hash(init_css_set.subsys);
2935 hlist_add_head(&init_css_set.hlist, hhead); 3286 hlist_add_head(&init_css_set.hlist, hhead);
2936 3287 BUG_ON(!init_root_id(&rootnode));
2937 err = register_filesystem(&cgroup_fs_type); 3288 err = register_filesystem(&cgroup_fs_type);
2938 if (err < 0) 3289 if (err < 0)
2939 goto out; 3290 goto out;
@@ -2986,15 +3337,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v)
2986 for_each_active_root(root) { 3337 for_each_active_root(root) {
2987 struct cgroup_subsys *ss; 3338 struct cgroup_subsys *ss;
2988 struct cgroup *cgrp; 3339 struct cgroup *cgrp;
2989 int subsys_id;
2990 int count = 0; 3340 int count = 0;
2991 3341
2992 seq_printf(m, "%lu:", root->subsys_bits); 3342 seq_printf(m, "%d:", root->hierarchy_id);
2993 for_each_subsys(root, ss) 3343 for_each_subsys(root, ss)
2994 seq_printf(m, "%s%s", count++ ? "," : "", ss->name); 3344 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3345 if (strlen(root->name))
3346 seq_printf(m, "%sname=%s", count ? "," : "",
3347 root->name);
2995 seq_putc(m, ':'); 3348 seq_putc(m, ':');
2996 get_first_subsys(&root->top_cgroup, NULL, &subsys_id); 3349 cgrp = task_cgroup_from_root(tsk, root);
2997 cgrp = task_cgroup(tsk, subsys_id);
2998 retval = cgroup_path(cgrp, buf, PAGE_SIZE); 3350 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2999 if (retval < 0) 3351 if (retval < 0)
3000 goto out_unlock; 3352 goto out_unlock;
@@ -3033,8 +3385,8 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v)
3033 mutex_lock(&cgroup_mutex); 3385 mutex_lock(&cgroup_mutex);
3034 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { 3386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3035 struct cgroup_subsys *ss = subsys[i]; 3387 struct cgroup_subsys *ss = subsys[i];
3036 seq_printf(m, "%s\t%lu\t%d\t%d\n", 3388 seq_printf(m, "%s\t%d\t%d\t%d\n",
3037 ss->name, ss->root->subsys_bits, 3389 ss->name, ss->root->hierarchy_id,
3038 ss->root->number_of_cgroups, !ss->disabled); 3390 ss->root->number_of_cgroups, !ss->disabled);
3039 } 3391 }
3040 mutex_unlock(&cgroup_mutex); 3392 mutex_unlock(&cgroup_mutex);
@@ -3320,13 +3672,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3320{ 3672{
3321 int ret; 3673 int ret;
3322 struct cgroup *target; 3674 struct cgroup *target;
3323 int subsys_id;
3324 3675
3325 if (cgrp == dummytop) 3676 if (cgrp == dummytop)
3326 return 1; 3677 return 1;
3327 3678
3328 get_first_subsys(cgrp, NULL, &subsys_id); 3679 target = task_cgroup_from_root(task, cgrp->root);
3329 target = task_cgroup(task, subsys_id);
3330 while (cgrp != target && cgrp!= cgrp->top_cgroup) 3680 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3331 cgrp = cgrp->parent; 3681 cgrp = cgrp->parent;
3332 ret = (cgrp == target); 3682 ret = (cgrp == target);
@@ -3693,3 +4043,154 @@ css_get_next(struct cgroup_subsys *ss, int id,
3693 return ret; 4043 return ret;
3694} 4044}
3695 4045
4046#ifdef CONFIG_CGROUP_DEBUG
4047static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4048 struct cgroup *cont)
4049{
4050 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4051
4052 if (!css)
4053 return ERR_PTR(-ENOMEM);
4054
4055 return css;
4056}
4057
4058static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4059{
4060 kfree(cont->subsys[debug_subsys_id]);
4061}
4062
4063static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4064{
4065 return atomic_read(&cont->count);
4066}
4067
4068static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4069{
4070 return cgroup_task_count(cont);
4071}
4072
4073static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4074{
4075 return (u64)(unsigned long)current->cgroups;
4076}
4077
4078static u64 current_css_set_refcount_read(struct cgroup *cont,
4079 struct cftype *cft)
4080{
4081 u64 count;
4082
4083 rcu_read_lock();
4084 count = atomic_read(&current->cgroups->refcount);
4085 rcu_read_unlock();
4086 return count;
4087}
4088
4089static int current_css_set_cg_links_read(struct cgroup *cont,
4090 struct cftype *cft,
4091 struct seq_file *seq)
4092{
4093 struct cg_cgroup_link *link;
4094 struct css_set *cg;
4095
4096 read_lock(&css_set_lock);
4097 rcu_read_lock();
4098 cg = rcu_dereference(current->cgroups);
4099 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4100 struct cgroup *c = link->cgrp;
4101 const char *name;
4102
4103 if (c->dentry)
4104 name = c->dentry->d_name.name;
4105 else
4106 name = "?";
4107 seq_printf(seq, "Root %d group %s\n",
4108 c->root->hierarchy_id, name);
4109 }
4110 rcu_read_unlock();
4111 read_unlock(&css_set_lock);
4112 return 0;
4113}
4114
4115#define MAX_TASKS_SHOWN_PER_CSS 25
4116static int cgroup_css_links_read(struct cgroup *cont,
4117 struct cftype *cft,
4118 struct seq_file *seq)
4119{
4120 struct cg_cgroup_link *link;
4121
4122 read_lock(&css_set_lock);
4123 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4124 struct css_set *cg = link->cg;
4125 struct task_struct *task;
4126 int count = 0;
4127 seq_printf(seq, "css_set %p\n", cg);
4128 list_for_each_entry(task, &cg->tasks, cg_list) {
4129 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4130 seq_puts(seq, " ...\n");
4131 break;
4132 } else {
4133 seq_printf(seq, " task %d\n",
4134 task_pid_vnr(task));
4135 }
4136 }
4137 }
4138 read_unlock(&css_set_lock);
4139 return 0;
4140}
4141
4142static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4143{
4144 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4145}
4146
4147static struct cftype debug_files[] = {
4148 {
4149 .name = "cgroup_refcount",
4150 .read_u64 = cgroup_refcount_read,
4151 },
4152 {
4153 .name = "taskcount",
4154 .read_u64 = debug_taskcount_read,
4155 },
4156
4157 {
4158 .name = "current_css_set",
4159 .read_u64 = current_css_set_read,
4160 },
4161
4162 {
4163 .name = "current_css_set_refcount",
4164 .read_u64 = current_css_set_refcount_read,
4165 },
4166
4167 {
4168 .name = "current_css_set_cg_links",
4169 .read_seq_string = current_css_set_cg_links_read,
4170 },
4171
4172 {
4173 .name = "cgroup_css_links",
4174 .read_seq_string = cgroup_css_links_read,
4175 },
4176
4177 {
4178 .name = "releasable",
4179 .read_u64 = releasable_read,
4180 },
4181};
4182
4183static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4184{
4185 return cgroup_add_files(cont, ss, debug_files,
4186 ARRAY_SIZE(debug_files));
4187}
4188
4189struct cgroup_subsys debug_subsys = {
4190 .name = "debug",
4191 .create = debug_create,
4192 .destroy = debug_destroy,
4193 .populate = debug_populate,
4194 .subsys_id = debug_subsys_id,
4195};
4196#endif /* CONFIG_CGROUP_DEBUG */
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c
deleted file mode 100644
index 0c92d797baa6..000000000000
--- a/kernel/cgroup_debug.c
+++ /dev/null
@@ -1,105 +0,0 @@
1/*
2 * kernel/cgroup_debug.c - Example cgroup subsystem that
3 * exposes debug info
4 *
5 * Copyright (C) Google Inc, 2007
6 *
7 * Developed by Paul Menage (menage@google.com)
8 *
9 */
10
11#include <linux/cgroup.h>
12#include <linux/fs.h>
13#include <linux/slab.h>
14#include <linux/rcupdate.h>
15
16#include <asm/atomic.h>
17
18static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
19 struct cgroup *cont)
20{
21 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
22
23 if (!css)
24 return ERR_PTR(-ENOMEM);
25
26 return css;
27}
28
29static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
30{
31 kfree(cont->subsys[debug_subsys_id]);
32}
33
34static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
35{
36 return atomic_read(&cont->count);
37}
38
39static u64 taskcount_read(struct cgroup *cont, struct cftype *cft)
40{
41 u64 count;
42
43 count = cgroup_task_count(cont);
44 return count;
45}
46
47static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
48{
49 return (u64)(long)current->cgroups;
50}
51
52static u64 current_css_set_refcount_read(struct cgroup *cont,
53 struct cftype *cft)
54{
55 u64 count;
56
57 rcu_read_lock();
58 count = atomic_read(&current->cgroups->refcount);
59 rcu_read_unlock();
60 return count;
61}
62
63static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
64{
65 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
66}
67
68static struct cftype files[] = {
69 {
70 .name = "cgroup_refcount",
71 .read_u64 = cgroup_refcount_read,
72 },
73 {
74 .name = "taskcount",
75 .read_u64 = taskcount_read,
76 },
77
78 {
79 .name = "current_css_set",
80 .read_u64 = current_css_set_read,
81 },
82
83 {
84 .name = "current_css_set_refcount",
85 .read_u64 = current_css_set_refcount_read,
86 },
87
88 {
89 .name = "releasable",
90 .read_u64 = releasable_read,
91 },
92};
93
94static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
95{
96 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
97}
98
99struct cgroup_subsys debug_subsys = {
100 .name = "debug",
101 .create = debug_create,
102 .destroy = debug_destroy,
103 .populate = debug_populate,
104 .subsys_id = debug_subsys_id,
105};
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
index fb249e2bcada..59e9ef6aab40 100644
--- a/kernel/cgroup_freezer.c
+++ b/kernel/cgroup_freezer.c
@@ -159,7 +159,7 @@ static bool is_task_frozen_enough(struct task_struct *task)
159 */ 159 */
160static int freezer_can_attach(struct cgroup_subsys *ss, 160static int freezer_can_attach(struct cgroup_subsys *ss,
161 struct cgroup *new_cgroup, 161 struct cgroup *new_cgroup,
162 struct task_struct *task) 162 struct task_struct *task, bool threadgroup)
163{ 163{
164 struct freezer *freezer; 164 struct freezer *freezer;
165 165
@@ -177,6 +177,19 @@ static int freezer_can_attach(struct cgroup_subsys *ss,
177 if (freezer->state == CGROUP_FROZEN) 177 if (freezer->state == CGROUP_FROZEN)
178 return -EBUSY; 178 return -EBUSY;
179 179
180 if (threadgroup) {
181 struct task_struct *c;
182
183 rcu_read_lock();
184 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
185 if (is_task_frozen_enough(c)) {
186 rcu_read_unlock();
187 return -EBUSY;
188 }
189 }
190 rcu_read_unlock();
191 }
192
180 return 0; 193 return 0;
181} 194}
182 195
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 8ce10043e4ac..6ba0f1ecb212 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -401,6 +401,7 @@ int disable_nonboot_cpus(void)
401 break; 401 break;
402 } 402 }
403 } 403 }
404
404 if (!error) { 405 if (!error) {
405 BUG_ON(num_online_cpus() > 1); 406 BUG_ON(num_online_cpus() > 1);
406 /* Make sure the CPUs won't be enabled by someone else */ 407 /* Make sure the CPUs won't be enabled by someone else */
@@ -413,6 +414,14 @@ int disable_nonboot_cpus(void)
413 return error; 414 return error;
414} 415}
415 416
417void __weak arch_enable_nonboot_cpus_begin(void)
418{
419}
420
421void __weak arch_enable_nonboot_cpus_end(void)
422{
423}
424
416void __ref enable_nonboot_cpus(void) 425void __ref enable_nonboot_cpus(void)
417{ 426{
418 int cpu, error; 427 int cpu, error;
@@ -424,6 +433,9 @@ void __ref enable_nonboot_cpus(void)
424 goto out; 433 goto out;
425 434
426 printk("Enabling non-boot CPUs ...\n"); 435 printk("Enabling non-boot CPUs ...\n");
436
437 arch_enable_nonboot_cpus_begin();
438
427 for_each_cpu(cpu, frozen_cpus) { 439 for_each_cpu(cpu, frozen_cpus) {
428 error = _cpu_up(cpu, 1); 440 error = _cpu_up(cpu, 1);
429 if (!error) { 441 if (!error) {
@@ -432,6 +444,9 @@ void __ref enable_nonboot_cpus(void)
432 } 444 }
433 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 445 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
434 } 446 }
447
448 arch_enable_nonboot_cpus_end();
449
435 cpumask_clear(frozen_cpus); 450 cpumask_clear(frozen_cpus);
436out: 451out:
437 cpu_maps_update_done(); 452 cpu_maps_update_done();
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 7e75a41bd508..b5cb469d2545 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -1324,9 +1324,10 @@ static int fmeter_getrate(struct fmeter *fmp)
1324static cpumask_var_t cpus_attach; 1324static cpumask_var_t cpus_attach;
1325 1325
1326/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ 1326/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1327static int cpuset_can_attach(struct cgroup_subsys *ss, 1327static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1328 struct cgroup *cont, struct task_struct *tsk) 1328 struct task_struct *tsk, bool threadgroup)
1329{ 1329{
1330 int ret;
1330 struct cpuset *cs = cgroup_cs(cont); 1331 struct cpuset *cs = cgroup_cs(cont);
1331 1332
1332 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) 1333 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
@@ -1343,18 +1344,51 @@ static int cpuset_can_attach(struct cgroup_subsys *ss,
1343 if (tsk->flags & PF_THREAD_BOUND) 1344 if (tsk->flags & PF_THREAD_BOUND)
1344 return -EINVAL; 1345 return -EINVAL;
1345 1346
1346 return security_task_setscheduler(tsk, 0, NULL); 1347 ret = security_task_setscheduler(tsk, 0, NULL);
1348 if (ret)
1349 return ret;
1350 if (threadgroup) {
1351 struct task_struct *c;
1352
1353 rcu_read_lock();
1354 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1355 ret = security_task_setscheduler(c, 0, NULL);
1356 if (ret) {
1357 rcu_read_unlock();
1358 return ret;
1359 }
1360 }
1361 rcu_read_unlock();
1362 }
1363 return 0;
1364}
1365
1366static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1367 struct cpuset *cs)
1368{
1369 int err;
1370 /*
1371 * can_attach beforehand should guarantee that this doesn't fail.
1372 * TODO: have a better way to handle failure here
1373 */
1374 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1375 WARN_ON_ONCE(err);
1376
1377 task_lock(tsk);
1378 cpuset_change_task_nodemask(tsk, to);
1379 task_unlock(tsk);
1380 cpuset_update_task_spread_flag(cs, tsk);
1381
1347} 1382}
1348 1383
1349static void cpuset_attach(struct cgroup_subsys *ss, 1384static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1350 struct cgroup *cont, struct cgroup *oldcont, 1385 struct cgroup *oldcont, struct task_struct *tsk,
1351 struct task_struct *tsk) 1386 bool threadgroup)
1352{ 1387{
1353 nodemask_t from, to; 1388 nodemask_t from, to;
1354 struct mm_struct *mm; 1389 struct mm_struct *mm;
1355 struct cpuset *cs = cgroup_cs(cont); 1390 struct cpuset *cs = cgroup_cs(cont);
1356 struct cpuset *oldcs = cgroup_cs(oldcont); 1391 struct cpuset *oldcs = cgroup_cs(oldcont);
1357 int err;
1358 1392
1359 if (cs == &top_cpuset) { 1393 if (cs == &top_cpuset) {
1360 cpumask_copy(cpus_attach, cpu_possible_mask); 1394 cpumask_copy(cpus_attach, cpu_possible_mask);
@@ -1363,15 +1397,19 @@ static void cpuset_attach(struct cgroup_subsys *ss,
1363 guarantee_online_cpus(cs, cpus_attach); 1397 guarantee_online_cpus(cs, cpus_attach);
1364 guarantee_online_mems(cs, &to); 1398 guarantee_online_mems(cs, &to);
1365 } 1399 }
1366 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1367 if (err)
1368 return;
1369 1400
1370 task_lock(tsk); 1401 /* do per-task migration stuff possibly for each in the threadgroup */
1371 cpuset_change_task_nodemask(tsk, &to); 1402 cpuset_attach_task(tsk, &to, cs);
1372 task_unlock(tsk); 1403 if (threadgroup) {
1373 cpuset_update_task_spread_flag(cs, tsk); 1404 struct task_struct *c;
1405 rcu_read_lock();
1406 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1407 cpuset_attach_task(c, &to, cs);
1408 }
1409 rcu_read_unlock();
1410 }
1374 1411
1412 /* change mm; only needs to be done once even if threadgroup */
1375 from = oldcs->mems_allowed; 1413 from = oldcs->mems_allowed;
1376 to = cs->mems_allowed; 1414 to = cs->mems_allowed;
1377 mm = get_task_mm(tsk); 1415 mm = get_task_mm(tsk);
diff --git a/kernel/cred.c b/kernel/cred.c
index 006fcab009d5..dd76cfe5f5b0 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -147,7 +147,8 @@ static void put_cred_rcu(struct rcu_head *rcu)
147 key_put(cred->thread_keyring); 147 key_put(cred->thread_keyring);
148 key_put(cred->request_key_auth); 148 key_put(cred->request_key_auth);
149 release_tgcred(cred); 149 release_tgcred(cred);
150 put_group_info(cred->group_info); 150 if (cred->group_info)
151 put_group_info(cred->group_info);
151 free_uid(cred->user); 152 free_uid(cred->user);
152 kmem_cache_free(cred_jar, cred); 153 kmem_cache_free(cred_jar, cred);
153} 154}
@@ -781,6 +782,25 @@ EXPORT_SYMBOL(set_create_files_as);
781 782
782#ifdef CONFIG_DEBUG_CREDENTIALS 783#ifdef CONFIG_DEBUG_CREDENTIALS
783 784
785bool creds_are_invalid(const struct cred *cred)
786{
787 if (cred->magic != CRED_MAGIC)
788 return true;
789 if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers))
790 return true;
791#ifdef CONFIG_SECURITY_SELINUX
792 if (selinux_is_enabled()) {
793 if ((unsigned long) cred->security < PAGE_SIZE)
794 return true;
795 if ((*(u32 *)cred->security & 0xffffff00) ==
796 (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8))
797 return true;
798 }
799#endif
800 return false;
801}
802EXPORT_SYMBOL(creds_are_invalid);
803
784/* 804/*
785 * dump invalid credentials 805 * dump invalid credentials
786 */ 806 */
diff --git a/kernel/delayacct.c b/kernel/delayacct.c
index abb6e17505e2..ead9b610aa71 100644
--- a/kernel/delayacct.c
+++ b/kernel/delayacct.c
@@ -15,6 +15,7 @@
15 15
16#include <linux/sched.h> 16#include <linux/sched.h>
17#include <linux/slab.h> 17#include <linux/slab.h>
18#include <linux/taskstats.h>
18#include <linux/time.h> 19#include <linux/time.h>
19#include <linux/sysctl.h> 20#include <linux/sysctl.h>
20#include <linux/delayacct.h> 21#include <linux/delayacct.h>
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c
deleted file mode 100644
index 962a3b574f21..000000000000
--- a/kernel/dma-coherent.c
+++ /dev/null
@@ -1,176 +0,0 @@
1/*
2 * Coherent per-device memory handling.
3 * Borrowed from i386
4 */
5#include <linux/kernel.h>
6#include <linux/dma-mapping.h>
7
8struct dma_coherent_mem {
9 void *virt_base;
10 u32 device_base;
11 int size;
12 int flags;
13 unsigned long *bitmap;
14};
15
16int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
17 dma_addr_t device_addr, size_t size, int flags)
18{
19 void __iomem *mem_base = NULL;
20 int pages = size >> PAGE_SHIFT;
21 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
22
23 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
24 goto out;
25 if (!size)
26 goto out;
27 if (dev->dma_mem)
28 goto out;
29
30 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
31
32 mem_base = ioremap(bus_addr, size);
33 if (!mem_base)
34 goto out;
35
36 dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
37 if (!dev->dma_mem)
38 goto out;
39 dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
40 if (!dev->dma_mem->bitmap)
41 goto free1_out;
42
43 dev->dma_mem->virt_base = mem_base;
44 dev->dma_mem->device_base = device_addr;
45 dev->dma_mem->size = pages;
46 dev->dma_mem->flags = flags;
47
48 if (flags & DMA_MEMORY_MAP)
49 return DMA_MEMORY_MAP;
50
51 return DMA_MEMORY_IO;
52
53 free1_out:
54 kfree(dev->dma_mem);
55 out:
56 if (mem_base)
57 iounmap(mem_base);
58 return 0;
59}
60EXPORT_SYMBOL(dma_declare_coherent_memory);
61
62void dma_release_declared_memory(struct device *dev)
63{
64 struct dma_coherent_mem *mem = dev->dma_mem;
65
66 if (!mem)
67 return;
68 dev->dma_mem = NULL;
69 iounmap(mem->virt_base);
70 kfree(mem->bitmap);
71 kfree(mem);
72}
73EXPORT_SYMBOL(dma_release_declared_memory);
74
75void *dma_mark_declared_memory_occupied(struct device *dev,
76 dma_addr_t device_addr, size_t size)
77{
78 struct dma_coherent_mem *mem = dev->dma_mem;
79 int pos, err;
80
81 size += device_addr & ~PAGE_MASK;
82
83 if (!mem)
84 return ERR_PTR(-EINVAL);
85
86 pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
87 err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
88 if (err != 0)
89 return ERR_PTR(err);
90 return mem->virt_base + (pos << PAGE_SHIFT);
91}
92EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
93
94/**
95 * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area
96 *
97 * @dev: device from which we allocate memory
98 * @size: size of requested memory area
99 * @dma_handle: This will be filled with the correct dma handle
100 * @ret: This pointer will be filled with the virtual address
101 * to allocated area.
102 *
103 * This function should be only called from per-arch dma_alloc_coherent()
104 * to support allocation from per-device coherent memory pools.
105 *
106 * Returns 0 if dma_alloc_coherent should continue with allocating from
107 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
108 */
109int dma_alloc_from_coherent(struct device *dev, ssize_t size,
110 dma_addr_t *dma_handle, void **ret)
111{
112 struct dma_coherent_mem *mem;
113 int order = get_order(size);
114 int pageno;
115
116 if (!dev)
117 return 0;
118 mem = dev->dma_mem;
119 if (!mem)
120 return 0;
121
122 *ret = NULL;
123
124 if (unlikely(size > (mem->size << PAGE_SHIFT)))
125 goto err;
126
127 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
128 if (unlikely(pageno < 0))
129 goto err;
130
131 /*
132 * Memory was found in the per-device area.
133 */
134 *dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
135 *ret = mem->virt_base + (pageno << PAGE_SHIFT);
136 memset(*ret, 0, size);
137
138 return 1;
139
140err:
141 /*
142 * In the case where the allocation can not be satisfied from the
143 * per-device area, try to fall back to generic memory if the
144 * constraints allow it.
145 */
146 return mem->flags & DMA_MEMORY_EXCLUSIVE;
147}
148EXPORT_SYMBOL(dma_alloc_from_coherent);
149
150/**
151 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
152 * @dev: device from which the memory was allocated
153 * @order: the order of pages allocated
154 * @vaddr: virtual address of allocated pages
155 *
156 * This checks whether the memory was allocated from the per-device
157 * coherent memory pool and if so, releases that memory.
158 *
159 * Returns 1 if we correctly released the memory, or 0 if
160 * dma_release_coherent() should proceed with releasing memory from
161 * generic pools.
162 */
163int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
164{
165 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
166
167 if (mem && vaddr >= mem->virt_base && vaddr <
168 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
169 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
170
171 bitmap_release_region(mem->bitmap, page, order);
172 return 1;
173 }
174 return 0;
175}
176EXPORT_SYMBOL(dma_release_from_coherent);
diff --git a/kernel/exit.c b/kernel/exit.c
index ae5d8660ddff..5859f598c951 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -47,7 +47,7 @@
47#include <linux/tracehook.h> 47#include <linux/tracehook.h>
48#include <linux/fs_struct.h> 48#include <linux/fs_struct.h>
49#include <linux/init_task.h> 49#include <linux/init_task.h>
50#include <linux/perf_counter.h> 50#include <linux/perf_event.h>
51#include <trace/events/sched.h> 51#include <trace/events/sched.h>
52 52
53#include <asm/uaccess.h> 53#include <asm/uaccess.h>
@@ -154,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp)
154{ 154{
155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
156 156
157#ifdef CONFIG_PERF_COUNTERS 157#ifdef CONFIG_PERF_EVENTS
158 WARN_ON_ONCE(tsk->perf_counter_ctxp); 158 WARN_ON_ONCE(tsk->perf_event_ctxp);
159#endif 159#endif
160 trace_sched_process_free(tsk); 160 trace_sched_process_free(tsk);
161 put_task_struct(tsk); 161 put_task_struct(tsk);
@@ -359,8 +359,10 @@ void __set_special_pids(struct pid *pid)
359{ 359{
360 struct task_struct *curr = current->group_leader; 360 struct task_struct *curr = current->group_leader;
361 361
362 if (task_session(curr) != pid) 362 if (task_session(curr) != pid) {
363 change_pid(curr, PIDTYPE_SID, pid); 363 change_pid(curr, PIDTYPE_SID, pid);
364 proc_sid_connector(curr);
365 }
364 366
365 if (task_pgrp(curr) != pid) 367 if (task_pgrp(curr) != pid)
366 change_pid(curr, PIDTYPE_PGID, pid); 368 change_pid(curr, PIDTYPE_PGID, pid);
@@ -945,6 +947,8 @@ NORET_TYPE void do_exit(long code)
945 if (group_dead) { 947 if (group_dead) {
946 hrtimer_cancel(&tsk->signal->real_timer); 948 hrtimer_cancel(&tsk->signal->real_timer);
947 exit_itimers(tsk->signal); 949 exit_itimers(tsk->signal);
950 if (tsk->mm)
951 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
948 } 952 }
949 acct_collect(code, group_dead); 953 acct_collect(code, group_dead);
950 if (group_dead) 954 if (group_dead)
@@ -972,8 +976,6 @@ NORET_TYPE void do_exit(long code)
972 disassociate_ctty(1); 976 disassociate_ctty(1);
973 977
974 module_put(task_thread_info(tsk)->exec_domain->module); 978 module_put(task_thread_info(tsk)->exec_domain->module);
975 if (tsk->binfmt)
976 module_put(tsk->binfmt->module);
977 979
978 proc_exit_connector(tsk); 980 proc_exit_connector(tsk);
979 981
@@ -981,7 +983,7 @@ NORET_TYPE void do_exit(long code)
981 * Flush inherited counters to the parent - before the parent 983 * Flush inherited counters to the parent - before the parent
982 * gets woken up by child-exit notifications. 984 * gets woken up by child-exit notifications.
983 */ 985 */
984 perf_counter_exit_task(tsk); 986 perf_event_exit_task(tsk);
985 987
986 exit_notify(tsk, group_dead); 988 exit_notify(tsk, group_dead);
987#ifdef CONFIG_NUMA 989#ifdef CONFIG_NUMA
@@ -1093,28 +1095,28 @@ struct wait_opts {
1093 int __user *wo_stat; 1095 int __user *wo_stat;
1094 struct rusage __user *wo_rusage; 1096 struct rusage __user *wo_rusage;
1095 1097
1098 wait_queue_t child_wait;
1096 int notask_error; 1099 int notask_error;
1097}; 1100};
1098 1101
1099static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1102static inline
1103struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1100{ 1104{
1101 struct pid *pid = NULL; 1105 if (type != PIDTYPE_PID)
1102 if (type == PIDTYPE_PID) 1106 task = task->group_leader;
1103 pid = task->pids[type].pid; 1107 return task->pids[type].pid;
1104 else if (type < PIDTYPE_MAX)
1105 pid = task->group_leader->pids[type].pid;
1106 return pid;
1107} 1108}
1108 1109
1109static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1110static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1110{ 1111{
1111 int err; 1112 return wo->wo_type == PIDTYPE_MAX ||
1112 1113 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1113 if (wo->wo_type < PIDTYPE_MAX) { 1114}
1114 if (task_pid_type(p, wo->wo_type) != wo->wo_pid)
1115 return 0;
1116 }
1117 1115
1116static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1117{
1118 if (!eligible_pid(wo, p))
1119 return 0;
1118 /* Wait for all children (clone and not) if __WALL is set; 1120 /* Wait for all children (clone and not) if __WALL is set;
1119 * otherwise, wait for clone children *only* if __WCLONE is 1121 * otherwise, wait for clone children *only* if __WCLONE is
1120 * set; otherwise, wait for non-clone children *only*. (Note: 1122 * set; otherwise, wait for non-clone children *only*. (Note:
@@ -1124,10 +1126,6 @@ static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1124 && !(wo->wo_flags & __WALL)) 1126 && !(wo->wo_flags & __WALL))
1125 return 0; 1127 return 0;
1126 1128
1127 err = security_task_wait(p);
1128 if (err)
1129 return err;
1130
1131 return 1; 1129 return 1;
1132} 1130}
1133 1131
@@ -1140,18 +1138,20 @@ static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1140 1138
1141 put_task_struct(p); 1139 put_task_struct(p);
1142 infop = wo->wo_info; 1140 infop = wo->wo_info;
1143 if (!retval) 1141 if (infop) {
1144 retval = put_user(SIGCHLD, &infop->si_signo); 1142 if (!retval)
1145 if (!retval) 1143 retval = put_user(SIGCHLD, &infop->si_signo);
1146 retval = put_user(0, &infop->si_errno); 1144 if (!retval)
1147 if (!retval) 1145 retval = put_user(0, &infop->si_errno);
1148 retval = put_user((short)why, &infop->si_code); 1146 if (!retval)
1149 if (!retval) 1147 retval = put_user((short)why, &infop->si_code);
1150 retval = put_user(pid, &infop->si_pid); 1148 if (!retval)
1151 if (!retval) 1149 retval = put_user(pid, &infop->si_pid);
1152 retval = put_user(uid, &infop->si_uid); 1150 if (!retval)
1153 if (!retval) 1151 retval = put_user(uid, &infop->si_uid);
1154 retval = put_user(status, &infop->si_status); 1152 if (!retval)
1153 retval = put_user(status, &infop->si_status);
1154 }
1155 if (!retval) 1155 if (!retval)
1156 retval = pid; 1156 retval = pid;
1157 return retval; 1157 return retval;
@@ -1208,6 +1208,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1208 if (likely(!traced) && likely(!task_detached(p))) { 1208 if (likely(!traced) && likely(!task_detached(p))) {
1209 struct signal_struct *psig; 1209 struct signal_struct *psig;
1210 struct signal_struct *sig; 1210 struct signal_struct *sig;
1211 unsigned long maxrss;
1211 1212
1212 /* 1213 /*
1213 * The resource counters for the group leader are in its 1214 * The resource counters for the group leader are in its
@@ -1256,6 +1257,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1256 psig->coublock += 1257 psig->coublock +=
1257 task_io_get_oublock(p) + 1258 task_io_get_oublock(p) +
1258 sig->oublock + sig->coublock; 1259 sig->oublock + sig->coublock;
1260 maxrss = max(sig->maxrss, sig->cmaxrss);
1261 if (psig->cmaxrss < maxrss)
1262 psig->cmaxrss = maxrss;
1259 task_io_accounting_add(&psig->ioac, &p->ioac); 1263 task_io_accounting_add(&psig->ioac, &p->ioac);
1260 task_io_accounting_add(&psig->ioac, &sig->ioac); 1264 task_io_accounting_add(&psig->ioac, &sig->ioac);
1261 spin_unlock_irq(&p->real_parent->sighand->siglock); 1265 spin_unlock_irq(&p->real_parent->sighand->siglock);
@@ -1477,13 +1481,14 @@ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1477 * then ->notask_error is 0 if @p is an eligible child, 1481 * then ->notask_error is 0 if @p is an eligible child,
1478 * or another error from security_task_wait(), or still -ECHILD. 1482 * or another error from security_task_wait(), or still -ECHILD.
1479 */ 1483 */
1480static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, 1484static int wait_consider_task(struct wait_opts *wo, int ptrace,
1481 int ptrace, struct task_struct *p) 1485 struct task_struct *p)
1482{ 1486{
1483 int ret = eligible_child(wo, p); 1487 int ret = eligible_child(wo, p);
1484 if (!ret) 1488 if (!ret)
1485 return ret; 1489 return ret;
1486 1490
1491 ret = security_task_wait(p);
1487 if (unlikely(ret < 0)) { 1492 if (unlikely(ret < 0)) {
1488 /* 1493 /*
1489 * If we have not yet seen any eligible child, 1494 * If we have not yet seen any eligible child,
@@ -1545,7 +1550,7 @@ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1545 * Do not consider detached threads. 1550 * Do not consider detached threads.
1546 */ 1551 */
1547 if (!task_detached(p)) { 1552 if (!task_detached(p)) {
1548 int ret = wait_consider_task(wo, tsk, 0, p); 1553 int ret = wait_consider_task(wo, 0, p);
1549 if (ret) 1554 if (ret)
1550 return ret; 1555 return ret;
1551 } 1556 }
@@ -1559,7 +1564,7 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1559 struct task_struct *p; 1564 struct task_struct *p;
1560 1565
1561 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1566 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1562 int ret = wait_consider_task(wo, tsk, 1, p); 1567 int ret = wait_consider_task(wo, 1, p);
1563 if (ret) 1568 if (ret)
1564 return ret; 1569 return ret;
1565 } 1570 }
@@ -1567,15 +1572,38 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1567 return 0; 1572 return 0;
1568} 1573}
1569 1574
1575static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1576 int sync, void *key)
1577{
1578 struct wait_opts *wo = container_of(wait, struct wait_opts,
1579 child_wait);
1580 struct task_struct *p = key;
1581
1582 if (!eligible_pid(wo, p))
1583 return 0;
1584
1585 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1586 return 0;
1587
1588 return default_wake_function(wait, mode, sync, key);
1589}
1590
1591void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1592{
1593 __wake_up_sync_key(&parent->signal->wait_chldexit,
1594 TASK_INTERRUPTIBLE, 1, p);
1595}
1596
1570static long do_wait(struct wait_opts *wo) 1597static long do_wait(struct wait_opts *wo)
1571{ 1598{
1572 DECLARE_WAITQUEUE(wait, current);
1573 struct task_struct *tsk; 1599 struct task_struct *tsk;
1574 int retval; 1600 int retval;
1575 1601
1576 trace_sched_process_wait(wo->wo_pid); 1602 trace_sched_process_wait(wo->wo_pid);
1577 1603
1578 add_wait_queue(&current->signal->wait_chldexit,&wait); 1604 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1605 wo->child_wait.private = current;
1606 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1579repeat: 1607repeat:
1580 /* 1608 /*
1581 * If there is nothing that can match our critiera just get out. 1609 * If there is nothing that can match our critiera just get out.
@@ -1616,32 +1644,7 @@ notask:
1616 } 1644 }
1617end: 1645end:
1618 __set_current_state(TASK_RUNNING); 1646 __set_current_state(TASK_RUNNING);
1619 remove_wait_queue(&current->signal->wait_chldexit,&wait); 1647 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1620 if (wo->wo_info) {
1621 struct siginfo __user *infop = wo->wo_info;
1622
1623 if (retval > 0)
1624 retval = 0;
1625 else {
1626 /*
1627 * For a WNOHANG return, clear out all the fields
1628 * we would set so the user can easily tell the
1629 * difference.
1630 */
1631 if (!retval)
1632 retval = put_user(0, &infop->si_signo);
1633 if (!retval)
1634 retval = put_user(0, &infop->si_errno);
1635 if (!retval)
1636 retval = put_user(0, &infop->si_code);
1637 if (!retval)
1638 retval = put_user(0, &infop->si_pid);
1639 if (!retval)
1640 retval = put_user(0, &infop->si_uid);
1641 if (!retval)
1642 retval = put_user(0, &infop->si_status);
1643 }
1644 }
1645 return retval; 1648 return retval;
1646} 1649}
1647 1650
@@ -1686,6 +1689,29 @@ SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1686 wo.wo_stat = NULL; 1689 wo.wo_stat = NULL;
1687 wo.wo_rusage = ru; 1690 wo.wo_rusage = ru;
1688 ret = do_wait(&wo); 1691 ret = do_wait(&wo);
1692
1693 if (ret > 0) {
1694 ret = 0;
1695 } else if (infop) {
1696 /*
1697 * For a WNOHANG return, clear out all the fields
1698 * we would set so the user can easily tell the
1699 * difference.
1700 */
1701 if (!ret)
1702 ret = put_user(0, &infop->si_signo);
1703 if (!ret)
1704 ret = put_user(0, &infop->si_errno);
1705 if (!ret)
1706 ret = put_user(0, &infop->si_code);
1707 if (!ret)
1708 ret = put_user(0, &infop->si_pid);
1709 if (!ret)
1710 ret = put_user(0, &infop->si_uid);
1711 if (!ret)
1712 ret = put_user(0, &infop->si_status);
1713 }
1714
1689 put_pid(pid); 1715 put_pid(pid);
1690 1716
1691 /* avoid REGPARM breakage on x86: */ 1717 /* avoid REGPARM breakage on x86: */
diff --git a/kernel/fork.c b/kernel/fork.c
index bfee931ee3fb..266c6af6ef1b 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -49,6 +49,7 @@
49#include <linux/ftrace.h> 49#include <linux/ftrace.h>
50#include <linux/profile.h> 50#include <linux/profile.h>
51#include <linux/rmap.h> 51#include <linux/rmap.h>
52#include <linux/ksm.h>
52#include <linux/acct.h> 53#include <linux/acct.h>
53#include <linux/tsacct_kern.h> 54#include <linux/tsacct_kern.h>
54#include <linux/cn_proc.h> 55#include <linux/cn_proc.h>
@@ -61,7 +62,8 @@
61#include <linux/blkdev.h> 62#include <linux/blkdev.h>
62#include <linux/fs_struct.h> 63#include <linux/fs_struct.h>
63#include <linux/magic.h> 64#include <linux/magic.h>
64#include <linux/perf_counter.h> 65#include <linux/perf_event.h>
66#include <linux/posix-timers.h>
65 67
66#include <asm/pgtable.h> 68#include <asm/pgtable.h>
67#include <asm/pgalloc.h> 69#include <asm/pgalloc.h>
@@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep;
136/* SLAB cache for mm_struct structures (tsk->mm) */ 138/* SLAB cache for mm_struct structures (tsk->mm) */
137static struct kmem_cache *mm_cachep; 139static struct kmem_cache *mm_cachep;
138 140
141static void account_kernel_stack(struct thread_info *ti, int account)
142{
143 struct zone *zone = page_zone(virt_to_page(ti));
144
145 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146}
147
139void free_task(struct task_struct *tsk) 148void free_task(struct task_struct *tsk)
140{ 149{
141 prop_local_destroy_single(&tsk->dirties); 150 prop_local_destroy_single(&tsk->dirties);
151 account_kernel_stack(tsk->stack, -1);
142 free_thread_info(tsk->stack); 152 free_thread_info(tsk->stack);
143 rt_mutex_debug_task_free(tsk); 153 rt_mutex_debug_task_free(tsk);
144 ftrace_graph_exit_task(tsk); 154 ftrace_graph_exit_task(tsk);
@@ -253,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig)
253 tsk->btrace_seq = 0; 263 tsk->btrace_seq = 0;
254#endif 264#endif
255 tsk->splice_pipe = NULL; 265 tsk->splice_pipe = NULL;
266
267 account_kernel_stack(ti, 1);
268
256 return tsk; 269 return tsk;
257 270
258out: 271out:
@@ -288,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
288 rb_link = &mm->mm_rb.rb_node; 301 rb_link = &mm->mm_rb.rb_node;
289 rb_parent = NULL; 302 rb_parent = NULL;
290 pprev = &mm->mmap; 303 pprev = &mm->mmap;
304 retval = ksm_fork(mm, oldmm);
305 if (retval)
306 goto out;
291 307
292 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 308 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
293 struct file *file; 309 struct file *file;
@@ -418,22 +434,30 @@ __setup("coredump_filter=", coredump_filter_setup);
418 434
419#include <linux/init_task.h> 435#include <linux/init_task.h>
420 436
437static void mm_init_aio(struct mm_struct *mm)
438{
439#ifdef CONFIG_AIO
440 spin_lock_init(&mm->ioctx_lock);
441 INIT_HLIST_HEAD(&mm->ioctx_list);
442#endif
443}
444
421static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 445static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
422{ 446{
423 atomic_set(&mm->mm_users, 1); 447 atomic_set(&mm->mm_users, 1);
424 atomic_set(&mm->mm_count, 1); 448 atomic_set(&mm->mm_count, 1);
425 init_rwsem(&mm->mmap_sem); 449 init_rwsem(&mm->mmap_sem);
426 INIT_LIST_HEAD(&mm->mmlist); 450 INIT_LIST_HEAD(&mm->mmlist);
427 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; 451 mm->flags = (current->mm) ?
452 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
428 mm->core_state = NULL; 453 mm->core_state = NULL;
429 mm->nr_ptes = 0; 454 mm->nr_ptes = 0;
430 set_mm_counter(mm, file_rss, 0); 455 set_mm_counter(mm, file_rss, 0);
431 set_mm_counter(mm, anon_rss, 0); 456 set_mm_counter(mm, anon_rss, 0);
432 spin_lock_init(&mm->page_table_lock); 457 spin_lock_init(&mm->page_table_lock);
433 spin_lock_init(&mm->ioctx_lock);
434 INIT_HLIST_HEAD(&mm->ioctx_list);
435 mm->free_area_cache = TASK_UNMAPPED_BASE; 458 mm->free_area_cache = TASK_UNMAPPED_BASE;
436 mm->cached_hole_size = ~0UL; 459 mm->cached_hole_size = ~0UL;
460 mm_init_aio(mm);
437 mm_init_owner(mm, p); 461 mm_init_owner(mm, p);
438 462
439 if (likely(!mm_alloc_pgd(mm))) { 463 if (likely(!mm_alloc_pgd(mm))) {
@@ -485,6 +509,7 @@ void mmput(struct mm_struct *mm)
485 509
486 if (atomic_dec_and_test(&mm->mm_users)) { 510 if (atomic_dec_and_test(&mm->mm_users)) {
487 exit_aio(mm); 511 exit_aio(mm);
512 ksm_exit(mm);
488 exit_mmap(mm); 513 exit_mmap(mm);
489 set_mm_exe_file(mm, NULL); 514 set_mm_exe_file(mm, NULL);
490 if (!list_empty(&mm->mmlist)) { 515 if (!list_empty(&mm->mmlist)) {
@@ -493,6 +518,8 @@ void mmput(struct mm_struct *mm)
493 spin_unlock(&mmlist_lock); 518 spin_unlock(&mmlist_lock);
494 } 519 }
495 put_swap_token(mm); 520 put_swap_token(mm);
521 if (mm->binfmt)
522 module_put(mm->binfmt->module);
496 mmdrop(mm); 523 mmdrop(mm);
497 } 524 }
498} 525}
@@ -618,9 +645,14 @@ struct mm_struct *dup_mm(struct task_struct *tsk)
618 mm->hiwater_rss = get_mm_rss(mm); 645 mm->hiwater_rss = get_mm_rss(mm);
619 mm->hiwater_vm = mm->total_vm; 646 mm->hiwater_vm = mm->total_vm;
620 647
648 if (mm->binfmt && !try_module_get(mm->binfmt->module))
649 goto free_pt;
650
621 return mm; 651 return mm;
622 652
623free_pt: 653free_pt:
654 /* don't put binfmt in mmput, we haven't got module yet */
655 mm->binfmt = NULL;
624 mmput(mm); 656 mmput(mm);
625 657
626fail_nomem: 658fail_nomem:
@@ -788,10 +820,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig)
788 thread_group_cputime_init(sig); 820 thread_group_cputime_init(sig);
789 821
790 /* Expiration times and increments. */ 822 /* Expiration times and increments. */
791 sig->it_virt_expires = cputime_zero; 823 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
792 sig->it_virt_incr = cputime_zero; 824 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
793 sig->it_prof_expires = cputime_zero; 825 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
794 sig->it_prof_incr = cputime_zero; 826 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
795 827
796 /* Cached expiration times. */ 828 /* Cached expiration times. */
797 sig->cputime_expires.prof_exp = cputime_zero; 829 sig->cputime_expires.prof_exp = cputime_zero;
@@ -849,6 +881,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
849 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 881 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
850 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 882 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
851 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 883 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
884 sig->maxrss = sig->cmaxrss = 0;
852 task_io_accounting_init(&sig->ioac); 885 task_io_accounting_init(&sig->ioac);
853 sig->sum_sched_runtime = 0; 886 sig->sum_sched_runtime = 0;
854 taskstats_tgid_init(sig); 887 taskstats_tgid_init(sig);
@@ -863,6 +896,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
863 896
864 tty_audit_fork(sig); 897 tty_audit_fork(sig);
865 898
899 sig->oom_adj = current->signal->oom_adj;
900
866 return 0; 901 return 0;
867} 902}
868 903
@@ -958,6 +993,16 @@ static struct task_struct *copy_process(unsigned long clone_flags,
958 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 993 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
959 return ERR_PTR(-EINVAL); 994 return ERR_PTR(-EINVAL);
960 995
996 /*
997 * Siblings of global init remain as zombies on exit since they are
998 * not reaped by their parent (swapper). To solve this and to avoid
999 * multi-rooted process trees, prevent global and container-inits
1000 * from creating siblings.
1001 */
1002 if ((clone_flags & CLONE_PARENT) &&
1003 current->signal->flags & SIGNAL_UNKILLABLE)
1004 return ERR_PTR(-EINVAL);
1005
961 retval = security_task_create(clone_flags); 1006 retval = security_task_create(clone_flags);
962 if (retval) 1007 if (retval)
963 goto fork_out; 1008 goto fork_out;
@@ -999,9 +1044,6 @@ static struct task_struct *copy_process(unsigned long clone_flags,
999 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1044 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1000 goto bad_fork_cleanup_count; 1045 goto bad_fork_cleanup_count;
1001 1046
1002 if (p->binfmt && !try_module_get(p->binfmt->module))
1003 goto bad_fork_cleanup_put_domain;
1004
1005 p->did_exec = 0; 1047 p->did_exec = 0;
1006 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1048 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1007 copy_flags(clone_flags, p); 1049 copy_flags(clone_flags, p);
@@ -1075,10 +1117,12 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1075 1117
1076 p->bts = NULL; 1118 p->bts = NULL;
1077 1119
1120 p->stack_start = stack_start;
1121
1078 /* Perform scheduler related setup. Assign this task to a CPU. */ 1122 /* Perform scheduler related setup. Assign this task to a CPU. */
1079 sched_fork(p, clone_flags); 1123 sched_fork(p, clone_flags);
1080 1124
1081 retval = perf_counter_init_task(p); 1125 retval = perf_event_init_task(p);
1082 if (retval) 1126 if (retval)
1083 goto bad_fork_cleanup_policy; 1127 goto bad_fork_cleanup_policy;
1084 1128
@@ -1253,7 +1297,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1253 write_unlock_irq(&tasklist_lock); 1297 write_unlock_irq(&tasklist_lock);
1254 proc_fork_connector(p); 1298 proc_fork_connector(p);
1255 cgroup_post_fork(p); 1299 cgroup_post_fork(p);
1256 perf_counter_fork(p); 1300 perf_event_fork(p);
1257 return p; 1301 return p;
1258 1302
1259bad_fork_free_pid: 1303bad_fork_free_pid:
@@ -1280,16 +1324,13 @@ bad_fork_cleanup_semundo:
1280bad_fork_cleanup_audit: 1324bad_fork_cleanup_audit:
1281 audit_free(p); 1325 audit_free(p);
1282bad_fork_cleanup_policy: 1326bad_fork_cleanup_policy:
1283 perf_counter_free_task(p); 1327 perf_event_free_task(p);
1284#ifdef CONFIG_NUMA 1328#ifdef CONFIG_NUMA
1285 mpol_put(p->mempolicy); 1329 mpol_put(p->mempolicy);
1286bad_fork_cleanup_cgroup: 1330bad_fork_cleanup_cgroup:
1287#endif 1331#endif
1288 cgroup_exit(p, cgroup_callbacks_done); 1332 cgroup_exit(p, cgroup_callbacks_done);
1289 delayacct_tsk_free(p); 1333 delayacct_tsk_free(p);
1290 if (p->binfmt)
1291 module_put(p->binfmt->module);
1292bad_fork_cleanup_put_domain:
1293 module_put(task_thread_info(p)->exec_domain->module); 1334 module_put(task_thread_info(p)->exec_domain->module);
1294bad_fork_cleanup_count: 1335bad_fork_cleanup_count:
1295 atomic_dec(&p->cred->user->processes); 1336 atomic_dec(&p->cred->user->processes);
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig
index 22e9dcfaa3d3..70a298d6da71 100644
--- a/kernel/gcov/Kconfig
+++ b/kernel/gcov/Kconfig
@@ -34,7 +34,7 @@ config GCOV_KERNEL
34config GCOV_PROFILE_ALL 34config GCOV_PROFILE_ALL
35 bool "Profile entire Kernel" 35 bool "Profile entire Kernel"
36 depends on GCOV_KERNEL 36 depends on GCOV_KERNEL
37 depends on S390 || X86 37 depends on S390 || X86 || (PPC && EXPERIMENTAL) || MICROBLAZE
38 default n 38 default n
39 ---help--- 39 ---help---
40 This options activates profiling for the entire kernel. 40 This options activates profiling for the entire kernel.
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index 05071bf6a37b..e5d98ce50f89 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -48,36 +48,7 @@
48 48
49#include <asm/uaccess.h> 49#include <asm/uaccess.h>
50 50
51/** 51#include <trace/events/timer.h>
52 * ktime_get - get the monotonic time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
56ktime_t ktime_get(void)
57{
58 struct timespec now;
59
60 ktime_get_ts(&now);
61
62 return timespec_to_ktime(now);
63}
64EXPORT_SYMBOL_GPL(ktime_get);
65
66/**
67 * ktime_get_real - get the real (wall-) time in ktime_t format
68 *
69 * returns the time in ktime_t format
70 */
71ktime_t ktime_get_real(void)
72{
73 struct timespec now;
74
75 getnstimeofday(&now);
76
77 return timespec_to_ktime(now);
78}
79
80EXPORT_SYMBOL_GPL(ktime_get_real);
81 52
82/* 53/*
83 * The timer bases: 54 * The timer bases:
@@ -106,31 +77,6 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
106 } 77 }
107}; 78};
108 79
109/**
110 * ktime_get_ts - get the monotonic clock in timespec format
111 * @ts: pointer to timespec variable
112 *
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
115 * in normalized timespec format in the variable pointed to by @ts.
116 */
117void ktime_get_ts(struct timespec *ts)
118{
119 struct timespec tomono;
120 unsigned long seq;
121
122 do {
123 seq = read_seqbegin(&xtime_lock);
124 getnstimeofday(ts);
125 tomono = wall_to_monotonic;
126
127 } while (read_seqretry(&xtime_lock, seq));
128
129 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
130 ts->tv_nsec + tomono.tv_nsec);
131}
132EXPORT_SYMBOL_GPL(ktime_get_ts);
133
134/* 80/*
135 * Get the coarse grained time at the softirq based on xtime and 81 * Get the coarse grained time at the softirq based on xtime and
136 * wall_to_monotonic. 82 * wall_to_monotonic.
@@ -498,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
498static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 444static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
499#endif 445#endif
500 446
447static inline void
448debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
450{
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
453}
454
455static inline void debug_activate(struct hrtimer *timer)
456{
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
459}
460
461static inline void debug_deactivate(struct hrtimer *timer)
462{
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
465}
466
501/* High resolution timer related functions */ 467/* High resolution timer related functions */
502#ifdef CONFIG_HIGH_RES_TIMERS 468#ifdef CONFIG_HIGH_RES_TIMERS
503 469
@@ -854,7 +820,7 @@ static int enqueue_hrtimer(struct hrtimer *timer,
854 struct hrtimer *entry; 820 struct hrtimer *entry;
855 int leftmost = 1; 821 int leftmost = 1;
856 822
857 debug_hrtimer_activate(timer); 823 debug_activate(timer);
858 824
859 /* 825 /*
860 * Find the right place in the rbtree: 826 * Find the right place in the rbtree:
@@ -940,7 +906,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
940 * reprogramming happens in the interrupt handler. This is a 906 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call. 907 * rare case and less expensive than a smp call.
942 */ 908 */
943 debug_hrtimer_deactivate(timer); 909 debug_deactivate(timer);
944 timer_stats_hrtimer_clear_start_info(timer); 910 timer_stats_hrtimer_clear_start_info(timer);
945 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); 911 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
946 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 912 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
@@ -1155,7 +1121,6 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1155 clock_id = CLOCK_MONOTONIC; 1121 clock_id = CLOCK_MONOTONIC;
1156 1122
1157 timer->base = &cpu_base->clock_base[clock_id]; 1123 timer->base = &cpu_base->clock_base[clock_id];
1158 INIT_LIST_HEAD(&timer->cb_entry);
1159 hrtimer_init_timer_hres(timer); 1124 hrtimer_init_timer_hres(timer);
1160 1125
1161#ifdef CONFIG_TIMER_STATS 1126#ifdef CONFIG_TIMER_STATS
@@ -1174,7 +1139,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1174void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1139void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1175 enum hrtimer_mode mode) 1140 enum hrtimer_mode mode)
1176{ 1141{
1177 debug_hrtimer_init(timer); 1142 debug_init(timer, clock_id, mode);
1178 __hrtimer_init(timer, clock_id, mode); 1143 __hrtimer_init(timer, clock_id, mode);
1179} 1144}
1180EXPORT_SYMBOL_GPL(hrtimer_init); 1145EXPORT_SYMBOL_GPL(hrtimer_init);
@@ -1198,7 +1163,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1198} 1163}
1199EXPORT_SYMBOL_GPL(hrtimer_get_res); 1164EXPORT_SYMBOL_GPL(hrtimer_get_res);
1200 1165
1201static void __run_hrtimer(struct hrtimer *timer) 1166static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1202{ 1167{
1203 struct hrtimer_clock_base *base = timer->base; 1168 struct hrtimer_clock_base *base = timer->base;
1204 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1169 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
@@ -1207,7 +1172,7 @@ static void __run_hrtimer(struct hrtimer *timer)
1207 1172
1208 WARN_ON(!irqs_disabled()); 1173 WARN_ON(!irqs_disabled());
1209 1174
1210 debug_hrtimer_deactivate(timer); 1175 debug_deactivate(timer);
1211 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1176 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1212 timer_stats_account_hrtimer(timer); 1177 timer_stats_account_hrtimer(timer);
1213 fn = timer->function; 1178 fn = timer->function;
@@ -1218,7 +1183,9 @@ static void __run_hrtimer(struct hrtimer *timer)
1218 * the timer base. 1183 * the timer base.
1219 */ 1184 */
1220 spin_unlock(&cpu_base->lock); 1185 spin_unlock(&cpu_base->lock);
1186 trace_hrtimer_expire_entry(timer, now);
1221 restart = fn(timer); 1187 restart = fn(timer);
1188 trace_hrtimer_expire_exit(timer);
1222 spin_lock(&cpu_base->lock); 1189 spin_lock(&cpu_base->lock);
1223 1190
1224 /* 1191 /*
@@ -1329,7 +1296,7 @@ void hrtimer_interrupt(struct clock_event_device *dev)
1329 break; 1296 break;
1330 } 1297 }
1331 1298
1332 __run_hrtimer(timer); 1299 __run_hrtimer(timer, &basenow);
1333 } 1300 }
1334 base++; 1301 base++;
1335 } 1302 }
@@ -1451,7 +1418,7 @@ void hrtimer_run_queues(void)
1451 hrtimer_get_expires_tv64(timer)) 1418 hrtimer_get_expires_tv64(timer))
1452 break; 1419 break;
1453 1420
1454 __run_hrtimer(timer); 1421 __run_hrtimer(timer, &base->softirq_time);
1455 } 1422 }
1456 spin_unlock(&cpu_base->lock); 1423 spin_unlock(&cpu_base->lock);
1457 } 1424 }
@@ -1628,7 +1595,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1628 while ((node = rb_first(&old_base->active))) { 1595 while ((node = rb_first(&old_base->active))) {
1629 timer = rb_entry(node, struct hrtimer, node); 1596 timer = rb_entry(node, struct hrtimer, node);
1630 BUG_ON(hrtimer_callback_running(timer)); 1597 BUG_ON(hrtimer_callback_running(timer));
1631 debug_hrtimer_deactivate(timer); 1598 debug_deactivate(timer);
1632 1599
1633 /* 1600 /*
1634 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1601 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
diff --git a/kernel/hung_task.c b/kernel/hung_task.c
index 022a4927b785..d4e841747400 100644
--- a/kernel/hung_task.c
+++ b/kernel/hung_task.c
@@ -171,12 +171,12 @@ static unsigned long timeout_jiffies(unsigned long timeout)
171 * Process updating of timeout sysctl 171 * Process updating of timeout sysctl
172 */ 172 */
173int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 173int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
174 struct file *filp, void __user *buffer, 174 void __user *buffer,
175 size_t *lenp, loff_t *ppos) 175 size_t *lenp, loff_t *ppos)
176{ 176{
177 int ret; 177 int ret;
178 178
179 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180 180
181 if (ret || !write) 181 if (ret || !write)
182 goto out; 182 goto out;
diff --git a/kernel/itimer.c b/kernel/itimer.c
index 58762f7077ec..b03451ede528 100644
--- a/kernel/itimer.c
+++ b/kernel/itimer.c
@@ -12,6 +12,7 @@
12#include <linux/time.h> 12#include <linux/time.h>
13#include <linux/posix-timers.h> 13#include <linux/posix-timers.h>
14#include <linux/hrtimer.h> 14#include <linux/hrtimer.h>
15#include <trace/events/timer.h>
15 16
16#include <asm/uaccess.h> 17#include <asm/uaccess.h>
17 18
@@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer)
41 return ktime_to_timeval(rem); 42 return ktime_to_timeval(rem);
42} 43}
43 44
45static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
46 struct itimerval *const value)
47{
48 cputime_t cval, cinterval;
49 struct cpu_itimer *it = &tsk->signal->it[clock_id];
50
51 spin_lock_irq(&tsk->sighand->siglock);
52
53 cval = it->expires;
54 cinterval = it->incr;
55 if (!cputime_eq(cval, cputime_zero)) {
56 struct task_cputime cputime;
57 cputime_t t;
58
59 thread_group_cputimer(tsk, &cputime);
60 if (clock_id == CPUCLOCK_PROF)
61 t = cputime_add(cputime.utime, cputime.stime);
62 else
63 /* CPUCLOCK_VIRT */
64 t = cputime.utime;
65
66 if (cputime_le(cval, t))
67 /* about to fire */
68 cval = cputime_one_jiffy;
69 else
70 cval = cputime_sub(cval, t);
71 }
72
73 spin_unlock_irq(&tsk->sighand->siglock);
74
75 cputime_to_timeval(cval, &value->it_value);
76 cputime_to_timeval(cinterval, &value->it_interval);
77}
78
44int do_getitimer(int which, struct itimerval *value) 79int do_getitimer(int which, struct itimerval *value)
45{ 80{
46 struct task_struct *tsk = current; 81 struct task_struct *tsk = current;
47 cputime_t cinterval, cval;
48 82
49 switch (which) { 83 switch (which) {
50 case ITIMER_REAL: 84 case ITIMER_REAL:
@@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value)
55 spin_unlock_irq(&tsk->sighand->siglock); 89 spin_unlock_irq(&tsk->sighand->siglock);
56 break; 90 break;
57 case ITIMER_VIRTUAL: 91 case ITIMER_VIRTUAL:
58 spin_lock_irq(&tsk->sighand->siglock); 92 get_cpu_itimer(tsk, CPUCLOCK_VIRT, value);
59 cval = tsk->signal->it_virt_expires;
60 cinterval = tsk->signal->it_virt_incr;
61 if (!cputime_eq(cval, cputime_zero)) {
62 struct task_cputime cputime;
63 cputime_t utime;
64
65 thread_group_cputimer(tsk, &cputime);
66 utime = cputime.utime;
67 if (cputime_le(cval, utime)) { /* about to fire */
68 cval = jiffies_to_cputime(1);
69 } else {
70 cval = cputime_sub(cval, utime);
71 }
72 }
73 spin_unlock_irq(&tsk->sighand->siglock);
74 cputime_to_timeval(cval, &value->it_value);
75 cputime_to_timeval(cinterval, &value->it_interval);
76 break; 93 break;
77 case ITIMER_PROF: 94 case ITIMER_PROF:
78 spin_lock_irq(&tsk->sighand->siglock); 95 get_cpu_itimer(tsk, CPUCLOCK_PROF, value);
79 cval = tsk->signal->it_prof_expires;
80 cinterval = tsk->signal->it_prof_incr;
81 if (!cputime_eq(cval, cputime_zero)) {
82 struct task_cputime times;
83 cputime_t ptime;
84
85 thread_group_cputimer(tsk, &times);
86 ptime = cputime_add(times.utime, times.stime);
87 if (cputime_le(cval, ptime)) { /* about to fire */
88 cval = jiffies_to_cputime(1);
89 } else {
90 cval = cputime_sub(cval, ptime);
91 }
92 }
93 spin_unlock_irq(&tsk->sighand->siglock);
94 cputime_to_timeval(cval, &value->it_value);
95 cputime_to_timeval(cinterval, &value->it_interval);
96 break; 96 break;
97 default: 97 default:
98 return(-EINVAL); 98 return(-EINVAL);
@@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer)
123 struct signal_struct *sig = 123 struct signal_struct *sig =
124 container_of(timer, struct signal_struct, real_timer); 124 container_of(timer, struct signal_struct, real_timer);
125 125
126 trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0);
126 kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); 127 kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid);
127 128
128 return HRTIMER_NORESTART; 129 return HRTIMER_NORESTART;
129} 130}
130 131
132static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns)
133{
134 struct timespec ts;
135 s64 cpu_ns;
136
137 cputime_to_timespec(ct, &ts);
138 cpu_ns = timespec_to_ns(&ts);
139
140 return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns;
141}
142
143static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
144 const struct itimerval *const value,
145 struct itimerval *const ovalue)
146{
147 cputime_t cval, nval, cinterval, ninterval;
148 s64 ns_ninterval, ns_nval;
149 struct cpu_itimer *it = &tsk->signal->it[clock_id];
150
151 nval = timeval_to_cputime(&value->it_value);
152 ns_nval = timeval_to_ns(&value->it_value);
153 ninterval = timeval_to_cputime(&value->it_interval);
154 ns_ninterval = timeval_to_ns(&value->it_interval);
155
156 it->incr_error = cputime_sub_ns(ninterval, ns_ninterval);
157 it->error = cputime_sub_ns(nval, ns_nval);
158
159 spin_lock_irq(&tsk->sighand->siglock);
160
161 cval = it->expires;
162 cinterval = it->incr;
163 if (!cputime_eq(cval, cputime_zero) ||
164 !cputime_eq(nval, cputime_zero)) {
165 if (cputime_gt(nval, cputime_zero))
166 nval = cputime_add(nval, cputime_one_jiffy);
167 set_process_cpu_timer(tsk, clock_id, &nval, &cval);
168 }
169 it->expires = nval;
170 it->incr = ninterval;
171 trace_itimer_state(clock_id == CPUCLOCK_VIRT ?
172 ITIMER_VIRTUAL : ITIMER_PROF, value, nval);
173
174 spin_unlock_irq(&tsk->sighand->siglock);
175
176 if (ovalue) {
177 cputime_to_timeval(cval, &ovalue->it_value);
178 cputime_to_timeval(cinterval, &ovalue->it_interval);
179 }
180}
181
131/* 182/*
132 * Returns true if the timeval is in canonical form 183 * Returns true if the timeval is in canonical form
133 */ 184 */
@@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
139 struct task_struct *tsk = current; 190 struct task_struct *tsk = current;
140 struct hrtimer *timer; 191 struct hrtimer *timer;
141 ktime_t expires; 192 ktime_t expires;
142 cputime_t cval, cinterval, nval, ninterval;
143 193
144 /* 194 /*
145 * Validate the timevals in value. 195 * Validate the timevals in value.
@@ -171,51 +221,14 @@ again:
171 } else 221 } else
172 tsk->signal->it_real_incr.tv64 = 0; 222 tsk->signal->it_real_incr.tv64 = 0;
173 223
224 trace_itimer_state(ITIMER_REAL, value, 0);
174 spin_unlock_irq(&tsk->sighand->siglock); 225 spin_unlock_irq(&tsk->sighand->siglock);
175 break; 226 break;
176 case ITIMER_VIRTUAL: 227 case ITIMER_VIRTUAL:
177 nval = timeval_to_cputime(&value->it_value); 228 set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue);
178 ninterval = timeval_to_cputime(&value->it_interval);
179 spin_lock_irq(&tsk->sighand->siglock);
180 cval = tsk->signal->it_virt_expires;
181 cinterval = tsk->signal->it_virt_incr;
182 if (!cputime_eq(cval, cputime_zero) ||
183 !cputime_eq(nval, cputime_zero)) {
184 if (cputime_gt(nval, cputime_zero))
185 nval = cputime_add(nval,
186 jiffies_to_cputime(1));
187 set_process_cpu_timer(tsk, CPUCLOCK_VIRT,
188 &nval, &cval);
189 }
190 tsk->signal->it_virt_expires = nval;
191 tsk->signal->it_virt_incr = ninterval;
192 spin_unlock_irq(&tsk->sighand->siglock);
193 if (ovalue) {
194 cputime_to_timeval(cval, &ovalue->it_value);
195 cputime_to_timeval(cinterval, &ovalue->it_interval);
196 }
197 break; 229 break;
198 case ITIMER_PROF: 230 case ITIMER_PROF:
199 nval = timeval_to_cputime(&value->it_value); 231 set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue);
200 ninterval = timeval_to_cputime(&value->it_interval);
201 spin_lock_irq(&tsk->sighand->siglock);
202 cval = tsk->signal->it_prof_expires;
203 cinterval = tsk->signal->it_prof_incr;
204 if (!cputime_eq(cval, cputime_zero) ||
205 !cputime_eq(nval, cputime_zero)) {
206 if (cputime_gt(nval, cputime_zero))
207 nval = cputime_add(nval,
208 jiffies_to_cputime(1));
209 set_process_cpu_timer(tsk, CPUCLOCK_PROF,
210 &nval, &cval);
211 }
212 tsk->signal->it_prof_expires = nval;
213 tsk->signal->it_prof_incr = ninterval;
214 spin_unlock_irq(&tsk->sighand->siglock);
215 if (ovalue) {
216 cputime_to_timeval(cval, &ovalue->it_value);
217 cputime_to_timeval(cinterval, &ovalue->it_interval);
218 }
219 break; 232 break;
220 default: 233 default:
221 return -EINVAL; 234 return -EINVAL;
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c
index 3a29dbe7898e..8b6b8b697c68 100644
--- a/kernel/kallsyms.c
+++ b/kernel/kallsyms.c
@@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr)
59 59
60static inline int is_kernel_text(unsigned long addr) 60static inline int is_kernel_text(unsigned long addr)
61{ 61{
62 if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) 62 if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) ||
63 arch_is_kernel_text(addr))
63 return 1; 64 return 1;
64 return in_gate_area_no_task(addr); 65 return in_gate_area_no_task(addr);
65} 66}
diff --git a/kernel/kfifo.c b/kernel/kfifo.c
index 26539e3228e5..3765ff3c1bbe 100644
--- a/kernel/kfifo.c
+++ b/kernel/kfifo.c
@@ -117,7 +117,7 @@ EXPORT_SYMBOL(kfifo_free);
117 * writer, you don't need extra locking to use these functions. 117 * writer, you don't need extra locking to use these functions.
118 */ 118 */
119unsigned int __kfifo_put(struct kfifo *fifo, 119unsigned int __kfifo_put(struct kfifo *fifo,
120 unsigned char *buffer, unsigned int len) 120 const unsigned char *buffer, unsigned int len)
121{ 121{
122 unsigned int l; 122 unsigned int l;
123 123
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index ef177d653b2c..cfadc1291d0b 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -1321,7 +1321,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1321 return 0; 1321 return 0;
1322} 1322}
1323 1323
1324static struct seq_operations kprobes_seq_ops = { 1324static const struct seq_operations kprobes_seq_ops = {
1325 .start = kprobe_seq_start, 1325 .start = kprobe_seq_start,
1326 .next = kprobe_seq_next, 1326 .next = kprobe_seq_next,
1327 .stop = kprobe_seq_stop, 1327 .stop = kprobe_seq_stop,
diff --git a/kernel/lockdep.c b/kernel/lockdep.c
index f74d2d7aa605..3815ac1d58b2 100644
--- a/kernel/lockdep.c
+++ b/kernel/lockdep.c
@@ -578,6 +578,9 @@ static int static_obj(void *obj)
578 if ((addr >= start) && (addr < end)) 578 if ((addr >= start) && (addr < end))
579 return 1; 579 return 1;
580 580
581 if (arch_is_kernel_data(addr))
582 return 1;
583
581#ifdef CONFIG_SMP 584#ifdef CONFIG_SMP
582 /* 585 /*
583 * percpu var? 586 * percpu var?
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c
index d4b3dbc79fdb..d4aba4f3584c 100644
--- a/kernel/lockdep_proc.c
+++ b/kernel/lockdep_proc.c
@@ -594,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v)
594 return 0; 594 return 0;
595} 595}
596 596
597static struct seq_operations lockstat_ops = { 597static const struct seq_operations lockstat_ops = {
598 .start = ls_start, 598 .start = ls_start,
599 .next = ls_next, 599 .next = ls_next,
600 .stop = ls_stop, 600 .stop = ls_stop,
diff --git a/kernel/marker.c b/kernel/marker.c
deleted file mode 100644
index ea54f2647868..000000000000
--- a/kernel/marker.c
+++ /dev/null
@@ -1,930 +0,0 @@
1/*
2 * Copyright (C) 2007 Mathieu Desnoyers
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/types.h>
21#include <linux/jhash.h>
22#include <linux/list.h>
23#include <linux/rcupdate.h>
24#include <linux/marker.h>
25#include <linux/err.h>
26#include <linux/slab.h>
27
28extern struct marker __start___markers[];
29extern struct marker __stop___markers[];
30
31/* Set to 1 to enable marker debug output */
32static const int marker_debug;
33
34/*
35 * markers_mutex nests inside module_mutex. Markers mutex protects the builtin
36 * and module markers and the hash table.
37 */
38static DEFINE_MUTEX(markers_mutex);
39
40/*
41 * Marker hash table, containing the active markers.
42 * Protected by module_mutex.
43 */
44#define MARKER_HASH_BITS 6
45#define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS)
46static struct hlist_head marker_table[MARKER_TABLE_SIZE];
47
48/*
49 * Note about RCU :
50 * It is used to make sure every handler has finished using its private data
51 * between two consecutive operation (add or remove) on a given marker. It is
52 * also used to delay the free of multiple probes array until a quiescent state
53 * is reached.
54 * marker entries modifications are protected by the markers_mutex.
55 */
56struct marker_entry {
57 struct hlist_node hlist;
58 char *format;
59 /* Probe wrapper */
60 void (*call)(const struct marker *mdata, void *call_private, ...);
61 struct marker_probe_closure single;
62 struct marker_probe_closure *multi;
63 int refcount; /* Number of times armed. 0 if disarmed. */
64 struct rcu_head rcu;
65 void *oldptr;
66 int rcu_pending;
67 unsigned char ptype:1;
68 unsigned char format_allocated:1;
69 char name[0]; /* Contains name'\0'format'\0' */
70};
71
72/**
73 * __mark_empty_function - Empty probe callback
74 * @probe_private: probe private data
75 * @call_private: call site private data
76 * @fmt: format string
77 * @...: variable argument list
78 *
79 * Empty callback provided as a probe to the markers. By providing this to a
80 * disabled marker, we make sure the execution flow is always valid even
81 * though the function pointer change and the marker enabling are two distinct
82 * operations that modifies the execution flow of preemptible code.
83 */
84notrace void __mark_empty_function(void *probe_private, void *call_private,
85 const char *fmt, va_list *args)
86{
87}
88EXPORT_SYMBOL_GPL(__mark_empty_function);
89
90/*
91 * marker_probe_cb Callback that prepares the variable argument list for probes.
92 * @mdata: pointer of type struct marker
93 * @call_private: caller site private data
94 * @...: Variable argument list.
95 *
96 * Since we do not use "typical" pointer based RCU in the 1 argument case, we
97 * need to put a full smp_rmb() in this branch. This is why we do not use
98 * rcu_dereference() for the pointer read.
99 */
100notrace void marker_probe_cb(const struct marker *mdata,
101 void *call_private, ...)
102{
103 va_list args;
104 char ptype;
105
106 /*
107 * rcu_read_lock_sched does two things : disabling preemption to make
108 * sure the teardown of the callbacks can be done correctly when they
109 * are in modules and they insure RCU read coherency.
110 */
111 rcu_read_lock_sched_notrace();
112 ptype = mdata->ptype;
113 if (likely(!ptype)) {
114 marker_probe_func *func;
115 /* Must read the ptype before ptr. They are not data dependant,
116 * so we put an explicit smp_rmb() here. */
117 smp_rmb();
118 func = mdata->single.func;
119 /* Must read the ptr before private data. They are not data
120 * dependant, so we put an explicit smp_rmb() here. */
121 smp_rmb();
122 va_start(args, call_private);
123 func(mdata->single.probe_private, call_private, mdata->format,
124 &args);
125 va_end(args);
126 } else {
127 struct marker_probe_closure *multi;
128 int i;
129 /*
130 * Read mdata->ptype before mdata->multi.
131 */
132 smp_rmb();
133 multi = mdata->multi;
134 /*
135 * multi points to an array, therefore accessing the array
136 * depends on reading multi. However, even in this case,
137 * we must insure that the pointer is read _before_ the array
138 * data. Same as rcu_dereference, but we need a full smp_rmb()
139 * in the fast path, so put the explicit barrier here.
140 */
141 smp_read_barrier_depends();
142 for (i = 0; multi[i].func; i++) {
143 va_start(args, call_private);
144 multi[i].func(multi[i].probe_private, call_private,
145 mdata->format, &args);
146 va_end(args);
147 }
148 }
149 rcu_read_unlock_sched_notrace();
150}
151EXPORT_SYMBOL_GPL(marker_probe_cb);
152
153/*
154 * marker_probe_cb Callback that does not prepare the variable argument list.
155 * @mdata: pointer of type struct marker
156 * @call_private: caller site private data
157 * @...: Variable argument list.
158 *
159 * Should be connected to markers "MARK_NOARGS".
160 */
161static notrace void marker_probe_cb_noarg(const struct marker *mdata,
162 void *call_private, ...)
163{
164 va_list args; /* not initialized */
165 char ptype;
166
167 rcu_read_lock_sched_notrace();
168 ptype = mdata->ptype;
169 if (likely(!ptype)) {
170 marker_probe_func *func;
171 /* Must read the ptype before ptr. They are not data dependant,
172 * so we put an explicit smp_rmb() here. */
173 smp_rmb();
174 func = mdata->single.func;
175 /* Must read the ptr before private data. They are not data
176 * dependant, so we put an explicit smp_rmb() here. */
177 smp_rmb();
178 func(mdata->single.probe_private, call_private, mdata->format,
179 &args);
180 } else {
181 struct marker_probe_closure *multi;
182 int i;
183 /*
184 * Read mdata->ptype before mdata->multi.
185 */
186 smp_rmb();
187 multi = mdata->multi;
188 /*
189 * multi points to an array, therefore accessing the array
190 * depends on reading multi. However, even in this case,
191 * we must insure that the pointer is read _before_ the array
192 * data. Same as rcu_dereference, but we need a full smp_rmb()
193 * in the fast path, so put the explicit barrier here.
194 */
195 smp_read_barrier_depends();
196 for (i = 0; multi[i].func; i++)
197 multi[i].func(multi[i].probe_private, call_private,
198 mdata->format, &args);
199 }
200 rcu_read_unlock_sched_notrace();
201}
202
203static void free_old_closure(struct rcu_head *head)
204{
205 struct marker_entry *entry = container_of(head,
206 struct marker_entry, rcu);
207 kfree(entry->oldptr);
208 /* Make sure we free the data before setting the pending flag to 0 */
209 smp_wmb();
210 entry->rcu_pending = 0;
211}
212
213static void debug_print_probes(struct marker_entry *entry)
214{
215 int i;
216
217 if (!marker_debug)
218 return;
219
220 if (!entry->ptype) {
221 printk(KERN_DEBUG "Single probe : %p %p\n",
222 entry->single.func,
223 entry->single.probe_private);
224 } else {
225 for (i = 0; entry->multi[i].func; i++)
226 printk(KERN_DEBUG "Multi probe %d : %p %p\n", i,
227 entry->multi[i].func,
228 entry->multi[i].probe_private);
229 }
230}
231
232static struct marker_probe_closure *
233marker_entry_add_probe(struct marker_entry *entry,
234 marker_probe_func *probe, void *probe_private)
235{
236 int nr_probes = 0;
237 struct marker_probe_closure *old, *new;
238
239 WARN_ON(!probe);
240
241 debug_print_probes(entry);
242 old = entry->multi;
243 if (!entry->ptype) {
244 if (entry->single.func == probe &&
245 entry->single.probe_private == probe_private)
246 return ERR_PTR(-EBUSY);
247 if (entry->single.func == __mark_empty_function) {
248 /* 0 -> 1 probes */
249 entry->single.func = probe;
250 entry->single.probe_private = probe_private;
251 entry->refcount = 1;
252 entry->ptype = 0;
253 debug_print_probes(entry);
254 return NULL;
255 } else {
256 /* 1 -> 2 probes */
257 nr_probes = 1;
258 old = NULL;
259 }
260 } else {
261 /* (N -> N+1), (N != 0, 1) probes */
262 for (nr_probes = 0; old[nr_probes].func; nr_probes++)
263 if (old[nr_probes].func == probe
264 && old[nr_probes].probe_private
265 == probe_private)
266 return ERR_PTR(-EBUSY);
267 }
268 /* + 2 : one for new probe, one for NULL func */
269 new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure),
270 GFP_KERNEL);
271 if (new == NULL)
272 return ERR_PTR(-ENOMEM);
273 if (!old)
274 new[0] = entry->single;
275 else
276 memcpy(new, old,
277 nr_probes * sizeof(struct marker_probe_closure));
278 new[nr_probes].func = probe;
279 new[nr_probes].probe_private = probe_private;
280 entry->refcount = nr_probes + 1;
281 entry->multi = new;
282 entry->ptype = 1;
283 debug_print_probes(entry);
284 return old;
285}
286
287static struct marker_probe_closure *
288marker_entry_remove_probe(struct marker_entry *entry,
289 marker_probe_func *probe, void *probe_private)
290{
291 int nr_probes = 0, nr_del = 0, i;
292 struct marker_probe_closure *old, *new;
293
294 old = entry->multi;
295
296 debug_print_probes(entry);
297 if (!entry->ptype) {
298 /* 0 -> N is an error */
299 WARN_ON(entry->single.func == __mark_empty_function);
300 /* 1 -> 0 probes */
301 WARN_ON(probe && entry->single.func != probe);
302 WARN_ON(entry->single.probe_private != probe_private);
303 entry->single.func = __mark_empty_function;
304 entry->refcount = 0;
305 entry->ptype = 0;
306 debug_print_probes(entry);
307 return NULL;
308 } else {
309 /* (N -> M), (N > 1, M >= 0) probes */
310 for (nr_probes = 0; old[nr_probes].func; nr_probes++) {
311 if ((!probe || old[nr_probes].func == probe)
312 && old[nr_probes].probe_private
313 == probe_private)
314 nr_del++;
315 }
316 }
317
318 if (nr_probes - nr_del == 0) {
319 /* N -> 0, (N > 1) */
320 entry->single.func = __mark_empty_function;
321 entry->refcount = 0;
322 entry->ptype = 0;
323 } else if (nr_probes - nr_del == 1) {
324 /* N -> 1, (N > 1) */
325 for (i = 0; old[i].func; i++)
326 if ((probe && old[i].func != probe) ||
327 old[i].probe_private != probe_private)
328 entry->single = old[i];
329 entry->refcount = 1;
330 entry->ptype = 0;
331 } else {
332 int j = 0;
333 /* N -> M, (N > 1, M > 1) */
334 /* + 1 for NULL */
335 new = kzalloc((nr_probes - nr_del + 1)
336 * sizeof(struct marker_probe_closure), GFP_KERNEL);
337 if (new == NULL)
338 return ERR_PTR(-ENOMEM);
339 for (i = 0; old[i].func; i++)
340 if ((probe && old[i].func != probe) ||
341 old[i].probe_private != probe_private)
342 new[j++] = old[i];
343 entry->refcount = nr_probes - nr_del;
344 entry->ptype = 1;
345 entry->multi = new;
346 }
347 debug_print_probes(entry);
348 return old;
349}
350
351/*
352 * Get marker if the marker is present in the marker hash table.
353 * Must be called with markers_mutex held.
354 * Returns NULL if not present.
355 */
356static struct marker_entry *get_marker(const char *name)
357{
358 struct hlist_head *head;
359 struct hlist_node *node;
360 struct marker_entry *e;
361 u32 hash = jhash(name, strlen(name), 0);
362
363 head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
364 hlist_for_each_entry(e, node, head, hlist) {
365 if (!strcmp(name, e->name))
366 return e;
367 }
368 return NULL;
369}
370
371/*
372 * Add the marker to the marker hash table. Must be called with markers_mutex
373 * held.
374 */
375static struct marker_entry *add_marker(const char *name, const char *format)
376{
377 struct hlist_head *head;
378 struct hlist_node *node;
379 struct marker_entry *e;
380 size_t name_len = strlen(name) + 1;
381 size_t format_len = 0;
382 u32 hash = jhash(name, name_len-1, 0);
383
384 if (format)
385 format_len = strlen(format) + 1;
386 head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
387 hlist_for_each_entry(e, node, head, hlist) {
388 if (!strcmp(name, e->name)) {
389 printk(KERN_NOTICE
390 "Marker %s busy\n", name);
391 return ERR_PTR(-EBUSY); /* Already there */
392 }
393 }
394 /*
395 * Using kmalloc here to allocate a variable length element. Could
396 * cause some memory fragmentation if overused.
397 */
398 e = kmalloc(sizeof(struct marker_entry) + name_len + format_len,
399 GFP_KERNEL);
400 if (!e)
401 return ERR_PTR(-ENOMEM);
402 memcpy(&e->name[0], name, name_len);
403 if (format) {
404 e->format = &e->name[name_len];
405 memcpy(e->format, format, format_len);
406 if (strcmp(e->format, MARK_NOARGS) == 0)
407 e->call = marker_probe_cb_noarg;
408 else
409 e->call = marker_probe_cb;
410 trace_mark(core_marker_format, "name %s format %s",
411 e->name, e->format);
412 } else {
413 e->format = NULL;
414 e->call = marker_probe_cb;
415 }
416 e->single.func = __mark_empty_function;
417 e->single.probe_private = NULL;
418 e->multi = NULL;
419 e->ptype = 0;
420 e->format_allocated = 0;
421 e->refcount = 0;
422 e->rcu_pending = 0;
423 hlist_add_head(&e->hlist, head);
424 return e;
425}
426
427/*
428 * Remove the marker from the marker hash table. Must be called with mutex_lock
429 * held.
430 */
431static int remove_marker(const char *name)
432{
433 struct hlist_head *head;
434 struct hlist_node *node;
435 struct marker_entry *e;
436 int found = 0;
437 size_t len = strlen(name) + 1;
438 u32 hash = jhash(name, len-1, 0);
439
440 head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
441 hlist_for_each_entry(e, node, head, hlist) {
442 if (!strcmp(name, e->name)) {
443 found = 1;
444 break;
445 }
446 }
447 if (!found)
448 return -ENOENT;
449 if (e->single.func != __mark_empty_function)
450 return -EBUSY;
451 hlist_del(&e->hlist);
452 if (e->format_allocated)
453 kfree(e->format);
454 /* Make sure the call_rcu has been executed */
455 if (e->rcu_pending)
456 rcu_barrier_sched();
457 kfree(e);
458 return 0;
459}
460
461/*
462 * Set the mark_entry format to the format found in the element.
463 */
464static int marker_set_format(struct marker_entry *entry, const char *format)
465{
466 entry->format = kstrdup(format, GFP_KERNEL);
467 if (!entry->format)
468 return -ENOMEM;
469 entry->format_allocated = 1;
470
471 trace_mark(core_marker_format, "name %s format %s",
472 entry->name, entry->format);
473 return 0;
474}
475
476/*
477 * Sets the probe callback corresponding to one marker.
478 */
479static int set_marker(struct marker_entry *entry, struct marker *elem,
480 int active)
481{
482 int ret = 0;
483 WARN_ON(strcmp(entry->name, elem->name) != 0);
484
485 if (entry->format) {
486 if (strcmp(entry->format, elem->format) != 0) {
487 printk(KERN_NOTICE
488 "Format mismatch for probe %s "
489 "(%s), marker (%s)\n",
490 entry->name,
491 entry->format,
492 elem->format);
493 return -EPERM;
494 }
495 } else {
496 ret = marker_set_format(entry, elem->format);
497 if (ret)
498 return ret;
499 }
500
501 /*
502 * probe_cb setup (statically known) is done here. It is
503 * asynchronous with the rest of execution, therefore we only
504 * pass from a "safe" callback (with argument) to an "unsafe"
505 * callback (does not set arguments).
506 */
507 elem->call = entry->call;
508 /*
509 * Sanity check :
510 * We only update the single probe private data when the ptr is
511 * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1)
512 */
513 WARN_ON(elem->single.func != __mark_empty_function
514 && elem->single.probe_private != entry->single.probe_private
515 && !elem->ptype);
516 elem->single.probe_private = entry->single.probe_private;
517 /*
518 * Make sure the private data is valid when we update the
519 * single probe ptr.
520 */
521 smp_wmb();
522 elem->single.func = entry->single.func;
523 /*
524 * We also make sure that the new probe callbacks array is consistent
525 * before setting a pointer to it.
526 */
527 rcu_assign_pointer(elem->multi, entry->multi);
528 /*
529 * Update the function or multi probe array pointer before setting the
530 * ptype.
531 */
532 smp_wmb();
533 elem->ptype = entry->ptype;
534
535 if (elem->tp_name && (active ^ elem->state)) {
536 WARN_ON(!elem->tp_cb);
537 /*
538 * It is ok to directly call the probe registration because type
539 * checking has been done in the __trace_mark_tp() macro.
540 */
541
542 if (active) {
543 /*
544 * try_module_get should always succeed because we hold
545 * lock_module() to get the tp_cb address.
546 */
547 ret = try_module_get(__module_text_address(
548 (unsigned long)elem->tp_cb));
549 BUG_ON(!ret);
550 ret = tracepoint_probe_register_noupdate(
551 elem->tp_name,
552 elem->tp_cb);
553 } else {
554 ret = tracepoint_probe_unregister_noupdate(
555 elem->tp_name,
556 elem->tp_cb);
557 /*
558 * tracepoint_probe_update_all() must be called
559 * before the module containing tp_cb is unloaded.
560 */
561 module_put(__module_text_address(
562 (unsigned long)elem->tp_cb));
563 }
564 }
565 elem->state = active;
566
567 return ret;
568}
569
570/*
571 * Disable a marker and its probe callback.
572 * Note: only waiting an RCU period after setting elem->call to the empty
573 * function insures that the original callback is not used anymore. This insured
574 * by rcu_read_lock_sched around the call site.
575 */
576static void disable_marker(struct marker *elem)
577{
578 int ret;
579
580 /* leave "call" as is. It is known statically. */
581 if (elem->tp_name && elem->state) {
582 WARN_ON(!elem->tp_cb);
583 /*
584 * It is ok to directly call the probe registration because type
585 * checking has been done in the __trace_mark_tp() macro.
586 */
587 ret = tracepoint_probe_unregister_noupdate(elem->tp_name,
588 elem->tp_cb);
589 WARN_ON(ret);
590 /*
591 * tracepoint_probe_update_all() must be called
592 * before the module containing tp_cb is unloaded.
593 */
594 module_put(__module_text_address((unsigned long)elem->tp_cb));
595 }
596 elem->state = 0;
597 elem->single.func = __mark_empty_function;
598 /* Update the function before setting the ptype */
599 smp_wmb();
600 elem->ptype = 0; /* single probe */
601 /*
602 * Leave the private data and id there, because removal is racy and
603 * should be done only after an RCU period. These are never used until
604 * the next initialization anyway.
605 */
606}
607
608/**
609 * marker_update_probe_range - Update a probe range
610 * @begin: beginning of the range
611 * @end: end of the range
612 *
613 * Updates the probe callback corresponding to a range of markers.
614 */
615void marker_update_probe_range(struct marker *begin,
616 struct marker *end)
617{
618 struct marker *iter;
619 struct marker_entry *mark_entry;
620
621 mutex_lock(&markers_mutex);
622 for (iter = begin; iter < end; iter++) {
623 mark_entry = get_marker(iter->name);
624 if (mark_entry) {
625 set_marker(mark_entry, iter, !!mark_entry->refcount);
626 /*
627 * ignore error, continue
628 */
629 } else {
630 disable_marker(iter);
631 }
632 }
633 mutex_unlock(&markers_mutex);
634}
635
636/*
637 * Update probes, removing the faulty probes.
638 *
639 * Internal callback only changed before the first probe is connected to it.
640 * Single probe private data can only be changed on 0 -> 1 and 2 -> 1
641 * transitions. All other transitions will leave the old private data valid.
642 * This makes the non-atomicity of the callback/private data updates valid.
643 *
644 * "special case" updates :
645 * 0 -> 1 callback
646 * 1 -> 0 callback
647 * 1 -> 2 callbacks
648 * 2 -> 1 callbacks
649 * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates.
650 * Site effect : marker_set_format may delete the marker entry (creating a
651 * replacement).
652 */
653static void marker_update_probes(void)
654{
655 /* Core kernel markers */
656 marker_update_probe_range(__start___markers, __stop___markers);
657 /* Markers in modules. */
658 module_update_markers();
659 tracepoint_probe_update_all();
660}
661
662/**
663 * marker_probe_register - Connect a probe to a marker
664 * @name: marker name
665 * @format: format string
666 * @probe: probe handler
667 * @probe_private: probe private data
668 *
669 * private data must be a valid allocated memory address, or NULL.
670 * Returns 0 if ok, error value on error.
671 * The probe address must at least be aligned on the architecture pointer size.
672 */
673int marker_probe_register(const char *name, const char *format,
674 marker_probe_func *probe, void *probe_private)
675{
676 struct marker_entry *entry;
677 int ret = 0;
678 struct marker_probe_closure *old;
679
680 mutex_lock(&markers_mutex);
681 entry = get_marker(name);
682 if (!entry) {
683 entry = add_marker(name, format);
684 if (IS_ERR(entry))
685 ret = PTR_ERR(entry);
686 } else if (format) {
687 if (!entry->format)
688 ret = marker_set_format(entry, format);
689 else if (strcmp(entry->format, format))
690 ret = -EPERM;
691 }
692 if (ret)
693 goto end;
694
695 /*
696 * If we detect that a call_rcu is pending for this marker,
697 * make sure it's executed now.
698 */
699 if (entry->rcu_pending)
700 rcu_barrier_sched();
701 old = marker_entry_add_probe(entry, probe, probe_private);
702 if (IS_ERR(old)) {
703 ret = PTR_ERR(old);
704 goto end;
705 }
706 mutex_unlock(&markers_mutex);
707 marker_update_probes();
708 mutex_lock(&markers_mutex);
709 entry = get_marker(name);
710 if (!entry)
711 goto end;
712 if (entry->rcu_pending)
713 rcu_barrier_sched();
714 entry->oldptr = old;
715 entry->rcu_pending = 1;
716 /* write rcu_pending before calling the RCU callback */
717 smp_wmb();
718 call_rcu_sched(&entry->rcu, free_old_closure);
719end:
720 mutex_unlock(&markers_mutex);
721 return ret;
722}
723EXPORT_SYMBOL_GPL(marker_probe_register);
724
725/**
726 * marker_probe_unregister - Disconnect a probe from a marker
727 * @name: marker name
728 * @probe: probe function pointer
729 * @probe_private: probe private data
730 *
731 * Returns the private data given to marker_probe_register, or an ERR_PTR().
732 * We do not need to call a synchronize_sched to make sure the probes have
733 * finished running before doing a module unload, because the module unload
734 * itself uses stop_machine(), which insures that every preempt disabled section
735 * have finished.
736 */
737int marker_probe_unregister(const char *name,
738 marker_probe_func *probe, void *probe_private)
739{
740 struct marker_entry *entry;
741 struct marker_probe_closure *old;
742 int ret = -ENOENT;
743
744 mutex_lock(&markers_mutex);
745 entry = get_marker(name);
746 if (!entry)
747 goto end;
748 if (entry->rcu_pending)
749 rcu_barrier_sched();
750 old = marker_entry_remove_probe(entry, probe, probe_private);
751 mutex_unlock(&markers_mutex);
752 marker_update_probes();
753 mutex_lock(&markers_mutex);
754 entry = get_marker(name);
755 if (!entry)
756 goto end;
757 if (entry->rcu_pending)
758 rcu_barrier_sched();
759 entry->oldptr = old;
760 entry->rcu_pending = 1;
761 /* write rcu_pending before calling the RCU callback */
762 smp_wmb();
763 call_rcu_sched(&entry->rcu, free_old_closure);
764 remove_marker(name); /* Ignore busy error message */
765 ret = 0;
766end:
767 mutex_unlock(&markers_mutex);
768 return ret;
769}
770EXPORT_SYMBOL_GPL(marker_probe_unregister);
771
772static struct marker_entry *
773get_marker_from_private_data(marker_probe_func *probe, void *probe_private)
774{
775 struct marker_entry *entry;
776 unsigned int i;
777 struct hlist_head *head;
778 struct hlist_node *node;
779
780 for (i = 0; i < MARKER_TABLE_SIZE; i++) {
781 head = &marker_table[i];
782 hlist_for_each_entry(entry, node, head, hlist) {
783 if (!entry->ptype) {
784 if (entry->single.func == probe
785 && entry->single.probe_private
786 == probe_private)
787 return entry;
788 } else {
789 struct marker_probe_closure *closure;
790 closure = entry->multi;
791 for (i = 0; closure[i].func; i++) {
792 if (closure[i].func == probe &&
793 closure[i].probe_private
794 == probe_private)
795 return entry;
796 }
797 }
798 }
799 }
800 return NULL;
801}
802
803/**
804 * marker_probe_unregister_private_data - Disconnect a probe from a marker
805 * @probe: probe function
806 * @probe_private: probe private data
807 *
808 * Unregister a probe by providing the registered private data.
809 * Only removes the first marker found in hash table.
810 * Return 0 on success or error value.
811 * We do not need to call a synchronize_sched to make sure the probes have
812 * finished running before doing a module unload, because the module unload
813 * itself uses stop_machine(), which insures that every preempt disabled section
814 * have finished.
815 */
816int marker_probe_unregister_private_data(marker_probe_func *probe,
817 void *probe_private)
818{
819 struct marker_entry *entry;
820 int ret = 0;
821 struct marker_probe_closure *old;
822
823 mutex_lock(&markers_mutex);
824 entry = get_marker_from_private_data(probe, probe_private);
825 if (!entry) {
826 ret = -ENOENT;
827 goto end;
828 }
829 if (entry->rcu_pending)
830 rcu_barrier_sched();
831 old = marker_entry_remove_probe(entry, NULL, probe_private);
832 mutex_unlock(&markers_mutex);
833 marker_update_probes();
834 mutex_lock(&markers_mutex);
835 entry = get_marker_from_private_data(probe, probe_private);
836 if (!entry)
837 goto end;
838 if (entry->rcu_pending)
839 rcu_barrier_sched();
840 entry->oldptr = old;
841 entry->rcu_pending = 1;
842 /* write rcu_pending before calling the RCU callback */
843 smp_wmb();
844 call_rcu_sched(&entry->rcu, free_old_closure);
845 remove_marker(entry->name); /* Ignore busy error message */
846end:
847 mutex_unlock(&markers_mutex);
848 return ret;
849}
850EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data);
851
852/**
853 * marker_get_private_data - Get a marker's probe private data
854 * @name: marker name
855 * @probe: probe to match
856 * @num: get the nth matching probe's private data
857 *
858 * Returns the nth private data pointer (starting from 0) matching, or an
859 * ERR_PTR.
860 * Returns the private data pointer, or an ERR_PTR.
861 * The private data pointer should _only_ be dereferenced if the caller is the
862 * owner of the data, or its content could vanish. This is mostly used to
863 * confirm that a caller is the owner of a registered probe.
864 */
865void *marker_get_private_data(const char *name, marker_probe_func *probe,
866 int num)
867{
868 struct hlist_head *head;
869 struct hlist_node *node;
870 struct marker_entry *e;
871 size_t name_len = strlen(name) + 1;
872 u32 hash = jhash(name, name_len-1, 0);
873 int i;
874
875 head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
876 hlist_for_each_entry(e, node, head, hlist) {
877 if (!strcmp(name, e->name)) {
878 if (!e->ptype) {
879 if (num == 0 && e->single.func == probe)
880 return e->single.probe_private;
881 } else {
882 struct marker_probe_closure *closure;
883 int match = 0;
884 closure = e->multi;
885 for (i = 0; closure[i].func; i++) {
886 if (closure[i].func != probe)
887 continue;
888 if (match++ == num)
889 return closure[i].probe_private;
890 }
891 }
892 break;
893 }
894 }
895 return ERR_PTR(-ENOENT);
896}
897EXPORT_SYMBOL_GPL(marker_get_private_data);
898
899#ifdef CONFIG_MODULES
900
901int marker_module_notify(struct notifier_block *self,
902 unsigned long val, void *data)
903{
904 struct module *mod = data;
905
906 switch (val) {
907 case MODULE_STATE_COMING:
908 marker_update_probe_range(mod->markers,
909 mod->markers + mod->num_markers);
910 break;
911 case MODULE_STATE_GOING:
912 marker_update_probe_range(mod->markers,
913 mod->markers + mod->num_markers);
914 break;
915 }
916 return 0;
917}
918
919struct notifier_block marker_module_nb = {
920 .notifier_call = marker_module_notify,
921 .priority = 0,
922};
923
924static int init_markers(void)
925{
926 return register_module_notifier(&marker_module_nb);
927}
928__initcall(init_markers);
929
930#endif /* CONFIG_MODULES */
diff --git a/kernel/module.c b/kernel/module.c
index 46580edff0cb..5a29397ca4b6 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -47,6 +47,7 @@
47#include <linux/rculist.h> 47#include <linux/rculist.h>
48#include <asm/uaccess.h> 48#include <asm/uaccess.h>
49#include <asm/cacheflush.h> 49#include <asm/cacheflush.h>
50#include <asm/mmu_context.h>
50#include <linux/license.h> 51#include <linux/license.h>
51#include <asm/sections.h> 52#include <asm/sections.h>
52#include <linux/tracepoint.h> 53#include <linux/tracepoint.h>
@@ -369,7 +370,7 @@ EXPORT_SYMBOL_GPL(find_module);
369 370
370#ifdef CONFIG_SMP 371#ifdef CONFIG_SMP
371 372
372#ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA 373#ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
373 374
374static void *percpu_modalloc(unsigned long size, unsigned long align, 375static void *percpu_modalloc(unsigned long size, unsigned long align,
375 const char *name) 376 const char *name)
@@ -394,7 +395,7 @@ static void percpu_modfree(void *freeme)
394 free_percpu(freeme); 395 free_percpu(freeme);
395} 396}
396 397
397#else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ 398#else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */
398 399
399/* Number of blocks used and allocated. */ 400/* Number of blocks used and allocated. */
400static unsigned int pcpu_num_used, pcpu_num_allocated; 401static unsigned int pcpu_num_used, pcpu_num_allocated;
@@ -540,7 +541,7 @@ static int percpu_modinit(void)
540} 541}
541__initcall(percpu_modinit); 542__initcall(percpu_modinit);
542 543
543#endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ 544#endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
544 545
545static unsigned int find_pcpusec(Elf_Ehdr *hdr, 546static unsigned int find_pcpusec(Elf_Ehdr *hdr,
546 Elf_Shdr *sechdrs, 547 Elf_Shdr *sechdrs,
@@ -1535,6 +1536,10 @@ static void free_module(struct module *mod)
1535 1536
1536 /* Finally, free the core (containing the module structure) */ 1537 /* Finally, free the core (containing the module structure) */
1537 module_free(mod, mod->module_core); 1538 module_free(mod, mod->module_core);
1539
1540#ifdef CONFIG_MPU
1541 update_protections(current->mm);
1542#endif
1538} 1543}
1539 1544
1540void *__symbol_get(const char *symbol) 1545void *__symbol_get(const char *symbol)
@@ -1792,6 +1797,17 @@ static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs,
1792 } 1797 }
1793} 1798}
1794 1799
1800static void free_modinfo(struct module *mod)
1801{
1802 struct module_attribute *attr;
1803 int i;
1804
1805 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1806 if (attr->free)
1807 attr->free(mod);
1808 }
1809}
1810
1795#ifdef CONFIG_KALLSYMS 1811#ifdef CONFIG_KALLSYMS
1796 1812
1797/* lookup symbol in given range of kernel_symbols */ 1813/* lookup symbol in given range of kernel_symbols */
@@ -1857,13 +1873,93 @@ static char elf_type(const Elf_Sym *sym,
1857 return '?'; 1873 return '?';
1858} 1874}
1859 1875
1876static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
1877 unsigned int shnum)
1878{
1879 const Elf_Shdr *sec;
1880
1881 if (src->st_shndx == SHN_UNDEF
1882 || src->st_shndx >= shnum
1883 || !src->st_name)
1884 return false;
1885
1886 sec = sechdrs + src->st_shndx;
1887 if (!(sec->sh_flags & SHF_ALLOC)
1888#ifndef CONFIG_KALLSYMS_ALL
1889 || !(sec->sh_flags & SHF_EXECINSTR)
1890#endif
1891 || (sec->sh_entsize & INIT_OFFSET_MASK))
1892 return false;
1893
1894 return true;
1895}
1896
1897static unsigned long layout_symtab(struct module *mod,
1898 Elf_Shdr *sechdrs,
1899 unsigned int symindex,
1900 unsigned int strindex,
1901 const Elf_Ehdr *hdr,
1902 const char *secstrings,
1903 unsigned long *pstroffs,
1904 unsigned long *strmap)
1905{
1906 unsigned long symoffs;
1907 Elf_Shdr *symsect = sechdrs + symindex;
1908 Elf_Shdr *strsect = sechdrs + strindex;
1909 const Elf_Sym *src;
1910 const char *strtab;
1911 unsigned int i, nsrc, ndst;
1912
1913 /* Put symbol section at end of init part of module. */
1914 symsect->sh_flags |= SHF_ALLOC;
1915 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
1916 symindex) | INIT_OFFSET_MASK;
1917 DEBUGP("\t%s\n", secstrings + symsect->sh_name);
1918
1919 src = (void *)hdr + symsect->sh_offset;
1920 nsrc = symsect->sh_size / sizeof(*src);
1921 strtab = (void *)hdr + strsect->sh_offset;
1922 for (ndst = i = 1; i < nsrc; ++i, ++src)
1923 if (is_core_symbol(src, sechdrs, hdr->e_shnum)) {
1924 unsigned int j = src->st_name;
1925
1926 while(!__test_and_set_bit(j, strmap) && strtab[j])
1927 ++j;
1928 ++ndst;
1929 }
1930
1931 /* Append room for core symbols at end of core part. */
1932 symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
1933 mod->core_size = symoffs + ndst * sizeof(Elf_Sym);
1934
1935 /* Put string table section at end of init part of module. */
1936 strsect->sh_flags |= SHF_ALLOC;
1937 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
1938 strindex) | INIT_OFFSET_MASK;
1939 DEBUGP("\t%s\n", secstrings + strsect->sh_name);
1940
1941 /* Append room for core symbols' strings at end of core part. */
1942 *pstroffs = mod->core_size;
1943 __set_bit(0, strmap);
1944 mod->core_size += bitmap_weight(strmap, strsect->sh_size);
1945
1946 return symoffs;
1947}
1948
1860static void add_kallsyms(struct module *mod, 1949static void add_kallsyms(struct module *mod,
1861 Elf_Shdr *sechdrs, 1950 Elf_Shdr *sechdrs,
1951 unsigned int shnum,
1862 unsigned int symindex, 1952 unsigned int symindex,
1863 unsigned int strindex, 1953 unsigned int strindex,
1864 const char *secstrings) 1954 unsigned long symoffs,
1955 unsigned long stroffs,
1956 const char *secstrings,
1957 unsigned long *strmap)
1865{ 1958{
1866 unsigned int i; 1959 unsigned int i, ndst;
1960 const Elf_Sym *src;
1961 Elf_Sym *dst;
1962 char *s;
1867 1963
1868 mod->symtab = (void *)sechdrs[symindex].sh_addr; 1964 mod->symtab = (void *)sechdrs[symindex].sh_addr;
1869 mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 1965 mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
@@ -1873,13 +1969,44 @@ static void add_kallsyms(struct module *mod,
1873 for (i = 0; i < mod->num_symtab; i++) 1969 for (i = 0; i < mod->num_symtab; i++)
1874 mod->symtab[i].st_info 1970 mod->symtab[i].st_info
1875 = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); 1971 = elf_type(&mod->symtab[i], sechdrs, secstrings, mod);
1972
1973 mod->core_symtab = dst = mod->module_core + symoffs;
1974 src = mod->symtab;
1975 *dst = *src;
1976 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
1977 if (!is_core_symbol(src, sechdrs, shnum))
1978 continue;
1979 dst[ndst] = *src;
1980 dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name);
1981 ++ndst;
1982 }
1983 mod->core_num_syms = ndst;
1984
1985 mod->core_strtab = s = mod->module_core + stroffs;
1986 for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i)
1987 if (test_bit(i, strmap))
1988 *++s = mod->strtab[i];
1876} 1989}
1877#else 1990#else
1991static inline unsigned long layout_symtab(struct module *mod,
1992 Elf_Shdr *sechdrs,
1993 unsigned int symindex,
1994 unsigned int strindex,
1995 const Elf_Hdr *hdr,
1996 const char *secstrings,
1997 unsigned long *pstroffs,
1998 unsigned long *strmap)
1999{
2000}
1878static inline void add_kallsyms(struct module *mod, 2001static inline void add_kallsyms(struct module *mod,
1879 Elf_Shdr *sechdrs, 2002 Elf_Shdr *sechdrs,
2003 unsigned int shnum,
1880 unsigned int symindex, 2004 unsigned int symindex,
1881 unsigned int strindex, 2005 unsigned int strindex,
1882 const char *secstrings) 2006 unsigned long symoffs,
2007 unsigned long stroffs,
2008 const char *secstrings,
2009 const unsigned long *strmap)
1883{ 2010{
1884} 2011}
1885#endif /* CONFIG_KALLSYMS */ 2012#endif /* CONFIG_KALLSYMS */
@@ -1954,6 +2081,9 @@ static noinline struct module *load_module(void __user *umod,
1954 struct module *mod; 2081 struct module *mod;
1955 long err = 0; 2082 long err = 0;
1956 void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ 2083 void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */
2084#ifdef CONFIG_KALLSYMS
2085 unsigned long symoffs, stroffs, *strmap;
2086#endif
1957 mm_segment_t old_fs; 2087 mm_segment_t old_fs;
1958 2088
1959 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", 2089 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
@@ -2035,11 +2165,6 @@ static noinline struct module *load_module(void __user *umod,
2035 /* Don't keep modinfo and version sections. */ 2165 /* Don't keep modinfo and version sections. */
2036 sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; 2166 sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2037 sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; 2167 sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2038#ifdef CONFIG_KALLSYMS
2039 /* Keep symbol and string tables for decoding later. */
2040 sechdrs[symindex].sh_flags |= SHF_ALLOC;
2041 sechdrs[strindex].sh_flags |= SHF_ALLOC;
2042#endif
2043 2168
2044 /* Check module struct version now, before we try to use module. */ 2169 /* Check module struct version now, before we try to use module. */
2045 if (!check_modstruct_version(sechdrs, versindex, mod)) { 2170 if (!check_modstruct_version(sechdrs, versindex, mod)) {
@@ -2075,6 +2200,13 @@ static noinline struct module *load_module(void __user *umod,
2075 goto free_hdr; 2200 goto free_hdr;
2076 } 2201 }
2077 2202
2203 strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size)
2204 * sizeof(long), GFP_KERNEL);
2205 if (!strmap) {
2206 err = -ENOMEM;
2207 goto free_mod;
2208 }
2209
2078 if (find_module(mod->name)) { 2210 if (find_module(mod->name)) {
2079 err = -EEXIST; 2211 err = -EEXIST;
2080 goto free_mod; 2212 goto free_mod;
@@ -2104,6 +2236,8 @@ static noinline struct module *load_module(void __user *umod,
2104 this is done generically; there doesn't appear to be any 2236 this is done generically; there doesn't appear to be any
2105 special cases for the architectures. */ 2237 special cases for the architectures. */
2106 layout_sections(mod, hdr, sechdrs, secstrings); 2238 layout_sections(mod, hdr, sechdrs, secstrings);
2239 symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr,
2240 secstrings, &stroffs, strmap);
2107 2241
2108 /* Do the allocs. */ 2242 /* Do the allocs. */
2109 ptr = module_alloc_update_bounds(mod->core_size); 2243 ptr = module_alloc_update_bounds(mod->core_size);
@@ -2237,10 +2371,6 @@ static noinline struct module *load_module(void __user *umod,
2237 sizeof(*mod->ctors), &mod->num_ctors); 2371 sizeof(*mod->ctors), &mod->num_ctors);
2238#endif 2372#endif
2239 2373
2240#ifdef CONFIG_MARKERS
2241 mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers",
2242 sizeof(*mod->markers), &mod->num_markers);
2243#endif
2244#ifdef CONFIG_TRACEPOINTS 2374#ifdef CONFIG_TRACEPOINTS
2245 mod->tracepoints = section_objs(hdr, sechdrs, secstrings, 2375 mod->tracepoints = section_objs(hdr, sechdrs, secstrings,
2246 "__tracepoints", 2376 "__tracepoints",
@@ -2312,7 +2442,10 @@ static noinline struct module *load_module(void __user *umod,
2312 percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, 2442 percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr,
2313 sechdrs[pcpuindex].sh_size); 2443 sechdrs[pcpuindex].sh_size);
2314 2444
2315 add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); 2445 add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex,
2446 symoffs, stroffs, secstrings, strmap);
2447 kfree(strmap);
2448 strmap = NULL;
2316 2449
2317 if (!mod->taints) { 2450 if (!mod->taints) {
2318 struct _ddebug *debug; 2451 struct _ddebug *debug;
@@ -2384,13 +2517,14 @@ static noinline struct module *load_module(void __user *umod,
2384 synchronize_sched(); 2517 synchronize_sched();
2385 module_arch_cleanup(mod); 2518 module_arch_cleanup(mod);
2386 cleanup: 2519 cleanup:
2520 free_modinfo(mod);
2387 kobject_del(&mod->mkobj.kobj); 2521 kobject_del(&mod->mkobj.kobj);
2388 kobject_put(&mod->mkobj.kobj); 2522 kobject_put(&mod->mkobj.kobj);
2389 free_unload: 2523 free_unload:
2390 module_unload_free(mod); 2524 module_unload_free(mod);
2391#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) 2525#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP)
2392 free_init:
2393 percpu_modfree(mod->refptr); 2526 percpu_modfree(mod->refptr);
2527 free_init:
2394#endif 2528#endif
2395 module_free(mod, mod->module_init); 2529 module_free(mod, mod->module_init);
2396 free_core: 2530 free_core:
@@ -2401,6 +2535,7 @@ static noinline struct module *load_module(void __user *umod,
2401 percpu_modfree(percpu); 2535 percpu_modfree(percpu);
2402 free_mod: 2536 free_mod:
2403 kfree(args); 2537 kfree(args);
2538 kfree(strmap);
2404 free_hdr: 2539 free_hdr:
2405 vfree(hdr); 2540 vfree(hdr);
2406 return ERR_PTR(err); 2541 return ERR_PTR(err);
@@ -2490,6 +2625,11 @@ SYSCALL_DEFINE3(init_module, void __user *, umod,
2490 /* Drop initial reference. */ 2625 /* Drop initial reference. */
2491 module_put(mod); 2626 module_put(mod);
2492 trim_init_extable(mod); 2627 trim_init_extable(mod);
2628#ifdef CONFIG_KALLSYMS
2629 mod->num_symtab = mod->core_num_syms;
2630 mod->symtab = mod->core_symtab;
2631 mod->strtab = mod->core_strtab;
2632#endif
2493 module_free(mod, mod->module_init); 2633 module_free(mod, mod->module_init);
2494 mod->module_init = NULL; 2634 mod->module_init = NULL;
2495 mod->init_size = 0; 2635 mod->init_size = 0;
@@ -2958,20 +3098,6 @@ void module_layout(struct module *mod,
2958EXPORT_SYMBOL(module_layout); 3098EXPORT_SYMBOL(module_layout);
2959#endif 3099#endif
2960 3100
2961#ifdef CONFIG_MARKERS
2962void module_update_markers(void)
2963{
2964 struct module *mod;
2965
2966 mutex_lock(&module_mutex);
2967 list_for_each_entry(mod, &modules, list)
2968 if (!mod->taints)
2969 marker_update_probe_range(mod->markers,
2970 mod->markers + mod->num_markers);
2971 mutex_unlock(&module_mutex);
2972}
2973#endif
2974
2975#ifdef CONFIG_TRACEPOINTS 3101#ifdef CONFIG_TRACEPOINTS
2976void module_update_tracepoints(void) 3102void module_update_tracepoints(void)
2977{ 3103{
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c
index 5aa854f9e5ae..2a5dfec8efe0 100644
--- a/kernel/ns_cgroup.c
+++ b/kernel/ns_cgroup.c
@@ -42,8 +42,8 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid)
42 * (hence either you are in the same cgroup as task, or in an 42 * (hence either you are in the same cgroup as task, or in an
43 * ancestor cgroup thereof) 43 * ancestor cgroup thereof)
44 */ 44 */
45static int ns_can_attach(struct cgroup_subsys *ss, 45static int ns_can_attach(struct cgroup_subsys *ss, struct cgroup *new_cgroup,
46 struct cgroup *new_cgroup, struct task_struct *task) 46 struct task_struct *task, bool threadgroup)
47{ 47{
48 if (current != task) { 48 if (current != task) {
49 if (!capable(CAP_SYS_ADMIN)) 49 if (!capable(CAP_SYS_ADMIN))
@@ -56,6 +56,18 @@ static int ns_can_attach(struct cgroup_subsys *ss,
56 if (!cgroup_is_descendant(new_cgroup, task)) 56 if (!cgroup_is_descendant(new_cgroup, task))
57 return -EPERM; 57 return -EPERM;
58 58
59 if (threadgroup) {
60 struct task_struct *c;
61 rcu_read_lock();
62 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
63 if (!cgroup_is_descendant(new_cgroup, c)) {
64 rcu_read_unlock();
65 return -EPERM;
66 }
67 }
68 rcu_read_unlock();
69 }
70
59 return 0; 71 return 0;
60} 72}
61 73
diff --git a/kernel/panic.c b/kernel/panic.c
index 512ab73b0ca3..bcdef26e3332 100644
--- a/kernel/panic.c
+++ b/kernel/panic.c
@@ -177,7 +177,7 @@ static const struct tnt tnts[] = {
177 * 'W' - Taint on warning. 177 * 'W' - Taint on warning.
178 * 'C' - modules from drivers/staging are loaded. 178 * 'C' - modules from drivers/staging are loaded.
179 * 179 *
180 * The string is overwritten by the next call to print_taint(). 180 * The string is overwritten by the next call to print_tainted().
181 */ 181 */
182const char *print_tainted(void) 182const char *print_tainted(void)
183{ 183{
diff --git a/kernel/params.c b/kernel/params.c
index 7f6912ced2ba..9da58eabdcb2 100644
--- a/kernel/params.c
+++ b/kernel/params.c
@@ -23,6 +23,7 @@
23#include <linux/device.h> 23#include <linux/device.h>
24#include <linux/err.h> 24#include <linux/err.h>
25#include <linux/slab.h> 25#include <linux/slab.h>
26#include <linux/ctype.h>
26 27
27#if 0 28#if 0
28#define DEBUGP printk 29#define DEBUGP printk
@@ -87,7 +88,7 @@ static char *next_arg(char *args, char **param, char **val)
87 } 88 }
88 89
89 for (i = 0; args[i]; i++) { 90 for (i = 0; args[i]; i++) {
90 if (args[i] == ' ' && !in_quote) 91 if (isspace(args[i]) && !in_quote)
91 break; 92 break;
92 if (equals == 0) { 93 if (equals == 0) {
93 if (args[i] == '=') 94 if (args[i] == '=')
@@ -121,7 +122,7 @@ static char *next_arg(char *args, char **param, char **val)
121 next = args + i; 122 next = args + i;
122 123
123 /* Chew up trailing spaces. */ 124 /* Chew up trailing spaces. */
124 while (*next == ' ') 125 while (isspace(*next))
125 next++; 126 next++;
126 return next; 127 return next;
127} 128}
@@ -138,7 +139,7 @@ int parse_args(const char *name,
138 DEBUGP("Parsing ARGS: %s\n", args); 139 DEBUGP("Parsing ARGS: %s\n", args);
139 140
140 /* Chew leading spaces */ 141 /* Chew leading spaces */
141 while (*args == ' ') 142 while (isspace(*args))
142 args++; 143 args++;
143 144
144 while (*args) { 145 while (*args) {
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c
deleted file mode 100644
index e0d91fdf0c3c..000000000000
--- a/kernel/perf_counter.c
+++ /dev/null
@@ -1,4962 +0,0 @@
1/*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
23#include <linux/hardirq.h>
24#include <linux/rculist.h>
25#include <linux/uaccess.h>
26#include <linux/syscalls.h>
27#include <linux/anon_inodes.h>
28#include <linux/kernel_stat.h>
29#include <linux/perf_counter.h>
30
31#include <asm/irq_regs.h>
32
33/*
34 * Each CPU has a list of per CPU counters:
35 */
36DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38int perf_max_counters __read_mostly = 1;
39static int perf_reserved_percpu __read_mostly;
40static int perf_overcommit __read_mostly = 1;
41
42static atomic_t nr_counters __read_mostly;
43static atomic_t nr_mmap_counters __read_mostly;
44static atomic_t nr_comm_counters __read_mostly;
45static atomic_t nr_task_counters __read_mostly;
46
47/*
48 * perf counter paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu counters for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54int sysctl_perf_counter_paranoid __read_mostly = 1;
55
56static inline bool perf_paranoid_tracepoint_raw(void)
57{
58 return sysctl_perf_counter_paranoid > -1;
59}
60
61static inline bool perf_paranoid_cpu(void)
62{
63 return sysctl_perf_counter_paranoid > 0;
64}
65
66static inline bool perf_paranoid_kernel(void)
67{
68 return sysctl_perf_counter_paranoid > 1;
69}
70
71int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
72
73/*
74 * max perf counter sample rate
75 */
76int sysctl_perf_counter_sample_rate __read_mostly = 100000;
77
78static atomic64_t perf_counter_id;
79
80/*
81 * Lock for (sysadmin-configurable) counter reservations:
82 */
83static DEFINE_SPINLOCK(perf_resource_lock);
84
85/*
86 * Architecture provided APIs - weak aliases:
87 */
88extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
89{
90 return NULL;
91}
92
93void __weak hw_perf_disable(void) { barrier(); }
94void __weak hw_perf_enable(void) { barrier(); }
95
96void __weak hw_perf_counter_setup(int cpu) { barrier(); }
97void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
98
99int __weak
100hw_perf_group_sched_in(struct perf_counter *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_counter_context *ctx, int cpu)
103{
104 return 0;
105}
106
107void __weak perf_counter_print_debug(void) { }
108
109static DEFINE_PER_CPU(int, disable_count);
110
111void __perf_disable(void)
112{
113 __get_cpu_var(disable_count)++;
114}
115
116bool __perf_enable(void)
117{
118 return !--__get_cpu_var(disable_count);
119}
120
121void perf_disable(void)
122{
123 __perf_disable();
124 hw_perf_disable();
125}
126
127void perf_enable(void)
128{
129 if (__perf_enable())
130 hw_perf_enable();
131}
132
133static void get_ctx(struct perf_counter_context *ctx)
134{
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136}
137
138static void free_ctx(struct rcu_head *head)
139{
140 struct perf_counter_context *ctx;
141
142 ctx = container_of(head, struct perf_counter_context, rcu_head);
143 kfree(ctx);
144}
145
146static void put_ctx(struct perf_counter_context *ctx)
147{
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155}
156
157static void unclone_ctx(struct perf_counter_context *ctx)
158{
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163}
164
165/*
166 * If we inherit counters we want to return the parent counter id
167 * to userspace.
168 */
169static u64 primary_counter_id(struct perf_counter *counter)
170{
171 u64 id = counter->id;
172
173 if (counter->parent)
174 id = counter->parent->id;
175
176 return id;
177}
178
179/*
180 * Get the perf_counter_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184static struct perf_counter_context *
185perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186{
187 struct perf_counter_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_counter_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_counter_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216}
217
218/*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
224{
225 struct perf_counter_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234}
235
236static void perf_unpin_context(struct perf_counter_context *ctx)
237{
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244}
245
246/*
247 * Add a counter from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250static void
251list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
252{
253 struct perf_counter *group_leader = counter->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling counter,
257 * add it straight to the context's counter list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == counter)
261 list_add_tail(&counter->list_entry, &ctx->counter_list);
262 else {
263 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&counter->event_entry, &ctx->event_list);
268 ctx->nr_counters++;
269 if (counter->attr.inherit_stat)
270 ctx->nr_stat++;
271}
272
273/*
274 * Remove a counter from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277static void
278list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
279{
280 struct perf_counter *sibling, *tmp;
281
282 if (list_empty(&counter->list_entry))
283 return;
284 ctx->nr_counters--;
285 if (counter->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&counter->list_entry);
289 list_del_rcu(&counter->event_entry);
290
291 if (counter->group_leader != counter)
292 counter->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group counter with sibling counters then
296 * upgrade the siblings to singleton counters by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp,
300 &counter->sibling_list, list_entry) {
301
302 list_move_tail(&sibling->list_entry, &ctx->counter_list);
303 sibling->group_leader = sibling;
304 }
305}
306
307static void
308counter_sched_out(struct perf_counter *counter,
309 struct perf_cpu_context *cpuctx,
310 struct perf_counter_context *ctx)
311{
312 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
313 return;
314
315 counter->state = PERF_COUNTER_STATE_INACTIVE;
316 if (counter->pending_disable) {
317 counter->pending_disable = 0;
318 counter->state = PERF_COUNTER_STATE_OFF;
319 }
320 counter->tstamp_stopped = ctx->time;
321 counter->pmu->disable(counter);
322 counter->oncpu = -1;
323
324 if (!is_software_counter(counter))
325 cpuctx->active_oncpu--;
326 ctx->nr_active--;
327 if (counter->attr.exclusive || !cpuctx->active_oncpu)
328 cpuctx->exclusive = 0;
329}
330
331static void
332group_sched_out(struct perf_counter *group_counter,
333 struct perf_cpu_context *cpuctx,
334 struct perf_counter_context *ctx)
335{
336 struct perf_counter *counter;
337
338 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
339 return;
340
341 counter_sched_out(group_counter, cpuctx, ctx);
342
343 /*
344 * Schedule out siblings (if any):
345 */
346 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
347 counter_sched_out(counter, cpuctx, ctx);
348
349 if (group_counter->attr.exclusive)
350 cpuctx->exclusive = 0;
351}
352
353/*
354 * Cross CPU call to remove a performance counter
355 *
356 * We disable the counter on the hardware level first. After that we
357 * remove it from the context list.
358 */
359static void __perf_counter_remove_from_context(void *info)
360{
361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 struct perf_counter *counter = info;
363 struct perf_counter_context *ctx = counter->ctx;
364
365 /*
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
369 */
370 if (ctx->task && cpuctx->task_ctx != ctx)
371 return;
372
373 spin_lock(&ctx->lock);
374 /*
375 * Protect the list operation against NMI by disabling the
376 * counters on a global level.
377 */
378 perf_disable();
379
380 counter_sched_out(counter, cpuctx, ctx);
381
382 list_del_counter(counter, ctx);
383
384 if (!ctx->task) {
385 /*
386 * Allow more per task counters with respect to the
387 * reservation:
388 */
389 cpuctx->max_pertask =
390 min(perf_max_counters - ctx->nr_counters,
391 perf_max_counters - perf_reserved_percpu);
392 }
393
394 perf_enable();
395 spin_unlock(&ctx->lock);
396}
397
398
399/*
400 * Remove the counter from a task's (or a CPU's) list of counters.
401 *
402 * Must be called with ctx->mutex held.
403 *
404 * CPU counters are removed with a smp call. For task counters we only
405 * call when the task is on a CPU.
406 *
407 * If counter->ctx is a cloned context, callers must make sure that
408 * every task struct that counter->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_counter_exit_task, it's OK because the
412 * context has been detached from its task.
413 */
414static void perf_counter_remove_from_context(struct perf_counter *counter)
415{
416 struct perf_counter_context *ctx = counter->ctx;
417 struct task_struct *task = ctx->task;
418
419 if (!task) {
420 /*
421 * Per cpu counters are removed via an smp call and
422 * the removal is always sucessful.
423 */
424 smp_call_function_single(counter->cpu,
425 __perf_counter_remove_from_context,
426 counter, 1);
427 return;
428 }
429
430retry:
431 task_oncpu_function_call(task, __perf_counter_remove_from_context,
432 counter);
433
434 spin_lock_irq(&ctx->lock);
435 /*
436 * If the context is active we need to retry the smp call.
437 */
438 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
439 spin_unlock_irq(&ctx->lock);
440 goto retry;
441 }
442
443 /*
444 * The lock prevents that this context is scheduled in so we
445 * can remove the counter safely, if the call above did not
446 * succeed.
447 */
448 if (!list_empty(&counter->list_entry)) {
449 list_del_counter(counter, ctx);
450 }
451 spin_unlock_irq(&ctx->lock);
452}
453
454static inline u64 perf_clock(void)
455{
456 return cpu_clock(smp_processor_id());
457}
458
459/*
460 * Update the record of the current time in a context.
461 */
462static void update_context_time(struct perf_counter_context *ctx)
463{
464 u64 now = perf_clock();
465
466 ctx->time += now - ctx->timestamp;
467 ctx->timestamp = now;
468}
469
470/*
471 * Update the total_time_enabled and total_time_running fields for a counter.
472 */
473static void update_counter_times(struct perf_counter *counter)
474{
475 struct perf_counter_context *ctx = counter->ctx;
476 u64 run_end;
477
478 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
479 counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
480 return;
481
482 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
483
484 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
485 run_end = counter->tstamp_stopped;
486 else
487 run_end = ctx->time;
488
489 counter->total_time_running = run_end - counter->tstamp_running;
490}
491
492/*
493 * Update total_time_enabled and total_time_running for all counters in a group.
494 */
495static void update_group_times(struct perf_counter *leader)
496{
497 struct perf_counter *counter;
498
499 update_counter_times(leader);
500 list_for_each_entry(counter, &leader->sibling_list, list_entry)
501 update_counter_times(counter);
502}
503
504/*
505 * Cross CPU call to disable a performance counter
506 */
507static void __perf_counter_disable(void *info)
508{
509 struct perf_counter *counter = info;
510 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 struct perf_counter_context *ctx = counter->ctx;
512
513 /*
514 * If this is a per-task counter, need to check whether this
515 * counter's task is the current task on this cpu.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock(&ctx->lock);
521
522 /*
523 * If the counter is on, turn it off.
524 * If it is in error state, leave it in error state.
525 */
526 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
527 update_context_time(ctx);
528 update_group_times(counter);
529 if (counter == counter->group_leader)
530 group_sched_out(counter, cpuctx, ctx);
531 else
532 counter_sched_out(counter, cpuctx, ctx);
533 counter->state = PERF_COUNTER_STATE_OFF;
534 }
535
536 spin_unlock(&ctx->lock);
537}
538
539/*
540 * Disable a counter.
541 *
542 * If counter->ctx is a cloned context, callers must make sure that
543 * every task struct that counter->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_counter_for_each_child or perf_counter_for_each because they
546 * hold the top-level counter's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_counter.
548 * When called from perf_pending_counter it's OK because counter->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_counter_task_sched_out for this context.
551 */
552static void perf_counter_disable(struct perf_counter *counter)
553{
554 struct perf_counter_context *ctx = counter->ctx;
555 struct task_struct *task = ctx->task;
556
557 if (!task) {
558 /*
559 * Disable the counter on the cpu that it's on
560 */
561 smp_call_function_single(counter->cpu, __perf_counter_disable,
562 counter, 1);
563 return;
564 }
565
566 retry:
567 task_oncpu_function_call(task, __perf_counter_disable, counter);
568
569 spin_lock_irq(&ctx->lock);
570 /*
571 * If the counter is still active, we need to retry the cross-call.
572 */
573 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
574 spin_unlock_irq(&ctx->lock);
575 goto retry;
576 }
577
578 /*
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
581 */
582 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
583 update_group_times(counter);
584 counter->state = PERF_COUNTER_STATE_OFF;
585 }
586
587 spin_unlock_irq(&ctx->lock);
588}
589
590static int
591counter_sched_in(struct perf_counter *counter,
592 struct perf_cpu_context *cpuctx,
593 struct perf_counter_context *ctx,
594 int cpu)
595{
596 if (counter->state <= PERF_COUNTER_STATE_OFF)
597 return 0;
598
599 counter->state = PERF_COUNTER_STATE_ACTIVE;
600 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
601 /*
602 * The new state must be visible before we turn it on in the hardware:
603 */
604 smp_wmb();
605
606 if (counter->pmu->enable(counter)) {
607 counter->state = PERF_COUNTER_STATE_INACTIVE;
608 counter->oncpu = -1;
609 return -EAGAIN;
610 }
611
612 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
613
614 if (!is_software_counter(counter))
615 cpuctx->active_oncpu++;
616 ctx->nr_active++;
617
618 if (counter->attr.exclusive)
619 cpuctx->exclusive = 1;
620
621 return 0;
622}
623
624static int
625group_sched_in(struct perf_counter *group_counter,
626 struct perf_cpu_context *cpuctx,
627 struct perf_counter_context *ctx,
628 int cpu)
629{
630 struct perf_counter *counter, *partial_group;
631 int ret;
632
633 if (group_counter->state == PERF_COUNTER_STATE_OFF)
634 return 0;
635
636 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
637 if (ret)
638 return ret < 0 ? ret : 0;
639
640 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
641 return -EAGAIN;
642
643 /*
644 * Schedule in siblings as one group (if any):
645 */
646 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
647 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
648 partial_group = counter;
649 goto group_error;
650 }
651 }
652
653 return 0;
654
655group_error:
656 /*
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
659 */
660 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
661 if (counter == partial_group)
662 break;
663 counter_sched_out(counter, cpuctx, ctx);
664 }
665 counter_sched_out(group_counter, cpuctx, ctx);
666
667 return -EAGAIN;
668}
669
670/*
671 * Return 1 for a group consisting entirely of software counters,
672 * 0 if the group contains any hardware counters.
673 */
674static int is_software_only_group(struct perf_counter *leader)
675{
676 struct perf_counter *counter;
677
678 if (!is_software_counter(leader))
679 return 0;
680
681 list_for_each_entry(counter, &leader->sibling_list, list_entry)
682 if (!is_software_counter(counter))
683 return 0;
684
685 return 1;
686}
687
688/*
689 * Work out whether we can put this counter group on the CPU now.
690 */
691static int group_can_go_on(struct perf_counter *counter,
692 struct perf_cpu_context *cpuctx,
693 int can_add_hw)
694{
695 /*
696 * Groups consisting entirely of software counters can always go on.
697 */
698 if (is_software_only_group(counter))
699 return 1;
700 /*
701 * If an exclusive group is already on, no other hardware
702 * counters can go on.
703 */
704 if (cpuctx->exclusive)
705 return 0;
706 /*
707 * If this group is exclusive and there are already
708 * counters on the CPU, it can't go on.
709 */
710 if (counter->attr.exclusive && cpuctx->active_oncpu)
711 return 0;
712 /*
713 * Otherwise, try to add it if all previous groups were able
714 * to go on.
715 */
716 return can_add_hw;
717}
718
719static void add_counter_to_ctx(struct perf_counter *counter,
720 struct perf_counter_context *ctx)
721{
722 list_add_counter(counter, ctx);
723 counter->tstamp_enabled = ctx->time;
724 counter->tstamp_running = ctx->time;
725 counter->tstamp_stopped = ctx->time;
726}
727
728/*
729 * Cross CPU call to install and enable a performance counter
730 *
731 * Must be called with ctx->mutex held
732 */
733static void __perf_install_in_context(void *info)
734{
735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 struct perf_counter *counter = info;
737 struct perf_counter_context *ctx = counter->ctx;
738 struct perf_counter *leader = counter->group_leader;
739 int cpu = smp_processor_id();
740 int err;
741
742 /*
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no counters.
748 */
749 if (ctx->task && cpuctx->task_ctx != ctx) {
750 if (cpuctx->task_ctx || ctx->task != current)
751 return;
752 cpuctx->task_ctx = ctx;
753 }
754
755 spin_lock(&ctx->lock);
756 ctx->is_active = 1;
757 update_context_time(ctx);
758
759 /*
760 * Protect the list operation against NMI by disabling the
761 * counters on a global level. NOP for non NMI based counters.
762 */
763 perf_disable();
764
765 add_counter_to_ctx(counter, ctx);
766
767 /*
768 * Don't put the counter on if it is disabled or if
769 * it is in a group and the group isn't on.
770 */
771 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
772 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
773 goto unlock;
774
775 /*
776 * An exclusive counter can't go on if there are already active
777 * hardware counters, and no hardware counter can go on if there
778 * is already an exclusive counter on.
779 */
780 if (!group_can_go_on(counter, cpuctx, 1))
781 err = -EEXIST;
782 else
783 err = counter_sched_in(counter, cpuctx, ctx, cpu);
784
785 if (err) {
786 /*
787 * This counter couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the counter group is pinned then put it in error state.
790 */
791 if (leader != counter)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_COUNTER_STATE_ERROR;
796 }
797 }
798
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
801
802 unlock:
803 perf_enable();
804
805 spin_unlock(&ctx->lock);
806}
807
808/*
809 * Attach a performance counter to a context
810 *
811 * First we add the counter to the list with the hardware enable bit
812 * in counter->hw_config cleared.
813 *
814 * If the counter is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
817 *
818 * Must be called with ctx->mutex held.
819 */
820static void
821perf_install_in_context(struct perf_counter_context *ctx,
822 struct perf_counter *counter,
823 int cpu)
824{
825 struct task_struct *task = ctx->task;
826
827 if (!task) {
828 /*
829 * Per cpu counters are installed via an smp call and
830 * the install is always sucessful.
831 */
832 smp_call_function_single(cpu, __perf_install_in_context,
833 counter, 1);
834 return;
835 }
836
837retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 counter);
840
841 spin_lock_irq(&ctx->lock);
842 /*
843 * we need to retry the smp call.
844 */
845 if (ctx->is_active && list_empty(&counter->list_entry)) {
846 spin_unlock_irq(&ctx->lock);
847 goto retry;
848 }
849
850 /*
851 * The lock prevents that this context is scheduled in so we
852 * can add the counter safely, if it the call above did not
853 * succeed.
854 */
855 if (list_empty(&counter->list_entry))
856 add_counter_to_ctx(counter, ctx);
857 spin_unlock_irq(&ctx->lock);
858}
859
860/*
861 * Put a counter into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868static void __perf_counter_mark_enabled(struct perf_counter *counter,
869 struct perf_counter_context *ctx)
870{
871 struct perf_counter *sub;
872
873 counter->state = PERF_COUNTER_STATE_INACTIVE;
874 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
875 list_for_each_entry(sub, &counter->sibling_list, list_entry)
876 if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879}
880
881/*
882 * Cross CPU call to enable a performance counter
883 */
884static void __perf_counter_enable(void *info)
885{
886 struct perf_counter *counter = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_counter_context *ctx = counter->ctx;
889 struct perf_counter *leader = counter->group_leader;
890 int err;
891
892 /*
893 * If this is a per-task counter, need to check whether this
894 * counter's task is the current task on this cpu.
895 */
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
900 }
901
902 spin_lock(&ctx->lock);
903 ctx->is_active = 1;
904 update_context_time(ctx);
905
906 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
907 goto unlock;
908 __perf_counter_mark_enabled(counter, ctx);
909
910 /*
911 * If the counter is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
913 */
914 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
915 goto unlock;
916
917 if (!group_can_go_on(counter, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (counter == leader)
922 err = group_sched_in(counter, cpuctx, ctx,
923 smp_processor_id());
924 else
925 err = counter_sched_in(counter, cpuctx, ctx,
926 smp_processor_id());
927 perf_enable();
928 }
929
930 if (err) {
931 /*
932 * If this counter can't go on and it's part of a
933 * group, then the whole group has to come off.
934 */
935 if (leader != counter)
936 group_sched_out(leader, cpuctx, ctx);
937 if (leader->attr.pinned) {
938 update_group_times(leader);
939 leader->state = PERF_COUNTER_STATE_ERROR;
940 }
941 }
942
943 unlock:
944 spin_unlock(&ctx->lock);
945}
946
947/*
948 * Enable a counter.
949 *
950 * If counter->ctx is a cloned context, callers must make sure that
951 * every task struct that counter->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_counter_for_each_child or perf_counter_for_each as described
954 * for perf_counter_disable.
955 */
956static void perf_counter_enable(struct perf_counter *counter)
957{
958 struct perf_counter_context *ctx = counter->ctx;
959 struct task_struct *task = ctx->task;
960
961 if (!task) {
962 /*
963 * Enable the counter on the cpu that it's on
964 */
965 smp_call_function_single(counter->cpu, __perf_counter_enable,
966 counter, 1);
967 return;
968 }
969
970 spin_lock_irq(&ctx->lock);
971 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
972 goto out;
973
974 /*
975 * If the counter is in error state, clear that first.
976 * That way, if we see the counter in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
980 */
981 if (counter->state == PERF_COUNTER_STATE_ERROR)
982 counter->state = PERF_COUNTER_STATE_OFF;
983
984 retry:
985 spin_unlock_irq(&ctx->lock);
986 task_oncpu_function_call(task, __perf_counter_enable, counter);
987
988 spin_lock_irq(&ctx->lock);
989
990 /*
991 * If the context is active and the counter is still off,
992 * we need to retry the cross-call.
993 */
994 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
995 goto retry;
996
997 /*
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1000 */
1001 if (counter->state == PERF_COUNTER_STATE_OFF)
1002 __perf_counter_mark_enabled(counter, ctx);
1003
1004 out:
1005 spin_unlock_irq(&ctx->lock);
1006}
1007
1008static int perf_counter_refresh(struct perf_counter *counter, int refresh)
1009{
1010 /*
1011 * not supported on inherited counters
1012 */
1013 if (counter->attr.inherit)
1014 return -EINVAL;
1015
1016 atomic_add(refresh, &counter->event_limit);
1017 perf_counter_enable(counter);
1018
1019 return 0;
1020}
1021
1022void __perf_counter_sched_out(struct perf_counter_context *ctx,
1023 struct perf_cpu_context *cpuctx)
1024{
1025 struct perf_counter *counter;
1026
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 0;
1029 if (likely(!ctx->nr_counters))
1030 goto out;
1031 update_context_time(ctx);
1032
1033 perf_disable();
1034 if (ctx->nr_active) {
1035 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036 if (counter != counter->group_leader)
1037 counter_sched_out(counter, cpuctx, ctx);
1038 else
1039 group_sched_out(counter, cpuctx, ctx);
1040 }
1041 }
1042 perf_enable();
1043 out:
1044 spin_unlock(&ctx->lock);
1045}
1046
1047/*
1048 * Test whether two contexts are equivalent, i.e. whether they
1049 * have both been cloned from the same version of the same context
1050 * and they both have the same number of enabled counters.
1051 * If the number of enabled counters is the same, then the set
1052 * of enabled counters should be the same, because these are both
1053 * inherited contexts, therefore we can't access individual counters
1054 * in them directly with an fd; we can only enable/disable all
1055 * counters via prctl, or enable/disable all counters in a family
1056 * via ioctl, which will have the same effect on both contexts.
1057 */
1058static int context_equiv(struct perf_counter_context *ctx1,
1059 struct perf_counter_context *ctx2)
1060{
1061 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062 && ctx1->parent_gen == ctx2->parent_gen
1063 && !ctx1->pin_count && !ctx2->pin_count;
1064}
1065
1066static void __perf_counter_read(void *counter);
1067
1068static void __perf_counter_sync_stat(struct perf_counter *counter,
1069 struct perf_counter *next_counter)
1070{
1071 u64 value;
1072
1073 if (!counter->attr.inherit_stat)
1074 return;
1075
1076 /*
1077 * Update the counter value, we cannot use perf_counter_read()
1078 * because we're in the middle of a context switch and have IRQs
1079 * disabled, which upsets smp_call_function_single(), however
1080 * we know the counter must be on the current CPU, therefore we
1081 * don't need to use it.
1082 */
1083 switch (counter->state) {
1084 case PERF_COUNTER_STATE_ACTIVE:
1085 __perf_counter_read(counter);
1086 break;
1087
1088 case PERF_COUNTER_STATE_INACTIVE:
1089 update_counter_times(counter);
1090 break;
1091
1092 default:
1093 break;
1094 }
1095
1096 /*
1097 * In order to keep per-task stats reliable we need to flip the counter
1098 * values when we flip the contexts.
1099 */
1100 value = atomic64_read(&next_counter->count);
1101 value = atomic64_xchg(&counter->count, value);
1102 atomic64_set(&next_counter->count, value);
1103
1104 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1105 swap(counter->total_time_running, next_counter->total_time_running);
1106
1107 /*
1108 * Since we swizzled the values, update the user visible data too.
1109 */
1110 perf_counter_update_userpage(counter);
1111 perf_counter_update_userpage(next_counter);
1112}
1113
1114#define list_next_entry(pos, member) \
1115 list_entry(pos->member.next, typeof(*pos), member)
1116
1117static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1118 struct perf_counter_context *next_ctx)
1119{
1120 struct perf_counter *counter, *next_counter;
1121
1122 if (!ctx->nr_stat)
1123 return;
1124
1125 counter = list_first_entry(&ctx->event_list,
1126 struct perf_counter, event_entry);
1127
1128 next_counter = list_first_entry(&next_ctx->event_list,
1129 struct perf_counter, event_entry);
1130
1131 while (&counter->event_entry != &ctx->event_list &&
1132 &next_counter->event_entry != &next_ctx->event_list) {
1133
1134 __perf_counter_sync_stat(counter, next_counter);
1135
1136 counter = list_next_entry(counter, event_entry);
1137 next_counter = list_next_entry(next_counter, event_entry);
1138 }
1139}
1140
1141/*
1142 * Called from scheduler to remove the counters of the current task,
1143 * with interrupts disabled.
1144 *
1145 * We stop each counter and update the counter value in counter->count.
1146 *
1147 * This does not protect us against NMI, but disable()
1148 * sets the disabled bit in the control field of counter _before_
1149 * accessing the counter control register. If a NMI hits, then it will
1150 * not restart the counter.
1151 */
1152void perf_counter_task_sched_out(struct task_struct *task,
1153 struct task_struct *next, int cpu)
1154{
1155 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1157 struct perf_counter_context *next_ctx;
1158 struct perf_counter_context *parent;
1159 struct pt_regs *regs;
1160 int do_switch = 1;
1161
1162 regs = task_pt_regs(task);
1163 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164
1165 if (likely(!ctx || !cpuctx->task_ctx))
1166 return;
1167
1168 update_context_time(ctx);
1169
1170 rcu_read_lock();
1171 parent = rcu_dereference(ctx->parent_ctx);
1172 next_ctx = next->perf_counter_ctxp;
1173 if (parent && next_ctx &&
1174 rcu_dereference(next_ctx->parent_ctx) == parent) {
1175 /*
1176 * Looks like the two contexts are clones, so we might be
1177 * able to optimize the context switch. We lock both
1178 * contexts and check that they are clones under the
1179 * lock (including re-checking that neither has been
1180 * uncloned in the meantime). It doesn't matter which
1181 * order we take the locks because no other cpu could
1182 * be trying to lock both of these tasks.
1183 */
1184 spin_lock(&ctx->lock);
1185 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1186 if (context_equiv(ctx, next_ctx)) {
1187 /*
1188 * XXX do we need a memory barrier of sorts
1189 * wrt to rcu_dereference() of perf_counter_ctxp
1190 */
1191 task->perf_counter_ctxp = next_ctx;
1192 next->perf_counter_ctxp = ctx;
1193 ctx->task = next;
1194 next_ctx->task = task;
1195 do_switch = 0;
1196
1197 perf_counter_sync_stat(ctx, next_ctx);
1198 }
1199 spin_unlock(&next_ctx->lock);
1200 spin_unlock(&ctx->lock);
1201 }
1202 rcu_read_unlock();
1203
1204 if (do_switch) {
1205 __perf_counter_sched_out(ctx, cpuctx);
1206 cpuctx->task_ctx = NULL;
1207 }
1208}
1209
1210/*
1211 * Called with IRQs disabled
1212 */
1213static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1214{
1215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216
1217 if (!cpuctx->task_ctx)
1218 return;
1219
1220 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1221 return;
1222
1223 __perf_counter_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1225}
1226
1227/*
1228 * Called with IRQs disabled
1229 */
1230static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1231{
1232 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1233}
1234
1235static void
1236__perf_counter_sched_in(struct perf_counter_context *ctx,
1237 struct perf_cpu_context *cpuctx, int cpu)
1238{
1239 struct perf_counter *counter;
1240 int can_add_hw = 1;
1241
1242 spin_lock(&ctx->lock);
1243 ctx->is_active = 1;
1244 if (likely(!ctx->nr_counters))
1245 goto out;
1246
1247 ctx->timestamp = perf_clock();
1248
1249 perf_disable();
1250
1251 /*
1252 * First go through the list and put on any pinned groups
1253 * in order to give them the best chance of going on.
1254 */
1255 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1256 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1257 !counter->attr.pinned)
1258 continue;
1259 if (counter->cpu != -1 && counter->cpu != cpu)
1260 continue;
1261
1262 if (counter != counter->group_leader)
1263 counter_sched_in(counter, cpuctx, ctx, cpu);
1264 else {
1265 if (group_can_go_on(counter, cpuctx, 1))
1266 group_sched_in(counter, cpuctx, ctx, cpu);
1267 }
1268
1269 /*
1270 * If this pinned group hasn't been scheduled,
1271 * put it in error state.
1272 */
1273 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1274 update_group_times(counter);
1275 counter->state = PERF_COUNTER_STATE_ERROR;
1276 }
1277 }
1278
1279 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1280 /*
1281 * Ignore counters in OFF or ERROR state, and
1282 * ignore pinned counters since we did them already.
1283 */
1284 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1285 counter->attr.pinned)
1286 continue;
1287
1288 /*
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of counters:
1291 */
1292 if (counter->cpu != -1 && counter->cpu != cpu)
1293 continue;
1294
1295 if (counter != counter->group_leader) {
1296 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1297 can_add_hw = 0;
1298 } else {
1299 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1300 if (group_sched_in(counter, cpuctx, ctx, cpu))
1301 can_add_hw = 0;
1302 }
1303 }
1304 }
1305 perf_enable();
1306 out:
1307 spin_unlock(&ctx->lock);
1308}
1309
1310/*
1311 * Called from scheduler to add the counters of the current task
1312 * with interrupts disabled.
1313 *
1314 * We restore the counter value and then enable it.
1315 *
1316 * This does not protect us against NMI, but enable()
1317 * sets the enabled bit in the control field of counter _before_
1318 * accessing the counter control register. If a NMI hits, then it will
1319 * keep the counter running.
1320 */
1321void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1322{
1323 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1324 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1325
1326 if (likely(!ctx))
1327 return;
1328 if (cpuctx->task_ctx == ctx)
1329 return;
1330 __perf_counter_sched_in(ctx, cpuctx, cpu);
1331 cpuctx->task_ctx = ctx;
1332}
1333
1334static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1335{
1336 struct perf_counter_context *ctx = &cpuctx->ctx;
1337
1338 __perf_counter_sched_in(ctx, cpuctx, cpu);
1339}
1340
1341#define MAX_INTERRUPTS (~0ULL)
1342
1343static void perf_log_throttle(struct perf_counter *counter, int enable);
1344
1345static void perf_adjust_period(struct perf_counter *counter, u64 events)
1346{
1347 struct hw_perf_counter *hwc = &counter->hw;
1348 u64 period, sample_period;
1349 s64 delta;
1350
1351 events *= hwc->sample_period;
1352 period = div64_u64(events, counter->attr.sample_freq);
1353
1354 delta = (s64)(period - hwc->sample_period);
1355 delta = (delta + 7) / 8; /* low pass filter */
1356
1357 sample_period = hwc->sample_period + delta;
1358
1359 if (!sample_period)
1360 sample_period = 1;
1361
1362 hwc->sample_period = sample_period;
1363}
1364
1365static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1366{
1367 struct perf_counter *counter;
1368 struct hw_perf_counter *hwc;
1369 u64 interrupts, freq;
1370
1371 spin_lock(&ctx->lock);
1372 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1373 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1374 continue;
1375
1376 hwc = &counter->hw;
1377
1378 interrupts = hwc->interrupts;
1379 hwc->interrupts = 0;
1380
1381 /*
1382 * unthrottle counters on the tick
1383 */
1384 if (interrupts == MAX_INTERRUPTS) {
1385 perf_log_throttle(counter, 1);
1386 counter->pmu->unthrottle(counter);
1387 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1388 }
1389
1390 if (!counter->attr.freq || !counter->attr.sample_freq)
1391 continue;
1392
1393 /*
1394 * if the specified freq < HZ then we need to skip ticks
1395 */
1396 if (counter->attr.sample_freq < HZ) {
1397 freq = counter->attr.sample_freq;
1398
1399 hwc->freq_count += freq;
1400 hwc->freq_interrupts += interrupts;
1401
1402 if (hwc->freq_count < HZ)
1403 continue;
1404
1405 interrupts = hwc->freq_interrupts;
1406 hwc->freq_interrupts = 0;
1407 hwc->freq_count -= HZ;
1408 } else
1409 freq = HZ;
1410
1411 perf_adjust_period(counter, freq * interrupts);
1412
1413 /*
1414 * In order to avoid being stalled by an (accidental) huge
1415 * sample period, force reset the sample period if we didn't
1416 * get any events in this freq period.
1417 */
1418 if (!interrupts) {
1419 perf_disable();
1420 counter->pmu->disable(counter);
1421 atomic64_set(&hwc->period_left, 0);
1422 counter->pmu->enable(counter);
1423 perf_enable();
1424 }
1425 }
1426 spin_unlock(&ctx->lock);
1427}
1428
1429/*
1430 * Round-robin a context's counters:
1431 */
1432static void rotate_ctx(struct perf_counter_context *ctx)
1433{
1434 struct perf_counter *counter;
1435
1436 if (!ctx->nr_counters)
1437 return;
1438
1439 spin_lock(&ctx->lock);
1440 /*
1441 * Rotate the first entry last (works just fine for group counters too):
1442 */
1443 perf_disable();
1444 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1445 list_move_tail(&counter->list_entry, &ctx->counter_list);
1446 break;
1447 }
1448 perf_enable();
1449
1450 spin_unlock(&ctx->lock);
1451}
1452
1453void perf_counter_task_tick(struct task_struct *curr, int cpu)
1454{
1455 struct perf_cpu_context *cpuctx;
1456 struct perf_counter_context *ctx;
1457
1458 if (!atomic_read(&nr_counters))
1459 return;
1460
1461 cpuctx = &per_cpu(perf_cpu_context, cpu);
1462 ctx = curr->perf_counter_ctxp;
1463
1464 perf_ctx_adjust_freq(&cpuctx->ctx);
1465 if (ctx)
1466 perf_ctx_adjust_freq(ctx);
1467
1468 perf_counter_cpu_sched_out(cpuctx);
1469 if (ctx)
1470 __perf_counter_task_sched_out(ctx);
1471
1472 rotate_ctx(&cpuctx->ctx);
1473 if (ctx)
1474 rotate_ctx(ctx);
1475
1476 perf_counter_cpu_sched_in(cpuctx, cpu);
1477 if (ctx)
1478 perf_counter_task_sched_in(curr, cpu);
1479}
1480
1481/*
1482 * Enable all of a task's counters that have been marked enable-on-exec.
1483 * This expects task == current.
1484 */
1485static void perf_counter_enable_on_exec(struct task_struct *task)
1486{
1487 struct perf_counter_context *ctx;
1488 struct perf_counter *counter;
1489 unsigned long flags;
1490 int enabled = 0;
1491
1492 local_irq_save(flags);
1493 ctx = task->perf_counter_ctxp;
1494 if (!ctx || !ctx->nr_counters)
1495 goto out;
1496
1497 __perf_counter_task_sched_out(ctx);
1498
1499 spin_lock(&ctx->lock);
1500
1501 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1502 if (!counter->attr.enable_on_exec)
1503 continue;
1504 counter->attr.enable_on_exec = 0;
1505 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1506 continue;
1507 __perf_counter_mark_enabled(counter, ctx);
1508 enabled = 1;
1509 }
1510
1511 /*
1512 * Unclone this context if we enabled any counter.
1513 */
1514 if (enabled)
1515 unclone_ctx(ctx);
1516
1517 spin_unlock(&ctx->lock);
1518
1519 perf_counter_task_sched_in(task, smp_processor_id());
1520 out:
1521 local_irq_restore(flags);
1522}
1523
1524/*
1525 * Cross CPU call to read the hardware counter
1526 */
1527static void __perf_counter_read(void *info)
1528{
1529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1530 struct perf_counter *counter = info;
1531 struct perf_counter_context *ctx = counter->ctx;
1532 unsigned long flags;
1533
1534 /*
1535 * If this is a task context, we need to check whether it is
1536 * the current task context of this cpu. If not it has been
1537 * scheduled out before the smp call arrived. In that case
1538 * counter->count would have been updated to a recent sample
1539 * when the counter was scheduled out.
1540 */
1541 if (ctx->task && cpuctx->task_ctx != ctx)
1542 return;
1543
1544 local_irq_save(flags);
1545 if (ctx->is_active)
1546 update_context_time(ctx);
1547 counter->pmu->read(counter);
1548 update_counter_times(counter);
1549 local_irq_restore(flags);
1550}
1551
1552static u64 perf_counter_read(struct perf_counter *counter)
1553{
1554 /*
1555 * If counter is enabled and currently active on a CPU, update the
1556 * value in the counter structure:
1557 */
1558 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1559 smp_call_function_single(counter->oncpu,
1560 __perf_counter_read, counter, 1);
1561 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1562 update_counter_times(counter);
1563 }
1564
1565 return atomic64_read(&counter->count);
1566}
1567
1568/*
1569 * Initialize the perf_counter context in a task_struct:
1570 */
1571static void
1572__perf_counter_init_context(struct perf_counter_context *ctx,
1573 struct task_struct *task)
1574{
1575 memset(ctx, 0, sizeof(*ctx));
1576 spin_lock_init(&ctx->lock);
1577 mutex_init(&ctx->mutex);
1578 INIT_LIST_HEAD(&ctx->counter_list);
1579 INIT_LIST_HEAD(&ctx->event_list);
1580 atomic_set(&ctx->refcount, 1);
1581 ctx->task = task;
1582}
1583
1584static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1585{
1586 struct perf_counter_context *ctx;
1587 struct perf_cpu_context *cpuctx;
1588 struct task_struct *task;
1589 unsigned long flags;
1590 int err;
1591
1592 /*
1593 * If cpu is not a wildcard then this is a percpu counter:
1594 */
1595 if (cpu != -1) {
1596 /* Must be root to operate on a CPU counter: */
1597 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1598 return ERR_PTR(-EACCES);
1599
1600 if (cpu < 0 || cpu > num_possible_cpus())
1601 return ERR_PTR(-EINVAL);
1602
1603 /*
1604 * We could be clever and allow to attach a counter to an
1605 * offline CPU and activate it when the CPU comes up, but
1606 * that's for later.
1607 */
1608 if (!cpu_isset(cpu, cpu_online_map))
1609 return ERR_PTR(-ENODEV);
1610
1611 cpuctx = &per_cpu(perf_cpu_context, cpu);
1612 ctx = &cpuctx->ctx;
1613 get_ctx(ctx);
1614
1615 return ctx;
1616 }
1617
1618 rcu_read_lock();
1619 if (!pid)
1620 task = current;
1621 else
1622 task = find_task_by_vpid(pid);
1623 if (task)
1624 get_task_struct(task);
1625 rcu_read_unlock();
1626
1627 if (!task)
1628 return ERR_PTR(-ESRCH);
1629
1630 /*
1631 * Can't attach counters to a dying task.
1632 */
1633 err = -ESRCH;
1634 if (task->flags & PF_EXITING)
1635 goto errout;
1636
1637 /* Reuse ptrace permission checks for now. */
1638 err = -EACCES;
1639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1640 goto errout;
1641
1642 retry:
1643 ctx = perf_lock_task_context(task, &flags);
1644 if (ctx) {
1645 unclone_ctx(ctx);
1646 spin_unlock_irqrestore(&ctx->lock, flags);
1647 }
1648
1649 if (!ctx) {
1650 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1651 err = -ENOMEM;
1652 if (!ctx)
1653 goto errout;
1654 __perf_counter_init_context(ctx, task);
1655 get_ctx(ctx);
1656 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1657 /*
1658 * We raced with some other task; use
1659 * the context they set.
1660 */
1661 kfree(ctx);
1662 goto retry;
1663 }
1664 get_task_struct(task);
1665 }
1666
1667 put_task_struct(task);
1668 return ctx;
1669
1670 errout:
1671 put_task_struct(task);
1672 return ERR_PTR(err);
1673}
1674
1675static void free_counter_rcu(struct rcu_head *head)
1676{
1677 struct perf_counter *counter;
1678
1679 counter = container_of(head, struct perf_counter, rcu_head);
1680 if (counter->ns)
1681 put_pid_ns(counter->ns);
1682 kfree(counter);
1683}
1684
1685static void perf_pending_sync(struct perf_counter *counter);
1686
1687static void free_counter(struct perf_counter *counter)
1688{
1689 perf_pending_sync(counter);
1690
1691 if (!counter->parent) {
1692 atomic_dec(&nr_counters);
1693 if (counter->attr.mmap)
1694 atomic_dec(&nr_mmap_counters);
1695 if (counter->attr.comm)
1696 atomic_dec(&nr_comm_counters);
1697 if (counter->attr.task)
1698 atomic_dec(&nr_task_counters);
1699 }
1700
1701 if (counter->output) {
1702 fput(counter->output->filp);
1703 counter->output = NULL;
1704 }
1705
1706 if (counter->destroy)
1707 counter->destroy(counter);
1708
1709 put_ctx(counter->ctx);
1710 call_rcu(&counter->rcu_head, free_counter_rcu);
1711}
1712
1713/*
1714 * Called when the last reference to the file is gone.
1715 */
1716static int perf_release(struct inode *inode, struct file *file)
1717{
1718 struct perf_counter *counter = file->private_data;
1719 struct perf_counter_context *ctx = counter->ctx;
1720
1721 file->private_data = NULL;
1722
1723 WARN_ON_ONCE(ctx->parent_ctx);
1724 mutex_lock(&ctx->mutex);
1725 perf_counter_remove_from_context(counter);
1726 mutex_unlock(&ctx->mutex);
1727
1728 mutex_lock(&counter->owner->perf_counter_mutex);
1729 list_del_init(&counter->owner_entry);
1730 mutex_unlock(&counter->owner->perf_counter_mutex);
1731 put_task_struct(counter->owner);
1732
1733 free_counter(counter);
1734
1735 return 0;
1736}
1737
1738static int perf_counter_read_size(struct perf_counter *counter)
1739{
1740 int entry = sizeof(u64); /* value */
1741 int size = 0;
1742 int nr = 1;
1743
1744 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1745 size += sizeof(u64);
1746
1747 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1748 size += sizeof(u64);
1749
1750 if (counter->attr.read_format & PERF_FORMAT_ID)
1751 entry += sizeof(u64);
1752
1753 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1754 nr += counter->group_leader->nr_siblings;
1755 size += sizeof(u64);
1756 }
1757
1758 size += entry * nr;
1759
1760 return size;
1761}
1762
1763static u64 perf_counter_read_value(struct perf_counter *counter)
1764{
1765 struct perf_counter *child;
1766 u64 total = 0;
1767
1768 total += perf_counter_read(counter);
1769 list_for_each_entry(child, &counter->child_list, child_list)
1770 total += perf_counter_read(child);
1771
1772 return total;
1773}
1774
1775static int perf_counter_read_entry(struct perf_counter *counter,
1776 u64 read_format, char __user *buf)
1777{
1778 int n = 0, count = 0;
1779 u64 values[2];
1780
1781 values[n++] = perf_counter_read_value(counter);
1782 if (read_format & PERF_FORMAT_ID)
1783 values[n++] = primary_counter_id(counter);
1784
1785 count = n * sizeof(u64);
1786
1787 if (copy_to_user(buf, values, count))
1788 return -EFAULT;
1789
1790 return count;
1791}
1792
1793static int perf_counter_read_group(struct perf_counter *counter,
1794 u64 read_format, char __user *buf)
1795{
1796 struct perf_counter *leader = counter->group_leader, *sub;
1797 int n = 0, size = 0, err = -EFAULT;
1798 u64 values[3];
1799
1800 values[n++] = 1 + leader->nr_siblings;
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = leader->total_time_enabled +
1803 atomic64_read(&leader->child_total_time_enabled);
1804 }
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = leader->total_time_running +
1807 atomic64_read(&leader->child_total_time_running);
1808 }
1809
1810 size = n * sizeof(u64);
1811
1812 if (copy_to_user(buf, values, size))
1813 return -EFAULT;
1814
1815 err = perf_counter_read_entry(leader, read_format, buf + size);
1816 if (err < 0)
1817 return err;
1818
1819 size += err;
1820
1821 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1822 err = perf_counter_read_entry(sub, read_format,
1823 buf + size);
1824 if (err < 0)
1825 return err;
1826
1827 size += err;
1828 }
1829
1830 return size;
1831}
1832
1833static int perf_counter_read_one(struct perf_counter *counter,
1834 u64 read_format, char __user *buf)
1835{
1836 u64 values[4];
1837 int n = 0;
1838
1839 values[n++] = perf_counter_read_value(counter);
1840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1841 values[n++] = counter->total_time_enabled +
1842 atomic64_read(&counter->child_total_time_enabled);
1843 }
1844 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1845 values[n++] = counter->total_time_running +
1846 atomic64_read(&counter->child_total_time_running);
1847 }
1848 if (read_format & PERF_FORMAT_ID)
1849 values[n++] = primary_counter_id(counter);
1850
1851 if (copy_to_user(buf, values, n * sizeof(u64)))
1852 return -EFAULT;
1853
1854 return n * sizeof(u64);
1855}
1856
1857/*
1858 * Read the performance counter - simple non blocking version for now
1859 */
1860static ssize_t
1861perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1862{
1863 u64 read_format = counter->attr.read_format;
1864 int ret;
1865
1866 /*
1867 * Return end-of-file for a read on a counter that is in
1868 * error state (i.e. because it was pinned but it couldn't be
1869 * scheduled on to the CPU at some point).
1870 */
1871 if (counter->state == PERF_COUNTER_STATE_ERROR)
1872 return 0;
1873
1874 if (count < perf_counter_read_size(counter))
1875 return -ENOSPC;
1876
1877 WARN_ON_ONCE(counter->ctx->parent_ctx);
1878 mutex_lock(&counter->child_mutex);
1879 if (read_format & PERF_FORMAT_GROUP)
1880 ret = perf_counter_read_group(counter, read_format, buf);
1881 else
1882 ret = perf_counter_read_one(counter, read_format, buf);
1883 mutex_unlock(&counter->child_mutex);
1884
1885 return ret;
1886}
1887
1888static ssize_t
1889perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1890{
1891 struct perf_counter *counter = file->private_data;
1892
1893 return perf_read_hw(counter, buf, count);
1894}
1895
1896static unsigned int perf_poll(struct file *file, poll_table *wait)
1897{
1898 struct perf_counter *counter = file->private_data;
1899 struct perf_mmap_data *data;
1900 unsigned int events = POLL_HUP;
1901
1902 rcu_read_lock();
1903 data = rcu_dereference(counter->data);
1904 if (data)
1905 events = atomic_xchg(&data->poll, 0);
1906 rcu_read_unlock();
1907
1908 poll_wait(file, &counter->waitq, wait);
1909
1910 return events;
1911}
1912
1913static void perf_counter_reset(struct perf_counter *counter)
1914{
1915 (void)perf_counter_read(counter);
1916 atomic64_set(&counter->count, 0);
1917 perf_counter_update_userpage(counter);
1918}
1919
1920/*
1921 * Holding the top-level counter's child_mutex means that any
1922 * descendant process that has inherited this counter will block
1923 * in sync_child_counter if it goes to exit, thus satisfying the
1924 * task existence requirements of perf_counter_enable/disable.
1925 */
1926static void perf_counter_for_each_child(struct perf_counter *counter,
1927 void (*func)(struct perf_counter *))
1928{
1929 struct perf_counter *child;
1930
1931 WARN_ON_ONCE(counter->ctx->parent_ctx);
1932 mutex_lock(&counter->child_mutex);
1933 func(counter);
1934 list_for_each_entry(child, &counter->child_list, child_list)
1935 func(child);
1936 mutex_unlock(&counter->child_mutex);
1937}
1938
1939static void perf_counter_for_each(struct perf_counter *counter,
1940 void (*func)(struct perf_counter *))
1941{
1942 struct perf_counter_context *ctx = counter->ctx;
1943 struct perf_counter *sibling;
1944
1945 WARN_ON_ONCE(ctx->parent_ctx);
1946 mutex_lock(&ctx->mutex);
1947 counter = counter->group_leader;
1948
1949 perf_counter_for_each_child(counter, func);
1950 func(counter);
1951 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1952 perf_counter_for_each_child(counter, func);
1953 mutex_unlock(&ctx->mutex);
1954}
1955
1956static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1957{
1958 struct perf_counter_context *ctx = counter->ctx;
1959 unsigned long size;
1960 int ret = 0;
1961 u64 value;
1962
1963 if (!counter->attr.sample_period)
1964 return -EINVAL;
1965
1966 size = copy_from_user(&value, arg, sizeof(value));
1967 if (size != sizeof(value))
1968 return -EFAULT;
1969
1970 if (!value)
1971 return -EINVAL;
1972
1973 spin_lock_irq(&ctx->lock);
1974 if (counter->attr.freq) {
1975 if (value > sysctl_perf_counter_sample_rate) {
1976 ret = -EINVAL;
1977 goto unlock;
1978 }
1979
1980 counter->attr.sample_freq = value;
1981 } else {
1982 counter->attr.sample_period = value;
1983 counter->hw.sample_period = value;
1984 }
1985unlock:
1986 spin_unlock_irq(&ctx->lock);
1987
1988 return ret;
1989}
1990
1991int perf_counter_set_output(struct perf_counter *counter, int output_fd);
1992
1993static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994{
1995 struct perf_counter *counter = file->private_data;
1996 void (*func)(struct perf_counter *);
1997 u32 flags = arg;
1998
1999 switch (cmd) {
2000 case PERF_COUNTER_IOC_ENABLE:
2001 func = perf_counter_enable;
2002 break;
2003 case PERF_COUNTER_IOC_DISABLE:
2004 func = perf_counter_disable;
2005 break;
2006 case PERF_COUNTER_IOC_RESET:
2007 func = perf_counter_reset;
2008 break;
2009
2010 case PERF_COUNTER_IOC_REFRESH:
2011 return perf_counter_refresh(counter, arg);
2012
2013 case PERF_COUNTER_IOC_PERIOD:
2014 return perf_counter_period(counter, (u64 __user *)arg);
2015
2016 case PERF_COUNTER_IOC_SET_OUTPUT:
2017 return perf_counter_set_output(counter, arg);
2018
2019 default:
2020 return -ENOTTY;
2021 }
2022
2023 if (flags & PERF_IOC_FLAG_GROUP)
2024 perf_counter_for_each(counter, func);
2025 else
2026 perf_counter_for_each_child(counter, func);
2027
2028 return 0;
2029}
2030
2031int perf_counter_task_enable(void)
2032{
2033 struct perf_counter *counter;
2034
2035 mutex_lock(&current->perf_counter_mutex);
2036 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2037 perf_counter_for_each_child(counter, perf_counter_enable);
2038 mutex_unlock(&current->perf_counter_mutex);
2039
2040 return 0;
2041}
2042
2043int perf_counter_task_disable(void)
2044{
2045 struct perf_counter *counter;
2046
2047 mutex_lock(&current->perf_counter_mutex);
2048 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2049 perf_counter_for_each_child(counter, perf_counter_disable);
2050 mutex_unlock(&current->perf_counter_mutex);
2051
2052 return 0;
2053}
2054
2055#ifndef PERF_COUNTER_INDEX_OFFSET
2056# define PERF_COUNTER_INDEX_OFFSET 0
2057#endif
2058
2059static int perf_counter_index(struct perf_counter *counter)
2060{
2061 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2062 return 0;
2063
2064 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2065}
2066
2067/*
2068 * Callers need to ensure there can be no nesting of this function, otherwise
2069 * the seqlock logic goes bad. We can not serialize this because the arch
2070 * code calls this from NMI context.
2071 */
2072void perf_counter_update_userpage(struct perf_counter *counter)
2073{
2074 struct perf_counter_mmap_page *userpg;
2075 struct perf_mmap_data *data;
2076
2077 rcu_read_lock();
2078 data = rcu_dereference(counter->data);
2079 if (!data)
2080 goto unlock;
2081
2082 userpg = data->user_page;
2083
2084 /*
2085 * Disable preemption so as to not let the corresponding user-space
2086 * spin too long if we get preempted.
2087 */
2088 preempt_disable();
2089 ++userpg->lock;
2090 barrier();
2091 userpg->index = perf_counter_index(counter);
2092 userpg->offset = atomic64_read(&counter->count);
2093 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2094 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2095
2096 userpg->time_enabled = counter->total_time_enabled +
2097 atomic64_read(&counter->child_total_time_enabled);
2098
2099 userpg->time_running = counter->total_time_running +
2100 atomic64_read(&counter->child_total_time_running);
2101
2102 barrier();
2103 ++userpg->lock;
2104 preempt_enable();
2105unlock:
2106 rcu_read_unlock();
2107}
2108
2109static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2110{
2111 struct perf_counter *counter = vma->vm_file->private_data;
2112 struct perf_mmap_data *data;
2113 int ret = VM_FAULT_SIGBUS;
2114
2115 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2116 if (vmf->pgoff == 0)
2117 ret = 0;
2118 return ret;
2119 }
2120
2121 rcu_read_lock();
2122 data = rcu_dereference(counter->data);
2123 if (!data)
2124 goto unlock;
2125
2126 if (vmf->pgoff == 0) {
2127 vmf->page = virt_to_page(data->user_page);
2128 } else {
2129 int nr = vmf->pgoff - 1;
2130
2131 if ((unsigned)nr > data->nr_pages)
2132 goto unlock;
2133
2134 if (vmf->flags & FAULT_FLAG_WRITE)
2135 goto unlock;
2136
2137 vmf->page = virt_to_page(data->data_pages[nr]);
2138 }
2139
2140 get_page(vmf->page);
2141 vmf->page->mapping = vma->vm_file->f_mapping;
2142 vmf->page->index = vmf->pgoff;
2143
2144 ret = 0;
2145unlock:
2146 rcu_read_unlock();
2147
2148 return ret;
2149}
2150
2151static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2152{
2153 struct perf_mmap_data *data;
2154 unsigned long size;
2155 int i;
2156
2157 WARN_ON(atomic_read(&counter->mmap_count));
2158
2159 size = sizeof(struct perf_mmap_data);
2160 size += nr_pages * sizeof(void *);
2161
2162 data = kzalloc(size, GFP_KERNEL);
2163 if (!data)
2164 goto fail;
2165
2166 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->user_page)
2168 goto fail_user_page;
2169
2170 for (i = 0; i < nr_pages; i++) {
2171 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2172 if (!data->data_pages[i])
2173 goto fail_data_pages;
2174 }
2175
2176 data->nr_pages = nr_pages;
2177 atomic_set(&data->lock, -1);
2178
2179 rcu_assign_pointer(counter->data, data);
2180
2181 return 0;
2182
2183fail_data_pages:
2184 for (i--; i >= 0; i--)
2185 free_page((unsigned long)data->data_pages[i]);
2186
2187 free_page((unsigned long)data->user_page);
2188
2189fail_user_page:
2190 kfree(data);
2191
2192fail:
2193 return -ENOMEM;
2194}
2195
2196static void perf_mmap_free_page(unsigned long addr)
2197{
2198 struct page *page = virt_to_page((void *)addr);
2199
2200 page->mapping = NULL;
2201 __free_page(page);
2202}
2203
2204static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2205{
2206 struct perf_mmap_data *data;
2207 int i;
2208
2209 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2210
2211 perf_mmap_free_page((unsigned long)data->user_page);
2212 for (i = 0; i < data->nr_pages; i++)
2213 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2214
2215 kfree(data);
2216}
2217
2218static void perf_mmap_data_free(struct perf_counter *counter)
2219{
2220 struct perf_mmap_data *data = counter->data;
2221
2222 WARN_ON(atomic_read(&counter->mmap_count));
2223
2224 rcu_assign_pointer(counter->data, NULL);
2225 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2226}
2227
2228static void perf_mmap_open(struct vm_area_struct *vma)
2229{
2230 struct perf_counter *counter = vma->vm_file->private_data;
2231
2232 atomic_inc(&counter->mmap_count);
2233}
2234
2235static void perf_mmap_close(struct vm_area_struct *vma)
2236{
2237 struct perf_counter *counter = vma->vm_file->private_data;
2238
2239 WARN_ON_ONCE(counter->ctx->parent_ctx);
2240 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2241 struct user_struct *user = current_user();
2242
2243 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2244 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2245 perf_mmap_data_free(counter);
2246 mutex_unlock(&counter->mmap_mutex);
2247 }
2248}
2249
2250static struct vm_operations_struct perf_mmap_vmops = {
2251 .open = perf_mmap_open,
2252 .close = perf_mmap_close,
2253 .fault = perf_mmap_fault,
2254 .page_mkwrite = perf_mmap_fault,
2255};
2256
2257static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2258{
2259 struct perf_counter *counter = file->private_data;
2260 unsigned long user_locked, user_lock_limit;
2261 struct user_struct *user = current_user();
2262 unsigned long locked, lock_limit;
2263 unsigned long vma_size;
2264 unsigned long nr_pages;
2265 long user_extra, extra;
2266 int ret = 0;
2267
2268 if (!(vma->vm_flags & VM_SHARED))
2269 return -EINVAL;
2270
2271 vma_size = vma->vm_end - vma->vm_start;
2272 nr_pages = (vma_size / PAGE_SIZE) - 1;
2273
2274 /*
2275 * If we have data pages ensure they're a power-of-two number, so we
2276 * can do bitmasks instead of modulo.
2277 */
2278 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2279 return -EINVAL;
2280
2281 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2282 return -EINVAL;
2283
2284 if (vma->vm_pgoff != 0)
2285 return -EINVAL;
2286
2287 WARN_ON_ONCE(counter->ctx->parent_ctx);
2288 mutex_lock(&counter->mmap_mutex);
2289 if (counter->output) {
2290 ret = -EINVAL;
2291 goto unlock;
2292 }
2293
2294 if (atomic_inc_not_zero(&counter->mmap_count)) {
2295 if (nr_pages != counter->data->nr_pages)
2296 ret = -EINVAL;
2297 goto unlock;
2298 }
2299
2300 user_extra = nr_pages + 1;
2301 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2302
2303 /*
2304 * Increase the limit linearly with more CPUs:
2305 */
2306 user_lock_limit *= num_online_cpus();
2307
2308 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2309
2310 extra = 0;
2311 if (user_locked > user_lock_limit)
2312 extra = user_locked - user_lock_limit;
2313
2314 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2315 lock_limit >>= PAGE_SHIFT;
2316 locked = vma->vm_mm->locked_vm + extra;
2317
2318 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2319 ret = -EPERM;
2320 goto unlock;
2321 }
2322
2323 WARN_ON(counter->data);
2324 ret = perf_mmap_data_alloc(counter, nr_pages);
2325 if (ret)
2326 goto unlock;
2327
2328 atomic_set(&counter->mmap_count, 1);
2329 atomic_long_add(user_extra, &user->locked_vm);
2330 vma->vm_mm->locked_vm += extra;
2331 counter->data->nr_locked = extra;
2332 if (vma->vm_flags & VM_WRITE)
2333 counter->data->writable = 1;
2334
2335unlock:
2336 mutex_unlock(&counter->mmap_mutex);
2337
2338 vma->vm_flags |= VM_RESERVED;
2339 vma->vm_ops = &perf_mmap_vmops;
2340
2341 return ret;
2342}
2343
2344static int perf_fasync(int fd, struct file *filp, int on)
2345{
2346 struct inode *inode = filp->f_path.dentry->d_inode;
2347 struct perf_counter *counter = filp->private_data;
2348 int retval;
2349
2350 mutex_lock(&inode->i_mutex);
2351 retval = fasync_helper(fd, filp, on, &counter->fasync);
2352 mutex_unlock(&inode->i_mutex);
2353
2354 if (retval < 0)
2355 return retval;
2356
2357 return 0;
2358}
2359
2360static const struct file_operations perf_fops = {
2361 .release = perf_release,
2362 .read = perf_read,
2363 .poll = perf_poll,
2364 .unlocked_ioctl = perf_ioctl,
2365 .compat_ioctl = perf_ioctl,
2366 .mmap = perf_mmap,
2367 .fasync = perf_fasync,
2368};
2369
2370/*
2371 * Perf counter wakeup
2372 *
2373 * If there's data, ensure we set the poll() state and publish everything
2374 * to user-space before waking everybody up.
2375 */
2376
2377void perf_counter_wakeup(struct perf_counter *counter)
2378{
2379 wake_up_all(&counter->waitq);
2380
2381 if (counter->pending_kill) {
2382 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2383 counter->pending_kill = 0;
2384 }
2385}
2386
2387/*
2388 * Pending wakeups
2389 *
2390 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2391 *
2392 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2393 * single linked list and use cmpxchg() to add entries lockless.
2394 */
2395
2396static void perf_pending_counter(struct perf_pending_entry *entry)
2397{
2398 struct perf_counter *counter = container_of(entry,
2399 struct perf_counter, pending);
2400
2401 if (counter->pending_disable) {
2402 counter->pending_disable = 0;
2403 __perf_counter_disable(counter);
2404 }
2405
2406 if (counter->pending_wakeup) {
2407 counter->pending_wakeup = 0;
2408 perf_counter_wakeup(counter);
2409 }
2410}
2411
2412#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2413
2414static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2415 PENDING_TAIL,
2416};
2417
2418static void perf_pending_queue(struct perf_pending_entry *entry,
2419 void (*func)(struct perf_pending_entry *))
2420{
2421 struct perf_pending_entry **head;
2422
2423 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2424 return;
2425
2426 entry->func = func;
2427
2428 head = &get_cpu_var(perf_pending_head);
2429
2430 do {
2431 entry->next = *head;
2432 } while (cmpxchg(head, entry->next, entry) != entry->next);
2433
2434 set_perf_counter_pending();
2435
2436 put_cpu_var(perf_pending_head);
2437}
2438
2439static int __perf_pending_run(void)
2440{
2441 struct perf_pending_entry *list;
2442 int nr = 0;
2443
2444 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2445 while (list != PENDING_TAIL) {
2446 void (*func)(struct perf_pending_entry *);
2447 struct perf_pending_entry *entry = list;
2448
2449 list = list->next;
2450
2451 func = entry->func;
2452 entry->next = NULL;
2453 /*
2454 * Ensure we observe the unqueue before we issue the wakeup,
2455 * so that we won't be waiting forever.
2456 * -- see perf_not_pending().
2457 */
2458 smp_wmb();
2459
2460 func(entry);
2461 nr++;
2462 }
2463
2464 return nr;
2465}
2466
2467static inline int perf_not_pending(struct perf_counter *counter)
2468{
2469 /*
2470 * If we flush on whatever cpu we run, there is a chance we don't
2471 * need to wait.
2472 */
2473 get_cpu();
2474 __perf_pending_run();
2475 put_cpu();
2476
2477 /*
2478 * Ensure we see the proper queue state before going to sleep
2479 * so that we do not miss the wakeup. -- see perf_pending_handle()
2480 */
2481 smp_rmb();
2482 return counter->pending.next == NULL;
2483}
2484
2485static void perf_pending_sync(struct perf_counter *counter)
2486{
2487 wait_event(counter->waitq, perf_not_pending(counter));
2488}
2489
2490void perf_counter_do_pending(void)
2491{
2492 __perf_pending_run();
2493}
2494
2495/*
2496 * Callchain support -- arch specific
2497 */
2498
2499__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2500{
2501 return NULL;
2502}
2503
2504/*
2505 * Output
2506 */
2507
2508struct perf_output_handle {
2509 struct perf_counter *counter;
2510 struct perf_mmap_data *data;
2511 unsigned long head;
2512 unsigned long offset;
2513 int nmi;
2514 int sample;
2515 int locked;
2516 unsigned long flags;
2517};
2518
2519static bool perf_output_space(struct perf_mmap_data *data,
2520 unsigned int offset, unsigned int head)
2521{
2522 unsigned long tail;
2523 unsigned long mask;
2524
2525 if (!data->writable)
2526 return true;
2527
2528 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2529 /*
2530 * Userspace could choose to issue a mb() before updating the tail
2531 * pointer. So that all reads will be completed before the write is
2532 * issued.
2533 */
2534 tail = ACCESS_ONCE(data->user_page->data_tail);
2535 smp_rmb();
2536
2537 offset = (offset - tail) & mask;
2538 head = (head - tail) & mask;
2539
2540 if ((int)(head - offset) < 0)
2541 return false;
2542
2543 return true;
2544}
2545
2546static void perf_output_wakeup(struct perf_output_handle *handle)
2547{
2548 atomic_set(&handle->data->poll, POLL_IN);
2549
2550 if (handle->nmi) {
2551 handle->counter->pending_wakeup = 1;
2552 perf_pending_queue(&handle->counter->pending,
2553 perf_pending_counter);
2554 } else
2555 perf_counter_wakeup(handle->counter);
2556}
2557
2558/*
2559 * Curious locking construct.
2560 *
2561 * We need to ensure a later event doesn't publish a head when a former
2562 * event isn't done writing. However since we need to deal with NMIs we
2563 * cannot fully serialize things.
2564 *
2565 * What we do is serialize between CPUs so we only have to deal with NMI
2566 * nesting on a single CPU.
2567 *
2568 * We only publish the head (and generate a wakeup) when the outer-most
2569 * event completes.
2570 */
2571static void perf_output_lock(struct perf_output_handle *handle)
2572{
2573 struct perf_mmap_data *data = handle->data;
2574 int cpu;
2575
2576 handle->locked = 0;
2577
2578 local_irq_save(handle->flags);
2579 cpu = smp_processor_id();
2580
2581 if (in_nmi() && atomic_read(&data->lock) == cpu)
2582 return;
2583
2584 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2585 cpu_relax();
2586
2587 handle->locked = 1;
2588}
2589
2590static void perf_output_unlock(struct perf_output_handle *handle)
2591{
2592 struct perf_mmap_data *data = handle->data;
2593 unsigned long head;
2594 int cpu;
2595
2596 data->done_head = data->head;
2597
2598 if (!handle->locked)
2599 goto out;
2600
2601again:
2602 /*
2603 * The xchg implies a full barrier that ensures all writes are done
2604 * before we publish the new head, matched by a rmb() in userspace when
2605 * reading this position.
2606 */
2607 while ((head = atomic_long_xchg(&data->done_head, 0)))
2608 data->user_page->data_head = head;
2609
2610 /*
2611 * NMI can happen here, which means we can miss a done_head update.
2612 */
2613
2614 cpu = atomic_xchg(&data->lock, -1);
2615 WARN_ON_ONCE(cpu != smp_processor_id());
2616
2617 /*
2618 * Therefore we have to validate we did not indeed do so.
2619 */
2620 if (unlikely(atomic_long_read(&data->done_head))) {
2621 /*
2622 * Since we had it locked, we can lock it again.
2623 */
2624 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2625 cpu_relax();
2626
2627 goto again;
2628 }
2629
2630 if (atomic_xchg(&data->wakeup, 0))
2631 perf_output_wakeup(handle);
2632out:
2633 local_irq_restore(handle->flags);
2634}
2635
2636static void perf_output_copy(struct perf_output_handle *handle,
2637 const void *buf, unsigned int len)
2638{
2639 unsigned int pages_mask;
2640 unsigned int offset;
2641 unsigned int size;
2642 void **pages;
2643
2644 offset = handle->offset;
2645 pages_mask = handle->data->nr_pages - 1;
2646 pages = handle->data->data_pages;
2647
2648 do {
2649 unsigned int page_offset;
2650 int nr;
2651
2652 nr = (offset >> PAGE_SHIFT) & pages_mask;
2653 page_offset = offset & (PAGE_SIZE - 1);
2654 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2655
2656 memcpy(pages[nr] + page_offset, buf, size);
2657
2658 len -= size;
2659 buf += size;
2660 offset += size;
2661 } while (len);
2662
2663 handle->offset = offset;
2664
2665 /*
2666 * Check we didn't copy past our reservation window, taking the
2667 * possible unsigned int wrap into account.
2668 */
2669 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2670}
2671
2672#define perf_output_put(handle, x) \
2673 perf_output_copy((handle), &(x), sizeof(x))
2674
2675static int perf_output_begin(struct perf_output_handle *handle,
2676 struct perf_counter *counter, unsigned int size,
2677 int nmi, int sample)
2678{
2679 struct perf_counter *output_counter;
2680 struct perf_mmap_data *data;
2681 unsigned int offset, head;
2682 int have_lost;
2683 struct {
2684 struct perf_event_header header;
2685 u64 id;
2686 u64 lost;
2687 } lost_event;
2688
2689 rcu_read_lock();
2690 /*
2691 * For inherited counters we send all the output towards the parent.
2692 */
2693 if (counter->parent)
2694 counter = counter->parent;
2695
2696 output_counter = rcu_dereference(counter->output);
2697 if (output_counter)
2698 counter = output_counter;
2699
2700 data = rcu_dereference(counter->data);
2701 if (!data)
2702 goto out;
2703
2704 handle->data = data;
2705 handle->counter = counter;
2706 handle->nmi = nmi;
2707 handle->sample = sample;
2708
2709 if (!data->nr_pages)
2710 goto fail;
2711
2712 have_lost = atomic_read(&data->lost);
2713 if (have_lost)
2714 size += sizeof(lost_event);
2715
2716 perf_output_lock(handle);
2717
2718 do {
2719 offset = head = atomic_long_read(&data->head);
2720 head += size;
2721 if (unlikely(!perf_output_space(data, offset, head)))
2722 goto fail;
2723 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2724
2725 handle->offset = offset;
2726 handle->head = head;
2727
2728 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2729 atomic_set(&data->wakeup, 1);
2730
2731 if (have_lost) {
2732 lost_event.header.type = PERF_EVENT_LOST;
2733 lost_event.header.misc = 0;
2734 lost_event.header.size = sizeof(lost_event);
2735 lost_event.id = counter->id;
2736 lost_event.lost = atomic_xchg(&data->lost, 0);
2737
2738 perf_output_put(handle, lost_event);
2739 }
2740
2741 return 0;
2742
2743fail:
2744 atomic_inc(&data->lost);
2745 perf_output_unlock(handle);
2746out:
2747 rcu_read_unlock();
2748
2749 return -ENOSPC;
2750}
2751
2752static void perf_output_end(struct perf_output_handle *handle)
2753{
2754 struct perf_counter *counter = handle->counter;
2755 struct perf_mmap_data *data = handle->data;
2756
2757 int wakeup_events = counter->attr.wakeup_events;
2758
2759 if (handle->sample && wakeup_events) {
2760 int events = atomic_inc_return(&data->events);
2761 if (events >= wakeup_events) {
2762 atomic_sub(wakeup_events, &data->events);
2763 atomic_set(&data->wakeup, 1);
2764 }
2765 }
2766
2767 perf_output_unlock(handle);
2768 rcu_read_unlock();
2769}
2770
2771static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2772{
2773 /*
2774 * only top level counters have the pid namespace they were created in
2775 */
2776 if (counter->parent)
2777 counter = counter->parent;
2778
2779 return task_tgid_nr_ns(p, counter->ns);
2780}
2781
2782static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2783{
2784 /*
2785 * only top level counters have the pid namespace they were created in
2786 */
2787 if (counter->parent)
2788 counter = counter->parent;
2789
2790 return task_pid_nr_ns(p, counter->ns);
2791}
2792
2793static void perf_output_read_one(struct perf_output_handle *handle,
2794 struct perf_counter *counter)
2795{
2796 u64 read_format = counter->attr.read_format;
2797 u64 values[4];
2798 int n = 0;
2799
2800 values[n++] = atomic64_read(&counter->count);
2801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2802 values[n++] = counter->total_time_enabled +
2803 atomic64_read(&counter->child_total_time_enabled);
2804 }
2805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2806 values[n++] = counter->total_time_running +
2807 atomic64_read(&counter->child_total_time_running);
2808 }
2809 if (read_format & PERF_FORMAT_ID)
2810 values[n++] = primary_counter_id(counter);
2811
2812 perf_output_copy(handle, values, n * sizeof(u64));
2813}
2814
2815/*
2816 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2817 */
2818static void perf_output_read_group(struct perf_output_handle *handle,
2819 struct perf_counter *counter)
2820{
2821 struct perf_counter *leader = counter->group_leader, *sub;
2822 u64 read_format = counter->attr.read_format;
2823 u64 values[5];
2824 int n = 0;
2825
2826 values[n++] = 1 + leader->nr_siblings;
2827
2828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2829 values[n++] = leader->total_time_enabled;
2830
2831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2832 values[n++] = leader->total_time_running;
2833
2834 if (leader != counter)
2835 leader->pmu->read(leader);
2836
2837 values[n++] = atomic64_read(&leader->count);
2838 if (read_format & PERF_FORMAT_ID)
2839 values[n++] = primary_counter_id(leader);
2840
2841 perf_output_copy(handle, values, n * sizeof(u64));
2842
2843 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2844 n = 0;
2845
2846 if (sub != counter)
2847 sub->pmu->read(sub);
2848
2849 values[n++] = atomic64_read(&sub->count);
2850 if (read_format & PERF_FORMAT_ID)
2851 values[n++] = primary_counter_id(sub);
2852
2853 perf_output_copy(handle, values, n * sizeof(u64));
2854 }
2855}
2856
2857static void perf_output_read(struct perf_output_handle *handle,
2858 struct perf_counter *counter)
2859{
2860 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2861 perf_output_read_group(handle, counter);
2862 else
2863 perf_output_read_one(handle, counter);
2864}
2865
2866void perf_counter_output(struct perf_counter *counter, int nmi,
2867 struct perf_sample_data *data)
2868{
2869 int ret;
2870 u64 sample_type = counter->attr.sample_type;
2871 struct perf_output_handle handle;
2872 struct perf_event_header header;
2873 u64 ip;
2874 struct {
2875 u32 pid, tid;
2876 } tid_entry;
2877 struct perf_callchain_entry *callchain = NULL;
2878 int callchain_size = 0;
2879 u64 time;
2880 struct {
2881 u32 cpu, reserved;
2882 } cpu_entry;
2883
2884 header.type = PERF_EVENT_SAMPLE;
2885 header.size = sizeof(header);
2886
2887 header.misc = 0;
2888 header.misc |= perf_misc_flags(data->regs);
2889
2890 if (sample_type & PERF_SAMPLE_IP) {
2891 ip = perf_instruction_pointer(data->regs);
2892 header.size += sizeof(ip);
2893 }
2894
2895 if (sample_type & PERF_SAMPLE_TID) {
2896 /* namespace issues */
2897 tid_entry.pid = perf_counter_pid(counter, current);
2898 tid_entry.tid = perf_counter_tid(counter, current);
2899
2900 header.size += sizeof(tid_entry);
2901 }
2902
2903 if (sample_type & PERF_SAMPLE_TIME) {
2904 /*
2905 * Maybe do better on x86 and provide cpu_clock_nmi()
2906 */
2907 time = sched_clock();
2908
2909 header.size += sizeof(u64);
2910 }
2911
2912 if (sample_type & PERF_SAMPLE_ADDR)
2913 header.size += sizeof(u64);
2914
2915 if (sample_type & PERF_SAMPLE_ID)
2916 header.size += sizeof(u64);
2917
2918 if (sample_type & PERF_SAMPLE_STREAM_ID)
2919 header.size += sizeof(u64);
2920
2921 if (sample_type & PERF_SAMPLE_CPU) {
2922 header.size += sizeof(cpu_entry);
2923
2924 cpu_entry.cpu = raw_smp_processor_id();
2925 cpu_entry.reserved = 0;
2926 }
2927
2928 if (sample_type & PERF_SAMPLE_PERIOD)
2929 header.size += sizeof(u64);
2930
2931 if (sample_type & PERF_SAMPLE_READ)
2932 header.size += perf_counter_read_size(counter);
2933
2934 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2935 callchain = perf_callchain(data->regs);
2936
2937 if (callchain) {
2938 callchain_size = (1 + callchain->nr) * sizeof(u64);
2939 header.size += callchain_size;
2940 } else
2941 header.size += sizeof(u64);
2942 }
2943
2944 if (sample_type & PERF_SAMPLE_RAW) {
2945 int size = sizeof(u32);
2946
2947 if (data->raw)
2948 size += data->raw->size;
2949 else
2950 size += sizeof(u32);
2951
2952 WARN_ON_ONCE(size & (sizeof(u64)-1));
2953 header.size += size;
2954 }
2955
2956 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2957 if (ret)
2958 return;
2959
2960 perf_output_put(&handle, header);
2961
2962 if (sample_type & PERF_SAMPLE_IP)
2963 perf_output_put(&handle, ip);
2964
2965 if (sample_type & PERF_SAMPLE_TID)
2966 perf_output_put(&handle, tid_entry);
2967
2968 if (sample_type & PERF_SAMPLE_TIME)
2969 perf_output_put(&handle, time);
2970
2971 if (sample_type & PERF_SAMPLE_ADDR)
2972 perf_output_put(&handle, data->addr);
2973
2974 if (sample_type & PERF_SAMPLE_ID) {
2975 u64 id = primary_counter_id(counter);
2976
2977 perf_output_put(&handle, id);
2978 }
2979
2980 if (sample_type & PERF_SAMPLE_STREAM_ID)
2981 perf_output_put(&handle, counter->id);
2982
2983 if (sample_type & PERF_SAMPLE_CPU)
2984 perf_output_put(&handle, cpu_entry);
2985
2986 if (sample_type & PERF_SAMPLE_PERIOD)
2987 perf_output_put(&handle, data->period);
2988
2989 if (sample_type & PERF_SAMPLE_READ)
2990 perf_output_read(&handle, counter);
2991
2992 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2993 if (callchain)
2994 perf_output_copy(&handle, callchain, callchain_size);
2995 else {
2996 u64 nr = 0;
2997 perf_output_put(&handle, nr);
2998 }
2999 }
3000
3001 if (sample_type & PERF_SAMPLE_RAW) {
3002 if (data->raw) {
3003 perf_output_put(&handle, data->raw->size);
3004 perf_output_copy(&handle, data->raw->data, data->raw->size);
3005 } else {
3006 struct {
3007 u32 size;
3008 u32 data;
3009 } raw = {
3010 .size = sizeof(u32),
3011 .data = 0,
3012 };
3013 perf_output_put(&handle, raw);
3014 }
3015 }
3016
3017 perf_output_end(&handle);
3018}
3019
3020/*
3021 * read event
3022 */
3023
3024struct perf_read_event {
3025 struct perf_event_header header;
3026
3027 u32 pid;
3028 u32 tid;
3029};
3030
3031static void
3032perf_counter_read_event(struct perf_counter *counter,
3033 struct task_struct *task)
3034{
3035 struct perf_output_handle handle;
3036 struct perf_read_event event = {
3037 .header = {
3038 .type = PERF_EVENT_READ,
3039 .misc = 0,
3040 .size = sizeof(event) + perf_counter_read_size(counter),
3041 },
3042 .pid = perf_counter_pid(counter, task),
3043 .tid = perf_counter_tid(counter, task),
3044 };
3045 int ret;
3046
3047 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
3048 if (ret)
3049 return;
3050
3051 perf_output_put(&handle, event);
3052 perf_output_read(&handle, counter);
3053
3054 perf_output_end(&handle);
3055}
3056
3057/*
3058 * task tracking -- fork/exit
3059 *
3060 * enabled by: attr.comm | attr.mmap | attr.task
3061 */
3062
3063struct perf_task_event {
3064 struct task_struct *task;
3065 struct perf_counter_context *task_ctx;
3066
3067 struct {
3068 struct perf_event_header header;
3069
3070 u32 pid;
3071 u32 ppid;
3072 u32 tid;
3073 u32 ptid;
3074 } event;
3075};
3076
3077static void perf_counter_task_output(struct perf_counter *counter,
3078 struct perf_task_event *task_event)
3079{
3080 struct perf_output_handle handle;
3081 int size = task_event->event.header.size;
3082 struct task_struct *task = task_event->task;
3083 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3084
3085 if (ret)
3086 return;
3087
3088 task_event->event.pid = perf_counter_pid(counter, task);
3089 task_event->event.ppid = perf_counter_pid(counter, current);
3090
3091 task_event->event.tid = perf_counter_tid(counter, task);
3092 task_event->event.ptid = perf_counter_tid(counter, current);
3093
3094 perf_output_put(&handle, task_event->event);
3095 perf_output_end(&handle);
3096}
3097
3098static int perf_counter_task_match(struct perf_counter *counter)
3099{
3100 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3101 return 1;
3102
3103 return 0;
3104}
3105
3106static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3107 struct perf_task_event *task_event)
3108{
3109 struct perf_counter *counter;
3110
3111 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3112 return;
3113
3114 rcu_read_lock();
3115 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3116 if (perf_counter_task_match(counter))
3117 perf_counter_task_output(counter, task_event);
3118 }
3119 rcu_read_unlock();
3120}
3121
3122static void perf_counter_task_event(struct perf_task_event *task_event)
3123{
3124 struct perf_cpu_context *cpuctx;
3125 struct perf_counter_context *ctx = task_event->task_ctx;
3126
3127 cpuctx = &get_cpu_var(perf_cpu_context);
3128 perf_counter_task_ctx(&cpuctx->ctx, task_event);
3129 put_cpu_var(perf_cpu_context);
3130
3131 rcu_read_lock();
3132 if (!ctx)
3133 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3134 if (ctx)
3135 perf_counter_task_ctx(ctx, task_event);
3136 rcu_read_unlock();
3137}
3138
3139static void perf_counter_task(struct task_struct *task,
3140 struct perf_counter_context *task_ctx,
3141 int new)
3142{
3143 struct perf_task_event task_event;
3144
3145 if (!atomic_read(&nr_comm_counters) &&
3146 !atomic_read(&nr_mmap_counters) &&
3147 !atomic_read(&nr_task_counters))
3148 return;
3149
3150 task_event = (struct perf_task_event){
3151 .task = task,
3152 .task_ctx = task_ctx,
3153 .event = {
3154 .header = {
3155 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3156 .misc = 0,
3157 .size = sizeof(task_event.event),
3158 },
3159 /* .pid */
3160 /* .ppid */
3161 /* .tid */
3162 /* .ptid */
3163 },
3164 };
3165
3166 perf_counter_task_event(&task_event);
3167}
3168
3169void perf_counter_fork(struct task_struct *task)
3170{
3171 perf_counter_task(task, NULL, 1);
3172}
3173
3174/*
3175 * comm tracking
3176 */
3177
3178struct perf_comm_event {
3179 struct task_struct *task;
3180 char *comm;
3181 int comm_size;
3182
3183 struct {
3184 struct perf_event_header header;
3185
3186 u32 pid;
3187 u32 tid;
3188 } event;
3189};
3190
3191static void perf_counter_comm_output(struct perf_counter *counter,
3192 struct perf_comm_event *comm_event)
3193{
3194 struct perf_output_handle handle;
3195 int size = comm_event->event.header.size;
3196 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3197
3198 if (ret)
3199 return;
3200
3201 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3202 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3203
3204 perf_output_put(&handle, comm_event->event);
3205 perf_output_copy(&handle, comm_event->comm,
3206 comm_event->comm_size);
3207 perf_output_end(&handle);
3208}
3209
3210static int perf_counter_comm_match(struct perf_counter *counter)
3211{
3212 if (counter->attr.comm)
3213 return 1;
3214
3215 return 0;
3216}
3217
3218static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3219 struct perf_comm_event *comm_event)
3220{
3221 struct perf_counter *counter;
3222
3223 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3224 return;
3225
3226 rcu_read_lock();
3227 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3228 if (perf_counter_comm_match(counter))
3229 perf_counter_comm_output(counter, comm_event);
3230 }
3231 rcu_read_unlock();
3232}
3233
3234static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3235{
3236 struct perf_cpu_context *cpuctx;
3237 struct perf_counter_context *ctx;
3238 unsigned int size;
3239 char comm[TASK_COMM_LEN];
3240
3241 memset(comm, 0, sizeof(comm));
3242 strncpy(comm, comm_event->task->comm, sizeof(comm));
3243 size = ALIGN(strlen(comm)+1, sizeof(u64));
3244
3245 comm_event->comm = comm;
3246 comm_event->comm_size = size;
3247
3248 comm_event->event.header.size = sizeof(comm_event->event) + size;
3249
3250 cpuctx = &get_cpu_var(perf_cpu_context);
3251 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3252 put_cpu_var(perf_cpu_context);
3253
3254 rcu_read_lock();
3255 /*
3256 * doesn't really matter which of the child contexts the
3257 * events ends up in.
3258 */
3259 ctx = rcu_dereference(current->perf_counter_ctxp);
3260 if (ctx)
3261 perf_counter_comm_ctx(ctx, comm_event);
3262 rcu_read_unlock();
3263}
3264
3265void perf_counter_comm(struct task_struct *task)
3266{
3267 struct perf_comm_event comm_event;
3268
3269 if (task->perf_counter_ctxp)
3270 perf_counter_enable_on_exec(task);
3271
3272 if (!atomic_read(&nr_comm_counters))
3273 return;
3274
3275 comm_event = (struct perf_comm_event){
3276 .task = task,
3277 /* .comm */
3278 /* .comm_size */
3279 .event = {
3280 .header = {
3281 .type = PERF_EVENT_COMM,
3282 .misc = 0,
3283 /* .size */
3284 },
3285 /* .pid */
3286 /* .tid */
3287 },
3288 };
3289
3290 perf_counter_comm_event(&comm_event);
3291}
3292
3293/*
3294 * mmap tracking
3295 */
3296
3297struct perf_mmap_event {
3298 struct vm_area_struct *vma;
3299
3300 const char *file_name;
3301 int file_size;
3302
3303 struct {
3304 struct perf_event_header header;
3305
3306 u32 pid;
3307 u32 tid;
3308 u64 start;
3309 u64 len;
3310 u64 pgoff;
3311 } event;
3312};
3313
3314static void perf_counter_mmap_output(struct perf_counter *counter,
3315 struct perf_mmap_event *mmap_event)
3316{
3317 struct perf_output_handle handle;
3318 int size = mmap_event->event.header.size;
3319 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3320
3321 if (ret)
3322 return;
3323
3324 mmap_event->event.pid = perf_counter_pid(counter, current);
3325 mmap_event->event.tid = perf_counter_tid(counter, current);
3326
3327 perf_output_put(&handle, mmap_event->event);
3328 perf_output_copy(&handle, mmap_event->file_name,
3329 mmap_event->file_size);
3330 perf_output_end(&handle);
3331}
3332
3333static int perf_counter_mmap_match(struct perf_counter *counter,
3334 struct perf_mmap_event *mmap_event)
3335{
3336 if (counter->attr.mmap)
3337 return 1;
3338
3339 return 0;
3340}
3341
3342static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3343 struct perf_mmap_event *mmap_event)
3344{
3345 struct perf_counter *counter;
3346
3347 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3348 return;
3349
3350 rcu_read_lock();
3351 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3352 if (perf_counter_mmap_match(counter, mmap_event))
3353 perf_counter_mmap_output(counter, mmap_event);
3354 }
3355 rcu_read_unlock();
3356}
3357
3358static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3359{
3360 struct perf_cpu_context *cpuctx;
3361 struct perf_counter_context *ctx;
3362 struct vm_area_struct *vma = mmap_event->vma;
3363 struct file *file = vma->vm_file;
3364 unsigned int size;
3365 char tmp[16];
3366 char *buf = NULL;
3367 const char *name;
3368
3369 memset(tmp, 0, sizeof(tmp));
3370
3371 if (file) {
3372 /*
3373 * d_path works from the end of the buffer backwards, so we
3374 * need to add enough zero bytes after the string to handle
3375 * the 64bit alignment we do later.
3376 */
3377 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3378 if (!buf) {
3379 name = strncpy(tmp, "//enomem", sizeof(tmp));
3380 goto got_name;
3381 }
3382 name = d_path(&file->f_path, buf, PATH_MAX);
3383 if (IS_ERR(name)) {
3384 name = strncpy(tmp, "//toolong", sizeof(tmp));
3385 goto got_name;
3386 }
3387 } else {
3388 if (arch_vma_name(mmap_event->vma)) {
3389 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3390 sizeof(tmp));
3391 goto got_name;
3392 }
3393
3394 if (!vma->vm_mm) {
3395 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3396 goto got_name;
3397 }
3398
3399 name = strncpy(tmp, "//anon", sizeof(tmp));
3400 goto got_name;
3401 }
3402
3403got_name:
3404 size = ALIGN(strlen(name)+1, sizeof(u64));
3405
3406 mmap_event->file_name = name;
3407 mmap_event->file_size = size;
3408
3409 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3410
3411 cpuctx = &get_cpu_var(perf_cpu_context);
3412 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3413 put_cpu_var(perf_cpu_context);
3414
3415 rcu_read_lock();
3416 /*
3417 * doesn't really matter which of the child contexts the
3418 * events ends up in.
3419 */
3420 ctx = rcu_dereference(current->perf_counter_ctxp);
3421 if (ctx)
3422 perf_counter_mmap_ctx(ctx, mmap_event);
3423 rcu_read_unlock();
3424
3425 kfree(buf);
3426}
3427
3428void __perf_counter_mmap(struct vm_area_struct *vma)
3429{
3430 struct perf_mmap_event mmap_event;
3431
3432 if (!atomic_read(&nr_mmap_counters))
3433 return;
3434
3435 mmap_event = (struct perf_mmap_event){
3436 .vma = vma,
3437 /* .file_name */
3438 /* .file_size */
3439 .event = {
3440 .header = {
3441 .type = PERF_EVENT_MMAP,
3442 .misc = 0,
3443 /* .size */
3444 },
3445 /* .pid */
3446 /* .tid */
3447 .start = vma->vm_start,
3448 .len = vma->vm_end - vma->vm_start,
3449 .pgoff = vma->vm_pgoff,
3450 },
3451 };
3452
3453 perf_counter_mmap_event(&mmap_event);
3454}
3455
3456/*
3457 * IRQ throttle logging
3458 */
3459
3460static void perf_log_throttle(struct perf_counter *counter, int enable)
3461{
3462 struct perf_output_handle handle;
3463 int ret;
3464
3465 struct {
3466 struct perf_event_header header;
3467 u64 time;
3468 u64 id;
3469 u64 stream_id;
3470 } throttle_event = {
3471 .header = {
3472 .type = PERF_EVENT_THROTTLE,
3473 .misc = 0,
3474 .size = sizeof(throttle_event),
3475 },
3476 .time = sched_clock(),
3477 .id = primary_counter_id(counter),
3478 .stream_id = counter->id,
3479 };
3480
3481 if (enable)
3482 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3483
3484 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3485 if (ret)
3486 return;
3487
3488 perf_output_put(&handle, throttle_event);
3489 perf_output_end(&handle);
3490}
3491
3492/*
3493 * Generic counter overflow handling, sampling.
3494 */
3495
3496int perf_counter_overflow(struct perf_counter *counter, int nmi,
3497 struct perf_sample_data *data)
3498{
3499 int events = atomic_read(&counter->event_limit);
3500 int throttle = counter->pmu->unthrottle != NULL;
3501 struct hw_perf_counter *hwc = &counter->hw;
3502 int ret = 0;
3503
3504 if (!throttle) {
3505 hwc->interrupts++;
3506 } else {
3507 if (hwc->interrupts != MAX_INTERRUPTS) {
3508 hwc->interrupts++;
3509 if (HZ * hwc->interrupts >
3510 (u64)sysctl_perf_counter_sample_rate) {
3511 hwc->interrupts = MAX_INTERRUPTS;
3512 perf_log_throttle(counter, 0);
3513 ret = 1;
3514 }
3515 } else {
3516 /*
3517 * Keep re-disabling counters even though on the previous
3518 * pass we disabled it - just in case we raced with a
3519 * sched-in and the counter got enabled again:
3520 */
3521 ret = 1;
3522 }
3523 }
3524
3525 if (counter->attr.freq) {
3526 u64 now = sched_clock();
3527 s64 delta = now - hwc->freq_stamp;
3528
3529 hwc->freq_stamp = now;
3530
3531 if (delta > 0 && delta < TICK_NSEC)
3532 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3533 }
3534
3535 /*
3536 * XXX event_limit might not quite work as expected on inherited
3537 * counters
3538 */
3539
3540 counter->pending_kill = POLL_IN;
3541 if (events && atomic_dec_and_test(&counter->event_limit)) {
3542 ret = 1;
3543 counter->pending_kill = POLL_HUP;
3544 if (nmi) {
3545 counter->pending_disable = 1;
3546 perf_pending_queue(&counter->pending,
3547 perf_pending_counter);
3548 } else
3549 perf_counter_disable(counter);
3550 }
3551
3552 perf_counter_output(counter, nmi, data);
3553 return ret;
3554}
3555
3556/*
3557 * Generic software counter infrastructure
3558 */
3559
3560/*
3561 * We directly increment counter->count and keep a second value in
3562 * counter->hw.period_left to count intervals. This period counter
3563 * is kept in the range [-sample_period, 0] so that we can use the
3564 * sign as trigger.
3565 */
3566
3567static u64 perf_swcounter_set_period(struct perf_counter *counter)
3568{
3569 struct hw_perf_counter *hwc = &counter->hw;
3570 u64 period = hwc->last_period;
3571 u64 nr, offset;
3572 s64 old, val;
3573
3574 hwc->last_period = hwc->sample_period;
3575
3576again:
3577 old = val = atomic64_read(&hwc->period_left);
3578 if (val < 0)
3579 return 0;
3580
3581 nr = div64_u64(period + val, period);
3582 offset = nr * period;
3583 val -= offset;
3584 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3585 goto again;
3586
3587 return nr;
3588}
3589
3590static void perf_swcounter_overflow(struct perf_counter *counter,
3591 int nmi, struct perf_sample_data *data)
3592{
3593 struct hw_perf_counter *hwc = &counter->hw;
3594 u64 overflow;
3595
3596 data->period = counter->hw.last_period;
3597 overflow = perf_swcounter_set_period(counter);
3598
3599 if (hwc->interrupts == MAX_INTERRUPTS)
3600 return;
3601
3602 for (; overflow; overflow--) {
3603 if (perf_counter_overflow(counter, nmi, data)) {
3604 /*
3605 * We inhibit the overflow from happening when
3606 * hwc->interrupts == MAX_INTERRUPTS.
3607 */
3608 break;
3609 }
3610 }
3611}
3612
3613static void perf_swcounter_unthrottle(struct perf_counter *counter)
3614{
3615 /*
3616 * Nothing to do, we already reset hwc->interrupts.
3617 */
3618}
3619
3620static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3621 int nmi, struct perf_sample_data *data)
3622{
3623 struct hw_perf_counter *hwc = &counter->hw;
3624
3625 atomic64_add(nr, &counter->count);
3626
3627 if (!hwc->sample_period)
3628 return;
3629
3630 if (!data->regs)
3631 return;
3632
3633 if (!atomic64_add_negative(nr, &hwc->period_left))
3634 perf_swcounter_overflow(counter, nmi, data);
3635}
3636
3637static int perf_swcounter_is_counting(struct perf_counter *counter)
3638{
3639 /*
3640 * The counter is active, we're good!
3641 */
3642 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3643 return 1;
3644
3645 /*
3646 * The counter is off/error, not counting.
3647 */
3648 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3649 return 0;
3650
3651 /*
3652 * The counter is inactive, if the context is active
3653 * we're part of a group that didn't make it on the 'pmu',
3654 * not counting.
3655 */
3656 if (counter->ctx->is_active)
3657 return 0;
3658
3659 /*
3660 * We're inactive and the context is too, this means the
3661 * task is scheduled out, we're counting events that happen
3662 * to us, like migration events.
3663 */
3664 return 1;
3665}
3666
3667static int perf_swcounter_match(struct perf_counter *counter,
3668 enum perf_type_id type,
3669 u32 event, struct pt_regs *regs)
3670{
3671 if (!perf_swcounter_is_counting(counter))
3672 return 0;
3673
3674 if (counter->attr.type != type)
3675 return 0;
3676 if (counter->attr.config != event)
3677 return 0;
3678
3679 if (regs) {
3680 if (counter->attr.exclude_user && user_mode(regs))
3681 return 0;
3682
3683 if (counter->attr.exclude_kernel && !user_mode(regs))
3684 return 0;
3685 }
3686
3687 return 1;
3688}
3689
3690static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3691 enum perf_type_id type,
3692 u32 event, u64 nr, int nmi,
3693 struct perf_sample_data *data)
3694{
3695 struct perf_counter *counter;
3696
3697 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3698 return;
3699
3700 rcu_read_lock();
3701 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3702 if (perf_swcounter_match(counter, type, event, data->regs))
3703 perf_swcounter_add(counter, nr, nmi, data);
3704 }
3705 rcu_read_unlock();
3706}
3707
3708static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3709{
3710 if (in_nmi())
3711 return &cpuctx->recursion[3];
3712
3713 if (in_irq())
3714 return &cpuctx->recursion[2];
3715
3716 if (in_softirq())
3717 return &cpuctx->recursion[1];
3718
3719 return &cpuctx->recursion[0];
3720}
3721
3722static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3723 u64 nr, int nmi,
3724 struct perf_sample_data *data)
3725{
3726 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3727 int *recursion = perf_swcounter_recursion_context(cpuctx);
3728 struct perf_counter_context *ctx;
3729
3730 if (*recursion)
3731 goto out;
3732
3733 (*recursion)++;
3734 barrier();
3735
3736 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3737 nr, nmi, data);
3738 rcu_read_lock();
3739 /*
3740 * doesn't really matter which of the child contexts the
3741 * events ends up in.
3742 */
3743 ctx = rcu_dereference(current->perf_counter_ctxp);
3744 if (ctx)
3745 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3746 rcu_read_unlock();
3747
3748 barrier();
3749 (*recursion)--;
3750
3751out:
3752 put_cpu_var(perf_cpu_context);
3753}
3754
3755void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3756 struct pt_regs *regs, u64 addr)
3757{
3758 struct perf_sample_data data = {
3759 .regs = regs,
3760 .addr = addr,
3761 };
3762
3763 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3764}
3765
3766static void perf_swcounter_read(struct perf_counter *counter)
3767{
3768}
3769
3770static int perf_swcounter_enable(struct perf_counter *counter)
3771{
3772 struct hw_perf_counter *hwc = &counter->hw;
3773
3774 if (hwc->sample_period) {
3775 hwc->last_period = hwc->sample_period;
3776 perf_swcounter_set_period(counter);
3777 }
3778 return 0;
3779}
3780
3781static void perf_swcounter_disable(struct perf_counter *counter)
3782{
3783}
3784
3785static const struct pmu perf_ops_generic = {
3786 .enable = perf_swcounter_enable,
3787 .disable = perf_swcounter_disable,
3788 .read = perf_swcounter_read,
3789 .unthrottle = perf_swcounter_unthrottle,
3790};
3791
3792/*
3793 * hrtimer based swcounter callback
3794 */
3795
3796static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3797{
3798 enum hrtimer_restart ret = HRTIMER_RESTART;
3799 struct perf_sample_data data;
3800 struct perf_counter *counter;
3801 u64 period;
3802
3803 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3804 counter->pmu->read(counter);
3805
3806 data.addr = 0;
3807 data.regs = get_irq_regs();
3808 /*
3809 * In case we exclude kernel IPs or are somehow not in interrupt
3810 * context, provide the next best thing, the user IP.
3811 */
3812 if ((counter->attr.exclude_kernel || !data.regs) &&
3813 !counter->attr.exclude_user)
3814 data.regs = task_pt_regs(current);
3815
3816 if (data.regs) {
3817 if (perf_counter_overflow(counter, 0, &data))
3818 ret = HRTIMER_NORESTART;
3819 }
3820
3821 period = max_t(u64, 10000, counter->hw.sample_period);
3822 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3823
3824 return ret;
3825}
3826
3827/*
3828 * Software counter: cpu wall time clock
3829 */
3830
3831static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3832{
3833 int cpu = raw_smp_processor_id();
3834 s64 prev;
3835 u64 now;
3836
3837 now = cpu_clock(cpu);
3838 prev = atomic64_read(&counter->hw.prev_count);
3839 atomic64_set(&counter->hw.prev_count, now);
3840 atomic64_add(now - prev, &counter->count);
3841}
3842
3843static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3844{
3845 struct hw_perf_counter *hwc = &counter->hw;
3846 int cpu = raw_smp_processor_id();
3847
3848 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3849 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3850 hwc->hrtimer.function = perf_swcounter_hrtimer;
3851 if (hwc->sample_period) {
3852 u64 period = max_t(u64, 10000, hwc->sample_period);
3853 __hrtimer_start_range_ns(&hwc->hrtimer,
3854 ns_to_ktime(period), 0,
3855 HRTIMER_MODE_REL, 0);
3856 }
3857
3858 return 0;
3859}
3860
3861static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3862{
3863 if (counter->hw.sample_period)
3864 hrtimer_cancel(&counter->hw.hrtimer);
3865 cpu_clock_perf_counter_update(counter);
3866}
3867
3868static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3869{
3870 cpu_clock_perf_counter_update(counter);
3871}
3872
3873static const struct pmu perf_ops_cpu_clock = {
3874 .enable = cpu_clock_perf_counter_enable,
3875 .disable = cpu_clock_perf_counter_disable,
3876 .read = cpu_clock_perf_counter_read,
3877};
3878
3879/*
3880 * Software counter: task time clock
3881 */
3882
3883static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3884{
3885 u64 prev;
3886 s64 delta;
3887
3888 prev = atomic64_xchg(&counter->hw.prev_count, now);
3889 delta = now - prev;
3890 atomic64_add(delta, &counter->count);
3891}
3892
3893static int task_clock_perf_counter_enable(struct perf_counter *counter)
3894{
3895 struct hw_perf_counter *hwc = &counter->hw;
3896 u64 now;
3897
3898 now = counter->ctx->time;
3899
3900 atomic64_set(&hwc->prev_count, now);
3901 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3902 hwc->hrtimer.function = perf_swcounter_hrtimer;
3903 if (hwc->sample_period) {
3904 u64 period = max_t(u64, 10000, hwc->sample_period);
3905 __hrtimer_start_range_ns(&hwc->hrtimer,
3906 ns_to_ktime(period), 0,
3907 HRTIMER_MODE_REL, 0);
3908 }
3909
3910 return 0;
3911}
3912
3913static void task_clock_perf_counter_disable(struct perf_counter *counter)
3914{
3915 if (counter->hw.sample_period)
3916 hrtimer_cancel(&counter->hw.hrtimer);
3917 task_clock_perf_counter_update(counter, counter->ctx->time);
3918
3919}
3920
3921static void task_clock_perf_counter_read(struct perf_counter *counter)
3922{
3923 u64 time;
3924
3925 if (!in_nmi()) {
3926 update_context_time(counter->ctx);
3927 time = counter->ctx->time;
3928 } else {
3929 u64 now = perf_clock();
3930 u64 delta = now - counter->ctx->timestamp;
3931 time = counter->ctx->time + delta;
3932 }
3933
3934 task_clock_perf_counter_update(counter, time);
3935}
3936
3937static const struct pmu perf_ops_task_clock = {
3938 .enable = task_clock_perf_counter_enable,
3939 .disable = task_clock_perf_counter_disable,
3940 .read = task_clock_perf_counter_read,
3941};
3942
3943#ifdef CONFIG_EVENT_PROFILE
3944void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3945 int entry_size)
3946{
3947 struct perf_raw_record raw = {
3948 .size = entry_size,
3949 .data = record,
3950 };
3951
3952 struct perf_sample_data data = {
3953 .regs = get_irq_regs(),
3954 .addr = addr,
3955 .raw = &raw,
3956 };
3957
3958 if (!data.regs)
3959 data.regs = task_pt_regs(current);
3960
3961 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3962}
3963EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3964
3965extern int ftrace_profile_enable(int);
3966extern void ftrace_profile_disable(int);
3967
3968static void tp_perf_counter_destroy(struct perf_counter *counter)
3969{
3970 ftrace_profile_disable(counter->attr.config);
3971}
3972
3973static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3974{
3975 /*
3976 * Raw tracepoint data is a severe data leak, only allow root to
3977 * have these.
3978 */
3979 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3980 perf_paranoid_tracepoint_raw() &&
3981 !capable(CAP_SYS_ADMIN))
3982 return ERR_PTR(-EPERM);
3983
3984 if (ftrace_profile_enable(counter->attr.config))
3985 return NULL;
3986
3987 counter->destroy = tp_perf_counter_destroy;
3988
3989 return &perf_ops_generic;
3990}
3991#else
3992static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3993{
3994 return NULL;
3995}
3996#endif
3997
3998atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3999
4000static void sw_perf_counter_destroy(struct perf_counter *counter)
4001{
4002 u64 event = counter->attr.config;
4003
4004 WARN_ON(counter->parent);
4005
4006 atomic_dec(&perf_swcounter_enabled[event]);
4007}
4008
4009static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
4010{
4011 const struct pmu *pmu = NULL;
4012 u64 event = counter->attr.config;
4013
4014 /*
4015 * Software counters (currently) can't in general distinguish
4016 * between user, kernel and hypervisor events.
4017 * However, context switches and cpu migrations are considered
4018 * to be kernel events, and page faults are never hypervisor
4019 * events.
4020 */
4021 switch (event) {
4022 case PERF_COUNT_SW_CPU_CLOCK:
4023 pmu = &perf_ops_cpu_clock;
4024
4025 break;
4026 case PERF_COUNT_SW_TASK_CLOCK:
4027 /*
4028 * If the user instantiates this as a per-cpu counter,
4029 * use the cpu_clock counter instead.
4030 */
4031 if (counter->ctx->task)
4032 pmu = &perf_ops_task_clock;
4033 else
4034 pmu = &perf_ops_cpu_clock;
4035
4036 break;
4037 case PERF_COUNT_SW_PAGE_FAULTS:
4038 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4039 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4040 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4041 case PERF_COUNT_SW_CPU_MIGRATIONS:
4042 if (!counter->parent) {
4043 atomic_inc(&perf_swcounter_enabled[event]);
4044 counter->destroy = sw_perf_counter_destroy;
4045 }
4046 pmu = &perf_ops_generic;
4047 break;
4048 }
4049
4050 return pmu;
4051}
4052
4053/*
4054 * Allocate and initialize a counter structure
4055 */
4056static struct perf_counter *
4057perf_counter_alloc(struct perf_counter_attr *attr,
4058 int cpu,
4059 struct perf_counter_context *ctx,
4060 struct perf_counter *group_leader,
4061 struct perf_counter *parent_counter,
4062 gfp_t gfpflags)
4063{
4064 const struct pmu *pmu;
4065 struct perf_counter *counter;
4066 struct hw_perf_counter *hwc;
4067 long err;
4068
4069 counter = kzalloc(sizeof(*counter), gfpflags);
4070 if (!counter)
4071 return ERR_PTR(-ENOMEM);
4072
4073 /*
4074 * Single counters are their own group leaders, with an
4075 * empty sibling list:
4076 */
4077 if (!group_leader)
4078 group_leader = counter;
4079
4080 mutex_init(&counter->child_mutex);
4081 INIT_LIST_HEAD(&counter->child_list);
4082
4083 INIT_LIST_HEAD(&counter->list_entry);
4084 INIT_LIST_HEAD(&counter->event_entry);
4085 INIT_LIST_HEAD(&counter->sibling_list);
4086 init_waitqueue_head(&counter->waitq);
4087
4088 mutex_init(&counter->mmap_mutex);
4089
4090 counter->cpu = cpu;
4091 counter->attr = *attr;
4092 counter->group_leader = group_leader;
4093 counter->pmu = NULL;
4094 counter->ctx = ctx;
4095 counter->oncpu = -1;
4096
4097 counter->parent = parent_counter;
4098
4099 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
4100 counter->id = atomic64_inc_return(&perf_counter_id);
4101
4102 counter->state = PERF_COUNTER_STATE_INACTIVE;
4103
4104 if (attr->disabled)
4105 counter->state = PERF_COUNTER_STATE_OFF;
4106
4107 pmu = NULL;
4108
4109 hwc = &counter->hw;
4110 hwc->sample_period = attr->sample_period;
4111 if (attr->freq && attr->sample_freq)
4112 hwc->sample_period = 1;
4113 hwc->last_period = hwc->sample_period;
4114
4115 atomic64_set(&hwc->period_left, hwc->sample_period);
4116
4117 /*
4118 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4119 */
4120 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4121 goto done;
4122
4123 switch (attr->type) {
4124 case PERF_TYPE_RAW:
4125 case PERF_TYPE_HARDWARE:
4126 case PERF_TYPE_HW_CACHE:
4127 pmu = hw_perf_counter_init(counter);
4128 break;
4129
4130 case PERF_TYPE_SOFTWARE:
4131 pmu = sw_perf_counter_init(counter);
4132 break;
4133
4134 case PERF_TYPE_TRACEPOINT:
4135 pmu = tp_perf_counter_init(counter);
4136 break;
4137
4138 default:
4139 break;
4140 }
4141done:
4142 err = 0;
4143 if (!pmu)
4144 err = -EINVAL;
4145 else if (IS_ERR(pmu))
4146 err = PTR_ERR(pmu);
4147
4148 if (err) {
4149 if (counter->ns)
4150 put_pid_ns(counter->ns);
4151 kfree(counter);
4152 return ERR_PTR(err);
4153 }
4154
4155 counter->pmu = pmu;
4156
4157 if (!counter->parent) {
4158 atomic_inc(&nr_counters);
4159 if (counter->attr.mmap)
4160 atomic_inc(&nr_mmap_counters);
4161 if (counter->attr.comm)
4162 atomic_inc(&nr_comm_counters);
4163 if (counter->attr.task)
4164 atomic_inc(&nr_task_counters);
4165 }
4166
4167 return counter;
4168}
4169
4170static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4171 struct perf_counter_attr *attr)
4172{
4173 int ret;
4174 u32 size;
4175
4176 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4177 return -EFAULT;
4178
4179 /*
4180 * zero the full structure, so that a short copy will be nice.
4181 */
4182 memset(attr, 0, sizeof(*attr));
4183
4184 ret = get_user(size, &uattr->size);
4185 if (ret)
4186 return ret;
4187
4188 if (size > PAGE_SIZE) /* silly large */
4189 goto err_size;
4190
4191 if (!size) /* abi compat */
4192 size = PERF_ATTR_SIZE_VER0;
4193
4194 if (size < PERF_ATTR_SIZE_VER0)
4195 goto err_size;
4196
4197 /*
4198 * If we're handed a bigger struct than we know of,
4199 * ensure all the unknown bits are 0.
4200 */
4201 if (size > sizeof(*attr)) {
4202 unsigned long val;
4203 unsigned long __user *addr;
4204 unsigned long __user *end;
4205
4206 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4207 sizeof(unsigned long));
4208 end = PTR_ALIGN((void __user *)uattr + size,
4209 sizeof(unsigned long));
4210
4211 for (; addr < end; addr += sizeof(unsigned long)) {
4212 ret = get_user(val, addr);
4213 if (ret)
4214 return ret;
4215 if (val)
4216 goto err_size;
4217 }
4218 }
4219
4220 ret = copy_from_user(attr, uattr, size);
4221 if (ret)
4222 return -EFAULT;
4223
4224 /*
4225 * If the type exists, the corresponding creation will verify
4226 * the attr->config.
4227 */
4228 if (attr->type >= PERF_TYPE_MAX)
4229 return -EINVAL;
4230
4231 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4232 return -EINVAL;
4233
4234 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4235 return -EINVAL;
4236
4237 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4238 return -EINVAL;
4239
4240out:
4241 return ret;
4242
4243err_size:
4244 put_user(sizeof(*attr), &uattr->size);
4245 ret = -E2BIG;
4246 goto out;
4247}
4248
4249int perf_counter_set_output(struct perf_counter *counter, int output_fd)
4250{
4251 struct perf_counter *output_counter = NULL;
4252 struct file *output_file = NULL;
4253 struct perf_counter *old_output;
4254 int fput_needed = 0;
4255 int ret = -EINVAL;
4256
4257 if (!output_fd)
4258 goto set;
4259
4260 output_file = fget_light(output_fd, &fput_needed);
4261 if (!output_file)
4262 return -EBADF;
4263
4264 if (output_file->f_op != &perf_fops)
4265 goto out;
4266
4267 output_counter = output_file->private_data;
4268
4269 /* Don't chain output fds */
4270 if (output_counter->output)
4271 goto out;
4272
4273 /* Don't set an output fd when we already have an output channel */
4274 if (counter->data)
4275 goto out;
4276
4277 atomic_long_inc(&output_file->f_count);
4278
4279set:
4280 mutex_lock(&counter->mmap_mutex);
4281 old_output = counter->output;
4282 rcu_assign_pointer(counter->output, output_counter);
4283 mutex_unlock(&counter->mmap_mutex);
4284
4285 if (old_output) {
4286 /*
4287 * we need to make sure no existing perf_output_*()
4288 * is still referencing this counter.
4289 */
4290 synchronize_rcu();
4291 fput(old_output->filp);
4292 }
4293
4294 ret = 0;
4295out:
4296 fput_light(output_file, fput_needed);
4297 return ret;
4298}
4299
4300/**
4301 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4302 *
4303 * @attr_uptr: event type attributes for monitoring/sampling
4304 * @pid: target pid
4305 * @cpu: target cpu
4306 * @group_fd: group leader counter fd
4307 */
4308SYSCALL_DEFINE5(perf_counter_open,
4309 struct perf_counter_attr __user *, attr_uptr,
4310 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4311{
4312 struct perf_counter *counter, *group_leader;
4313 struct perf_counter_attr attr;
4314 struct perf_counter_context *ctx;
4315 struct file *counter_file = NULL;
4316 struct file *group_file = NULL;
4317 int fput_needed = 0;
4318 int fput_needed2 = 0;
4319 int err;
4320
4321 /* for future expandability... */
4322 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4323 return -EINVAL;
4324
4325 err = perf_copy_attr(attr_uptr, &attr);
4326 if (err)
4327 return err;
4328
4329 if (!attr.exclude_kernel) {
4330 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4331 return -EACCES;
4332 }
4333
4334 if (attr.freq) {
4335 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4336 return -EINVAL;
4337 }
4338
4339 /*
4340 * Get the target context (task or percpu):
4341 */
4342 ctx = find_get_context(pid, cpu);
4343 if (IS_ERR(ctx))
4344 return PTR_ERR(ctx);
4345
4346 /*
4347 * Look up the group leader (we will attach this counter to it):
4348 */
4349 group_leader = NULL;
4350 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4351 err = -EINVAL;
4352 group_file = fget_light(group_fd, &fput_needed);
4353 if (!group_file)
4354 goto err_put_context;
4355 if (group_file->f_op != &perf_fops)
4356 goto err_put_context;
4357
4358 group_leader = group_file->private_data;
4359 /*
4360 * Do not allow a recursive hierarchy (this new sibling
4361 * becoming part of another group-sibling):
4362 */
4363 if (group_leader->group_leader != group_leader)
4364 goto err_put_context;
4365 /*
4366 * Do not allow to attach to a group in a different
4367 * task or CPU context:
4368 */
4369 if (group_leader->ctx != ctx)
4370 goto err_put_context;
4371 /*
4372 * Only a group leader can be exclusive or pinned
4373 */
4374 if (attr.exclusive || attr.pinned)
4375 goto err_put_context;
4376 }
4377
4378 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4379 NULL, GFP_KERNEL);
4380 err = PTR_ERR(counter);
4381 if (IS_ERR(counter))
4382 goto err_put_context;
4383
4384 err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4385 if (err < 0)
4386 goto err_free_put_context;
4387
4388 counter_file = fget_light(err, &fput_needed2);
4389 if (!counter_file)
4390 goto err_free_put_context;
4391
4392 if (flags & PERF_FLAG_FD_OUTPUT) {
4393 err = perf_counter_set_output(counter, group_fd);
4394 if (err)
4395 goto err_fput_free_put_context;
4396 }
4397
4398 counter->filp = counter_file;
4399 WARN_ON_ONCE(ctx->parent_ctx);
4400 mutex_lock(&ctx->mutex);
4401 perf_install_in_context(ctx, counter, cpu);
4402 ++ctx->generation;
4403 mutex_unlock(&ctx->mutex);
4404
4405 counter->owner = current;
4406 get_task_struct(current);
4407 mutex_lock(&current->perf_counter_mutex);
4408 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4409 mutex_unlock(&current->perf_counter_mutex);
4410
4411err_fput_free_put_context:
4412 fput_light(counter_file, fput_needed2);
4413
4414err_free_put_context:
4415 if (err < 0)
4416 kfree(counter);
4417
4418err_put_context:
4419 if (err < 0)
4420 put_ctx(ctx);
4421
4422 fput_light(group_file, fput_needed);
4423
4424 return err;
4425}
4426
4427/*
4428 * inherit a counter from parent task to child task:
4429 */
4430static struct perf_counter *
4431inherit_counter(struct perf_counter *parent_counter,
4432 struct task_struct *parent,
4433 struct perf_counter_context *parent_ctx,
4434 struct task_struct *child,
4435 struct perf_counter *group_leader,
4436 struct perf_counter_context *child_ctx)
4437{
4438 struct perf_counter *child_counter;
4439
4440 /*
4441 * Instead of creating recursive hierarchies of counters,
4442 * we link inherited counters back to the original parent,
4443 * which has a filp for sure, which we use as the reference
4444 * count:
4445 */
4446 if (parent_counter->parent)
4447 parent_counter = parent_counter->parent;
4448
4449 child_counter = perf_counter_alloc(&parent_counter->attr,
4450 parent_counter->cpu, child_ctx,
4451 group_leader, parent_counter,
4452 GFP_KERNEL);
4453 if (IS_ERR(child_counter))
4454 return child_counter;
4455 get_ctx(child_ctx);
4456
4457 /*
4458 * Make the child state follow the state of the parent counter,
4459 * not its attr.disabled bit. We hold the parent's mutex,
4460 * so we won't race with perf_counter_{en, dis}able_family.
4461 */
4462 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4463 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4464 else
4465 child_counter->state = PERF_COUNTER_STATE_OFF;
4466
4467 if (parent_counter->attr.freq)
4468 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4469
4470 /*
4471 * Link it up in the child's context:
4472 */
4473 add_counter_to_ctx(child_counter, child_ctx);
4474
4475 /*
4476 * Get a reference to the parent filp - we will fput it
4477 * when the child counter exits. This is safe to do because
4478 * we are in the parent and we know that the filp still
4479 * exists and has a nonzero count:
4480 */
4481 atomic_long_inc(&parent_counter->filp->f_count);
4482
4483 /*
4484 * Link this into the parent counter's child list
4485 */
4486 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4487 mutex_lock(&parent_counter->child_mutex);
4488 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4489 mutex_unlock(&parent_counter->child_mutex);
4490
4491 return child_counter;
4492}
4493
4494static int inherit_group(struct perf_counter *parent_counter,
4495 struct task_struct *parent,
4496 struct perf_counter_context *parent_ctx,
4497 struct task_struct *child,
4498 struct perf_counter_context *child_ctx)
4499{
4500 struct perf_counter *leader;
4501 struct perf_counter *sub;
4502 struct perf_counter *child_ctr;
4503
4504 leader = inherit_counter(parent_counter, parent, parent_ctx,
4505 child, NULL, child_ctx);
4506 if (IS_ERR(leader))
4507 return PTR_ERR(leader);
4508 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4509 child_ctr = inherit_counter(sub, parent, parent_ctx,
4510 child, leader, child_ctx);
4511 if (IS_ERR(child_ctr))
4512 return PTR_ERR(child_ctr);
4513 }
4514 return 0;
4515}
4516
4517static void sync_child_counter(struct perf_counter *child_counter,
4518 struct task_struct *child)
4519{
4520 struct perf_counter *parent_counter = child_counter->parent;
4521 u64 child_val;
4522
4523 if (child_counter->attr.inherit_stat)
4524 perf_counter_read_event(child_counter, child);
4525
4526 child_val = atomic64_read(&child_counter->count);
4527
4528 /*
4529 * Add back the child's count to the parent's count:
4530 */
4531 atomic64_add(child_val, &parent_counter->count);
4532 atomic64_add(child_counter->total_time_enabled,
4533 &parent_counter->child_total_time_enabled);
4534 atomic64_add(child_counter->total_time_running,
4535 &parent_counter->child_total_time_running);
4536
4537 /*
4538 * Remove this counter from the parent's list
4539 */
4540 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4541 mutex_lock(&parent_counter->child_mutex);
4542 list_del_init(&child_counter->child_list);
4543 mutex_unlock(&parent_counter->child_mutex);
4544
4545 /*
4546 * Release the parent counter, if this was the last
4547 * reference to it.
4548 */
4549 fput(parent_counter->filp);
4550}
4551
4552static void
4553__perf_counter_exit_task(struct perf_counter *child_counter,
4554 struct perf_counter_context *child_ctx,
4555 struct task_struct *child)
4556{
4557 struct perf_counter *parent_counter;
4558
4559 update_counter_times(child_counter);
4560 perf_counter_remove_from_context(child_counter);
4561
4562 parent_counter = child_counter->parent;
4563 /*
4564 * It can happen that parent exits first, and has counters
4565 * that are still around due to the child reference. These
4566 * counters need to be zapped - but otherwise linger.
4567 */
4568 if (parent_counter) {
4569 sync_child_counter(child_counter, child);
4570 free_counter(child_counter);
4571 }
4572}
4573
4574/*
4575 * When a child task exits, feed back counter values to parent counters.
4576 */
4577void perf_counter_exit_task(struct task_struct *child)
4578{
4579 struct perf_counter *child_counter, *tmp;
4580 struct perf_counter_context *child_ctx;
4581 unsigned long flags;
4582
4583 if (likely(!child->perf_counter_ctxp)) {
4584 perf_counter_task(child, NULL, 0);
4585 return;
4586 }
4587
4588 local_irq_save(flags);
4589 /*
4590 * We can't reschedule here because interrupts are disabled,
4591 * and either child is current or it is a task that can't be
4592 * scheduled, so we are now safe from rescheduling changing
4593 * our context.
4594 */
4595 child_ctx = child->perf_counter_ctxp;
4596 __perf_counter_task_sched_out(child_ctx);
4597
4598 /*
4599 * Take the context lock here so that if find_get_context is
4600 * reading child->perf_counter_ctxp, we wait until it has
4601 * incremented the context's refcount before we do put_ctx below.
4602 */
4603 spin_lock(&child_ctx->lock);
4604 child->perf_counter_ctxp = NULL;
4605 /*
4606 * If this context is a clone; unclone it so it can't get
4607 * swapped to another process while we're removing all
4608 * the counters from it.
4609 */
4610 unclone_ctx(child_ctx);
4611 spin_unlock_irqrestore(&child_ctx->lock, flags);
4612
4613 /*
4614 * Report the task dead after unscheduling the counters so that we
4615 * won't get any samples after PERF_EVENT_EXIT. We can however still
4616 * get a few PERF_EVENT_READ events.
4617 */
4618 perf_counter_task(child, child_ctx, 0);
4619
4620 /*
4621 * We can recurse on the same lock type through:
4622 *
4623 * __perf_counter_exit_task()
4624 * sync_child_counter()
4625 * fput(parent_counter->filp)
4626 * perf_release()
4627 * mutex_lock(&ctx->mutex)
4628 *
4629 * But since its the parent context it won't be the same instance.
4630 */
4631 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4632
4633again:
4634 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4635 list_entry)
4636 __perf_counter_exit_task(child_counter, child_ctx, child);
4637
4638 /*
4639 * If the last counter was a group counter, it will have appended all
4640 * its siblings to the list, but we obtained 'tmp' before that which
4641 * will still point to the list head terminating the iteration.
4642 */
4643 if (!list_empty(&child_ctx->counter_list))
4644 goto again;
4645
4646 mutex_unlock(&child_ctx->mutex);
4647
4648 put_ctx(child_ctx);
4649}
4650
4651/*
4652 * free an unexposed, unused context as created by inheritance by
4653 * init_task below, used by fork() in case of fail.
4654 */
4655void perf_counter_free_task(struct task_struct *task)
4656{
4657 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4658 struct perf_counter *counter, *tmp;
4659
4660 if (!ctx)
4661 return;
4662
4663 mutex_lock(&ctx->mutex);
4664again:
4665 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4666 struct perf_counter *parent = counter->parent;
4667
4668 if (WARN_ON_ONCE(!parent))
4669 continue;
4670
4671 mutex_lock(&parent->child_mutex);
4672 list_del_init(&counter->child_list);
4673 mutex_unlock(&parent->child_mutex);
4674
4675 fput(parent->filp);
4676
4677 list_del_counter(counter, ctx);
4678 free_counter(counter);
4679 }
4680
4681 if (!list_empty(&ctx->counter_list))
4682 goto again;
4683
4684 mutex_unlock(&ctx->mutex);
4685
4686 put_ctx(ctx);
4687}
4688
4689/*
4690 * Initialize the perf_counter context in task_struct
4691 */
4692int perf_counter_init_task(struct task_struct *child)
4693{
4694 struct perf_counter_context *child_ctx, *parent_ctx;
4695 struct perf_counter_context *cloned_ctx;
4696 struct perf_counter *counter;
4697 struct task_struct *parent = current;
4698 int inherited_all = 1;
4699 int ret = 0;
4700
4701 child->perf_counter_ctxp = NULL;
4702
4703 mutex_init(&child->perf_counter_mutex);
4704 INIT_LIST_HEAD(&child->perf_counter_list);
4705
4706 if (likely(!parent->perf_counter_ctxp))
4707 return 0;
4708
4709 /*
4710 * This is executed from the parent task context, so inherit
4711 * counters that have been marked for cloning.
4712 * First allocate and initialize a context for the child.
4713 */
4714
4715 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4716 if (!child_ctx)
4717 return -ENOMEM;
4718
4719 __perf_counter_init_context(child_ctx, child);
4720 child->perf_counter_ctxp = child_ctx;
4721 get_task_struct(child);
4722
4723 /*
4724 * If the parent's context is a clone, pin it so it won't get
4725 * swapped under us.
4726 */
4727 parent_ctx = perf_pin_task_context(parent);
4728
4729 /*
4730 * No need to check if parent_ctx != NULL here; since we saw
4731 * it non-NULL earlier, the only reason for it to become NULL
4732 * is if we exit, and since we're currently in the middle of
4733 * a fork we can't be exiting at the same time.
4734 */
4735
4736 /*
4737 * Lock the parent list. No need to lock the child - not PID
4738 * hashed yet and not running, so nobody can access it.
4739 */
4740 mutex_lock(&parent_ctx->mutex);
4741
4742 /*
4743 * We dont have to disable NMIs - we are only looking at
4744 * the list, not manipulating it:
4745 */
4746 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4747 if (counter != counter->group_leader)
4748 continue;
4749
4750 if (!counter->attr.inherit) {
4751 inherited_all = 0;
4752 continue;
4753 }
4754
4755 ret = inherit_group(counter, parent, parent_ctx,
4756 child, child_ctx);
4757 if (ret) {
4758 inherited_all = 0;
4759 break;
4760 }
4761 }
4762
4763 if (inherited_all) {
4764 /*
4765 * Mark the child context as a clone of the parent
4766 * context, or of whatever the parent is a clone of.
4767 * Note that if the parent is a clone, it could get
4768 * uncloned at any point, but that doesn't matter
4769 * because the list of counters and the generation
4770 * count can't have changed since we took the mutex.
4771 */
4772 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4773 if (cloned_ctx) {
4774 child_ctx->parent_ctx = cloned_ctx;
4775 child_ctx->parent_gen = parent_ctx->parent_gen;
4776 } else {
4777 child_ctx->parent_ctx = parent_ctx;
4778 child_ctx->parent_gen = parent_ctx->generation;
4779 }
4780 get_ctx(child_ctx->parent_ctx);
4781 }
4782
4783 mutex_unlock(&parent_ctx->mutex);
4784
4785 perf_unpin_context(parent_ctx);
4786
4787 return ret;
4788}
4789
4790static void __cpuinit perf_counter_init_cpu(int cpu)
4791{
4792 struct perf_cpu_context *cpuctx;
4793
4794 cpuctx = &per_cpu(perf_cpu_context, cpu);
4795 __perf_counter_init_context(&cpuctx->ctx, NULL);
4796
4797 spin_lock(&perf_resource_lock);
4798 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4799 spin_unlock(&perf_resource_lock);
4800
4801 hw_perf_counter_setup(cpu);
4802}
4803
4804#ifdef CONFIG_HOTPLUG_CPU
4805static void __perf_counter_exit_cpu(void *info)
4806{
4807 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4808 struct perf_counter_context *ctx = &cpuctx->ctx;
4809 struct perf_counter *counter, *tmp;
4810
4811 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4812 __perf_counter_remove_from_context(counter);
4813}
4814static void perf_counter_exit_cpu(int cpu)
4815{
4816 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4817 struct perf_counter_context *ctx = &cpuctx->ctx;
4818
4819 mutex_lock(&ctx->mutex);
4820 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4821 mutex_unlock(&ctx->mutex);
4822}
4823#else
4824static inline void perf_counter_exit_cpu(int cpu) { }
4825#endif
4826
4827static int __cpuinit
4828perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4829{
4830 unsigned int cpu = (long)hcpu;
4831
4832 switch (action) {
4833
4834 case CPU_UP_PREPARE:
4835 case CPU_UP_PREPARE_FROZEN:
4836 perf_counter_init_cpu(cpu);
4837 break;
4838
4839 case CPU_ONLINE:
4840 case CPU_ONLINE_FROZEN:
4841 hw_perf_counter_setup_online(cpu);
4842 break;
4843
4844 case CPU_DOWN_PREPARE:
4845 case CPU_DOWN_PREPARE_FROZEN:
4846 perf_counter_exit_cpu(cpu);
4847 break;
4848
4849 default:
4850 break;
4851 }
4852
4853 return NOTIFY_OK;
4854}
4855
4856/*
4857 * This has to have a higher priority than migration_notifier in sched.c.
4858 */
4859static struct notifier_block __cpuinitdata perf_cpu_nb = {
4860 .notifier_call = perf_cpu_notify,
4861 .priority = 20,
4862};
4863
4864void __init perf_counter_init(void)
4865{
4866 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4867 (void *)(long)smp_processor_id());
4868 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4869 (void *)(long)smp_processor_id());
4870 register_cpu_notifier(&perf_cpu_nb);
4871}
4872
4873static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4874{
4875 return sprintf(buf, "%d\n", perf_reserved_percpu);
4876}
4877
4878static ssize_t
4879perf_set_reserve_percpu(struct sysdev_class *class,
4880 const char *buf,
4881 size_t count)
4882{
4883 struct perf_cpu_context *cpuctx;
4884 unsigned long val;
4885 int err, cpu, mpt;
4886
4887 err = strict_strtoul(buf, 10, &val);
4888 if (err)
4889 return err;
4890 if (val > perf_max_counters)
4891 return -EINVAL;
4892
4893 spin_lock(&perf_resource_lock);
4894 perf_reserved_percpu = val;
4895 for_each_online_cpu(cpu) {
4896 cpuctx = &per_cpu(perf_cpu_context, cpu);
4897 spin_lock_irq(&cpuctx->ctx.lock);
4898 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4899 perf_max_counters - perf_reserved_percpu);
4900 cpuctx->max_pertask = mpt;
4901 spin_unlock_irq(&cpuctx->ctx.lock);
4902 }
4903 spin_unlock(&perf_resource_lock);
4904
4905 return count;
4906}
4907
4908static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4909{
4910 return sprintf(buf, "%d\n", perf_overcommit);
4911}
4912
4913static ssize_t
4914perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4915{
4916 unsigned long val;
4917 int err;
4918
4919 err = strict_strtoul(buf, 10, &val);
4920 if (err)
4921 return err;
4922 if (val > 1)
4923 return -EINVAL;
4924
4925 spin_lock(&perf_resource_lock);
4926 perf_overcommit = val;
4927 spin_unlock(&perf_resource_lock);
4928
4929 return count;
4930}
4931
4932static SYSDEV_CLASS_ATTR(
4933 reserve_percpu,
4934 0644,
4935 perf_show_reserve_percpu,
4936 perf_set_reserve_percpu
4937 );
4938
4939static SYSDEV_CLASS_ATTR(
4940 overcommit,
4941 0644,
4942 perf_show_overcommit,
4943 perf_set_overcommit
4944 );
4945
4946static struct attribute *perfclass_attrs[] = {
4947 &attr_reserve_percpu.attr,
4948 &attr_overcommit.attr,
4949 NULL
4950};
4951
4952static struct attribute_group perfclass_attr_group = {
4953 .attrs = perfclass_attrs,
4954 .name = "perf_counters",
4955};
4956
4957static int __init perf_counter_sysfs_init(void)
4958{
4959 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4960 &perfclass_attr_group);
4961}
4962device_initcall(perf_counter_sysfs_init);
diff --git a/kernel/perf_event.c b/kernel/perf_event.c
new file mode 100644
index 000000000000..76ac4db405e9
--- /dev/null
+++ b/kernel/perf_event.c
@@ -0,0 +1,5000 @@
1/*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
23#include <linux/hardirq.h>
24#include <linux/rculist.h>
25#include <linux/uaccess.h>
26#include <linux/syscalls.h>
27#include <linux/anon_inodes.h>
28#include <linux/kernel_stat.h>
29#include <linux/perf_event.h>
30
31#include <asm/irq_regs.h>
32
33/*
34 * Each CPU has a list of per CPU events:
35 */
36DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38int perf_max_events __read_mostly = 1;
39static int perf_reserved_percpu __read_mostly;
40static int perf_overcommit __read_mostly = 1;
41
42static atomic_t nr_events __read_mostly;
43static atomic_t nr_mmap_events __read_mostly;
44static atomic_t nr_comm_events __read_mostly;
45static atomic_t nr_task_events __read_mostly;
46
47/*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54int sysctl_perf_event_paranoid __read_mostly = 1;
55
56static inline bool perf_paranoid_tracepoint_raw(void)
57{
58 return sysctl_perf_event_paranoid > -1;
59}
60
61static inline bool perf_paranoid_cpu(void)
62{
63 return sysctl_perf_event_paranoid > 0;
64}
65
66static inline bool perf_paranoid_kernel(void)
67{
68 return sysctl_perf_event_paranoid > 1;
69}
70
71int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
72
73/*
74 * max perf event sample rate
75 */
76int sysctl_perf_event_sample_rate __read_mostly = 100000;
77
78static atomic64_t perf_event_id;
79
80/*
81 * Lock for (sysadmin-configurable) event reservations:
82 */
83static DEFINE_SPINLOCK(perf_resource_lock);
84
85/*
86 * Architecture provided APIs - weak aliases:
87 */
88extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
89{
90 return NULL;
91}
92
93void __weak hw_perf_disable(void) { barrier(); }
94void __weak hw_perf_enable(void) { barrier(); }
95
96void __weak hw_perf_event_setup(int cpu) { barrier(); }
97void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
98
99int __weak
100hw_perf_group_sched_in(struct perf_event *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_event_context *ctx, int cpu)
103{
104 return 0;
105}
106
107void __weak perf_event_print_debug(void) { }
108
109static DEFINE_PER_CPU(int, perf_disable_count);
110
111void __perf_disable(void)
112{
113 __get_cpu_var(perf_disable_count)++;
114}
115
116bool __perf_enable(void)
117{
118 return !--__get_cpu_var(perf_disable_count);
119}
120
121void perf_disable(void)
122{
123 __perf_disable();
124 hw_perf_disable();
125}
126
127void perf_enable(void)
128{
129 if (__perf_enable())
130 hw_perf_enable();
131}
132
133static void get_ctx(struct perf_event_context *ctx)
134{
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136}
137
138static void free_ctx(struct rcu_head *head)
139{
140 struct perf_event_context *ctx;
141
142 ctx = container_of(head, struct perf_event_context, rcu_head);
143 kfree(ctx);
144}
145
146static void put_ctx(struct perf_event_context *ctx)
147{
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155}
156
157static void unclone_ctx(struct perf_event_context *ctx)
158{
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163}
164
165/*
166 * If we inherit events we want to return the parent event id
167 * to userspace.
168 */
169static u64 primary_event_id(struct perf_event *event)
170{
171 u64 id = event->id;
172
173 if (event->parent)
174 id = event->parent->id;
175
176 return id;
177}
178
179/*
180 * Get the perf_event_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184static struct perf_event_context *
185perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186{
187 struct perf_event_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_event_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_event_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216}
217
218/*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
224{
225 struct perf_event_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234}
235
236static void perf_unpin_context(struct perf_event_context *ctx)
237{
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244}
245
246/*
247 * Add a event from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250static void
251list_add_event(struct perf_event *event, struct perf_event_context *ctx)
252{
253 struct perf_event *group_leader = event->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling event,
257 * add it straight to the context's event list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == event)
261 list_add_tail(&event->group_entry, &ctx->group_list);
262 else {
263 list_add_tail(&event->group_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&event->event_entry, &ctx->event_list);
268 ctx->nr_events++;
269 if (event->attr.inherit_stat)
270 ctx->nr_stat++;
271}
272
273/*
274 * Remove a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277static void
278list_del_event(struct perf_event *event, struct perf_event_context *ctx)
279{
280 struct perf_event *sibling, *tmp;
281
282 if (list_empty(&event->group_entry))
283 return;
284 ctx->nr_events--;
285 if (event->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&event->group_entry);
289 list_del_rcu(&event->event_entry);
290
291 if (event->group_leader != event)
292 event->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group event with sibling events then
296 * upgrade the siblings to singleton events by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
300
301 list_move_tail(&sibling->group_entry, &ctx->group_list);
302 sibling->group_leader = sibling;
303 }
304}
305
306static void
307event_sched_out(struct perf_event *event,
308 struct perf_cpu_context *cpuctx,
309 struct perf_event_context *ctx)
310{
311 if (event->state != PERF_EVENT_STATE_ACTIVE)
312 return;
313
314 event->state = PERF_EVENT_STATE_INACTIVE;
315 if (event->pending_disable) {
316 event->pending_disable = 0;
317 event->state = PERF_EVENT_STATE_OFF;
318 }
319 event->tstamp_stopped = ctx->time;
320 event->pmu->disable(event);
321 event->oncpu = -1;
322
323 if (!is_software_event(event))
324 cpuctx->active_oncpu--;
325 ctx->nr_active--;
326 if (event->attr.exclusive || !cpuctx->active_oncpu)
327 cpuctx->exclusive = 0;
328}
329
330static void
331group_sched_out(struct perf_event *group_event,
332 struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
334{
335 struct perf_event *event;
336
337 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
338 return;
339
340 event_sched_out(group_event, cpuctx, ctx);
341
342 /*
343 * Schedule out siblings (if any):
344 */
345 list_for_each_entry(event, &group_event->sibling_list, group_entry)
346 event_sched_out(event, cpuctx, ctx);
347
348 if (group_event->attr.exclusive)
349 cpuctx->exclusive = 0;
350}
351
352/*
353 * Cross CPU call to remove a performance event
354 *
355 * We disable the event on the hardware level first. After that we
356 * remove it from the context list.
357 */
358static void __perf_event_remove_from_context(void *info)
359{
360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
361 struct perf_event *event = info;
362 struct perf_event_context *ctx = event->ctx;
363
364 /*
365 * If this is a task context, we need to check whether it is
366 * the current task context of this cpu. If not it has been
367 * scheduled out before the smp call arrived.
368 */
369 if (ctx->task && cpuctx->task_ctx != ctx)
370 return;
371
372 spin_lock(&ctx->lock);
373 /*
374 * Protect the list operation against NMI by disabling the
375 * events on a global level.
376 */
377 perf_disable();
378
379 event_sched_out(event, cpuctx, ctx);
380
381 list_del_event(event, ctx);
382
383 if (!ctx->task) {
384 /*
385 * Allow more per task events with respect to the
386 * reservation:
387 */
388 cpuctx->max_pertask =
389 min(perf_max_events - ctx->nr_events,
390 perf_max_events - perf_reserved_percpu);
391 }
392
393 perf_enable();
394 spin_unlock(&ctx->lock);
395}
396
397
398/*
399 * Remove the event from a task's (or a CPU's) list of events.
400 *
401 * Must be called with ctx->mutex held.
402 *
403 * CPU events are removed with a smp call. For task events we only
404 * call when the task is on a CPU.
405 *
406 * If event->ctx is a cloned context, callers must make sure that
407 * every task struct that event->ctx->task could possibly point to
408 * remains valid. This is OK when called from perf_release since
409 * that only calls us on the top-level context, which can't be a clone.
410 * When called from perf_event_exit_task, it's OK because the
411 * context has been detached from its task.
412 */
413static void perf_event_remove_from_context(struct perf_event *event)
414{
415 struct perf_event_context *ctx = event->ctx;
416 struct task_struct *task = ctx->task;
417
418 if (!task) {
419 /*
420 * Per cpu events are removed via an smp call and
421 * the removal is always sucessful.
422 */
423 smp_call_function_single(event->cpu,
424 __perf_event_remove_from_context,
425 event, 1);
426 return;
427 }
428
429retry:
430 task_oncpu_function_call(task, __perf_event_remove_from_context,
431 event);
432
433 spin_lock_irq(&ctx->lock);
434 /*
435 * If the context is active we need to retry the smp call.
436 */
437 if (ctx->nr_active && !list_empty(&event->group_entry)) {
438 spin_unlock_irq(&ctx->lock);
439 goto retry;
440 }
441
442 /*
443 * The lock prevents that this context is scheduled in so we
444 * can remove the event safely, if the call above did not
445 * succeed.
446 */
447 if (!list_empty(&event->group_entry)) {
448 list_del_event(event, ctx);
449 }
450 spin_unlock_irq(&ctx->lock);
451}
452
453static inline u64 perf_clock(void)
454{
455 return cpu_clock(smp_processor_id());
456}
457
458/*
459 * Update the record of the current time in a context.
460 */
461static void update_context_time(struct perf_event_context *ctx)
462{
463 u64 now = perf_clock();
464
465 ctx->time += now - ctx->timestamp;
466 ctx->timestamp = now;
467}
468
469/*
470 * Update the total_time_enabled and total_time_running fields for a event.
471 */
472static void update_event_times(struct perf_event *event)
473{
474 struct perf_event_context *ctx = event->ctx;
475 u64 run_end;
476
477 if (event->state < PERF_EVENT_STATE_INACTIVE ||
478 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
479 return;
480
481 event->total_time_enabled = ctx->time - event->tstamp_enabled;
482
483 if (event->state == PERF_EVENT_STATE_INACTIVE)
484 run_end = event->tstamp_stopped;
485 else
486 run_end = ctx->time;
487
488 event->total_time_running = run_end - event->tstamp_running;
489}
490
491/*
492 * Update total_time_enabled and total_time_running for all events in a group.
493 */
494static void update_group_times(struct perf_event *leader)
495{
496 struct perf_event *event;
497
498 update_event_times(leader);
499 list_for_each_entry(event, &leader->sibling_list, group_entry)
500 update_event_times(event);
501}
502
503/*
504 * Cross CPU call to disable a performance event
505 */
506static void __perf_event_disable(void *info)
507{
508 struct perf_event *event = info;
509 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
510 struct perf_event_context *ctx = event->ctx;
511
512 /*
513 * If this is a per-task event, need to check whether this
514 * event's task is the current task on this cpu.
515 */
516 if (ctx->task && cpuctx->task_ctx != ctx)
517 return;
518
519 spin_lock(&ctx->lock);
520
521 /*
522 * If the event is on, turn it off.
523 * If it is in error state, leave it in error state.
524 */
525 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
526 update_context_time(ctx);
527 update_group_times(event);
528 if (event == event->group_leader)
529 group_sched_out(event, cpuctx, ctx);
530 else
531 event_sched_out(event, cpuctx, ctx);
532 event->state = PERF_EVENT_STATE_OFF;
533 }
534
535 spin_unlock(&ctx->lock);
536}
537
538/*
539 * Disable a event.
540 *
541 * If event->ctx is a cloned context, callers must make sure that
542 * every task struct that event->ctx->task could possibly point to
543 * remains valid. This condition is satisifed when called through
544 * perf_event_for_each_child or perf_event_for_each because they
545 * hold the top-level event's child_mutex, so any descendant that
546 * goes to exit will block in sync_child_event.
547 * When called from perf_pending_event it's OK because event->ctx
548 * is the current context on this CPU and preemption is disabled,
549 * hence we can't get into perf_event_task_sched_out for this context.
550 */
551static void perf_event_disable(struct perf_event *event)
552{
553 struct perf_event_context *ctx = event->ctx;
554 struct task_struct *task = ctx->task;
555
556 if (!task) {
557 /*
558 * Disable the event on the cpu that it's on
559 */
560 smp_call_function_single(event->cpu, __perf_event_disable,
561 event, 1);
562 return;
563 }
564
565 retry:
566 task_oncpu_function_call(task, __perf_event_disable, event);
567
568 spin_lock_irq(&ctx->lock);
569 /*
570 * If the event is still active, we need to retry the cross-call.
571 */
572 if (event->state == PERF_EVENT_STATE_ACTIVE) {
573 spin_unlock_irq(&ctx->lock);
574 goto retry;
575 }
576
577 /*
578 * Since we have the lock this context can't be scheduled
579 * in, so we can change the state safely.
580 */
581 if (event->state == PERF_EVENT_STATE_INACTIVE) {
582 update_group_times(event);
583 event->state = PERF_EVENT_STATE_OFF;
584 }
585
586 spin_unlock_irq(&ctx->lock);
587}
588
589static int
590event_sched_in(struct perf_event *event,
591 struct perf_cpu_context *cpuctx,
592 struct perf_event_context *ctx,
593 int cpu)
594{
595 if (event->state <= PERF_EVENT_STATE_OFF)
596 return 0;
597
598 event->state = PERF_EVENT_STATE_ACTIVE;
599 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
600 /*
601 * The new state must be visible before we turn it on in the hardware:
602 */
603 smp_wmb();
604
605 if (event->pmu->enable(event)) {
606 event->state = PERF_EVENT_STATE_INACTIVE;
607 event->oncpu = -1;
608 return -EAGAIN;
609 }
610
611 event->tstamp_running += ctx->time - event->tstamp_stopped;
612
613 if (!is_software_event(event))
614 cpuctx->active_oncpu++;
615 ctx->nr_active++;
616
617 if (event->attr.exclusive)
618 cpuctx->exclusive = 1;
619
620 return 0;
621}
622
623static int
624group_sched_in(struct perf_event *group_event,
625 struct perf_cpu_context *cpuctx,
626 struct perf_event_context *ctx,
627 int cpu)
628{
629 struct perf_event *event, *partial_group;
630 int ret;
631
632 if (group_event->state == PERF_EVENT_STATE_OFF)
633 return 0;
634
635 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
636 if (ret)
637 return ret < 0 ? ret : 0;
638
639 if (event_sched_in(group_event, cpuctx, ctx, cpu))
640 return -EAGAIN;
641
642 /*
643 * Schedule in siblings as one group (if any):
644 */
645 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
646 if (event_sched_in(event, cpuctx, ctx, cpu)) {
647 partial_group = event;
648 goto group_error;
649 }
650 }
651
652 return 0;
653
654group_error:
655 /*
656 * Groups can be scheduled in as one unit only, so undo any
657 * partial group before returning:
658 */
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event == partial_group)
661 break;
662 event_sched_out(event, cpuctx, ctx);
663 }
664 event_sched_out(group_event, cpuctx, ctx);
665
666 return -EAGAIN;
667}
668
669/*
670 * Return 1 for a group consisting entirely of software events,
671 * 0 if the group contains any hardware events.
672 */
673static int is_software_only_group(struct perf_event *leader)
674{
675 struct perf_event *event;
676
677 if (!is_software_event(leader))
678 return 0;
679
680 list_for_each_entry(event, &leader->sibling_list, group_entry)
681 if (!is_software_event(event))
682 return 0;
683
684 return 1;
685}
686
687/*
688 * Work out whether we can put this event group on the CPU now.
689 */
690static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
693{
694 /*
695 * Groups consisting entirely of software events can always go on.
696 */
697 if (is_software_only_group(event))
698 return 1;
699 /*
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
702 */
703 if (cpuctx->exclusive)
704 return 0;
705 /*
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
708 */
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
711 /*
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
714 */
715 return can_add_hw;
716}
717
718static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
720{
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
725}
726
727/*
728 * Cross CPU call to install and enable a performance event
729 *
730 * Must be called with ctx->mutex held
731 */
732static void __perf_install_in_context(void *info)
733{
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
738 int cpu = smp_processor_id();
739 int err;
740
741 /*
742 * If this is a task context, we need to check whether it is
743 * the current task context of this cpu. If not it has been
744 * scheduled out before the smp call arrived.
745 * Or possibly this is the right context but it isn't
746 * on this cpu because it had no events.
747 */
748 if (ctx->task && cpuctx->task_ctx != ctx) {
749 if (cpuctx->task_ctx || ctx->task != current)
750 return;
751 cpuctx->task_ctx = ctx;
752 }
753
754 spin_lock(&ctx->lock);
755 ctx->is_active = 1;
756 update_context_time(ctx);
757
758 /*
759 * Protect the list operation against NMI by disabling the
760 * events on a global level. NOP for non NMI based events.
761 */
762 perf_disable();
763
764 add_event_to_ctx(event, ctx);
765
766 /*
767 * Don't put the event on if it is disabled or if
768 * it is in a group and the group isn't on.
769 */
770 if (event->state != PERF_EVENT_STATE_INACTIVE ||
771 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
772 goto unlock;
773
774 /*
775 * An exclusive event can't go on if there are already active
776 * hardware events, and no hardware event can go on if there
777 * is already an exclusive event on.
778 */
779 if (!group_can_go_on(event, cpuctx, 1))
780 err = -EEXIST;
781 else
782 err = event_sched_in(event, cpuctx, ctx, cpu);
783
784 if (err) {
785 /*
786 * This event couldn't go on. If it is in a group
787 * then we have to pull the whole group off.
788 * If the event group is pinned then put it in error state.
789 */
790 if (leader != event)
791 group_sched_out(leader, cpuctx, ctx);
792 if (leader->attr.pinned) {
793 update_group_times(leader);
794 leader->state = PERF_EVENT_STATE_ERROR;
795 }
796 }
797
798 if (!err && !ctx->task && cpuctx->max_pertask)
799 cpuctx->max_pertask--;
800
801 unlock:
802 perf_enable();
803
804 spin_unlock(&ctx->lock);
805}
806
807/*
808 * Attach a performance event to a context
809 *
810 * First we add the event to the list with the hardware enable bit
811 * in event->hw_config cleared.
812 *
813 * If the event is attached to a task which is on a CPU we use a smp
814 * call to enable it in the task context. The task might have been
815 * scheduled away, but we check this in the smp call again.
816 *
817 * Must be called with ctx->mutex held.
818 */
819static void
820perf_install_in_context(struct perf_event_context *ctx,
821 struct perf_event *event,
822 int cpu)
823{
824 struct task_struct *task = ctx->task;
825
826 if (!task) {
827 /*
828 * Per cpu events are installed via an smp call and
829 * the install is always sucessful.
830 */
831 smp_call_function_single(cpu, __perf_install_in_context,
832 event, 1);
833 return;
834 }
835
836retry:
837 task_oncpu_function_call(task, __perf_install_in_context,
838 event);
839
840 spin_lock_irq(&ctx->lock);
841 /*
842 * we need to retry the smp call.
843 */
844 if (ctx->is_active && list_empty(&event->group_entry)) {
845 spin_unlock_irq(&ctx->lock);
846 goto retry;
847 }
848
849 /*
850 * The lock prevents that this context is scheduled in so we
851 * can add the event safely, if it the call above did not
852 * succeed.
853 */
854 if (list_empty(&event->group_entry))
855 add_event_to_ctx(event, ctx);
856 spin_unlock_irq(&ctx->lock);
857}
858
859/*
860 * Put a event into inactive state and update time fields.
861 * Enabling the leader of a group effectively enables all
862 * the group members that aren't explicitly disabled, so we
863 * have to update their ->tstamp_enabled also.
864 * Note: this works for group members as well as group leaders
865 * since the non-leader members' sibling_lists will be empty.
866 */
867static void __perf_event_mark_enabled(struct perf_event *event,
868 struct perf_event_context *ctx)
869{
870 struct perf_event *sub;
871
872 event->state = PERF_EVENT_STATE_INACTIVE;
873 event->tstamp_enabled = ctx->time - event->total_time_enabled;
874 list_for_each_entry(sub, &event->sibling_list, group_entry)
875 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
876 sub->tstamp_enabled =
877 ctx->time - sub->total_time_enabled;
878}
879
880/*
881 * Cross CPU call to enable a performance event
882 */
883static void __perf_event_enable(void *info)
884{
885 struct perf_event *event = info;
886 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
887 struct perf_event_context *ctx = event->ctx;
888 struct perf_event *leader = event->group_leader;
889 int err;
890
891 /*
892 * If this is a per-task event, need to check whether this
893 * event's task is the current task on this cpu.
894 */
895 if (ctx->task && cpuctx->task_ctx != ctx) {
896 if (cpuctx->task_ctx || ctx->task != current)
897 return;
898 cpuctx->task_ctx = ctx;
899 }
900
901 spin_lock(&ctx->lock);
902 ctx->is_active = 1;
903 update_context_time(ctx);
904
905 if (event->state >= PERF_EVENT_STATE_INACTIVE)
906 goto unlock;
907 __perf_event_mark_enabled(event, ctx);
908
909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx,
922 smp_processor_id());
923 else
924 err = event_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 perf_enable();
927 }
928
929 if (err) {
930 /*
931 * If this event can't go on and it's part of a
932 * group, then the whole group has to come off.
933 */
934 if (leader != event)
935 group_sched_out(leader, cpuctx, ctx);
936 if (leader->attr.pinned) {
937 update_group_times(leader);
938 leader->state = PERF_EVENT_STATE_ERROR;
939 }
940 }
941
942 unlock:
943 spin_unlock(&ctx->lock);
944}
945
946/*
947 * Enable a event.
948 *
949 * If event->ctx is a cloned context, callers must make sure that
950 * every task struct that event->ctx->task could possibly point to
951 * remains valid. This condition is satisfied when called through
952 * perf_event_for_each_child or perf_event_for_each as described
953 * for perf_event_disable.
954 */
955static void perf_event_enable(struct perf_event *event)
956{
957 struct perf_event_context *ctx = event->ctx;
958 struct task_struct *task = ctx->task;
959
960 if (!task) {
961 /*
962 * Enable the event on the cpu that it's on
963 */
964 smp_call_function_single(event->cpu, __perf_event_enable,
965 event, 1);
966 return;
967 }
968
969 spin_lock_irq(&ctx->lock);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto out;
972
973 /*
974 * If the event is in error state, clear that first.
975 * That way, if we see the event in error state below, we
976 * know that it has gone back into error state, as distinct
977 * from the task having been scheduled away before the
978 * cross-call arrived.
979 */
980 if (event->state == PERF_EVENT_STATE_ERROR)
981 event->state = PERF_EVENT_STATE_OFF;
982
983 retry:
984 spin_unlock_irq(&ctx->lock);
985 task_oncpu_function_call(task, __perf_event_enable, event);
986
987 spin_lock_irq(&ctx->lock);
988
989 /*
990 * If the context is active and the event is still off,
991 * we need to retry the cross-call.
992 */
993 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994 goto retry;
995
996 /*
997 * Since we have the lock this context can't be scheduled
998 * in, so we can change the state safely.
999 */
1000 if (event->state == PERF_EVENT_STATE_OFF)
1001 __perf_event_mark_enabled(event, ctx);
1002
1003 out:
1004 spin_unlock_irq(&ctx->lock);
1005}
1006
1007static int perf_event_refresh(struct perf_event *event, int refresh)
1008{
1009 /*
1010 * not supported on inherited events
1011 */
1012 if (event->attr.inherit)
1013 return -EINVAL;
1014
1015 atomic_add(refresh, &event->event_limit);
1016 perf_event_enable(event);
1017
1018 return 0;
1019}
1020
1021void __perf_event_sched_out(struct perf_event_context *ctx,
1022 struct perf_cpu_context *cpuctx)
1023{
1024 struct perf_event *event;
1025
1026 spin_lock(&ctx->lock);
1027 ctx->is_active = 0;
1028 if (likely(!ctx->nr_events))
1029 goto out;
1030 update_context_time(ctx);
1031
1032 perf_disable();
1033 if (ctx->nr_active) {
1034 list_for_each_entry(event, &ctx->group_list, group_entry) {
1035 if (event != event->group_leader)
1036 event_sched_out(event, cpuctx, ctx);
1037 else
1038 group_sched_out(event, cpuctx, ctx);
1039 }
1040 }
1041 perf_enable();
1042 out:
1043 spin_unlock(&ctx->lock);
1044}
1045
1046/*
1047 * Test whether two contexts are equivalent, i.e. whether they
1048 * have both been cloned from the same version of the same context
1049 * and they both have the same number of enabled events.
1050 * If the number of enabled events is the same, then the set
1051 * of enabled events should be the same, because these are both
1052 * inherited contexts, therefore we can't access individual events
1053 * in them directly with an fd; we can only enable/disable all
1054 * events via prctl, or enable/disable all events in a family
1055 * via ioctl, which will have the same effect on both contexts.
1056 */
1057static int context_equiv(struct perf_event_context *ctx1,
1058 struct perf_event_context *ctx2)
1059{
1060 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1061 && ctx1->parent_gen == ctx2->parent_gen
1062 && !ctx1->pin_count && !ctx2->pin_count;
1063}
1064
1065static void __perf_event_read(void *event);
1066
1067static void __perf_event_sync_stat(struct perf_event *event,
1068 struct perf_event *next_event)
1069{
1070 u64 value;
1071
1072 if (!event->attr.inherit_stat)
1073 return;
1074
1075 /*
1076 * Update the event value, we cannot use perf_event_read()
1077 * because we're in the middle of a context switch and have IRQs
1078 * disabled, which upsets smp_call_function_single(), however
1079 * we know the event must be on the current CPU, therefore we
1080 * don't need to use it.
1081 */
1082 switch (event->state) {
1083 case PERF_EVENT_STATE_ACTIVE:
1084 __perf_event_read(event);
1085 break;
1086
1087 case PERF_EVENT_STATE_INACTIVE:
1088 update_event_times(event);
1089 break;
1090
1091 default:
1092 break;
1093 }
1094
1095 /*
1096 * In order to keep per-task stats reliable we need to flip the event
1097 * values when we flip the contexts.
1098 */
1099 value = atomic64_read(&next_event->count);
1100 value = atomic64_xchg(&event->count, value);
1101 atomic64_set(&next_event->count, value);
1102
1103 swap(event->total_time_enabled, next_event->total_time_enabled);
1104 swap(event->total_time_running, next_event->total_time_running);
1105
1106 /*
1107 * Since we swizzled the values, update the user visible data too.
1108 */
1109 perf_event_update_userpage(event);
1110 perf_event_update_userpage(next_event);
1111}
1112
1113#define list_next_entry(pos, member) \
1114 list_entry(pos->member.next, typeof(*pos), member)
1115
1116static void perf_event_sync_stat(struct perf_event_context *ctx,
1117 struct perf_event_context *next_ctx)
1118{
1119 struct perf_event *event, *next_event;
1120
1121 if (!ctx->nr_stat)
1122 return;
1123
1124 event = list_first_entry(&ctx->event_list,
1125 struct perf_event, event_entry);
1126
1127 next_event = list_first_entry(&next_ctx->event_list,
1128 struct perf_event, event_entry);
1129
1130 while (&event->event_entry != &ctx->event_list &&
1131 &next_event->event_entry != &next_ctx->event_list) {
1132
1133 __perf_event_sync_stat(event, next_event);
1134
1135 event = list_next_entry(event, event_entry);
1136 next_event = list_next_entry(next_event, event_entry);
1137 }
1138}
1139
1140/*
1141 * Called from scheduler to remove the events of the current task,
1142 * with interrupts disabled.
1143 *
1144 * We stop each event and update the event value in event->count.
1145 *
1146 * This does not protect us against NMI, but disable()
1147 * sets the disabled bit in the control field of event _before_
1148 * accessing the event control register. If a NMI hits, then it will
1149 * not restart the event.
1150 */
1151void perf_event_task_sched_out(struct task_struct *task,
1152 struct task_struct *next, int cpu)
1153{
1154 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1155 struct perf_event_context *ctx = task->perf_event_ctxp;
1156 struct perf_event_context *next_ctx;
1157 struct perf_event_context *parent;
1158 struct pt_regs *regs;
1159 int do_switch = 1;
1160
1161 regs = task_pt_regs(task);
1162 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1163
1164 if (likely(!ctx || !cpuctx->task_ctx))
1165 return;
1166
1167 update_context_time(ctx);
1168
1169 rcu_read_lock();
1170 parent = rcu_dereference(ctx->parent_ctx);
1171 next_ctx = next->perf_event_ctxp;
1172 if (parent && next_ctx &&
1173 rcu_dereference(next_ctx->parent_ctx) == parent) {
1174 /*
1175 * Looks like the two contexts are clones, so we might be
1176 * able to optimize the context switch. We lock both
1177 * contexts and check that they are clones under the
1178 * lock (including re-checking that neither has been
1179 * uncloned in the meantime). It doesn't matter which
1180 * order we take the locks because no other cpu could
1181 * be trying to lock both of these tasks.
1182 */
1183 spin_lock(&ctx->lock);
1184 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1185 if (context_equiv(ctx, next_ctx)) {
1186 /*
1187 * XXX do we need a memory barrier of sorts
1188 * wrt to rcu_dereference() of perf_event_ctxp
1189 */
1190 task->perf_event_ctxp = next_ctx;
1191 next->perf_event_ctxp = ctx;
1192 ctx->task = next;
1193 next_ctx->task = task;
1194 do_switch = 0;
1195
1196 perf_event_sync_stat(ctx, next_ctx);
1197 }
1198 spin_unlock(&next_ctx->lock);
1199 spin_unlock(&ctx->lock);
1200 }
1201 rcu_read_unlock();
1202
1203 if (do_switch) {
1204 __perf_event_sched_out(ctx, cpuctx);
1205 cpuctx->task_ctx = NULL;
1206 }
1207}
1208
1209/*
1210 * Called with IRQs disabled
1211 */
1212static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1213{
1214 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1215
1216 if (!cpuctx->task_ctx)
1217 return;
1218
1219 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1220 return;
1221
1222 __perf_event_sched_out(ctx, cpuctx);
1223 cpuctx->task_ctx = NULL;
1224}
1225
1226/*
1227 * Called with IRQs disabled
1228 */
1229static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1230{
1231 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1232}
1233
1234static void
1235__perf_event_sched_in(struct perf_event_context *ctx,
1236 struct perf_cpu_context *cpuctx, int cpu)
1237{
1238 struct perf_event *event;
1239 int can_add_hw = 1;
1240
1241 spin_lock(&ctx->lock);
1242 ctx->is_active = 1;
1243 if (likely(!ctx->nr_events))
1244 goto out;
1245
1246 ctx->timestamp = perf_clock();
1247
1248 perf_disable();
1249
1250 /*
1251 * First go through the list and put on any pinned groups
1252 * in order to give them the best chance of going on.
1253 */
1254 list_for_each_entry(event, &ctx->group_list, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF ||
1256 !event->attr.pinned)
1257 continue;
1258 if (event->cpu != -1 && event->cpu != cpu)
1259 continue;
1260
1261 if (event != event->group_leader)
1262 event_sched_in(event, cpuctx, ctx, cpu);
1263 else {
1264 if (group_can_go_on(event, cpuctx, 1))
1265 group_sched_in(event, cpuctx, ctx, cpu);
1266 }
1267
1268 /*
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1271 */
1272 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1273 update_group_times(event);
1274 event->state = PERF_EVENT_STATE_ERROR;
1275 }
1276 }
1277
1278 list_for_each_entry(event, &ctx->group_list, group_entry) {
1279 /*
1280 * Ignore events in OFF or ERROR state, and
1281 * ignore pinned events since we did them already.
1282 */
1283 if (event->state <= PERF_EVENT_STATE_OFF ||
1284 event->attr.pinned)
1285 continue;
1286
1287 /*
1288 * Listen to the 'cpu' scheduling filter constraint
1289 * of events:
1290 */
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
1294 if (event != event->group_leader) {
1295 if (event_sched_in(event, cpuctx, ctx, cpu))
1296 can_add_hw = 0;
1297 } else {
1298 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1299 if (group_sched_in(event, cpuctx, ctx, cpu))
1300 can_add_hw = 0;
1301 }
1302 }
1303 }
1304 perf_enable();
1305 out:
1306 spin_unlock(&ctx->lock);
1307}
1308
1309/*
1310 * Called from scheduler to add the events of the current task
1311 * with interrupts disabled.
1312 *
1313 * We restore the event value and then enable it.
1314 *
1315 * This does not protect us against NMI, but enable()
1316 * sets the enabled bit in the control field of event _before_
1317 * accessing the event control register. If a NMI hits, then it will
1318 * keep the event running.
1319 */
1320void perf_event_task_sched_in(struct task_struct *task, int cpu)
1321{
1322 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1323 struct perf_event_context *ctx = task->perf_event_ctxp;
1324
1325 if (likely(!ctx))
1326 return;
1327 if (cpuctx->task_ctx == ctx)
1328 return;
1329 __perf_event_sched_in(ctx, cpuctx, cpu);
1330 cpuctx->task_ctx = ctx;
1331}
1332
1333static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1334{
1335 struct perf_event_context *ctx = &cpuctx->ctx;
1336
1337 __perf_event_sched_in(ctx, cpuctx, cpu);
1338}
1339
1340#define MAX_INTERRUPTS (~0ULL)
1341
1342static void perf_log_throttle(struct perf_event *event, int enable);
1343
1344static void perf_adjust_period(struct perf_event *event, u64 events)
1345{
1346 struct hw_perf_event *hwc = &event->hw;
1347 u64 period, sample_period;
1348 s64 delta;
1349
1350 events *= hwc->sample_period;
1351 period = div64_u64(events, event->attr.sample_freq);
1352
1353 delta = (s64)(period - hwc->sample_period);
1354 delta = (delta + 7) / 8; /* low pass filter */
1355
1356 sample_period = hwc->sample_period + delta;
1357
1358 if (!sample_period)
1359 sample_period = 1;
1360
1361 hwc->sample_period = sample_period;
1362}
1363
1364static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1365{
1366 struct perf_event *event;
1367 struct hw_perf_event *hwc;
1368 u64 interrupts, freq;
1369
1370 spin_lock(&ctx->lock);
1371 list_for_each_entry(event, &ctx->group_list, group_entry) {
1372 if (event->state != PERF_EVENT_STATE_ACTIVE)
1373 continue;
1374
1375 hwc = &event->hw;
1376
1377 interrupts = hwc->interrupts;
1378 hwc->interrupts = 0;
1379
1380 /*
1381 * unthrottle events on the tick
1382 */
1383 if (interrupts == MAX_INTERRUPTS) {
1384 perf_log_throttle(event, 1);
1385 event->pmu->unthrottle(event);
1386 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1387 }
1388
1389 if (!event->attr.freq || !event->attr.sample_freq)
1390 continue;
1391
1392 /*
1393 * if the specified freq < HZ then we need to skip ticks
1394 */
1395 if (event->attr.sample_freq < HZ) {
1396 freq = event->attr.sample_freq;
1397
1398 hwc->freq_count += freq;
1399 hwc->freq_interrupts += interrupts;
1400
1401 if (hwc->freq_count < HZ)
1402 continue;
1403
1404 interrupts = hwc->freq_interrupts;
1405 hwc->freq_interrupts = 0;
1406 hwc->freq_count -= HZ;
1407 } else
1408 freq = HZ;
1409
1410 perf_adjust_period(event, freq * interrupts);
1411
1412 /*
1413 * In order to avoid being stalled by an (accidental) huge
1414 * sample period, force reset the sample period if we didn't
1415 * get any events in this freq period.
1416 */
1417 if (!interrupts) {
1418 perf_disable();
1419 event->pmu->disable(event);
1420 atomic64_set(&hwc->period_left, 0);
1421 event->pmu->enable(event);
1422 perf_enable();
1423 }
1424 }
1425 spin_unlock(&ctx->lock);
1426}
1427
1428/*
1429 * Round-robin a context's events:
1430 */
1431static void rotate_ctx(struct perf_event_context *ctx)
1432{
1433 struct perf_event *event;
1434
1435 if (!ctx->nr_events)
1436 return;
1437
1438 spin_lock(&ctx->lock);
1439 /*
1440 * Rotate the first entry last (works just fine for group events too):
1441 */
1442 perf_disable();
1443 list_for_each_entry(event, &ctx->group_list, group_entry) {
1444 list_move_tail(&event->group_entry, &ctx->group_list);
1445 break;
1446 }
1447 perf_enable();
1448
1449 spin_unlock(&ctx->lock);
1450}
1451
1452void perf_event_task_tick(struct task_struct *curr, int cpu)
1453{
1454 struct perf_cpu_context *cpuctx;
1455 struct perf_event_context *ctx;
1456
1457 if (!atomic_read(&nr_events))
1458 return;
1459
1460 cpuctx = &per_cpu(perf_cpu_context, cpu);
1461 ctx = curr->perf_event_ctxp;
1462
1463 perf_ctx_adjust_freq(&cpuctx->ctx);
1464 if (ctx)
1465 perf_ctx_adjust_freq(ctx);
1466
1467 perf_event_cpu_sched_out(cpuctx);
1468 if (ctx)
1469 __perf_event_task_sched_out(ctx);
1470
1471 rotate_ctx(&cpuctx->ctx);
1472 if (ctx)
1473 rotate_ctx(ctx);
1474
1475 perf_event_cpu_sched_in(cpuctx, cpu);
1476 if (ctx)
1477 perf_event_task_sched_in(curr, cpu);
1478}
1479
1480/*
1481 * Enable all of a task's events that have been marked enable-on-exec.
1482 * This expects task == current.
1483 */
1484static void perf_event_enable_on_exec(struct task_struct *task)
1485{
1486 struct perf_event_context *ctx;
1487 struct perf_event *event;
1488 unsigned long flags;
1489 int enabled = 0;
1490
1491 local_irq_save(flags);
1492 ctx = task->perf_event_ctxp;
1493 if (!ctx || !ctx->nr_events)
1494 goto out;
1495
1496 __perf_event_task_sched_out(ctx);
1497
1498 spin_lock(&ctx->lock);
1499
1500 list_for_each_entry(event, &ctx->group_list, group_entry) {
1501 if (!event->attr.enable_on_exec)
1502 continue;
1503 event->attr.enable_on_exec = 0;
1504 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1505 continue;
1506 __perf_event_mark_enabled(event, ctx);
1507 enabled = 1;
1508 }
1509
1510 /*
1511 * Unclone this context if we enabled any event.
1512 */
1513 if (enabled)
1514 unclone_ctx(ctx);
1515
1516 spin_unlock(&ctx->lock);
1517
1518 perf_event_task_sched_in(task, smp_processor_id());
1519 out:
1520 local_irq_restore(flags);
1521}
1522
1523/*
1524 * Cross CPU call to read the hardware event
1525 */
1526static void __perf_event_read(void *info)
1527{
1528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1529 struct perf_event *event = info;
1530 struct perf_event_context *ctx = event->ctx;
1531 unsigned long flags;
1532
1533 /*
1534 * If this is a task context, we need to check whether it is
1535 * the current task context of this cpu. If not it has been
1536 * scheduled out before the smp call arrived. In that case
1537 * event->count would have been updated to a recent sample
1538 * when the event was scheduled out.
1539 */
1540 if (ctx->task && cpuctx->task_ctx != ctx)
1541 return;
1542
1543 local_irq_save(flags);
1544 if (ctx->is_active)
1545 update_context_time(ctx);
1546 event->pmu->read(event);
1547 update_event_times(event);
1548 local_irq_restore(flags);
1549}
1550
1551static u64 perf_event_read(struct perf_event *event)
1552{
1553 /*
1554 * If event is enabled and currently active on a CPU, update the
1555 * value in the event structure:
1556 */
1557 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1558 smp_call_function_single(event->oncpu,
1559 __perf_event_read, event, 1);
1560 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1561 update_event_times(event);
1562 }
1563
1564 return atomic64_read(&event->count);
1565}
1566
1567/*
1568 * Initialize the perf_event context in a task_struct:
1569 */
1570static void
1571__perf_event_init_context(struct perf_event_context *ctx,
1572 struct task_struct *task)
1573{
1574 memset(ctx, 0, sizeof(*ctx));
1575 spin_lock_init(&ctx->lock);
1576 mutex_init(&ctx->mutex);
1577 INIT_LIST_HEAD(&ctx->group_list);
1578 INIT_LIST_HEAD(&ctx->event_list);
1579 atomic_set(&ctx->refcount, 1);
1580 ctx->task = task;
1581}
1582
1583static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1584{
1585 struct perf_event_context *ctx;
1586 struct perf_cpu_context *cpuctx;
1587 struct task_struct *task;
1588 unsigned long flags;
1589 int err;
1590
1591 /*
1592 * If cpu is not a wildcard then this is a percpu event:
1593 */
1594 if (cpu != -1) {
1595 /* Must be root to operate on a CPU event: */
1596 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1597 return ERR_PTR(-EACCES);
1598
1599 if (cpu < 0 || cpu > num_possible_cpus())
1600 return ERR_PTR(-EINVAL);
1601
1602 /*
1603 * We could be clever and allow to attach a event to an
1604 * offline CPU and activate it when the CPU comes up, but
1605 * that's for later.
1606 */
1607 if (!cpu_isset(cpu, cpu_online_map))
1608 return ERR_PTR(-ENODEV);
1609
1610 cpuctx = &per_cpu(perf_cpu_context, cpu);
1611 ctx = &cpuctx->ctx;
1612 get_ctx(ctx);
1613
1614 return ctx;
1615 }
1616
1617 rcu_read_lock();
1618 if (!pid)
1619 task = current;
1620 else
1621 task = find_task_by_vpid(pid);
1622 if (task)
1623 get_task_struct(task);
1624 rcu_read_unlock();
1625
1626 if (!task)
1627 return ERR_PTR(-ESRCH);
1628
1629 /*
1630 * Can't attach events to a dying task.
1631 */
1632 err = -ESRCH;
1633 if (task->flags & PF_EXITING)
1634 goto errout;
1635
1636 /* Reuse ptrace permission checks for now. */
1637 err = -EACCES;
1638 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1639 goto errout;
1640
1641 retry:
1642 ctx = perf_lock_task_context(task, &flags);
1643 if (ctx) {
1644 unclone_ctx(ctx);
1645 spin_unlock_irqrestore(&ctx->lock, flags);
1646 }
1647
1648 if (!ctx) {
1649 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1650 err = -ENOMEM;
1651 if (!ctx)
1652 goto errout;
1653 __perf_event_init_context(ctx, task);
1654 get_ctx(ctx);
1655 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1656 /*
1657 * We raced with some other task; use
1658 * the context they set.
1659 */
1660 kfree(ctx);
1661 goto retry;
1662 }
1663 get_task_struct(task);
1664 }
1665
1666 put_task_struct(task);
1667 return ctx;
1668
1669 errout:
1670 put_task_struct(task);
1671 return ERR_PTR(err);
1672}
1673
1674static void free_event_rcu(struct rcu_head *head)
1675{
1676 struct perf_event *event;
1677
1678 event = container_of(head, struct perf_event, rcu_head);
1679 if (event->ns)
1680 put_pid_ns(event->ns);
1681 kfree(event);
1682}
1683
1684static void perf_pending_sync(struct perf_event *event);
1685
1686static void free_event(struct perf_event *event)
1687{
1688 perf_pending_sync(event);
1689
1690 if (!event->parent) {
1691 atomic_dec(&nr_events);
1692 if (event->attr.mmap)
1693 atomic_dec(&nr_mmap_events);
1694 if (event->attr.comm)
1695 atomic_dec(&nr_comm_events);
1696 if (event->attr.task)
1697 atomic_dec(&nr_task_events);
1698 }
1699
1700 if (event->output) {
1701 fput(event->output->filp);
1702 event->output = NULL;
1703 }
1704
1705 if (event->destroy)
1706 event->destroy(event);
1707
1708 put_ctx(event->ctx);
1709 call_rcu(&event->rcu_head, free_event_rcu);
1710}
1711
1712/*
1713 * Called when the last reference to the file is gone.
1714 */
1715static int perf_release(struct inode *inode, struct file *file)
1716{
1717 struct perf_event *event = file->private_data;
1718 struct perf_event_context *ctx = event->ctx;
1719
1720 file->private_data = NULL;
1721
1722 WARN_ON_ONCE(ctx->parent_ctx);
1723 mutex_lock(&ctx->mutex);
1724 perf_event_remove_from_context(event);
1725 mutex_unlock(&ctx->mutex);
1726
1727 mutex_lock(&event->owner->perf_event_mutex);
1728 list_del_init(&event->owner_entry);
1729 mutex_unlock(&event->owner->perf_event_mutex);
1730 put_task_struct(event->owner);
1731
1732 free_event(event);
1733
1734 return 0;
1735}
1736
1737static int perf_event_read_size(struct perf_event *event)
1738{
1739 int entry = sizeof(u64); /* value */
1740 int size = 0;
1741 int nr = 1;
1742
1743 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1744 size += sizeof(u64);
1745
1746 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1747 size += sizeof(u64);
1748
1749 if (event->attr.read_format & PERF_FORMAT_ID)
1750 entry += sizeof(u64);
1751
1752 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1753 nr += event->group_leader->nr_siblings;
1754 size += sizeof(u64);
1755 }
1756
1757 size += entry * nr;
1758
1759 return size;
1760}
1761
1762static u64 perf_event_read_value(struct perf_event *event)
1763{
1764 struct perf_event *child;
1765 u64 total = 0;
1766
1767 total += perf_event_read(event);
1768 list_for_each_entry(child, &event->child_list, child_list)
1769 total += perf_event_read(child);
1770
1771 return total;
1772}
1773
1774static int perf_event_read_entry(struct perf_event *event,
1775 u64 read_format, char __user *buf)
1776{
1777 int n = 0, count = 0;
1778 u64 values[2];
1779
1780 values[n++] = perf_event_read_value(event);
1781 if (read_format & PERF_FORMAT_ID)
1782 values[n++] = primary_event_id(event);
1783
1784 count = n * sizeof(u64);
1785
1786 if (copy_to_user(buf, values, count))
1787 return -EFAULT;
1788
1789 return count;
1790}
1791
1792static int perf_event_read_group(struct perf_event *event,
1793 u64 read_format, char __user *buf)
1794{
1795 struct perf_event *leader = event->group_leader, *sub;
1796 int n = 0, size = 0, err = -EFAULT;
1797 u64 values[3];
1798
1799 values[n++] = 1 + leader->nr_siblings;
1800 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1801 values[n++] = leader->total_time_enabled +
1802 atomic64_read(&leader->child_total_time_enabled);
1803 }
1804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1805 values[n++] = leader->total_time_running +
1806 atomic64_read(&leader->child_total_time_running);
1807 }
1808
1809 size = n * sizeof(u64);
1810
1811 if (copy_to_user(buf, values, size))
1812 return -EFAULT;
1813
1814 err = perf_event_read_entry(leader, read_format, buf + size);
1815 if (err < 0)
1816 return err;
1817
1818 size += err;
1819
1820 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1821 err = perf_event_read_entry(sub, read_format,
1822 buf + size);
1823 if (err < 0)
1824 return err;
1825
1826 size += err;
1827 }
1828
1829 return size;
1830}
1831
1832static int perf_event_read_one(struct perf_event *event,
1833 u64 read_format, char __user *buf)
1834{
1835 u64 values[4];
1836 int n = 0;
1837
1838 values[n++] = perf_event_read_value(event);
1839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1840 values[n++] = event->total_time_enabled +
1841 atomic64_read(&event->child_total_time_enabled);
1842 }
1843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1844 values[n++] = event->total_time_running +
1845 atomic64_read(&event->child_total_time_running);
1846 }
1847 if (read_format & PERF_FORMAT_ID)
1848 values[n++] = primary_event_id(event);
1849
1850 if (copy_to_user(buf, values, n * sizeof(u64)))
1851 return -EFAULT;
1852
1853 return n * sizeof(u64);
1854}
1855
1856/*
1857 * Read the performance event - simple non blocking version for now
1858 */
1859static ssize_t
1860perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1861{
1862 u64 read_format = event->attr.read_format;
1863 int ret;
1864
1865 /*
1866 * Return end-of-file for a read on a event that is in
1867 * error state (i.e. because it was pinned but it couldn't be
1868 * scheduled on to the CPU at some point).
1869 */
1870 if (event->state == PERF_EVENT_STATE_ERROR)
1871 return 0;
1872
1873 if (count < perf_event_read_size(event))
1874 return -ENOSPC;
1875
1876 WARN_ON_ONCE(event->ctx->parent_ctx);
1877 mutex_lock(&event->child_mutex);
1878 if (read_format & PERF_FORMAT_GROUP)
1879 ret = perf_event_read_group(event, read_format, buf);
1880 else
1881 ret = perf_event_read_one(event, read_format, buf);
1882 mutex_unlock(&event->child_mutex);
1883
1884 return ret;
1885}
1886
1887static ssize_t
1888perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1889{
1890 struct perf_event *event = file->private_data;
1891
1892 return perf_read_hw(event, buf, count);
1893}
1894
1895static unsigned int perf_poll(struct file *file, poll_table *wait)
1896{
1897 struct perf_event *event = file->private_data;
1898 struct perf_mmap_data *data;
1899 unsigned int events = POLL_HUP;
1900
1901 rcu_read_lock();
1902 data = rcu_dereference(event->data);
1903 if (data)
1904 events = atomic_xchg(&data->poll, 0);
1905 rcu_read_unlock();
1906
1907 poll_wait(file, &event->waitq, wait);
1908
1909 return events;
1910}
1911
1912static void perf_event_reset(struct perf_event *event)
1913{
1914 (void)perf_event_read(event);
1915 atomic64_set(&event->count, 0);
1916 perf_event_update_userpage(event);
1917}
1918
1919/*
1920 * Holding the top-level event's child_mutex means that any
1921 * descendant process that has inherited this event will block
1922 * in sync_child_event if it goes to exit, thus satisfying the
1923 * task existence requirements of perf_event_enable/disable.
1924 */
1925static void perf_event_for_each_child(struct perf_event *event,
1926 void (*func)(struct perf_event *))
1927{
1928 struct perf_event *child;
1929
1930 WARN_ON_ONCE(event->ctx->parent_ctx);
1931 mutex_lock(&event->child_mutex);
1932 func(event);
1933 list_for_each_entry(child, &event->child_list, child_list)
1934 func(child);
1935 mutex_unlock(&event->child_mutex);
1936}
1937
1938static void perf_event_for_each(struct perf_event *event,
1939 void (*func)(struct perf_event *))
1940{
1941 struct perf_event_context *ctx = event->ctx;
1942 struct perf_event *sibling;
1943
1944 WARN_ON_ONCE(ctx->parent_ctx);
1945 mutex_lock(&ctx->mutex);
1946 event = event->group_leader;
1947
1948 perf_event_for_each_child(event, func);
1949 func(event);
1950 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1951 perf_event_for_each_child(event, func);
1952 mutex_unlock(&ctx->mutex);
1953}
1954
1955static int perf_event_period(struct perf_event *event, u64 __user *arg)
1956{
1957 struct perf_event_context *ctx = event->ctx;
1958 unsigned long size;
1959 int ret = 0;
1960 u64 value;
1961
1962 if (!event->attr.sample_period)
1963 return -EINVAL;
1964
1965 size = copy_from_user(&value, arg, sizeof(value));
1966 if (size != sizeof(value))
1967 return -EFAULT;
1968
1969 if (!value)
1970 return -EINVAL;
1971
1972 spin_lock_irq(&ctx->lock);
1973 if (event->attr.freq) {
1974 if (value > sysctl_perf_event_sample_rate) {
1975 ret = -EINVAL;
1976 goto unlock;
1977 }
1978
1979 event->attr.sample_freq = value;
1980 } else {
1981 event->attr.sample_period = value;
1982 event->hw.sample_period = value;
1983 }
1984unlock:
1985 spin_unlock_irq(&ctx->lock);
1986
1987 return ret;
1988}
1989
1990int perf_event_set_output(struct perf_event *event, int output_fd);
1991
1992static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1993{
1994 struct perf_event *event = file->private_data;
1995 void (*func)(struct perf_event *);
1996 u32 flags = arg;
1997
1998 switch (cmd) {
1999 case PERF_EVENT_IOC_ENABLE:
2000 func = perf_event_enable;
2001 break;
2002 case PERF_EVENT_IOC_DISABLE:
2003 func = perf_event_disable;
2004 break;
2005 case PERF_EVENT_IOC_RESET:
2006 func = perf_event_reset;
2007 break;
2008
2009 case PERF_EVENT_IOC_REFRESH:
2010 return perf_event_refresh(event, arg);
2011
2012 case PERF_EVENT_IOC_PERIOD:
2013 return perf_event_period(event, (u64 __user *)arg);
2014
2015 case PERF_EVENT_IOC_SET_OUTPUT:
2016 return perf_event_set_output(event, arg);
2017
2018 default:
2019 return -ENOTTY;
2020 }
2021
2022 if (flags & PERF_IOC_FLAG_GROUP)
2023 perf_event_for_each(event, func);
2024 else
2025 perf_event_for_each_child(event, func);
2026
2027 return 0;
2028}
2029
2030int perf_event_task_enable(void)
2031{
2032 struct perf_event *event;
2033
2034 mutex_lock(&current->perf_event_mutex);
2035 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2036 perf_event_for_each_child(event, perf_event_enable);
2037 mutex_unlock(&current->perf_event_mutex);
2038
2039 return 0;
2040}
2041
2042int perf_event_task_disable(void)
2043{
2044 struct perf_event *event;
2045
2046 mutex_lock(&current->perf_event_mutex);
2047 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2048 perf_event_for_each_child(event, perf_event_disable);
2049 mutex_unlock(&current->perf_event_mutex);
2050
2051 return 0;
2052}
2053
2054#ifndef PERF_EVENT_INDEX_OFFSET
2055# define PERF_EVENT_INDEX_OFFSET 0
2056#endif
2057
2058static int perf_event_index(struct perf_event *event)
2059{
2060 if (event->state != PERF_EVENT_STATE_ACTIVE)
2061 return 0;
2062
2063 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2064}
2065
2066/*
2067 * Callers need to ensure there can be no nesting of this function, otherwise
2068 * the seqlock logic goes bad. We can not serialize this because the arch
2069 * code calls this from NMI context.
2070 */
2071void perf_event_update_userpage(struct perf_event *event)
2072{
2073 struct perf_event_mmap_page *userpg;
2074 struct perf_mmap_data *data;
2075
2076 rcu_read_lock();
2077 data = rcu_dereference(event->data);
2078 if (!data)
2079 goto unlock;
2080
2081 userpg = data->user_page;
2082
2083 /*
2084 * Disable preemption so as to not let the corresponding user-space
2085 * spin too long if we get preempted.
2086 */
2087 preempt_disable();
2088 ++userpg->lock;
2089 barrier();
2090 userpg->index = perf_event_index(event);
2091 userpg->offset = atomic64_read(&event->count);
2092 if (event->state == PERF_EVENT_STATE_ACTIVE)
2093 userpg->offset -= atomic64_read(&event->hw.prev_count);
2094
2095 userpg->time_enabled = event->total_time_enabled +
2096 atomic64_read(&event->child_total_time_enabled);
2097
2098 userpg->time_running = event->total_time_running +
2099 atomic64_read(&event->child_total_time_running);
2100
2101 barrier();
2102 ++userpg->lock;
2103 preempt_enable();
2104unlock:
2105 rcu_read_unlock();
2106}
2107
2108static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2109{
2110 struct perf_event *event = vma->vm_file->private_data;
2111 struct perf_mmap_data *data;
2112 int ret = VM_FAULT_SIGBUS;
2113
2114 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2115 if (vmf->pgoff == 0)
2116 ret = 0;
2117 return ret;
2118 }
2119
2120 rcu_read_lock();
2121 data = rcu_dereference(event->data);
2122 if (!data)
2123 goto unlock;
2124
2125 if (vmf->pgoff == 0) {
2126 vmf->page = virt_to_page(data->user_page);
2127 } else {
2128 int nr = vmf->pgoff - 1;
2129
2130 if ((unsigned)nr > data->nr_pages)
2131 goto unlock;
2132
2133 if (vmf->flags & FAULT_FLAG_WRITE)
2134 goto unlock;
2135
2136 vmf->page = virt_to_page(data->data_pages[nr]);
2137 }
2138
2139 get_page(vmf->page);
2140 vmf->page->mapping = vma->vm_file->f_mapping;
2141 vmf->page->index = vmf->pgoff;
2142
2143 ret = 0;
2144unlock:
2145 rcu_read_unlock();
2146
2147 return ret;
2148}
2149
2150static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2151{
2152 struct perf_mmap_data *data;
2153 unsigned long size;
2154 int i;
2155
2156 WARN_ON(atomic_read(&event->mmap_count));
2157
2158 size = sizeof(struct perf_mmap_data);
2159 size += nr_pages * sizeof(void *);
2160
2161 data = kzalloc(size, GFP_KERNEL);
2162 if (!data)
2163 goto fail;
2164
2165 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2166 if (!data->user_page)
2167 goto fail_user_page;
2168
2169 for (i = 0; i < nr_pages; i++) {
2170 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2171 if (!data->data_pages[i])
2172 goto fail_data_pages;
2173 }
2174
2175 data->nr_pages = nr_pages;
2176 atomic_set(&data->lock, -1);
2177
2178 if (event->attr.watermark) {
2179 data->watermark = min_t(long, PAGE_SIZE * nr_pages,
2180 event->attr.wakeup_watermark);
2181 }
2182 if (!data->watermark)
2183 data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
2184
2185 rcu_assign_pointer(event->data, data);
2186
2187 return 0;
2188
2189fail_data_pages:
2190 for (i--; i >= 0; i--)
2191 free_page((unsigned long)data->data_pages[i]);
2192
2193 free_page((unsigned long)data->user_page);
2194
2195fail_user_page:
2196 kfree(data);
2197
2198fail:
2199 return -ENOMEM;
2200}
2201
2202static void perf_mmap_free_page(unsigned long addr)
2203{
2204 struct page *page = virt_to_page((void *)addr);
2205
2206 page->mapping = NULL;
2207 __free_page(page);
2208}
2209
2210static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2211{
2212 struct perf_mmap_data *data;
2213 int i;
2214
2215 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2216
2217 perf_mmap_free_page((unsigned long)data->user_page);
2218 for (i = 0; i < data->nr_pages; i++)
2219 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2220
2221 kfree(data);
2222}
2223
2224static void perf_mmap_data_free(struct perf_event *event)
2225{
2226 struct perf_mmap_data *data = event->data;
2227
2228 WARN_ON(atomic_read(&event->mmap_count));
2229
2230 rcu_assign_pointer(event->data, NULL);
2231 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2232}
2233
2234static void perf_mmap_open(struct vm_area_struct *vma)
2235{
2236 struct perf_event *event = vma->vm_file->private_data;
2237
2238 atomic_inc(&event->mmap_count);
2239}
2240
2241static void perf_mmap_close(struct vm_area_struct *vma)
2242{
2243 struct perf_event *event = vma->vm_file->private_data;
2244
2245 WARN_ON_ONCE(event->ctx->parent_ctx);
2246 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2247 struct user_struct *user = current_user();
2248
2249 atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm);
2250 vma->vm_mm->locked_vm -= event->data->nr_locked;
2251 perf_mmap_data_free(event);
2252 mutex_unlock(&event->mmap_mutex);
2253 }
2254}
2255
2256static struct vm_operations_struct perf_mmap_vmops = {
2257 .open = perf_mmap_open,
2258 .close = perf_mmap_close,
2259 .fault = perf_mmap_fault,
2260 .page_mkwrite = perf_mmap_fault,
2261};
2262
2263static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2264{
2265 struct perf_event *event = file->private_data;
2266 unsigned long user_locked, user_lock_limit;
2267 struct user_struct *user = current_user();
2268 unsigned long locked, lock_limit;
2269 unsigned long vma_size;
2270 unsigned long nr_pages;
2271 long user_extra, extra;
2272 int ret = 0;
2273
2274 if (!(vma->vm_flags & VM_SHARED))
2275 return -EINVAL;
2276
2277 vma_size = vma->vm_end - vma->vm_start;
2278 nr_pages = (vma_size / PAGE_SIZE) - 1;
2279
2280 /*
2281 * If we have data pages ensure they're a power-of-two number, so we
2282 * can do bitmasks instead of modulo.
2283 */
2284 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2285 return -EINVAL;
2286
2287 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2288 return -EINVAL;
2289
2290 if (vma->vm_pgoff != 0)
2291 return -EINVAL;
2292
2293 WARN_ON_ONCE(event->ctx->parent_ctx);
2294 mutex_lock(&event->mmap_mutex);
2295 if (event->output) {
2296 ret = -EINVAL;
2297 goto unlock;
2298 }
2299
2300 if (atomic_inc_not_zero(&event->mmap_count)) {
2301 if (nr_pages != event->data->nr_pages)
2302 ret = -EINVAL;
2303 goto unlock;
2304 }
2305
2306 user_extra = nr_pages + 1;
2307 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2308
2309 /*
2310 * Increase the limit linearly with more CPUs:
2311 */
2312 user_lock_limit *= num_online_cpus();
2313
2314 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2315
2316 extra = 0;
2317 if (user_locked > user_lock_limit)
2318 extra = user_locked - user_lock_limit;
2319
2320 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2321 lock_limit >>= PAGE_SHIFT;
2322 locked = vma->vm_mm->locked_vm + extra;
2323
2324 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2325 !capable(CAP_IPC_LOCK)) {
2326 ret = -EPERM;
2327 goto unlock;
2328 }
2329
2330 WARN_ON(event->data);
2331 ret = perf_mmap_data_alloc(event, nr_pages);
2332 if (ret)
2333 goto unlock;
2334
2335 atomic_set(&event->mmap_count, 1);
2336 atomic_long_add(user_extra, &user->locked_vm);
2337 vma->vm_mm->locked_vm += extra;
2338 event->data->nr_locked = extra;
2339 if (vma->vm_flags & VM_WRITE)
2340 event->data->writable = 1;
2341
2342unlock:
2343 mutex_unlock(&event->mmap_mutex);
2344
2345 vma->vm_flags |= VM_RESERVED;
2346 vma->vm_ops = &perf_mmap_vmops;
2347
2348 return ret;
2349}
2350
2351static int perf_fasync(int fd, struct file *filp, int on)
2352{
2353 struct inode *inode = filp->f_path.dentry->d_inode;
2354 struct perf_event *event = filp->private_data;
2355 int retval;
2356
2357 mutex_lock(&inode->i_mutex);
2358 retval = fasync_helper(fd, filp, on, &event->fasync);
2359 mutex_unlock(&inode->i_mutex);
2360
2361 if (retval < 0)
2362 return retval;
2363
2364 return 0;
2365}
2366
2367static const struct file_operations perf_fops = {
2368 .release = perf_release,
2369 .read = perf_read,
2370 .poll = perf_poll,
2371 .unlocked_ioctl = perf_ioctl,
2372 .compat_ioctl = perf_ioctl,
2373 .mmap = perf_mmap,
2374 .fasync = perf_fasync,
2375};
2376
2377/*
2378 * Perf event wakeup
2379 *
2380 * If there's data, ensure we set the poll() state and publish everything
2381 * to user-space before waking everybody up.
2382 */
2383
2384void perf_event_wakeup(struct perf_event *event)
2385{
2386 wake_up_all(&event->waitq);
2387
2388 if (event->pending_kill) {
2389 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2390 event->pending_kill = 0;
2391 }
2392}
2393
2394/*
2395 * Pending wakeups
2396 *
2397 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2398 *
2399 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2400 * single linked list and use cmpxchg() to add entries lockless.
2401 */
2402
2403static void perf_pending_event(struct perf_pending_entry *entry)
2404{
2405 struct perf_event *event = container_of(entry,
2406 struct perf_event, pending);
2407
2408 if (event->pending_disable) {
2409 event->pending_disable = 0;
2410 __perf_event_disable(event);
2411 }
2412
2413 if (event->pending_wakeup) {
2414 event->pending_wakeup = 0;
2415 perf_event_wakeup(event);
2416 }
2417}
2418
2419#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2420
2421static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2422 PENDING_TAIL,
2423};
2424
2425static void perf_pending_queue(struct perf_pending_entry *entry,
2426 void (*func)(struct perf_pending_entry *))
2427{
2428 struct perf_pending_entry **head;
2429
2430 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2431 return;
2432
2433 entry->func = func;
2434
2435 head = &get_cpu_var(perf_pending_head);
2436
2437 do {
2438 entry->next = *head;
2439 } while (cmpxchg(head, entry->next, entry) != entry->next);
2440
2441 set_perf_event_pending();
2442
2443 put_cpu_var(perf_pending_head);
2444}
2445
2446static int __perf_pending_run(void)
2447{
2448 struct perf_pending_entry *list;
2449 int nr = 0;
2450
2451 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2452 while (list != PENDING_TAIL) {
2453 void (*func)(struct perf_pending_entry *);
2454 struct perf_pending_entry *entry = list;
2455
2456 list = list->next;
2457
2458 func = entry->func;
2459 entry->next = NULL;
2460 /*
2461 * Ensure we observe the unqueue before we issue the wakeup,
2462 * so that we won't be waiting forever.
2463 * -- see perf_not_pending().
2464 */
2465 smp_wmb();
2466
2467 func(entry);
2468 nr++;
2469 }
2470
2471 return nr;
2472}
2473
2474static inline int perf_not_pending(struct perf_event *event)
2475{
2476 /*
2477 * If we flush on whatever cpu we run, there is a chance we don't
2478 * need to wait.
2479 */
2480 get_cpu();
2481 __perf_pending_run();
2482 put_cpu();
2483
2484 /*
2485 * Ensure we see the proper queue state before going to sleep
2486 * so that we do not miss the wakeup. -- see perf_pending_handle()
2487 */
2488 smp_rmb();
2489 return event->pending.next == NULL;
2490}
2491
2492static void perf_pending_sync(struct perf_event *event)
2493{
2494 wait_event(event->waitq, perf_not_pending(event));
2495}
2496
2497void perf_event_do_pending(void)
2498{
2499 __perf_pending_run();
2500}
2501
2502/*
2503 * Callchain support -- arch specific
2504 */
2505
2506__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2507{
2508 return NULL;
2509}
2510
2511/*
2512 * Output
2513 */
2514static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2515 unsigned long offset, unsigned long head)
2516{
2517 unsigned long mask;
2518
2519 if (!data->writable)
2520 return true;
2521
2522 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2523
2524 offset = (offset - tail) & mask;
2525 head = (head - tail) & mask;
2526
2527 if ((int)(head - offset) < 0)
2528 return false;
2529
2530 return true;
2531}
2532
2533static void perf_output_wakeup(struct perf_output_handle *handle)
2534{
2535 atomic_set(&handle->data->poll, POLL_IN);
2536
2537 if (handle->nmi) {
2538 handle->event->pending_wakeup = 1;
2539 perf_pending_queue(&handle->event->pending,
2540 perf_pending_event);
2541 } else
2542 perf_event_wakeup(handle->event);
2543}
2544
2545/*
2546 * Curious locking construct.
2547 *
2548 * We need to ensure a later event_id doesn't publish a head when a former
2549 * event_id isn't done writing. However since we need to deal with NMIs we
2550 * cannot fully serialize things.
2551 *
2552 * What we do is serialize between CPUs so we only have to deal with NMI
2553 * nesting on a single CPU.
2554 *
2555 * We only publish the head (and generate a wakeup) when the outer-most
2556 * event_id completes.
2557 */
2558static void perf_output_lock(struct perf_output_handle *handle)
2559{
2560 struct perf_mmap_data *data = handle->data;
2561 int cpu;
2562
2563 handle->locked = 0;
2564
2565 local_irq_save(handle->flags);
2566 cpu = smp_processor_id();
2567
2568 if (in_nmi() && atomic_read(&data->lock) == cpu)
2569 return;
2570
2571 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2572 cpu_relax();
2573
2574 handle->locked = 1;
2575}
2576
2577static void perf_output_unlock(struct perf_output_handle *handle)
2578{
2579 struct perf_mmap_data *data = handle->data;
2580 unsigned long head;
2581 int cpu;
2582
2583 data->done_head = data->head;
2584
2585 if (!handle->locked)
2586 goto out;
2587
2588again:
2589 /*
2590 * The xchg implies a full barrier that ensures all writes are done
2591 * before we publish the new head, matched by a rmb() in userspace when
2592 * reading this position.
2593 */
2594 while ((head = atomic_long_xchg(&data->done_head, 0)))
2595 data->user_page->data_head = head;
2596
2597 /*
2598 * NMI can happen here, which means we can miss a done_head update.
2599 */
2600
2601 cpu = atomic_xchg(&data->lock, -1);
2602 WARN_ON_ONCE(cpu != smp_processor_id());
2603
2604 /*
2605 * Therefore we have to validate we did not indeed do so.
2606 */
2607 if (unlikely(atomic_long_read(&data->done_head))) {
2608 /*
2609 * Since we had it locked, we can lock it again.
2610 */
2611 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2612 cpu_relax();
2613
2614 goto again;
2615 }
2616
2617 if (atomic_xchg(&data->wakeup, 0))
2618 perf_output_wakeup(handle);
2619out:
2620 local_irq_restore(handle->flags);
2621}
2622
2623void perf_output_copy(struct perf_output_handle *handle,
2624 const void *buf, unsigned int len)
2625{
2626 unsigned int pages_mask;
2627 unsigned int offset;
2628 unsigned int size;
2629 void **pages;
2630
2631 offset = handle->offset;
2632 pages_mask = handle->data->nr_pages - 1;
2633 pages = handle->data->data_pages;
2634
2635 do {
2636 unsigned int page_offset;
2637 int nr;
2638
2639 nr = (offset >> PAGE_SHIFT) & pages_mask;
2640 page_offset = offset & (PAGE_SIZE - 1);
2641 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2642
2643 memcpy(pages[nr] + page_offset, buf, size);
2644
2645 len -= size;
2646 buf += size;
2647 offset += size;
2648 } while (len);
2649
2650 handle->offset = offset;
2651
2652 /*
2653 * Check we didn't copy past our reservation window, taking the
2654 * possible unsigned int wrap into account.
2655 */
2656 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2657}
2658
2659int perf_output_begin(struct perf_output_handle *handle,
2660 struct perf_event *event, unsigned int size,
2661 int nmi, int sample)
2662{
2663 struct perf_event *output_event;
2664 struct perf_mmap_data *data;
2665 unsigned long tail, offset, head;
2666 int have_lost;
2667 struct {
2668 struct perf_event_header header;
2669 u64 id;
2670 u64 lost;
2671 } lost_event;
2672
2673 rcu_read_lock();
2674 /*
2675 * For inherited events we send all the output towards the parent.
2676 */
2677 if (event->parent)
2678 event = event->parent;
2679
2680 output_event = rcu_dereference(event->output);
2681 if (output_event)
2682 event = output_event;
2683
2684 data = rcu_dereference(event->data);
2685 if (!data)
2686 goto out;
2687
2688 handle->data = data;
2689 handle->event = event;
2690 handle->nmi = nmi;
2691 handle->sample = sample;
2692
2693 if (!data->nr_pages)
2694 goto fail;
2695
2696 have_lost = atomic_read(&data->lost);
2697 if (have_lost)
2698 size += sizeof(lost_event);
2699
2700 perf_output_lock(handle);
2701
2702 do {
2703 /*
2704 * Userspace could choose to issue a mb() before updating the
2705 * tail pointer. So that all reads will be completed before the
2706 * write is issued.
2707 */
2708 tail = ACCESS_ONCE(data->user_page->data_tail);
2709 smp_rmb();
2710 offset = head = atomic_long_read(&data->head);
2711 head += size;
2712 if (unlikely(!perf_output_space(data, tail, offset, head)))
2713 goto fail;
2714 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2715
2716 handle->offset = offset;
2717 handle->head = head;
2718
2719 if (head - tail > data->watermark)
2720 atomic_set(&data->wakeup, 1);
2721
2722 if (have_lost) {
2723 lost_event.header.type = PERF_RECORD_LOST;
2724 lost_event.header.misc = 0;
2725 lost_event.header.size = sizeof(lost_event);
2726 lost_event.id = event->id;
2727 lost_event.lost = atomic_xchg(&data->lost, 0);
2728
2729 perf_output_put(handle, lost_event);
2730 }
2731
2732 return 0;
2733
2734fail:
2735 atomic_inc(&data->lost);
2736 perf_output_unlock(handle);
2737out:
2738 rcu_read_unlock();
2739
2740 return -ENOSPC;
2741}
2742
2743void perf_output_end(struct perf_output_handle *handle)
2744{
2745 struct perf_event *event = handle->event;
2746 struct perf_mmap_data *data = handle->data;
2747
2748 int wakeup_events = event->attr.wakeup_events;
2749
2750 if (handle->sample && wakeup_events) {
2751 int events = atomic_inc_return(&data->events);
2752 if (events >= wakeup_events) {
2753 atomic_sub(wakeup_events, &data->events);
2754 atomic_set(&data->wakeup, 1);
2755 }
2756 }
2757
2758 perf_output_unlock(handle);
2759 rcu_read_unlock();
2760}
2761
2762static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2763{
2764 /*
2765 * only top level events have the pid namespace they were created in
2766 */
2767 if (event->parent)
2768 event = event->parent;
2769
2770 return task_tgid_nr_ns(p, event->ns);
2771}
2772
2773static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2774{
2775 /*
2776 * only top level events have the pid namespace they were created in
2777 */
2778 if (event->parent)
2779 event = event->parent;
2780
2781 return task_pid_nr_ns(p, event->ns);
2782}
2783
2784static void perf_output_read_one(struct perf_output_handle *handle,
2785 struct perf_event *event)
2786{
2787 u64 read_format = event->attr.read_format;
2788 u64 values[4];
2789 int n = 0;
2790
2791 values[n++] = atomic64_read(&event->count);
2792 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2793 values[n++] = event->total_time_enabled +
2794 atomic64_read(&event->child_total_time_enabled);
2795 }
2796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2797 values[n++] = event->total_time_running +
2798 atomic64_read(&event->child_total_time_running);
2799 }
2800 if (read_format & PERF_FORMAT_ID)
2801 values[n++] = primary_event_id(event);
2802
2803 perf_output_copy(handle, values, n * sizeof(u64));
2804}
2805
2806/*
2807 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2808 */
2809static void perf_output_read_group(struct perf_output_handle *handle,
2810 struct perf_event *event)
2811{
2812 struct perf_event *leader = event->group_leader, *sub;
2813 u64 read_format = event->attr.read_format;
2814 u64 values[5];
2815 int n = 0;
2816
2817 values[n++] = 1 + leader->nr_siblings;
2818
2819 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2820 values[n++] = leader->total_time_enabled;
2821
2822 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2823 values[n++] = leader->total_time_running;
2824
2825 if (leader != event)
2826 leader->pmu->read(leader);
2827
2828 values[n++] = atomic64_read(&leader->count);
2829 if (read_format & PERF_FORMAT_ID)
2830 values[n++] = primary_event_id(leader);
2831
2832 perf_output_copy(handle, values, n * sizeof(u64));
2833
2834 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2835 n = 0;
2836
2837 if (sub != event)
2838 sub->pmu->read(sub);
2839
2840 values[n++] = atomic64_read(&sub->count);
2841 if (read_format & PERF_FORMAT_ID)
2842 values[n++] = primary_event_id(sub);
2843
2844 perf_output_copy(handle, values, n * sizeof(u64));
2845 }
2846}
2847
2848static void perf_output_read(struct perf_output_handle *handle,
2849 struct perf_event *event)
2850{
2851 if (event->attr.read_format & PERF_FORMAT_GROUP)
2852 perf_output_read_group(handle, event);
2853 else
2854 perf_output_read_one(handle, event);
2855}
2856
2857void perf_output_sample(struct perf_output_handle *handle,
2858 struct perf_event_header *header,
2859 struct perf_sample_data *data,
2860 struct perf_event *event)
2861{
2862 u64 sample_type = data->type;
2863
2864 perf_output_put(handle, *header);
2865
2866 if (sample_type & PERF_SAMPLE_IP)
2867 perf_output_put(handle, data->ip);
2868
2869 if (sample_type & PERF_SAMPLE_TID)
2870 perf_output_put(handle, data->tid_entry);
2871
2872 if (sample_type & PERF_SAMPLE_TIME)
2873 perf_output_put(handle, data->time);
2874
2875 if (sample_type & PERF_SAMPLE_ADDR)
2876 perf_output_put(handle, data->addr);
2877
2878 if (sample_type & PERF_SAMPLE_ID)
2879 perf_output_put(handle, data->id);
2880
2881 if (sample_type & PERF_SAMPLE_STREAM_ID)
2882 perf_output_put(handle, data->stream_id);
2883
2884 if (sample_type & PERF_SAMPLE_CPU)
2885 perf_output_put(handle, data->cpu_entry);
2886
2887 if (sample_type & PERF_SAMPLE_PERIOD)
2888 perf_output_put(handle, data->period);
2889
2890 if (sample_type & PERF_SAMPLE_READ)
2891 perf_output_read(handle, event);
2892
2893 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2894 if (data->callchain) {
2895 int size = 1;
2896
2897 if (data->callchain)
2898 size += data->callchain->nr;
2899
2900 size *= sizeof(u64);
2901
2902 perf_output_copy(handle, data->callchain, size);
2903 } else {
2904 u64 nr = 0;
2905 perf_output_put(handle, nr);
2906 }
2907 }
2908
2909 if (sample_type & PERF_SAMPLE_RAW) {
2910 if (data->raw) {
2911 perf_output_put(handle, data->raw->size);
2912 perf_output_copy(handle, data->raw->data,
2913 data->raw->size);
2914 } else {
2915 struct {
2916 u32 size;
2917 u32 data;
2918 } raw = {
2919 .size = sizeof(u32),
2920 .data = 0,
2921 };
2922 perf_output_put(handle, raw);
2923 }
2924 }
2925}
2926
2927void perf_prepare_sample(struct perf_event_header *header,
2928 struct perf_sample_data *data,
2929 struct perf_event *event,
2930 struct pt_regs *regs)
2931{
2932 u64 sample_type = event->attr.sample_type;
2933
2934 data->type = sample_type;
2935
2936 header->type = PERF_RECORD_SAMPLE;
2937 header->size = sizeof(*header);
2938
2939 header->misc = 0;
2940 header->misc |= perf_misc_flags(regs);
2941
2942 if (sample_type & PERF_SAMPLE_IP) {
2943 data->ip = perf_instruction_pointer(regs);
2944
2945 header->size += sizeof(data->ip);
2946 }
2947
2948 if (sample_type & PERF_SAMPLE_TID) {
2949 /* namespace issues */
2950 data->tid_entry.pid = perf_event_pid(event, current);
2951 data->tid_entry.tid = perf_event_tid(event, current);
2952
2953 header->size += sizeof(data->tid_entry);
2954 }
2955
2956 if (sample_type & PERF_SAMPLE_TIME) {
2957 data->time = perf_clock();
2958
2959 header->size += sizeof(data->time);
2960 }
2961
2962 if (sample_type & PERF_SAMPLE_ADDR)
2963 header->size += sizeof(data->addr);
2964
2965 if (sample_type & PERF_SAMPLE_ID) {
2966 data->id = primary_event_id(event);
2967
2968 header->size += sizeof(data->id);
2969 }
2970
2971 if (sample_type & PERF_SAMPLE_STREAM_ID) {
2972 data->stream_id = event->id;
2973
2974 header->size += sizeof(data->stream_id);
2975 }
2976
2977 if (sample_type & PERF_SAMPLE_CPU) {
2978 data->cpu_entry.cpu = raw_smp_processor_id();
2979 data->cpu_entry.reserved = 0;
2980
2981 header->size += sizeof(data->cpu_entry);
2982 }
2983
2984 if (sample_type & PERF_SAMPLE_PERIOD)
2985 header->size += sizeof(data->period);
2986
2987 if (sample_type & PERF_SAMPLE_READ)
2988 header->size += perf_event_read_size(event);
2989
2990 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2991 int size = 1;
2992
2993 data->callchain = perf_callchain(regs);
2994
2995 if (data->callchain)
2996 size += data->callchain->nr;
2997
2998 header->size += size * sizeof(u64);
2999 }
3000
3001 if (sample_type & PERF_SAMPLE_RAW) {
3002 int size = sizeof(u32);
3003
3004 if (data->raw)
3005 size += data->raw->size;
3006 else
3007 size += sizeof(u32);
3008
3009 WARN_ON_ONCE(size & (sizeof(u64)-1));
3010 header->size += size;
3011 }
3012}
3013
3014static void perf_event_output(struct perf_event *event, int nmi,
3015 struct perf_sample_data *data,
3016 struct pt_regs *regs)
3017{
3018 struct perf_output_handle handle;
3019 struct perf_event_header header;
3020
3021 perf_prepare_sample(&header, data, event, regs);
3022
3023 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3024 return;
3025
3026 perf_output_sample(&handle, &header, data, event);
3027
3028 perf_output_end(&handle);
3029}
3030
3031/*
3032 * read event_id
3033 */
3034
3035struct perf_read_event {
3036 struct perf_event_header header;
3037
3038 u32 pid;
3039 u32 tid;
3040};
3041
3042static void
3043perf_event_read_event(struct perf_event *event,
3044 struct task_struct *task)
3045{
3046 struct perf_output_handle handle;
3047 struct perf_read_event read_event = {
3048 .header = {
3049 .type = PERF_RECORD_READ,
3050 .misc = 0,
3051 .size = sizeof(read_event) + perf_event_read_size(event),
3052 },
3053 .pid = perf_event_pid(event, task),
3054 .tid = perf_event_tid(event, task),
3055 };
3056 int ret;
3057
3058 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3059 if (ret)
3060 return;
3061
3062 perf_output_put(&handle, read_event);
3063 perf_output_read(&handle, event);
3064
3065 perf_output_end(&handle);
3066}
3067
3068/*
3069 * task tracking -- fork/exit
3070 *
3071 * enabled by: attr.comm | attr.mmap | attr.task
3072 */
3073
3074struct perf_task_event {
3075 struct task_struct *task;
3076 struct perf_event_context *task_ctx;
3077
3078 struct {
3079 struct perf_event_header header;
3080
3081 u32 pid;
3082 u32 ppid;
3083 u32 tid;
3084 u32 ptid;
3085 u64 time;
3086 } event_id;
3087};
3088
3089static void perf_event_task_output(struct perf_event *event,
3090 struct perf_task_event *task_event)
3091{
3092 struct perf_output_handle handle;
3093 int size;
3094 struct task_struct *task = task_event->task;
3095 int ret;
3096
3097 size = task_event->event_id.header.size;
3098 ret = perf_output_begin(&handle, event, size, 0, 0);
3099
3100 if (ret)
3101 return;
3102
3103 task_event->event_id.pid = perf_event_pid(event, task);
3104 task_event->event_id.ppid = perf_event_pid(event, current);
3105
3106 task_event->event_id.tid = perf_event_tid(event, task);
3107 task_event->event_id.ptid = perf_event_tid(event, current);
3108
3109 task_event->event_id.time = perf_clock();
3110
3111 perf_output_put(&handle, task_event->event_id);
3112
3113 perf_output_end(&handle);
3114}
3115
3116static int perf_event_task_match(struct perf_event *event)
3117{
3118 if (event->attr.comm || event->attr.mmap || event->attr.task)
3119 return 1;
3120
3121 return 0;
3122}
3123
3124static void perf_event_task_ctx(struct perf_event_context *ctx,
3125 struct perf_task_event *task_event)
3126{
3127 struct perf_event *event;
3128
3129 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3130 return;
3131
3132 rcu_read_lock();
3133 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3134 if (perf_event_task_match(event))
3135 perf_event_task_output(event, task_event);
3136 }
3137 rcu_read_unlock();
3138}
3139
3140static void perf_event_task_event(struct perf_task_event *task_event)
3141{
3142 struct perf_cpu_context *cpuctx;
3143 struct perf_event_context *ctx = task_event->task_ctx;
3144
3145 cpuctx = &get_cpu_var(perf_cpu_context);
3146 perf_event_task_ctx(&cpuctx->ctx, task_event);
3147 put_cpu_var(perf_cpu_context);
3148
3149 rcu_read_lock();
3150 if (!ctx)
3151 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3152 if (ctx)
3153 perf_event_task_ctx(ctx, task_event);
3154 rcu_read_unlock();
3155}
3156
3157static void perf_event_task(struct task_struct *task,
3158 struct perf_event_context *task_ctx,
3159 int new)
3160{
3161 struct perf_task_event task_event;
3162
3163 if (!atomic_read(&nr_comm_events) &&
3164 !atomic_read(&nr_mmap_events) &&
3165 !atomic_read(&nr_task_events))
3166 return;
3167
3168 task_event = (struct perf_task_event){
3169 .task = task,
3170 .task_ctx = task_ctx,
3171 .event_id = {
3172 .header = {
3173 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3174 .misc = 0,
3175 .size = sizeof(task_event.event_id),
3176 },
3177 /* .pid */
3178 /* .ppid */
3179 /* .tid */
3180 /* .ptid */
3181 },
3182 };
3183
3184 perf_event_task_event(&task_event);
3185}
3186
3187void perf_event_fork(struct task_struct *task)
3188{
3189 perf_event_task(task, NULL, 1);
3190}
3191
3192/*
3193 * comm tracking
3194 */
3195
3196struct perf_comm_event {
3197 struct task_struct *task;
3198 char *comm;
3199 int comm_size;
3200
3201 struct {
3202 struct perf_event_header header;
3203
3204 u32 pid;
3205 u32 tid;
3206 } event_id;
3207};
3208
3209static void perf_event_comm_output(struct perf_event *event,
3210 struct perf_comm_event *comm_event)
3211{
3212 struct perf_output_handle handle;
3213 int size = comm_event->event_id.header.size;
3214 int ret = perf_output_begin(&handle, event, size, 0, 0);
3215
3216 if (ret)
3217 return;
3218
3219 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3220 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3221
3222 perf_output_put(&handle, comm_event->event_id);
3223 perf_output_copy(&handle, comm_event->comm,
3224 comm_event->comm_size);
3225 perf_output_end(&handle);
3226}
3227
3228static int perf_event_comm_match(struct perf_event *event)
3229{
3230 if (event->attr.comm)
3231 return 1;
3232
3233 return 0;
3234}
3235
3236static void perf_event_comm_ctx(struct perf_event_context *ctx,
3237 struct perf_comm_event *comm_event)
3238{
3239 struct perf_event *event;
3240
3241 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3242 return;
3243
3244 rcu_read_lock();
3245 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3246 if (perf_event_comm_match(event))
3247 perf_event_comm_output(event, comm_event);
3248 }
3249 rcu_read_unlock();
3250}
3251
3252static void perf_event_comm_event(struct perf_comm_event *comm_event)
3253{
3254 struct perf_cpu_context *cpuctx;
3255 struct perf_event_context *ctx;
3256 unsigned int size;
3257 char comm[TASK_COMM_LEN];
3258
3259 memset(comm, 0, sizeof(comm));
3260 strncpy(comm, comm_event->task->comm, sizeof(comm));
3261 size = ALIGN(strlen(comm)+1, sizeof(u64));
3262
3263 comm_event->comm = comm;
3264 comm_event->comm_size = size;
3265
3266 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3267
3268 cpuctx = &get_cpu_var(perf_cpu_context);
3269 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3270 put_cpu_var(perf_cpu_context);
3271
3272 rcu_read_lock();
3273 /*
3274 * doesn't really matter which of the child contexts the
3275 * events ends up in.
3276 */
3277 ctx = rcu_dereference(current->perf_event_ctxp);
3278 if (ctx)
3279 perf_event_comm_ctx(ctx, comm_event);
3280 rcu_read_unlock();
3281}
3282
3283void perf_event_comm(struct task_struct *task)
3284{
3285 struct perf_comm_event comm_event;
3286
3287 if (task->perf_event_ctxp)
3288 perf_event_enable_on_exec(task);
3289
3290 if (!atomic_read(&nr_comm_events))
3291 return;
3292
3293 comm_event = (struct perf_comm_event){
3294 .task = task,
3295 /* .comm */
3296 /* .comm_size */
3297 .event_id = {
3298 .header = {
3299 .type = PERF_RECORD_COMM,
3300 .misc = 0,
3301 /* .size */
3302 },
3303 /* .pid */
3304 /* .tid */
3305 },
3306 };
3307
3308 perf_event_comm_event(&comm_event);
3309}
3310
3311/*
3312 * mmap tracking
3313 */
3314
3315struct perf_mmap_event {
3316 struct vm_area_struct *vma;
3317
3318 const char *file_name;
3319 int file_size;
3320
3321 struct {
3322 struct perf_event_header header;
3323
3324 u32 pid;
3325 u32 tid;
3326 u64 start;
3327 u64 len;
3328 u64 pgoff;
3329 } event_id;
3330};
3331
3332static void perf_event_mmap_output(struct perf_event *event,
3333 struct perf_mmap_event *mmap_event)
3334{
3335 struct perf_output_handle handle;
3336 int size = mmap_event->event_id.header.size;
3337 int ret = perf_output_begin(&handle, event, size, 0, 0);
3338
3339 if (ret)
3340 return;
3341
3342 mmap_event->event_id.pid = perf_event_pid(event, current);
3343 mmap_event->event_id.tid = perf_event_tid(event, current);
3344
3345 perf_output_put(&handle, mmap_event->event_id);
3346 perf_output_copy(&handle, mmap_event->file_name,
3347 mmap_event->file_size);
3348 perf_output_end(&handle);
3349}
3350
3351static int perf_event_mmap_match(struct perf_event *event,
3352 struct perf_mmap_event *mmap_event)
3353{
3354 if (event->attr.mmap)
3355 return 1;
3356
3357 return 0;
3358}
3359
3360static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3361 struct perf_mmap_event *mmap_event)
3362{
3363 struct perf_event *event;
3364
3365 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3366 return;
3367
3368 rcu_read_lock();
3369 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3370 if (perf_event_mmap_match(event, mmap_event))
3371 perf_event_mmap_output(event, mmap_event);
3372 }
3373 rcu_read_unlock();
3374}
3375
3376static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3377{
3378 struct perf_cpu_context *cpuctx;
3379 struct perf_event_context *ctx;
3380 struct vm_area_struct *vma = mmap_event->vma;
3381 struct file *file = vma->vm_file;
3382 unsigned int size;
3383 char tmp[16];
3384 char *buf = NULL;
3385 const char *name;
3386
3387 memset(tmp, 0, sizeof(tmp));
3388
3389 if (file) {
3390 /*
3391 * d_path works from the end of the buffer backwards, so we
3392 * need to add enough zero bytes after the string to handle
3393 * the 64bit alignment we do later.
3394 */
3395 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3396 if (!buf) {
3397 name = strncpy(tmp, "//enomem", sizeof(tmp));
3398 goto got_name;
3399 }
3400 name = d_path(&file->f_path, buf, PATH_MAX);
3401 if (IS_ERR(name)) {
3402 name = strncpy(tmp, "//toolong", sizeof(tmp));
3403 goto got_name;
3404 }
3405 } else {
3406 if (arch_vma_name(mmap_event->vma)) {
3407 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3408 sizeof(tmp));
3409 goto got_name;
3410 }
3411
3412 if (!vma->vm_mm) {
3413 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3414 goto got_name;
3415 }
3416
3417 name = strncpy(tmp, "//anon", sizeof(tmp));
3418 goto got_name;
3419 }
3420
3421got_name:
3422 size = ALIGN(strlen(name)+1, sizeof(u64));
3423
3424 mmap_event->file_name = name;
3425 mmap_event->file_size = size;
3426
3427 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3428
3429 cpuctx = &get_cpu_var(perf_cpu_context);
3430 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3431 put_cpu_var(perf_cpu_context);
3432
3433 rcu_read_lock();
3434 /*
3435 * doesn't really matter which of the child contexts the
3436 * events ends up in.
3437 */
3438 ctx = rcu_dereference(current->perf_event_ctxp);
3439 if (ctx)
3440 perf_event_mmap_ctx(ctx, mmap_event);
3441 rcu_read_unlock();
3442
3443 kfree(buf);
3444}
3445
3446void __perf_event_mmap(struct vm_area_struct *vma)
3447{
3448 struct perf_mmap_event mmap_event;
3449
3450 if (!atomic_read(&nr_mmap_events))
3451 return;
3452
3453 mmap_event = (struct perf_mmap_event){
3454 .vma = vma,
3455 /* .file_name */
3456 /* .file_size */
3457 .event_id = {
3458 .header = {
3459 .type = PERF_RECORD_MMAP,
3460 .misc = 0,
3461 /* .size */
3462 },
3463 /* .pid */
3464 /* .tid */
3465 .start = vma->vm_start,
3466 .len = vma->vm_end - vma->vm_start,
3467 .pgoff = vma->vm_pgoff,
3468 },
3469 };
3470
3471 perf_event_mmap_event(&mmap_event);
3472}
3473
3474/*
3475 * IRQ throttle logging
3476 */
3477
3478static void perf_log_throttle(struct perf_event *event, int enable)
3479{
3480 struct perf_output_handle handle;
3481 int ret;
3482
3483 struct {
3484 struct perf_event_header header;
3485 u64 time;
3486 u64 id;
3487 u64 stream_id;
3488 } throttle_event = {
3489 .header = {
3490 .type = PERF_RECORD_THROTTLE,
3491 .misc = 0,
3492 .size = sizeof(throttle_event),
3493 },
3494 .time = perf_clock(),
3495 .id = primary_event_id(event),
3496 .stream_id = event->id,
3497 };
3498
3499 if (enable)
3500 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3501
3502 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3503 if (ret)
3504 return;
3505
3506 perf_output_put(&handle, throttle_event);
3507 perf_output_end(&handle);
3508}
3509
3510/*
3511 * Generic event overflow handling, sampling.
3512 */
3513
3514static int __perf_event_overflow(struct perf_event *event, int nmi,
3515 int throttle, struct perf_sample_data *data,
3516 struct pt_regs *regs)
3517{
3518 int events = atomic_read(&event->event_limit);
3519 struct hw_perf_event *hwc = &event->hw;
3520 int ret = 0;
3521
3522 throttle = (throttle && event->pmu->unthrottle != NULL);
3523
3524 if (!throttle) {
3525 hwc->interrupts++;
3526 } else {
3527 if (hwc->interrupts != MAX_INTERRUPTS) {
3528 hwc->interrupts++;
3529 if (HZ * hwc->interrupts >
3530 (u64)sysctl_perf_event_sample_rate) {
3531 hwc->interrupts = MAX_INTERRUPTS;
3532 perf_log_throttle(event, 0);
3533 ret = 1;
3534 }
3535 } else {
3536 /*
3537 * Keep re-disabling events even though on the previous
3538 * pass we disabled it - just in case we raced with a
3539 * sched-in and the event got enabled again:
3540 */
3541 ret = 1;
3542 }
3543 }
3544
3545 if (event->attr.freq) {
3546 u64 now = perf_clock();
3547 s64 delta = now - hwc->freq_stamp;
3548
3549 hwc->freq_stamp = now;
3550
3551 if (delta > 0 && delta < TICK_NSEC)
3552 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3553 }
3554
3555 /*
3556 * XXX event_limit might not quite work as expected on inherited
3557 * events
3558 */
3559
3560 event->pending_kill = POLL_IN;
3561 if (events && atomic_dec_and_test(&event->event_limit)) {
3562 ret = 1;
3563 event->pending_kill = POLL_HUP;
3564 if (nmi) {
3565 event->pending_disable = 1;
3566 perf_pending_queue(&event->pending,
3567 perf_pending_event);
3568 } else
3569 perf_event_disable(event);
3570 }
3571
3572 perf_event_output(event, nmi, data, regs);
3573 return ret;
3574}
3575
3576int perf_event_overflow(struct perf_event *event, int nmi,
3577 struct perf_sample_data *data,
3578 struct pt_regs *regs)
3579{
3580 return __perf_event_overflow(event, nmi, 1, data, regs);
3581}
3582
3583/*
3584 * Generic software event infrastructure
3585 */
3586
3587/*
3588 * We directly increment event->count and keep a second value in
3589 * event->hw.period_left to count intervals. This period event
3590 * is kept in the range [-sample_period, 0] so that we can use the
3591 * sign as trigger.
3592 */
3593
3594static u64 perf_swevent_set_period(struct perf_event *event)
3595{
3596 struct hw_perf_event *hwc = &event->hw;
3597 u64 period = hwc->last_period;
3598 u64 nr, offset;
3599 s64 old, val;
3600
3601 hwc->last_period = hwc->sample_period;
3602
3603again:
3604 old = val = atomic64_read(&hwc->period_left);
3605 if (val < 0)
3606 return 0;
3607
3608 nr = div64_u64(period + val, period);
3609 offset = nr * period;
3610 val -= offset;
3611 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3612 goto again;
3613
3614 return nr;
3615}
3616
3617static void perf_swevent_overflow(struct perf_event *event,
3618 int nmi, struct perf_sample_data *data,
3619 struct pt_regs *regs)
3620{
3621 struct hw_perf_event *hwc = &event->hw;
3622 int throttle = 0;
3623 u64 overflow;
3624
3625 data->period = event->hw.last_period;
3626 overflow = perf_swevent_set_period(event);
3627
3628 if (hwc->interrupts == MAX_INTERRUPTS)
3629 return;
3630
3631 for (; overflow; overflow--) {
3632 if (__perf_event_overflow(event, nmi, throttle,
3633 data, regs)) {
3634 /*
3635 * We inhibit the overflow from happening when
3636 * hwc->interrupts == MAX_INTERRUPTS.
3637 */
3638 break;
3639 }
3640 throttle = 1;
3641 }
3642}
3643
3644static void perf_swevent_unthrottle(struct perf_event *event)
3645{
3646 /*
3647 * Nothing to do, we already reset hwc->interrupts.
3648 */
3649}
3650
3651static void perf_swevent_add(struct perf_event *event, u64 nr,
3652 int nmi, struct perf_sample_data *data,
3653 struct pt_regs *regs)
3654{
3655 struct hw_perf_event *hwc = &event->hw;
3656
3657 atomic64_add(nr, &event->count);
3658
3659 if (!hwc->sample_period)
3660 return;
3661
3662 if (!regs)
3663 return;
3664
3665 if (!atomic64_add_negative(nr, &hwc->period_left))
3666 perf_swevent_overflow(event, nmi, data, regs);
3667}
3668
3669static int perf_swevent_is_counting(struct perf_event *event)
3670{
3671 /*
3672 * The event is active, we're good!
3673 */
3674 if (event->state == PERF_EVENT_STATE_ACTIVE)
3675 return 1;
3676
3677 /*
3678 * The event is off/error, not counting.
3679 */
3680 if (event->state != PERF_EVENT_STATE_INACTIVE)
3681 return 0;
3682
3683 /*
3684 * The event is inactive, if the context is active
3685 * we're part of a group that didn't make it on the 'pmu',
3686 * not counting.
3687 */
3688 if (event->ctx->is_active)
3689 return 0;
3690
3691 /*
3692 * We're inactive and the context is too, this means the
3693 * task is scheduled out, we're counting events that happen
3694 * to us, like migration events.
3695 */
3696 return 1;
3697}
3698
3699static int perf_swevent_match(struct perf_event *event,
3700 enum perf_type_id type,
3701 u32 event_id, struct pt_regs *regs)
3702{
3703 if (!perf_swevent_is_counting(event))
3704 return 0;
3705
3706 if (event->attr.type != type)
3707 return 0;
3708 if (event->attr.config != event_id)
3709 return 0;
3710
3711 if (regs) {
3712 if (event->attr.exclude_user && user_mode(regs))
3713 return 0;
3714
3715 if (event->attr.exclude_kernel && !user_mode(regs))
3716 return 0;
3717 }
3718
3719 return 1;
3720}
3721
3722static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3723 enum perf_type_id type,
3724 u32 event_id, u64 nr, int nmi,
3725 struct perf_sample_data *data,
3726 struct pt_regs *regs)
3727{
3728 struct perf_event *event;
3729
3730 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3731 return;
3732
3733 rcu_read_lock();
3734 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3735 if (perf_swevent_match(event, type, event_id, regs))
3736 perf_swevent_add(event, nr, nmi, data, regs);
3737 }
3738 rcu_read_unlock();
3739}
3740
3741static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3742{
3743 if (in_nmi())
3744 return &cpuctx->recursion[3];
3745
3746 if (in_irq())
3747 return &cpuctx->recursion[2];
3748
3749 if (in_softirq())
3750 return &cpuctx->recursion[1];
3751
3752 return &cpuctx->recursion[0];
3753}
3754
3755static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3756 u64 nr, int nmi,
3757 struct perf_sample_data *data,
3758 struct pt_regs *regs)
3759{
3760 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3761 int *recursion = perf_swevent_recursion_context(cpuctx);
3762 struct perf_event_context *ctx;
3763
3764 if (*recursion)
3765 goto out;
3766
3767 (*recursion)++;
3768 barrier();
3769
3770 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3771 nr, nmi, data, regs);
3772 rcu_read_lock();
3773 /*
3774 * doesn't really matter which of the child contexts the
3775 * events ends up in.
3776 */
3777 ctx = rcu_dereference(current->perf_event_ctxp);
3778 if (ctx)
3779 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3780 rcu_read_unlock();
3781
3782 barrier();
3783 (*recursion)--;
3784
3785out:
3786 put_cpu_var(perf_cpu_context);
3787}
3788
3789void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3790 struct pt_regs *regs, u64 addr)
3791{
3792 struct perf_sample_data data = {
3793 .addr = addr,
3794 };
3795
3796 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3797 &data, regs);
3798}
3799
3800static void perf_swevent_read(struct perf_event *event)
3801{
3802}
3803
3804static int perf_swevent_enable(struct perf_event *event)
3805{
3806 struct hw_perf_event *hwc = &event->hw;
3807
3808 if (hwc->sample_period) {
3809 hwc->last_period = hwc->sample_period;
3810 perf_swevent_set_period(event);
3811 }
3812 return 0;
3813}
3814
3815static void perf_swevent_disable(struct perf_event *event)
3816{
3817}
3818
3819static const struct pmu perf_ops_generic = {
3820 .enable = perf_swevent_enable,
3821 .disable = perf_swevent_disable,
3822 .read = perf_swevent_read,
3823 .unthrottle = perf_swevent_unthrottle,
3824};
3825
3826/*
3827 * hrtimer based swevent callback
3828 */
3829
3830static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3831{
3832 enum hrtimer_restart ret = HRTIMER_RESTART;
3833 struct perf_sample_data data;
3834 struct pt_regs *regs;
3835 struct perf_event *event;
3836 u64 period;
3837
3838 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3839 event->pmu->read(event);
3840
3841 data.addr = 0;
3842 regs = get_irq_regs();
3843 /*
3844 * In case we exclude kernel IPs or are somehow not in interrupt
3845 * context, provide the next best thing, the user IP.
3846 */
3847 if ((event->attr.exclude_kernel || !regs) &&
3848 !event->attr.exclude_user)
3849 regs = task_pt_regs(current);
3850
3851 if (regs) {
3852 if (perf_event_overflow(event, 0, &data, regs))
3853 ret = HRTIMER_NORESTART;
3854 }
3855
3856 period = max_t(u64, 10000, event->hw.sample_period);
3857 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3858
3859 return ret;
3860}
3861
3862/*
3863 * Software event: cpu wall time clock
3864 */
3865
3866static void cpu_clock_perf_event_update(struct perf_event *event)
3867{
3868 int cpu = raw_smp_processor_id();
3869 s64 prev;
3870 u64 now;
3871
3872 now = cpu_clock(cpu);
3873 prev = atomic64_read(&event->hw.prev_count);
3874 atomic64_set(&event->hw.prev_count, now);
3875 atomic64_add(now - prev, &event->count);
3876}
3877
3878static int cpu_clock_perf_event_enable(struct perf_event *event)
3879{
3880 struct hw_perf_event *hwc = &event->hw;
3881 int cpu = raw_smp_processor_id();
3882
3883 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3884 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3885 hwc->hrtimer.function = perf_swevent_hrtimer;
3886 if (hwc->sample_period) {
3887 u64 period = max_t(u64, 10000, hwc->sample_period);
3888 __hrtimer_start_range_ns(&hwc->hrtimer,
3889 ns_to_ktime(period), 0,
3890 HRTIMER_MODE_REL, 0);
3891 }
3892
3893 return 0;
3894}
3895
3896static void cpu_clock_perf_event_disable(struct perf_event *event)
3897{
3898 if (event->hw.sample_period)
3899 hrtimer_cancel(&event->hw.hrtimer);
3900 cpu_clock_perf_event_update(event);
3901}
3902
3903static void cpu_clock_perf_event_read(struct perf_event *event)
3904{
3905 cpu_clock_perf_event_update(event);
3906}
3907
3908static const struct pmu perf_ops_cpu_clock = {
3909 .enable = cpu_clock_perf_event_enable,
3910 .disable = cpu_clock_perf_event_disable,
3911 .read = cpu_clock_perf_event_read,
3912};
3913
3914/*
3915 * Software event: task time clock
3916 */
3917
3918static void task_clock_perf_event_update(struct perf_event *event, u64 now)
3919{
3920 u64 prev;
3921 s64 delta;
3922
3923 prev = atomic64_xchg(&event->hw.prev_count, now);
3924 delta = now - prev;
3925 atomic64_add(delta, &event->count);
3926}
3927
3928static int task_clock_perf_event_enable(struct perf_event *event)
3929{
3930 struct hw_perf_event *hwc = &event->hw;
3931 u64 now;
3932
3933 now = event->ctx->time;
3934
3935 atomic64_set(&hwc->prev_count, now);
3936 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3937 hwc->hrtimer.function = perf_swevent_hrtimer;
3938 if (hwc->sample_period) {
3939 u64 period = max_t(u64, 10000, hwc->sample_period);
3940 __hrtimer_start_range_ns(&hwc->hrtimer,
3941 ns_to_ktime(period), 0,
3942 HRTIMER_MODE_REL, 0);
3943 }
3944
3945 return 0;
3946}
3947
3948static void task_clock_perf_event_disable(struct perf_event *event)
3949{
3950 if (event->hw.sample_period)
3951 hrtimer_cancel(&event->hw.hrtimer);
3952 task_clock_perf_event_update(event, event->ctx->time);
3953
3954}
3955
3956static void task_clock_perf_event_read(struct perf_event *event)
3957{
3958 u64 time;
3959
3960 if (!in_nmi()) {
3961 update_context_time(event->ctx);
3962 time = event->ctx->time;
3963 } else {
3964 u64 now = perf_clock();
3965 u64 delta = now - event->ctx->timestamp;
3966 time = event->ctx->time + delta;
3967 }
3968
3969 task_clock_perf_event_update(event, time);
3970}
3971
3972static const struct pmu perf_ops_task_clock = {
3973 .enable = task_clock_perf_event_enable,
3974 .disable = task_clock_perf_event_disable,
3975 .read = task_clock_perf_event_read,
3976};
3977
3978#ifdef CONFIG_EVENT_PROFILE
3979void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
3980 int entry_size)
3981{
3982 struct perf_raw_record raw = {
3983 .size = entry_size,
3984 .data = record,
3985 };
3986
3987 struct perf_sample_data data = {
3988 .addr = addr,
3989 .raw = &raw,
3990 };
3991
3992 struct pt_regs *regs = get_irq_regs();
3993
3994 if (!regs)
3995 regs = task_pt_regs(current);
3996
3997 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
3998 &data, regs);
3999}
4000EXPORT_SYMBOL_GPL(perf_tp_event);
4001
4002extern int ftrace_profile_enable(int);
4003extern void ftrace_profile_disable(int);
4004
4005static void tp_perf_event_destroy(struct perf_event *event)
4006{
4007 ftrace_profile_disable(event->attr.config);
4008}
4009
4010static const struct pmu *tp_perf_event_init(struct perf_event *event)
4011{
4012 /*
4013 * Raw tracepoint data is a severe data leak, only allow root to
4014 * have these.
4015 */
4016 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4017 perf_paranoid_tracepoint_raw() &&
4018 !capable(CAP_SYS_ADMIN))
4019 return ERR_PTR(-EPERM);
4020
4021 if (ftrace_profile_enable(event->attr.config))
4022 return NULL;
4023
4024 event->destroy = tp_perf_event_destroy;
4025
4026 return &perf_ops_generic;
4027}
4028#else
4029static const struct pmu *tp_perf_event_init(struct perf_event *event)
4030{
4031 return NULL;
4032}
4033#endif
4034
4035atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4036
4037static void sw_perf_event_destroy(struct perf_event *event)
4038{
4039 u64 event_id = event->attr.config;
4040
4041 WARN_ON(event->parent);
4042
4043 atomic_dec(&perf_swevent_enabled[event_id]);
4044}
4045
4046static const struct pmu *sw_perf_event_init(struct perf_event *event)
4047{
4048 const struct pmu *pmu = NULL;
4049 u64 event_id = event->attr.config;
4050
4051 /*
4052 * Software events (currently) can't in general distinguish
4053 * between user, kernel and hypervisor events.
4054 * However, context switches and cpu migrations are considered
4055 * to be kernel events, and page faults are never hypervisor
4056 * events.
4057 */
4058 switch (event_id) {
4059 case PERF_COUNT_SW_CPU_CLOCK:
4060 pmu = &perf_ops_cpu_clock;
4061
4062 break;
4063 case PERF_COUNT_SW_TASK_CLOCK:
4064 /*
4065 * If the user instantiates this as a per-cpu event,
4066 * use the cpu_clock event instead.
4067 */
4068 if (event->ctx->task)
4069 pmu = &perf_ops_task_clock;
4070 else
4071 pmu = &perf_ops_cpu_clock;
4072
4073 break;
4074 case PERF_COUNT_SW_PAGE_FAULTS:
4075 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4076 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4077 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4078 case PERF_COUNT_SW_CPU_MIGRATIONS:
4079 if (!event->parent) {
4080 atomic_inc(&perf_swevent_enabled[event_id]);
4081 event->destroy = sw_perf_event_destroy;
4082 }
4083 pmu = &perf_ops_generic;
4084 break;
4085 }
4086
4087 return pmu;
4088}
4089
4090/*
4091 * Allocate and initialize a event structure
4092 */
4093static struct perf_event *
4094perf_event_alloc(struct perf_event_attr *attr,
4095 int cpu,
4096 struct perf_event_context *ctx,
4097 struct perf_event *group_leader,
4098 struct perf_event *parent_event,
4099 gfp_t gfpflags)
4100{
4101 const struct pmu *pmu;
4102 struct perf_event *event;
4103 struct hw_perf_event *hwc;
4104 long err;
4105
4106 event = kzalloc(sizeof(*event), gfpflags);
4107 if (!event)
4108 return ERR_PTR(-ENOMEM);
4109
4110 /*
4111 * Single events are their own group leaders, with an
4112 * empty sibling list:
4113 */
4114 if (!group_leader)
4115 group_leader = event;
4116
4117 mutex_init(&event->child_mutex);
4118 INIT_LIST_HEAD(&event->child_list);
4119
4120 INIT_LIST_HEAD(&event->group_entry);
4121 INIT_LIST_HEAD(&event->event_entry);
4122 INIT_LIST_HEAD(&event->sibling_list);
4123 init_waitqueue_head(&event->waitq);
4124
4125 mutex_init(&event->mmap_mutex);
4126
4127 event->cpu = cpu;
4128 event->attr = *attr;
4129 event->group_leader = group_leader;
4130 event->pmu = NULL;
4131 event->ctx = ctx;
4132 event->oncpu = -1;
4133
4134 event->parent = parent_event;
4135
4136 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4137 event->id = atomic64_inc_return(&perf_event_id);
4138
4139 event->state = PERF_EVENT_STATE_INACTIVE;
4140
4141 if (attr->disabled)
4142 event->state = PERF_EVENT_STATE_OFF;
4143
4144 pmu = NULL;
4145
4146 hwc = &event->hw;
4147 hwc->sample_period = attr->sample_period;
4148 if (attr->freq && attr->sample_freq)
4149 hwc->sample_period = 1;
4150 hwc->last_period = hwc->sample_period;
4151
4152 atomic64_set(&hwc->period_left, hwc->sample_period);
4153
4154 /*
4155 * we currently do not support PERF_FORMAT_GROUP on inherited events
4156 */
4157 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4158 goto done;
4159
4160 switch (attr->type) {
4161 case PERF_TYPE_RAW:
4162 case PERF_TYPE_HARDWARE:
4163 case PERF_TYPE_HW_CACHE:
4164 pmu = hw_perf_event_init(event);
4165 break;
4166
4167 case PERF_TYPE_SOFTWARE:
4168 pmu = sw_perf_event_init(event);
4169 break;
4170
4171 case PERF_TYPE_TRACEPOINT:
4172 pmu = tp_perf_event_init(event);
4173 break;
4174
4175 default:
4176 break;
4177 }
4178done:
4179 err = 0;
4180 if (!pmu)
4181 err = -EINVAL;
4182 else if (IS_ERR(pmu))
4183 err = PTR_ERR(pmu);
4184
4185 if (err) {
4186 if (event->ns)
4187 put_pid_ns(event->ns);
4188 kfree(event);
4189 return ERR_PTR(err);
4190 }
4191
4192 event->pmu = pmu;
4193
4194 if (!event->parent) {
4195 atomic_inc(&nr_events);
4196 if (event->attr.mmap)
4197 atomic_inc(&nr_mmap_events);
4198 if (event->attr.comm)
4199 atomic_inc(&nr_comm_events);
4200 if (event->attr.task)
4201 atomic_inc(&nr_task_events);
4202 }
4203
4204 return event;
4205}
4206
4207static int perf_copy_attr(struct perf_event_attr __user *uattr,
4208 struct perf_event_attr *attr)
4209{
4210 u32 size;
4211 int ret;
4212
4213 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4214 return -EFAULT;
4215
4216 /*
4217 * zero the full structure, so that a short copy will be nice.
4218 */
4219 memset(attr, 0, sizeof(*attr));
4220
4221 ret = get_user(size, &uattr->size);
4222 if (ret)
4223 return ret;
4224
4225 if (size > PAGE_SIZE) /* silly large */
4226 goto err_size;
4227
4228 if (!size) /* abi compat */
4229 size = PERF_ATTR_SIZE_VER0;
4230
4231 if (size < PERF_ATTR_SIZE_VER0)
4232 goto err_size;
4233
4234 /*
4235 * If we're handed a bigger struct than we know of,
4236 * ensure all the unknown bits are 0 - i.e. new
4237 * user-space does not rely on any kernel feature
4238 * extensions we dont know about yet.
4239 */
4240 if (size > sizeof(*attr)) {
4241 unsigned char __user *addr;
4242 unsigned char __user *end;
4243 unsigned char val;
4244
4245 addr = (void __user *)uattr + sizeof(*attr);
4246 end = (void __user *)uattr + size;
4247
4248 for (; addr < end; addr++) {
4249 ret = get_user(val, addr);
4250 if (ret)
4251 return ret;
4252 if (val)
4253 goto err_size;
4254 }
4255 size = sizeof(*attr);
4256 }
4257
4258 ret = copy_from_user(attr, uattr, size);
4259 if (ret)
4260 return -EFAULT;
4261
4262 /*
4263 * If the type exists, the corresponding creation will verify
4264 * the attr->config.
4265 */
4266 if (attr->type >= PERF_TYPE_MAX)
4267 return -EINVAL;
4268
4269 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4270 return -EINVAL;
4271
4272 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4273 return -EINVAL;
4274
4275 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4276 return -EINVAL;
4277
4278out:
4279 return ret;
4280
4281err_size:
4282 put_user(sizeof(*attr), &uattr->size);
4283 ret = -E2BIG;
4284 goto out;
4285}
4286
4287int perf_event_set_output(struct perf_event *event, int output_fd)
4288{
4289 struct perf_event *output_event = NULL;
4290 struct file *output_file = NULL;
4291 struct perf_event *old_output;
4292 int fput_needed = 0;
4293 int ret = -EINVAL;
4294
4295 if (!output_fd)
4296 goto set;
4297
4298 output_file = fget_light(output_fd, &fput_needed);
4299 if (!output_file)
4300 return -EBADF;
4301
4302 if (output_file->f_op != &perf_fops)
4303 goto out;
4304
4305 output_event = output_file->private_data;
4306
4307 /* Don't chain output fds */
4308 if (output_event->output)
4309 goto out;
4310
4311 /* Don't set an output fd when we already have an output channel */
4312 if (event->data)
4313 goto out;
4314
4315 atomic_long_inc(&output_file->f_count);
4316
4317set:
4318 mutex_lock(&event->mmap_mutex);
4319 old_output = event->output;
4320 rcu_assign_pointer(event->output, output_event);
4321 mutex_unlock(&event->mmap_mutex);
4322
4323 if (old_output) {
4324 /*
4325 * we need to make sure no existing perf_output_*()
4326 * is still referencing this event.
4327 */
4328 synchronize_rcu();
4329 fput(old_output->filp);
4330 }
4331
4332 ret = 0;
4333out:
4334 fput_light(output_file, fput_needed);
4335 return ret;
4336}
4337
4338/**
4339 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4340 *
4341 * @attr_uptr: event_id type attributes for monitoring/sampling
4342 * @pid: target pid
4343 * @cpu: target cpu
4344 * @group_fd: group leader event fd
4345 */
4346SYSCALL_DEFINE5(perf_event_open,
4347 struct perf_event_attr __user *, attr_uptr,
4348 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4349{
4350 struct perf_event *event, *group_leader;
4351 struct perf_event_attr attr;
4352 struct perf_event_context *ctx;
4353 struct file *event_file = NULL;
4354 struct file *group_file = NULL;
4355 int fput_needed = 0;
4356 int fput_needed2 = 0;
4357 int err;
4358
4359 /* for future expandability... */
4360 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4361 return -EINVAL;
4362
4363 err = perf_copy_attr(attr_uptr, &attr);
4364 if (err)
4365 return err;
4366
4367 if (!attr.exclude_kernel) {
4368 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4369 return -EACCES;
4370 }
4371
4372 if (attr.freq) {
4373 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4374 return -EINVAL;
4375 }
4376
4377 /*
4378 * Get the target context (task or percpu):
4379 */
4380 ctx = find_get_context(pid, cpu);
4381 if (IS_ERR(ctx))
4382 return PTR_ERR(ctx);
4383
4384 /*
4385 * Look up the group leader (we will attach this event to it):
4386 */
4387 group_leader = NULL;
4388 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4389 err = -EINVAL;
4390 group_file = fget_light(group_fd, &fput_needed);
4391 if (!group_file)
4392 goto err_put_context;
4393 if (group_file->f_op != &perf_fops)
4394 goto err_put_context;
4395
4396 group_leader = group_file->private_data;
4397 /*
4398 * Do not allow a recursive hierarchy (this new sibling
4399 * becoming part of another group-sibling):
4400 */
4401 if (group_leader->group_leader != group_leader)
4402 goto err_put_context;
4403 /*
4404 * Do not allow to attach to a group in a different
4405 * task or CPU context:
4406 */
4407 if (group_leader->ctx != ctx)
4408 goto err_put_context;
4409 /*
4410 * Only a group leader can be exclusive or pinned
4411 */
4412 if (attr.exclusive || attr.pinned)
4413 goto err_put_context;
4414 }
4415
4416 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4417 NULL, GFP_KERNEL);
4418 err = PTR_ERR(event);
4419 if (IS_ERR(event))
4420 goto err_put_context;
4421
4422 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4423 if (err < 0)
4424 goto err_free_put_context;
4425
4426 event_file = fget_light(err, &fput_needed2);
4427 if (!event_file)
4428 goto err_free_put_context;
4429
4430 if (flags & PERF_FLAG_FD_OUTPUT) {
4431 err = perf_event_set_output(event, group_fd);
4432 if (err)
4433 goto err_fput_free_put_context;
4434 }
4435
4436 event->filp = event_file;
4437 WARN_ON_ONCE(ctx->parent_ctx);
4438 mutex_lock(&ctx->mutex);
4439 perf_install_in_context(ctx, event, cpu);
4440 ++ctx->generation;
4441 mutex_unlock(&ctx->mutex);
4442
4443 event->owner = current;
4444 get_task_struct(current);
4445 mutex_lock(&current->perf_event_mutex);
4446 list_add_tail(&event->owner_entry, &current->perf_event_list);
4447 mutex_unlock(&current->perf_event_mutex);
4448
4449err_fput_free_put_context:
4450 fput_light(event_file, fput_needed2);
4451
4452err_free_put_context:
4453 if (err < 0)
4454 kfree(event);
4455
4456err_put_context:
4457 if (err < 0)
4458 put_ctx(ctx);
4459
4460 fput_light(group_file, fput_needed);
4461
4462 return err;
4463}
4464
4465/*
4466 * inherit a event from parent task to child task:
4467 */
4468static struct perf_event *
4469inherit_event(struct perf_event *parent_event,
4470 struct task_struct *parent,
4471 struct perf_event_context *parent_ctx,
4472 struct task_struct *child,
4473 struct perf_event *group_leader,
4474 struct perf_event_context *child_ctx)
4475{
4476 struct perf_event *child_event;
4477
4478 /*
4479 * Instead of creating recursive hierarchies of events,
4480 * we link inherited events back to the original parent,
4481 * which has a filp for sure, which we use as the reference
4482 * count:
4483 */
4484 if (parent_event->parent)
4485 parent_event = parent_event->parent;
4486
4487 child_event = perf_event_alloc(&parent_event->attr,
4488 parent_event->cpu, child_ctx,
4489 group_leader, parent_event,
4490 GFP_KERNEL);
4491 if (IS_ERR(child_event))
4492 return child_event;
4493 get_ctx(child_ctx);
4494
4495 /*
4496 * Make the child state follow the state of the parent event,
4497 * not its attr.disabled bit. We hold the parent's mutex,
4498 * so we won't race with perf_event_{en, dis}able_family.
4499 */
4500 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4501 child_event->state = PERF_EVENT_STATE_INACTIVE;
4502 else
4503 child_event->state = PERF_EVENT_STATE_OFF;
4504
4505 if (parent_event->attr.freq)
4506 child_event->hw.sample_period = parent_event->hw.sample_period;
4507
4508 /*
4509 * Link it up in the child's context:
4510 */
4511 add_event_to_ctx(child_event, child_ctx);
4512
4513 /*
4514 * Get a reference to the parent filp - we will fput it
4515 * when the child event exits. This is safe to do because
4516 * we are in the parent and we know that the filp still
4517 * exists and has a nonzero count:
4518 */
4519 atomic_long_inc(&parent_event->filp->f_count);
4520
4521 /*
4522 * Link this into the parent event's child list
4523 */
4524 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4525 mutex_lock(&parent_event->child_mutex);
4526 list_add_tail(&child_event->child_list, &parent_event->child_list);
4527 mutex_unlock(&parent_event->child_mutex);
4528
4529 return child_event;
4530}
4531
4532static int inherit_group(struct perf_event *parent_event,
4533 struct task_struct *parent,
4534 struct perf_event_context *parent_ctx,
4535 struct task_struct *child,
4536 struct perf_event_context *child_ctx)
4537{
4538 struct perf_event *leader;
4539 struct perf_event *sub;
4540 struct perf_event *child_ctr;
4541
4542 leader = inherit_event(parent_event, parent, parent_ctx,
4543 child, NULL, child_ctx);
4544 if (IS_ERR(leader))
4545 return PTR_ERR(leader);
4546 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4547 child_ctr = inherit_event(sub, parent, parent_ctx,
4548 child, leader, child_ctx);
4549 if (IS_ERR(child_ctr))
4550 return PTR_ERR(child_ctr);
4551 }
4552 return 0;
4553}
4554
4555static void sync_child_event(struct perf_event *child_event,
4556 struct task_struct *child)
4557{
4558 struct perf_event *parent_event = child_event->parent;
4559 u64 child_val;
4560
4561 if (child_event->attr.inherit_stat)
4562 perf_event_read_event(child_event, child);
4563
4564 child_val = atomic64_read(&child_event->count);
4565
4566 /*
4567 * Add back the child's count to the parent's count:
4568 */
4569 atomic64_add(child_val, &parent_event->count);
4570 atomic64_add(child_event->total_time_enabled,
4571 &parent_event->child_total_time_enabled);
4572 atomic64_add(child_event->total_time_running,
4573 &parent_event->child_total_time_running);
4574
4575 /*
4576 * Remove this event from the parent's list
4577 */
4578 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4579 mutex_lock(&parent_event->child_mutex);
4580 list_del_init(&child_event->child_list);
4581 mutex_unlock(&parent_event->child_mutex);
4582
4583 /*
4584 * Release the parent event, if this was the last
4585 * reference to it.
4586 */
4587 fput(parent_event->filp);
4588}
4589
4590static void
4591__perf_event_exit_task(struct perf_event *child_event,
4592 struct perf_event_context *child_ctx,
4593 struct task_struct *child)
4594{
4595 struct perf_event *parent_event;
4596
4597 update_event_times(child_event);
4598 perf_event_remove_from_context(child_event);
4599
4600 parent_event = child_event->parent;
4601 /*
4602 * It can happen that parent exits first, and has events
4603 * that are still around due to the child reference. These
4604 * events need to be zapped - but otherwise linger.
4605 */
4606 if (parent_event) {
4607 sync_child_event(child_event, child);
4608 free_event(child_event);
4609 }
4610}
4611
4612/*
4613 * When a child task exits, feed back event values to parent events.
4614 */
4615void perf_event_exit_task(struct task_struct *child)
4616{
4617 struct perf_event *child_event, *tmp;
4618 struct perf_event_context *child_ctx;
4619 unsigned long flags;
4620
4621 if (likely(!child->perf_event_ctxp)) {
4622 perf_event_task(child, NULL, 0);
4623 return;
4624 }
4625
4626 local_irq_save(flags);
4627 /*
4628 * We can't reschedule here because interrupts are disabled,
4629 * and either child is current or it is a task that can't be
4630 * scheduled, so we are now safe from rescheduling changing
4631 * our context.
4632 */
4633 child_ctx = child->perf_event_ctxp;
4634 __perf_event_task_sched_out(child_ctx);
4635
4636 /*
4637 * Take the context lock here so that if find_get_context is
4638 * reading child->perf_event_ctxp, we wait until it has
4639 * incremented the context's refcount before we do put_ctx below.
4640 */
4641 spin_lock(&child_ctx->lock);
4642 child->perf_event_ctxp = NULL;
4643 /*
4644 * If this context is a clone; unclone it so it can't get
4645 * swapped to another process while we're removing all
4646 * the events from it.
4647 */
4648 unclone_ctx(child_ctx);
4649 spin_unlock_irqrestore(&child_ctx->lock, flags);
4650
4651 /*
4652 * Report the task dead after unscheduling the events so that we
4653 * won't get any samples after PERF_RECORD_EXIT. We can however still
4654 * get a few PERF_RECORD_READ events.
4655 */
4656 perf_event_task(child, child_ctx, 0);
4657
4658 /*
4659 * We can recurse on the same lock type through:
4660 *
4661 * __perf_event_exit_task()
4662 * sync_child_event()
4663 * fput(parent_event->filp)
4664 * perf_release()
4665 * mutex_lock(&ctx->mutex)
4666 *
4667 * But since its the parent context it won't be the same instance.
4668 */
4669 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4670
4671again:
4672 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4673 group_entry)
4674 __perf_event_exit_task(child_event, child_ctx, child);
4675
4676 /*
4677 * If the last event was a group event, it will have appended all
4678 * its siblings to the list, but we obtained 'tmp' before that which
4679 * will still point to the list head terminating the iteration.
4680 */
4681 if (!list_empty(&child_ctx->group_list))
4682 goto again;
4683
4684 mutex_unlock(&child_ctx->mutex);
4685
4686 put_ctx(child_ctx);
4687}
4688
4689/*
4690 * free an unexposed, unused context as created by inheritance by
4691 * init_task below, used by fork() in case of fail.
4692 */
4693void perf_event_free_task(struct task_struct *task)
4694{
4695 struct perf_event_context *ctx = task->perf_event_ctxp;
4696 struct perf_event *event, *tmp;
4697
4698 if (!ctx)
4699 return;
4700
4701 mutex_lock(&ctx->mutex);
4702again:
4703 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4704 struct perf_event *parent = event->parent;
4705
4706 if (WARN_ON_ONCE(!parent))
4707 continue;
4708
4709 mutex_lock(&parent->child_mutex);
4710 list_del_init(&event->child_list);
4711 mutex_unlock(&parent->child_mutex);
4712
4713 fput(parent->filp);
4714
4715 list_del_event(event, ctx);
4716 free_event(event);
4717 }
4718
4719 if (!list_empty(&ctx->group_list))
4720 goto again;
4721
4722 mutex_unlock(&ctx->mutex);
4723
4724 put_ctx(ctx);
4725}
4726
4727/*
4728 * Initialize the perf_event context in task_struct
4729 */
4730int perf_event_init_task(struct task_struct *child)
4731{
4732 struct perf_event_context *child_ctx, *parent_ctx;
4733 struct perf_event_context *cloned_ctx;
4734 struct perf_event *event;
4735 struct task_struct *parent = current;
4736 int inherited_all = 1;
4737 int ret = 0;
4738
4739 child->perf_event_ctxp = NULL;
4740
4741 mutex_init(&child->perf_event_mutex);
4742 INIT_LIST_HEAD(&child->perf_event_list);
4743
4744 if (likely(!parent->perf_event_ctxp))
4745 return 0;
4746
4747 /*
4748 * This is executed from the parent task context, so inherit
4749 * events that have been marked for cloning.
4750 * First allocate and initialize a context for the child.
4751 */
4752
4753 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4754 if (!child_ctx)
4755 return -ENOMEM;
4756
4757 __perf_event_init_context(child_ctx, child);
4758 child->perf_event_ctxp = child_ctx;
4759 get_task_struct(child);
4760
4761 /*
4762 * If the parent's context is a clone, pin it so it won't get
4763 * swapped under us.
4764 */
4765 parent_ctx = perf_pin_task_context(parent);
4766
4767 /*
4768 * No need to check if parent_ctx != NULL here; since we saw
4769 * it non-NULL earlier, the only reason for it to become NULL
4770 * is if we exit, and since we're currently in the middle of
4771 * a fork we can't be exiting at the same time.
4772 */
4773
4774 /*
4775 * Lock the parent list. No need to lock the child - not PID
4776 * hashed yet and not running, so nobody can access it.
4777 */
4778 mutex_lock(&parent_ctx->mutex);
4779
4780 /*
4781 * We dont have to disable NMIs - we are only looking at
4782 * the list, not manipulating it:
4783 */
4784 list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) {
4785 if (event != event->group_leader)
4786 continue;
4787
4788 if (!event->attr.inherit) {
4789 inherited_all = 0;
4790 continue;
4791 }
4792
4793 ret = inherit_group(event, parent, parent_ctx,
4794 child, child_ctx);
4795 if (ret) {
4796 inherited_all = 0;
4797 break;
4798 }
4799 }
4800
4801 if (inherited_all) {
4802 /*
4803 * Mark the child context as a clone of the parent
4804 * context, or of whatever the parent is a clone of.
4805 * Note that if the parent is a clone, it could get
4806 * uncloned at any point, but that doesn't matter
4807 * because the list of events and the generation
4808 * count can't have changed since we took the mutex.
4809 */
4810 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4811 if (cloned_ctx) {
4812 child_ctx->parent_ctx = cloned_ctx;
4813 child_ctx->parent_gen = parent_ctx->parent_gen;
4814 } else {
4815 child_ctx->parent_ctx = parent_ctx;
4816 child_ctx->parent_gen = parent_ctx->generation;
4817 }
4818 get_ctx(child_ctx->parent_ctx);
4819 }
4820
4821 mutex_unlock(&parent_ctx->mutex);
4822
4823 perf_unpin_context(parent_ctx);
4824
4825 return ret;
4826}
4827
4828static void __cpuinit perf_event_init_cpu(int cpu)
4829{
4830 struct perf_cpu_context *cpuctx;
4831
4832 cpuctx = &per_cpu(perf_cpu_context, cpu);
4833 __perf_event_init_context(&cpuctx->ctx, NULL);
4834
4835 spin_lock(&perf_resource_lock);
4836 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4837 spin_unlock(&perf_resource_lock);
4838
4839 hw_perf_event_setup(cpu);
4840}
4841
4842#ifdef CONFIG_HOTPLUG_CPU
4843static void __perf_event_exit_cpu(void *info)
4844{
4845 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4846 struct perf_event_context *ctx = &cpuctx->ctx;
4847 struct perf_event *event, *tmp;
4848
4849 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
4850 __perf_event_remove_from_context(event);
4851}
4852static void perf_event_exit_cpu(int cpu)
4853{
4854 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4855 struct perf_event_context *ctx = &cpuctx->ctx;
4856
4857 mutex_lock(&ctx->mutex);
4858 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4859 mutex_unlock(&ctx->mutex);
4860}
4861#else
4862static inline void perf_event_exit_cpu(int cpu) { }
4863#endif
4864
4865static int __cpuinit
4866perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4867{
4868 unsigned int cpu = (long)hcpu;
4869
4870 switch (action) {
4871
4872 case CPU_UP_PREPARE:
4873 case CPU_UP_PREPARE_FROZEN:
4874 perf_event_init_cpu(cpu);
4875 break;
4876
4877 case CPU_ONLINE:
4878 case CPU_ONLINE_FROZEN:
4879 hw_perf_event_setup_online(cpu);
4880 break;
4881
4882 case CPU_DOWN_PREPARE:
4883 case CPU_DOWN_PREPARE_FROZEN:
4884 perf_event_exit_cpu(cpu);
4885 break;
4886
4887 default:
4888 break;
4889 }
4890
4891 return NOTIFY_OK;
4892}
4893
4894/*
4895 * This has to have a higher priority than migration_notifier in sched.c.
4896 */
4897static struct notifier_block __cpuinitdata perf_cpu_nb = {
4898 .notifier_call = perf_cpu_notify,
4899 .priority = 20,
4900};
4901
4902void __init perf_event_init(void)
4903{
4904 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4905 (void *)(long)smp_processor_id());
4906 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4907 (void *)(long)smp_processor_id());
4908 register_cpu_notifier(&perf_cpu_nb);
4909}
4910
4911static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4912{
4913 return sprintf(buf, "%d\n", perf_reserved_percpu);
4914}
4915
4916static ssize_t
4917perf_set_reserve_percpu(struct sysdev_class *class,
4918 const char *buf,
4919 size_t count)
4920{
4921 struct perf_cpu_context *cpuctx;
4922 unsigned long val;
4923 int err, cpu, mpt;
4924
4925 err = strict_strtoul(buf, 10, &val);
4926 if (err)
4927 return err;
4928 if (val > perf_max_events)
4929 return -EINVAL;
4930
4931 spin_lock(&perf_resource_lock);
4932 perf_reserved_percpu = val;
4933 for_each_online_cpu(cpu) {
4934 cpuctx = &per_cpu(perf_cpu_context, cpu);
4935 spin_lock_irq(&cpuctx->ctx.lock);
4936 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
4937 perf_max_events - perf_reserved_percpu);
4938 cpuctx->max_pertask = mpt;
4939 spin_unlock_irq(&cpuctx->ctx.lock);
4940 }
4941 spin_unlock(&perf_resource_lock);
4942
4943 return count;
4944}
4945
4946static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4947{
4948 return sprintf(buf, "%d\n", perf_overcommit);
4949}
4950
4951static ssize_t
4952perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4953{
4954 unsigned long val;
4955 int err;
4956
4957 err = strict_strtoul(buf, 10, &val);
4958 if (err)
4959 return err;
4960 if (val > 1)
4961 return -EINVAL;
4962
4963 spin_lock(&perf_resource_lock);
4964 perf_overcommit = val;
4965 spin_unlock(&perf_resource_lock);
4966
4967 return count;
4968}
4969
4970static SYSDEV_CLASS_ATTR(
4971 reserve_percpu,
4972 0644,
4973 perf_show_reserve_percpu,
4974 perf_set_reserve_percpu
4975 );
4976
4977static SYSDEV_CLASS_ATTR(
4978 overcommit,
4979 0644,
4980 perf_show_overcommit,
4981 perf_set_overcommit
4982 );
4983
4984static struct attribute *perfclass_attrs[] = {
4985 &attr_reserve_percpu.attr,
4986 &attr_overcommit.attr,
4987 NULL
4988};
4989
4990static struct attribute_group perfclass_attr_group = {
4991 .attrs = perfclass_attrs,
4992 .name = "perf_events",
4993};
4994
4995static int __init perf_event_sysfs_init(void)
4996{
4997 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4998 &perfclass_attr_group);
4999}
5000device_initcall(perf_event_sysfs_init);
diff --git a/kernel/pid.c b/kernel/pid.c
index 31310b5d3f50..d3f722d20f9c 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -40,7 +40,7 @@
40#define pid_hashfn(nr, ns) \ 40#define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42static struct hlist_head *pid_hash; 42static struct hlist_head *pid_hash;
43static int pidhash_shift; 43static unsigned int pidhash_shift = 4;
44struct pid init_struct_pid = INIT_STRUCT_PID; 44struct pid init_struct_pid = INIT_STRUCT_PID;
45 45
46int pid_max = PID_MAX_DEFAULT; 46int pid_max = PID_MAX_DEFAULT;
@@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
499void __init pidhash_init(void) 499void __init pidhash_init(void)
500{ 500{
501 int i, pidhash_size; 501 int i, pidhash_size;
502 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
503 502
504 pidhash_shift = max(4, fls(megabytes * 4)); 503 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
505 pidhash_shift = min(12, pidhash_shift); 504 HASH_EARLY | HASH_SMALL,
505 &pidhash_shift, NULL, 4096);
506 pidhash_size = 1 << pidhash_shift; 506 pidhash_size = 1 << pidhash_shift;
507 507
508 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
509 pidhash_size, pidhash_shift,
510 pidhash_size * sizeof(struct hlist_head));
511
512 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
513 if (!pid_hash)
514 panic("Could not alloc pidhash!\n");
515 for (i = 0; i < pidhash_size; i++) 508 for (i = 0; i < pidhash_size; i++)
516 INIT_HLIST_HEAD(&pid_hash[i]); 509 INIT_HLIST_HEAD(&pid_hash[i]);
517} 510}
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c
index 821722ae58a7..86b3796b0436 100644
--- a/kernel/pid_namespace.c
+++ b/kernel/pid_namespace.c
@@ -118,7 +118,7 @@ struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old
118{ 118{
119 if (!(flags & CLONE_NEWPID)) 119 if (!(flags & CLONE_NEWPID))
120 return get_pid_ns(old_ns); 120 return get_pid_ns(old_ns);
121 if (flags & CLONE_THREAD) 121 if (flags & (CLONE_THREAD|CLONE_PARENT))
122 return ERR_PTR(-EINVAL); 122 return ERR_PTR(-EINVAL);
123 return create_pid_namespace(old_ns); 123 return create_pid_namespace(old_ns);
124} 124}
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index e33a21cb9407..5c9dc228747b 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -8,17 +8,18 @@
8#include <linux/math64.h> 8#include <linux/math64.h>
9#include <asm/uaccess.h> 9#include <asm/uaccess.h>
10#include <linux/kernel_stat.h> 10#include <linux/kernel_stat.h>
11#include <trace/events/timer.h>
11 12
12/* 13/*
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary. 14 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14 */ 15 */
15void update_rlimit_cpu(unsigned long rlim_new) 16void update_rlimit_cpu(unsigned long rlim_new)
16{ 17{
17 cputime_t cputime; 18 cputime_t cputime = secs_to_cputime(rlim_new);
19 struct signal_struct *const sig = current->signal;
18 20
19 cputime = secs_to_cputime(rlim_new); 21 if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
20 if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || 22 cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
21 cputime_gt(current->signal->it_prof_expires, cputime)) {
22 spin_lock_irq(&current->sighand->siglock); 23 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 24 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock); 25 spin_unlock_irq(&current->sighand->siglock);
@@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
542 now); 543 now);
543} 544}
544 545
546static inline int expires_gt(cputime_t expires, cputime_t new_exp)
547{
548 return cputime_eq(expires, cputime_zero) ||
549 cputime_gt(expires, new_exp);
550}
551
552static inline int expires_le(cputime_t expires, cputime_t new_exp)
553{
554 return !cputime_eq(expires, cputime_zero) &&
555 cputime_le(expires, new_exp);
556}
545/* 557/*
546 * Insert the timer on the appropriate list before any timers that 558 * Insert the timer on the appropriate list before any timers that
547 * expire later. This must be called with the tasklist_lock held 559 * expire later. This must be called with the tasklist_lock held
@@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
586 */ 598 */
587 599
588 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 600 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
601 union cpu_time_count *exp = &nt->expires;
602
589 switch (CPUCLOCK_WHICH(timer->it_clock)) { 603 switch (CPUCLOCK_WHICH(timer->it_clock)) {
590 default: 604 default:
591 BUG(); 605 BUG();
592 case CPUCLOCK_PROF: 606 case CPUCLOCK_PROF:
593 if (cputime_eq(p->cputime_expires.prof_exp, 607 if (expires_gt(p->cputime_expires.prof_exp,
594 cputime_zero) || 608 exp->cpu))
595 cputime_gt(p->cputime_expires.prof_exp, 609 p->cputime_expires.prof_exp = exp->cpu;
596 nt->expires.cpu))
597 p->cputime_expires.prof_exp =
598 nt->expires.cpu;
599 break; 610 break;
600 case CPUCLOCK_VIRT: 611 case CPUCLOCK_VIRT:
601 if (cputime_eq(p->cputime_expires.virt_exp, 612 if (expires_gt(p->cputime_expires.virt_exp,
602 cputime_zero) || 613 exp->cpu))
603 cputime_gt(p->cputime_expires.virt_exp, 614 p->cputime_expires.virt_exp = exp->cpu;
604 nt->expires.cpu))
605 p->cputime_expires.virt_exp =
606 nt->expires.cpu;
607 break; 615 break;
608 case CPUCLOCK_SCHED: 616 case CPUCLOCK_SCHED:
609 if (p->cputime_expires.sched_exp == 0 || 617 if (p->cputime_expires.sched_exp == 0 ||
610 p->cputime_expires.sched_exp > 618 p->cputime_expires.sched_exp > exp->sched)
611 nt->expires.sched)
612 p->cputime_expires.sched_exp = 619 p->cputime_expires.sched_exp =
613 nt->expires.sched; 620 exp->sched;
614 break; 621 break;
615 } 622 }
616 } else { 623 } else {
624 struct signal_struct *const sig = p->signal;
625 union cpu_time_count *exp = &timer->it.cpu.expires;
626
617 /* 627 /*
618 * For a process timer, set the cached expiration time. 628 * For a process timer, set the cached expiration time.
619 */ 629 */
@@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
621 default: 631 default:
622 BUG(); 632 BUG();
623 case CPUCLOCK_VIRT: 633 case CPUCLOCK_VIRT:
624 if (!cputime_eq(p->signal->it_virt_expires, 634 if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
625 cputime_zero) && 635 exp->cpu))
626 cputime_lt(p->signal->it_virt_expires,
627 timer->it.cpu.expires.cpu))
628 break; 636 break;
629 p->signal->cputime_expires.virt_exp = 637 sig->cputime_expires.virt_exp = exp->cpu;
630 timer->it.cpu.expires.cpu;
631 break; 638 break;
632 case CPUCLOCK_PROF: 639 case CPUCLOCK_PROF:
633 if (!cputime_eq(p->signal->it_prof_expires, 640 if (expires_le(sig->it[CPUCLOCK_PROF].expires,
634 cputime_zero) && 641 exp->cpu))
635 cputime_lt(p->signal->it_prof_expires,
636 timer->it.cpu.expires.cpu))
637 break; 642 break;
638 i = p->signal->rlim[RLIMIT_CPU].rlim_cur; 643 i = sig->rlim[RLIMIT_CPU].rlim_cur;
639 if (i != RLIM_INFINITY && 644 if (i != RLIM_INFINITY &&
640 i <= cputime_to_secs(timer->it.cpu.expires.cpu)) 645 i <= cputime_to_secs(exp->cpu))
641 break; 646 break;
642 p->signal->cputime_expires.prof_exp = 647 sig->cputime_expires.prof_exp = exp->cpu;
643 timer->it.cpu.expires.cpu;
644 break; 648 break;
645 case CPUCLOCK_SCHED: 649 case CPUCLOCK_SCHED:
646 p->signal->cputime_expires.sched_exp = 650 sig->cputime_expires.sched_exp = exp->sched;
647 timer->it.cpu.expires.sched;
648 break; 651 break;
649 } 652 }
650 } 653 }
@@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk)
1071 spin_unlock_irqrestore(&cputimer->lock, flags); 1074 spin_unlock_irqrestore(&cputimer->lock, flags);
1072} 1075}
1073 1076
1077static u32 onecputick;
1078
1079static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1080 cputime_t *expires, cputime_t cur_time, int signo)
1081{
1082 if (cputime_eq(it->expires, cputime_zero))
1083 return;
1084
1085 if (cputime_ge(cur_time, it->expires)) {
1086 if (!cputime_eq(it->incr, cputime_zero)) {
1087 it->expires = cputime_add(it->expires, it->incr);
1088 it->error += it->incr_error;
1089 if (it->error >= onecputick) {
1090 it->expires = cputime_sub(it->expires,
1091 cputime_one_jiffy);
1092 it->error -= onecputick;
1093 }
1094 } else {
1095 it->expires = cputime_zero;
1096 }
1097
1098 trace_itimer_expire(signo == SIGPROF ?
1099 ITIMER_PROF : ITIMER_VIRTUAL,
1100 tsk->signal->leader_pid, cur_time);
1101 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1102 }
1103
1104 if (!cputime_eq(it->expires, cputime_zero) &&
1105 (cputime_eq(*expires, cputime_zero) ||
1106 cputime_lt(it->expires, *expires))) {
1107 *expires = it->expires;
1108 }
1109}
1110
1074/* 1111/*
1075 * Check for any per-thread CPU timers that have fired and move them 1112 * Check for any per-thread CPU timers that have fired and move them
1076 * off the tsk->*_timers list onto the firing list. Per-thread timers 1113 * off the tsk->*_timers list onto the firing list. Per-thread timers
@@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk,
1090 * Don't sample the current process CPU clocks if there are no timers. 1127 * Don't sample the current process CPU clocks if there are no timers.
1091 */ 1128 */
1092 if (list_empty(&timers[CPUCLOCK_PROF]) && 1129 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1093 cputime_eq(sig->it_prof_expires, cputime_zero) && 1130 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1094 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && 1131 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1095 list_empty(&timers[CPUCLOCK_VIRT]) && 1132 list_empty(&timers[CPUCLOCK_VIRT]) &&
1096 cputime_eq(sig->it_virt_expires, cputime_zero) && 1133 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1097 list_empty(&timers[CPUCLOCK_SCHED])) { 1134 list_empty(&timers[CPUCLOCK_SCHED])) {
1098 stop_process_timers(tsk); 1135 stop_process_timers(tsk);
1099 return; 1136 return;
@@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk,
1153 /* 1190 /*
1154 * Check for the special case process timers. 1191 * Check for the special case process timers.
1155 */ 1192 */
1156 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { 1193 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1157 if (cputime_ge(ptime, sig->it_prof_expires)) { 1194 SIGPROF);
1158 /* ITIMER_PROF fires and reloads. */ 1195 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1159 sig->it_prof_expires = sig->it_prof_incr; 1196 SIGVTALRM);
1160 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { 1197
1161 sig->it_prof_expires = cputime_add(
1162 sig->it_prof_expires, ptime);
1163 }
1164 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1165 }
1166 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1167 (cputime_eq(prof_expires, cputime_zero) ||
1168 cputime_lt(sig->it_prof_expires, prof_expires))) {
1169 prof_expires = sig->it_prof_expires;
1170 }
1171 }
1172 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1173 if (cputime_ge(utime, sig->it_virt_expires)) {
1174 /* ITIMER_VIRTUAL fires and reloads. */
1175 sig->it_virt_expires = sig->it_virt_incr;
1176 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1177 sig->it_virt_expires = cputime_add(
1178 sig->it_virt_expires, utime);
1179 }
1180 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1181 }
1182 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1183 (cputime_eq(virt_expires, cputime_zero) ||
1184 cputime_lt(sig->it_virt_expires, virt_expires))) {
1185 virt_expires = sig->it_virt_expires;
1186 }
1187 }
1188 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 1198 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1189 unsigned long psecs = cputime_to_secs(ptime); 1199 unsigned long psecs = cputime_to_secs(ptime);
1190 cputime_t x; 1200 cputime_t x;
@@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1457 if (!cputime_eq(*oldval, cputime_zero)) { 1467 if (!cputime_eq(*oldval, cputime_zero)) {
1458 if (cputime_le(*oldval, now.cpu)) { 1468 if (cputime_le(*oldval, now.cpu)) {
1459 /* Just about to fire. */ 1469 /* Just about to fire. */
1460 *oldval = jiffies_to_cputime(1); 1470 *oldval = cputime_one_jiffy;
1461 } else { 1471 } else {
1462 *oldval = cputime_sub(*oldval, now.cpu); 1472 *oldval = cputime_sub(*oldval, now.cpu);
1463 } 1473 }
@@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void)
1703 .nsleep = thread_cpu_nsleep, 1713 .nsleep = thread_cpu_nsleep,
1704 .nsleep_restart = thread_cpu_nsleep_restart, 1714 .nsleep_restart = thread_cpu_nsleep_restart,
1705 }; 1715 };
1716 struct timespec ts;
1706 1717
1707 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1718 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1708 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1719 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1709 1720
1721 cputime_to_timespec(cputime_one_jiffy, &ts);
1722 onecputick = ts.tv_nsec;
1723 WARN_ON(ts.tv_sec != 0);
1724
1710 return 0; 1725 return 0;
1711} 1726}
1712__initcall(init_posix_cpu_timers); 1727__initcall(init_posix_cpu_timers);
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index d089d052c4a9..495440779ce3 100644
--- a/kernel/posix-timers.c
+++ b/kernel/posix-timers.c
@@ -242,6 +242,25 @@ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
242 return 0; 242 return 0;
243} 243}
244 244
245
246static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
247{
248 *tp = current_kernel_time();
249 return 0;
250}
251
252static int posix_get_monotonic_coarse(clockid_t which_clock,
253 struct timespec *tp)
254{
255 *tp = get_monotonic_coarse();
256 return 0;
257}
258
259int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
260{
261 *tp = ktime_to_timespec(KTIME_LOW_RES);
262 return 0;
263}
245/* 264/*
246 * Initialize everything, well, just everything in Posix clocks/timers ;) 265 * Initialize everything, well, just everything in Posix clocks/timers ;)
247 */ 266 */
@@ -262,10 +281,26 @@ static __init int init_posix_timers(void)
262 .timer_create = no_timer_create, 281 .timer_create = no_timer_create,
263 .nsleep = no_nsleep, 282 .nsleep = no_nsleep,
264 }; 283 };
284 struct k_clock clock_realtime_coarse = {
285 .clock_getres = posix_get_coarse_res,
286 .clock_get = posix_get_realtime_coarse,
287 .clock_set = do_posix_clock_nosettime,
288 .timer_create = no_timer_create,
289 .nsleep = no_nsleep,
290 };
291 struct k_clock clock_monotonic_coarse = {
292 .clock_getres = posix_get_coarse_res,
293 .clock_get = posix_get_monotonic_coarse,
294 .clock_set = do_posix_clock_nosettime,
295 .timer_create = no_timer_create,
296 .nsleep = no_nsleep,
297 };
265 298
266 register_posix_clock(CLOCK_REALTIME, &clock_realtime); 299 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
267 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); 300 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
268 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); 301 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
302 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
303 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
269 304
270 posix_timers_cache = kmem_cache_create("posix_timers_cache", 305 posix_timers_cache = kmem_cache_create("posix_timers_cache",
271 sizeof (struct k_itimer), 0, SLAB_PANIC, 306 sizeof (struct k_itimer), 0, SLAB_PANIC,
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig
index 72067cbdb37f..91e09d3b2eb2 100644
--- a/kernel/power/Kconfig
+++ b/kernel/power/Kconfig
@@ -208,3 +208,17 @@ config APM_EMULATION
208 random kernel OOPSes or reboots that don't seem to be related to 208 random kernel OOPSes or reboots that don't seem to be related to
209 anything, try disabling/enabling this option (or disabling/enabling 209 anything, try disabling/enabling this option (or disabling/enabling
210 APM in your BIOS). 210 APM in your BIOS).
211
212config PM_RUNTIME
213 bool "Run-time PM core functionality"
214 depends on PM
215 ---help---
216 Enable functionality allowing I/O devices to be put into energy-saving
217 (low power) states at run time (or autosuspended) after a specified
218 period of inactivity and woken up in response to a hardware-generated
219 wake-up event or a driver's request.
220
221 Hardware support is generally required for this functionality to work
222 and the bus type drivers of the buses the devices are on are
223 responsible for the actual handling of the autosuspend requests and
224 wake-up events.
diff --git a/kernel/power/console.c b/kernel/power/console.c
index a3961b205de7..5187136fe1de 100644
--- a/kernel/power/console.c
+++ b/kernel/power/console.c
@@ -14,56 +14,13 @@
14#define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) 14#define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1)
15 15
16static int orig_fgconsole, orig_kmsg; 16static int orig_fgconsole, orig_kmsg;
17static int disable_vt_switch;
18
19/*
20 * Normally during a suspend, we allocate a new console and switch to it.
21 * When we resume, we switch back to the original console. This switch
22 * can be slow, so on systems where the framebuffer can handle restoration
23 * of video registers anyways, there's little point in doing the console
24 * switch. This function allows you to disable it by passing it '0'.
25 */
26void pm_set_vt_switch(int do_switch)
27{
28 acquire_console_sem();
29 disable_vt_switch = !do_switch;
30 release_console_sem();
31}
32EXPORT_SYMBOL(pm_set_vt_switch);
33 17
34int pm_prepare_console(void) 18int pm_prepare_console(void)
35{ 19{
36 acquire_console_sem(); 20 orig_fgconsole = vt_move_to_console(SUSPEND_CONSOLE, 1);
37 21 if (orig_fgconsole < 0)
38 if (disable_vt_switch) {
39 release_console_sem();
40 return 0;
41 }
42
43 orig_fgconsole = fg_console;
44
45 if (vc_allocate(SUSPEND_CONSOLE)) {
46 /* we can't have a free VC for now. Too bad,
47 * we don't want to mess the screen for now. */
48 release_console_sem();
49 return 1; 22 return 1;
50 }
51 23
52 if (set_console(SUSPEND_CONSOLE)) {
53 /*
54 * We're unable to switch to the SUSPEND_CONSOLE.
55 * Let the calling function know so it can decide
56 * what to do.
57 */
58 release_console_sem();
59 return 1;
60 }
61 release_console_sem();
62
63 if (vt_waitactive(SUSPEND_CONSOLE)) {
64 pr_debug("Suspend: Can't switch VCs.");
65 return 1;
66 }
67 orig_kmsg = kmsg_redirect; 24 orig_kmsg = kmsg_redirect;
68 kmsg_redirect = SUSPEND_CONSOLE; 25 kmsg_redirect = SUSPEND_CONSOLE;
69 return 0; 26 return 0;
@@ -71,19 +28,9 @@ int pm_prepare_console(void)
71 28
72void pm_restore_console(void) 29void pm_restore_console(void)
73{ 30{
74 acquire_console_sem(); 31 if (orig_fgconsole >= 0) {
75 if (disable_vt_switch) { 32 vt_move_to_console(orig_fgconsole, 0);
76 release_console_sem(); 33 kmsg_redirect = orig_kmsg;
77 return;
78 }
79 set_console(orig_fgconsole);
80 release_console_sem();
81
82 if (vt_waitactive(orig_fgconsole)) {
83 pr_debug("Resume: Can't switch VCs.");
84 return;
85 } 34 }
86
87 kmsg_redirect = orig_kmsg;
88} 35}
89#endif 36#endif
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c
index 81d2e7464893..04b3a83d686f 100644
--- a/kernel/power/hibernate.c
+++ b/kernel/power/hibernate.c
@@ -298,8 +298,8 @@ int hibernation_snapshot(int platform_mode)
298 if (error) 298 if (error)
299 return error; 299 return error;
300 300
301 /* Free memory before shutting down devices. */ 301 /* Preallocate image memory before shutting down devices. */
302 error = swsusp_shrink_memory(); 302 error = hibernate_preallocate_memory();
303 if (error) 303 if (error)
304 goto Close; 304 goto Close;
305 305
@@ -315,6 +315,10 @@ int hibernation_snapshot(int platform_mode)
315 /* Control returns here after successful restore */ 315 /* Control returns here after successful restore */
316 316
317 Resume_devices: 317 Resume_devices:
318 /* We may need to release the preallocated image pages here. */
319 if (error || !in_suspend)
320 swsusp_free();
321
318 dpm_resume_end(in_suspend ? 322 dpm_resume_end(in_suspend ?
319 (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); 323 (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE);
320 resume_console(); 324 resume_console();
@@ -460,11 +464,11 @@ int hibernation_platform_enter(void)
460 464
461 error = hibernation_ops->prepare(); 465 error = hibernation_ops->prepare();
462 if (error) 466 if (error)
463 goto Platofrm_finish; 467 goto Platform_finish;
464 468
465 error = disable_nonboot_cpus(); 469 error = disable_nonboot_cpus();
466 if (error) 470 if (error)
467 goto Platofrm_finish; 471 goto Platform_finish;
468 472
469 local_irq_disable(); 473 local_irq_disable();
470 sysdev_suspend(PMSG_HIBERNATE); 474 sysdev_suspend(PMSG_HIBERNATE);
@@ -476,7 +480,7 @@ int hibernation_platform_enter(void)
476 * We don't need to reenable the nonboot CPUs or resume consoles, since 480 * We don't need to reenable the nonboot CPUs or resume consoles, since
477 * the system is going to be halted anyway. 481 * the system is going to be halted anyway.
478 */ 482 */
479 Platofrm_finish: 483 Platform_finish:
480 hibernation_ops->finish(); 484 hibernation_ops->finish();
481 485
482 dpm_suspend_noirq(PMSG_RESTORE); 486 dpm_suspend_noirq(PMSG_RESTORE);
@@ -578,7 +582,10 @@ int hibernate(void)
578 goto Thaw; 582 goto Thaw;
579 583
580 error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); 584 error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM);
581 if (in_suspend && !error) { 585 if (error)
586 goto Thaw;
587
588 if (in_suspend) {
582 unsigned int flags = 0; 589 unsigned int flags = 0;
583 590
584 if (hibernation_mode == HIBERNATION_PLATFORM) 591 if (hibernation_mode == HIBERNATION_PLATFORM)
@@ -590,8 +597,8 @@ int hibernate(void)
590 power_down(); 597 power_down();
591 } else { 598 } else {
592 pr_debug("PM: Image restored successfully.\n"); 599 pr_debug("PM: Image restored successfully.\n");
593 swsusp_free();
594 } 600 }
601
595 Thaw: 602 Thaw:
596 thaw_processes(); 603 thaw_processes();
597 Finish: 604 Finish:
diff --git a/kernel/power/main.c b/kernel/power/main.c
index f710e36930cc..347d2cc88cd0 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -11,6 +11,7 @@
11#include <linux/kobject.h> 11#include <linux/kobject.h>
12#include <linux/string.h> 12#include <linux/string.h>
13#include <linux/resume-trace.h> 13#include <linux/resume-trace.h>
14#include <linux/workqueue.h>
14 15
15#include "power.h" 16#include "power.h"
16 17
@@ -217,8 +218,24 @@ static struct attribute_group attr_group = {
217 .attrs = g, 218 .attrs = g,
218}; 219};
219 220
221#ifdef CONFIG_PM_RUNTIME
222struct workqueue_struct *pm_wq;
223
224static int __init pm_start_workqueue(void)
225{
226 pm_wq = create_freezeable_workqueue("pm");
227
228 return pm_wq ? 0 : -ENOMEM;
229}
230#else
231static inline int pm_start_workqueue(void) { return 0; }
232#endif
233
220static int __init pm_init(void) 234static int __init pm_init(void)
221{ 235{
236 int error = pm_start_workqueue();
237 if (error)
238 return error;
222 power_kobj = kobject_create_and_add("power", NULL); 239 power_kobj = kobject_create_and_add("power", NULL);
223 if (!power_kobj) 240 if (!power_kobj)
224 return -ENOMEM; 241 return -ENOMEM;
diff --git a/kernel/power/power.h b/kernel/power/power.h
index 26d5a26f82e3..46c5a26630a3 100644
--- a/kernel/power/power.h
+++ b/kernel/power/power.h
@@ -74,7 +74,7 @@ extern asmlinkage int swsusp_arch_resume(void);
74 74
75extern int create_basic_memory_bitmaps(void); 75extern int create_basic_memory_bitmaps(void);
76extern void free_basic_memory_bitmaps(void); 76extern void free_basic_memory_bitmaps(void);
77extern int swsusp_shrink_memory(void); 77extern int hibernate_preallocate_memory(void);
78 78
79/** 79/**
80 * Auxiliary structure used for reading the snapshot image data and 80 * Auxiliary structure used for reading the snapshot image data and
diff --git a/kernel/power/process.c b/kernel/power/process.c
index da2072d73811..cc2e55373b68 100644
--- a/kernel/power/process.c
+++ b/kernel/power/process.c
@@ -9,6 +9,7 @@
9#undef DEBUG 9#undef DEBUG
10 10
11#include <linux/interrupt.h> 11#include <linux/interrupt.h>
12#include <linux/oom.h>
12#include <linux/suspend.h> 13#include <linux/suspend.h>
13#include <linux/module.h> 14#include <linux/module.h>
14#include <linux/syscalls.h> 15#include <linux/syscalls.h>
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 523a451b45d3..36cb168e4330 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -233,7 +233,7 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
233 233
234#define BM_END_OF_MAP (~0UL) 234#define BM_END_OF_MAP (~0UL)
235 235
236#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 236#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
237 237
238struct bm_block { 238struct bm_block {
239 struct list_head hook; /* hook into a list of bitmap blocks */ 239 struct list_head hook; /* hook into a list of bitmap blocks */
@@ -275,7 +275,7 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275 275
276/** 276/**
277 * create_bm_block_list - create a list of block bitmap objects 277 * create_bm_block_list - create a list of block bitmap objects
278 * @nr_blocks - number of blocks to allocate 278 * @pages - number of pages to track
279 * @list - list to put the allocated blocks into 279 * @list - list to put the allocated blocks into
280 * @ca - chain allocator to be used for allocating memory 280 * @ca - chain allocator to be used for allocating memory
281 */ 281 */
@@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
619 BUG_ON(!region); 619 BUG_ON(!region);
620 } else 620 } else
621 /* This allocation cannot fail */ 621 /* This allocation cannot fail */
622 region = alloc_bootmem_low(sizeof(struct nosave_region)); 622 region = alloc_bootmem(sizeof(struct nosave_region));
623 region->start_pfn = start_pfn; 623 region->start_pfn = start_pfn;
624 region->end_pfn = end_pfn; 624 region->end_pfn = end_pfn;
625 list_add_tail(&region->list, &nosave_regions); 625 list_add_tail(&region->list, &nosave_regions);
@@ -853,7 +853,7 @@ static unsigned int count_highmem_pages(void)
853 struct zone *zone; 853 struct zone *zone;
854 unsigned int n = 0; 854 unsigned int n = 0;
855 855
856 for_each_zone(zone) { 856 for_each_populated_zone(zone) {
857 unsigned long pfn, max_zone_pfn; 857 unsigned long pfn, max_zone_pfn;
858 858
859 if (!is_highmem(zone)) 859 if (!is_highmem(zone))
@@ -916,7 +916,7 @@ static unsigned int count_data_pages(void)
916 unsigned long pfn, max_zone_pfn; 916 unsigned long pfn, max_zone_pfn;
917 unsigned int n = 0; 917 unsigned int n = 0;
918 918
919 for_each_zone(zone) { 919 for_each_populated_zone(zone) {
920 if (is_highmem(zone)) 920 if (is_highmem(zone))
921 continue; 921 continue;
922 922
@@ -1010,7 +1010,7 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1010 struct zone *zone; 1010 struct zone *zone;
1011 unsigned long pfn; 1011 unsigned long pfn;
1012 1012
1013 for_each_zone(zone) { 1013 for_each_populated_zone(zone) {
1014 unsigned long max_zone_pfn; 1014 unsigned long max_zone_pfn;
1015 1015
1016 mark_free_pages(zone); 1016 mark_free_pages(zone);
@@ -1033,6 +1033,25 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1033static unsigned int nr_copy_pages; 1033static unsigned int nr_copy_pages;
1034/* Number of pages needed for saving the original pfns of the image pages */ 1034/* Number of pages needed for saving the original pfns of the image pages */
1035static unsigned int nr_meta_pages; 1035static unsigned int nr_meta_pages;
1036/*
1037 * Numbers of normal and highmem page frames allocated for hibernation image
1038 * before suspending devices.
1039 */
1040unsigned int alloc_normal, alloc_highmem;
1041/*
1042 * Memory bitmap used for marking saveable pages (during hibernation) or
1043 * hibernation image pages (during restore)
1044 */
1045static struct memory_bitmap orig_bm;
1046/*
1047 * Memory bitmap used during hibernation for marking allocated page frames that
1048 * will contain copies of saveable pages. During restore it is initially used
1049 * for marking hibernation image pages, but then the set bits from it are
1050 * duplicated in @orig_bm and it is released. On highmem systems it is next
1051 * used for marking "safe" highmem pages, but it has to be reinitialized for
1052 * this purpose.
1053 */
1054static struct memory_bitmap copy_bm;
1036 1055
1037/** 1056/**
1038 * swsusp_free - free pages allocated for the suspend. 1057 * swsusp_free - free pages allocated for the suspend.
@@ -1046,7 +1065,7 @@ void swsusp_free(void)
1046 struct zone *zone; 1065 struct zone *zone;
1047 unsigned long pfn, max_zone_pfn; 1066 unsigned long pfn, max_zone_pfn;
1048 1067
1049 for_each_zone(zone) { 1068 for_each_populated_zone(zone) {
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1069 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1070 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) { 1071 if (pfn_valid(pfn)) {
@@ -1064,74 +1083,286 @@ void swsusp_free(void)
1064 nr_meta_pages = 0; 1083 nr_meta_pages = 0;
1065 restore_pblist = NULL; 1084 restore_pblist = NULL;
1066 buffer = NULL; 1085 buffer = NULL;
1086 alloc_normal = 0;
1087 alloc_highmem = 0;
1067} 1088}
1068 1089
1090/* Helper functions used for the shrinking of memory. */
1091
1092#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1093
1069/** 1094/**
1070 * swsusp_shrink_memory - Try to free as much memory as needed 1095 * preallocate_image_pages - Allocate a number of pages for hibernation image
1071 * 1096 * @nr_pages: Number of page frames to allocate.
1072 * ... but do not OOM-kill anyone 1097 * @mask: GFP flags to use for the allocation.
1073 * 1098 *
1074 * Notice: all userland should be stopped before it is called, or 1099 * Return value: Number of page frames actually allocated
1075 * livelock is possible. 1100 */
1101static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1102{
1103 unsigned long nr_alloc = 0;
1104
1105 while (nr_pages > 0) {
1106 struct page *page;
1107
1108 page = alloc_image_page(mask);
1109 if (!page)
1110 break;
1111 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1112 if (PageHighMem(page))
1113 alloc_highmem++;
1114 else
1115 alloc_normal++;
1116 nr_pages--;
1117 nr_alloc++;
1118 }
1119
1120 return nr_alloc;
1121}
1122
1123static unsigned long preallocate_image_memory(unsigned long nr_pages)
1124{
1125 return preallocate_image_pages(nr_pages, GFP_IMAGE);
1126}
1127
1128#ifdef CONFIG_HIGHMEM
1129static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1130{
1131 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1132}
1133
1134/**
1135 * __fraction - Compute (an approximation of) x * (multiplier / base)
1076 */ 1136 */
1137static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1138{
1139 x *= multiplier;
1140 do_div(x, base);
1141 return (unsigned long)x;
1142}
1143
1144static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1145 unsigned long highmem,
1146 unsigned long total)
1147{
1148 unsigned long alloc = __fraction(nr_pages, highmem, total);
1077 1149
1078#define SHRINK_BITE 10000 1150 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1079static inline unsigned long __shrink_memory(long tmp) 1151}
1152#else /* CONFIG_HIGHMEM */
1153static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1080{ 1154{
1081 if (tmp > SHRINK_BITE) 1155 return 0;
1082 tmp = SHRINK_BITE;
1083 return shrink_all_memory(tmp);
1084} 1156}
1085 1157
1086int swsusp_shrink_memory(void) 1158static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1159 unsigned long highmem,
1160 unsigned long total)
1161{
1162 return 0;
1163}
1164#endif /* CONFIG_HIGHMEM */
1165
1166/**
1167 * free_unnecessary_pages - Release preallocated pages not needed for the image
1168 */
1169static void free_unnecessary_pages(void)
1170{
1171 unsigned long save_highmem, to_free_normal, to_free_highmem;
1172
1173 to_free_normal = alloc_normal - count_data_pages();
1174 save_highmem = count_highmem_pages();
1175 if (alloc_highmem > save_highmem) {
1176 to_free_highmem = alloc_highmem - save_highmem;
1177 } else {
1178 to_free_highmem = 0;
1179 to_free_normal -= save_highmem - alloc_highmem;
1180 }
1181
1182 memory_bm_position_reset(&copy_bm);
1183
1184 while (to_free_normal > 0 && to_free_highmem > 0) {
1185 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1186 struct page *page = pfn_to_page(pfn);
1187
1188 if (PageHighMem(page)) {
1189 if (!to_free_highmem)
1190 continue;
1191 to_free_highmem--;
1192 alloc_highmem--;
1193 } else {
1194 if (!to_free_normal)
1195 continue;
1196 to_free_normal--;
1197 alloc_normal--;
1198 }
1199 memory_bm_clear_bit(&copy_bm, pfn);
1200 swsusp_unset_page_forbidden(page);
1201 swsusp_unset_page_free(page);
1202 __free_page(page);
1203 }
1204}
1205
1206/**
1207 * minimum_image_size - Estimate the minimum acceptable size of an image
1208 * @saveable: Number of saveable pages in the system.
1209 *
1210 * We want to avoid attempting to free too much memory too hard, so estimate the
1211 * minimum acceptable size of a hibernation image to use as the lower limit for
1212 * preallocating memory.
1213 *
1214 * We assume that the minimum image size should be proportional to
1215 *
1216 * [number of saveable pages] - [number of pages that can be freed in theory]
1217 *
1218 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1219 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1220 * minus mapped file pages.
1221 */
1222static unsigned long minimum_image_size(unsigned long saveable)
1223{
1224 unsigned long size;
1225
1226 size = global_page_state(NR_SLAB_RECLAIMABLE)
1227 + global_page_state(NR_ACTIVE_ANON)
1228 + global_page_state(NR_INACTIVE_ANON)
1229 + global_page_state(NR_ACTIVE_FILE)
1230 + global_page_state(NR_INACTIVE_FILE)
1231 - global_page_state(NR_FILE_MAPPED);
1232
1233 return saveable <= size ? 0 : saveable - size;
1234}
1235
1236/**
1237 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1238 *
1239 * To create a hibernation image it is necessary to make a copy of every page
1240 * frame in use. We also need a number of page frames to be free during
1241 * hibernation for allocations made while saving the image and for device
1242 * drivers, in case they need to allocate memory from their hibernation
1243 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1244 * respectively, both of which are rough estimates). To make this happen, we
1245 * compute the total number of available page frames and allocate at least
1246 *
1247 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1248 *
1249 * of them, which corresponds to the maximum size of a hibernation image.
1250 *
1251 * If image_size is set below the number following from the above formula,
1252 * the preallocation of memory is continued until the total number of saveable
1253 * pages in the system is below the requested image size or the minimum
1254 * acceptable image size returned by minimum_image_size(), whichever is greater.
1255 */
1256int hibernate_preallocate_memory(void)
1087{ 1257{
1088 long tmp;
1089 struct zone *zone; 1258 struct zone *zone;
1090 unsigned long pages = 0; 1259 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1091 unsigned int i = 0; 1260 unsigned long alloc, save_highmem, pages_highmem;
1092 char *p = "-\\|/";
1093 struct timeval start, stop; 1261 struct timeval start, stop;
1262 int error;
1094 1263
1095 printk(KERN_INFO "PM: Shrinking memory... "); 1264 printk(KERN_INFO "PM: Preallocating image memory... ");
1096 do_gettimeofday(&start); 1265 do_gettimeofday(&start);
1097 do {
1098 long size, highmem_size;
1099
1100 highmem_size = count_highmem_pages();
1101 size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
1102 tmp = size;
1103 size += highmem_size;
1104 for_each_populated_zone(zone) {
1105 tmp += snapshot_additional_pages(zone);
1106 if (is_highmem(zone)) {
1107 highmem_size -=
1108 zone_page_state(zone, NR_FREE_PAGES);
1109 } else {
1110 tmp -= zone_page_state(zone, NR_FREE_PAGES);
1111 tmp += zone->lowmem_reserve[ZONE_NORMAL];
1112 }
1113 }
1114 1266
1115 if (highmem_size < 0) 1267 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1116 highmem_size = 0; 1268 if (error)
1269 goto err_out;
1117 1270
1118 tmp += highmem_size; 1271 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1119 if (tmp > 0) { 1272 if (error)
1120 tmp = __shrink_memory(tmp); 1273 goto err_out;
1121 if (!tmp) 1274
1122 return -ENOMEM; 1275 alloc_normal = 0;
1123 pages += tmp; 1276 alloc_highmem = 0;
1124 } else if (size > image_size / PAGE_SIZE) { 1277
1125 tmp = __shrink_memory(size - (image_size / PAGE_SIZE)); 1278 /* Count the number of saveable data pages. */
1126 pages += tmp; 1279 save_highmem = count_highmem_pages();
1127 } 1280 saveable = count_data_pages();
1128 printk("\b%c", p[i++%4]); 1281
1129 } while (tmp > 0); 1282 /*
1283 * Compute the total number of page frames we can use (count) and the
1284 * number of pages needed for image metadata (size).
1285 */
1286 count = saveable;
1287 saveable += save_highmem;
1288 highmem = save_highmem;
1289 size = 0;
1290 for_each_populated_zone(zone) {
1291 size += snapshot_additional_pages(zone);
1292 if (is_highmem(zone))
1293 highmem += zone_page_state(zone, NR_FREE_PAGES);
1294 else
1295 count += zone_page_state(zone, NR_FREE_PAGES);
1296 }
1297 count += highmem;
1298 count -= totalreserve_pages;
1299
1300 /* Compute the maximum number of saveable pages to leave in memory. */
1301 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1302 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1303 if (size > max_size)
1304 size = max_size;
1305 /*
1306 * If the maximum is not less than the current number of saveable pages
1307 * in memory, allocate page frames for the image and we're done.
1308 */
1309 if (size >= saveable) {
1310 pages = preallocate_image_highmem(save_highmem);
1311 pages += preallocate_image_memory(saveable - pages);
1312 goto out;
1313 }
1314
1315 /* Estimate the minimum size of the image. */
1316 pages = minimum_image_size(saveable);
1317 if (size < pages)
1318 size = min_t(unsigned long, pages, max_size);
1319
1320 /*
1321 * Let the memory management subsystem know that we're going to need a
1322 * large number of page frames to allocate and make it free some memory.
1323 * NOTE: If this is not done, performance will be hurt badly in some
1324 * test cases.
1325 */
1326 shrink_all_memory(saveable - size);
1327
1328 /*
1329 * The number of saveable pages in memory was too high, so apply some
1330 * pressure to decrease it. First, make room for the largest possible
1331 * image and fail if that doesn't work. Next, try to decrease the size
1332 * of the image as much as indicated by 'size' using allocations from
1333 * highmem and non-highmem zones separately.
1334 */
1335 pages_highmem = preallocate_image_highmem(highmem / 2);
1336 alloc = (count - max_size) - pages_highmem;
1337 pages = preallocate_image_memory(alloc);
1338 if (pages < alloc)
1339 goto err_out;
1340 size = max_size - size;
1341 alloc = size;
1342 size = preallocate_highmem_fraction(size, highmem, count);
1343 pages_highmem += size;
1344 alloc -= size;
1345 pages += preallocate_image_memory(alloc);
1346 pages += pages_highmem;
1347
1348 /*
1349 * We only need as many page frames for the image as there are saveable
1350 * pages in memory, but we have allocated more. Release the excessive
1351 * ones now.
1352 */
1353 free_unnecessary_pages();
1354
1355 out:
1130 do_gettimeofday(&stop); 1356 do_gettimeofday(&stop);
1131 printk("\bdone (%lu pages freed)\n", pages); 1357 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1132 swsusp_show_speed(&start, &stop, pages, "Freed"); 1358 swsusp_show_speed(&start, &stop, pages, "Allocated");
1133 1359
1134 return 0; 1360 return 0;
1361
1362 err_out:
1363 printk(KERN_CONT "\n");
1364 swsusp_free();
1365 return -ENOMEM;
1135} 1366}
1136 1367
1137#ifdef CONFIG_HIGHMEM 1368#ifdef CONFIG_HIGHMEM
@@ -1142,7 +1373,7 @@ int swsusp_shrink_memory(void)
1142 1373
1143static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1374static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1144{ 1375{
1145 unsigned int free_highmem = count_free_highmem_pages(); 1376 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1146 1377
1147 if (free_highmem >= nr_highmem) 1378 if (free_highmem >= nr_highmem)
1148 nr_highmem = 0; 1379 nr_highmem = 0;
@@ -1164,19 +1395,17 @@ count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1164static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1395static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1165{ 1396{
1166 struct zone *zone; 1397 struct zone *zone;
1167 unsigned int free = 0, meta = 0; 1398 unsigned int free = alloc_normal;
1168 1399
1169 for_each_zone(zone) { 1400 for_each_populated_zone(zone)
1170 meta += snapshot_additional_pages(zone);
1171 if (!is_highmem(zone)) 1401 if (!is_highmem(zone))
1172 free += zone_page_state(zone, NR_FREE_PAGES); 1402 free += zone_page_state(zone, NR_FREE_PAGES);
1173 }
1174 1403
1175 nr_pages += count_pages_for_highmem(nr_highmem); 1404 nr_pages += count_pages_for_highmem(nr_highmem);
1176 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", 1405 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1177 nr_pages, PAGES_FOR_IO, meta, free); 1406 nr_pages, PAGES_FOR_IO, free);
1178 1407
1179 return free > nr_pages + PAGES_FOR_IO + meta; 1408 return free > nr_pages + PAGES_FOR_IO;
1180} 1409}
1181 1410
1182#ifdef CONFIG_HIGHMEM 1411#ifdef CONFIG_HIGHMEM
@@ -1198,7 +1427,7 @@ static inline int get_highmem_buffer(int safe_needed)
1198 */ 1427 */
1199 1428
1200static inline unsigned int 1429static inline unsigned int
1201alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1430alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1202{ 1431{
1203 unsigned int to_alloc = count_free_highmem_pages(); 1432 unsigned int to_alloc = count_free_highmem_pages();
1204 1433
@@ -1218,7 +1447,7 @@ alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1218static inline int get_highmem_buffer(int safe_needed) { return 0; } 1447static inline int get_highmem_buffer(int safe_needed) { return 0; }
1219 1448
1220static inline unsigned int 1449static inline unsigned int
1221alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1450alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1222#endif /* CONFIG_HIGHMEM */ 1451#endif /* CONFIG_HIGHMEM */
1223 1452
1224/** 1453/**
@@ -1237,51 +1466,36 @@ static int
1237swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1466swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1238 unsigned int nr_pages, unsigned int nr_highmem) 1467 unsigned int nr_pages, unsigned int nr_highmem)
1239{ 1468{
1240 int error; 1469 int error = 0;
1241
1242 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1243 if (error)
1244 goto Free;
1245
1246 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1247 if (error)
1248 goto Free;
1249 1470
1250 if (nr_highmem > 0) { 1471 if (nr_highmem > 0) {
1251 error = get_highmem_buffer(PG_ANY); 1472 error = get_highmem_buffer(PG_ANY);
1252 if (error) 1473 if (error)
1253 goto Free; 1474 goto err_out;
1254 1475 if (nr_highmem > alloc_highmem) {
1255 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1476 nr_highmem -= alloc_highmem;
1477 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1478 }
1256 } 1479 }
1257 while (nr_pages-- > 0) { 1480 if (nr_pages > alloc_normal) {
1258 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1481 nr_pages -= alloc_normal;
1259 1482 while (nr_pages-- > 0) {
1260 if (!page) 1483 struct page *page;
1261 goto Free;
1262 1484
1263 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1485 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1486 if (!page)
1487 goto err_out;
1488 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1489 }
1264 } 1490 }
1491
1265 return 0; 1492 return 0;
1266 1493
1267 Free: 1494 err_out:
1268 swsusp_free(); 1495 swsusp_free();
1269 return -ENOMEM; 1496 return error;
1270} 1497}
1271 1498
1272/* Memory bitmap used for marking saveable pages (during suspend) or the
1273 * suspend image pages (during resume)
1274 */
1275static struct memory_bitmap orig_bm;
1276/* Memory bitmap used on suspend for marking allocated pages that will contain
1277 * the copies of saveable pages. During resume it is initially used for
1278 * marking the suspend image pages, but then its set bits are duplicated in
1279 * @orig_bm and it is released. Next, on systems with high memory, it may be
1280 * used for marking "safe" highmem pages, but it has to be reinitialized for
1281 * this purpose.
1282 */
1283static struct memory_bitmap copy_bm;
1284
1285asmlinkage int swsusp_save(void) 1499asmlinkage int swsusp_save(void)
1286{ 1500{
1287 unsigned int nr_pages, nr_highmem; 1501 unsigned int nr_pages, nr_highmem;
@@ -1474,7 +1688,7 @@ static int mark_unsafe_pages(struct memory_bitmap *bm)
1474 unsigned long pfn, max_zone_pfn; 1688 unsigned long pfn, max_zone_pfn;
1475 1689
1476 /* Clear page flags */ 1690 /* Clear page flags */
1477 for_each_zone(zone) { 1691 for_each_populated_zone(zone) {
1478 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1692 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1479 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1480 if (pfn_valid(pfn)) 1694 if (pfn_valid(pfn))
diff --git a/kernel/power/swap.c b/kernel/power/swap.c
index 8ba052c86d48..b101cdc4df3f 100644
--- a/kernel/power/swap.c
+++ b/kernel/power/swap.c
@@ -13,7 +13,6 @@
13 13
14#include <linux/module.h> 14#include <linux/module.h>
15#include <linux/file.h> 15#include <linux/file.h>
16#include <linux/utsname.h>
17#include <linux/delay.h> 16#include <linux/delay.h>
18#include <linux/bitops.h> 17#include <linux/bitops.h>
19#include <linux/genhd.h> 18#include <linux/genhd.h>
diff --git a/kernel/printk.c b/kernel/printk.c
index e10d193a833a..f38b07f78a4e 100644
--- a/kernel/printk.c
+++ b/kernel/printk.c
@@ -206,12 +206,11 @@ __setup("log_buf_len=", log_buf_len_setup);
206#ifdef CONFIG_BOOT_PRINTK_DELAY 206#ifdef CONFIG_BOOT_PRINTK_DELAY
207 207
208static unsigned int boot_delay; /* msecs delay after each printk during bootup */ 208static unsigned int boot_delay; /* msecs delay after each printk during bootup */
209static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ 209static unsigned long long loops_per_msec; /* based on boot_delay */
210 210
211static int __init boot_delay_setup(char *str) 211static int __init boot_delay_setup(char *str)
212{ 212{
213 unsigned long lpj; 213 unsigned long lpj;
214 unsigned long long loops_per_msec;
215 214
216 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 215 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
217 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 216 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
@@ -220,10 +219,9 @@ static int __init boot_delay_setup(char *str)
220 if (boot_delay > 10 * 1000) 219 if (boot_delay > 10 * 1000)
221 boot_delay = 0; 220 boot_delay = 0;
222 221
223 printk_delay_msec = loops_per_msec; 222 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
224 printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 223 "HZ: %d, loops_per_msec: %llu\n",
225 "HZ: %d, printk_delay_msec: %llu\n", 224 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
226 boot_delay, preset_lpj, lpj, HZ, printk_delay_msec);
227 return 1; 225 return 1;
228} 226}
229__setup("boot_delay=", boot_delay_setup); 227__setup("boot_delay=", boot_delay_setup);
@@ -236,7 +234,7 @@ static void boot_delay_msec(void)
236 if (boot_delay == 0 || system_state != SYSTEM_BOOTING) 234 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
237 return; 235 return;
238 236
239 k = (unsigned long long)printk_delay_msec * boot_delay; 237 k = (unsigned long long)loops_per_msec * boot_delay;
240 238
241 timeout = jiffies + msecs_to_jiffies(boot_delay); 239 timeout = jiffies + msecs_to_jiffies(boot_delay);
242 while (k) { 240 while (k) {
@@ -655,6 +653,20 @@ static int recursion_bug;
655static int new_text_line = 1; 653static int new_text_line = 1;
656static char printk_buf[1024]; 654static char printk_buf[1024];
657 655
656int printk_delay_msec __read_mostly;
657
658static inline void printk_delay(void)
659{
660 if (unlikely(printk_delay_msec)) {
661 int m = printk_delay_msec;
662
663 while (m--) {
664 mdelay(1);
665 touch_nmi_watchdog();
666 }
667 }
668}
669
658asmlinkage int vprintk(const char *fmt, va_list args) 670asmlinkage int vprintk(const char *fmt, va_list args)
659{ 671{
660 int printed_len = 0; 672 int printed_len = 0;
@@ -664,6 +676,7 @@ asmlinkage int vprintk(const char *fmt, va_list args)
664 char *p; 676 char *p;
665 677
666 boot_delay_msec(); 678 boot_delay_msec();
679 printk_delay();
667 680
668 preempt_disable(); 681 preempt_disable();
669 /* This stops the holder of console_sem just where we want him */ 682 /* This stops the holder of console_sem just where we want him */
@@ -1075,12 +1088,6 @@ void __sched console_conditional_schedule(void)
1075} 1088}
1076EXPORT_SYMBOL(console_conditional_schedule); 1089EXPORT_SYMBOL(console_conditional_schedule);
1077 1090
1078void console_print(const char *s)
1079{
1080 printk(KERN_EMERG "%s", s);
1081}
1082EXPORT_SYMBOL(console_print);
1083
1084void console_unblank(void) 1091void console_unblank(void)
1085{ 1092{
1086 struct console *c; 1093 struct console *c;
diff --git a/kernel/profile.c b/kernel/profile.c
index 419250ebec4d..a55d3a367ae8 100644
--- a/kernel/profile.c
+++ b/kernel/profile.c
@@ -442,48 +442,51 @@ void profile_tick(int type)
442 442
443#ifdef CONFIG_PROC_FS 443#ifdef CONFIG_PROC_FS
444#include <linux/proc_fs.h> 444#include <linux/proc_fs.h>
445#include <linux/seq_file.h>
445#include <asm/uaccess.h> 446#include <asm/uaccess.h>
446 447
447static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, 448static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
448 int count, int *eof, void *data)
449{ 449{
450 int len = cpumask_scnprintf(page, count, data); 450 seq_cpumask(m, prof_cpu_mask);
451 if (count - len < 2) 451 seq_putc(m, '\n');
452 return -EINVAL; 452 return 0;
453 len += sprintf(page + len, "\n");
454 return len;
455} 453}
456 454
457static int prof_cpu_mask_write_proc(struct file *file, 455static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
458 const char __user *buffer, unsigned long count, void *data) 456{
457 return single_open(file, prof_cpu_mask_proc_show, NULL);
458}
459
460static ssize_t prof_cpu_mask_proc_write(struct file *file,
461 const char __user *buffer, size_t count, loff_t *pos)
459{ 462{
460 struct cpumask *mask = data;
461 unsigned long full_count = count, err;
462 cpumask_var_t new_value; 463 cpumask_var_t new_value;
464 int err;
463 465
464 if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) 466 if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
465 return -ENOMEM; 467 return -ENOMEM;
466 468
467 err = cpumask_parse_user(buffer, count, new_value); 469 err = cpumask_parse_user(buffer, count, new_value);
468 if (!err) { 470 if (!err) {
469 cpumask_copy(mask, new_value); 471 cpumask_copy(prof_cpu_mask, new_value);
470 err = full_count; 472 err = count;
471 } 473 }
472 free_cpumask_var(new_value); 474 free_cpumask_var(new_value);
473 return err; 475 return err;
474} 476}
475 477
478static const struct file_operations prof_cpu_mask_proc_fops = {
479 .open = prof_cpu_mask_proc_open,
480 .read = seq_read,
481 .llseek = seq_lseek,
482 .release = single_release,
483 .write = prof_cpu_mask_proc_write,
484};
485
476void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 486void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
477{ 487{
478 struct proc_dir_entry *entry;
479
480 /* create /proc/irq/prof_cpu_mask */ 488 /* create /proc/irq/prof_cpu_mask */
481 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); 489 proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
482 if (!entry)
483 return;
484 entry->data = prof_cpu_mask;
485 entry->read_proc = prof_cpu_mask_read_proc;
486 entry->write_proc = prof_cpu_mask_write_proc;
487} 490}
488 491
489/* 492/*
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 307c285af59e..23bd09cd042e 100644
--- a/kernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -266,9 +266,10 @@ static int ignoring_children(struct sighand_struct *sigh)
266 * or self-reaping. Do notification now if it would have happened earlier. 266 * or self-reaping. Do notification now if it would have happened earlier.
267 * If it should reap itself, return true. 267 * If it should reap itself, return true.
268 * 268 *
269 * If it's our own child, there is no notification to do. 269 * If it's our own child, there is no notification to do. But if our normal
270 * But if our normal children self-reap, then this child 270 * children self-reap, then this child was prevented by ptrace and we must
271 * was prevented by ptrace and we must reap it now. 271 * reap it now, in that case we must also wake up sub-threads sleeping in
272 * do_wait().
272 */ 273 */
273static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) 274static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
274{ 275{
@@ -278,8 +279,10 @@ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
278 if (!task_detached(p) && thread_group_empty(p)) { 279 if (!task_detached(p) && thread_group_empty(p)) {
279 if (!same_thread_group(p->real_parent, tracer)) 280 if (!same_thread_group(p->real_parent, tracer))
280 do_notify_parent(p, p->exit_signal); 281 do_notify_parent(p, p->exit_signal);
281 else if (ignoring_children(tracer->sighand)) 282 else if (ignoring_children(tracer->sighand)) {
283 __wake_up_parent(p, tracer);
282 p->exit_signal = -1; 284 p->exit_signal = -1;
285 }
283 } 286 }
284 if (task_detached(p)) { 287 if (task_detached(p)) {
285 /* Mark it as in the process of being reaped. */ 288 /* Mark it as in the process of being reaped. */
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index bd5d5c8e5140..37ac45483082 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -19,7 +19,7 @@
19 * 19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com> 21 * Manfred Spraul <manfred@colorfullife.com>
22 * 22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers: 25 * Papers:
@@ -27,7 +27,7 @@
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 * 28 *
29 * For detailed explanation of Read-Copy Update mechanism see - 29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html 30 * http://lse.sourceforge.net/locking/rcupdate.html
31 * 31 *
32 */ 32 */
33#include <linux/types.h> 33#include <linux/types.h>
@@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head)
74 complete(&rcu->completion); 74 complete(&rcu->completion);
75} 75}
76 76
77#ifdef CONFIG_TREE_PREEMPT_RCU
78
77/** 79/**
78 * synchronize_rcu - wait until a grace period has elapsed. 80 * synchronize_rcu - wait until a grace period has elapsed.
79 * 81 *
@@ -87,7 +89,7 @@ void synchronize_rcu(void)
87{ 89{
88 struct rcu_synchronize rcu; 90 struct rcu_synchronize rcu;
89 91
90 if (rcu_blocking_is_gp()) 92 if (!rcu_scheduler_active)
91 return; 93 return;
92 94
93 init_completion(&rcu.completion); 95 init_completion(&rcu.completion);
@@ -98,6 +100,46 @@ void synchronize_rcu(void)
98} 100}
99EXPORT_SYMBOL_GPL(synchronize_rcu); 101EXPORT_SYMBOL_GPL(synchronize_rcu);
100 102
103#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
104
105/**
106 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
107 *
108 * Control will return to the caller some time after a full rcu-sched
109 * grace period has elapsed, in other words after all currently executing
110 * rcu-sched read-side critical sections have completed. These read-side
111 * critical sections are delimited by rcu_read_lock_sched() and
112 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
113 * local_irq_disable(), and so on may be used in place of
114 * rcu_read_lock_sched().
115 *
116 * This means that all preempt_disable code sequences, including NMI and
117 * hardware-interrupt handlers, in progress on entry will have completed
118 * before this primitive returns. However, this does not guarantee that
119 * softirq handlers will have completed, since in some kernels, these
120 * handlers can run in process context, and can block.
121 *
122 * This primitive provides the guarantees made by the (now removed)
123 * synchronize_kernel() API. In contrast, synchronize_rcu() only
124 * guarantees that rcu_read_lock() sections will have completed.
125 * In "classic RCU", these two guarantees happen to be one and
126 * the same, but can differ in realtime RCU implementations.
127 */
128void synchronize_sched(void)
129{
130 struct rcu_synchronize rcu;
131
132 if (rcu_blocking_is_gp())
133 return;
134
135 init_completion(&rcu.completion);
136 /* Will wake me after RCU finished. */
137 call_rcu_sched(&rcu.head, wakeme_after_rcu);
138 /* Wait for it. */
139 wait_for_completion(&rcu.completion);
140}
141EXPORT_SYMBOL_GPL(synchronize_sched);
142
101/** 143/**
102 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 144 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
103 * 145 *
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c
index b33db539a8ad..233768f21f97 100644
--- a/kernel/rcutorture.c
+++ b/kernel/rcutorture.c
@@ -18,7 +18,7 @@
18 * Copyright (C) IBM Corporation, 2005, 2006 18 * Copyright (C) IBM Corporation, 2005, 2006
19 * 19 *
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com> 20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * Josh Triplett <josh@freedesktop.org> 21 * Josh Triplett <josh@freedesktop.org>
22 * 22 *
23 * See also: Documentation/RCU/torture.txt 23 * See also: Documentation/RCU/torture.txt
24 */ 24 */
@@ -50,7 +50,7 @@
50 50
51MODULE_LICENSE("GPL"); 51MODULE_LICENSE("GPL");
52MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " 52MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and "
53 "Josh Triplett <josh@freedesktop.org>"); 53 "Josh Triplett <josh@freedesktop.org>");
54 54
55static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ 55static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */
56static int nfakewriters = 4; /* # fake writer threads */ 56static int nfakewriters = 4; /* # fake writer threads */
@@ -110,8 +110,8 @@ struct rcu_torture {
110}; 110};
111 111
112static LIST_HEAD(rcu_torture_freelist); 112static LIST_HEAD(rcu_torture_freelist);
113static struct rcu_torture *rcu_torture_current = NULL; 113static struct rcu_torture *rcu_torture_current;
114static long rcu_torture_current_version = 0; 114static long rcu_torture_current_version;
115static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; 115static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN];
116static DEFINE_SPINLOCK(rcu_torture_lock); 116static DEFINE_SPINLOCK(rcu_torture_lock);
117static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = 117static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) =
@@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail;
124static atomic_t n_rcu_torture_free; 124static atomic_t n_rcu_torture_free;
125static atomic_t n_rcu_torture_mberror; 125static atomic_t n_rcu_torture_mberror;
126static atomic_t n_rcu_torture_error; 126static atomic_t n_rcu_torture_error;
127static long n_rcu_torture_timers = 0; 127static long n_rcu_torture_timers;
128static struct list_head rcu_torture_removed; 128static struct list_head rcu_torture_removed;
129static cpumask_var_t shuffle_tmp_mask; 129static cpumask_var_t shuffle_tmp_mask;
130 130
131static int stutter_pause_test = 0; 131static int stutter_pause_test;
132 132
133#if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) 133#if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE)
134#define RCUTORTURE_RUNNABLE_INIT 1 134#define RCUTORTURE_RUNNABLE_INIT 1
@@ -267,7 +267,8 @@ struct rcu_torture_ops {
267 int irq_capable; 267 int irq_capable;
268 char *name; 268 char *name;
269}; 269};
270static struct rcu_torture_ops *cur_ops = NULL; 270
271static struct rcu_torture_ops *cur_ops;
271 272
272/* 273/*
273 * Definitions for rcu torture testing. 274 * Definitions for rcu torture testing.
@@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU)
281 282
282static void rcu_read_delay(struct rcu_random_state *rrsp) 283static void rcu_read_delay(struct rcu_random_state *rrsp)
283{ 284{
284 long delay; 285 const unsigned long shortdelay_us = 200;
285 const long longdelay = 200; 286 const unsigned long longdelay_ms = 50;
286 287
287 /* We want there to be long-running readers, but not all the time. */ 288 /* We want a short delay sometimes to make a reader delay the grace
289 * period, and we want a long delay occasionally to trigger
290 * force_quiescent_state. */
288 291
289 delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); 292 if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms)))
290 if (!delay) 293 mdelay(longdelay_ms);
291 udelay(longdelay); 294 if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us)))
295 udelay(shortdelay_us);
292} 296}
293 297
294static void rcu_torture_read_unlock(int idx) __releases(RCU) 298static void rcu_torture_read_unlock(int idx) __releases(RCU)
@@ -339,8 +343,8 @@ static struct rcu_torture_ops rcu_ops = {
339 .sync = synchronize_rcu, 343 .sync = synchronize_rcu,
340 .cb_barrier = rcu_barrier, 344 .cb_barrier = rcu_barrier,
341 .stats = NULL, 345 .stats = NULL,
342 .irq_capable = 1, 346 .irq_capable = 1,
343 .name = "rcu" 347 .name = "rcu"
344}; 348};
345 349
346static void rcu_sync_torture_deferred_free(struct rcu_torture *p) 350static void rcu_sync_torture_deferred_free(struct rcu_torture *p)
@@ -638,7 +642,8 @@ rcu_torture_writer(void *arg)
638 642
639 do { 643 do {
640 schedule_timeout_uninterruptible(1); 644 schedule_timeout_uninterruptible(1);
641 if ((rp = rcu_torture_alloc()) == NULL) 645 rp = rcu_torture_alloc();
646 if (rp == NULL)
642 continue; 647 continue;
643 rp->rtort_pipe_count = 0; 648 rp->rtort_pipe_count = 0;
644 udelay(rcu_random(&rand) & 0x3ff); 649 udelay(rcu_random(&rand) & 0x3ff);
@@ -1110,7 +1115,7 @@ rcu_torture_init(void)
1110 printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", 1115 printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n",
1111 torture_type); 1116 torture_type);
1112 mutex_unlock(&fullstop_mutex); 1117 mutex_unlock(&fullstop_mutex);
1113 return (-EINVAL); 1118 return -EINVAL;
1114 } 1119 }
1115 if (cur_ops->init) 1120 if (cur_ops->init)
1116 cur_ops->init(); /* no "goto unwind" prior to this point!!! */ 1121 cur_ops->init(); /* no "goto unwind" prior to this point!!! */
@@ -1161,7 +1166,7 @@ rcu_torture_init(void)
1161 goto unwind; 1166 goto unwind;
1162 } 1167 }
1163 fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), 1168 fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]),
1164 GFP_KERNEL); 1169 GFP_KERNEL);
1165 if (fakewriter_tasks == NULL) { 1170 if (fakewriter_tasks == NULL) {
1166 VERBOSE_PRINTK_ERRSTRING("out of memory"); 1171 VERBOSE_PRINTK_ERRSTRING("out of memory");
1167 firsterr = -ENOMEM; 1172 firsterr = -ENOMEM;
@@ -1170,7 +1175,7 @@ rcu_torture_init(void)
1170 for (i = 0; i < nfakewriters; i++) { 1175 for (i = 0; i < nfakewriters; i++) {
1171 VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); 1176 VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task");
1172 fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, 1177 fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL,
1173 "rcu_torture_fakewriter"); 1178 "rcu_torture_fakewriter");
1174 if (IS_ERR(fakewriter_tasks[i])) { 1179 if (IS_ERR(fakewriter_tasks[i])) {
1175 firsterr = PTR_ERR(fakewriter_tasks[i]); 1180 firsterr = PTR_ERR(fakewriter_tasks[i]);
1176 VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); 1181 VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter");
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 6b11b07cfe7f..52b06f6e158c 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -25,7 +25,7 @@
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * 26 *
27 * For detailed explanation of Read-Copy Update mechanism see - 27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU 28 * Documentation/RCU
29 */ 29 */
30#include <linux/types.h> 30#include <linux/types.h>
31#include <linux/kernel.h> 31#include <linux/kernel.h>
@@ -107,27 +107,23 @@ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
107 */ 107 */
108void rcu_sched_qs(int cpu) 108void rcu_sched_qs(int cpu)
109{ 109{
110 unsigned long flags;
111 struct rcu_data *rdp; 110 struct rcu_data *rdp;
112 111
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu); 112 rdp = &per_cpu(rcu_sched_data, cpu);
115 rdp->passed_quiesc = 1;
116 rdp->passed_quiesc_completed = rdp->completed; 113 rdp->passed_quiesc_completed = rdp->completed;
117 rcu_preempt_qs(cpu); 114 barrier();
118 local_irq_restore(flags); 115 rdp->passed_quiesc = 1;
116 rcu_preempt_note_context_switch(cpu);
119} 117}
120 118
121void rcu_bh_qs(int cpu) 119void rcu_bh_qs(int cpu)
122{ 120{
123 unsigned long flags;
124 struct rcu_data *rdp; 121 struct rcu_data *rdp;
125 122
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu); 123 rdp = &per_cpu(rcu_bh_data, cpu);
128 rdp->passed_quiesc = 1;
129 rdp->passed_quiesc_completed = rdp->completed; 124 rdp->passed_quiesc_completed = rdp->completed;
130 local_irq_restore(flags); 125 barrier();
126 rdp->passed_quiesc = 1;
131} 127}
132 128
133#ifdef CONFIG_NO_HZ 129#ifdef CONFIG_NO_HZ
@@ -605,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
605{ 601{
606 struct rcu_data *rdp = rsp->rda[smp_processor_id()]; 602 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
607 struct rcu_node *rnp = rcu_get_root(rsp); 603 struct rcu_node *rnp = rcu_get_root(rsp);
608 struct rcu_node *rnp_cur;
609 struct rcu_node *rnp_end;
610 604
611 if (!cpu_needs_another_gp(rsp, rdp)) { 605 if (!cpu_needs_another_gp(rsp, rdp)) {
612 spin_unlock_irqrestore(&rnp->lock, flags); 606 spin_unlock_irqrestore(&rnp->lock, flags);
@@ -615,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
615 609
616 /* Advance to a new grace period and initialize state. */ 610 /* Advance to a new grace period and initialize state. */
617 rsp->gpnum++; 611 rsp->gpnum++;
612 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
618 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ 613 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
619 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 614 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
620 record_gp_stall_check_time(rsp); 615 record_gp_stall_check_time(rsp);
@@ -631,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
631 626
632 /* Special-case the common single-level case. */ 627 /* Special-case the common single-level case. */
633 if (NUM_RCU_NODES == 1) { 628 if (NUM_RCU_NODES == 1) {
629 rcu_preempt_check_blocked_tasks(rnp);
634 rnp->qsmask = rnp->qsmaskinit; 630 rnp->qsmask = rnp->qsmaskinit;
631 rnp->gpnum = rsp->gpnum;
635 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ 632 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
636 spin_unlock_irqrestore(&rnp->lock, flags); 633 spin_unlock_irqrestore(&rnp->lock, flags);
637 return; 634 return;
@@ -644,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
644 spin_lock(&rsp->onofflock); /* irqs already disabled. */ 641 spin_lock(&rsp->onofflock); /* irqs already disabled. */
645 642
646 /* 643 /*
647 * Set the quiescent-state-needed bits in all the non-leaf RCU 644 * Set the quiescent-state-needed bits in all the rcu_node
648 * nodes for all currently online CPUs. This operation relies 645 * structures for all currently online CPUs in breadth-first
649 * on the layout of the hierarchy within the rsp->node[] array. 646 * order, starting from the root rcu_node structure. This
650 * Note that other CPUs will access only the leaves of the 647 * operation relies on the layout of the hierarchy within the
651 * hierarchy, which still indicate that no grace period is in 648 * rsp->node[] array. Note that other CPUs will access only
652 * progress. In addition, we have excluded CPU-hotplug operations. 649 * the leaves of the hierarchy, which still indicate that no
653 * 650 * grace period is in progress, at least until the corresponding
654 * We therefore do not need to hold any locks. Any required 651 * leaf node has been initialized. In addition, we have excluded
655 * memory barriers will be supplied by the locks guarding the 652 * CPU-hotplug operations.
656 * leaf rcu_nodes in the hierarchy.
657 */
658
659 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
660 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
661 rnp_cur->qsmask = rnp_cur->qsmaskinit;
662
663 /*
664 * Now set up the leaf nodes. Here we must be careful. First,
665 * we need to hold the lock in order to exclude other CPUs, which
666 * might be contending for the leaf nodes' locks. Second, as
667 * soon as we initialize a given leaf node, its CPUs might run
668 * up the rest of the hierarchy. We must therefore acquire locks
669 * for each node that we touch during this stage. (But we still
670 * are excluding CPU-hotplug operations.)
671 * 653 *
672 * Note that the grace period cannot complete until we finish 654 * Note that the grace period cannot complete until we finish
673 * the initialization process, as there will be at least one 655 * the initialization process, as there will be at least one
674 * qsmask bit set in the root node until that time, namely the 656 * qsmask bit set in the root node until that time, namely the
675 * one corresponding to this CPU. 657 * one corresponding to this CPU, due to the fact that we have
658 * irqs disabled.
676 */ 659 */
677 rnp_end = &rsp->node[NUM_RCU_NODES]; 660 for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) {
678 rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; 661 spin_lock(&rnp->lock); /* irqs already disabled. */
679 for (; rnp_cur < rnp_end; rnp_cur++) { 662 rcu_preempt_check_blocked_tasks(rnp);
680 spin_lock(&rnp_cur->lock); /* irqs already disabled. */ 663 rnp->qsmask = rnp->qsmaskinit;
681 rnp_cur->qsmask = rnp_cur->qsmaskinit; 664 rnp->gpnum = rsp->gpnum;
682 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ 665 spin_unlock(&rnp->lock); /* irqs already disabled. */
683 } 666 }
684 667
685 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ 668 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
@@ -722,6 +705,7 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
722static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) 705static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
723 __releases(rnp->lock) 706 __releases(rnp->lock)
724{ 707{
708 WARN_ON_ONCE(rsp->completed == rsp->gpnum);
725 rsp->completed = rsp->gpnum; 709 rsp->completed = rsp->gpnum;
726 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); 710 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
727 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ 711 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
@@ -739,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
739 unsigned long flags) 723 unsigned long flags)
740 __releases(rnp->lock) 724 __releases(rnp->lock)
741{ 725{
726 struct rcu_node *rnp_c;
727
742 /* Walk up the rcu_node hierarchy. */ 728 /* Walk up the rcu_node hierarchy. */
743 for (;;) { 729 for (;;) {
744 if (!(rnp->qsmask & mask)) { 730 if (!(rnp->qsmask & mask)) {
@@ -762,8 +748,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
762 break; 748 break;
763 } 749 }
764 spin_unlock_irqrestore(&rnp->lock, flags); 750 spin_unlock_irqrestore(&rnp->lock, flags);
751 rnp_c = rnp;
765 rnp = rnp->parent; 752 rnp = rnp->parent;
766 spin_lock_irqsave(&rnp->lock, flags); 753 spin_lock_irqsave(&rnp->lock, flags);
754 WARN_ON_ONCE(rnp_c->qsmask);
767 } 755 }
768 756
769 /* 757 /*
@@ -776,10 +764,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
776 764
777/* 765/*
778 * Record a quiescent state for the specified CPU, which must either be 766 * Record a quiescent state for the specified CPU, which must either be
779 * the current CPU or an offline CPU. The lastcomp argument is used to 767 * the current CPU. The lastcomp argument is used to make sure we are
780 * make sure we are still in the grace period of interest. We don't want 768 * still in the grace period of interest. We don't want to end the current
781 * to end the current grace period based on quiescent states detected in 769 * grace period based on quiescent states detected in an earlier grace
782 * an earlier grace period! 770 * period!
783 */ 771 */
784static void 772static void
785cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) 773cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
@@ -814,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
814 * This GP can't end until cpu checks in, so all of our 802 * This GP can't end until cpu checks in, so all of our
815 * callbacks can be processed during the next GP. 803 * callbacks can be processed during the next GP.
816 */ 804 */
817 rdp = rsp->rda[smp_processor_id()];
818 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 805 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
819 806
820 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ 807 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
@@ -872,7 +859,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
872 spin_lock_irqsave(&rsp->onofflock, flags); 859 spin_lock_irqsave(&rsp->onofflock, flags);
873 860
874 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 861 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
875 rnp = rdp->mynode; 862 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
876 mask = rdp->grpmask; /* rnp->grplo is constant. */ 863 mask = rdp->grpmask; /* rnp->grplo is constant. */
877 do { 864 do {
878 spin_lock(&rnp->lock); /* irqs already disabled. */ 865 spin_lock(&rnp->lock); /* irqs already disabled. */
@@ -881,7 +868,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
881 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 868 spin_unlock(&rnp->lock); /* irqs remain disabled. */
882 break; 869 break;
883 } 870 }
884 rcu_preempt_offline_tasks(rsp, rnp); 871 rcu_preempt_offline_tasks(rsp, rnp, rdp);
885 mask = rnp->grpmask; 872 mask = rnp->grpmask;
886 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 873 spin_unlock(&rnp->lock); /* irqs remain disabled. */
887 rnp = rnp->parent; 874 rnp = rnp->parent;
@@ -890,9 +877,6 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
890 877
891 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 878 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
892 879
893 /* Being offline is a quiescent state, so go record it. */
894 cpu_quiet(cpu, rsp, rdp, lastcomp);
895
896 /* 880 /*
897 * Move callbacks from the outgoing CPU to the running CPU. 881 * Move callbacks from the outgoing CPU to the running CPU.
898 * Note that the outgoing CPU is now quiscent, so it is now 882 * Note that the outgoing CPU is now quiscent, so it is now
@@ -1457,20 +1441,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1457 rnp = rnp->parent; 1441 rnp = rnp->parent;
1458 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 1442 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1459 1443
1460 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 1444 spin_unlock_irqrestore(&rsp->onofflock, flags);
1461
1462 /*
1463 * A new grace period might start here. If so, we will be part of
1464 * it, and its gpnum will be greater than ours, so we will
1465 * participate. It is also possible for the gpnum to have been
1466 * incremented before this function was called, and the bitmasks
1467 * to not be filled out until now, in which case we will also
1468 * participate due to our gpnum being behind.
1469 */
1470
1471 /* Since it is coming online, the CPU is in a quiescent state. */
1472 cpu_quiet(cpu, rsp, rdp, lastcomp);
1473 local_irq_restore(flags);
1474} 1445}
1475 1446
1476static void __cpuinit rcu_online_cpu(int cpu) 1447static void __cpuinit rcu_online_cpu(int cpu)
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index bf8a6f9f134d..8e8287a983c2 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -142,7 +142,7 @@ struct rcu_data {
142 */ 142 */
143 struct rcu_head *nxtlist; 143 struct rcu_head *nxtlist;
144 struct rcu_head **nxttail[RCU_NEXT_SIZE]; 144 struct rcu_head **nxttail[RCU_NEXT_SIZE];
145 long qlen; /* # of queued callbacks */ 145 long qlen; /* # of queued callbacks */
146 long blimit; /* Upper limit on a processed batch */ 146 long blimit; /* Upper limit on a processed batch */
147 147
148#ifdef CONFIG_NO_HZ 148#ifdef CONFIG_NO_HZ
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index 47789369ea59..1cee04f627eb 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -64,22 +64,31 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed);
64 * not in a quiescent state. There might be any number of tasks blocked 64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section. 65 * while in an RCU read-side critical section.
66 */ 66 */
67static void rcu_preempt_qs_record(int cpu) 67static void rcu_preempt_qs(int cpu)
68{ 68{
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); 69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc = 1;
71 rdp->passed_quiesc_completed = rdp->completed; 70 rdp->passed_quiesc_completed = rdp->completed;
71 barrier();
72 rdp->passed_quiesc = 1;
72} 73}
73 74
74/* 75/*
75 * We have entered the scheduler or are between softirqs in ksoftirqd. 76 * We have entered the scheduler, and the current task might soon be
76 * If we are in an RCU read-side critical section, we need to reflect 77 * context-switched away from. If this task is in an RCU read-side
77 * that in the state of the rcu_node structure corresponding to this CPU. 78 * critical section, we will no longer be able to rely on the CPU to
78 * Caller must disable hardirqs. 79 * record that fact, so we enqueue the task on the appropriate entry
80 * of the blocked_tasks[] array. The task will dequeue itself when
81 * it exits the outermost enclosing RCU read-side critical section.
82 * Therefore, the current grace period cannot be permitted to complete
83 * until the blocked_tasks[] entry indexed by the low-order bit of
84 * rnp->gpnum empties.
85 *
86 * Caller must disable preemption.
79 */ 87 */
80static void rcu_preempt_qs(int cpu) 88static void rcu_preempt_note_context_switch(int cpu)
81{ 89{
82 struct task_struct *t = current; 90 struct task_struct *t = current;
91 unsigned long flags;
83 int phase; 92 int phase;
84 struct rcu_data *rdp; 93 struct rcu_data *rdp;
85 struct rcu_node *rnp; 94 struct rcu_node *rnp;
@@ -90,7 +99,7 @@ static void rcu_preempt_qs(int cpu)
90 /* Possibly blocking in an RCU read-side critical section. */ 99 /* Possibly blocking in an RCU read-side critical section. */
91 rdp = rcu_preempt_state.rda[cpu]; 100 rdp = rcu_preempt_state.rda[cpu];
92 rnp = rdp->mynode; 101 rnp = rdp->mynode;
93 spin_lock(&rnp->lock); 102 spin_lock_irqsave(&rnp->lock, flags);
94 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; 103 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
95 t->rcu_blocked_node = rnp; 104 t->rcu_blocked_node = rnp;
96 105
@@ -103,11 +112,15 @@ static void rcu_preempt_qs(int cpu)
103 * state for the current grace period), then as long 112 * state for the current grace period), then as long
104 * as that task remains queued, the current grace period 113 * as that task remains queued, the current grace period
105 * cannot end. 114 * cannot end.
115 *
116 * But first, note that the current CPU must still be
117 * on line!
106 */ 118 */
107 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); 119 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
120 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
121 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
108 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); 122 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
109 smp_mb(); /* Ensure later ctxt swtch seen after above. */ 123 spin_unlock_irqrestore(&rnp->lock, flags);
110 spin_unlock(&rnp->lock);
111 } 124 }
112 125
113 /* 126 /*
@@ -119,9 +132,10 @@ static void rcu_preempt_qs(int cpu)
119 * grace period, then the fact that the task has been enqueued 132 * grace period, then the fact that the task has been enqueued
120 * means that we continue to block the current grace period. 133 * means that we continue to block the current grace period.
121 */ 134 */
122 rcu_preempt_qs_record(cpu); 135 rcu_preempt_qs(cpu);
123 t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | 136 local_irq_save(flags);
124 RCU_READ_UNLOCK_GOT_QS); 137 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
138 local_irq_restore(flags);
125} 139}
126 140
127/* 141/*
@@ -157,7 +171,7 @@ static void rcu_read_unlock_special(struct task_struct *t)
157 special = t->rcu_read_unlock_special; 171 special = t->rcu_read_unlock_special;
158 if (special & RCU_READ_UNLOCK_NEED_QS) { 172 if (special & RCU_READ_UNLOCK_NEED_QS) {
159 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; 173 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; 174 rcu_preempt_qs(smp_processor_id());
161 } 175 }
162 176
163 /* Hardware IRQ handlers cannot block. */ 177 /* Hardware IRQ handlers cannot block. */
@@ -177,10 +191,10 @@ static void rcu_read_unlock_special(struct task_struct *t)
177 */ 191 */
178 for (;;) { 192 for (;;) {
179 rnp = t->rcu_blocked_node; 193 rnp = t->rcu_blocked_node;
180 spin_lock(&rnp->lock); 194 spin_lock(&rnp->lock); /* irqs already disabled. */
181 if (rnp == t->rcu_blocked_node) 195 if (rnp == t->rcu_blocked_node)
182 break; 196 break;
183 spin_unlock(&rnp->lock); 197 spin_unlock(&rnp->lock); /* irqs remain disabled. */
184 } 198 }
185 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); 199 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
186 list_del_init(&t->rcu_node_entry); 200 list_del_init(&t->rcu_node_entry);
@@ -194,9 +208,8 @@ static void rcu_read_unlock_special(struct task_struct *t)
194 */ 208 */
195 if (!empty && rnp->qsmask == 0 && 209 if (!empty && rnp->qsmask == 0 &&
196 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { 210 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
197 t->rcu_read_unlock_special &= 211 struct rcu_node *rnp_p;
198 ~(RCU_READ_UNLOCK_NEED_QS | 212
199 RCU_READ_UNLOCK_GOT_QS);
200 if (rnp->parent == NULL) { 213 if (rnp->parent == NULL) {
201 /* Only one rcu_node in the tree. */ 214 /* Only one rcu_node in the tree. */
202 cpu_quiet_msk_finish(&rcu_preempt_state, flags); 215 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
@@ -205,9 +218,10 @@ static void rcu_read_unlock_special(struct task_struct *t)
205 /* Report up the rest of the hierarchy. */ 218 /* Report up the rest of the hierarchy. */
206 mask = rnp->grpmask; 219 mask = rnp->grpmask;
207 spin_unlock_irqrestore(&rnp->lock, flags); 220 spin_unlock_irqrestore(&rnp->lock, flags);
208 rnp = rnp->parent; 221 rnp_p = rnp->parent;
209 spin_lock_irqsave(&rnp->lock, flags); 222 spin_lock_irqsave(&rnp_p->lock, flags);
210 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); 223 WARN_ON_ONCE(rnp->qsmask);
224 cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
211 return; 225 return;
212 } 226 }
213 spin_unlock(&rnp->lock); 227 spin_unlock(&rnp->lock);
@@ -259,6 +273,19 @@ static void rcu_print_task_stall(struct rcu_node *rnp)
259#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 273#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
260 274
261/* 275/*
276 * Check that the list of blocked tasks for the newly completed grace
277 * period is in fact empty. It is a serious bug to complete a grace
278 * period that still has RCU readers blocked! This function must be
279 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
280 * must be held by the caller.
281 */
282static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
283{
284 WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]));
285 WARN_ON_ONCE(rnp->qsmask);
286}
287
288/*
262 * Check for preempted RCU readers for the specified rcu_node structure. 289 * Check for preempted RCU readers for the specified rcu_node structure.
263 * If the caller needs a reliable answer, it must hold the rcu_node's 290 * If the caller needs a reliable answer, it must hold the rcu_node's
264 * >lock. 291 * >lock.
@@ -280,7 +307,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp)
280 * The caller must hold rnp->lock with irqs disabled. 307 * The caller must hold rnp->lock with irqs disabled.
281 */ 308 */
282static void rcu_preempt_offline_tasks(struct rcu_state *rsp, 309static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
283 struct rcu_node *rnp) 310 struct rcu_node *rnp,
311 struct rcu_data *rdp)
284{ 312{
285 int i; 313 int i;
286 struct list_head *lp; 314 struct list_head *lp;
@@ -292,6 +320,9 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
292 WARN_ONCE(1, "Last CPU thought to be offlined?"); 320 WARN_ONCE(1, "Last CPU thought to be offlined?");
293 return; /* Shouldn't happen: at least one CPU online. */ 321 return; /* Shouldn't happen: at least one CPU online. */
294 } 322 }
323 WARN_ON_ONCE(rnp != rdp->mynode &&
324 (!list_empty(&rnp->blocked_tasks[0]) ||
325 !list_empty(&rnp->blocked_tasks[1])));
295 326
296 /* 327 /*
297 * Move tasks up to root rcu_node. Rely on the fact that the 328 * Move tasks up to root rcu_node. Rely on the fact that the
@@ -335,20 +366,12 @@ static void rcu_preempt_check_callbacks(int cpu)
335 struct task_struct *t = current; 366 struct task_struct *t = current;
336 367
337 if (t->rcu_read_lock_nesting == 0) { 368 if (t->rcu_read_lock_nesting == 0) {
338 t->rcu_read_unlock_special &= 369 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
339 ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); 370 rcu_preempt_qs(cpu);
340 rcu_preempt_qs_record(cpu);
341 return; 371 return;
342 } 372 }
343 if (per_cpu(rcu_preempt_data, cpu).qs_pending) { 373 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
344 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { 374 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
345 rcu_preempt_qs_record(cpu);
346 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
347 } else if (!(t->rcu_read_unlock_special &
348 RCU_READ_UNLOCK_NEED_QS)) {
349 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
350 }
351 }
352} 375}
353 376
354/* 377/*
@@ -434,7 +457,7 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed);
434 * Because preemptable RCU does not exist, we never have to check for 457 * Because preemptable RCU does not exist, we never have to check for
435 * CPUs being in quiescent states. 458 * CPUs being in quiescent states.
436 */ 459 */
437static void rcu_preempt_qs(int cpu) 460static void rcu_preempt_note_context_switch(int cpu)
438{ 461{
439} 462}
440 463
@@ -451,6 +474,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp)
451#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 474#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
452 475
453/* 476/*
477 * Because there is no preemptable RCU, there can be no readers blocked,
478 * so there is no need to check for blocked tasks. So check only for
479 * bogus qsmask values.
480 */
481static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
482{
483 WARN_ON_ONCE(rnp->qsmask);
484}
485
486/*
454 * Because preemptable RCU does not exist, there are never any preempted 487 * Because preemptable RCU does not exist, there are never any preempted
455 * RCU readers. 488 * RCU readers.
456 */ 489 */
@@ -466,7 +499,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp)
466 * tasks that were blocked within RCU read-side critical sections. 499 * tasks that were blocked within RCU read-side critical sections.
467 */ 500 */
468static void rcu_preempt_offline_tasks(struct rcu_state *rsp, 501static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
469 struct rcu_node *rnp) 502 struct rcu_node *rnp,
503 struct rcu_data *rdp)
470{ 504{
471} 505}
472 506
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c
index 0ea1bff69727..c89f5e9fd173 100644
--- a/kernel/rcutree_trace.c
+++ b/kernel/rcutree_trace.c
@@ -20,7 +20,7 @@
20 * Papers: http://www.rdrop.com/users/paulmck/RCU 20 * Papers: http://www.rdrop.com/users/paulmck/RCU
21 * 21 *
22 * For detailed explanation of Read-Copy Update mechanism see - 22 * For detailed explanation of Read-Copy Update mechanism see -
23 * Documentation/RCU 23 * Documentation/RCU
24 * 24 *
25 */ 25 */
26#include <linux/types.h> 26#include <linux/types.h>
diff --git a/kernel/res_counter.c b/kernel/res_counter.c
index e1338f074314..88faec23e833 100644
--- a/kernel/res_counter.c
+++ b/kernel/res_counter.c
@@ -19,6 +19,7 @@ void res_counter_init(struct res_counter *counter, struct res_counter *parent)
19{ 19{
20 spin_lock_init(&counter->lock); 20 spin_lock_init(&counter->lock);
21 counter->limit = RESOURCE_MAX; 21 counter->limit = RESOURCE_MAX;
22 counter->soft_limit = RESOURCE_MAX;
22 counter->parent = parent; 23 counter->parent = parent;
23} 24}
24 25
@@ -36,17 +37,27 @@ int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
36} 37}
37 38
38int res_counter_charge(struct res_counter *counter, unsigned long val, 39int res_counter_charge(struct res_counter *counter, unsigned long val,
39 struct res_counter **limit_fail_at) 40 struct res_counter **limit_fail_at,
41 struct res_counter **soft_limit_fail_at)
40{ 42{
41 int ret; 43 int ret;
42 unsigned long flags; 44 unsigned long flags;
43 struct res_counter *c, *u; 45 struct res_counter *c, *u;
44 46
45 *limit_fail_at = NULL; 47 *limit_fail_at = NULL;
48 if (soft_limit_fail_at)
49 *soft_limit_fail_at = NULL;
46 local_irq_save(flags); 50 local_irq_save(flags);
47 for (c = counter; c != NULL; c = c->parent) { 51 for (c = counter; c != NULL; c = c->parent) {
48 spin_lock(&c->lock); 52 spin_lock(&c->lock);
49 ret = res_counter_charge_locked(c, val); 53 ret = res_counter_charge_locked(c, val);
54 /*
55 * With soft limits, we return the highest ancestor
56 * that exceeds its soft limit
57 */
58 if (soft_limit_fail_at &&
59 !res_counter_soft_limit_check_locked(c))
60 *soft_limit_fail_at = c;
50 spin_unlock(&c->lock); 61 spin_unlock(&c->lock);
51 if (ret < 0) { 62 if (ret < 0) {
52 *limit_fail_at = c; 63 *limit_fail_at = c;
@@ -74,7 +85,8 @@ void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val)
74 counter->usage -= val; 85 counter->usage -= val;
75} 86}
76 87
77void res_counter_uncharge(struct res_counter *counter, unsigned long val) 88void res_counter_uncharge(struct res_counter *counter, unsigned long val,
89 bool *was_soft_limit_excess)
78{ 90{
79 unsigned long flags; 91 unsigned long flags;
80 struct res_counter *c; 92 struct res_counter *c;
@@ -82,6 +94,9 @@ void res_counter_uncharge(struct res_counter *counter, unsigned long val)
82 local_irq_save(flags); 94 local_irq_save(flags);
83 for (c = counter; c != NULL; c = c->parent) { 95 for (c = counter; c != NULL; c = c->parent) {
84 spin_lock(&c->lock); 96 spin_lock(&c->lock);
97 if (was_soft_limit_excess)
98 *was_soft_limit_excess =
99 !res_counter_soft_limit_check_locked(c);
85 res_counter_uncharge_locked(c, val); 100 res_counter_uncharge_locked(c, val);
86 spin_unlock(&c->lock); 101 spin_unlock(&c->lock);
87 } 102 }
@@ -101,6 +116,8 @@ res_counter_member(struct res_counter *counter, int member)
101 return &counter->limit; 116 return &counter->limit;
102 case RES_FAILCNT: 117 case RES_FAILCNT:
103 return &counter->failcnt; 118 return &counter->failcnt;
119 case RES_SOFT_LIMIT:
120 return &counter->soft_limit;
104 }; 121 };
105 122
106 BUG(); 123 BUG();
diff --git a/kernel/resource.c b/kernel/resource.c
index 78b087221c15..fb11a58b9594 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -223,13 +223,13 @@ int release_resource(struct resource *old)
223 223
224EXPORT_SYMBOL(release_resource); 224EXPORT_SYMBOL(release_resource);
225 225
226#if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 226#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
227/* 227/*
228 * Finds the lowest memory reosurce exists within [res->start.res->end) 228 * Finds the lowest memory reosurce exists within [res->start.res->end)
229 * the caller must specify res->start, res->end, res->flags. 229 * the caller must specify res->start, res->end, res->flags and "name".
230 * If found, returns 0, res is overwritten, if not found, returns -1. 230 * If found, returns 0, res is overwritten, if not found, returns -1.
231 */ 231 */
232static int find_next_system_ram(struct resource *res) 232static int find_next_system_ram(struct resource *res, char *name)
233{ 233{
234 resource_size_t start, end; 234 resource_size_t start, end;
235 struct resource *p; 235 struct resource *p;
@@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res)
245 /* system ram is just marked as IORESOURCE_MEM */ 245 /* system ram is just marked as IORESOURCE_MEM */
246 if (p->flags != res->flags) 246 if (p->flags != res->flags)
247 continue; 247 continue;
248 if (name && strcmp(p->name, name))
249 continue;
248 if (p->start > end) { 250 if (p->start > end) {
249 p = NULL; 251 p = NULL;
250 break; 252 break;
@@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res)
262 res->end = p->end; 264 res->end = p->end;
263 return 0; 265 return 0;
264} 266}
265int 267
266walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, 268/*
267 int (*func)(unsigned long, unsigned long, void *)) 269 * This function calls callback against all memory range of "System RAM"
270 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
271 * Now, this function is only for "System RAM".
272 */
273int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
274 void *arg, int (*func)(unsigned long, unsigned long, void *))
268{ 275{
269 struct resource res; 276 struct resource res;
270 unsigned long pfn, len; 277 unsigned long pfn, len;
271 u64 orig_end; 278 u64 orig_end;
272 int ret = -1; 279 int ret = -1;
280
273 res.start = (u64) start_pfn << PAGE_SHIFT; 281 res.start = (u64) start_pfn << PAGE_SHIFT;
274 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 282 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
275 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 283 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
276 orig_end = res.end; 284 orig_end = res.end;
277 while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { 285 while ((res.start < res.end) &&
286 (find_next_system_ram(&res, "System RAM") >= 0)) {
278 pfn = (unsigned long)(res.start >> PAGE_SHIFT); 287 pfn = (unsigned long)(res.start >> PAGE_SHIFT);
279 len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); 288 len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT);
280 ret = (*func)(pfn, len, arg); 289 ret = (*func)(pfn, len, arg);
diff --git a/kernel/sched.c b/kernel/sched.c
index e27a53685ed9..ee61f454a98b 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -39,7 +39,7 @@
39#include <linux/completion.h> 39#include <linux/completion.h>
40#include <linux/kernel_stat.h> 40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h> 41#include <linux/debug_locks.h>
42#include <linux/perf_counter.h> 42#include <linux/perf_event.h>
43#include <linux/security.h> 43#include <linux/security.h>
44#include <linux/notifier.h> 44#include <linux/notifier.h>
45#include <linux/profile.h> 45#include <linux/profile.h>
@@ -119,8 +119,6 @@
119 */ 119 */
120#define RUNTIME_INF ((u64)~0ULL) 120#define RUNTIME_INF ((u64)~0ULL)
121 121
122static void double_rq_lock(struct rq *rq1, struct rq *rq2);
123
124static inline int rt_policy(int policy) 122static inline int rt_policy(int policy)
125{ 123{
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
@@ -295,12 +293,12 @@ struct task_group root_task_group;
295/* Default task group's sched entity on each cpu */ 293/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); 294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */ 295/* Default task group's cfs_rq on each cpu */
298static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp; 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299#endif /* CONFIG_FAIR_GROUP_SCHED */ 297#endif /* CONFIG_FAIR_GROUP_SCHED */
300 298
301#ifdef CONFIG_RT_GROUP_SCHED 299#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
304#endif /* CONFIG_RT_GROUP_SCHED */ 302#endif /* CONFIG_RT_GROUP_SCHED */
305#else /* !CONFIG_USER_SCHED */ 303#else /* !CONFIG_USER_SCHED */
306#define root_task_group init_task_group 304#define root_task_group init_task_group
@@ -378,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
378 376
379#else 377#else
380 378
381#ifdef CONFIG_SMP
382static int root_task_group_empty(void)
383{
384 return 1;
385}
386#endif
387
388static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
389static inline struct task_group *task_group(struct task_struct *p) 380static inline struct task_group *task_group(struct task_struct *p)
390{ 381{
@@ -514,14 +505,6 @@ struct root_domain {
514#ifdef CONFIG_SMP 505#ifdef CONFIG_SMP
515 struct cpupri cpupri; 506 struct cpupri cpupri;
516#endif 507#endif
517#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 /*
519 * Preferred wake up cpu nominated by sched_mc balance that will be
520 * used when most cpus are idle in the system indicating overall very
521 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 */
523 unsigned int sched_mc_preferred_wakeup_cpu;
524#endif
525}; 508};
526 509
527/* 510/*
@@ -646,9 +629,10 @@ struct rq {
646 629
647static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
648 631
649static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) 632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
650{ 634{
651 rq->curr->sched_class->check_preempt_curr(rq, p, sync); 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
652} 636}
653 637
654static inline int cpu_of(struct rq *rq) 638static inline int cpu_of(struct rq *rq)
@@ -697,15 +681,9 @@ inline void update_rq_clock(struct rq *rq)
697 * This interface allows printk to be called with the runqueue lock 681 * This interface allows printk to be called with the runqueue lock
698 * held and know whether or not it is OK to wake up the klogd. 682 * held and know whether or not it is OK to wake up the klogd.
699 */ 683 */
700int runqueue_is_locked(void) 684int runqueue_is_locked(int cpu)
701{ 685{
702 int cpu = get_cpu(); 686 return spin_is_locked(&cpu_rq(cpu)->lock);
703 struct rq *rq = cpu_rq(cpu);
704 int ret;
705
706 ret = spin_is_locked(&rq->lock);
707 put_cpu();
708 return ret;
709} 687}
710 688
711/* 689/*
@@ -1509,8 +1487,65 @@ static int tg_nop(struct task_group *tg, void *data)
1509#endif 1487#endif
1510 1488
1511#ifdef CONFIG_SMP 1489#ifdef CONFIG_SMP
1512static unsigned long source_load(int cpu, int type); 1490/* Used instead of source_load when we know the type == 0 */
1513static unsigned long target_load(int cpu, int type); 1491static unsigned long weighted_cpuload(const int cpu)
1492{
1493 return cpu_rq(cpu)->load.weight;
1494}
1495
1496/*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503static unsigned long source_load(int cpu, int type)
1504{
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512}
1513
1514/*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518static unsigned long target_load(int cpu, int type)
1519{
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527}
1528
1529static struct sched_group *group_of(int cpu)
1530{
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1532
1533 if (!sd)
1534 return NULL;
1535
1536 return sd->groups;
1537}
1538
1539static unsigned long power_of(int cpu)
1540{
1541 struct sched_group *group = group_of(cpu);
1542
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1545
1546 return group->cpu_power;
1547}
1548
1514static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); 1549static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1515 1550
1516static unsigned long cpu_avg_load_per_task(int cpu) 1551static unsigned long cpu_avg_load_per_task(int cpu)
@@ -1695,6 +1730,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1695 1730
1696#ifdef CONFIG_PREEMPT 1731#ifdef CONFIG_PREEMPT
1697 1732
1733static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
1698/* 1735/*
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all 1737 * way at the expense of forcing extra atomic operations in all
@@ -1959,13 +1996,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1959} 1996}
1960 1997
1961#ifdef CONFIG_SMP 1998#ifdef CONFIG_SMP
1962
1963/* Used instead of source_load when we know the type == 0 */
1964static unsigned long weighted_cpuload(const int cpu)
1965{
1966 return cpu_rq(cpu)->load.weight;
1967}
1968
1969/* 1999/*
1970 * Is this task likely cache-hot: 2000 * Is this task likely cache-hot:
1971 */ 2001 */
@@ -2023,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2023 if (task_hot(p, old_rq->clock, NULL)) 2053 if (task_hot(p, old_rq->clock, NULL))
2024 schedstat_inc(p, se.nr_forced2_migrations); 2054 schedstat_inc(p, se.nr_forced2_migrations);
2025#endif 2055#endif
2026 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, 2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2027 1, 1, NULL, 0); 2057 1, 1, NULL, 0);
2028 } 2058 }
2029 p->se.vruntime -= old_cfsrq->min_vruntime - 2059 p->se.vruntime -= old_cfsrq->min_vruntime -
@@ -2239,185 +2269,6 @@ void kick_process(struct task_struct *p)
2239 preempt_enable(); 2269 preempt_enable();
2240} 2270}
2241EXPORT_SYMBOL_GPL(kick_process); 2271EXPORT_SYMBOL_GPL(kick_process);
2242
2243/*
2244 * Return a low guess at the load of a migration-source cpu weighted
2245 * according to the scheduling class and "nice" value.
2246 *
2247 * We want to under-estimate the load of migration sources, to
2248 * balance conservatively.
2249 */
2250static unsigned long source_load(int cpu, int type)
2251{
2252 struct rq *rq = cpu_rq(cpu);
2253 unsigned long total = weighted_cpuload(cpu);
2254
2255 if (type == 0 || !sched_feat(LB_BIAS))
2256 return total;
2257
2258 return min(rq->cpu_load[type-1], total);
2259}
2260
2261/*
2262 * Return a high guess at the load of a migration-target cpu weighted
2263 * according to the scheduling class and "nice" value.
2264 */
2265static unsigned long target_load(int cpu, int type)
2266{
2267 struct rq *rq = cpu_rq(cpu);
2268 unsigned long total = weighted_cpuload(cpu);
2269
2270 if (type == 0 || !sched_feat(LB_BIAS))
2271 return total;
2272
2273 return max(rq->cpu_load[type-1], total);
2274}
2275
2276/*
2277 * find_idlest_group finds and returns the least busy CPU group within the
2278 * domain.
2279 */
2280static struct sched_group *
2281find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2282{
2283 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2284 unsigned long min_load = ULONG_MAX, this_load = 0;
2285 int load_idx = sd->forkexec_idx;
2286 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2287
2288 do {
2289 unsigned long load, avg_load;
2290 int local_group;
2291 int i;
2292
2293 /* Skip over this group if it has no CPUs allowed */
2294 if (!cpumask_intersects(sched_group_cpus(group),
2295 &p->cpus_allowed))
2296 continue;
2297
2298 local_group = cpumask_test_cpu(this_cpu,
2299 sched_group_cpus(group));
2300
2301 /* Tally up the load of all CPUs in the group */
2302 avg_load = 0;
2303
2304 for_each_cpu(i, sched_group_cpus(group)) {
2305 /* Bias balancing toward cpus of our domain */
2306 if (local_group)
2307 load = source_load(i, load_idx);
2308 else
2309 load = target_load(i, load_idx);
2310
2311 avg_load += load;
2312 }
2313
2314 /* Adjust by relative CPU power of the group */
2315 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2316
2317 if (local_group) {
2318 this_load = avg_load;
2319 this = group;
2320 } else if (avg_load < min_load) {
2321 min_load = avg_load;
2322 idlest = group;
2323 }
2324 } while (group = group->next, group != sd->groups);
2325
2326 if (!idlest || 100*this_load < imbalance*min_load)
2327 return NULL;
2328 return idlest;
2329}
2330
2331/*
2332 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2333 */
2334static int
2335find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2336{
2337 unsigned long load, min_load = ULONG_MAX;
2338 int idlest = -1;
2339 int i;
2340
2341 /* Traverse only the allowed CPUs */
2342 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2343 load = weighted_cpuload(i);
2344
2345 if (load < min_load || (load == min_load && i == this_cpu)) {
2346 min_load = load;
2347 idlest = i;
2348 }
2349 }
2350
2351 return idlest;
2352}
2353
2354/*
2355 * sched_balance_self: balance the current task (running on cpu) in domains
2356 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2357 * SD_BALANCE_EXEC.
2358 *
2359 * Balance, ie. select the least loaded group.
2360 *
2361 * Returns the target CPU number, or the same CPU if no balancing is needed.
2362 *
2363 * preempt must be disabled.
2364 */
2365static int sched_balance_self(int cpu, int flag)
2366{
2367 struct task_struct *t = current;
2368 struct sched_domain *tmp, *sd = NULL;
2369
2370 for_each_domain(cpu, tmp) {
2371 /*
2372 * If power savings logic is enabled for a domain, stop there.
2373 */
2374 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2375 break;
2376 if (tmp->flags & flag)
2377 sd = tmp;
2378 }
2379
2380 if (sd)
2381 update_shares(sd);
2382
2383 while (sd) {
2384 struct sched_group *group;
2385 int new_cpu, weight;
2386
2387 if (!(sd->flags & flag)) {
2388 sd = sd->child;
2389 continue;
2390 }
2391
2392 group = find_idlest_group(sd, t, cpu);
2393 if (!group) {
2394 sd = sd->child;
2395 continue;
2396 }
2397
2398 new_cpu = find_idlest_cpu(group, t, cpu);
2399 if (new_cpu == -1 || new_cpu == cpu) {
2400 /* Now try balancing at a lower domain level of cpu */
2401 sd = sd->child;
2402 continue;
2403 }
2404
2405 /* Now try balancing at a lower domain level of new_cpu */
2406 cpu = new_cpu;
2407 weight = cpumask_weight(sched_domain_span(sd));
2408 sd = NULL;
2409 for_each_domain(cpu, tmp) {
2410 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2411 break;
2412 if (tmp->flags & flag)
2413 sd = tmp;
2414 }
2415 /* while loop will break here if sd == NULL */
2416 }
2417
2418 return cpu;
2419}
2420
2421#endif /* CONFIG_SMP */ 2272#endif /* CONFIG_SMP */
2422 2273
2423/** 2274/**
@@ -2455,37 +2306,22 @@ void task_oncpu_function_call(struct task_struct *p,
2455 * 2306 *
2456 * returns failure only if the task is already active. 2307 * returns failure only if the task is already active.
2457 */ 2308 */
2458static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) 2309static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
2459{ 2311{
2460 int cpu, orig_cpu, this_cpu, success = 0; 2312 int cpu, orig_cpu, this_cpu, success = 0;
2461 unsigned long flags; 2313 unsigned long flags;
2462 long old_state;
2463 struct rq *rq; 2314 struct rq *rq;
2464 2315
2465 if (!sched_feat(SYNC_WAKEUPS)) 2316 if (!sched_feat(SYNC_WAKEUPS))
2466 sync = 0; 2317 wake_flags &= ~WF_SYNC;
2467
2468#ifdef CONFIG_SMP
2469 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2470 struct sched_domain *sd;
2471 2318
2472 this_cpu = raw_smp_processor_id(); 2319 this_cpu = get_cpu();
2473 cpu = task_cpu(p);
2474
2475 for_each_domain(this_cpu, sd) {
2476 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2477 update_shares(sd);
2478 break;
2479 }
2480 }
2481 }
2482#endif
2483 2320
2484 smp_wmb(); 2321 smp_wmb();
2485 rq = task_rq_lock(p, &flags); 2322 rq = task_rq_lock(p, &flags);
2486 update_rq_clock(rq); 2323 update_rq_clock(rq);
2487 old_state = p->state; 2324 if (!(p->state & state))
2488 if (!(old_state & state))
2489 goto out; 2325 goto out;
2490 2326
2491 if (p->se.on_rq) 2327 if (p->se.on_rq)
@@ -2493,27 +2329,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2493 2329
2494 cpu = task_cpu(p); 2330 cpu = task_cpu(p);
2495 orig_cpu = cpu; 2331 orig_cpu = cpu;
2496 this_cpu = smp_processor_id();
2497 2332
2498#ifdef CONFIG_SMP 2333#ifdef CONFIG_SMP
2499 if (unlikely(task_running(rq, p))) 2334 if (unlikely(task_running(rq, p)))
2500 goto out_activate; 2335 goto out_activate;
2501 2336
2502 cpu = p->sched_class->select_task_rq(p, sync); 2337 /*
2503 if (cpu != orig_cpu) { 2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2340 *
2341 * First fix up the nr_uninterruptible count:
2342 */
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu)
2504 set_task_cpu(p, cpu); 2350 set_task_cpu(p, cpu);
2505 task_rq_unlock(rq, &flags);
2506 /* might preempt at this point */
2507 rq = task_rq_lock(p, &flags);
2508 old_state = p->state;
2509 if (!(old_state & state))
2510 goto out;
2511 if (p->se.on_rq)
2512 goto out_running;
2513 2351
2514 this_cpu = smp_processor_id(); 2352 rq = task_rq_lock(p, &flags);
2515 cpu = task_cpu(p); 2353 WARN_ON(p->state != TASK_WAKING);
2516 } 2354 cpu = task_cpu(p);
2517 2355
2518#ifdef CONFIG_SCHEDSTATS 2356#ifdef CONFIG_SCHEDSTATS
2519 schedstat_inc(rq, ttwu_count); 2357 schedstat_inc(rq, ttwu_count);
@@ -2533,7 +2371,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2533out_activate: 2371out_activate:
2534#endif /* CONFIG_SMP */ 2372#endif /* CONFIG_SMP */
2535 schedstat_inc(p, se.nr_wakeups); 2373 schedstat_inc(p, se.nr_wakeups);
2536 if (sync) 2374 if (wake_flags & WF_SYNC)
2537 schedstat_inc(p, se.nr_wakeups_sync); 2375 schedstat_inc(p, se.nr_wakeups_sync);
2538 if (orig_cpu != cpu) 2376 if (orig_cpu != cpu)
2539 schedstat_inc(p, se.nr_wakeups_migrate); 2377 schedstat_inc(p, se.nr_wakeups_migrate);
@@ -2562,7 +2400,7 @@ out_activate:
2562 2400
2563out_running: 2401out_running:
2564 trace_sched_wakeup(rq, p, success); 2402 trace_sched_wakeup(rq, p, success);
2565 check_preempt_curr(rq, p, sync); 2403 check_preempt_curr(rq, p, wake_flags);
2566 2404
2567 p->state = TASK_RUNNING; 2405 p->state = TASK_RUNNING;
2568#ifdef CONFIG_SMP 2406#ifdef CONFIG_SMP
@@ -2571,6 +2409,7 @@ out_running:
2571#endif 2409#endif
2572out: 2410out:
2573 task_rq_unlock(rq, &flags); 2411 task_rq_unlock(rq, &flags);
2412 put_cpu();
2574 2413
2575 return success; 2414 return success;
2576} 2415}
@@ -2613,6 +2452,7 @@ static void __sched_fork(struct task_struct *p)
2613 p->se.avg_overlap = 0; 2452 p->se.avg_overlap = 0;
2614 p->se.start_runtime = 0; 2453 p->se.start_runtime = 0;
2615 p->se.avg_wakeup = sysctl_sched_wakeup_granularity; 2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2455 p->se.avg_running = 0;
2616 2456
2617#ifdef CONFIG_SCHEDSTATS 2457#ifdef CONFIG_SCHEDSTATS
2618 p->se.wait_start = 0; 2458 p->se.wait_start = 0;
@@ -2674,11 +2514,6 @@ void sched_fork(struct task_struct *p, int clone_flags)
2674 2514
2675 __sched_fork(p); 2515 __sched_fork(p);
2676 2516
2677#ifdef CONFIG_SMP
2678 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2679#endif
2680 set_task_cpu(p, cpu);
2681
2682 /* 2517 /*
2683 * Make sure we do not leak PI boosting priority to the child. 2518 * Make sure we do not leak PI boosting priority to the child.
2684 */ 2519 */
@@ -2709,6 +2544,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
2709 if (!rt_prio(p->prio)) 2544 if (!rt_prio(p->prio))
2710 p->sched_class = &fair_sched_class; 2545 p->sched_class = &fair_sched_class;
2711 2546
2547#ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2549#endif
2550 set_task_cpu(p, cpu);
2551
2712#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 2552#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2713 if (likely(sched_info_on())) 2553 if (likely(sched_info_on()))
2714 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2554 memset(&p->sched_info, 0, sizeof(p->sched_info));
@@ -2754,7 +2594,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2754 inc_nr_running(rq); 2594 inc_nr_running(rq);
2755 } 2595 }
2756 trace_sched_wakeup_new(rq, p, 1); 2596 trace_sched_wakeup_new(rq, p, 1);
2757 check_preempt_curr(rq, p, 0); 2597 check_preempt_curr(rq, p, WF_FORK);
2758#ifdef CONFIG_SMP 2598#ifdef CONFIG_SMP
2759 if (p->sched_class->task_wake_up) 2599 if (p->sched_class->task_wake_up)
2760 p->sched_class->task_wake_up(rq, p); 2600 p->sched_class->task_wake_up(rq, p);
@@ -2878,7 +2718,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2878 */ 2718 */
2879 prev_state = prev->state; 2719 prev_state = prev->state;
2880 finish_arch_switch(prev); 2720 finish_arch_switch(prev);
2881 perf_counter_task_sched_in(current, cpu_of(rq)); 2721 perf_event_task_sched_in(current, cpu_of(rq));
2882 finish_lock_switch(rq, prev); 2722 finish_lock_switch(rq, prev);
2883 2723
2884 fire_sched_in_preempt_notifiers(current); 2724 fire_sched_in_preempt_notifiers(current);
@@ -3064,6 +2904,19 @@ unsigned long nr_iowait(void)
3064 return sum; 2904 return sum;
3065} 2905}
3066 2906
2907unsigned long nr_iowait_cpu(void)
2908{
2909 struct rq *this = this_rq();
2910 return atomic_read(&this->nr_iowait);
2911}
2912
2913unsigned long this_cpu_load(void)
2914{
2915 struct rq *this = this_rq();
2916 return this->cpu_load[0];
2917}
2918
2919
3067/* Variables and functions for calc_load */ 2920/* Variables and functions for calc_load */
3068static atomic_long_t calc_load_tasks; 2921static atomic_long_t calc_load_tasks;
3069static unsigned long calc_load_update; 2922static unsigned long calc_load_update;
@@ -3263,7 +3116,7 @@ out:
3263void sched_exec(void) 3116void sched_exec(void)
3264{ 3117{
3265 int new_cpu, this_cpu = get_cpu(); 3118 int new_cpu, this_cpu = get_cpu();
3266 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); 3119 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3267 put_cpu(); 3120 put_cpu();
3268 if (new_cpu != this_cpu) 3121 if (new_cpu != this_cpu)
3269 sched_migrate_task(current, new_cpu); 3122 sched_migrate_task(current, new_cpu);
@@ -3683,11 +3536,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3683 *imbalance = sds->min_load_per_task; 3536 *imbalance = sds->min_load_per_task;
3684 sds->busiest = sds->group_min; 3537 sds->busiest = sds->group_min;
3685 3538
3686 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3687 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3688 group_first_cpu(sds->group_leader);
3689 }
3690
3691 return 1; 3539 return 1;
3692 3540
3693} 3541}
@@ -3711,7 +3559,18 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3711} 3559}
3712#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3560#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3713 3561
3714unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 3562
3563unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3564{
3565 return SCHED_LOAD_SCALE;
3566}
3567
3568unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3569{
3570 return default_scale_freq_power(sd, cpu);
3571}
3572
3573unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3715{ 3574{
3716 unsigned long weight = cpumask_weight(sched_domain_span(sd)); 3575 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3717 unsigned long smt_gain = sd->smt_gain; 3576 unsigned long smt_gain = sd->smt_gain;
@@ -3721,6 +3580,11 @@ unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3721 return smt_gain; 3580 return smt_gain;
3722} 3581}
3723 3582
3583unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3584{
3585 return default_scale_smt_power(sd, cpu);
3586}
3587
3724unsigned long scale_rt_power(int cpu) 3588unsigned long scale_rt_power(int cpu)
3725{ 3589{
3726 struct rq *rq = cpu_rq(cpu); 3590 struct rq *rq = cpu_rq(cpu);
@@ -3745,10 +3609,19 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
3745 unsigned long power = SCHED_LOAD_SCALE; 3609 unsigned long power = SCHED_LOAD_SCALE;
3746 struct sched_group *sdg = sd->groups; 3610 struct sched_group *sdg = sd->groups;
3747 3611
3748 /* here we could scale based on cpufreq */ 3612 if (sched_feat(ARCH_POWER))
3613 power *= arch_scale_freq_power(sd, cpu);
3614 else
3615 power *= default_scale_freq_power(sd, cpu);
3616
3617 power >>= SCHED_LOAD_SHIFT;
3749 3618
3750 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 3619 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3751 power *= arch_scale_smt_power(sd, cpu); 3620 if (sched_feat(ARCH_POWER))
3621 power *= arch_scale_smt_power(sd, cpu);
3622 else
3623 power *= default_scale_smt_power(sd, cpu);
3624
3752 power >>= SCHED_LOAD_SHIFT; 3625 power >>= SCHED_LOAD_SHIFT;
3753 } 3626 }
3754 3627
@@ -4161,26 +4034,6 @@ ret:
4161 return NULL; 4034 return NULL;
4162} 4035}
4163 4036
4164static struct sched_group *group_of(int cpu)
4165{
4166 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4167
4168 if (!sd)
4169 return NULL;
4170
4171 return sd->groups;
4172}
4173
4174static unsigned long power_of(int cpu)
4175{
4176 struct sched_group *group = group_of(cpu);
4177
4178 if (!group)
4179 return SCHED_LOAD_SCALE;
4180
4181 return group->cpu_power;
4182}
4183
4184/* 4037/*
4185 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4038 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4186 */ 4039 */
@@ -5239,17 +5092,16 @@ void account_idle_time(cputime_t cputime)
5239 */ 5092 */
5240void account_process_tick(struct task_struct *p, int user_tick) 5093void account_process_tick(struct task_struct *p, int user_tick)
5241{ 5094{
5242 cputime_t one_jiffy = jiffies_to_cputime(1); 5095 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5243 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5244 struct rq *rq = this_rq(); 5096 struct rq *rq = this_rq();
5245 5097
5246 if (user_tick) 5098 if (user_tick)
5247 account_user_time(p, one_jiffy, one_jiffy_scaled); 5099 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5248 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 5100 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5249 account_system_time(p, HARDIRQ_OFFSET, one_jiffy, 5101 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5250 one_jiffy_scaled); 5102 one_jiffy_scaled);
5251 else 5103 else
5252 account_idle_time(one_jiffy); 5104 account_idle_time(cputime_one_jiffy);
5253} 5105}
5254 5106
5255/* 5107/*
@@ -5353,7 +5205,7 @@ void scheduler_tick(void)
5353 curr->sched_class->task_tick(rq, curr, 0); 5205 curr->sched_class->task_tick(rq, curr, 0);
5354 spin_unlock(&rq->lock); 5206 spin_unlock(&rq->lock);
5355 5207
5356 perf_counter_task_tick(curr, cpu); 5208 perf_event_task_tick(curr, cpu);
5357 5209
5358#ifdef CONFIG_SMP 5210#ifdef CONFIG_SMP
5359 rq->idle_at_tick = idle_cpu(cpu); 5211 rq->idle_at_tick = idle_cpu(cpu);
@@ -5465,14 +5317,13 @@ static inline void schedule_debug(struct task_struct *prev)
5465#endif 5317#endif
5466} 5318}
5467 5319
5468static void put_prev_task(struct rq *rq, struct task_struct *prev) 5320static void put_prev_task(struct rq *rq, struct task_struct *p)
5469{ 5321{
5470 if (prev->state == TASK_RUNNING) { 5322 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5471 u64 runtime = prev->se.sum_exec_runtime;
5472 5323
5473 runtime -= prev->se.prev_sum_exec_runtime; 5324 update_avg(&p->se.avg_running, runtime);
5474 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5475 5325
5326 if (p->state == TASK_RUNNING) {
5476 /* 5327 /*
5477 * In order to avoid avg_overlap growing stale when we are 5328 * In order to avoid avg_overlap growing stale when we are
5478 * indeed overlapping and hence not getting put to sleep, grow 5329 * indeed overlapping and hence not getting put to sleep, grow
@@ -5482,9 +5333,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev)
5482 * correlates to the amount of cache footprint a task can 5333 * correlates to the amount of cache footprint a task can
5483 * build up. 5334 * build up.
5484 */ 5335 */
5485 update_avg(&prev->se.avg_overlap, runtime); 5336 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5337 update_avg(&p->se.avg_overlap, runtime);
5338 } else {
5339 update_avg(&p->se.avg_running, 0);
5486 } 5340 }
5487 prev->sched_class->put_prev_task(rq, prev); 5341 p->sched_class->put_prev_task(rq, p);
5488} 5342}
5489 5343
5490/* 5344/*
@@ -5567,7 +5421,7 @@ need_resched_nonpreemptible:
5567 5421
5568 if (likely(prev != next)) { 5422 if (likely(prev != next)) {
5569 sched_info_switch(prev, next); 5423 sched_info_switch(prev, next);
5570 perf_counter_task_sched_out(prev, next, cpu); 5424 perf_event_task_sched_out(prev, next, cpu);
5571 5425
5572 rq->nr_switches++; 5426 rq->nr_switches++;
5573 rq->curr = next; 5427 rq->curr = next;
@@ -5716,10 +5570,10 @@ asmlinkage void __sched preempt_schedule_irq(void)
5716 5570
5717#endif /* CONFIG_PREEMPT */ 5571#endif /* CONFIG_PREEMPT */
5718 5572
5719int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, 5573int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5720 void *key) 5574 void *key)
5721{ 5575{
5722 return try_to_wake_up(curr->private, mode, sync); 5576 return try_to_wake_up(curr->private, mode, wake_flags);
5723} 5577}
5724EXPORT_SYMBOL(default_wake_function); 5578EXPORT_SYMBOL(default_wake_function);
5725 5579
@@ -5733,14 +5587,14 @@ EXPORT_SYMBOL(default_wake_function);
5733 * zero in this (rare) case, and we handle it by continuing to scan the queue. 5587 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5734 */ 5588 */
5735static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 5589static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5736 int nr_exclusive, int sync, void *key) 5590 int nr_exclusive, int wake_flags, void *key)
5737{ 5591{
5738 wait_queue_t *curr, *next; 5592 wait_queue_t *curr, *next;
5739 5593
5740 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 5594 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5741 unsigned flags = curr->flags; 5595 unsigned flags = curr->flags;
5742 5596
5743 if (curr->func(curr, mode, sync, key) && 5597 if (curr->func(curr, mode, wake_flags, key) &&
5744 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 5598 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5745 break; 5599 break;
5746 } 5600 }
@@ -5801,16 +5655,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5801 int nr_exclusive, void *key) 5655 int nr_exclusive, void *key)
5802{ 5656{
5803 unsigned long flags; 5657 unsigned long flags;
5804 int sync = 1; 5658 int wake_flags = WF_SYNC;
5805 5659
5806 if (unlikely(!q)) 5660 if (unlikely(!q))
5807 return; 5661 return;
5808 5662
5809 if (unlikely(!nr_exclusive)) 5663 if (unlikely(!nr_exclusive))
5810 sync = 0; 5664 wake_flags = 0;
5811 5665
5812 spin_lock_irqsave(&q->lock, flags); 5666 spin_lock_irqsave(&q->lock, flags);
5813 __wake_up_common(q, mode, nr_exclusive, sync, key); 5667 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5814 spin_unlock_irqrestore(&q->lock, flags); 5668 spin_unlock_irqrestore(&q->lock, flags);
5815} 5669}
5816EXPORT_SYMBOL_GPL(__wake_up_sync_key); 5670EXPORT_SYMBOL_GPL(__wake_up_sync_key);
@@ -6977,23 +6831,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6977 if (retval) 6831 if (retval)
6978 goto out_unlock; 6832 goto out_unlock;
6979 6833
6980 /* 6834 time_slice = p->sched_class->get_rr_interval(p);
6981 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6982 * tasks that are on an otherwise idle runqueue:
6983 */
6984 time_slice = 0;
6985 if (p->policy == SCHED_RR) {
6986 time_slice = DEF_TIMESLICE;
6987 } else if (p->policy != SCHED_FIFO) {
6988 struct sched_entity *se = &p->se;
6989 unsigned long flags;
6990 struct rq *rq;
6991 6835
6992 rq = task_rq_lock(p, &flags);
6993 if (rq->cfs.load.weight)
6994 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6995 task_rq_unlock(rq, &flags);
6996 }
6997 read_unlock(&tasklist_lock); 6836 read_unlock(&tasklist_lock);
6998 jiffies_to_timespec(time_slice, &t); 6837 jiffies_to_timespec(time_slice, &t);
6999 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 6838 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
@@ -7844,7 +7683,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7844/* 7683/*
7845 * Register at high priority so that task migration (migrate_all_tasks) 7684 * Register at high priority so that task migration (migrate_all_tasks)
7846 * happens before everything else. This has to be lower priority than 7685 * happens before everything else. This has to be lower priority than
7847 * the notifier in the perf_counter subsystem, though. 7686 * the notifier in the perf_event subsystem, though.
7848 */ 7687 */
7849static struct notifier_block __cpuinitdata migration_notifier = { 7688static struct notifier_block __cpuinitdata migration_notifier = {
7850 .notifier_call = migration_call, 7689 .notifier_call = migration_call,
@@ -8000,9 +7839,7 @@ static int sd_degenerate(struct sched_domain *sd)
8000 } 7839 }
8001 7840
8002 /* Following flags don't use groups */ 7841 /* Following flags don't use groups */
8003 if (sd->flags & (SD_WAKE_IDLE | 7842 if (sd->flags & (SD_WAKE_AFFINE))
8004 SD_WAKE_AFFINE |
8005 SD_WAKE_BALANCE))
8006 return 0; 7843 return 0;
8007 7844
8008 return 1; 7845 return 1;
@@ -8019,10 +7856,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8019 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 7856 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8020 return 0; 7857 return 0;
8021 7858
8022 /* Does parent contain flags not in child? */
8023 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
8024 if (cflags & SD_WAKE_AFFINE)
8025 pflags &= ~SD_WAKE_BALANCE;
8026 /* Flags needing groups don't count if only 1 group in parent */ 7859 /* Flags needing groups don't count if only 1 group in parent */
8027 if (parent->groups == parent->groups->next) { 7860 if (parent->groups == parent->groups->next) {
8028 pflags &= ~(SD_LOAD_BALANCE | 7861 pflags &= ~(SD_LOAD_BALANCE |
@@ -8708,10 +8541,10 @@ static void set_domain_attribute(struct sched_domain *sd,
8708 request = attr->relax_domain_level; 8541 request = attr->relax_domain_level;
8709 if (request < sd->level) { 8542 if (request < sd->level) {
8710 /* turn off idle balance on this domain */ 8543 /* turn off idle balance on this domain */
8711 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); 8544 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8712 } else { 8545 } else {
8713 /* turn on idle balance on this domain */ 8546 /* turn on idle balance on this domain */
8714 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); 8547 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8715 } 8548 }
8716} 8549}
8717 8550
@@ -9329,6 +9162,7 @@ void __init sched_init_smp(void)
9329 cpumask_var_t non_isolated_cpus; 9162 cpumask_var_t non_isolated_cpus;
9330 9163
9331 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 9164 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9165 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9332 9166
9333#if defined(CONFIG_NUMA) 9167#if defined(CONFIG_NUMA)
9334 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), 9168 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
@@ -9360,7 +9194,6 @@ void __init sched_init_smp(void)
9360 sched_init_granularity(); 9194 sched_init_granularity();
9361 free_cpumask_var(non_isolated_cpus); 9195 free_cpumask_var(non_isolated_cpus);
9362 9196
9363 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9364 init_sched_rt_class(); 9197 init_sched_rt_class();
9365} 9198}
9366#else 9199#else
@@ -9707,7 +9540,7 @@ void __init sched_init(void)
9707 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 9540 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9708#endif /* SMP */ 9541#endif /* SMP */
9709 9542
9710 perf_counter_init(); 9543 perf_event_init();
9711 9544
9712 scheduler_running = 1; 9545 scheduler_running = 1;
9713} 9546}
@@ -10479,7 +10312,7 @@ static int sched_rt_global_constraints(void)
10479#endif /* CONFIG_RT_GROUP_SCHED */ 10312#endif /* CONFIG_RT_GROUP_SCHED */
10480 10313
10481int sched_rt_handler(struct ctl_table *table, int write, 10314int sched_rt_handler(struct ctl_table *table, int write,
10482 struct file *filp, void __user *buffer, size_t *lenp, 10315 void __user *buffer, size_t *lenp,
10483 loff_t *ppos) 10316 loff_t *ppos)
10484{ 10317{
10485 int ret; 10318 int ret;
@@ -10490,7 +10323,7 @@ int sched_rt_handler(struct ctl_table *table, int write,
10490 old_period = sysctl_sched_rt_period; 10323 old_period = sysctl_sched_rt_period;
10491 old_runtime = sysctl_sched_rt_runtime; 10324 old_runtime = sysctl_sched_rt_runtime;
10492 10325
10493 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); 10326 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10494 10327
10495 if (!ret && write) { 10328 if (!ret && write) {
10496 ret = sched_rt_global_constraints(); 10329 ret = sched_rt_global_constraints();
@@ -10544,8 +10377,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10544} 10377}
10545 10378
10546static int 10379static int
10547cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 10380cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10548 struct task_struct *tsk)
10549{ 10381{
10550#ifdef CONFIG_RT_GROUP_SCHED 10382#ifdef CONFIG_RT_GROUP_SCHED
10551 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) 10383 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
@@ -10555,15 +10387,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10555 if (tsk->sched_class != &fair_sched_class) 10387 if (tsk->sched_class != &fair_sched_class)
10556 return -EINVAL; 10388 return -EINVAL;
10557#endif 10389#endif
10390 return 0;
10391}
10558 10392
10393static int
10394cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10395 struct task_struct *tsk, bool threadgroup)
10396{
10397 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10398 if (retval)
10399 return retval;
10400 if (threadgroup) {
10401 struct task_struct *c;
10402 rcu_read_lock();
10403 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10404 retval = cpu_cgroup_can_attach_task(cgrp, c);
10405 if (retval) {
10406 rcu_read_unlock();
10407 return retval;
10408 }
10409 }
10410 rcu_read_unlock();
10411 }
10559 return 0; 10412 return 0;
10560} 10413}
10561 10414
10562static void 10415static void
10563cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 10416cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10564 struct cgroup *old_cont, struct task_struct *tsk) 10417 struct cgroup *old_cont, struct task_struct *tsk,
10418 bool threadgroup)
10565{ 10419{
10566 sched_move_task(tsk); 10420 sched_move_task(tsk);
10421 if (threadgroup) {
10422 struct task_struct *c;
10423 rcu_read_lock();
10424 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10425 sched_move_task(c);
10426 }
10427 rcu_read_unlock();
10428 }
10567} 10429}
10568 10430
10569#ifdef CONFIG_FAIR_GROUP_SCHED 10431#ifdef CONFIG_FAIR_GROUP_SCHED
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c
index e1d16c9a7680..ac2e1dc708bd 100644
--- a/kernel/sched_clock.c
+++ b/kernel/sched_clock.c
@@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running;
48__read_mostly int sched_clock_stable; 48__read_mostly int sched_clock_stable;
49 49
50struct sched_clock_data { 50struct sched_clock_data {
51 /*
52 * Raw spinlock - this is a special case: this might be called
53 * from within instrumentation code so we dont want to do any
54 * instrumentation ourselves.
55 */
56 raw_spinlock_t lock;
57
58 u64 tick_raw; 51 u64 tick_raw;
59 u64 tick_gtod; 52 u64 tick_gtod;
60 u64 clock; 53 u64 clock;
@@ -80,7 +73,6 @@ void sched_clock_init(void)
80 for_each_possible_cpu(cpu) { 73 for_each_possible_cpu(cpu) {
81 struct sched_clock_data *scd = cpu_sdc(cpu); 74 struct sched_clock_data *scd = cpu_sdc(cpu);
82 75
83 scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
84 scd->tick_raw = 0; 76 scd->tick_raw = 0;
85 scd->tick_gtod = ktime_now; 77 scd->tick_gtod = ktime_now;
86 scd->clock = ktime_now; 78 scd->clock = ktime_now;
@@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y)
109 * - filter out backward motion 101 * - filter out backward motion
110 * - use the GTOD tick value to create a window to filter crazy TSC values 102 * - use the GTOD tick value to create a window to filter crazy TSC values
111 */ 103 */
112static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) 104static u64 sched_clock_local(struct sched_clock_data *scd)
113{ 105{
114 s64 delta = now - scd->tick_raw; 106 u64 now, clock, old_clock, min_clock, max_clock;
115 u64 clock, min_clock, max_clock; 107 s64 delta;
116 108
109again:
110 now = sched_clock();
111 delta = now - scd->tick_raw;
117 if (unlikely(delta < 0)) 112 if (unlikely(delta < 0))
118 delta = 0; 113 delta = 0;
119 114
115 old_clock = scd->clock;
116
120 /* 117 /*
121 * scd->clock = clamp(scd->tick_gtod + delta, 118 * scd->clock = clamp(scd->tick_gtod + delta,
122 * max(scd->tick_gtod, scd->clock), 119 * max(scd->tick_gtod, scd->clock),
@@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
124 */ 121 */
125 122
126 clock = scd->tick_gtod + delta; 123 clock = scd->tick_gtod + delta;
127 min_clock = wrap_max(scd->tick_gtod, scd->clock); 124 min_clock = wrap_max(scd->tick_gtod, old_clock);
128 max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); 125 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
129 126
130 clock = wrap_max(clock, min_clock); 127 clock = wrap_max(clock, min_clock);
131 clock = wrap_min(clock, max_clock); 128 clock = wrap_min(clock, max_clock);
132 129
133 scd->clock = clock; 130 if (cmpxchg(&scd->clock, old_clock, clock) != old_clock)
131 goto again;
134 132
135 return scd->clock; 133 return clock;
136} 134}
137 135
138static void lock_double_clock(struct sched_clock_data *data1, 136static u64 sched_clock_remote(struct sched_clock_data *scd)
139 struct sched_clock_data *data2)
140{ 137{
141 if (data1 < data2) { 138 struct sched_clock_data *my_scd = this_scd();
142 __raw_spin_lock(&data1->lock); 139 u64 this_clock, remote_clock;
143 __raw_spin_lock(&data2->lock); 140 u64 *ptr, old_val, val;
141
142 sched_clock_local(my_scd);
143again:
144 this_clock = my_scd->clock;
145 remote_clock = scd->clock;
146
147 /*
148 * Use the opportunity that we have both locks
149 * taken to couple the two clocks: we take the
150 * larger time as the latest time for both
151 * runqueues. (this creates monotonic movement)
152 */
153 if (likely((s64)(remote_clock - this_clock) < 0)) {
154 ptr = &scd->clock;
155 old_val = remote_clock;
156 val = this_clock;
144 } else { 157 } else {
145 __raw_spin_lock(&data2->lock); 158 /*
146 __raw_spin_lock(&data1->lock); 159 * Should be rare, but possible:
160 */
161 ptr = &my_scd->clock;
162 old_val = this_clock;
163 val = remote_clock;
147 } 164 }
165
166 if (cmpxchg(ptr, old_val, val) != old_val)
167 goto again;
168
169 return val;
148} 170}
149 171
150u64 sched_clock_cpu(int cpu) 172u64 sched_clock_cpu(int cpu)
151{ 173{
152 u64 now, clock, this_clock, remote_clock;
153 struct sched_clock_data *scd; 174 struct sched_clock_data *scd;
175 u64 clock;
176
177 WARN_ON_ONCE(!irqs_disabled());
154 178
155 if (sched_clock_stable) 179 if (sched_clock_stable)
156 return sched_clock(); 180 return sched_clock();
157 181
158 scd = cpu_sdc(cpu);
159
160 /*
161 * Normally this is not called in NMI context - but if it is,
162 * trying to do any locking here is totally lethal.
163 */
164 if (unlikely(in_nmi()))
165 return scd->clock;
166
167 if (unlikely(!sched_clock_running)) 182 if (unlikely(!sched_clock_running))
168 return 0ull; 183 return 0ull;
169 184
170 WARN_ON_ONCE(!irqs_disabled()); 185 scd = cpu_sdc(cpu);
171 now = sched_clock();
172
173 if (cpu != raw_smp_processor_id()) {
174 struct sched_clock_data *my_scd = this_scd();
175
176 lock_double_clock(scd, my_scd);
177
178 this_clock = __update_sched_clock(my_scd, now);
179 remote_clock = scd->clock;
180
181 /*
182 * Use the opportunity that we have both locks
183 * taken to couple the two clocks: we take the
184 * larger time as the latest time for both
185 * runqueues. (this creates monotonic movement)
186 */
187 if (likely((s64)(remote_clock - this_clock) < 0)) {
188 clock = this_clock;
189 scd->clock = clock;
190 } else {
191 /*
192 * Should be rare, but possible:
193 */
194 clock = remote_clock;
195 my_scd->clock = remote_clock;
196 }
197
198 __raw_spin_unlock(&my_scd->lock);
199 } else {
200 __raw_spin_lock(&scd->lock);
201 clock = __update_sched_clock(scd, now);
202 }
203 186
204 __raw_spin_unlock(&scd->lock); 187 if (cpu != smp_processor_id())
188 clock = sched_clock_remote(scd);
189 else
190 clock = sched_clock_local(scd);
205 191
206 return clock; 192 return clock;
207} 193}
@@ -223,11 +209,9 @@ void sched_clock_tick(void)
223 now_gtod = ktime_to_ns(ktime_get()); 209 now_gtod = ktime_to_ns(ktime_get());
224 now = sched_clock(); 210 now = sched_clock();
225 211
226 __raw_spin_lock(&scd->lock);
227 scd->tick_raw = now; 212 scd->tick_raw = now;
228 scd->tick_gtod = now_gtod; 213 scd->tick_gtod = now_gtod;
229 __update_sched_clock(scd, now); 214 sched_clock_local(scd);
230 __raw_spin_unlock(&scd->lock);
231} 215}
232 216
233/* 217/*
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index 5ddbd0891267..efb84409bc43 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -395,6 +395,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
395 PN(se.sum_exec_runtime); 395 PN(se.sum_exec_runtime);
396 PN(se.avg_overlap); 396 PN(se.avg_overlap);
397 PN(se.avg_wakeup); 397 PN(se.avg_wakeup);
398 PN(se.avg_running);
398 399
399 nr_switches = p->nvcsw + p->nivcsw; 400 nr_switches = p->nvcsw + p->nivcsw;
400 401
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index aa7f84121016..4e777b47eeda 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
384 384
385#ifdef CONFIG_SCHED_DEBUG 385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write, 386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp, 387 void __user *buffer, size_t *lenp,
388 loff_t *ppos) 388 loff_t *ppos)
389{ 389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 390 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391 391
392 if (ret || !write) 392 if (ret || !write)
393 return ret; 393 return ret;
@@ -513,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
513 if (entity_is_task(curr)) { 513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr); 514 struct task_struct *curtask = task_of(curr);
515 515
516 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
516 cpuacct_charge(curtask, delta_exec); 517 cpuacct_charge(curtask, delta_exec);
517 account_group_exec_runtime(curtask, delta_exec); 518 account_group_exec_runtime(curtask, delta_exec);
518 } 519 }
@@ -709,24 +710,28 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
709 if (initial && sched_feat(START_DEBIT)) 710 if (initial && sched_feat(START_DEBIT))
710 vruntime += sched_vslice(cfs_rq, se); 711 vruntime += sched_vslice(cfs_rq, se);
711 712
712 if (!initial) { 713 /* sleeps up to a single latency don't count. */
713 /* sleeps upto a single latency don't count. */ 714 if (!initial && sched_feat(FAIR_SLEEPERS)) {
714 if (sched_feat(NEW_FAIR_SLEEPERS)) { 715 unsigned long thresh = sysctl_sched_latency;
715 unsigned long thresh = sysctl_sched_latency;
716 716
717 /* 717 /*
718 * Convert the sleeper threshold into virtual time. 718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about 719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks, 720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight. 721 * all of which have the same weight.
722 */ 722 */
723 if (sched_feat(NORMALIZED_SLEEPER) && 723 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724 (!entity_is_task(se) || 724 task_of(se)->policy != SCHED_IDLE))
725 task_of(se)->policy != SCHED_IDLE)) 725 thresh = calc_delta_fair(thresh, se);
726 thresh = calc_delta_fair(thresh, se);
727 726
728 vruntime -= thresh; 727 /*
729 } 728 * Halve their sleep time's effect, to allow
729 * for a gentler effect of sleepers:
730 */
731 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732 thresh >>= 1;
733
734 vruntime -= thresh;
730 } 735 }
731 736
732 /* ensure we never gain time by being placed backwards. */ 737 /* ensure we never gain time by being placed backwards. */
@@ -757,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
757 762
758static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 763static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
759{ 764{
760 if (cfs_rq->last == se) 765 if (!se || cfs_rq->last == se)
761 cfs_rq->last = NULL; 766 cfs_rq->last = NULL;
762 767
763 if (cfs_rq->next == se) 768 if (!se || cfs_rq->next == se)
764 cfs_rq->next = NULL; 769 cfs_rq->next = NULL;
765} 770}
766 771
@@ -1062,83 +1067,6 @@ static void yield_task_fair(struct rq *rq)
1062 se->vruntime = rightmost->vruntime + 1; 1067 se->vruntime = rightmost->vruntime + 1;
1063} 1068}
1064 1069
1065/*
1066 * wake_idle() will wake a task on an idle cpu if task->cpu is
1067 * not idle and an idle cpu is available. The span of cpus to
1068 * search starts with cpus closest then further out as needed,
1069 * so we always favor a closer, idle cpu.
1070 * Domains may include CPUs that are not usable for migration,
1071 * hence we need to mask them out (rq->rd->online)
1072 *
1073 * Returns the CPU we should wake onto.
1074 */
1075#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1076
1077#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1078
1079static int wake_idle(int cpu, struct task_struct *p)
1080{
1081 struct sched_domain *sd;
1082 int i;
1083 unsigned int chosen_wakeup_cpu;
1084 int this_cpu;
1085 struct rq *task_rq = task_rq(p);
1086
1087 /*
1088 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1089 * are idle and this is not a kernel thread and this task's affinity
1090 * allows it to be moved to preferred cpu, then just move!
1091 */
1092
1093 this_cpu = smp_processor_id();
1094 chosen_wakeup_cpu =
1095 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1096
1097 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1098 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1099 p->mm && !(p->flags & PF_KTHREAD) &&
1100 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1101 return chosen_wakeup_cpu;
1102
1103 /*
1104 * If it is idle, then it is the best cpu to run this task.
1105 *
1106 * This cpu is also the best, if it has more than one task already.
1107 * Siblings must be also busy(in most cases) as they didn't already
1108 * pickup the extra load from this cpu and hence we need not check
1109 * sibling runqueue info. This will avoid the checks and cache miss
1110 * penalities associated with that.
1111 */
1112 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1113 return cpu;
1114
1115 for_each_domain(cpu, sd) {
1116 if ((sd->flags & SD_WAKE_IDLE)
1117 || ((sd->flags & SD_WAKE_IDLE_FAR)
1118 && !task_hot(p, task_rq->clock, sd))) {
1119 for_each_cpu_and(i, sched_domain_span(sd),
1120 &p->cpus_allowed) {
1121 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1122 if (i != task_cpu(p)) {
1123 schedstat_inc(p,
1124 se.nr_wakeups_idle);
1125 }
1126 return i;
1127 }
1128 }
1129 } else {
1130 break;
1131 }
1132 }
1133 return cpu;
1134}
1135#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1136static inline int wake_idle(int cpu, struct task_struct *p)
1137{
1138 return cpu;
1139}
1140#endif
1141
1142#ifdef CONFIG_SMP 1070#ifdef CONFIG_SMP
1143 1071
1144#ifdef CONFIG_FAIR_GROUP_SCHED 1072#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1225,25 +1153,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
1225 1153
1226#endif 1154#endif
1227 1155
1228static int 1156static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1229wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1230 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1231 int idx, unsigned long load, unsigned long this_load,
1232 unsigned int imbalance)
1233{ 1157{
1234 struct task_struct *curr = this_rq->curr; 1158 struct task_struct *curr = current;
1235 struct task_group *tg; 1159 unsigned long this_load, load;
1236 unsigned long tl = this_load; 1160 int idx, this_cpu, prev_cpu;
1237 unsigned long tl_per_task; 1161 unsigned long tl_per_task;
1162 unsigned int imbalance;
1163 struct task_group *tg;
1238 unsigned long weight; 1164 unsigned long weight;
1239 int balanced; 1165 int balanced;
1240 1166
1241 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) 1167 idx = sd->wake_idx;
1242 return 0; 1168 this_cpu = smp_processor_id();
1169 prev_cpu = task_cpu(p);
1170 load = source_load(prev_cpu, idx);
1171 this_load = target_load(this_cpu, idx);
1243 1172
1244 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || 1173 if (sync) {
1245 p->se.avg_overlap > sysctl_sched_migration_cost)) 1174 if (sched_feat(SYNC_LESS) &&
1246 sync = 0; 1175 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1176 p->se.avg_overlap > sysctl_sched_migration_cost))
1177 sync = 0;
1178 } else {
1179 if (sched_feat(SYNC_MORE) &&
1180 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1181 p->se.avg_overlap < sysctl_sched_migration_cost))
1182 sync = 1;
1183 }
1247 1184
1248 /* 1185 /*
1249 * If sync wakeup then subtract the (maximum possible) 1186 * If sync wakeup then subtract the (maximum possible)
@@ -1254,24 +1191,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1254 tg = task_group(current); 1191 tg = task_group(current);
1255 weight = current->se.load.weight; 1192 weight = current->se.load.weight;
1256 1193
1257 tl += effective_load(tg, this_cpu, -weight, -weight); 1194 this_load += effective_load(tg, this_cpu, -weight, -weight);
1258 load += effective_load(tg, prev_cpu, 0, -weight); 1195 load += effective_load(tg, prev_cpu, 0, -weight);
1259 } 1196 }
1260 1197
1261 tg = task_group(p); 1198 tg = task_group(p);
1262 weight = p->se.load.weight; 1199 weight = p->se.load.weight;
1263 1200
1201 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1202
1264 /* 1203 /*
1265 * In low-load situations, where prev_cpu is idle and this_cpu is idle 1204 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1266 * due to the sync cause above having dropped tl to 0, we'll always have 1205 * due to the sync cause above having dropped this_load to 0, we'll
1267 * an imbalance, but there's really nothing you can do about that, so 1206 * always have an imbalance, but there's really nothing you can do
1268 * that's good too. 1207 * about that, so that's good too.
1269 * 1208 *
1270 * Otherwise check if either cpus are near enough in load to allow this 1209 * Otherwise check if either cpus are near enough in load to allow this
1271 * task to be woken on this_cpu. 1210 * task to be woken on this_cpu.
1272 */ 1211 */
1273 balanced = !tl || 1212 balanced = !this_load ||
1274 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= 1213 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1275 imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); 1214 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1276 1215
1277 /* 1216 /*
@@ -1285,14 +1224,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1285 schedstat_inc(p, se.nr_wakeups_affine_attempts); 1224 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1286 tl_per_task = cpu_avg_load_per_task(this_cpu); 1225 tl_per_task = cpu_avg_load_per_task(this_cpu);
1287 1226
1288 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= 1227 if (balanced ||
1289 tl_per_task)) { 1228 (this_load <= load &&
1229 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1290 /* 1230 /*
1291 * This domain has SD_WAKE_AFFINE and 1231 * This domain has SD_WAKE_AFFINE and
1292 * p is cache cold in this domain, and 1232 * p is cache cold in this domain, and
1293 * there is no bad imbalance. 1233 * there is no bad imbalance.
1294 */ 1234 */
1295 schedstat_inc(this_sd, ttwu_move_affine); 1235 schedstat_inc(sd, ttwu_move_affine);
1296 schedstat_inc(p, se.nr_wakeups_affine); 1236 schedstat_inc(p, se.nr_wakeups_affine);
1297 1237
1298 return 1; 1238 return 1;
@@ -1300,65 +1240,216 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1300 return 0; 1240 return 0;
1301} 1241}
1302 1242
1303static int select_task_rq_fair(struct task_struct *p, int sync) 1243/*
1244 * find_idlest_group finds and returns the least busy CPU group within the
1245 * domain.
1246 */
1247static struct sched_group *
1248find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1249 int this_cpu, int load_idx)
1304{ 1250{
1305 struct sched_domain *sd, *this_sd = NULL; 1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1306 int prev_cpu, this_cpu, new_cpu; 1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1307 unsigned long load, this_load; 1253 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1308 struct rq *this_rq;
1309 unsigned int imbalance;
1310 int idx;
1311 1254
1312 prev_cpu = task_cpu(p); 1255 do {
1313 this_cpu = smp_processor_id(); 1256 unsigned long load, avg_load;
1314 this_rq = cpu_rq(this_cpu); 1257 int local_group;
1315 new_cpu = prev_cpu; 1258 int i;
1316 1259
1317 /* 1260 /* Skip over this group if it has no CPUs allowed */
1318 * 'this_sd' is the first domain that both 1261 if (!cpumask_intersects(sched_group_cpus(group),
1319 * this_cpu and prev_cpu are present in: 1262 &p->cpus_allowed))
1320 */ 1263 continue;
1321 for_each_domain(this_cpu, sd) { 1264
1322 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { 1265 local_group = cpumask_test_cpu(this_cpu,
1323 this_sd = sd; 1266 sched_group_cpus(group));
1324 break; 1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu(i, sched_group_cpus(group)) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
1282 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
1291 } while (group = group->next, group != sd->groups);
1292
1293 if (!idlest || 100*this_load < imbalance*min_load)
1294 return NULL;
1295 return idlest;
1296}
1297
1298/*
1299 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1300 */
1301static int
1302find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1303{
1304 unsigned long load, min_load = ULONG_MAX;
1305 int idlest = -1;
1306 int i;
1307
1308 /* Traverse only the allowed CPUs */
1309 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1310 load = weighted_cpuload(i);
1311
1312 if (load < min_load || (load == min_load && i == this_cpu)) {
1313 min_load = load;
1314 idlest = i;
1325 } 1315 }
1326 } 1316 }
1327 1317
1328 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) 1318 return idlest;
1329 goto out; 1319}
1330 1320
1331 /* 1321/*
1332 * Check for affine wakeup and passive balancing possibilities. 1322 * sched_balance_self: balance the current task (running on cpu) in domains
1333 */ 1323 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1334 if (!this_sd) 1324 * SD_BALANCE_EXEC.
1325 *
1326 * Balance, ie. select the least loaded group.
1327 *
1328 * Returns the target CPU number, or the same CPU if no balancing is needed.
1329 *
1330 * preempt must be disabled.
1331 */
1332static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1333{
1334 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1335 int cpu = smp_processor_id();
1336 int prev_cpu = task_cpu(p);
1337 int new_cpu = cpu;
1338 int want_affine = 0;
1339 int want_sd = 1;
1340 int sync = wake_flags & WF_SYNC;
1341
1342 if (sd_flag & SD_BALANCE_WAKE) {
1343 if (sched_feat(AFFINE_WAKEUPS) &&
1344 cpumask_test_cpu(cpu, &p->cpus_allowed))
1345 want_affine = 1;
1346 new_cpu = prev_cpu;
1347 }
1348
1349 rcu_read_lock();
1350 for_each_domain(cpu, tmp) {
1351 /*
1352 * If power savings logic is enabled for a domain, see if we
1353 * are not overloaded, if so, don't balance wider.
1354 */
1355 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1356 unsigned long power = 0;
1357 unsigned long nr_running = 0;
1358 unsigned long capacity;
1359 int i;
1360
1361 for_each_cpu(i, sched_domain_span(tmp)) {
1362 power += power_of(i);
1363 nr_running += cpu_rq(i)->cfs.nr_running;
1364 }
1365
1366 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1367
1368 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1369 nr_running /= 2;
1370
1371 if (nr_running < capacity)
1372 want_sd = 0;
1373 }
1374
1375 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1376 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1377
1378 affine_sd = tmp;
1379 want_affine = 0;
1380 }
1381
1382 if (!want_sd && !want_affine)
1383 break;
1384
1385 if (!(tmp->flags & sd_flag))
1386 continue;
1387
1388 if (want_sd)
1389 sd = tmp;
1390 }
1391
1392 if (sched_feat(LB_SHARES_UPDATE)) {
1393 /*
1394 * Pick the largest domain to update shares over
1395 */
1396 tmp = sd;
1397 if (affine_sd && (!tmp ||
1398 cpumask_weight(sched_domain_span(affine_sd)) >
1399 cpumask_weight(sched_domain_span(sd))))
1400 tmp = affine_sd;
1401
1402 if (tmp)
1403 update_shares(tmp);
1404 }
1405
1406 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1407 new_cpu = cpu;
1335 goto out; 1408 goto out;
1409 }
1336 1410
1337 idx = this_sd->wake_idx; 1411 while (sd) {
1412 int load_idx = sd->forkexec_idx;
1413 struct sched_group *group;
1414 int weight;
1338 1415
1339 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; 1416 if (!(sd->flags & sd_flag)) {
1417 sd = sd->child;
1418 continue;
1419 }
1340 1420
1341 load = source_load(prev_cpu, idx); 1421 if (sd_flag & SD_BALANCE_WAKE)
1342 this_load = target_load(this_cpu, idx); 1422 load_idx = sd->wake_idx;
1343 1423
1344 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, 1424 group = find_idlest_group(sd, p, cpu, load_idx);
1345 load, this_load, imbalance)) 1425 if (!group) {
1346 return this_cpu; 1426 sd = sd->child;
1427 continue;
1428 }
1347 1429
1348 /* 1430 new_cpu = find_idlest_cpu(group, p, cpu);
1349 * Start passive balancing when half the imbalance_pct 1431 if (new_cpu == -1 || new_cpu == cpu) {
1350 * limit is reached. 1432 /* Now try balancing at a lower domain level of cpu */
1351 */ 1433 sd = sd->child;
1352 if (this_sd->flags & SD_WAKE_BALANCE) { 1434 continue;
1353 if (imbalance*this_load <= 100*load) { 1435 }
1354 schedstat_inc(this_sd, ttwu_move_balance); 1436
1355 schedstat_inc(p, se.nr_wakeups_passive); 1437 /* Now try balancing at a lower domain level of new_cpu */
1356 return this_cpu; 1438 cpu = new_cpu;
1439 weight = cpumask_weight(sched_domain_span(sd));
1440 sd = NULL;
1441 for_each_domain(cpu, tmp) {
1442 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1443 break;
1444 if (tmp->flags & sd_flag)
1445 sd = tmp;
1357 } 1446 }
1447 /* while loop will break here if sd == NULL */
1358 } 1448 }
1359 1449
1360out: 1450out:
1361 return wake_idle(new_cpu, p); 1451 rcu_read_unlock();
1452 return new_cpu;
1362} 1453}
1363#endif /* CONFIG_SMP */ 1454#endif /* CONFIG_SMP */
1364 1455
@@ -1471,11 +1562,12 @@ static void set_next_buddy(struct sched_entity *se)
1471/* 1562/*
1472 * Preempt the current task with a newly woken task if needed: 1563 * Preempt the current task with a newly woken task if needed:
1473 */ 1564 */
1474static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) 1565static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1475{ 1566{
1476 struct task_struct *curr = rq->curr; 1567 struct task_struct *curr = rq->curr;
1477 struct sched_entity *se = &curr->se, *pse = &p->se; 1568 struct sched_entity *se = &curr->se, *pse = &p->se;
1478 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 1569 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1570 int sync = wake_flags & WF_SYNC;
1479 1571
1480 update_curr(cfs_rq); 1572 update_curr(cfs_rq);
1481 1573
@@ -1501,7 +1593,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1501 */ 1593 */
1502 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) 1594 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1503 set_last_buddy(se); 1595 set_last_buddy(se);
1504 set_next_buddy(pse); 1596 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
1597 set_next_buddy(pse);
1505 1598
1506 /* 1599 /*
1507 * We can come here with TIF_NEED_RESCHED already set from new task 1600 * We can come here with TIF_NEED_RESCHED already set from new task
@@ -1523,16 +1616,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1523 return; 1616 return;
1524 } 1617 }
1525 1618
1526 if (!sched_feat(WAKEUP_PREEMPT)) 1619 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1527 return; 1620 (sched_feat(WAKEUP_OVERLAP) &&
1528 1621 (se->avg_overlap < sysctl_sched_migration_cost &&
1529 if (sched_feat(WAKEUP_OVERLAP) && (sync || 1622 pse->avg_overlap < sysctl_sched_migration_cost))) {
1530 (se->avg_overlap < sysctl_sched_migration_cost &&
1531 pse->avg_overlap < sysctl_sched_migration_cost))) {
1532 resched_task(curr); 1623 resched_task(curr);
1533 return; 1624 return;
1534 } 1625 }
1535 1626
1627 if (sched_feat(WAKEUP_RUNNING)) {
1628 if (pse->avg_running < se->avg_running) {
1629 set_next_buddy(pse);
1630 resched_task(curr);
1631 return;
1632 }
1633 }
1634
1635 if (!sched_feat(WAKEUP_PREEMPT))
1636 return;
1637
1536 find_matching_se(&se, &pse); 1638 find_matching_se(&se, &pse);
1537 1639
1538 BUG_ON(!pse); 1640 BUG_ON(!pse);
@@ -1555,8 +1657,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq)
1555 /* 1657 /*
1556 * If se was a buddy, clear it so that it will have to earn 1658 * If se was a buddy, clear it so that it will have to earn
1557 * the favour again. 1659 * the favour again.
1660 *
1661 * If se was not a buddy, clear the buddies because neither
1662 * was elegible to run, let them earn it again.
1663 *
1664 * IOW. unconditionally clear buddies.
1558 */ 1665 */
1559 __clear_buddies(cfs_rq, se); 1666 __clear_buddies(cfs_rq, NULL);
1560 set_next_entity(cfs_rq, se); 1667 set_next_entity(cfs_rq, se);
1561 cfs_rq = group_cfs_rq(se); 1668 cfs_rq = group_cfs_rq(se);
1562 } while (cfs_rq); 1669 } while (cfs_rq);
@@ -1832,6 +1939,25 @@ static void moved_group_fair(struct task_struct *p)
1832} 1939}
1833#endif 1940#endif
1834 1941
1942unsigned int get_rr_interval_fair(struct task_struct *task)
1943{
1944 struct sched_entity *se = &task->se;
1945 unsigned long flags;
1946 struct rq *rq;
1947 unsigned int rr_interval = 0;
1948
1949 /*
1950 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
1951 * idle runqueue:
1952 */
1953 rq = task_rq_lock(task, &flags);
1954 if (rq->cfs.load.weight)
1955 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
1956 task_rq_unlock(rq, &flags);
1957
1958 return rr_interval;
1959}
1960
1835/* 1961/*
1836 * All the scheduling class methods: 1962 * All the scheduling class methods:
1837 */ 1963 */
@@ -1860,6 +1986,8 @@ static const struct sched_class fair_sched_class = {
1860 .prio_changed = prio_changed_fair, 1986 .prio_changed = prio_changed_fair,
1861 .switched_to = switched_to_fair, 1987 .switched_to = switched_to_fair,
1862 1988
1989 .get_rr_interval = get_rr_interval_fair,
1990
1863#ifdef CONFIG_FAIR_GROUP_SCHED 1991#ifdef CONFIG_FAIR_GROUP_SCHED
1864 .moved_group = moved_group_fair, 1992 .moved_group = moved_group_fair,
1865#endif 1993#endif
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index e2dc63a5815d..0d94083582c7 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -1,17 +1,123 @@
1SCHED_FEAT(NEW_FAIR_SLEEPERS, 0) 1/*
2 * Disregards a certain amount of sleep time (sched_latency_ns) and
3 * considers the task to be running during that period. This gives it
4 * a service deficit on wakeup, allowing it to run sooner.
5 */
6SCHED_FEAT(FAIR_SLEEPERS, 1)
7
8/*
9 * Only give sleepers 50% of their service deficit. This allows
10 * them to run sooner, but does not allow tons of sleepers to
11 * rip the spread apart.
12 */
13SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1)
14
15/*
16 * By not normalizing the sleep time, heavy tasks get an effective
17 * longer period, and lighter task an effective shorter period they
18 * are considered running.
19 */
2SCHED_FEAT(NORMALIZED_SLEEPER, 0) 20SCHED_FEAT(NORMALIZED_SLEEPER, 0)
3SCHED_FEAT(ADAPTIVE_GRAN, 1) 21
4SCHED_FEAT(WAKEUP_PREEMPT, 1) 22/*
23 * Place new tasks ahead so that they do not starve already running
24 * tasks
25 */
5SCHED_FEAT(START_DEBIT, 1) 26SCHED_FEAT(START_DEBIT, 1)
27
28/*
29 * Should wakeups try to preempt running tasks.
30 */
31SCHED_FEAT(WAKEUP_PREEMPT, 1)
32
33/*
34 * Compute wakeup_gran based on task behaviour, clipped to
35 * [0, sched_wakeup_gran_ns]
36 */
37SCHED_FEAT(ADAPTIVE_GRAN, 1)
38
39/*
40 * When converting the wakeup granularity to virtual time, do it such
41 * that heavier tasks preempting a lighter task have an edge.
42 */
43SCHED_FEAT(ASYM_GRAN, 1)
44
45/*
46 * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS.
47 */
48SCHED_FEAT(WAKEUP_SYNC, 0)
49
50/*
51 * Wakeup preempt based on task behaviour. Tasks that do not overlap
52 * don't get preempted.
53 */
54SCHED_FEAT(WAKEUP_OVERLAP, 0)
55
56/*
57 * Wakeup preemption towards tasks that run short
58 */
59SCHED_FEAT(WAKEUP_RUNNING, 0)
60
61/*
62 * Use the SYNC wakeup hint, pipes and the likes use this to indicate
63 * the remote end is likely to consume the data we just wrote, and
64 * therefore has cache benefit from being placed on the same cpu, see
65 * also AFFINE_WAKEUPS.
66 */
67SCHED_FEAT(SYNC_WAKEUPS, 1)
68
69/*
70 * Based on load and program behaviour, see if it makes sense to place
71 * a newly woken task on the same cpu as the task that woke it --
72 * improve cache locality. Typically used with SYNC wakeups as
73 * generated by pipes and the like, see also SYNC_WAKEUPS.
74 */
6SCHED_FEAT(AFFINE_WAKEUPS, 1) 75SCHED_FEAT(AFFINE_WAKEUPS, 1)
76
77/*
78 * Weaken SYNC hint based on overlap
79 */
80SCHED_FEAT(SYNC_LESS, 1)
81
82/*
83 * Add SYNC hint based on overlap
84 */
85SCHED_FEAT(SYNC_MORE, 0)
86
87/*
88 * Prefer to schedule the task we woke last (assuming it failed
89 * wakeup-preemption), since its likely going to consume data we
90 * touched, increases cache locality.
91 */
92SCHED_FEAT(NEXT_BUDDY, 0)
93
94/*
95 * Prefer to schedule the task that ran last (when we did
96 * wake-preempt) as that likely will touch the same data, increases
97 * cache locality.
98 */
99SCHED_FEAT(LAST_BUDDY, 1)
100
101/*
102 * Consider buddies to be cache hot, decreases the likelyness of a
103 * cache buddy being migrated away, increases cache locality.
104 */
7SCHED_FEAT(CACHE_HOT_BUDDY, 1) 105SCHED_FEAT(CACHE_HOT_BUDDY, 1)
8SCHED_FEAT(SYNC_WAKEUPS, 1) 106
107/*
108 * Use arch dependent cpu power functions
109 */
110SCHED_FEAT(ARCH_POWER, 0)
111
9SCHED_FEAT(HRTICK, 0) 112SCHED_FEAT(HRTICK, 0)
10SCHED_FEAT(DOUBLE_TICK, 0) 113SCHED_FEAT(DOUBLE_TICK, 0)
11SCHED_FEAT(ASYM_GRAN, 1)
12SCHED_FEAT(LB_BIAS, 1) 114SCHED_FEAT(LB_BIAS, 1)
13SCHED_FEAT(LB_WAKEUP_UPDATE, 1) 115SCHED_FEAT(LB_SHARES_UPDATE, 1)
14SCHED_FEAT(ASYM_EFF_LOAD, 1) 116SCHED_FEAT(ASYM_EFF_LOAD, 1)
15SCHED_FEAT(WAKEUP_OVERLAP, 0) 117
16SCHED_FEAT(LAST_BUDDY, 1) 118/*
119 * Spin-wait on mutex acquisition when the mutex owner is running on
120 * another cpu -- assumes that when the owner is running, it will soon
121 * release the lock. Decreases scheduling overhead.
122 */
17SCHED_FEAT(OWNER_SPIN, 1) 123SCHED_FEAT(OWNER_SPIN, 1)
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
index 499672c10cbd..b133a28fcde3 100644
--- a/kernel/sched_idletask.c
+++ b/kernel/sched_idletask.c
@@ -6,7 +6,7 @@
6 */ 6 */
7 7
8#ifdef CONFIG_SMP 8#ifdef CONFIG_SMP
9static int select_task_rq_idle(struct task_struct *p, int sync) 9static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags)
10{ 10{
11 return task_cpu(p); /* IDLE tasks as never migrated */ 11 return task_cpu(p); /* IDLE tasks as never migrated */
12} 12}
@@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync)
14/* 14/*
15 * Idle tasks are unconditionally rescheduled: 15 * Idle tasks are unconditionally rescheduled:
16 */ 16 */
17static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync) 17static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags)
18{ 18{
19 resched_task(rq->idle); 19 resched_task(rq->idle);
20} 20}
@@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p,
97 check_preempt_curr(rq, p, 0); 97 check_preempt_curr(rq, p, 0);
98} 98}
99 99
100unsigned int get_rr_interval_idle(struct task_struct *task)
101{
102 return 0;
103}
104
100/* 105/*
101 * Simple, special scheduling class for the per-CPU idle tasks: 106 * Simple, special scheduling class for the per-CPU idle tasks:
102 */ 107 */
@@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = {
122 .set_curr_task = set_curr_task_idle, 127 .set_curr_task = set_curr_task_idle,
123 .task_tick = task_tick_idle, 128 .task_tick = task_tick_idle,
124 129
130 .get_rr_interval = get_rr_interval_idle,
131
125 .prio_changed = prio_changed_idle, 132 .prio_changed = prio_changed_idle,
126 .switched_to = switched_to_idle, 133 .switched_to = switched_to_idle,
127 134
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 2eb4bd6a526c..a4d790cddb19 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -938,10 +938,13 @@ static void yield_task_rt(struct rq *rq)
938#ifdef CONFIG_SMP 938#ifdef CONFIG_SMP
939static int find_lowest_rq(struct task_struct *task); 939static int find_lowest_rq(struct task_struct *task);
940 940
941static int select_task_rq_rt(struct task_struct *p, int sync) 941static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
942{ 942{
943 struct rq *rq = task_rq(p); 943 struct rq *rq = task_rq(p);
944 944
945 if (sd_flag != SD_BALANCE_WAKE)
946 return smp_processor_id();
947
945 /* 948 /*
946 * If the current task is an RT task, then 949 * If the current task is an RT task, then
947 * try to see if we can wake this RT task up on another 950 * try to see if we can wake this RT task up on another
@@ -999,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
999/* 1002/*
1000 * Preempt the current task with a newly woken task if needed: 1003 * Preempt the current task with a newly woken task if needed:
1001 */ 1004 */
1002static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) 1005static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1003{ 1006{
1004 if (p->prio < rq->curr->prio) { 1007 if (p->prio < rq->curr->prio) {
1005 resched_task(rq->curr); 1008 resched_task(rq->curr);
@@ -1731,6 +1734,17 @@ static void set_curr_task_rt(struct rq *rq)
1731 dequeue_pushable_task(rq, p); 1734 dequeue_pushable_task(rq, p);
1732} 1735}
1733 1736
1737unsigned int get_rr_interval_rt(struct task_struct *task)
1738{
1739 /*
1740 * Time slice is 0 for SCHED_FIFO tasks
1741 */
1742 if (task->policy == SCHED_RR)
1743 return DEF_TIMESLICE;
1744 else
1745 return 0;
1746}
1747
1734static const struct sched_class rt_sched_class = { 1748static const struct sched_class rt_sched_class = {
1735 .next = &fair_sched_class, 1749 .next = &fair_sched_class,
1736 .enqueue_task = enqueue_task_rt, 1750 .enqueue_task = enqueue_task_rt,
@@ -1759,6 +1773,8 @@ static const struct sched_class rt_sched_class = {
1759 .set_curr_task = set_curr_task_rt, 1773 .set_curr_task = set_curr_task_rt,
1760 .task_tick = task_tick_rt, 1774 .task_tick = task_tick_rt,
1761 1775
1776 .get_rr_interval = get_rr_interval_rt,
1777
1762 .prio_changed = prio_changed_rt, 1778 .prio_changed = prio_changed_rt,
1763 .switched_to = switched_to_rt, 1779 .switched_to = switched_to_rt,
1764}; 1780};
diff --git a/kernel/signal.c b/kernel/signal.c
index 64c5deeaca5d..6705320784fd 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -705,7 +705,7 @@ static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
705 705
706 if (why) { 706 if (why) {
707 /* 707 /*
708 * The first thread which returns from finish_stop() 708 * The first thread which returns from do_signal_stop()
709 * will take ->siglock, notice SIGNAL_CLD_MASK, and 709 * will take ->siglock, notice SIGNAL_CLD_MASK, and
710 * notify its parent. See get_signal_to_deliver(). 710 * notify its parent. See get_signal_to_deliver().
711 */ 711 */
@@ -971,6 +971,20 @@ specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
971 return send_signal(sig, info, t, 0); 971 return send_signal(sig, info, t, 0);
972} 972}
973 973
974int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
975 bool group)
976{
977 unsigned long flags;
978 int ret = -ESRCH;
979
980 if (lock_task_sighand(p, &flags)) {
981 ret = send_signal(sig, info, p, group);
982 unlock_task_sighand(p, &flags);
983 }
984
985 return ret;
986}
987
974/* 988/*
975 * Force a signal that the process can't ignore: if necessary 989 * Force a signal that the process can't ignore: if necessary
976 * we unblock the signal and change any SIG_IGN to SIG_DFL. 990 * we unblock the signal and change any SIG_IGN to SIG_DFL.
@@ -1036,12 +1050,6 @@ void zap_other_threads(struct task_struct *p)
1036 } 1050 }
1037} 1051}
1038 1052
1039int __fatal_signal_pending(struct task_struct *tsk)
1040{
1041 return sigismember(&tsk->pending.signal, SIGKILL);
1042}
1043EXPORT_SYMBOL(__fatal_signal_pending);
1044
1045struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1053struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1046{ 1054{
1047 struct sighand_struct *sighand; 1055 struct sighand_struct *sighand;
@@ -1068,18 +1076,10 @@ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long
1068 */ 1076 */
1069int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1077int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1070{ 1078{
1071 unsigned long flags; 1079 int ret = check_kill_permission(sig, info, p);
1072 int ret;
1073 1080
1074 ret = check_kill_permission(sig, info, p); 1081 if (!ret && sig)
1075 1082 ret = do_send_sig_info(sig, info, p, true);
1076 if (!ret && sig) {
1077 ret = -ESRCH;
1078 if (lock_task_sighand(p, &flags)) {
1079 ret = __group_send_sig_info(sig, info, p);
1080 unlock_task_sighand(p, &flags);
1081 }
1082 }
1083 1083
1084 return ret; 1084 return ret;
1085} 1085}
@@ -1224,15 +1224,9 @@ static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1224 * These are for backward compatibility with the rest of the kernel source. 1224 * These are for backward compatibility with the rest of the kernel source.
1225 */ 1225 */
1226 1226
1227/*
1228 * The caller must ensure the task can't exit.
1229 */
1230int 1227int
1231send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1228send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1232{ 1229{
1233 int ret;
1234 unsigned long flags;
1235
1236 /* 1230 /*
1237 * Make sure legacy kernel users don't send in bad values 1231 * Make sure legacy kernel users don't send in bad values
1238 * (normal paths check this in check_kill_permission). 1232 * (normal paths check this in check_kill_permission).
@@ -1240,10 +1234,7 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1240 if (!valid_signal(sig)) 1234 if (!valid_signal(sig))
1241 return -EINVAL; 1235 return -EINVAL;
1242 1236
1243 spin_lock_irqsave(&p->sighand->siglock, flags); 1237 return do_send_sig_info(sig, info, p, false);
1244 ret = specific_send_sig_info(sig, info, p);
1245 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1246 return ret;
1247} 1238}
1248 1239
1249#define __si_special(priv) \ 1240#define __si_special(priv) \
@@ -1383,15 +1374,6 @@ ret:
1383} 1374}
1384 1375
1385/* 1376/*
1386 * Wake up any threads in the parent blocked in wait* syscalls.
1387 */
1388static inline void __wake_up_parent(struct task_struct *p,
1389 struct task_struct *parent)
1390{
1391 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1392}
1393
1394/*
1395 * Let a parent know about the death of a child. 1377 * Let a parent know about the death of a child.
1396 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1378 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1397 * 1379 *
@@ -1673,29 +1655,6 @@ void ptrace_notify(int exit_code)
1673 spin_unlock_irq(&current->sighand->siglock); 1655 spin_unlock_irq(&current->sighand->siglock);
1674} 1656}
1675 1657
1676static void
1677finish_stop(int stop_count)
1678{
1679 /*
1680 * If there are no other threads in the group, or if there is
1681 * a group stop in progress and we are the last to stop,
1682 * report to the parent. When ptraced, every thread reports itself.
1683 */
1684 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1685 read_lock(&tasklist_lock);
1686 do_notify_parent_cldstop(current, CLD_STOPPED);
1687 read_unlock(&tasklist_lock);
1688 }
1689
1690 do {
1691 schedule();
1692 } while (try_to_freeze());
1693 /*
1694 * Now we don't run again until continued.
1695 */
1696 current->exit_code = 0;
1697}
1698
1699/* 1658/*
1700 * This performs the stopping for SIGSTOP and other stop signals. 1659 * This performs the stopping for SIGSTOP and other stop signals.
1701 * We have to stop all threads in the thread group. 1660 * We have to stop all threads in the thread group.
@@ -1705,15 +1664,9 @@ finish_stop(int stop_count)
1705static int do_signal_stop(int signr) 1664static int do_signal_stop(int signr)
1706{ 1665{
1707 struct signal_struct *sig = current->signal; 1666 struct signal_struct *sig = current->signal;
1708 int stop_count; 1667 int notify;
1709 1668
1710 if (sig->group_stop_count > 0) { 1669 if (!sig->group_stop_count) {
1711 /*
1712 * There is a group stop in progress. We don't need to
1713 * start another one.
1714 */
1715 stop_count = --sig->group_stop_count;
1716 } else {
1717 struct task_struct *t; 1670 struct task_struct *t;
1718 1671
1719 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1672 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
@@ -1725,7 +1678,7 @@ static int do_signal_stop(int signr)
1725 */ 1678 */
1726 sig->group_exit_code = signr; 1679 sig->group_exit_code = signr;
1727 1680
1728 stop_count = 0; 1681 sig->group_stop_count = 1;
1729 for (t = next_thread(current); t != current; t = next_thread(t)) 1682 for (t = next_thread(current); t != current; t = next_thread(t))
1730 /* 1683 /*
1731 * Setting state to TASK_STOPPED for a group 1684 * Setting state to TASK_STOPPED for a group
@@ -1734,19 +1687,44 @@ static int do_signal_stop(int signr)
1734 */ 1687 */
1735 if (!(t->flags & PF_EXITING) && 1688 if (!(t->flags & PF_EXITING) &&
1736 !task_is_stopped_or_traced(t)) { 1689 !task_is_stopped_or_traced(t)) {
1737 stop_count++; 1690 sig->group_stop_count++;
1738 signal_wake_up(t, 0); 1691 signal_wake_up(t, 0);
1739 } 1692 }
1740 sig->group_stop_count = stop_count;
1741 } 1693 }
1694 /*
1695 * If there are no other threads in the group, or if there is
1696 * a group stop in progress and we are the last to stop, report
1697 * to the parent. When ptraced, every thread reports itself.
1698 */
1699 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1700 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1701 /*
1702 * tracehook_notify_jctl() can drop and reacquire siglock, so
1703 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1704 * or SIGKILL comes in between ->group_stop_count == 0.
1705 */
1706 if (sig->group_stop_count) {
1707 if (!--sig->group_stop_count)
1708 sig->flags = SIGNAL_STOP_STOPPED;
1709 current->exit_code = sig->group_exit_code;
1710 __set_current_state(TASK_STOPPED);
1711 }
1712 spin_unlock_irq(&current->sighand->siglock);
1742 1713
1743 if (stop_count == 0) 1714 if (notify) {
1744 sig->flags = SIGNAL_STOP_STOPPED; 1715 read_lock(&tasklist_lock);
1745 current->exit_code = sig->group_exit_code; 1716 do_notify_parent_cldstop(current, notify);
1746 __set_current_state(TASK_STOPPED); 1717 read_unlock(&tasklist_lock);
1718 }
1719
1720 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1721 do {
1722 schedule();
1723 } while (try_to_freeze());
1724
1725 tracehook_finish_jctl();
1726 current->exit_code = 0;
1747 1727
1748 spin_unlock_irq(&current->sighand->siglock);
1749 finish_stop(stop_count);
1750 return 1; 1728 return 1;
1751} 1729}
1752 1730
@@ -1815,14 +1793,15 @@ relock:
1815 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1793 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1816 ? CLD_CONTINUED : CLD_STOPPED; 1794 ? CLD_CONTINUED : CLD_STOPPED;
1817 signal->flags &= ~SIGNAL_CLD_MASK; 1795 signal->flags &= ~SIGNAL_CLD_MASK;
1818 spin_unlock_irq(&sighand->siglock);
1819 1796
1820 if (unlikely(!tracehook_notify_jctl(1, why))) 1797 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1821 goto relock; 1798 spin_unlock_irq(&sighand->siglock);
1822 1799
1823 read_lock(&tasklist_lock); 1800 if (why) {
1824 do_notify_parent_cldstop(current->group_leader, why); 1801 read_lock(&tasklist_lock);
1825 read_unlock(&tasklist_lock); 1802 do_notify_parent_cldstop(current->group_leader, why);
1803 read_unlock(&tasklist_lock);
1804 }
1826 goto relock; 1805 goto relock;
1827 } 1806 }
1828 1807
@@ -1987,14 +1966,14 @@ void exit_signals(struct task_struct *tsk)
1987 if (unlikely(tsk->signal->group_stop_count) && 1966 if (unlikely(tsk->signal->group_stop_count) &&
1988 !--tsk->signal->group_stop_count) { 1967 !--tsk->signal->group_stop_count) {
1989 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1968 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1990 group_stop = 1; 1969 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
1991 } 1970 }
1992out: 1971out:
1993 spin_unlock_irq(&tsk->sighand->siglock); 1972 spin_unlock_irq(&tsk->sighand->siglock);
1994 1973
1995 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { 1974 if (unlikely(group_stop)) {
1996 read_lock(&tasklist_lock); 1975 read_lock(&tasklist_lock);
1997 do_notify_parent_cldstop(tsk, CLD_STOPPED); 1976 do_notify_parent_cldstop(tsk, group_stop);
1998 read_unlock(&tasklist_lock); 1977 read_unlock(&tasklist_lock);
1999 } 1978 }
2000} 1979}
@@ -2290,7 +2269,6 @@ static int
2290do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2269do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2291{ 2270{
2292 struct task_struct *p; 2271 struct task_struct *p;
2293 unsigned long flags;
2294 int error = -ESRCH; 2272 int error = -ESRCH;
2295 2273
2296 rcu_read_lock(); 2274 rcu_read_lock();
@@ -2300,14 +2278,16 @@ do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2300 /* 2278 /*
2301 * The null signal is a permissions and process existence 2279 * The null signal is a permissions and process existence
2302 * probe. No signal is actually delivered. 2280 * probe. No signal is actually delivered.
2303 *
2304 * If lock_task_sighand() fails we pretend the task dies
2305 * after receiving the signal. The window is tiny, and the
2306 * signal is private anyway.
2307 */ 2281 */
2308 if (!error && sig && lock_task_sighand(p, &flags)) { 2282 if (!error && sig) {
2309 error = specific_send_sig_info(sig, info, p); 2283 error = do_send_sig_info(sig, info, p, false);
2310 unlock_task_sighand(p, &flags); 2284 /*
2285 * If lock_task_sighand() failed we pretend the task
2286 * dies after receiving the signal. The window is tiny,
2287 * and the signal is private anyway.
2288 */
2289 if (unlikely(error == -ESRCH))
2290 error = 0;
2311 } 2291 }
2312 } 2292 }
2313 rcu_read_unlock(); 2293 rcu_read_unlock();
diff --git a/kernel/slow-work.c b/kernel/slow-work.c
index 09d7519557d3..0d31135efbf4 100644
--- a/kernel/slow-work.c
+++ b/kernel/slow-work.c
@@ -26,10 +26,10 @@ static void slow_work_cull_timeout(unsigned long);
26static void slow_work_oom_timeout(unsigned long); 26static void slow_work_oom_timeout(unsigned long);
27 27
28#ifdef CONFIG_SYSCTL 28#ifdef CONFIG_SYSCTL
29static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, 29static int slow_work_min_threads_sysctl(struct ctl_table *, int,
30 void __user *, size_t *, loff_t *); 30 void __user *, size_t *, loff_t *);
31 31
32static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, 32static int slow_work_max_threads_sysctl(struct ctl_table *, int ,
33 void __user *, size_t *, loff_t *); 33 void __user *, size_t *, loff_t *);
34#endif 34#endif
35 35
@@ -493,10 +493,10 @@ static void slow_work_oom_timeout(unsigned long data)
493 * Handle adjustment of the minimum number of threads 493 * Handle adjustment of the minimum number of threads
494 */ 494 */
495static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, 495static int slow_work_min_threads_sysctl(struct ctl_table *table, int write,
496 struct file *filp, void __user *buffer, 496 void __user *buffer,
497 size_t *lenp, loff_t *ppos) 497 size_t *lenp, loff_t *ppos)
498{ 498{
499 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 499 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
500 int n; 500 int n;
501 501
502 if (ret == 0) { 502 if (ret == 0) {
@@ -521,10 +521,10 @@ static int slow_work_min_threads_sysctl(struct ctl_table *table, int write,
521 * Handle adjustment of the maximum number of threads 521 * Handle adjustment of the maximum number of threads
522 */ 522 */
523static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, 523static int slow_work_max_threads_sysctl(struct ctl_table *table, int write,
524 struct file *filp, void __user *buffer, 524 void __user *buffer,
525 size_t *lenp, loff_t *ppos) 525 size_t *lenp, loff_t *ppos)
526{ 526{
527 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 527 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
528 int n; 528 int n;
529 529
530 if (ret == 0) { 530 if (ret == 0) {
diff --git a/kernel/smp.c b/kernel/smp.c
index 94188b8ecc33..c9d1c7835c2f 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -29,8 +29,7 @@ enum {
29 29
30struct call_function_data { 30struct call_function_data {
31 struct call_single_data csd; 31 struct call_single_data csd;
32 spinlock_t lock; 32 atomic_t refs;
33 unsigned int refs;
34 cpumask_var_t cpumask; 33 cpumask_var_t cpumask;
35}; 34};
36 35
@@ -39,9 +38,7 @@ struct call_single_queue {
39 spinlock_t lock; 38 spinlock_t lock;
40}; 39};
41 40
42static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { 41static DEFINE_PER_CPU(struct call_function_data, cfd_data);
43 .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock),
44};
45 42
46static int 43static int
47hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) 44hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
@@ -177,6 +174,11 @@ void generic_smp_call_function_interrupt(void)
177 int cpu = get_cpu(); 174 int cpu = get_cpu();
178 175
179 /* 176 /*
177 * Shouldn't receive this interrupt on a cpu that is not yet online.
178 */
179 WARN_ON_ONCE(!cpu_online(cpu));
180
181 /*
180 * Ensure entry is visible on call_function_queue after we have 182 * Ensure entry is visible on call_function_queue after we have
181 * entered the IPI. See comment in smp_call_function_many. 183 * entered the IPI. See comment in smp_call_function_many.
182 * If we don't have this, then we may miss an entry on the list 184 * If we don't have this, then we may miss an entry on the list
@@ -191,25 +193,18 @@ void generic_smp_call_function_interrupt(void)
191 list_for_each_entry_rcu(data, &call_function.queue, csd.list) { 193 list_for_each_entry_rcu(data, &call_function.queue, csd.list) {
192 int refs; 194 int refs;
193 195
194 spin_lock(&data->lock); 196 if (!cpumask_test_and_clear_cpu(cpu, data->cpumask))
195 if (!cpumask_test_cpu(cpu, data->cpumask)) {
196 spin_unlock(&data->lock);
197 continue; 197 continue;
198 }
199 cpumask_clear_cpu(cpu, data->cpumask);
200 spin_unlock(&data->lock);
201 198
202 data->csd.func(data->csd.info); 199 data->csd.func(data->csd.info);
203 200
204 spin_lock(&data->lock); 201 refs = atomic_dec_return(&data->refs);
205 WARN_ON(data->refs == 0); 202 WARN_ON(refs < 0);
206 refs = --data->refs;
207 if (!refs) { 203 if (!refs) {
208 spin_lock(&call_function.lock); 204 spin_lock(&call_function.lock);
209 list_del_rcu(&data->csd.list); 205 list_del_rcu(&data->csd.list);
210 spin_unlock(&call_function.lock); 206 spin_unlock(&call_function.lock);
211 } 207 }
212 spin_unlock(&data->lock);
213 208
214 if (refs) 209 if (refs)
215 continue; 210 continue;
@@ -230,6 +225,11 @@ void generic_smp_call_function_single_interrupt(void)
230 unsigned int data_flags; 225 unsigned int data_flags;
231 LIST_HEAD(list); 226 LIST_HEAD(list);
232 227
228 /*
229 * Shouldn't receive this interrupt on a cpu that is not yet online.
230 */
231 WARN_ON_ONCE(!cpu_online(smp_processor_id()));
232
233 spin_lock(&q->lock); 233 spin_lock(&q->lock);
234 list_replace_init(&q->list, &list); 234 list_replace_init(&q->list, &list);
235 spin_unlock(&q->lock); 235 spin_unlock(&q->lock);
@@ -285,8 +285,14 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
285 */ 285 */
286 this_cpu = get_cpu(); 286 this_cpu = get_cpu();
287 287
288 /* Can deadlock when called with interrupts disabled */ 288 /*
289 WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); 289 * Can deadlock when called with interrupts disabled.
290 * We allow cpu's that are not yet online though, as no one else can
291 * send smp call function interrupt to this cpu and as such deadlocks
292 * can't happen.
293 */
294 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
295 && !oops_in_progress);
290 296
291 if (cpu == this_cpu) { 297 if (cpu == this_cpu) {
292 local_irq_save(flags); 298 local_irq_save(flags);
@@ -329,19 +335,18 @@ void __smp_call_function_single(int cpu, struct call_single_data *data,
329{ 335{
330 csd_lock(data); 336 csd_lock(data);
331 337
332 /* Can deadlock when called with interrupts disabled */ 338 /*
333 WARN_ON_ONCE(wait && irqs_disabled() && !oops_in_progress); 339 * Can deadlock when called with interrupts disabled.
340 * We allow cpu's that are not yet online though, as no one else can
341 * send smp call function interrupt to this cpu and as such deadlocks
342 * can't happen.
343 */
344 WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled()
345 && !oops_in_progress);
334 346
335 generic_exec_single(cpu, data, wait); 347 generic_exec_single(cpu, data, wait);
336} 348}
337 349
338/* Deprecated: shim for archs using old arch_send_call_function_ipi API. */
339
340#ifndef arch_send_call_function_ipi_mask
341# define arch_send_call_function_ipi_mask(maskp) \
342 arch_send_call_function_ipi(*(maskp))
343#endif
344
345/** 350/**
346 * smp_call_function_many(): Run a function on a set of other CPUs. 351 * smp_call_function_many(): Run a function on a set of other CPUs.
347 * @mask: The set of cpus to run on (only runs on online subset). 352 * @mask: The set of cpus to run on (only runs on online subset).
@@ -365,8 +370,14 @@ void smp_call_function_many(const struct cpumask *mask,
365 unsigned long flags; 370 unsigned long flags;
366 int cpu, next_cpu, this_cpu = smp_processor_id(); 371 int cpu, next_cpu, this_cpu = smp_processor_id();
367 372
368 /* Can deadlock when called with interrupts disabled */ 373 /*
369 WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); 374 * Can deadlock when called with interrupts disabled.
375 * We allow cpu's that are not yet online though, as no one else can
376 * send smp call function interrupt to this cpu and as such deadlocks
377 * can't happen.
378 */
379 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
380 && !oops_in_progress);
370 381
371 /* So, what's a CPU they want? Ignoring this one. */ 382 /* So, what's a CPU they want? Ignoring this one. */
372 cpu = cpumask_first_and(mask, cpu_online_mask); 383 cpu = cpumask_first_and(mask, cpu_online_mask);
@@ -391,23 +402,20 @@ void smp_call_function_many(const struct cpumask *mask,
391 data = &__get_cpu_var(cfd_data); 402 data = &__get_cpu_var(cfd_data);
392 csd_lock(&data->csd); 403 csd_lock(&data->csd);
393 404
394 spin_lock_irqsave(&data->lock, flags);
395 data->csd.func = func; 405 data->csd.func = func;
396 data->csd.info = info; 406 data->csd.info = info;
397 cpumask_and(data->cpumask, mask, cpu_online_mask); 407 cpumask_and(data->cpumask, mask, cpu_online_mask);
398 cpumask_clear_cpu(this_cpu, data->cpumask); 408 cpumask_clear_cpu(this_cpu, data->cpumask);
399 data->refs = cpumask_weight(data->cpumask); 409 atomic_set(&data->refs, cpumask_weight(data->cpumask));
400 410
401 spin_lock(&call_function.lock); 411 spin_lock_irqsave(&call_function.lock, flags);
402 /* 412 /*
403 * Place entry at the _HEAD_ of the list, so that any cpu still 413 * Place entry at the _HEAD_ of the list, so that any cpu still
404 * observing the entry in generic_smp_call_function_interrupt() 414 * observing the entry in generic_smp_call_function_interrupt()
405 * will not miss any other list entries: 415 * will not miss any other list entries:
406 */ 416 */
407 list_add_rcu(&data->csd.list, &call_function.queue); 417 list_add_rcu(&data->csd.list, &call_function.queue);
408 spin_unlock(&call_function.lock); 418 spin_unlock_irqrestore(&call_function.lock, flags);
409
410 spin_unlock_irqrestore(&data->lock, flags);
411 419
412 /* 420 /*
413 * Make the list addition visible before sending the ipi. 421 * Make the list addition visible before sending the ipi.
diff --git a/kernel/softirq.c b/kernel/softirq.c
index 7db25067cd2d..f8749e5216e0 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -57,7 +57,7 @@ static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp
57static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); 57static DEFINE_PER_CPU(struct task_struct *, ksoftirqd);
58 58
59char *softirq_to_name[NR_SOFTIRQS] = { 59char *softirq_to_name[NR_SOFTIRQS] = {
60 "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", 60 "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL",
61 "TASKLET", "SCHED", "HRTIMER", "RCU" 61 "TASKLET", "SCHED", "HRTIMER", "RCU"
62}; 62};
63 63
diff --git a/kernel/softlockup.c b/kernel/softlockup.c
index 88796c330838..81324d12eb35 100644
--- a/kernel/softlockup.c
+++ b/kernel/softlockup.c
@@ -90,11 +90,11 @@ void touch_all_softlockup_watchdogs(void)
90EXPORT_SYMBOL(touch_all_softlockup_watchdogs); 90EXPORT_SYMBOL(touch_all_softlockup_watchdogs);
91 91
92int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 92int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
93 struct file *filp, void __user *buffer, 93 void __user *buffer,
94 size_t *lenp, loff_t *ppos) 94 size_t *lenp, loff_t *ppos)
95{ 95{
96 touch_all_softlockup_watchdogs(); 96 touch_all_softlockup_watchdogs();
97 return proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 97 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
98} 98}
99 99
100/* 100/*
diff --git a/kernel/sys.c b/kernel/sys.c
index b3f1097c76fa..255475d163e0 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -14,7 +14,7 @@
14#include <linux/prctl.h> 14#include <linux/prctl.h>
15#include <linux/highuid.h> 15#include <linux/highuid.h>
16#include <linux/fs.h> 16#include <linux/fs.h>
17#include <linux/perf_counter.h> 17#include <linux/perf_event.h>
18#include <linux/resource.h> 18#include <linux/resource.h>
19#include <linux/kernel.h> 19#include <linux/kernel.h>
20#include <linux/kexec.h> 20#include <linux/kexec.h>
@@ -1338,6 +1338,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1338 unsigned long flags; 1338 unsigned long flags;
1339 cputime_t utime, stime; 1339 cputime_t utime, stime;
1340 struct task_cputime cputime; 1340 struct task_cputime cputime;
1341 unsigned long maxrss = 0;
1341 1342
1342 memset((char *) r, 0, sizeof *r); 1343 memset((char *) r, 0, sizeof *r);
1343 utime = stime = cputime_zero; 1344 utime = stime = cputime_zero;
@@ -1346,6 +1347,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1346 utime = task_utime(current); 1347 utime = task_utime(current);
1347 stime = task_stime(current); 1348 stime = task_stime(current);
1348 accumulate_thread_rusage(p, r); 1349 accumulate_thread_rusage(p, r);
1350 maxrss = p->signal->maxrss;
1349 goto out; 1351 goto out;
1350 } 1352 }
1351 1353
@@ -1363,6 +1365,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1363 r->ru_majflt = p->signal->cmaj_flt; 1365 r->ru_majflt = p->signal->cmaj_flt;
1364 r->ru_inblock = p->signal->cinblock; 1366 r->ru_inblock = p->signal->cinblock;
1365 r->ru_oublock = p->signal->coublock; 1367 r->ru_oublock = p->signal->coublock;
1368 maxrss = p->signal->cmaxrss;
1366 1369
1367 if (who == RUSAGE_CHILDREN) 1370 if (who == RUSAGE_CHILDREN)
1368 break; 1371 break;
@@ -1377,6 +1380,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1377 r->ru_majflt += p->signal->maj_flt; 1380 r->ru_majflt += p->signal->maj_flt;
1378 r->ru_inblock += p->signal->inblock; 1381 r->ru_inblock += p->signal->inblock;
1379 r->ru_oublock += p->signal->oublock; 1382 r->ru_oublock += p->signal->oublock;
1383 if (maxrss < p->signal->maxrss)
1384 maxrss = p->signal->maxrss;
1380 t = p; 1385 t = p;
1381 do { 1386 do {
1382 accumulate_thread_rusage(t, r); 1387 accumulate_thread_rusage(t, r);
@@ -1392,6 +1397,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1392out: 1397out:
1393 cputime_to_timeval(utime, &r->ru_utime); 1398 cputime_to_timeval(utime, &r->ru_utime);
1394 cputime_to_timeval(stime, &r->ru_stime); 1399 cputime_to_timeval(stime, &r->ru_stime);
1400
1401 if (who != RUSAGE_CHILDREN) {
1402 struct mm_struct *mm = get_task_mm(p);
1403 if (mm) {
1404 setmax_mm_hiwater_rss(&maxrss, mm);
1405 mmput(mm);
1406 }
1407 }
1408 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1395} 1409}
1396 1410
1397int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1411int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
@@ -1511,11 +1525,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1511 case PR_SET_TSC: 1525 case PR_SET_TSC:
1512 error = SET_TSC_CTL(arg2); 1526 error = SET_TSC_CTL(arg2);
1513 break; 1527 break;
1514 case PR_TASK_PERF_COUNTERS_DISABLE: 1528 case PR_TASK_PERF_EVENTS_DISABLE:
1515 error = perf_counter_task_disable(); 1529 error = perf_event_task_disable();
1516 break; 1530 break;
1517 case PR_TASK_PERF_COUNTERS_ENABLE: 1531 case PR_TASK_PERF_EVENTS_ENABLE:
1518 error = perf_counter_task_enable(); 1532 error = perf_event_task_enable();
1519 break; 1533 break;
1520 case PR_GET_TIMERSLACK: 1534 case PR_GET_TIMERSLACK:
1521 error = current->timer_slack_ns; 1535 error = current->timer_slack_ns;
@@ -1528,6 +1542,28 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1528 current->timer_slack_ns = arg2; 1542 current->timer_slack_ns = arg2;
1529 error = 0; 1543 error = 0;
1530 break; 1544 break;
1545 case PR_MCE_KILL:
1546 if (arg4 | arg5)
1547 return -EINVAL;
1548 switch (arg2) {
1549 case 0:
1550 if (arg3 != 0)
1551 return -EINVAL;
1552 current->flags &= ~PF_MCE_PROCESS;
1553 break;
1554 case 1:
1555 current->flags |= PF_MCE_PROCESS;
1556 if (arg3 != 0)
1557 current->flags |= PF_MCE_EARLY;
1558 else
1559 current->flags &= ~PF_MCE_EARLY;
1560 break;
1561 default:
1562 return -EINVAL;
1563 }
1564 error = 0;
1565 break;
1566
1531 default: 1567 default:
1532 error = -EINVAL; 1568 error = -EINVAL;
1533 break; 1569 break;
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c
index 44e5936118d2..e06d0b8d1951 100644
--- a/kernel/sys_ni.c
+++ b/kernel/sys_ni.c
@@ -178,4 +178,4 @@ cond_syscall(sys_eventfd);
178cond_syscall(sys_eventfd2); 178cond_syscall(sys_eventfd2);
179 179
180/* performance counters: */ 180/* performance counters: */
181cond_syscall(sys_perf_counter_open); 181cond_syscall(sys_perf_event_open);
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 3125cff1c570..0d949c517412 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -26,7 +26,6 @@
26#include <linux/proc_fs.h> 26#include <linux/proc_fs.h>
27#include <linux/security.h> 27#include <linux/security.h>
28#include <linux/ctype.h> 28#include <linux/ctype.h>
29#include <linux/utsname.h>
30#include <linux/kmemcheck.h> 29#include <linux/kmemcheck.h>
31#include <linux/smp_lock.h> 30#include <linux/smp_lock.h>
32#include <linux/fs.h> 31#include <linux/fs.h>
@@ -50,7 +49,7 @@
50#include <linux/reboot.h> 49#include <linux/reboot.h>
51#include <linux/ftrace.h> 50#include <linux/ftrace.h>
52#include <linux/slow-work.h> 51#include <linux/slow-work.h>
53#include <linux/perf_counter.h> 52#include <linux/perf_event.h>
54 53
55#include <asm/uaccess.h> 54#include <asm/uaccess.h>
56#include <asm/processor.h> 55#include <asm/processor.h>
@@ -77,6 +76,7 @@ extern int max_threads;
77extern int core_uses_pid; 76extern int core_uses_pid;
78extern int suid_dumpable; 77extern int suid_dumpable;
79extern char core_pattern[]; 78extern char core_pattern[];
79extern unsigned int core_pipe_limit;
80extern int pid_max; 80extern int pid_max;
81extern int min_free_kbytes; 81extern int min_free_kbytes;
82extern int pid_max_min, pid_max_max; 82extern int pid_max_min, pid_max_max;
@@ -91,6 +91,9 @@ extern int sysctl_nr_trim_pages;
91#ifdef CONFIG_RCU_TORTURE_TEST 91#ifdef CONFIG_RCU_TORTURE_TEST
92extern int rcutorture_runnable; 92extern int rcutorture_runnable;
93#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 93#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
94#ifdef CONFIG_BLOCK
95extern int blk_iopoll_enabled;
96#endif
94 97
95/* Constants used for minimum and maximum */ 98/* Constants used for minimum and maximum */
96#ifdef CONFIG_DETECT_SOFTLOCKUP 99#ifdef CONFIG_DETECT_SOFTLOCKUP
@@ -103,6 +106,9 @@ static int __maybe_unused one = 1;
103static int __maybe_unused two = 2; 106static int __maybe_unused two = 2;
104static unsigned long one_ul = 1; 107static unsigned long one_ul = 1;
105static int one_hundred = 100; 108static int one_hundred = 100;
109#ifdef CONFIG_PRINTK
110static int ten_thousand = 10000;
111#endif
106 112
107/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 113/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
108static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 114static unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
@@ -157,9 +163,9 @@ extern int max_lock_depth;
157#endif 163#endif
158 164
159#ifdef CONFIG_PROC_SYSCTL 165#ifdef CONFIG_PROC_SYSCTL
160static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, 166static int proc_do_cad_pid(struct ctl_table *table, int write,
161 void __user *buffer, size_t *lenp, loff_t *ppos); 167 void __user *buffer, size_t *lenp, loff_t *ppos);
162static int proc_taint(struct ctl_table *table, int write, struct file *filp, 168static int proc_taint(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp, loff_t *ppos); 169 void __user *buffer, size_t *lenp, loff_t *ppos);
164#endif 170#endif
165 171
@@ -418,6 +424,14 @@ static struct ctl_table kern_table[] = {
418 .proc_handler = &proc_dostring, 424 .proc_handler = &proc_dostring,
419 .strategy = &sysctl_string, 425 .strategy = &sysctl_string,
420 }, 426 },
427 {
428 .ctl_name = CTL_UNNUMBERED,
429 .procname = "core_pipe_limit",
430 .data = &core_pipe_limit,
431 .maxlen = sizeof(unsigned int),
432 .mode = 0644,
433 .proc_handler = &proc_dointvec,
434 },
421#ifdef CONFIG_PROC_SYSCTL 435#ifdef CONFIG_PROC_SYSCTL
422 { 436 {
423 .procname = "tainted", 437 .procname = "tainted",
@@ -719,6 +733,17 @@ static struct ctl_table kern_table[] = {
719 .mode = 0644, 733 .mode = 0644,
720 .proc_handler = &proc_dointvec, 734 .proc_handler = &proc_dointvec,
721 }, 735 },
736 {
737 .ctl_name = CTL_UNNUMBERED,
738 .procname = "printk_delay",
739 .data = &printk_delay_msec,
740 .maxlen = sizeof(int),
741 .mode = 0644,
742 .proc_handler = &proc_dointvec_minmax,
743 .strategy = &sysctl_intvec,
744 .extra1 = &zero,
745 .extra2 = &ten_thousand,
746 },
722#endif 747#endif
723 { 748 {
724 .ctl_name = KERN_NGROUPS_MAX, 749 .ctl_name = KERN_NGROUPS_MAX,
@@ -961,28 +986,28 @@ static struct ctl_table kern_table[] = {
961 .child = slow_work_sysctls, 986 .child = slow_work_sysctls,
962 }, 987 },
963#endif 988#endif
964#ifdef CONFIG_PERF_COUNTERS 989#ifdef CONFIG_PERF_EVENTS
965 { 990 {
966 .ctl_name = CTL_UNNUMBERED, 991 .ctl_name = CTL_UNNUMBERED,
967 .procname = "perf_counter_paranoid", 992 .procname = "perf_event_paranoid",
968 .data = &sysctl_perf_counter_paranoid, 993 .data = &sysctl_perf_event_paranoid,
969 .maxlen = sizeof(sysctl_perf_counter_paranoid), 994 .maxlen = sizeof(sysctl_perf_event_paranoid),
970 .mode = 0644, 995 .mode = 0644,
971 .proc_handler = &proc_dointvec, 996 .proc_handler = &proc_dointvec,
972 }, 997 },
973 { 998 {
974 .ctl_name = CTL_UNNUMBERED, 999 .ctl_name = CTL_UNNUMBERED,
975 .procname = "perf_counter_mlock_kb", 1000 .procname = "perf_event_mlock_kb",
976 .data = &sysctl_perf_counter_mlock, 1001 .data = &sysctl_perf_event_mlock,
977 .maxlen = sizeof(sysctl_perf_counter_mlock), 1002 .maxlen = sizeof(sysctl_perf_event_mlock),
978 .mode = 0644, 1003 .mode = 0644,
979 .proc_handler = &proc_dointvec, 1004 .proc_handler = &proc_dointvec,
980 }, 1005 },
981 { 1006 {
982 .ctl_name = CTL_UNNUMBERED, 1007 .ctl_name = CTL_UNNUMBERED,
983 .procname = "perf_counter_max_sample_rate", 1008 .procname = "perf_event_max_sample_rate",
984 .data = &sysctl_perf_counter_sample_rate, 1009 .data = &sysctl_perf_event_sample_rate,
985 .maxlen = sizeof(sysctl_perf_counter_sample_rate), 1010 .maxlen = sizeof(sysctl_perf_event_sample_rate),
986 .mode = 0644, 1011 .mode = 0644,
987 .proc_handler = &proc_dointvec, 1012 .proc_handler = &proc_dointvec,
988 }, 1013 },
@@ -997,7 +1022,16 @@ static struct ctl_table kern_table[] = {
997 .proc_handler = &proc_dointvec, 1022 .proc_handler = &proc_dointvec,
998 }, 1023 },
999#endif 1024#endif
1000 1025#ifdef CONFIG_BLOCK
1026 {
1027 .ctl_name = CTL_UNNUMBERED,
1028 .procname = "blk_iopoll",
1029 .data = &blk_iopoll_enabled,
1030 .maxlen = sizeof(int),
1031 .mode = 0644,
1032 .proc_handler = &proc_dointvec,
1033 },
1034#endif
1001/* 1035/*
1002 * NOTE: do not add new entries to this table unless you have read 1036 * NOTE: do not add new entries to this table unless you have read
1003 * Documentation/sysctl/ctl_unnumbered.txt 1037 * Documentation/sysctl/ctl_unnumbered.txt
@@ -1364,6 +1398,31 @@ static struct ctl_table vm_table[] = {
1364 .mode = 0644, 1398 .mode = 0644,
1365 .proc_handler = &scan_unevictable_handler, 1399 .proc_handler = &scan_unevictable_handler,
1366 }, 1400 },
1401#ifdef CONFIG_MEMORY_FAILURE
1402 {
1403 .ctl_name = CTL_UNNUMBERED,
1404 .procname = "memory_failure_early_kill",
1405 .data = &sysctl_memory_failure_early_kill,
1406 .maxlen = sizeof(sysctl_memory_failure_early_kill),
1407 .mode = 0644,
1408 .proc_handler = &proc_dointvec_minmax,
1409 .strategy = &sysctl_intvec,
1410 .extra1 = &zero,
1411 .extra2 = &one,
1412 },
1413 {
1414 .ctl_name = CTL_UNNUMBERED,
1415 .procname = "memory_failure_recovery",
1416 .data = &sysctl_memory_failure_recovery,
1417 .maxlen = sizeof(sysctl_memory_failure_recovery),
1418 .mode = 0644,
1419 .proc_handler = &proc_dointvec_minmax,
1420 .strategy = &sysctl_intvec,
1421 .extra1 = &zero,
1422 .extra2 = &one,
1423 },
1424#endif
1425
1367/* 1426/*
1368 * NOTE: do not add new entries to this table unless you have read 1427 * NOTE: do not add new entries to this table unless you have read
1369 * Documentation/sysctl/ctl_unnumbered.txt 1428 * Documentation/sysctl/ctl_unnumbered.txt
@@ -2192,7 +2251,7 @@ void sysctl_head_put(struct ctl_table_header *head)
2192#ifdef CONFIG_PROC_SYSCTL 2251#ifdef CONFIG_PROC_SYSCTL
2193 2252
2194static int _proc_do_string(void* data, int maxlen, int write, 2253static int _proc_do_string(void* data, int maxlen, int write,
2195 struct file *filp, void __user *buffer, 2254 void __user *buffer,
2196 size_t *lenp, loff_t *ppos) 2255 size_t *lenp, loff_t *ppos)
2197{ 2256{
2198 size_t len; 2257 size_t len;
@@ -2253,7 +2312,6 @@ static int _proc_do_string(void* data, int maxlen, int write,
2253 * proc_dostring - read a string sysctl 2312 * proc_dostring - read a string sysctl
2254 * @table: the sysctl table 2313 * @table: the sysctl table
2255 * @write: %TRUE if this is a write to the sysctl file 2314 * @write: %TRUE if this is a write to the sysctl file
2256 * @filp: the file structure
2257 * @buffer: the user buffer 2315 * @buffer: the user buffer
2258 * @lenp: the size of the user buffer 2316 * @lenp: the size of the user buffer
2259 * @ppos: file position 2317 * @ppos: file position
@@ -2267,10 +2325,10 @@ static int _proc_do_string(void* data, int maxlen, int write,
2267 * 2325 *
2268 * Returns 0 on success. 2326 * Returns 0 on success.
2269 */ 2327 */
2270int proc_dostring(struct ctl_table *table, int write, struct file *filp, 2328int proc_dostring(struct ctl_table *table, int write,
2271 void __user *buffer, size_t *lenp, loff_t *ppos) 2329 void __user *buffer, size_t *lenp, loff_t *ppos)
2272{ 2330{
2273 return _proc_do_string(table->data, table->maxlen, write, filp, 2331 return _proc_do_string(table->data, table->maxlen, write,
2274 buffer, lenp, ppos); 2332 buffer, lenp, ppos);
2275} 2333}
2276 2334
@@ -2295,7 +2353,7 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp,
2295} 2353}
2296 2354
2297static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, 2355static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table,
2298 int write, struct file *filp, void __user *buffer, 2356 int write, void __user *buffer,
2299 size_t *lenp, loff_t *ppos, 2357 size_t *lenp, loff_t *ppos,
2300 int (*conv)(int *negp, unsigned long *lvalp, int *valp, 2358 int (*conv)(int *negp, unsigned long *lvalp, int *valp,
2301 int write, void *data), 2359 int write, void *data),
@@ -2402,13 +2460,13 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table,
2402#undef TMPBUFLEN 2460#undef TMPBUFLEN
2403} 2461}
2404 2462
2405static int do_proc_dointvec(struct ctl_table *table, int write, struct file *filp, 2463static int do_proc_dointvec(struct ctl_table *table, int write,
2406 void __user *buffer, size_t *lenp, loff_t *ppos, 2464 void __user *buffer, size_t *lenp, loff_t *ppos,
2407 int (*conv)(int *negp, unsigned long *lvalp, int *valp, 2465 int (*conv)(int *negp, unsigned long *lvalp, int *valp,
2408 int write, void *data), 2466 int write, void *data),
2409 void *data) 2467 void *data)
2410{ 2468{
2411 return __do_proc_dointvec(table->data, table, write, filp, 2469 return __do_proc_dointvec(table->data, table, write,
2412 buffer, lenp, ppos, conv, data); 2470 buffer, lenp, ppos, conv, data);
2413} 2471}
2414 2472
@@ -2416,7 +2474,6 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil
2416 * proc_dointvec - read a vector of integers 2474 * proc_dointvec - read a vector of integers
2417 * @table: the sysctl table 2475 * @table: the sysctl table
2418 * @write: %TRUE if this is a write to the sysctl file 2476 * @write: %TRUE if this is a write to the sysctl file
2419 * @filp: the file structure
2420 * @buffer: the user buffer 2477 * @buffer: the user buffer
2421 * @lenp: the size of the user buffer 2478 * @lenp: the size of the user buffer
2422 * @ppos: file position 2479 * @ppos: file position
@@ -2426,10 +2483,10 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil
2426 * 2483 *
2427 * Returns 0 on success. 2484 * Returns 0 on success.
2428 */ 2485 */
2429int proc_dointvec(struct ctl_table *table, int write, struct file *filp, 2486int proc_dointvec(struct ctl_table *table, int write,
2430 void __user *buffer, size_t *lenp, loff_t *ppos) 2487 void __user *buffer, size_t *lenp, loff_t *ppos)
2431{ 2488{
2432 return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, 2489 return do_proc_dointvec(table,write,buffer,lenp,ppos,
2433 NULL,NULL); 2490 NULL,NULL);
2434} 2491}
2435 2492
@@ -2437,7 +2494,7 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp,
2437 * Taint values can only be increased 2494 * Taint values can only be increased
2438 * This means we can safely use a temporary. 2495 * This means we can safely use a temporary.
2439 */ 2496 */
2440static int proc_taint(struct ctl_table *table, int write, struct file *filp, 2497static int proc_taint(struct ctl_table *table, int write,
2441 void __user *buffer, size_t *lenp, loff_t *ppos) 2498 void __user *buffer, size_t *lenp, loff_t *ppos)
2442{ 2499{
2443 struct ctl_table t; 2500 struct ctl_table t;
@@ -2449,7 +2506,7 @@ static int proc_taint(struct ctl_table *table, int write, struct file *filp,
2449 2506
2450 t = *table; 2507 t = *table;
2451 t.data = &tmptaint; 2508 t.data = &tmptaint;
2452 err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos); 2509 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
2453 if (err < 0) 2510 if (err < 0)
2454 return err; 2511 return err;
2455 2512
@@ -2501,7 +2558,6 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp,
2501 * proc_dointvec_minmax - read a vector of integers with min/max values 2558 * proc_dointvec_minmax - read a vector of integers with min/max values
2502 * @table: the sysctl table 2559 * @table: the sysctl table
2503 * @write: %TRUE if this is a write to the sysctl file 2560 * @write: %TRUE if this is a write to the sysctl file
2504 * @filp: the file structure
2505 * @buffer: the user buffer 2561 * @buffer: the user buffer
2506 * @lenp: the size of the user buffer 2562 * @lenp: the size of the user buffer
2507 * @ppos: file position 2563 * @ppos: file position
@@ -2514,19 +2570,18 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp,
2514 * 2570 *
2515 * Returns 0 on success. 2571 * Returns 0 on success.
2516 */ 2572 */
2517int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, 2573int proc_dointvec_minmax(struct ctl_table *table, int write,
2518 void __user *buffer, size_t *lenp, loff_t *ppos) 2574 void __user *buffer, size_t *lenp, loff_t *ppos)
2519{ 2575{
2520 struct do_proc_dointvec_minmax_conv_param param = { 2576 struct do_proc_dointvec_minmax_conv_param param = {
2521 .min = (int *) table->extra1, 2577 .min = (int *) table->extra1,
2522 .max = (int *) table->extra2, 2578 .max = (int *) table->extra2,
2523 }; 2579 };
2524 return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, 2580 return do_proc_dointvec(table, write, buffer, lenp, ppos,
2525 do_proc_dointvec_minmax_conv, &param); 2581 do_proc_dointvec_minmax_conv, &param);
2526} 2582}
2527 2583
2528static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, 2584static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write,
2529 struct file *filp,
2530 void __user *buffer, 2585 void __user *buffer,
2531 size_t *lenp, loff_t *ppos, 2586 size_t *lenp, loff_t *ppos,
2532 unsigned long convmul, 2587 unsigned long convmul,
@@ -2631,21 +2686,19 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int
2631} 2686}
2632 2687
2633static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, 2688static int do_proc_doulongvec_minmax(struct ctl_table *table, int write,
2634 struct file *filp,
2635 void __user *buffer, 2689 void __user *buffer,
2636 size_t *lenp, loff_t *ppos, 2690 size_t *lenp, loff_t *ppos,
2637 unsigned long convmul, 2691 unsigned long convmul,
2638 unsigned long convdiv) 2692 unsigned long convdiv)
2639{ 2693{
2640 return __do_proc_doulongvec_minmax(table->data, table, write, 2694 return __do_proc_doulongvec_minmax(table->data, table, write,
2641 filp, buffer, lenp, ppos, convmul, convdiv); 2695 buffer, lenp, ppos, convmul, convdiv);
2642} 2696}
2643 2697
2644/** 2698/**
2645 * proc_doulongvec_minmax - read a vector of long integers with min/max values 2699 * proc_doulongvec_minmax - read a vector of long integers with min/max values
2646 * @table: the sysctl table 2700 * @table: the sysctl table
2647 * @write: %TRUE if this is a write to the sysctl file 2701 * @write: %TRUE if this is a write to the sysctl file
2648 * @filp: the file structure
2649 * @buffer: the user buffer 2702 * @buffer: the user buffer
2650 * @lenp: the size of the user buffer 2703 * @lenp: the size of the user buffer
2651 * @ppos: file position 2704 * @ppos: file position
@@ -2658,17 +2711,16 @@ static int do_proc_doulongvec_minmax(struct ctl_table *table, int write,
2658 * 2711 *
2659 * Returns 0 on success. 2712 * Returns 0 on success.
2660 */ 2713 */
2661int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, 2714int proc_doulongvec_minmax(struct ctl_table *table, int write,
2662 void __user *buffer, size_t *lenp, loff_t *ppos) 2715 void __user *buffer, size_t *lenp, loff_t *ppos)
2663{ 2716{
2664 return do_proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos, 1l, 1l); 2717 return do_proc_doulongvec_minmax(table, write, buffer, lenp, ppos, 1l, 1l);
2665} 2718}
2666 2719
2667/** 2720/**
2668 * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values 2721 * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values
2669 * @table: the sysctl table 2722 * @table: the sysctl table
2670 * @write: %TRUE if this is a write to the sysctl file 2723 * @write: %TRUE if this is a write to the sysctl file
2671 * @filp: the file structure
2672 * @buffer: the user buffer 2724 * @buffer: the user buffer
2673 * @lenp: the size of the user buffer 2725 * @lenp: the size of the user buffer
2674 * @ppos: file position 2726 * @ppos: file position
@@ -2683,11 +2735,10 @@ int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp
2683 * Returns 0 on success. 2735 * Returns 0 on success.
2684 */ 2736 */
2685int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, 2737int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write,
2686 struct file *filp,
2687 void __user *buffer, 2738 void __user *buffer,
2688 size_t *lenp, loff_t *ppos) 2739 size_t *lenp, loff_t *ppos)
2689{ 2740{
2690 return do_proc_doulongvec_minmax(table, write, filp, buffer, 2741 return do_proc_doulongvec_minmax(table, write, buffer,
2691 lenp, ppos, HZ, 1000l); 2742 lenp, ppos, HZ, 1000l);
2692} 2743}
2693 2744
@@ -2763,7 +2814,6 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp,
2763 * proc_dointvec_jiffies - read a vector of integers as seconds 2814 * proc_dointvec_jiffies - read a vector of integers as seconds
2764 * @table: the sysctl table 2815 * @table: the sysctl table
2765 * @write: %TRUE if this is a write to the sysctl file 2816 * @write: %TRUE if this is a write to the sysctl file
2766 * @filp: the file structure
2767 * @buffer: the user buffer 2817 * @buffer: the user buffer
2768 * @lenp: the size of the user buffer 2818 * @lenp: the size of the user buffer
2769 * @ppos: file position 2819 * @ppos: file position
@@ -2775,10 +2825,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp,
2775 * 2825 *
2776 * Returns 0 on success. 2826 * Returns 0 on success.
2777 */ 2827 */
2778int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, 2828int proc_dointvec_jiffies(struct ctl_table *table, int write,
2779 void __user *buffer, size_t *lenp, loff_t *ppos) 2829 void __user *buffer, size_t *lenp, loff_t *ppos)
2780{ 2830{
2781 return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, 2831 return do_proc_dointvec(table,write,buffer,lenp,ppos,
2782 do_proc_dointvec_jiffies_conv,NULL); 2832 do_proc_dointvec_jiffies_conv,NULL);
2783} 2833}
2784 2834
@@ -2786,7 +2836,6 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp,
2786 * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds 2836 * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds
2787 * @table: the sysctl table 2837 * @table: the sysctl table
2788 * @write: %TRUE if this is a write to the sysctl file 2838 * @write: %TRUE if this is a write to the sysctl file
2789 * @filp: the file structure
2790 * @buffer: the user buffer 2839 * @buffer: the user buffer
2791 * @lenp: the size of the user buffer 2840 * @lenp: the size of the user buffer
2792 * @ppos: pointer to the file position 2841 * @ppos: pointer to the file position
@@ -2798,10 +2847,10 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp,
2798 * 2847 *
2799 * Returns 0 on success. 2848 * Returns 0 on success.
2800 */ 2849 */
2801int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, 2850int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write,
2802 void __user *buffer, size_t *lenp, loff_t *ppos) 2851 void __user *buffer, size_t *lenp, loff_t *ppos)
2803{ 2852{
2804 return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, 2853 return do_proc_dointvec(table,write,buffer,lenp,ppos,
2805 do_proc_dointvec_userhz_jiffies_conv,NULL); 2854 do_proc_dointvec_userhz_jiffies_conv,NULL);
2806} 2855}
2807 2856
@@ -2809,7 +2858,6 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file
2809 * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds 2858 * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds
2810 * @table: the sysctl table 2859 * @table: the sysctl table
2811 * @write: %TRUE if this is a write to the sysctl file 2860 * @write: %TRUE if this is a write to the sysctl file
2812 * @filp: the file structure
2813 * @buffer: the user buffer 2861 * @buffer: the user buffer
2814 * @lenp: the size of the user buffer 2862 * @lenp: the size of the user buffer
2815 * @ppos: file position 2863 * @ppos: file position
@@ -2822,14 +2870,14 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file
2822 * 2870 *
2823 * Returns 0 on success. 2871 * Returns 0 on success.
2824 */ 2872 */
2825int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, 2873int proc_dointvec_ms_jiffies(struct ctl_table *table, int write,
2826 void __user *buffer, size_t *lenp, loff_t *ppos) 2874 void __user *buffer, size_t *lenp, loff_t *ppos)
2827{ 2875{
2828 return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, 2876 return do_proc_dointvec(table, write, buffer, lenp, ppos,
2829 do_proc_dointvec_ms_jiffies_conv, NULL); 2877 do_proc_dointvec_ms_jiffies_conv, NULL);
2830} 2878}
2831 2879
2832static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, 2880static int proc_do_cad_pid(struct ctl_table *table, int write,
2833 void __user *buffer, size_t *lenp, loff_t *ppos) 2881 void __user *buffer, size_t *lenp, loff_t *ppos)
2834{ 2882{
2835 struct pid *new_pid; 2883 struct pid *new_pid;
@@ -2838,7 +2886,7 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp
2838 2886
2839 tmp = pid_vnr(cad_pid); 2887 tmp = pid_vnr(cad_pid);
2840 2888
2841 r = __do_proc_dointvec(&tmp, table, write, filp, buffer, 2889 r = __do_proc_dointvec(&tmp, table, write, buffer,
2842 lenp, ppos, NULL, NULL); 2890 lenp, ppos, NULL, NULL);
2843 if (r || !write) 2891 if (r || !write)
2844 return r; 2892 return r;
@@ -2853,50 +2901,49 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp
2853 2901
2854#else /* CONFIG_PROC_FS */ 2902#else /* CONFIG_PROC_FS */
2855 2903
2856int proc_dostring(struct ctl_table *table, int write, struct file *filp, 2904int proc_dostring(struct ctl_table *table, int write,
2857 void __user *buffer, size_t *lenp, loff_t *ppos) 2905 void __user *buffer, size_t *lenp, loff_t *ppos)
2858{ 2906{
2859 return -ENOSYS; 2907 return -ENOSYS;
2860} 2908}
2861 2909
2862int proc_dointvec(struct ctl_table *table, int write, struct file *filp, 2910int proc_dointvec(struct ctl_table *table, int write,
2863 void __user *buffer, size_t *lenp, loff_t *ppos) 2911 void __user *buffer, size_t *lenp, loff_t *ppos)
2864{ 2912{
2865 return -ENOSYS; 2913 return -ENOSYS;
2866} 2914}
2867 2915
2868int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, 2916int proc_dointvec_minmax(struct ctl_table *table, int write,
2869 void __user *buffer, size_t *lenp, loff_t *ppos) 2917 void __user *buffer, size_t *lenp, loff_t *ppos)
2870{ 2918{
2871 return -ENOSYS; 2919 return -ENOSYS;
2872} 2920}
2873 2921
2874int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, 2922int proc_dointvec_jiffies(struct ctl_table *table, int write,
2875 void __user *buffer, size_t *lenp, loff_t *ppos) 2923 void __user *buffer, size_t *lenp, loff_t *ppos)
2876{ 2924{
2877 return -ENOSYS; 2925 return -ENOSYS;
2878} 2926}
2879 2927
2880int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, 2928int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write,
2881 void __user *buffer, size_t *lenp, loff_t *ppos) 2929 void __user *buffer, size_t *lenp, loff_t *ppos)
2882{ 2930{
2883 return -ENOSYS; 2931 return -ENOSYS;
2884} 2932}
2885 2933
2886int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, 2934int proc_dointvec_ms_jiffies(struct ctl_table *table, int write,
2887 void __user *buffer, size_t *lenp, loff_t *ppos) 2935 void __user *buffer, size_t *lenp, loff_t *ppos)
2888{ 2936{
2889 return -ENOSYS; 2937 return -ENOSYS;
2890} 2938}
2891 2939
2892int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, 2940int proc_doulongvec_minmax(struct ctl_table *table, int write,
2893 void __user *buffer, size_t *lenp, loff_t *ppos) 2941 void __user *buffer, size_t *lenp, loff_t *ppos)
2894{ 2942{
2895 return -ENOSYS; 2943 return -ENOSYS;
2896} 2944}
2897 2945
2898int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, 2946int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write,
2899 struct file *filp,
2900 void __user *buffer, 2947 void __user *buffer,
2901 size_t *lenp, loff_t *ppos) 2948 size_t *lenp, loff_t *ppos)
2902{ 2949{
diff --git a/kernel/time.c b/kernel/time.c
index 29511943871a..2e2e469a7fec 100644
--- a/kernel/time.c
+++ b/kernel/time.c
@@ -370,13 +370,20 @@ EXPORT_SYMBOL(mktime);
370 * 0 <= tv_nsec < NSEC_PER_SEC 370 * 0 <= tv_nsec < NSEC_PER_SEC
371 * For negative values only the tv_sec field is negative ! 371 * For negative values only the tv_sec field is negative !
372 */ 372 */
373void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) 373void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
374{ 374{
375 while (nsec >= NSEC_PER_SEC) { 375 while (nsec >= NSEC_PER_SEC) {
376 /*
377 * The following asm() prevents the compiler from
378 * optimising this loop into a modulo operation. See
379 * also __iter_div_u64_rem() in include/linux/time.h
380 */
381 asm("" : "+rm"(nsec));
376 nsec -= NSEC_PER_SEC; 382 nsec -= NSEC_PER_SEC;
377 ++sec; 383 ++sec;
378 } 384 }
379 while (nsec < 0) { 385 while (nsec < 0) {
386 asm("" : "+rm"(nsec));
380 nsec += NSEC_PER_SEC; 387 nsec += NSEC_PER_SEC;
381 --sec; 388 --sec;
382 } 389 }
diff --git a/kernel/time/Makefile b/kernel/time/Makefile
index 0b0a6366c9d4..ee266620b06c 100644
--- a/kernel/time/Makefile
+++ b/kernel/time/Makefile
@@ -1,4 +1,4 @@
1obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o 1obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o timeconv.o
2 2
3obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o 3obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o
4obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o 4obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 7466cb811251..09113347d328 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -21,7 +21,6 @@
21 * 21 *
22 * TODO WishList: 22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered 23 * o Allow clocksource drivers to be unregistered
24 * o get rid of clocksource_jiffies extern
25 */ 24 */
26 25
27#include <linux/clocksource.h> 26#include <linux/clocksource.h>
@@ -30,6 +29,7 @@
30#include <linux/module.h> 29#include <linux/module.h>
31#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
32#include <linux/tick.h> 31#include <linux/tick.h>
32#include <linux/kthread.h>
33 33
34void timecounter_init(struct timecounter *tc, 34void timecounter_init(struct timecounter *tc,
35 const struct cyclecounter *cc, 35 const struct cyclecounter *cc,
@@ -107,50 +107,35 @@ u64 timecounter_cyc2time(struct timecounter *tc,
107} 107}
108EXPORT_SYMBOL(timecounter_cyc2time); 108EXPORT_SYMBOL(timecounter_cyc2time);
109 109
110/* XXX - Would like a better way for initializing curr_clocksource */
111extern struct clocksource clocksource_jiffies;
112
113/*[Clocksource internal variables]--------- 110/*[Clocksource internal variables]---------
114 * curr_clocksource: 111 * curr_clocksource:
115 * currently selected clocksource. Initialized to clocksource_jiffies. 112 * currently selected clocksource.
116 * next_clocksource:
117 * pending next selected clocksource.
118 * clocksource_list: 113 * clocksource_list:
119 * linked list with the registered clocksources 114 * linked list with the registered clocksources
120 * clocksource_lock: 115 * clocksource_mutex:
121 * protects manipulations to curr_clocksource and next_clocksource 116 * protects manipulations to curr_clocksource and the clocksource_list
122 * and the clocksource_list
123 * override_name: 117 * override_name:
124 * Name of the user-specified clocksource. 118 * Name of the user-specified clocksource.
125 */ 119 */
126static struct clocksource *curr_clocksource = &clocksource_jiffies; 120static struct clocksource *curr_clocksource;
127static struct clocksource *next_clocksource;
128static struct clocksource *clocksource_override;
129static LIST_HEAD(clocksource_list); 121static LIST_HEAD(clocksource_list);
130static DEFINE_SPINLOCK(clocksource_lock); 122static DEFINE_MUTEX(clocksource_mutex);
131static char override_name[32]; 123static char override_name[32];
132static int finished_booting; 124static int finished_booting;
133 125
134/* clocksource_done_booting - Called near the end of core bootup
135 *
136 * Hack to avoid lots of clocksource churn at boot time.
137 * We use fs_initcall because we want this to start before
138 * device_initcall but after subsys_initcall.
139 */
140static int __init clocksource_done_booting(void)
141{
142 finished_booting = 1;
143 return 0;
144}
145fs_initcall(clocksource_done_booting);
146
147#ifdef CONFIG_CLOCKSOURCE_WATCHDOG 126#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
127static void clocksource_watchdog_work(struct work_struct *work);
128
148static LIST_HEAD(watchdog_list); 129static LIST_HEAD(watchdog_list);
149static struct clocksource *watchdog; 130static struct clocksource *watchdog;
150static struct timer_list watchdog_timer; 131static struct timer_list watchdog_timer;
132static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
151static DEFINE_SPINLOCK(watchdog_lock); 133static DEFINE_SPINLOCK(watchdog_lock);
152static cycle_t watchdog_last; 134static cycle_t watchdog_last;
153static unsigned long watchdog_resumed; 135static int watchdog_running;
136
137static int clocksource_watchdog_kthread(void *data);
138static void __clocksource_change_rating(struct clocksource *cs, int rating);
154 139
155/* 140/*
156 * Interval: 0.5sec Threshold: 0.0625s 141 * Interval: 0.5sec Threshold: 0.0625s
@@ -158,135 +143,249 @@ static unsigned long watchdog_resumed;
158#define WATCHDOG_INTERVAL (HZ >> 1) 143#define WATCHDOG_INTERVAL (HZ >> 1)
159#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 144#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
160 145
161static void clocksource_ratewd(struct clocksource *cs, int64_t delta) 146static void clocksource_watchdog_work(struct work_struct *work)
162{ 147{
163 if (delta > -WATCHDOG_THRESHOLD && delta < WATCHDOG_THRESHOLD) 148 /*
164 return; 149 * If kthread_run fails the next watchdog scan over the
150 * watchdog_list will find the unstable clock again.
151 */
152 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
153}
165 154
155static void __clocksource_unstable(struct clocksource *cs)
156{
157 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
158 cs->flags |= CLOCK_SOURCE_UNSTABLE;
159 if (finished_booting)
160 schedule_work(&watchdog_work);
161}
162
163static void clocksource_unstable(struct clocksource *cs, int64_t delta)
164{
166 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", 165 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
167 cs->name, delta); 166 cs->name, delta);
168 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 167 __clocksource_unstable(cs);
169 clocksource_change_rating(cs, 0); 168}
170 list_del(&cs->wd_list); 169
170/**
171 * clocksource_mark_unstable - mark clocksource unstable via watchdog
172 * @cs: clocksource to be marked unstable
173 *
174 * This function is called instead of clocksource_change_rating from
175 * cpu hotplug code to avoid a deadlock between the clocksource mutex
176 * and the cpu hotplug mutex. It defers the update of the clocksource
177 * to the watchdog thread.
178 */
179void clocksource_mark_unstable(struct clocksource *cs)
180{
181 unsigned long flags;
182
183 spin_lock_irqsave(&watchdog_lock, flags);
184 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
185 if (list_empty(&cs->wd_list))
186 list_add(&cs->wd_list, &watchdog_list);
187 __clocksource_unstable(cs);
188 }
189 spin_unlock_irqrestore(&watchdog_lock, flags);
171} 190}
172 191
173static void clocksource_watchdog(unsigned long data) 192static void clocksource_watchdog(unsigned long data)
174{ 193{
175 struct clocksource *cs, *tmp; 194 struct clocksource *cs;
176 cycle_t csnow, wdnow; 195 cycle_t csnow, wdnow;
177 int64_t wd_nsec, cs_nsec; 196 int64_t wd_nsec, cs_nsec;
178 int resumed; 197 int next_cpu;
179 198
180 spin_lock(&watchdog_lock); 199 spin_lock(&watchdog_lock);
181 200 if (!watchdog_running)
182 resumed = test_and_clear_bit(0, &watchdog_resumed); 201 goto out;
183 202
184 wdnow = watchdog->read(watchdog); 203 wdnow = watchdog->read(watchdog);
185 wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask); 204 wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask,
205 watchdog->mult, watchdog->shift);
186 watchdog_last = wdnow; 206 watchdog_last = wdnow;
187 207
188 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 208 list_for_each_entry(cs, &watchdog_list, wd_list) {
189 csnow = cs->read(cs);
190 209
191 if (unlikely(resumed)) { 210 /* Clocksource already marked unstable? */
192 cs->wd_last = csnow; 211 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
212 if (finished_booting)
213 schedule_work(&watchdog_work);
193 continue; 214 continue;
194 } 215 }
195 216
196 /* Initialized ? */ 217 csnow = cs->read(cs);
218
219 /* Clocksource initialized ? */
197 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { 220 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
198 if ((cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
199 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
200 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
201 /*
202 * We just marked the clocksource as
203 * highres-capable, notify the rest of the
204 * system as well so that we transition
205 * into high-res mode:
206 */
207 tick_clock_notify();
208 }
209 cs->flags |= CLOCK_SOURCE_WATCHDOG; 221 cs->flags |= CLOCK_SOURCE_WATCHDOG;
210 cs->wd_last = csnow; 222 cs->wd_last = csnow;
211 } else { 223 continue;
212 cs_nsec = cyc2ns(cs, (csnow - cs->wd_last) & cs->mask);
213 cs->wd_last = csnow;
214 /* Check the delta. Might remove from the list ! */
215 clocksource_ratewd(cs, cs_nsec - wd_nsec);
216 } 224 }
217 }
218 225
219 if (!list_empty(&watchdog_list)) { 226 /* Check the deviation from the watchdog clocksource. */
220 /* 227 cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) &
221 * Cycle through CPUs to check if the CPUs stay 228 cs->mask, cs->mult, cs->shift);
222 * synchronized to each other. 229 cs->wd_last = csnow;
223 */ 230 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
224 int next_cpu = cpumask_next(raw_smp_processor_id(), 231 clocksource_unstable(cs, cs_nsec - wd_nsec);
225 cpu_online_mask); 232 continue;
233 }
226 234
227 if (next_cpu >= nr_cpu_ids) 235 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
228 next_cpu = cpumask_first(cpu_online_mask); 236 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
229 watchdog_timer.expires += WATCHDOG_INTERVAL; 237 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
230 add_timer_on(&watchdog_timer, next_cpu); 238 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
239 /*
240 * We just marked the clocksource as highres-capable,
241 * notify the rest of the system as well so that we
242 * transition into high-res mode:
243 */
244 tick_clock_notify();
245 }
231 } 246 }
247
248 /*
249 * Cycle through CPUs to check if the CPUs stay synchronized
250 * to each other.
251 */
252 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
253 if (next_cpu >= nr_cpu_ids)
254 next_cpu = cpumask_first(cpu_online_mask);
255 watchdog_timer.expires += WATCHDOG_INTERVAL;
256 add_timer_on(&watchdog_timer, next_cpu);
257out:
232 spin_unlock(&watchdog_lock); 258 spin_unlock(&watchdog_lock);
233} 259}
260
261static inline void clocksource_start_watchdog(void)
262{
263 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
264 return;
265 init_timer(&watchdog_timer);
266 watchdog_timer.function = clocksource_watchdog;
267 watchdog_last = watchdog->read(watchdog);
268 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
269 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
270 watchdog_running = 1;
271}
272
273static inline void clocksource_stop_watchdog(void)
274{
275 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
276 return;
277 del_timer(&watchdog_timer);
278 watchdog_running = 0;
279}
280
281static inline void clocksource_reset_watchdog(void)
282{
283 struct clocksource *cs;
284
285 list_for_each_entry(cs, &watchdog_list, wd_list)
286 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
287}
288
234static void clocksource_resume_watchdog(void) 289static void clocksource_resume_watchdog(void)
235{ 290{
236 set_bit(0, &watchdog_resumed); 291 unsigned long flags;
292
293 spin_lock_irqsave(&watchdog_lock, flags);
294 clocksource_reset_watchdog();
295 spin_unlock_irqrestore(&watchdog_lock, flags);
237} 296}
238 297
239static void clocksource_check_watchdog(struct clocksource *cs) 298static void clocksource_enqueue_watchdog(struct clocksource *cs)
240{ 299{
241 struct clocksource *cse;
242 unsigned long flags; 300 unsigned long flags;
243 301
244 spin_lock_irqsave(&watchdog_lock, flags); 302 spin_lock_irqsave(&watchdog_lock, flags);
245 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 303 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
246 int started = !list_empty(&watchdog_list); 304 /* cs is a clocksource to be watched. */
247
248 list_add(&cs->wd_list, &watchdog_list); 305 list_add(&cs->wd_list, &watchdog_list);
249 if (!started && watchdog) { 306 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
250 watchdog_last = watchdog->read(watchdog);
251 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
252 add_timer_on(&watchdog_timer,
253 cpumask_first(cpu_online_mask));
254 }
255 } else { 307 } else {
308 /* cs is a watchdog. */
256 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 309 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
257 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 310 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
258 311 /* Pick the best watchdog. */
259 if (!watchdog || cs->rating > watchdog->rating) { 312 if (!watchdog || cs->rating > watchdog->rating) {
260 if (watchdog)
261 del_timer(&watchdog_timer);
262 watchdog = cs; 313 watchdog = cs;
263 init_timer(&watchdog_timer);
264 watchdog_timer.function = clocksource_watchdog;
265
266 /* Reset watchdog cycles */ 314 /* Reset watchdog cycles */
267 list_for_each_entry(cse, &watchdog_list, wd_list) 315 clocksource_reset_watchdog();
268 cse->flags &= ~CLOCK_SOURCE_WATCHDOG; 316 }
269 /* Start if list is not empty */ 317 }
270 if (!list_empty(&watchdog_list)) { 318 /* Check if the watchdog timer needs to be started. */
271 watchdog_last = watchdog->read(watchdog); 319 clocksource_start_watchdog();
272 watchdog_timer.expires = 320 spin_unlock_irqrestore(&watchdog_lock, flags);
273 jiffies + WATCHDOG_INTERVAL; 321}
274 add_timer_on(&watchdog_timer, 322
275 cpumask_first(cpu_online_mask)); 323static void clocksource_dequeue_watchdog(struct clocksource *cs)
276 } 324{
325 struct clocksource *tmp;
326 unsigned long flags;
327
328 spin_lock_irqsave(&watchdog_lock, flags);
329 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
330 /* cs is a watched clocksource. */
331 list_del_init(&cs->wd_list);
332 } else if (cs == watchdog) {
333 /* Reset watchdog cycles */
334 clocksource_reset_watchdog();
335 /* Current watchdog is removed. Find an alternative. */
336 watchdog = NULL;
337 list_for_each_entry(tmp, &clocksource_list, list) {
338 if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
339 continue;
340 if (!watchdog || tmp->rating > watchdog->rating)
341 watchdog = tmp;
277 } 342 }
278 } 343 }
344 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
345 /* Check if the watchdog timer needs to be stopped. */
346 clocksource_stop_watchdog();
279 spin_unlock_irqrestore(&watchdog_lock, flags); 347 spin_unlock_irqrestore(&watchdog_lock, flags);
280} 348}
281#else 349
282static void clocksource_check_watchdog(struct clocksource *cs) 350static int clocksource_watchdog_kthread(void *data)
351{
352 struct clocksource *cs, *tmp;
353 unsigned long flags;
354 LIST_HEAD(unstable);
355
356 mutex_lock(&clocksource_mutex);
357 spin_lock_irqsave(&watchdog_lock, flags);
358 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
359 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
360 list_del_init(&cs->wd_list);
361 list_add(&cs->wd_list, &unstable);
362 }
363 /* Check if the watchdog timer needs to be stopped. */
364 clocksource_stop_watchdog();
365 spin_unlock_irqrestore(&watchdog_lock, flags);
366
367 /* Needs to be done outside of watchdog lock */
368 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
369 list_del_init(&cs->wd_list);
370 __clocksource_change_rating(cs, 0);
371 }
372 mutex_unlock(&clocksource_mutex);
373 return 0;
374}
375
376#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
377
378static void clocksource_enqueue_watchdog(struct clocksource *cs)
283{ 379{
284 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 380 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
285 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 381 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
286} 382}
287 383
384static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
288static inline void clocksource_resume_watchdog(void) { } 385static inline void clocksource_resume_watchdog(void) { }
289#endif 386static inline int clocksource_watchdog_kthread(void *data) { return 0; }
387
388#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
290 389
291/** 390/**
292 * clocksource_resume - resume the clocksource(s) 391 * clocksource_resume - resume the clocksource(s)
@@ -294,18 +393,16 @@ static inline void clocksource_resume_watchdog(void) { }
294void clocksource_resume(void) 393void clocksource_resume(void)
295{ 394{
296 struct clocksource *cs; 395 struct clocksource *cs;
297 unsigned long flags;
298 396
299 spin_lock_irqsave(&clocksource_lock, flags); 397 mutex_lock(&clocksource_mutex);
300 398
301 list_for_each_entry(cs, &clocksource_list, list) { 399 list_for_each_entry(cs, &clocksource_list, list)
302 if (cs->resume) 400 if (cs->resume)
303 cs->resume(); 401 cs->resume();
304 }
305 402
306 clocksource_resume_watchdog(); 403 clocksource_resume_watchdog();
307 404
308 spin_unlock_irqrestore(&clocksource_lock, flags); 405 mutex_unlock(&clocksource_mutex);
309} 406}
310 407
311/** 408/**
@@ -320,75 +417,94 @@ void clocksource_touch_watchdog(void)
320 clocksource_resume_watchdog(); 417 clocksource_resume_watchdog();
321} 418}
322 419
420#ifdef CONFIG_GENERIC_TIME
421
323/** 422/**
324 * clocksource_get_next - Returns the selected clocksource 423 * clocksource_select - Select the best clocksource available
424 *
425 * Private function. Must hold clocksource_mutex when called.
325 * 426 *
427 * Select the clocksource with the best rating, or the clocksource,
428 * which is selected by userspace override.
326 */ 429 */
327struct clocksource *clocksource_get_next(void) 430static void clocksource_select(void)
328{ 431{
329 unsigned long flags; 432 struct clocksource *best, *cs;
330 433
331 spin_lock_irqsave(&clocksource_lock, flags); 434 if (!finished_booting || list_empty(&clocksource_list))
332 if (next_clocksource && finished_booting) { 435 return;
333 curr_clocksource = next_clocksource; 436 /* First clocksource on the list has the best rating. */
334 next_clocksource = NULL; 437 best = list_first_entry(&clocksource_list, struct clocksource, list);
438 /* Check for the override clocksource. */
439 list_for_each_entry(cs, &clocksource_list, list) {
440 if (strcmp(cs->name, override_name) != 0)
441 continue;
442 /*
443 * Check to make sure we don't switch to a non-highres
444 * capable clocksource if the tick code is in oneshot
445 * mode (highres or nohz)
446 */
447 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
448 tick_oneshot_mode_active()) {
449 /* Override clocksource cannot be used. */
450 printk(KERN_WARNING "Override clocksource %s is not "
451 "HRT compatible. Cannot switch while in "
452 "HRT/NOHZ mode\n", cs->name);
453 override_name[0] = 0;
454 } else
455 /* Override clocksource can be used. */
456 best = cs;
457 break;
458 }
459 if (curr_clocksource != best) {
460 printk(KERN_INFO "Switching to clocksource %s\n", best->name);
461 curr_clocksource = best;
462 timekeeping_notify(curr_clocksource);
335 } 463 }
336 spin_unlock_irqrestore(&clocksource_lock, flags);
337
338 return curr_clocksource;
339} 464}
340 465
341/** 466#else /* CONFIG_GENERIC_TIME */
342 * select_clocksource - Selects the best registered clocksource. 467
343 * 468static inline void clocksource_select(void) { }
344 * Private function. Must hold clocksource_lock when called. 469
470#endif
471
472/*
473 * clocksource_done_booting - Called near the end of core bootup
345 * 474 *
346 * Select the clocksource with the best rating, or the clocksource, 475 * Hack to avoid lots of clocksource churn at boot time.
347 * which is selected by userspace override. 476 * We use fs_initcall because we want this to start before
477 * device_initcall but after subsys_initcall.
348 */ 478 */
349static struct clocksource *select_clocksource(void) 479static int __init clocksource_done_booting(void)
350{ 480{
351 struct clocksource *next; 481 finished_booting = 1;
352
353 if (list_empty(&clocksource_list))
354 return NULL;
355
356 if (clocksource_override)
357 next = clocksource_override;
358 else
359 next = list_entry(clocksource_list.next, struct clocksource,
360 list);
361 482
362 if (next == curr_clocksource) 483 /*
363 return NULL; 484 * Run the watchdog first to eliminate unstable clock sources
485 */
486 clocksource_watchdog_kthread(NULL);
364 487
365 return next; 488 mutex_lock(&clocksource_mutex);
489 clocksource_select();
490 mutex_unlock(&clocksource_mutex);
491 return 0;
366} 492}
493fs_initcall(clocksource_done_booting);
367 494
368/* 495/*
369 * Enqueue the clocksource sorted by rating 496 * Enqueue the clocksource sorted by rating
370 */ 497 */
371static int clocksource_enqueue(struct clocksource *c) 498static void clocksource_enqueue(struct clocksource *cs)
372{ 499{
373 struct list_head *tmp, *entry = &clocksource_list; 500 struct list_head *entry = &clocksource_list;
501 struct clocksource *tmp;
374 502
375 list_for_each(tmp, &clocksource_list) { 503 list_for_each_entry(tmp, &clocksource_list, list)
376 struct clocksource *cs;
377
378 cs = list_entry(tmp, struct clocksource, list);
379 if (cs == c)
380 return -EBUSY;
381 /* Keep track of the place, where to insert */ 504 /* Keep track of the place, where to insert */
382 if (cs->rating >= c->rating) 505 if (tmp->rating >= cs->rating)
383 entry = tmp; 506 entry = &tmp->list;
384 } 507 list_add(&cs->list, entry);
385 list_add(&c->list, entry);
386
387 if (strlen(c->name) == strlen(override_name) &&
388 !strcmp(c->name, override_name))
389 clocksource_override = c;
390
391 return 0;
392} 508}
393 509
394/** 510/**
@@ -397,52 +513,48 @@ static int clocksource_enqueue(struct clocksource *c)
397 * 513 *
398 * Returns -EBUSY if registration fails, zero otherwise. 514 * Returns -EBUSY if registration fails, zero otherwise.
399 */ 515 */
400int clocksource_register(struct clocksource *c) 516int clocksource_register(struct clocksource *cs)
401{ 517{
402 unsigned long flags; 518 mutex_lock(&clocksource_mutex);
403 int ret; 519 clocksource_enqueue(cs);
404 520 clocksource_select();
405 spin_lock_irqsave(&clocksource_lock, flags); 521 clocksource_enqueue_watchdog(cs);
406 ret = clocksource_enqueue(c); 522 mutex_unlock(&clocksource_mutex);
407 if (!ret) 523 return 0;
408 next_clocksource = select_clocksource();
409 spin_unlock_irqrestore(&clocksource_lock, flags);
410 if (!ret)
411 clocksource_check_watchdog(c);
412 return ret;
413} 524}
414EXPORT_SYMBOL(clocksource_register); 525EXPORT_SYMBOL(clocksource_register);
415 526
527static void __clocksource_change_rating(struct clocksource *cs, int rating)
528{
529 list_del(&cs->list);
530 cs->rating = rating;
531 clocksource_enqueue(cs);
532 clocksource_select();
533}
534
416/** 535/**
417 * clocksource_change_rating - Change the rating of a registered clocksource 536 * clocksource_change_rating - Change the rating of a registered clocksource
418 *
419 */ 537 */
420void clocksource_change_rating(struct clocksource *cs, int rating) 538void clocksource_change_rating(struct clocksource *cs, int rating)
421{ 539{
422 unsigned long flags; 540 mutex_lock(&clocksource_mutex);
423 541 __clocksource_change_rating(cs, rating);
424 spin_lock_irqsave(&clocksource_lock, flags); 542 mutex_unlock(&clocksource_mutex);
425 list_del(&cs->list);
426 cs->rating = rating;
427 clocksource_enqueue(cs);
428 next_clocksource = select_clocksource();
429 spin_unlock_irqrestore(&clocksource_lock, flags);
430} 543}
544EXPORT_SYMBOL(clocksource_change_rating);
431 545
432/** 546/**
433 * clocksource_unregister - remove a registered clocksource 547 * clocksource_unregister - remove a registered clocksource
434 */ 548 */
435void clocksource_unregister(struct clocksource *cs) 549void clocksource_unregister(struct clocksource *cs)
436{ 550{
437 unsigned long flags; 551 mutex_lock(&clocksource_mutex);
438 552 clocksource_dequeue_watchdog(cs);
439 spin_lock_irqsave(&clocksource_lock, flags);
440 list_del(&cs->list); 553 list_del(&cs->list);
441 if (clocksource_override == cs) 554 clocksource_select();
442 clocksource_override = NULL; 555 mutex_unlock(&clocksource_mutex);
443 next_clocksource = select_clocksource();
444 spin_unlock_irqrestore(&clocksource_lock, flags);
445} 556}
557EXPORT_SYMBOL(clocksource_unregister);
446 558
447#ifdef CONFIG_SYSFS 559#ifdef CONFIG_SYSFS
448/** 560/**
@@ -458,9 +570,9 @@ sysfs_show_current_clocksources(struct sys_device *dev,
458{ 570{
459 ssize_t count = 0; 571 ssize_t count = 0;
460 572
461 spin_lock_irq(&clocksource_lock); 573 mutex_lock(&clocksource_mutex);
462 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 574 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
463 spin_unlock_irq(&clocksource_lock); 575 mutex_unlock(&clocksource_mutex);
464 576
465 return count; 577 return count;
466} 578}
@@ -478,9 +590,7 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev,
478 struct sysdev_attribute *attr, 590 struct sysdev_attribute *attr,
479 const char *buf, size_t count) 591 const char *buf, size_t count)
480{ 592{
481 struct clocksource *ovr = NULL;
482 size_t ret = count; 593 size_t ret = count;
483 int len;
484 594
485 /* strings from sysfs write are not 0 terminated! */ 595 /* strings from sysfs write are not 0 terminated! */
486 if (count >= sizeof(override_name)) 596 if (count >= sizeof(override_name))
@@ -490,44 +600,14 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev,
490 if (buf[count-1] == '\n') 600 if (buf[count-1] == '\n')
491 count--; 601 count--;
492 602
493 spin_lock_irq(&clocksource_lock); 603 mutex_lock(&clocksource_mutex);
494 604
495 if (count > 0) 605 if (count > 0)
496 memcpy(override_name, buf, count); 606 memcpy(override_name, buf, count);
497 override_name[count] = 0; 607 override_name[count] = 0;
608 clocksource_select();
498 609
499 len = strlen(override_name); 610 mutex_unlock(&clocksource_mutex);
500 if (len) {
501 struct clocksource *cs;
502
503 ovr = clocksource_override;
504 /* try to select it: */
505 list_for_each_entry(cs, &clocksource_list, list) {
506 if (strlen(cs->name) == len &&
507 !strcmp(cs->name, override_name))
508 ovr = cs;
509 }
510 }
511
512 /*
513 * Check to make sure we don't switch to a non-highres capable
514 * clocksource if the tick code is in oneshot mode (highres or nohz)
515 */
516 if (tick_oneshot_mode_active() && ovr &&
517 !(ovr->flags & CLOCK_SOURCE_VALID_FOR_HRES)) {
518 printk(KERN_WARNING "%s clocksource is not HRT compatible. "
519 "Cannot switch while in HRT/NOHZ mode\n", ovr->name);
520 ovr = NULL;
521 override_name[0] = 0;
522 }
523
524 /* Reselect, when the override name has changed */
525 if (ovr != clocksource_override) {
526 clocksource_override = ovr;
527 next_clocksource = select_clocksource();
528 }
529
530 spin_unlock_irq(&clocksource_lock);
531 611
532 return ret; 612 return ret;
533} 613}
@@ -547,7 +627,7 @@ sysfs_show_available_clocksources(struct sys_device *dev,
547 struct clocksource *src; 627 struct clocksource *src;
548 ssize_t count = 0; 628 ssize_t count = 0;
549 629
550 spin_lock_irq(&clocksource_lock); 630 mutex_lock(&clocksource_mutex);
551 list_for_each_entry(src, &clocksource_list, list) { 631 list_for_each_entry(src, &clocksource_list, list) {
552 /* 632 /*
553 * Don't show non-HRES clocksource if the tick code is 633 * Don't show non-HRES clocksource if the tick code is
@@ -559,7 +639,7 @@ sysfs_show_available_clocksources(struct sys_device *dev,
559 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 639 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
560 "%s ", src->name); 640 "%s ", src->name);
561 } 641 }
562 spin_unlock_irq(&clocksource_lock); 642 mutex_unlock(&clocksource_mutex);
563 643
564 count += snprintf(buf + count, 644 count += snprintf(buf + count,
565 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 645 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
@@ -614,11 +694,10 @@ device_initcall(init_clocksource_sysfs);
614 */ 694 */
615static int __init boot_override_clocksource(char* str) 695static int __init boot_override_clocksource(char* str)
616{ 696{
617 unsigned long flags; 697 mutex_lock(&clocksource_mutex);
618 spin_lock_irqsave(&clocksource_lock, flags);
619 if (str) 698 if (str)
620 strlcpy(override_name, str, sizeof(override_name)); 699 strlcpy(override_name, str, sizeof(override_name));
621 spin_unlock_irqrestore(&clocksource_lock, flags); 700 mutex_unlock(&clocksource_mutex);
622 return 1; 701 return 1;
623} 702}
624 703
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c
index c3f6c30816e3..5404a8456909 100644
--- a/kernel/time/jiffies.c
+++ b/kernel/time/jiffies.c
@@ -61,7 +61,6 @@ struct clocksource clocksource_jiffies = {
61 .read = jiffies_read, 61 .read = jiffies_read,
62 .mask = 0xffffffff, /*32bits*/ 62 .mask = 0xffffffff, /*32bits*/
63 .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ 63 .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
64 .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT,
65 .shift = JIFFIES_SHIFT, 64 .shift = JIFFIES_SHIFT,
66}; 65};
67 66
@@ -71,3 +70,8 @@ static int __init init_jiffies_clocksource(void)
71} 70}
72 71
73core_initcall(init_jiffies_clocksource); 72core_initcall(init_jiffies_clocksource);
73
74struct clocksource * __init __weak clocksource_default_clock(void)
75{
76 return &clocksource_jiffies;
77}
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 7fc64375ff43..4800f933910e 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -194,8 +194,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
194 case TIME_OK: 194 case TIME_OK:
195 break; 195 break;
196 case TIME_INS: 196 case TIME_INS:
197 xtime.tv_sec--; 197 timekeeping_leap_insert(-1);
198 wall_to_monotonic.tv_sec++;
199 time_state = TIME_OOP; 198 time_state = TIME_OOP;
200 printk(KERN_NOTICE 199 printk(KERN_NOTICE
201 "Clock: inserting leap second 23:59:60 UTC\n"); 200 "Clock: inserting leap second 23:59:60 UTC\n");
@@ -203,9 +202,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
203 res = HRTIMER_RESTART; 202 res = HRTIMER_RESTART;
204 break; 203 break;
205 case TIME_DEL: 204 case TIME_DEL:
206 xtime.tv_sec++; 205 timekeeping_leap_insert(1);
207 time_tai--; 206 time_tai--;
208 wall_to_monotonic.tv_sec--;
209 time_state = TIME_WAIT; 207 time_state = TIME_WAIT;
210 printk(KERN_NOTICE 208 printk(KERN_NOTICE
211 "Clock: deleting leap second 23:59:59 UTC\n"); 209 "Clock: deleting leap second 23:59:59 UTC\n");
@@ -219,7 +217,6 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
219 time_state = TIME_OK; 217 time_state = TIME_OK;
220 break; 218 break;
221 } 219 }
222 update_vsyscall(&xtime, clock);
223 220
224 write_sequnlock(&xtime_lock); 221 write_sequnlock(&xtime_lock);
225 222
diff --git a/kernel/time/timeconv.c b/kernel/time/timeconv.c
new file mode 100644
index 000000000000..86628e755f38
--- /dev/null
+++ b/kernel/time/timeconv.c
@@ -0,0 +1,127 @@
1/*
2 * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
3 * This file is part of the GNU C Library.
4 * Contributed by Paul Eggert (eggert@twinsun.com).
5 *
6 * The GNU C Library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Library General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * The GNU C Library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Library General Public License for more details.
15 *
16 * You should have received a copy of the GNU Library General Public
17 * License along with the GNU C Library; see the file COPYING.LIB. If not,
18 * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
20 */
21
22/*
23 * Converts the calendar time to broken-down time representation
24 * Based on code from glibc-2.6
25 *
26 * 2009-7-14:
27 * Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com>
28 */
29
30#include <linux/time.h>
31#include <linux/module.h>
32
33/*
34 * Nonzero if YEAR is a leap year (every 4 years,
35 * except every 100th isn't, and every 400th is).
36 */
37static int __isleap(long year)
38{
39 return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0);
40}
41
42/* do a mathdiv for long type */
43static long math_div(long a, long b)
44{
45 return a / b - (a % b < 0);
46}
47
48/* How many leap years between y1 and y2, y1 must less or equal to y2 */
49static long leaps_between(long y1, long y2)
50{
51 long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100)
52 + math_div(y1 - 1, 400);
53 long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100)
54 + math_div(y2 - 1, 400);
55 return leaps2 - leaps1;
56}
57
58/* How many days come before each month (0-12). */
59static const unsigned short __mon_yday[2][13] = {
60 /* Normal years. */
61 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
62 /* Leap years. */
63 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}
64};
65
66#define SECS_PER_HOUR (60 * 60)
67#define SECS_PER_DAY (SECS_PER_HOUR * 24)
68
69/**
70 * time_to_tm - converts the calendar time to local broken-down time
71 *
72 * @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970,
73 * Coordinated Universal Time (UTC).
74 * @offset offset seconds adding to totalsecs.
75 * @result pointer to struct tm variable to receive broken-down time
76 */
77void time_to_tm(time_t totalsecs, int offset, struct tm *result)
78{
79 long days, rem, y;
80 const unsigned short *ip;
81
82 days = totalsecs / SECS_PER_DAY;
83 rem = totalsecs % SECS_PER_DAY;
84 rem += offset;
85 while (rem < 0) {
86 rem += SECS_PER_DAY;
87 --days;
88 }
89 while (rem >= SECS_PER_DAY) {
90 rem -= SECS_PER_DAY;
91 ++days;
92 }
93
94 result->tm_hour = rem / SECS_PER_HOUR;
95 rem %= SECS_PER_HOUR;
96 result->tm_min = rem / 60;
97 result->tm_sec = rem % 60;
98
99 /* January 1, 1970 was a Thursday. */
100 result->tm_wday = (4 + days) % 7;
101 if (result->tm_wday < 0)
102 result->tm_wday += 7;
103
104 y = 1970;
105
106 while (days < 0 || days >= (__isleap(y) ? 366 : 365)) {
107 /* Guess a corrected year, assuming 365 days per year. */
108 long yg = y + math_div(days, 365);
109
110 /* Adjust DAYS and Y to match the guessed year. */
111 days -= (yg - y) * 365 + leaps_between(y, yg);
112 y = yg;
113 }
114
115 result->tm_year = y - 1900;
116
117 result->tm_yday = days;
118
119 ip = __mon_yday[__isleap(y)];
120 for (y = 11; days < ip[y]; y--)
121 continue;
122 days -= ip[y];
123
124 result->tm_mon = y;
125 result->tm_mday = days + 1;
126}
127EXPORT_SYMBOL(time_to_tm);
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index e8c77d9c633a..fb0f46fa1ecd 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -18,7 +18,117 @@
18#include <linux/jiffies.h> 18#include <linux/jiffies.h>
19#include <linux/time.h> 19#include <linux/time.h>
20#include <linux/tick.h> 20#include <linux/tick.h>
21#include <linux/stop_machine.h>
22
23/* Structure holding internal timekeeping values. */
24struct timekeeper {
25 /* Current clocksource used for timekeeping. */
26 struct clocksource *clock;
27 /* The shift value of the current clocksource. */
28 int shift;
29
30 /* Number of clock cycles in one NTP interval. */
31 cycle_t cycle_interval;
32 /* Number of clock shifted nano seconds in one NTP interval. */
33 u64 xtime_interval;
34 /* Raw nano seconds accumulated per NTP interval. */
35 u32 raw_interval;
36
37 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
38 u64 xtime_nsec;
39 /* Difference between accumulated time and NTP time in ntp
40 * shifted nano seconds. */
41 s64 ntp_error;
42 /* Shift conversion between clock shifted nano seconds and
43 * ntp shifted nano seconds. */
44 int ntp_error_shift;
45 /* NTP adjusted clock multiplier */
46 u32 mult;
47};
48
49struct timekeeper timekeeper;
50
51/**
52 * timekeeper_setup_internals - Set up internals to use clocksource clock.
53 *
54 * @clock: Pointer to clocksource.
55 *
56 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
57 * pair and interval request.
58 *
59 * Unless you're the timekeeping code, you should not be using this!
60 */
61static void timekeeper_setup_internals(struct clocksource *clock)
62{
63 cycle_t interval;
64 u64 tmp;
65
66 timekeeper.clock = clock;
67 clock->cycle_last = clock->read(clock);
21 68
69 /* Do the ns -> cycle conversion first, using original mult */
70 tmp = NTP_INTERVAL_LENGTH;
71 tmp <<= clock->shift;
72 tmp += clock->mult/2;
73 do_div(tmp, clock->mult);
74 if (tmp == 0)
75 tmp = 1;
76
77 interval = (cycle_t) tmp;
78 timekeeper.cycle_interval = interval;
79
80 /* Go back from cycles -> shifted ns */
81 timekeeper.xtime_interval = (u64) interval * clock->mult;
82 timekeeper.raw_interval =
83 ((u64) interval * clock->mult) >> clock->shift;
84
85 timekeeper.xtime_nsec = 0;
86 timekeeper.shift = clock->shift;
87
88 timekeeper.ntp_error = 0;
89 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
90
91 /*
92 * The timekeeper keeps its own mult values for the currently
93 * active clocksource. These value will be adjusted via NTP
94 * to counteract clock drifting.
95 */
96 timekeeper.mult = clock->mult;
97}
98
99/* Timekeeper helper functions. */
100static inline s64 timekeeping_get_ns(void)
101{
102 cycle_t cycle_now, cycle_delta;
103 struct clocksource *clock;
104
105 /* read clocksource: */
106 clock = timekeeper.clock;
107 cycle_now = clock->read(clock);
108
109 /* calculate the delta since the last update_wall_time: */
110 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
111
112 /* return delta convert to nanoseconds using ntp adjusted mult. */
113 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
114 timekeeper.shift);
115}
116
117static inline s64 timekeeping_get_ns_raw(void)
118{
119 cycle_t cycle_now, cycle_delta;
120 struct clocksource *clock;
121
122 /* read clocksource: */
123 clock = timekeeper.clock;
124 cycle_now = clock->read(clock);
125
126 /* calculate the delta since the last update_wall_time: */
127 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
128
129 /* return delta convert to nanoseconds using ntp adjusted mult. */
130 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
131}
22 132
23/* 133/*
24 * This read-write spinlock protects us from races in SMP while 134 * This read-write spinlock protects us from races in SMP while
@@ -44,7 +154,12 @@ __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
44 */ 154 */
45struct timespec xtime __attribute__ ((aligned (16))); 155struct timespec xtime __attribute__ ((aligned (16)));
46struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 156struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
47static unsigned long total_sleep_time; /* seconds */ 157static struct timespec total_sleep_time;
158
159/*
160 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
161 */
162struct timespec raw_time;
48 163
49/* flag for if timekeeping is suspended */ 164/* flag for if timekeeping is suspended */
50int __read_mostly timekeeping_suspended; 165int __read_mostly timekeeping_suspended;
@@ -56,35 +171,44 @@ void update_xtime_cache(u64 nsec)
56 timespec_add_ns(&xtime_cache, nsec); 171 timespec_add_ns(&xtime_cache, nsec);
57} 172}
58 173
59struct clocksource *clock; 174/* must hold xtime_lock */
60 175void timekeeping_leap_insert(int leapsecond)
176{
177 xtime.tv_sec += leapsecond;
178 wall_to_monotonic.tv_sec -= leapsecond;
179 update_vsyscall(&xtime, timekeeper.clock);
180}
61 181
62#ifdef CONFIG_GENERIC_TIME 182#ifdef CONFIG_GENERIC_TIME
183
63/** 184/**
64 * clocksource_forward_now - update clock to the current time 185 * timekeeping_forward_now - update clock to the current time
65 * 186 *
66 * Forward the current clock to update its state since the last call to 187 * Forward the current clock to update its state since the last call to
67 * update_wall_time(). This is useful before significant clock changes, 188 * update_wall_time(). This is useful before significant clock changes,
68 * as it avoids having to deal with this time offset explicitly. 189 * as it avoids having to deal with this time offset explicitly.
69 */ 190 */
70static void clocksource_forward_now(void) 191static void timekeeping_forward_now(void)
71{ 192{
72 cycle_t cycle_now, cycle_delta; 193 cycle_t cycle_now, cycle_delta;
194 struct clocksource *clock;
73 s64 nsec; 195 s64 nsec;
74 196
75 cycle_now = clocksource_read(clock); 197 clock = timekeeper.clock;
198 cycle_now = clock->read(clock);
76 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 199 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
77 clock->cycle_last = cycle_now; 200 clock->cycle_last = cycle_now;
78 201
79 nsec = cyc2ns(clock, cycle_delta); 202 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
203 timekeeper.shift);
80 204
81 /* If arch requires, add in gettimeoffset() */ 205 /* If arch requires, add in gettimeoffset() */
82 nsec += arch_gettimeoffset(); 206 nsec += arch_gettimeoffset();
83 207
84 timespec_add_ns(&xtime, nsec); 208 timespec_add_ns(&xtime, nsec);
85 209
86 nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; 210 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
87 clock->raw_time.tv_nsec += nsec; 211 timespec_add_ns(&raw_time, nsec);
88} 212}
89 213
90/** 214/**
@@ -95,7 +219,6 @@ static void clocksource_forward_now(void)
95 */ 219 */
96void getnstimeofday(struct timespec *ts) 220void getnstimeofday(struct timespec *ts)
97{ 221{
98 cycle_t cycle_now, cycle_delta;
99 unsigned long seq; 222 unsigned long seq;
100 s64 nsecs; 223 s64 nsecs;
101 224
@@ -105,15 +228,7 @@ void getnstimeofday(struct timespec *ts)
105 seq = read_seqbegin(&xtime_lock); 228 seq = read_seqbegin(&xtime_lock);
106 229
107 *ts = xtime; 230 *ts = xtime;
108 231 nsecs = timekeeping_get_ns();
109 /* read clocksource: */
110 cycle_now = clocksource_read(clock);
111
112 /* calculate the delta since the last update_wall_time: */
113 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
114
115 /* convert to nanoseconds: */
116 nsecs = cyc2ns(clock, cycle_delta);
117 232
118 /* If arch requires, add in gettimeoffset() */ 233 /* If arch requires, add in gettimeoffset() */
119 nsecs += arch_gettimeoffset(); 234 nsecs += arch_gettimeoffset();
@@ -125,6 +240,57 @@ void getnstimeofday(struct timespec *ts)
125 240
126EXPORT_SYMBOL(getnstimeofday); 241EXPORT_SYMBOL(getnstimeofday);
127 242
243ktime_t ktime_get(void)
244{
245 unsigned int seq;
246 s64 secs, nsecs;
247
248 WARN_ON(timekeeping_suspended);
249
250 do {
251 seq = read_seqbegin(&xtime_lock);
252 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
253 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
254 nsecs += timekeeping_get_ns();
255
256 } while (read_seqretry(&xtime_lock, seq));
257 /*
258 * Use ktime_set/ktime_add_ns to create a proper ktime on
259 * 32-bit architectures without CONFIG_KTIME_SCALAR.
260 */
261 return ktime_add_ns(ktime_set(secs, 0), nsecs);
262}
263EXPORT_SYMBOL_GPL(ktime_get);
264
265/**
266 * ktime_get_ts - get the monotonic clock in timespec format
267 * @ts: pointer to timespec variable
268 *
269 * The function calculates the monotonic clock from the realtime
270 * clock and the wall_to_monotonic offset and stores the result
271 * in normalized timespec format in the variable pointed to by @ts.
272 */
273void ktime_get_ts(struct timespec *ts)
274{
275 struct timespec tomono;
276 unsigned int seq;
277 s64 nsecs;
278
279 WARN_ON(timekeeping_suspended);
280
281 do {
282 seq = read_seqbegin(&xtime_lock);
283 *ts = xtime;
284 tomono = wall_to_monotonic;
285 nsecs = timekeeping_get_ns();
286
287 } while (read_seqretry(&xtime_lock, seq));
288
289 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
290 ts->tv_nsec + tomono.tv_nsec + nsecs);
291}
292EXPORT_SYMBOL_GPL(ktime_get_ts);
293
128/** 294/**
129 * do_gettimeofday - Returns the time of day in a timeval 295 * do_gettimeofday - Returns the time of day in a timeval
130 * @tv: pointer to the timeval to be set 296 * @tv: pointer to the timeval to be set
@@ -157,7 +323,7 @@ int do_settimeofday(struct timespec *tv)
157 323
158 write_seqlock_irqsave(&xtime_lock, flags); 324 write_seqlock_irqsave(&xtime_lock, flags);
159 325
160 clocksource_forward_now(); 326 timekeeping_forward_now();
161 327
162 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; 328 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
163 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; 329 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
@@ -167,10 +333,10 @@ int do_settimeofday(struct timespec *tv)
167 333
168 update_xtime_cache(0); 334 update_xtime_cache(0);
169 335
170 clock->error = 0; 336 timekeeper.ntp_error = 0;
171 ntp_clear(); 337 ntp_clear();
172 338
173 update_vsyscall(&xtime, clock); 339 update_vsyscall(&xtime, timekeeper.clock);
174 340
175 write_sequnlock_irqrestore(&xtime_lock, flags); 341 write_sequnlock_irqrestore(&xtime_lock, flags);
176 342
@@ -187,44 +353,97 @@ EXPORT_SYMBOL(do_settimeofday);
187 * 353 *
188 * Accumulates current time interval and initializes new clocksource 354 * Accumulates current time interval and initializes new clocksource
189 */ 355 */
190static void change_clocksource(void) 356static int change_clocksource(void *data)
191{ 357{
192 struct clocksource *new, *old; 358 struct clocksource *new, *old;
193 359
194 new = clocksource_get_next(); 360 new = (struct clocksource *) data;
361
362 timekeeping_forward_now();
363 if (!new->enable || new->enable(new) == 0) {
364 old = timekeeper.clock;
365 timekeeper_setup_internals(new);
366 if (old->disable)
367 old->disable(old);
368 }
369 return 0;
370}
195 371
196 if (clock == new) 372/**
373 * timekeeping_notify - Install a new clock source
374 * @clock: pointer to the clock source
375 *
376 * This function is called from clocksource.c after a new, better clock
377 * source has been registered. The caller holds the clocksource_mutex.
378 */
379void timekeeping_notify(struct clocksource *clock)
380{
381 if (timekeeper.clock == clock)
197 return; 382 return;
383 stop_machine(change_clocksource, clock, NULL);
384 tick_clock_notify();
385}
198 386
199 clocksource_forward_now(); 387#else /* GENERIC_TIME */
200 388
201 if (clocksource_enable(new)) 389static inline void timekeeping_forward_now(void) { }
202 return;
203 390
204 new->raw_time = clock->raw_time; 391/**
205 old = clock; 392 * ktime_get - get the monotonic time in ktime_t format
206 clock = new; 393 *
207 clocksource_disable(old); 394 * returns the time in ktime_t format
395 */
396ktime_t ktime_get(void)
397{
398 struct timespec now;
208 399
209 clock->cycle_last = 0; 400 ktime_get_ts(&now);
210 clock->cycle_last = clocksource_read(clock);
211 clock->error = 0;
212 clock->xtime_nsec = 0;
213 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
214 401
215 tick_clock_notify(); 402 return timespec_to_ktime(now);
403}
404EXPORT_SYMBOL_GPL(ktime_get);
216 405
217 /* 406/**
218 * We're holding xtime lock and waking up klogd would deadlock 407 * ktime_get_ts - get the monotonic clock in timespec format
219 * us on enqueue. So no printing! 408 * @ts: pointer to timespec variable
220 printk(KERN_INFO "Time: %s clocksource has been installed.\n", 409 *
221 clock->name); 410 * The function calculates the monotonic clock from the realtime
222 */ 411 * clock and the wall_to_monotonic offset and stores the result
412 * in normalized timespec format in the variable pointed to by @ts.
413 */
414void ktime_get_ts(struct timespec *ts)
415{
416 struct timespec tomono;
417 unsigned long seq;
418
419 do {
420 seq = read_seqbegin(&xtime_lock);
421 getnstimeofday(ts);
422 tomono = wall_to_monotonic;
423
424 } while (read_seqretry(&xtime_lock, seq));
425
426 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
427 ts->tv_nsec + tomono.tv_nsec);
223} 428}
224#else 429EXPORT_SYMBOL_GPL(ktime_get_ts);
225static inline void clocksource_forward_now(void) { } 430
226static inline void change_clocksource(void) { } 431#endif /* !GENERIC_TIME */
227#endif 432
433/**
434 * ktime_get_real - get the real (wall-) time in ktime_t format
435 *
436 * returns the time in ktime_t format
437 */
438ktime_t ktime_get_real(void)
439{
440 struct timespec now;
441
442 getnstimeofday(&now);
443
444 return timespec_to_ktime(now);
445}
446EXPORT_SYMBOL_GPL(ktime_get_real);
228 447
229/** 448/**
230 * getrawmonotonic - Returns the raw monotonic time in a timespec 449 * getrawmonotonic - Returns the raw monotonic time in a timespec
@@ -236,21 +455,11 @@ void getrawmonotonic(struct timespec *ts)
236{ 455{
237 unsigned long seq; 456 unsigned long seq;
238 s64 nsecs; 457 s64 nsecs;
239 cycle_t cycle_now, cycle_delta;
240 458
241 do { 459 do {
242 seq = read_seqbegin(&xtime_lock); 460 seq = read_seqbegin(&xtime_lock);
243 461 nsecs = timekeeping_get_ns_raw();
244 /* read clocksource: */ 462 *ts = raw_time;
245 cycle_now = clocksource_read(clock);
246
247 /* calculate the delta since the last update_wall_time: */
248 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
249
250 /* convert to nanoseconds: */
251 nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
252
253 *ts = clock->raw_time;
254 463
255 } while (read_seqretry(&xtime_lock, seq)); 464 } while (read_seqretry(&xtime_lock, seq));
256 465
@@ -270,7 +479,7 @@ int timekeeping_valid_for_hres(void)
270 do { 479 do {
271 seq = read_seqbegin(&xtime_lock); 480 seq = read_seqbegin(&xtime_lock);
272 481
273 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 482 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
274 483
275 } while (read_seqretry(&xtime_lock, seq)); 484 } while (read_seqretry(&xtime_lock, seq));
276 485
@@ -278,17 +487,33 @@ int timekeeping_valid_for_hres(void)
278} 487}
279 488
280/** 489/**
281 * read_persistent_clock - Return time in seconds from the persistent clock. 490 * read_persistent_clock - Return time from the persistent clock.
282 * 491 *
283 * Weak dummy function for arches that do not yet support it. 492 * Weak dummy function for arches that do not yet support it.
284 * Returns seconds from epoch using the battery backed persistent clock. 493 * Reads the time from the battery backed persistent clock.
285 * Returns zero if unsupported. 494 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
286 * 495 *
287 * XXX - Do be sure to remove it once all arches implement it. 496 * XXX - Do be sure to remove it once all arches implement it.
288 */ 497 */
289unsigned long __attribute__((weak)) read_persistent_clock(void) 498void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
290{ 499{
291 return 0; 500 ts->tv_sec = 0;
501 ts->tv_nsec = 0;
502}
503
504/**
505 * read_boot_clock - Return time of the system start.
506 *
507 * Weak dummy function for arches that do not yet support it.
508 * Function to read the exact time the system has been started.
509 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
510 *
511 * XXX - Do be sure to remove it once all arches implement it.
512 */
513void __attribute__((weak)) read_boot_clock(struct timespec *ts)
514{
515 ts->tv_sec = 0;
516 ts->tv_nsec = 0;
292} 517}
293 518
294/* 519/*
@@ -296,29 +521,40 @@ unsigned long __attribute__((weak)) read_persistent_clock(void)
296 */ 521 */
297void __init timekeeping_init(void) 522void __init timekeeping_init(void)
298{ 523{
524 struct clocksource *clock;
299 unsigned long flags; 525 unsigned long flags;
300 unsigned long sec = read_persistent_clock(); 526 struct timespec now, boot;
527
528 read_persistent_clock(&now);
529 read_boot_clock(&boot);
301 530
302 write_seqlock_irqsave(&xtime_lock, flags); 531 write_seqlock_irqsave(&xtime_lock, flags);
303 532
304 ntp_init(); 533 ntp_init();
305 534
306 clock = clocksource_get_next(); 535 clock = clocksource_default_clock();
307 clocksource_enable(clock); 536 if (clock->enable)
308 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); 537 clock->enable(clock);
309 clock->cycle_last = clocksource_read(clock); 538 timekeeper_setup_internals(clock);
310 539
311 xtime.tv_sec = sec; 540 xtime.tv_sec = now.tv_sec;
312 xtime.tv_nsec = 0; 541 xtime.tv_nsec = now.tv_nsec;
542 raw_time.tv_sec = 0;
543 raw_time.tv_nsec = 0;
544 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
545 boot.tv_sec = xtime.tv_sec;
546 boot.tv_nsec = xtime.tv_nsec;
547 }
313 set_normalized_timespec(&wall_to_monotonic, 548 set_normalized_timespec(&wall_to_monotonic,
314 -xtime.tv_sec, -xtime.tv_nsec); 549 -boot.tv_sec, -boot.tv_nsec);
315 update_xtime_cache(0); 550 update_xtime_cache(0);
316 total_sleep_time = 0; 551 total_sleep_time.tv_sec = 0;
552 total_sleep_time.tv_nsec = 0;
317 write_sequnlock_irqrestore(&xtime_lock, flags); 553 write_sequnlock_irqrestore(&xtime_lock, flags);
318} 554}
319 555
320/* time in seconds when suspend began */ 556/* time in seconds when suspend began */
321static unsigned long timekeeping_suspend_time; 557static struct timespec timekeeping_suspend_time;
322 558
323/** 559/**
324 * timekeeping_resume - Resumes the generic timekeeping subsystem. 560 * timekeeping_resume - Resumes the generic timekeeping subsystem.
@@ -331,24 +567,24 @@ static unsigned long timekeeping_suspend_time;
331static int timekeeping_resume(struct sys_device *dev) 567static int timekeeping_resume(struct sys_device *dev)
332{ 568{
333 unsigned long flags; 569 unsigned long flags;
334 unsigned long now = read_persistent_clock(); 570 struct timespec ts;
571
572 read_persistent_clock(&ts);
335 573
336 clocksource_resume(); 574 clocksource_resume();
337 575
338 write_seqlock_irqsave(&xtime_lock, flags); 576 write_seqlock_irqsave(&xtime_lock, flags);
339 577
340 if (now && (now > timekeeping_suspend_time)) { 578 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
341 unsigned long sleep_length = now - timekeeping_suspend_time; 579 ts = timespec_sub(ts, timekeeping_suspend_time);
342 580 xtime = timespec_add_safe(xtime, ts);
343 xtime.tv_sec += sleep_length; 581 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
344 wall_to_monotonic.tv_sec -= sleep_length; 582 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
345 total_sleep_time += sleep_length;
346 } 583 }
347 update_xtime_cache(0); 584 update_xtime_cache(0);
348 /* re-base the last cycle value */ 585 /* re-base the last cycle value */
349 clock->cycle_last = 0; 586 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
350 clock->cycle_last = clocksource_read(clock); 587 timekeeper.ntp_error = 0;
351 clock->error = 0;
352 timekeeping_suspended = 0; 588 timekeeping_suspended = 0;
353 write_sequnlock_irqrestore(&xtime_lock, flags); 589 write_sequnlock_irqrestore(&xtime_lock, flags);
354 590
@@ -366,10 +602,10 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
366{ 602{
367 unsigned long flags; 603 unsigned long flags;
368 604
369 timekeeping_suspend_time = read_persistent_clock(); 605 read_persistent_clock(&timekeeping_suspend_time);
370 606
371 write_seqlock_irqsave(&xtime_lock, flags); 607 write_seqlock_irqsave(&xtime_lock, flags);
372 clocksource_forward_now(); 608 timekeeping_forward_now();
373 timekeeping_suspended = 1; 609 timekeeping_suspended = 1;
374 write_sequnlock_irqrestore(&xtime_lock, flags); 610 write_sequnlock_irqrestore(&xtime_lock, flags);
375 611
@@ -404,7 +640,7 @@ device_initcall(timekeeping_init_device);
404 * If the error is already larger, we look ahead even further 640 * If the error is already larger, we look ahead even further
405 * to compensate for late or lost adjustments. 641 * to compensate for late or lost adjustments.
406 */ 642 */
407static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, 643static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
408 s64 *offset) 644 s64 *offset)
409{ 645{
410 s64 tick_error, i; 646 s64 tick_error, i;
@@ -420,7 +656,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
420 * here. This is tuned so that an error of about 1 msec is adjusted 656 * here. This is tuned so that an error of about 1 msec is adjusted
421 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 657 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
422 */ 658 */
423 error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 659 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
424 error2 = abs(error2); 660 error2 = abs(error2);
425 for (look_ahead = 0; error2 > 0; look_ahead++) 661 for (look_ahead = 0; error2 > 0; look_ahead++)
426 error2 >>= 2; 662 error2 >>= 2;
@@ -429,8 +665,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
429 * Now calculate the error in (1 << look_ahead) ticks, but first 665 * Now calculate the error in (1 << look_ahead) ticks, but first
430 * remove the single look ahead already included in the error. 666 * remove the single look ahead already included in the error.
431 */ 667 */
432 tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); 668 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
433 tick_error -= clock->xtime_interval >> 1; 669 tick_error -= timekeeper.xtime_interval >> 1;
434 error = ((error - tick_error) >> look_ahead) + tick_error; 670 error = ((error - tick_error) >> look_ahead) + tick_error;
435 671
436 /* Finally calculate the adjustment shift value. */ 672 /* Finally calculate the adjustment shift value. */
@@ -455,18 +691,18 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
455 * this is optimized for the most common adjustments of -1,0,1, 691 * this is optimized for the most common adjustments of -1,0,1,
456 * for other values we can do a bit more work. 692 * for other values we can do a bit more work.
457 */ 693 */
458static void clocksource_adjust(s64 offset) 694static void timekeeping_adjust(s64 offset)
459{ 695{
460 s64 error, interval = clock->cycle_interval; 696 s64 error, interval = timekeeper.cycle_interval;
461 int adj; 697 int adj;
462 698
463 error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); 699 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
464 if (error > interval) { 700 if (error > interval) {
465 error >>= 2; 701 error >>= 2;
466 if (likely(error <= interval)) 702 if (likely(error <= interval))
467 adj = 1; 703 adj = 1;
468 else 704 else
469 adj = clocksource_bigadjust(error, &interval, &offset); 705 adj = timekeeping_bigadjust(error, &interval, &offset);
470 } else if (error < -interval) { 706 } else if (error < -interval) {
471 error >>= 2; 707 error >>= 2;
472 if (likely(error >= -interval)) { 708 if (likely(error >= -interval)) {
@@ -474,15 +710,15 @@ static void clocksource_adjust(s64 offset)
474 interval = -interval; 710 interval = -interval;
475 offset = -offset; 711 offset = -offset;
476 } else 712 } else
477 adj = clocksource_bigadjust(error, &interval, &offset); 713 adj = timekeeping_bigadjust(error, &interval, &offset);
478 } else 714 } else
479 return; 715 return;
480 716
481 clock->mult += adj; 717 timekeeper.mult += adj;
482 clock->xtime_interval += interval; 718 timekeeper.xtime_interval += interval;
483 clock->xtime_nsec -= offset; 719 timekeeper.xtime_nsec -= offset;
484 clock->error -= (interval - offset) << 720 timekeeper.ntp_error -= (interval - offset) <<
485 (NTP_SCALE_SHIFT - clock->shift); 721 timekeeper.ntp_error_shift;
486} 722}
487 723
488/** 724/**
@@ -492,53 +728,59 @@ static void clocksource_adjust(s64 offset)
492 */ 728 */
493void update_wall_time(void) 729void update_wall_time(void)
494{ 730{
731 struct clocksource *clock;
495 cycle_t offset; 732 cycle_t offset;
733 u64 nsecs;
496 734
497 /* Make sure we're fully resumed: */ 735 /* Make sure we're fully resumed: */
498 if (unlikely(timekeeping_suspended)) 736 if (unlikely(timekeeping_suspended))
499 return; 737 return;
500 738
739 clock = timekeeper.clock;
501#ifdef CONFIG_GENERIC_TIME 740#ifdef CONFIG_GENERIC_TIME
502 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; 741 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
503#else 742#else
504 offset = clock->cycle_interval; 743 offset = timekeeper.cycle_interval;
505#endif 744#endif
506 clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; 745 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
507 746
508 /* normally this loop will run just once, however in the 747 /* normally this loop will run just once, however in the
509 * case of lost or late ticks, it will accumulate correctly. 748 * case of lost or late ticks, it will accumulate correctly.
510 */ 749 */
511 while (offset >= clock->cycle_interval) { 750 while (offset >= timekeeper.cycle_interval) {
751 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
752
512 /* accumulate one interval */ 753 /* accumulate one interval */
513 offset -= clock->cycle_interval; 754 offset -= timekeeper.cycle_interval;
514 clock->cycle_last += clock->cycle_interval; 755 clock->cycle_last += timekeeper.cycle_interval;
515 756
516 clock->xtime_nsec += clock->xtime_interval; 757 timekeeper.xtime_nsec += timekeeper.xtime_interval;
517 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { 758 if (timekeeper.xtime_nsec >= nsecps) {
518 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; 759 timekeeper.xtime_nsec -= nsecps;
519 xtime.tv_sec++; 760 xtime.tv_sec++;
520 second_overflow(); 761 second_overflow();
521 } 762 }
522 763
523 clock->raw_time.tv_nsec += clock->raw_interval; 764 raw_time.tv_nsec += timekeeper.raw_interval;
524 if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { 765 if (raw_time.tv_nsec >= NSEC_PER_SEC) {
525 clock->raw_time.tv_nsec -= NSEC_PER_SEC; 766 raw_time.tv_nsec -= NSEC_PER_SEC;
526 clock->raw_time.tv_sec++; 767 raw_time.tv_sec++;
527 } 768 }
528 769
529 /* accumulate error between NTP and clock interval */ 770 /* accumulate error between NTP and clock interval */
530 clock->error += tick_length; 771 timekeeper.ntp_error += tick_length;
531 clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); 772 timekeeper.ntp_error -= timekeeper.xtime_interval <<
773 timekeeper.ntp_error_shift;
532 } 774 }
533 775
534 /* correct the clock when NTP error is too big */ 776 /* correct the clock when NTP error is too big */
535 clocksource_adjust(offset); 777 timekeeping_adjust(offset);
536 778
537 /* 779 /*
538 * Since in the loop above, we accumulate any amount of time 780 * Since in the loop above, we accumulate any amount of time
539 * in xtime_nsec over a second into xtime.tv_sec, its possible for 781 * in xtime_nsec over a second into xtime.tv_sec, its possible for
540 * xtime_nsec to be fairly small after the loop. Further, if we're 782 * xtime_nsec to be fairly small after the loop. Further, if we're
541 * slightly speeding the clocksource up in clocksource_adjust(), 783 * slightly speeding the clocksource up in timekeeping_adjust(),
542 * its possible the required corrective factor to xtime_nsec could 784 * its possible the required corrective factor to xtime_nsec could
543 * cause it to underflow. 785 * cause it to underflow.
544 * 786 *
@@ -550,24 +792,25 @@ void update_wall_time(void)
550 * We'll correct this error next time through this function, when 792 * We'll correct this error next time through this function, when
551 * xtime_nsec is not as small. 793 * xtime_nsec is not as small.
552 */ 794 */
553 if (unlikely((s64)clock->xtime_nsec < 0)) { 795 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
554 s64 neg = -(s64)clock->xtime_nsec; 796 s64 neg = -(s64)timekeeper.xtime_nsec;
555 clock->xtime_nsec = 0; 797 timekeeper.xtime_nsec = 0;
556 clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); 798 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
557 } 799 }
558 800
559 /* store full nanoseconds into xtime after rounding it up and 801 /* store full nanoseconds into xtime after rounding it up and
560 * add the remainder to the error difference. 802 * add the remainder to the error difference.
561 */ 803 */
562 xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; 804 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
563 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; 805 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
564 clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); 806 timekeeper.ntp_error += timekeeper.xtime_nsec <<
807 timekeeper.ntp_error_shift;
565 808
566 update_xtime_cache(cyc2ns(clock, offset)); 809 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
810 update_xtime_cache(nsecs);
567 811
568 /* check to see if there is a new clocksource to use */ 812 /* check to see if there is a new clocksource to use */
569 change_clocksource(); 813 update_vsyscall(&xtime, timekeeper.clock);
570 update_vsyscall(&xtime, clock);
571} 814}
572 815
573/** 816/**
@@ -583,9 +826,12 @@ void update_wall_time(void)
583 */ 826 */
584void getboottime(struct timespec *ts) 827void getboottime(struct timespec *ts)
585{ 828{
586 set_normalized_timespec(ts, 829 struct timespec boottime = {
587 - (wall_to_monotonic.tv_sec + total_sleep_time), 830 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
588 - wall_to_monotonic.tv_nsec); 831 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
832 };
833
834 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
589} 835}
590 836
591/** 837/**
@@ -594,7 +840,7 @@ void getboottime(struct timespec *ts)
594 */ 840 */
595void monotonic_to_bootbased(struct timespec *ts) 841void monotonic_to_bootbased(struct timespec *ts)
596{ 842{
597 ts->tv_sec += total_sleep_time; 843 *ts = timespec_add_safe(*ts, total_sleep_time);
598} 844}
599 845
600unsigned long get_seconds(void) 846unsigned long get_seconds(void)
@@ -603,6 +849,10 @@ unsigned long get_seconds(void)
603} 849}
604EXPORT_SYMBOL(get_seconds); 850EXPORT_SYMBOL(get_seconds);
605 851
852struct timespec __current_kernel_time(void)
853{
854 return xtime_cache;
855}
606 856
607struct timespec current_kernel_time(void) 857struct timespec current_kernel_time(void)
608{ 858{
@@ -618,3 +868,20 @@ struct timespec current_kernel_time(void)
618 return now; 868 return now;
619} 869}
620EXPORT_SYMBOL(current_kernel_time); 870EXPORT_SYMBOL(current_kernel_time);
871
872struct timespec get_monotonic_coarse(void)
873{
874 struct timespec now, mono;
875 unsigned long seq;
876
877 do {
878 seq = read_seqbegin(&xtime_lock);
879
880 now = xtime_cache;
881 mono = wall_to_monotonic;
882 } while (read_seqretry(&xtime_lock, seq));
883
884 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
885 now.tv_nsec + mono.tv_nsec);
886 return now;
887}
diff --git a/kernel/timer.c b/kernel/timer.c
index a3d25f415019..5db5a8d26811 100644
--- a/kernel/timer.c
+++ b/kernel/timer.c
@@ -37,7 +37,7 @@
37#include <linux/delay.h> 37#include <linux/delay.h>
38#include <linux/tick.h> 38#include <linux/tick.h>
39#include <linux/kallsyms.h> 39#include <linux/kallsyms.h>
40#include <linux/perf_counter.h> 40#include <linux/perf_event.h>
41#include <linux/sched.h> 41#include <linux/sched.h>
42 42
43#include <asm/uaccess.h> 43#include <asm/uaccess.h>
@@ -46,6 +46,9 @@
46#include <asm/timex.h> 46#include <asm/timex.h>
47#include <asm/io.h> 47#include <asm/io.h>
48 48
49#define CREATE_TRACE_POINTS
50#include <trace/events/timer.h>
51
49u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 52u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
50 53
51EXPORT_SYMBOL(jiffies_64); 54EXPORT_SYMBOL(jiffies_64);
@@ -72,6 +75,7 @@ struct tvec_base {
72 spinlock_t lock; 75 spinlock_t lock;
73 struct timer_list *running_timer; 76 struct timer_list *running_timer;
74 unsigned long timer_jiffies; 77 unsigned long timer_jiffies;
78 unsigned long next_timer;
75 struct tvec_root tv1; 79 struct tvec_root tv1;
76 struct tvec tv2; 80 struct tvec tv2;
77 struct tvec tv3; 81 struct tvec tv3;
@@ -520,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { }
520static inline void debug_timer_deactivate(struct timer_list *timer) { } 524static inline void debug_timer_deactivate(struct timer_list *timer) { }
521#endif 525#endif
522 526
527static inline void debug_init(struct timer_list *timer)
528{
529 debug_timer_init(timer);
530 trace_timer_init(timer);
531}
532
533static inline void
534debug_activate(struct timer_list *timer, unsigned long expires)
535{
536 debug_timer_activate(timer);
537 trace_timer_start(timer, expires);
538}
539
540static inline void debug_deactivate(struct timer_list *timer)
541{
542 debug_timer_deactivate(timer);
543 trace_timer_cancel(timer);
544}
545
523static void __init_timer(struct timer_list *timer, 546static void __init_timer(struct timer_list *timer,
524 const char *name, 547 const char *name,
525 struct lock_class_key *key) 548 struct lock_class_key *key)
@@ -548,7 +571,7 @@ void init_timer_key(struct timer_list *timer,
548 const char *name, 571 const char *name,
549 struct lock_class_key *key) 572 struct lock_class_key *key)
550{ 573{
551 debug_timer_init(timer); 574 debug_init(timer);
552 __init_timer(timer, name, key); 575 __init_timer(timer, name, key);
553} 576}
554EXPORT_SYMBOL(init_timer_key); 577EXPORT_SYMBOL(init_timer_key);
@@ -567,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer,
567{ 590{
568 struct list_head *entry = &timer->entry; 591 struct list_head *entry = &timer->entry;
569 592
570 debug_timer_deactivate(timer); 593 debug_deactivate(timer);
571 594
572 __list_del(entry->prev, entry->next); 595 __list_del(entry->prev, entry->next);
573 if (clear_pending) 596 if (clear_pending)
@@ -622,13 +645,16 @@ __mod_timer(struct timer_list *timer, unsigned long expires,
622 645
623 if (timer_pending(timer)) { 646 if (timer_pending(timer)) {
624 detach_timer(timer, 0); 647 detach_timer(timer, 0);
648 if (timer->expires == base->next_timer &&
649 !tbase_get_deferrable(timer->base))
650 base->next_timer = base->timer_jiffies;
625 ret = 1; 651 ret = 1;
626 } else { 652 } else {
627 if (pending_only) 653 if (pending_only)
628 goto out_unlock; 654 goto out_unlock;
629 } 655 }
630 656
631 debug_timer_activate(timer); 657 debug_activate(timer, expires);
632 658
633 new_base = __get_cpu_var(tvec_bases); 659 new_base = __get_cpu_var(tvec_bases);
634 660
@@ -663,6 +689,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires,
663 } 689 }
664 690
665 timer->expires = expires; 691 timer->expires = expires;
692 if (time_before(timer->expires, base->next_timer) &&
693 !tbase_get_deferrable(timer->base))
694 base->next_timer = timer->expires;
666 internal_add_timer(base, timer); 695 internal_add_timer(base, timer);
667 696
668out_unlock: 697out_unlock:
@@ -780,7 +809,10 @@ void add_timer_on(struct timer_list *timer, int cpu)
780 BUG_ON(timer_pending(timer) || !timer->function); 809 BUG_ON(timer_pending(timer) || !timer->function);
781 spin_lock_irqsave(&base->lock, flags); 810 spin_lock_irqsave(&base->lock, flags);
782 timer_set_base(timer, base); 811 timer_set_base(timer, base);
783 debug_timer_activate(timer); 812 debug_activate(timer, timer->expires);
813 if (time_before(timer->expires, base->next_timer) &&
814 !tbase_get_deferrable(timer->base))
815 base->next_timer = timer->expires;
784 internal_add_timer(base, timer); 816 internal_add_timer(base, timer);
785 /* 817 /*
786 * Check whether the other CPU is idle and needs to be 818 * Check whether the other CPU is idle and needs to be
@@ -817,6 +849,9 @@ int del_timer(struct timer_list *timer)
817 base = lock_timer_base(timer, &flags); 849 base = lock_timer_base(timer, &flags);
818 if (timer_pending(timer)) { 850 if (timer_pending(timer)) {
819 detach_timer(timer, 1); 851 detach_timer(timer, 1);
852 if (timer->expires == base->next_timer &&
853 !tbase_get_deferrable(timer->base))
854 base->next_timer = base->timer_jiffies;
820 ret = 1; 855 ret = 1;
821 } 856 }
822 spin_unlock_irqrestore(&base->lock, flags); 857 spin_unlock_irqrestore(&base->lock, flags);
@@ -850,6 +885,9 @@ int try_to_del_timer_sync(struct timer_list *timer)
850 ret = 0; 885 ret = 0;
851 if (timer_pending(timer)) { 886 if (timer_pending(timer)) {
852 detach_timer(timer, 1); 887 detach_timer(timer, 1);
888 if (timer->expires == base->next_timer &&
889 !tbase_get_deferrable(timer->base))
890 base->next_timer = base->timer_jiffies;
853 ret = 1; 891 ret = 1;
854 } 892 }
855out: 893out:
@@ -984,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base)
984 */ 1022 */
985 lock_map_acquire(&lockdep_map); 1023 lock_map_acquire(&lockdep_map);
986 1024
1025 trace_timer_expire_entry(timer);
987 fn(data); 1026 fn(data);
1027 trace_timer_expire_exit(timer);
988 1028
989 lock_map_release(&lockdep_map); 1029 lock_map_release(&lockdep_map);
990 1030
@@ -1007,8 +1047,8 @@ static inline void __run_timers(struct tvec_base *base)
1007#ifdef CONFIG_NO_HZ 1047#ifdef CONFIG_NO_HZ
1008/* 1048/*
1009 * Find out when the next timer event is due to happen. This 1049 * Find out when the next timer event is due to happen. This
1010 * is used on S/390 to stop all activity when a cpus is idle. 1050 * is used on S/390 to stop all activity when a CPU is idle.
1011 * This functions needs to be called disabled. 1051 * This function needs to be called with interrupts disabled.
1012 */ 1052 */
1013static unsigned long __next_timer_interrupt(struct tvec_base *base) 1053static unsigned long __next_timer_interrupt(struct tvec_base *base)
1014{ 1054{
@@ -1134,7 +1174,9 @@ unsigned long get_next_timer_interrupt(unsigned long now)
1134 unsigned long expires; 1174 unsigned long expires;
1135 1175
1136 spin_lock(&base->lock); 1176 spin_lock(&base->lock);
1137 expires = __next_timer_interrupt(base); 1177 if (time_before_eq(base->next_timer, base->timer_jiffies))
1178 base->next_timer = __next_timer_interrupt(base);
1179 expires = base->next_timer;
1138 spin_unlock(&base->lock); 1180 spin_unlock(&base->lock);
1139 1181
1140 if (time_before_eq(expires, now)) 1182 if (time_before_eq(expires, now))
@@ -1169,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h)
1169{ 1211{
1170 struct tvec_base *base = __get_cpu_var(tvec_bases); 1212 struct tvec_base *base = __get_cpu_var(tvec_bases);
1171 1213
1172 perf_counter_do_pending(); 1214 perf_event_do_pending();
1173 1215
1174 hrtimer_run_pending(); 1216 hrtimer_run_pending();
1175 1217
@@ -1522,6 +1564,7 @@ static int __cpuinit init_timers_cpu(int cpu)
1522 INIT_LIST_HEAD(base->tv1.vec + j); 1564 INIT_LIST_HEAD(base->tv1.vec + j);
1523 1565
1524 base->timer_jiffies = jiffies; 1566 base->timer_jiffies = jiffies;
1567 base->next_timer = base->timer_jiffies;
1525 return 0; 1568 return 0;
1526} 1569}
1527 1570
@@ -1534,6 +1577,9 @@ static void migrate_timer_list(struct tvec_base *new_base, struct list_head *hea
1534 timer = list_first_entry(head, struct timer_list, entry); 1577 timer = list_first_entry(head, struct timer_list, entry);
1535 detach_timer(timer, 0); 1578 detach_timer(timer, 0);
1536 timer_set_base(timer, new_base); 1579 timer_set_base(timer, new_base);
1580 if (time_before(timer->expires, new_base->next_timer) &&
1581 !tbase_get_deferrable(timer->base))
1582 new_base->next_timer = timer->expires;
1537 internal_add_timer(new_base, timer); 1583 internal_add_timer(new_base, timer);
1538 } 1584 }
1539} 1585}
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index 1ea0d1234f4a..b416512ad17f 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -11,12 +11,18 @@ config NOP_TRACER
11 11
12config HAVE_FTRACE_NMI_ENTER 12config HAVE_FTRACE_NMI_ENTER
13 bool 13 bool
14 help
15 See Documentation/trace/ftrace-implementation.txt
14 16
15config HAVE_FUNCTION_TRACER 17config HAVE_FUNCTION_TRACER
16 bool 18 bool
19 help
20 See Documentation/trace/ftrace-implementation.txt
17 21
18config HAVE_FUNCTION_GRAPH_TRACER 22config HAVE_FUNCTION_GRAPH_TRACER
19 bool 23 bool
24 help
25 See Documentation/trace/ftrace-implementation.txt
20 26
21config HAVE_FUNCTION_GRAPH_FP_TEST 27config HAVE_FUNCTION_GRAPH_FP_TEST
22 bool 28 bool
@@ -28,21 +34,25 @@ config HAVE_FUNCTION_GRAPH_FP_TEST
28config HAVE_FUNCTION_TRACE_MCOUNT_TEST 34config HAVE_FUNCTION_TRACE_MCOUNT_TEST
29 bool 35 bool
30 help 36 help
31 This gets selected when the arch tests the function_trace_stop 37 See Documentation/trace/ftrace-implementation.txt
32 variable at the mcount call site. Otherwise, this variable
33 is tested by the called function.
34 38
35config HAVE_DYNAMIC_FTRACE 39config HAVE_DYNAMIC_FTRACE
36 bool 40 bool
41 help
42 See Documentation/trace/ftrace-implementation.txt
37 43
38config HAVE_FTRACE_MCOUNT_RECORD 44config HAVE_FTRACE_MCOUNT_RECORD
39 bool 45 bool
46 help
47 See Documentation/trace/ftrace-implementation.txt
40 48
41config HAVE_HW_BRANCH_TRACER 49config HAVE_HW_BRANCH_TRACER
42 bool 50 bool
43 51
44config HAVE_SYSCALL_TRACEPOINTS 52config HAVE_SYSCALL_TRACEPOINTS
45 bool 53 bool
54 help
55 See Documentation/trace/ftrace-implementation.txt
46 56
47config TRACER_MAX_TRACE 57config TRACER_MAX_TRACE
48 bool 58 bool
@@ -73,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP
73# This allows those options to appear when no other tracer is selected. But the 83# This allows those options to appear when no other tracer is selected. But the
74# options do not appear when something else selects it. We need the two options 84# options do not appear when something else selects it. We need the two options
75# GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the 85# GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the
76# hidding of the automatic options options. 86# hidding of the automatic options.
77 87
78config TRACING 88config TRACING
79 bool 89 bool
@@ -469,6 +479,18 @@ config FTRACE_STARTUP_TEST
469 functioning properly. It will do tests on all the configured 479 functioning properly. It will do tests on all the configured
470 tracers of ftrace. 480 tracers of ftrace.
471 481
482config EVENT_TRACE_TEST_SYSCALLS
483 bool "Run selftest on syscall events"
484 depends on FTRACE_STARTUP_TEST
485 help
486 This option will also enable testing every syscall event.
487 It only enables the event and disables it and runs various loads
488 with the event enabled. This adds a bit more time for kernel boot
489 up since it runs this on every system call defined.
490
491 TBD - enable a way to actually call the syscalls as we test their
492 events
493
472config MMIOTRACE 494config MMIOTRACE
473 bool "Memory mapped IO tracing" 495 bool "Memory mapped IO tracing"
474 depends on HAVE_MMIOTRACE_SUPPORT && PCI 496 depends on HAVE_MMIOTRACE_SUPPORT && PCI
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile
index 844164dca90a..26f03ac07c2b 100644
--- a/kernel/trace/Makefile
+++ b/kernel/trace/Makefile
@@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o
42obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o 42obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o
43obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o 43obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o
44obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o 44obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o
45obj-$(CONFIG_POWER_TRACER) += trace_power.o
46obj-$(CONFIG_KMEMTRACE) += kmemtrace.o 45obj-$(CONFIG_KMEMTRACE) += kmemtrace.o
47obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o 46obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o
48obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o 47obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o
@@ -54,5 +53,6 @@ obj-$(CONFIG_EVENT_TRACING) += trace_export.o
54obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o 53obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o
55obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o 54obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o
56obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o 55obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o
56obj-$(CONFIG_EVENT_TRACING) += power-traces.o
57 57
58libftrace-y := ftrace.o 58libftrace-y := ftrace.o
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 8c804e24f96f..a142579765bf 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -1323,11 +1323,10 @@ static int __init ftrace_dyn_table_alloc(unsigned long num_to_init)
1323 1323
1324enum { 1324enum {
1325 FTRACE_ITER_FILTER = (1 << 0), 1325 FTRACE_ITER_FILTER = (1 << 0),
1326 FTRACE_ITER_CONT = (1 << 1), 1326 FTRACE_ITER_NOTRACE = (1 << 1),
1327 FTRACE_ITER_NOTRACE = (1 << 2), 1327 FTRACE_ITER_FAILURES = (1 << 2),
1328 FTRACE_ITER_FAILURES = (1 << 3), 1328 FTRACE_ITER_PRINTALL = (1 << 3),
1329 FTRACE_ITER_PRINTALL = (1 << 4), 1329 FTRACE_ITER_HASH = (1 << 4),
1330 FTRACE_ITER_HASH = (1 << 5),
1331}; 1330};
1332 1331
1333#define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 1332#define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
@@ -1337,8 +1336,7 @@ struct ftrace_iterator {
1337 int hidx; 1336 int hidx;
1338 int idx; 1337 int idx;
1339 unsigned flags; 1338 unsigned flags;
1340 unsigned char buffer[FTRACE_BUFF_MAX+1]; 1339 struct trace_parser parser;
1341 unsigned buffer_idx;
1342}; 1340};
1343 1341
1344static void * 1342static void *
@@ -1407,7 +1405,7 @@ static int t_hash_show(struct seq_file *m, void *v)
1407 if (rec->ops->print) 1405 if (rec->ops->print)
1408 return rec->ops->print(m, rec->ip, rec->ops, rec->data); 1406 return rec->ops->print(m, rec->ip, rec->ops, rec->data);
1409 1407
1410 seq_printf(m, "%pf:%pf", (void *)rec->ip, (void *)rec->ops->func); 1408 seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func);
1411 1409
1412 if (rec->data) 1410 if (rec->data)
1413 seq_printf(m, ":%p", rec->data); 1411 seq_printf(m, ":%p", rec->data);
@@ -1517,12 +1515,12 @@ static int t_show(struct seq_file *m, void *v)
1517 if (!rec) 1515 if (!rec)
1518 return 0; 1516 return 0;
1519 1517
1520 seq_printf(m, "%pf\n", (void *)rec->ip); 1518 seq_printf(m, "%ps\n", (void *)rec->ip);
1521 1519
1522 return 0; 1520 return 0;
1523} 1521}
1524 1522
1525static struct seq_operations show_ftrace_seq_ops = { 1523static const struct seq_operations show_ftrace_seq_ops = {
1526 .start = t_start, 1524 .start = t_start,
1527 .next = t_next, 1525 .next = t_next,
1528 .stop = t_stop, 1526 .stop = t_stop,
@@ -1604,6 +1602,11 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable)
1604 if (!iter) 1602 if (!iter)
1605 return -ENOMEM; 1603 return -ENOMEM;
1606 1604
1605 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) {
1606 kfree(iter);
1607 return -ENOMEM;
1608 }
1609
1607 mutex_lock(&ftrace_regex_lock); 1610 mutex_lock(&ftrace_regex_lock);
1608 if ((file->f_mode & FMODE_WRITE) && 1611 if ((file->f_mode & FMODE_WRITE) &&
1609 (file->f_flags & O_TRUNC)) 1612 (file->f_flags & O_TRUNC))
@@ -2059,9 +2062,9 @@ __unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
2059 int i, len = 0; 2062 int i, len = 0;
2060 char *search; 2063 char *search;
2061 2064
2062 if (glob && (strcmp(glob, "*") || !strlen(glob))) 2065 if (glob && (strcmp(glob, "*") == 0 || !strlen(glob)))
2063 glob = NULL; 2066 glob = NULL;
2064 else { 2067 else if (glob) {
2065 int not; 2068 int not;
2066 2069
2067 type = ftrace_setup_glob(glob, strlen(glob), &search, &not); 2070 type = ftrace_setup_glob(glob, strlen(glob), &search, &not);
@@ -2196,9 +2199,8 @@ ftrace_regex_write(struct file *file, const char __user *ubuf,
2196 size_t cnt, loff_t *ppos, int enable) 2199 size_t cnt, loff_t *ppos, int enable)
2197{ 2200{
2198 struct ftrace_iterator *iter; 2201 struct ftrace_iterator *iter;
2199 char ch; 2202 struct trace_parser *parser;
2200 size_t read = 0; 2203 ssize_t ret, read;
2201 ssize_t ret;
2202 2204
2203 if (!cnt || cnt < 0) 2205 if (!cnt || cnt < 0)
2204 return 0; 2206 return 0;
@@ -2211,72 +2213,23 @@ ftrace_regex_write(struct file *file, const char __user *ubuf,
2211 } else 2213 } else
2212 iter = file->private_data; 2214 iter = file->private_data;
2213 2215
2214 if (!*ppos) { 2216 parser = &iter->parser;
2215 iter->flags &= ~FTRACE_ITER_CONT; 2217 read = trace_get_user(parser, ubuf, cnt, ppos);
2216 iter->buffer_idx = 0;
2217 }
2218 2218
2219 ret = get_user(ch, ubuf++); 2219 if (trace_parser_loaded(parser) &&
2220 if (ret) 2220 !trace_parser_cont(parser)) {
2221 goto out; 2221 ret = ftrace_process_regex(parser->buffer,
2222 read++; 2222 parser->idx, enable);
2223 cnt--;
2224
2225 /*
2226 * If the parser haven't finished with the last write,
2227 * continue reading the user input without skipping spaces.
2228 */
2229 if (!(iter->flags & FTRACE_ITER_CONT)) {
2230 /* skip white space */
2231 while (cnt && isspace(ch)) {
2232 ret = get_user(ch, ubuf++);
2233 if (ret)
2234 goto out;
2235 read++;
2236 cnt--;
2237 }
2238
2239 /* only spaces were written */
2240 if (isspace(ch)) {
2241 *ppos += read;
2242 ret = read;
2243 goto out;
2244 }
2245
2246 iter->buffer_idx = 0;
2247 }
2248
2249 while (cnt && !isspace(ch)) {
2250 if (iter->buffer_idx < FTRACE_BUFF_MAX)
2251 iter->buffer[iter->buffer_idx++] = ch;
2252 else {
2253 ret = -EINVAL;
2254 goto out;
2255 }
2256 ret = get_user(ch, ubuf++);
2257 if (ret) 2223 if (ret)
2258 goto out; 2224 goto out;
2259 read++;
2260 cnt--;
2261 }
2262 2225
2263 if (isspace(ch)) { 2226 trace_parser_clear(parser);
2264 iter->buffer[iter->buffer_idx] = 0;
2265 ret = ftrace_process_regex(iter->buffer,
2266 iter->buffer_idx, enable);
2267 if (ret)
2268 goto out;
2269 iter->buffer_idx = 0;
2270 } else {
2271 iter->flags |= FTRACE_ITER_CONT;
2272 iter->buffer[iter->buffer_idx++] = ch;
2273 } 2227 }
2274 2228
2275 *ppos += read;
2276 ret = read; 2229 ret = read;
2277 out:
2278 mutex_unlock(&ftrace_regex_lock);
2279 2230
2231 mutex_unlock(&ftrace_regex_lock);
2232out:
2280 return ret; 2233 return ret;
2281} 2234}
2282 2235
@@ -2381,6 +2334,7 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable)
2381{ 2334{
2382 struct seq_file *m = (struct seq_file *)file->private_data; 2335 struct seq_file *m = (struct seq_file *)file->private_data;
2383 struct ftrace_iterator *iter; 2336 struct ftrace_iterator *iter;
2337 struct trace_parser *parser;
2384 2338
2385 mutex_lock(&ftrace_regex_lock); 2339 mutex_lock(&ftrace_regex_lock);
2386 if (file->f_mode & FMODE_READ) { 2340 if (file->f_mode & FMODE_READ) {
@@ -2390,9 +2344,10 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable)
2390 } else 2344 } else
2391 iter = file->private_data; 2345 iter = file->private_data;
2392 2346
2393 if (iter->buffer_idx) { 2347 parser = &iter->parser;
2394 iter->buffer[iter->buffer_idx] = 0; 2348 if (trace_parser_loaded(parser)) {
2395 ftrace_match_records(iter->buffer, iter->buffer_idx, enable); 2349 parser->buffer[parser->idx] = 0;
2350 ftrace_match_records(parser->buffer, parser->idx, enable);
2396 } 2351 }
2397 2352
2398 mutex_lock(&ftrace_lock); 2353 mutex_lock(&ftrace_lock);
@@ -2400,7 +2355,9 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable)
2400 ftrace_run_update_code(FTRACE_ENABLE_CALLS); 2355 ftrace_run_update_code(FTRACE_ENABLE_CALLS);
2401 mutex_unlock(&ftrace_lock); 2356 mutex_unlock(&ftrace_lock);
2402 2357
2358 trace_parser_put(parser);
2403 kfree(iter); 2359 kfree(iter);
2360
2404 mutex_unlock(&ftrace_regex_lock); 2361 mutex_unlock(&ftrace_regex_lock);
2405 return 0; 2362 return 0;
2406} 2363}
@@ -2457,11 +2414,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly;
2457static void * 2414static void *
2458__g_next(struct seq_file *m, loff_t *pos) 2415__g_next(struct seq_file *m, loff_t *pos)
2459{ 2416{
2460 unsigned long *array = m->private;
2461
2462 if (*pos >= ftrace_graph_count) 2417 if (*pos >= ftrace_graph_count)
2463 return NULL; 2418 return NULL;
2464 return &array[*pos]; 2419 return &ftrace_graph_funcs[*pos];
2465} 2420}
2466 2421
2467static void * 2422static void *
@@ -2499,12 +2454,12 @@ static int g_show(struct seq_file *m, void *v)
2499 return 0; 2454 return 0;
2500 } 2455 }
2501 2456
2502 seq_printf(m, "%pf\n", v); 2457 seq_printf(m, "%ps\n", (void *)*ptr);
2503 2458
2504 return 0; 2459 return 0;
2505} 2460}
2506 2461
2507static struct seq_operations ftrace_graph_seq_ops = { 2462static const struct seq_operations ftrace_graph_seq_ops = {
2508 .start = g_start, 2463 .start = g_start,
2509 .next = g_next, 2464 .next = g_next,
2510 .stop = g_stop, 2465 .stop = g_stop,
@@ -2525,16 +2480,10 @@ ftrace_graph_open(struct inode *inode, struct file *file)
2525 ftrace_graph_count = 0; 2480 ftrace_graph_count = 0;
2526 memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); 2481 memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs));
2527 } 2482 }
2483 mutex_unlock(&graph_lock);
2528 2484
2529 if (file->f_mode & FMODE_READ) { 2485 if (file->f_mode & FMODE_READ)
2530 ret = seq_open(file, &ftrace_graph_seq_ops); 2486 ret = seq_open(file, &ftrace_graph_seq_ops);
2531 if (!ret) {
2532 struct seq_file *m = file->private_data;
2533 m->private = ftrace_graph_funcs;
2534 }
2535 } else
2536 file->private_data = ftrace_graph_funcs;
2537 mutex_unlock(&graph_lock);
2538 2487
2539 return ret; 2488 return ret;
2540} 2489}
@@ -2602,12 +2551,9 @@ static ssize_t
2602ftrace_graph_write(struct file *file, const char __user *ubuf, 2551ftrace_graph_write(struct file *file, const char __user *ubuf,
2603 size_t cnt, loff_t *ppos) 2552 size_t cnt, loff_t *ppos)
2604{ 2553{
2605 unsigned char buffer[FTRACE_BUFF_MAX+1]; 2554 struct trace_parser parser;
2606 unsigned long *array;
2607 size_t read = 0; 2555 size_t read = 0;
2608 ssize_t ret; 2556 ssize_t ret;
2609 int index = 0;
2610 char ch;
2611 2557
2612 if (!cnt || cnt < 0) 2558 if (!cnt || cnt < 0)
2613 return 0; 2559 return 0;
@@ -2619,57 +2565,26 @@ ftrace_graph_write(struct file *file, const char __user *ubuf,
2619 goto out; 2565 goto out;
2620 } 2566 }
2621 2567
2622 if (file->f_mode & FMODE_READ) { 2568 if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) {
2623 struct seq_file *m = file->private_data; 2569 ret = -ENOMEM;
2624 array = m->private;
2625 } else
2626 array = file->private_data;
2627
2628 ret = get_user(ch, ubuf++);
2629 if (ret)
2630 goto out; 2570 goto out;
2631 read++;
2632 cnt--;
2633
2634 /* skip white space */
2635 while (cnt && isspace(ch)) {
2636 ret = get_user(ch, ubuf++);
2637 if (ret)
2638 goto out;
2639 read++;
2640 cnt--;
2641 } 2571 }
2642 2572
2643 if (isspace(ch)) { 2573 read = trace_get_user(&parser, ubuf, cnt, ppos);
2644 *ppos += read;
2645 ret = read;
2646 goto out;
2647 }
2648 2574
2649 while (cnt && !isspace(ch)) { 2575 if (trace_parser_loaded((&parser))) {
2650 if (index < FTRACE_BUFF_MAX) 2576 parser.buffer[parser.idx] = 0;
2651 buffer[index++] = ch; 2577
2652 else { 2578 /* we allow only one expression at a time */
2653 ret = -EINVAL; 2579 ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count,
2654 goto out; 2580 parser.buffer);
2655 }
2656 ret = get_user(ch, ubuf++);
2657 if (ret) 2581 if (ret)
2658 goto out; 2582 goto out;
2659 read++;
2660 cnt--;
2661 } 2583 }
2662 buffer[index] = 0;
2663
2664 /* we allow only one expression at a time */
2665 ret = ftrace_set_func(array, &ftrace_graph_count, buffer);
2666 if (ret)
2667 goto out;
2668
2669 file->f_pos += read;
2670 2584
2671 ret = read; 2585 ret = read;
2672 out: 2586 out:
2587 trace_parser_put(&parser);
2673 mutex_unlock(&graph_lock); 2588 mutex_unlock(&graph_lock);
2674 2589
2675 return ret; 2590 return ret;
@@ -3100,7 +3015,7 @@ int unregister_ftrace_function(struct ftrace_ops *ops)
3100 3015
3101int 3016int
3102ftrace_enable_sysctl(struct ctl_table *table, int write, 3017ftrace_enable_sysctl(struct ctl_table *table, int write,
3103 struct file *file, void __user *buffer, size_t *lenp, 3018 void __user *buffer, size_t *lenp,
3104 loff_t *ppos) 3019 loff_t *ppos)
3105{ 3020{
3106 int ret; 3021 int ret;
@@ -3110,7 +3025,7 @@ ftrace_enable_sysctl(struct ctl_table *table, int write,
3110 3025
3111 mutex_lock(&ftrace_lock); 3026 mutex_lock(&ftrace_lock);
3112 3027
3113 ret = proc_dointvec(table, write, file, buffer, lenp, ppos); 3028 ret = proc_dointvec(table, write, buffer, lenp, ppos);
3114 3029
3115 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 3030 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
3116 goto out; 3031 goto out;
diff --git a/kernel/trace/power-traces.c b/kernel/trace/power-traces.c
new file mode 100644
index 000000000000..e06c6e3d56a3
--- /dev/null
+++ b/kernel/trace/power-traces.c
@@ -0,0 +1,20 @@
1/*
2 * Power trace points
3 *
4 * Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com>
5 */
6
7#include <linux/string.h>
8#include <linux/types.h>
9#include <linux/workqueue.h>
10#include <linux/sched.h>
11#include <linux/module.h>
12#include <linux/slab.h>
13
14#define CREATE_TRACE_POINTS
15#include <trace/events/power.h>
16
17EXPORT_TRACEPOINT_SYMBOL_GPL(power_start);
18EXPORT_TRACEPOINT_SYMBOL_GPL(power_end);
19EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency);
20
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index 454e74e718cf..d4ff01970547 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -201,8 +201,6 @@ int tracing_is_on(void)
201} 201}
202EXPORT_SYMBOL_GPL(tracing_is_on); 202EXPORT_SYMBOL_GPL(tracing_is_on);
203 203
204#include "trace.h"
205
206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 204#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207#define RB_ALIGNMENT 4U 205#define RB_ALIGNMENT 4U
208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 206#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
@@ -701,8 +699,8 @@ static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
701 699
702 val &= ~RB_FLAG_MASK; 700 val &= ~RB_FLAG_MASK;
703 701
704 ret = (unsigned long)cmpxchg(&list->next, 702 ret = cmpxchg((unsigned long *)&list->next,
705 val | old_flag, val | new_flag); 703 val | old_flag, val | new_flag);
706 704
707 /* check if the reader took the page */ 705 /* check if the reader took the page */
708 if ((ret & ~RB_FLAG_MASK) != val) 706 if ((ret & ~RB_FLAG_MASK) != val)
@@ -794,7 +792,7 @@ static int rb_head_page_replace(struct buffer_page *old,
794 val = *ptr & ~RB_FLAG_MASK; 792 val = *ptr & ~RB_FLAG_MASK;
795 val |= RB_PAGE_HEAD; 793 val |= RB_PAGE_HEAD;
796 794
797 ret = cmpxchg(ptr, val, &new->list); 795 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
798 796
799 return ret == val; 797 return ret == val;
800} 798}
@@ -2997,15 +2995,12 @@ static void rb_advance_iter(struct ring_buffer_iter *iter)
2997} 2995}
2998 2996
2999static struct ring_buffer_event * 2997static struct ring_buffer_event *
3000rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 2998rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3001{ 2999{
3002 struct ring_buffer_per_cpu *cpu_buffer;
3003 struct ring_buffer_event *event; 3000 struct ring_buffer_event *event;
3004 struct buffer_page *reader; 3001 struct buffer_page *reader;
3005 int nr_loops = 0; 3002 int nr_loops = 0;
3006 3003
3007 cpu_buffer = buffer->buffers[cpu];
3008
3009 again: 3004 again:
3010 /* 3005 /*
3011 * We repeat when a timestamp is encountered. It is possible 3006 * We repeat when a timestamp is encountered. It is possible
@@ -3049,7 +3044,7 @@ rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3049 case RINGBUF_TYPE_DATA: 3044 case RINGBUF_TYPE_DATA:
3050 if (ts) { 3045 if (ts) {
3051 *ts = cpu_buffer->read_stamp + event->time_delta; 3046 *ts = cpu_buffer->read_stamp + event->time_delta;
3052 ring_buffer_normalize_time_stamp(buffer, 3047 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3053 cpu_buffer->cpu, ts); 3048 cpu_buffer->cpu, ts);
3054 } 3049 }
3055 return event; 3050 return event;
@@ -3168,7 +3163,7 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3168 local_irq_save(flags); 3163 local_irq_save(flags);
3169 if (dolock) 3164 if (dolock)
3170 spin_lock(&cpu_buffer->reader_lock); 3165 spin_lock(&cpu_buffer->reader_lock);
3171 event = rb_buffer_peek(buffer, cpu, ts); 3166 event = rb_buffer_peek(cpu_buffer, ts);
3172 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3167 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3173 rb_advance_reader(cpu_buffer); 3168 rb_advance_reader(cpu_buffer);
3174 if (dolock) 3169 if (dolock)
@@ -3237,7 +3232,7 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3237 if (dolock) 3232 if (dolock)
3238 spin_lock(&cpu_buffer->reader_lock); 3233 spin_lock(&cpu_buffer->reader_lock);
3239 3234
3240 event = rb_buffer_peek(buffer, cpu, ts); 3235 event = rb_buffer_peek(cpu_buffer, ts);
3241 if (event) 3236 if (event)
3242 rb_advance_reader(cpu_buffer); 3237 rb_advance_reader(cpu_buffer);
3243 3238
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index 5c75deeefe30..411af37f4be4 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -125,13 +125,13 @@ int ftrace_dump_on_oops;
125 125
126static int tracing_set_tracer(const char *buf); 126static int tracing_set_tracer(const char *buf);
127 127
128#define BOOTUP_TRACER_SIZE 100 128#define MAX_TRACER_SIZE 100
129static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; 129static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata;
130static char *default_bootup_tracer; 130static char *default_bootup_tracer;
131 131
132static int __init set_ftrace(char *str) 132static int __init set_ftrace(char *str)
133{ 133{
134 strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); 134 strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE);
135 default_bootup_tracer = bootup_tracer_buf; 135 default_bootup_tracer = bootup_tracer_buf;
136 /* We are using ftrace early, expand it */ 136 /* We are using ftrace early, expand it */
137 ring_buffer_expanded = 1; 137 ring_buffer_expanded = 1;
@@ -242,13 +242,6 @@ static struct tracer *trace_types __read_mostly;
242static struct tracer *current_trace __read_mostly; 242static struct tracer *current_trace __read_mostly;
243 243
244/* 244/*
245 * max_tracer_type_len is used to simplify the allocating of
246 * buffers to read userspace tracer names. We keep track of
247 * the longest tracer name registered.
248 */
249static int max_tracer_type_len;
250
251/*
252 * trace_types_lock is used to protect the trace_types list. 245 * trace_types_lock is used to protect the trace_types list.
253 * This lock is also used to keep user access serialized. 246 * This lock is also used to keep user access serialized.
254 * Accesses from userspace will grab this lock while userspace 247 * Accesses from userspace will grab this lock while userspace
@@ -275,12 +268,18 @@ static DEFINE_SPINLOCK(tracing_start_lock);
275 */ 268 */
276void trace_wake_up(void) 269void trace_wake_up(void)
277{ 270{
271 int cpu;
272
273 if (trace_flags & TRACE_ITER_BLOCK)
274 return;
278 /* 275 /*
279 * The runqueue_is_locked() can fail, but this is the best we 276 * The runqueue_is_locked() can fail, but this is the best we
280 * have for now: 277 * have for now:
281 */ 278 */
282 if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) 279 cpu = get_cpu();
280 if (!runqueue_is_locked(cpu))
283 wake_up(&trace_wait); 281 wake_up(&trace_wait);
282 put_cpu();
284} 283}
285 284
286static int __init set_buf_size(char *str) 285static int __init set_buf_size(char *str)
@@ -339,6 +338,112 @@ static struct {
339 338
340int trace_clock_id; 339int trace_clock_id;
341 340
341/*
342 * trace_parser_get_init - gets the buffer for trace parser
343 */
344int trace_parser_get_init(struct trace_parser *parser, int size)
345{
346 memset(parser, 0, sizeof(*parser));
347
348 parser->buffer = kmalloc(size, GFP_KERNEL);
349 if (!parser->buffer)
350 return 1;
351
352 parser->size = size;
353 return 0;
354}
355
356/*
357 * trace_parser_put - frees the buffer for trace parser
358 */
359void trace_parser_put(struct trace_parser *parser)
360{
361 kfree(parser->buffer);
362}
363
364/*
365 * trace_get_user - reads the user input string separated by space
366 * (matched by isspace(ch))
367 *
368 * For each string found the 'struct trace_parser' is updated,
369 * and the function returns.
370 *
371 * Returns number of bytes read.
372 *
373 * See kernel/trace/trace.h for 'struct trace_parser' details.
374 */
375int trace_get_user(struct trace_parser *parser, const char __user *ubuf,
376 size_t cnt, loff_t *ppos)
377{
378 char ch;
379 size_t read = 0;
380 ssize_t ret;
381
382 if (!*ppos)
383 trace_parser_clear(parser);
384
385 ret = get_user(ch, ubuf++);
386 if (ret)
387 goto out;
388
389 read++;
390 cnt--;
391
392 /*
393 * The parser is not finished with the last write,
394 * continue reading the user input without skipping spaces.
395 */
396 if (!parser->cont) {
397 /* skip white space */
398 while (cnt && isspace(ch)) {
399 ret = get_user(ch, ubuf++);
400 if (ret)
401 goto out;
402 read++;
403 cnt--;
404 }
405
406 /* only spaces were written */
407 if (isspace(ch)) {
408 *ppos += read;
409 ret = read;
410 goto out;
411 }
412
413 parser->idx = 0;
414 }
415
416 /* read the non-space input */
417 while (cnt && !isspace(ch)) {
418 if (parser->idx < parser->size)
419 parser->buffer[parser->idx++] = ch;
420 else {
421 ret = -EINVAL;
422 goto out;
423 }
424 ret = get_user(ch, ubuf++);
425 if (ret)
426 goto out;
427 read++;
428 cnt--;
429 }
430
431 /* We either got finished input or we have to wait for another call. */
432 if (isspace(ch)) {
433 parser->buffer[parser->idx] = 0;
434 parser->cont = false;
435 } else {
436 parser->cont = true;
437 parser->buffer[parser->idx++] = ch;
438 }
439
440 *ppos += read;
441 ret = read;
442
443out:
444 return ret;
445}
446
342ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) 447ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt)
343{ 448{
344 int len; 449 int len;
@@ -513,7 +618,6 @@ __releases(kernel_lock)
513__acquires(kernel_lock) 618__acquires(kernel_lock)
514{ 619{
515 struct tracer *t; 620 struct tracer *t;
516 int len;
517 int ret = 0; 621 int ret = 0;
518 622
519 if (!type->name) { 623 if (!type->name) {
@@ -521,6 +625,11 @@ __acquires(kernel_lock)
521 return -1; 625 return -1;
522 } 626 }
523 627
628 if (strlen(type->name) > MAX_TRACER_SIZE) {
629 pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE);
630 return -1;
631 }
632
524 /* 633 /*
525 * When this gets called we hold the BKL which means that 634 * When this gets called we hold the BKL which means that
526 * preemption is disabled. Various trace selftests however 635 * preemption is disabled. Various trace selftests however
@@ -535,7 +644,7 @@ __acquires(kernel_lock)
535 for (t = trace_types; t; t = t->next) { 644 for (t = trace_types; t; t = t->next) {
536 if (strcmp(type->name, t->name) == 0) { 645 if (strcmp(type->name, t->name) == 0) {
537 /* already found */ 646 /* already found */
538 pr_info("Trace %s already registered\n", 647 pr_info("Tracer %s already registered\n",
539 type->name); 648 type->name);
540 ret = -1; 649 ret = -1;
541 goto out; 650 goto out;
@@ -586,9 +695,6 @@ __acquires(kernel_lock)
586 695
587 type->next = trace_types; 696 type->next = trace_types;
588 trace_types = type; 697 trace_types = type;
589 len = strlen(type->name);
590 if (len > max_tracer_type_len)
591 max_tracer_type_len = len;
592 698
593 out: 699 out:
594 tracing_selftest_running = false; 700 tracing_selftest_running = false;
@@ -597,7 +703,7 @@ __acquires(kernel_lock)
597 if (ret || !default_bootup_tracer) 703 if (ret || !default_bootup_tracer)
598 goto out_unlock; 704 goto out_unlock;
599 705
600 if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) 706 if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE))
601 goto out_unlock; 707 goto out_unlock;
602 708
603 printk(KERN_INFO "Starting tracer '%s'\n", type->name); 709 printk(KERN_INFO "Starting tracer '%s'\n", type->name);
@@ -619,14 +725,13 @@ __acquires(kernel_lock)
619void unregister_tracer(struct tracer *type) 725void unregister_tracer(struct tracer *type)
620{ 726{
621 struct tracer **t; 727 struct tracer **t;
622 int len;
623 728
624 mutex_lock(&trace_types_lock); 729 mutex_lock(&trace_types_lock);
625 for (t = &trace_types; *t; t = &(*t)->next) { 730 for (t = &trace_types; *t; t = &(*t)->next) {
626 if (*t == type) 731 if (*t == type)
627 goto found; 732 goto found;
628 } 733 }
629 pr_info("Trace %s not registered\n", type->name); 734 pr_info("Tracer %s not registered\n", type->name);
630 goto out; 735 goto out;
631 736
632 found: 737 found:
@@ -639,17 +744,7 @@ void unregister_tracer(struct tracer *type)
639 current_trace->stop(&global_trace); 744 current_trace->stop(&global_trace);
640 current_trace = &nop_trace; 745 current_trace = &nop_trace;
641 } 746 }
642 747out:
643 if (strlen(type->name) != max_tracer_type_len)
644 goto out;
645
646 max_tracer_type_len = 0;
647 for (t = &trace_types; *t; t = &(*t)->next) {
648 len = strlen((*t)->name);
649 if (len > max_tracer_type_len)
650 max_tracer_type_len = len;
651 }
652 out:
653 mutex_unlock(&trace_types_lock); 748 mutex_unlock(&trace_types_lock);
654} 749}
655 750
@@ -719,6 +814,11 @@ static void trace_init_cmdlines(void)
719 cmdline_idx = 0; 814 cmdline_idx = 0;
720} 815}
721 816
817int is_tracing_stopped(void)
818{
819 return trace_stop_count;
820}
821
722/** 822/**
723 * ftrace_off_permanent - disable all ftrace code permanently 823 * ftrace_off_permanent - disable all ftrace code permanently
724 * 824 *
@@ -886,7 +986,7 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags,
886 986
887 entry->preempt_count = pc & 0xff; 987 entry->preempt_count = pc & 0xff;
888 entry->pid = (tsk) ? tsk->pid : 0; 988 entry->pid = (tsk) ? tsk->pid : 0;
889 entry->tgid = (tsk) ? tsk->tgid : 0; 989 entry->lock_depth = (tsk) ? tsk->lock_depth : 0;
890 entry->flags = 990 entry->flags =
891#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT 991#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
892 (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | 992 (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) |
@@ -1068,6 +1168,7 @@ ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, int pc)
1068 return; 1168 return;
1069 entry = ring_buffer_event_data(event); 1169 entry = ring_buffer_event_data(event);
1070 1170
1171 entry->tgid = current->tgid;
1071 memset(&entry->caller, 0, sizeof(entry->caller)); 1172 memset(&entry->caller, 0, sizeof(entry->caller));
1072 1173
1073 trace.nr_entries = 0; 1174 trace.nr_entries = 0;
@@ -1094,6 +1195,7 @@ ftrace_trace_special(void *__tr,
1094 unsigned long arg1, unsigned long arg2, unsigned long arg3, 1195 unsigned long arg1, unsigned long arg2, unsigned long arg3,
1095 int pc) 1196 int pc)
1096{ 1197{
1198 struct ftrace_event_call *call = &event_special;
1097 struct ring_buffer_event *event; 1199 struct ring_buffer_event *event;
1098 struct trace_array *tr = __tr; 1200 struct trace_array *tr = __tr;
1099 struct ring_buffer *buffer = tr->buffer; 1201 struct ring_buffer *buffer = tr->buffer;
@@ -1107,7 +1209,9 @@ ftrace_trace_special(void *__tr,
1107 entry->arg1 = arg1; 1209 entry->arg1 = arg1;
1108 entry->arg2 = arg2; 1210 entry->arg2 = arg2;
1109 entry->arg3 = arg3; 1211 entry->arg3 = arg3;
1110 trace_buffer_unlock_commit(buffer, event, 0, pc); 1212
1213 if (!filter_check_discard(call, entry, buffer, event))
1214 trace_buffer_unlock_commit(buffer, event, 0, pc);
1111} 1215}
1112 1216
1113void 1217void
@@ -1530,10 +1634,10 @@ static void print_lat_help_header(struct seq_file *m)
1530 seq_puts(m, "# | / _----=> need-resched \n"); 1634 seq_puts(m, "# | / _----=> need-resched \n");
1531 seq_puts(m, "# || / _---=> hardirq/softirq \n"); 1635 seq_puts(m, "# || / _---=> hardirq/softirq \n");
1532 seq_puts(m, "# ||| / _--=> preempt-depth \n"); 1636 seq_puts(m, "# ||| / _--=> preempt-depth \n");
1533 seq_puts(m, "# |||| / \n"); 1637 seq_puts(m, "# |||| /_--=> lock-depth \n");
1534 seq_puts(m, "# ||||| delay \n"); 1638 seq_puts(m, "# |||||/ delay \n");
1535 seq_puts(m, "# cmd pid ||||| time | caller \n"); 1639 seq_puts(m, "# cmd pid |||||| time | caller \n");
1536 seq_puts(m, "# \\ / ||||| \\ | / \n"); 1640 seq_puts(m, "# \\ / |||||| \\ | / \n");
1537} 1641}
1538 1642
1539static void print_func_help_header(struct seq_file *m) 1643static void print_func_help_header(struct seq_file *m)
@@ -1845,7 +1949,7 @@ static int s_show(struct seq_file *m, void *v)
1845 return 0; 1949 return 0;
1846} 1950}
1847 1951
1848static struct seq_operations tracer_seq_ops = { 1952static const struct seq_operations tracer_seq_ops = {
1849 .start = s_start, 1953 .start = s_start,
1850 .next = s_next, 1954 .next = s_next,
1851 .stop = s_stop, 1955 .stop = s_stop,
@@ -1880,11 +1984,9 @@ __tracing_open(struct inode *inode, struct file *file)
1880 if (current_trace) 1984 if (current_trace)
1881 *iter->trace = *current_trace; 1985 *iter->trace = *current_trace;
1882 1986
1883 if (!alloc_cpumask_var(&iter->started, GFP_KERNEL)) 1987 if (!zalloc_cpumask_var(&iter->started, GFP_KERNEL))
1884 goto fail; 1988 goto fail;
1885 1989
1886 cpumask_clear(iter->started);
1887
1888 if (current_trace && current_trace->print_max) 1990 if (current_trace && current_trace->print_max)
1889 iter->tr = &max_tr; 1991 iter->tr = &max_tr;
1890 else 1992 else
@@ -2059,7 +2161,7 @@ static int t_show(struct seq_file *m, void *v)
2059 return 0; 2161 return 0;
2060} 2162}
2061 2163
2062static struct seq_operations show_traces_seq_ops = { 2164static const struct seq_operations show_traces_seq_ops = {
2063 .start = t_start, 2165 .start = t_start,
2064 .next = t_next, 2166 .next = t_next,
2065 .stop = t_stop, 2167 .stop = t_stop,
@@ -2489,7 +2591,7 @@ static ssize_t
2489tracing_set_trace_read(struct file *filp, char __user *ubuf, 2591tracing_set_trace_read(struct file *filp, char __user *ubuf,
2490 size_t cnt, loff_t *ppos) 2592 size_t cnt, loff_t *ppos)
2491{ 2593{
2492 char buf[max_tracer_type_len+2]; 2594 char buf[MAX_TRACER_SIZE+2];
2493 int r; 2595 int r;
2494 2596
2495 mutex_lock(&trace_types_lock); 2597 mutex_lock(&trace_types_lock);
@@ -2639,15 +2741,15 @@ static ssize_t
2639tracing_set_trace_write(struct file *filp, const char __user *ubuf, 2741tracing_set_trace_write(struct file *filp, const char __user *ubuf,
2640 size_t cnt, loff_t *ppos) 2742 size_t cnt, loff_t *ppos)
2641{ 2743{
2642 char buf[max_tracer_type_len+1]; 2744 char buf[MAX_TRACER_SIZE+1];
2643 int i; 2745 int i;
2644 size_t ret; 2746 size_t ret;
2645 int err; 2747 int err;
2646 2748
2647 ret = cnt; 2749 ret = cnt;
2648 2750
2649 if (cnt > max_tracer_type_len) 2751 if (cnt > MAX_TRACER_SIZE)
2650 cnt = max_tracer_type_len; 2752 cnt = MAX_TRACER_SIZE;
2651 2753
2652 if (copy_from_user(&buf, ubuf, cnt)) 2754 if (copy_from_user(&buf, ubuf, cnt))
2653 return -EFAULT; 2755 return -EFAULT;
@@ -4285,7 +4387,7 @@ __init static int tracer_alloc_buffers(void)
4285 if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) 4387 if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL))
4286 goto out_free_buffer_mask; 4388 goto out_free_buffer_mask;
4287 4389
4288 if (!alloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) 4390 if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL))
4289 goto out_free_tracing_cpumask; 4391 goto out_free_tracing_cpumask;
4290 4392
4291 /* To save memory, keep the ring buffer size to its minimum */ 4393 /* To save memory, keep the ring buffer size to its minimum */
@@ -4296,7 +4398,6 @@ __init static int tracer_alloc_buffers(void)
4296 4398
4297 cpumask_copy(tracing_buffer_mask, cpu_possible_mask); 4399 cpumask_copy(tracing_buffer_mask, cpu_possible_mask);
4298 cpumask_copy(tracing_cpumask, cpu_all_mask); 4400 cpumask_copy(tracing_cpumask, cpu_all_mask);
4299 cpumask_clear(tracing_reader_cpumask);
4300 4401
4301 /* TODO: make the number of buffers hot pluggable with CPUS */ 4402 /* TODO: make the number of buffers hot pluggable with CPUS */
4302 global_trace.buffer = ring_buffer_alloc(ring_buf_size, 4403 global_trace.buffer = ring_buffer_alloc(ring_buf_size,
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index fa1dccb579d5..405cb850b75d 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -7,10 +7,10 @@
7#include <linux/clocksource.h> 7#include <linux/clocksource.h>
8#include <linux/ring_buffer.h> 8#include <linux/ring_buffer.h>
9#include <linux/mmiotrace.h> 9#include <linux/mmiotrace.h>
10#include <linux/tracepoint.h>
10#include <linux/ftrace.h> 11#include <linux/ftrace.h>
11#include <trace/boot.h> 12#include <trace/boot.h>
12#include <linux/kmemtrace.h> 13#include <linux/kmemtrace.h>
13#include <trace/power.h>
14 14
15#include <linux/trace_seq.h> 15#include <linux/trace_seq.h>
16#include <linux/ftrace_event.h> 16#include <linux/ftrace_event.h>
@@ -36,163 +36,59 @@ enum trace_type {
36 TRACE_HW_BRANCHES, 36 TRACE_HW_BRANCHES,
37 TRACE_KMEM_ALLOC, 37 TRACE_KMEM_ALLOC,
38 TRACE_KMEM_FREE, 38 TRACE_KMEM_FREE,
39 TRACE_POWER,
40 TRACE_BLK, 39 TRACE_BLK,
41 40
42 __TRACE_LAST_TYPE, 41 __TRACE_LAST_TYPE,
43}; 42};
44 43
45/* 44enum kmemtrace_type_id {
46 * Function trace entry - function address and parent function addres: 45 KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */
47 */ 46 KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */
48struct ftrace_entry { 47 KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */
49 struct trace_entry ent;
50 unsigned long ip;
51 unsigned long parent_ip;
52};
53
54/* Function call entry */
55struct ftrace_graph_ent_entry {
56 struct trace_entry ent;
57 struct ftrace_graph_ent graph_ent;
58}; 48};
59 49
60/* Function return entry */
61struct ftrace_graph_ret_entry {
62 struct trace_entry ent;
63 struct ftrace_graph_ret ret;
64};
65extern struct tracer boot_tracer; 50extern struct tracer boot_tracer;
66 51
67/* 52#undef __field
68 * Context switch trace entry - which task (and prio) we switched from/to: 53#define __field(type, item) type item;
69 */
70struct ctx_switch_entry {
71 struct trace_entry ent;
72 unsigned int prev_pid;
73 unsigned char prev_prio;
74 unsigned char prev_state;
75 unsigned int next_pid;
76 unsigned char next_prio;
77 unsigned char next_state;
78 unsigned int next_cpu;
79};
80
81/*
82 * Special (free-form) trace entry:
83 */
84struct special_entry {
85 struct trace_entry ent;
86 unsigned long arg1;
87 unsigned long arg2;
88 unsigned long arg3;
89};
90
91/*
92 * Stack-trace entry:
93 */
94
95#define FTRACE_STACK_ENTRIES 8
96
97struct stack_entry {
98 struct trace_entry ent;
99 unsigned long caller[FTRACE_STACK_ENTRIES];
100};
101
102struct userstack_entry {
103 struct trace_entry ent;
104 unsigned long caller[FTRACE_STACK_ENTRIES];
105};
106
107/*
108 * trace_printk entry:
109 */
110struct bprint_entry {
111 struct trace_entry ent;
112 unsigned long ip;
113 const char *fmt;
114 u32 buf[];
115};
116 54
117struct print_entry { 55#undef __field_struct
118 struct trace_entry ent; 56#define __field_struct(type, item) __field(type, item)
119 unsigned long ip;
120 char buf[];
121};
122 57
123#define TRACE_OLD_SIZE 88 58#undef __field_desc
59#define __field_desc(type, container, item)
124 60
125struct trace_field_cont { 61#undef __array
126 unsigned char type; 62#define __array(type, item, size) type item[size];
127 /* Temporary till we get rid of this completely */
128 char buf[TRACE_OLD_SIZE - 1];
129};
130 63
131struct trace_mmiotrace_rw { 64#undef __array_desc
132 struct trace_entry ent; 65#define __array_desc(type, container, item, size)
133 struct mmiotrace_rw rw;
134};
135 66
136struct trace_mmiotrace_map { 67#undef __dynamic_array
137 struct trace_entry ent; 68#define __dynamic_array(type, item) type item[];
138 struct mmiotrace_map map;
139};
140 69
141struct trace_boot_call { 70#undef F_STRUCT
142 struct trace_entry ent; 71#define F_STRUCT(args...) args
143 struct boot_trace_call boot_call;
144};
145 72
146struct trace_boot_ret { 73#undef FTRACE_ENTRY
147 struct trace_entry ent; 74#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \
148 struct boot_trace_ret boot_ret; 75 struct struct_name { \
149}; 76 struct trace_entry ent; \
150 77 tstruct \
151#define TRACE_FUNC_SIZE 30 78 }
152#define TRACE_FILE_SIZE 20
153struct trace_branch {
154 struct trace_entry ent;
155 unsigned line;
156 char func[TRACE_FUNC_SIZE+1];
157 char file[TRACE_FILE_SIZE+1];
158 char correct;
159};
160
161struct hw_branch_entry {
162 struct trace_entry ent;
163 u64 from;
164 u64 to;
165};
166
167struct trace_power {
168 struct trace_entry ent;
169 struct power_trace state_data;
170};
171 79
172enum kmemtrace_type_id { 80#undef TP_ARGS
173 KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ 81#define TP_ARGS(args...) args
174 KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */
175 KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */
176};
177 82
178struct kmemtrace_alloc_entry { 83#undef FTRACE_ENTRY_DUP
179 struct trace_entry ent; 84#define FTRACE_ENTRY_DUP(name, name_struct, id, tstruct, printk)
180 enum kmemtrace_type_id type_id;
181 unsigned long call_site;
182 const void *ptr;
183 size_t bytes_req;
184 size_t bytes_alloc;
185 gfp_t gfp_flags;
186 int node;
187};
188 85
189struct kmemtrace_free_entry { 86#include "trace_entries.h"
190 struct trace_entry ent;
191 enum kmemtrace_type_id type_id;
192 unsigned long call_site;
193 const void *ptr;
194};
195 87
88/*
89 * syscalls are special, and need special handling, this is why
90 * they are not included in trace_entries.h
91 */
196struct syscall_trace_enter { 92struct syscall_trace_enter {
197 struct trace_entry ent; 93 struct trace_entry ent;
198 int nr; 94 int nr;
@@ -205,13 +101,12 @@ struct syscall_trace_exit {
205 unsigned long ret; 101 unsigned long ret;
206}; 102};
207 103
208
209/* 104/*
210 * trace_flag_type is an enumeration that holds different 105 * trace_flag_type is an enumeration that holds different
211 * states when a trace occurs. These are: 106 * states when a trace occurs. These are:
212 * IRQS_OFF - interrupts were disabled 107 * IRQS_OFF - interrupts were disabled
213 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags 108 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
214 * NEED_RESCED - reschedule is requested 109 * NEED_RESCHED - reschedule is requested
215 * HARDIRQ - inside an interrupt handler 110 * HARDIRQ - inside an interrupt handler
216 * SOFTIRQ - inside a softirq handler 111 * SOFTIRQ - inside a softirq handler
217 */ 112 */
@@ -310,7 +205,6 @@ extern void __ftrace_bad_type(void);
310 IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ 205 IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \
311 TRACE_GRAPH_RET); \ 206 TRACE_GRAPH_RET); \
312 IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ 207 IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\
313 IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \
314 IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ 208 IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \
315 TRACE_KMEM_ALLOC); \ 209 TRACE_KMEM_ALLOC); \
316 IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ 210 IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \
@@ -390,7 +284,6 @@ struct tracer {
390 struct tracer *next; 284 struct tracer *next;
391 int print_max; 285 int print_max;
392 struct tracer_flags *flags; 286 struct tracer_flags *flags;
393 struct tracer_stat *stats;
394}; 287};
395 288
396 289
@@ -469,6 +362,7 @@ void tracing_stop_sched_switch_record(void);
469void tracing_start_sched_switch_record(void); 362void tracing_start_sched_switch_record(void);
470int register_tracer(struct tracer *type); 363int register_tracer(struct tracer *type);
471void unregister_tracer(struct tracer *type); 364void unregister_tracer(struct tracer *type);
365int is_tracing_stopped(void);
472 366
473extern unsigned long nsecs_to_usecs(unsigned long nsecs); 367extern unsigned long nsecs_to_usecs(unsigned long nsecs);
474 368
@@ -509,20 +403,6 @@ static inline void __trace_stack(struct trace_array *tr, unsigned long flags,
509 403
510extern cycle_t ftrace_now(int cpu); 404extern cycle_t ftrace_now(int cpu);
511 405
512#ifdef CONFIG_CONTEXT_SWITCH_TRACER
513typedef void
514(*tracer_switch_func_t)(void *private,
515 void *__rq,
516 struct task_struct *prev,
517 struct task_struct *next);
518
519struct tracer_switch_ops {
520 tracer_switch_func_t func;
521 void *private;
522 struct tracer_switch_ops *next;
523};
524#endif /* CONFIG_CONTEXT_SWITCH_TRACER */
525
526extern void trace_find_cmdline(int pid, char comm[]); 406extern void trace_find_cmdline(int pid, char comm[]);
527 407
528#ifdef CONFIG_DYNAMIC_FTRACE 408#ifdef CONFIG_DYNAMIC_FTRACE
@@ -638,6 +518,41 @@ static inline int ftrace_trace_task(struct task_struct *task)
638#endif 518#endif
639 519
640/* 520/*
521 * struct trace_parser - servers for reading the user input separated by spaces
522 * @cont: set if the input is not complete - no final space char was found
523 * @buffer: holds the parsed user input
524 * @idx: user input lenght
525 * @size: buffer size
526 */
527struct trace_parser {
528 bool cont;
529 char *buffer;
530 unsigned idx;
531 unsigned size;
532};
533
534static inline bool trace_parser_loaded(struct trace_parser *parser)
535{
536 return (parser->idx != 0);
537}
538
539static inline bool trace_parser_cont(struct trace_parser *parser)
540{
541 return parser->cont;
542}
543
544static inline void trace_parser_clear(struct trace_parser *parser)
545{
546 parser->cont = false;
547 parser->idx = 0;
548}
549
550extern int trace_parser_get_init(struct trace_parser *parser, int size);
551extern void trace_parser_put(struct trace_parser *parser);
552extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf,
553 size_t cnt, loff_t *ppos);
554
555/*
641 * trace_iterator_flags is an enumeration that defines bit 556 * trace_iterator_flags is an enumeration that defines bit
642 * positions into trace_flags that controls the output. 557 * positions into trace_flags that controls the output.
643 * 558 *
@@ -823,58 +738,18 @@ filter_check_discard(struct ftrace_event_call *call, void *rec,
823 return 0; 738 return 0;
824} 739}
825 740
826#define DEFINE_COMPARISON_PRED(type) \
827static int filter_pred_##type(struct filter_pred *pred, void *event, \
828 int val1, int val2) \
829{ \
830 type *addr = (type *)(event + pred->offset); \
831 type val = (type)pred->val; \
832 int match = 0; \
833 \
834 switch (pred->op) { \
835 case OP_LT: \
836 match = (*addr < val); \
837 break; \
838 case OP_LE: \
839 match = (*addr <= val); \
840 break; \
841 case OP_GT: \
842 match = (*addr > val); \
843 break; \
844 case OP_GE: \
845 match = (*addr >= val); \
846 break; \
847 default: \
848 break; \
849 } \
850 \
851 return match; \
852}
853
854#define DEFINE_EQUALITY_PRED(size) \
855static int filter_pred_##size(struct filter_pred *pred, void *event, \
856 int val1, int val2) \
857{ \
858 u##size *addr = (u##size *)(event + pred->offset); \
859 u##size val = (u##size)pred->val; \
860 int match; \
861 \
862 match = (val == *addr) ^ pred->not; \
863 \
864 return match; \
865}
866
867extern struct mutex event_mutex; 741extern struct mutex event_mutex;
868extern struct list_head ftrace_events; 742extern struct list_head ftrace_events;
869 743
870extern const char *__start___trace_bprintk_fmt[]; 744extern const char *__start___trace_bprintk_fmt[];
871extern const char *__stop___trace_bprintk_fmt[]; 745extern const char *__stop___trace_bprintk_fmt[];
872 746
873#undef TRACE_EVENT_FORMAT 747#undef FTRACE_ENTRY
874#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ 748#define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \
875 extern struct ftrace_event_call event_##call; 749 extern struct ftrace_event_call event_##call;
876#undef TRACE_EVENT_FORMAT_NOFILTER 750#undef FTRACE_ENTRY_DUP
877#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, tpfmt) 751#define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \
878#include "trace_event_types.h" 752 FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print))
753#include "trace_entries.h"
879 754
880#endif /* _LINUX_KERNEL_TRACE_H */ 755#endif /* _LINUX_KERNEL_TRACE_H */
diff --git a/kernel/trace/trace_boot.c b/kernel/trace/trace_boot.c
index 19bfc75d467e..c21d5f3956ad 100644
--- a/kernel/trace/trace_boot.c
+++ b/kernel/trace/trace_boot.c
@@ -129,6 +129,7 @@ struct tracer boot_tracer __read_mostly =
129 129
130void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) 130void trace_boot_call(struct boot_trace_call *bt, initcall_t fn)
131{ 131{
132 struct ftrace_event_call *call = &event_boot_call;
132 struct ring_buffer_event *event; 133 struct ring_buffer_event *event;
133 struct ring_buffer *buffer; 134 struct ring_buffer *buffer;
134 struct trace_boot_call *entry; 135 struct trace_boot_call *entry;
@@ -150,13 +151,15 @@ void trace_boot_call(struct boot_trace_call *bt, initcall_t fn)
150 goto out; 151 goto out;
151 entry = ring_buffer_event_data(event); 152 entry = ring_buffer_event_data(event);
152 entry->boot_call = *bt; 153 entry->boot_call = *bt;
153 trace_buffer_unlock_commit(buffer, event, 0, 0); 154 if (!filter_check_discard(call, entry, buffer, event))
155 trace_buffer_unlock_commit(buffer, event, 0, 0);
154 out: 156 out:
155 preempt_enable(); 157 preempt_enable();
156} 158}
157 159
158void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) 160void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn)
159{ 161{
162 struct ftrace_event_call *call = &event_boot_ret;
160 struct ring_buffer_event *event; 163 struct ring_buffer_event *event;
161 struct ring_buffer *buffer; 164 struct ring_buffer *buffer;
162 struct trace_boot_ret *entry; 165 struct trace_boot_ret *entry;
@@ -175,7 +178,8 @@ void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn)
175 goto out; 178 goto out;
176 entry = ring_buffer_event_data(event); 179 entry = ring_buffer_event_data(event);
177 entry->boot_ret = *bt; 180 entry->boot_ret = *bt;
178 trace_buffer_unlock_commit(buffer, event, 0, 0); 181 if (!filter_check_discard(call, entry, buffer, event))
182 trace_buffer_unlock_commit(buffer, event, 0, 0);
179 out: 183 out:
180 preempt_enable(); 184 preempt_enable();
181} 185}
diff --git a/kernel/trace/trace_clock.c b/kernel/trace/trace_clock.c
index b588fd81f7f9..20c5f92e28a8 100644
--- a/kernel/trace/trace_clock.c
+++ b/kernel/trace/trace_clock.c
@@ -66,10 +66,14 @@ u64 notrace trace_clock(void)
66 * Used by plugins that need globally coherent timestamps. 66 * Used by plugins that need globally coherent timestamps.
67 */ 67 */
68 68
69static u64 prev_trace_clock_time; 69/* keep prev_time and lock in the same cacheline. */
70 70static struct {
71static raw_spinlock_t trace_clock_lock ____cacheline_aligned_in_smp = 71 u64 prev_time;
72 (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 72 raw_spinlock_t lock;
73} trace_clock_struct ____cacheline_aligned_in_smp =
74 {
75 .lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED,
76 };
73 77
74u64 notrace trace_clock_global(void) 78u64 notrace trace_clock_global(void)
75{ 79{
@@ -88,19 +92,19 @@ u64 notrace trace_clock_global(void)
88 if (unlikely(in_nmi())) 92 if (unlikely(in_nmi()))
89 goto out; 93 goto out;
90 94
91 __raw_spin_lock(&trace_clock_lock); 95 __raw_spin_lock(&trace_clock_struct.lock);
92 96
93 /* 97 /*
94 * TODO: if this happens often then maybe we should reset 98 * TODO: if this happens often then maybe we should reset
95 * my_scd->clock to prev_trace_clock_time+1, to make sure 99 * my_scd->clock to prev_time+1, to make sure
96 * we start ticking with the local clock from now on? 100 * we start ticking with the local clock from now on?
97 */ 101 */
98 if ((s64)(now - prev_trace_clock_time) < 0) 102 if ((s64)(now - trace_clock_struct.prev_time) < 0)
99 now = prev_trace_clock_time + 1; 103 now = trace_clock_struct.prev_time + 1;
100 104
101 prev_trace_clock_time = now; 105 trace_clock_struct.prev_time = now;
102 106
103 __raw_spin_unlock(&trace_clock_lock); 107 __raw_spin_unlock(&trace_clock_struct.lock);
104 108
105 out: 109 out:
106 raw_local_irq_restore(flags); 110 raw_local_irq_restore(flags);
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h
new file mode 100644
index 000000000000..ead3d724599d
--- /dev/null
+++ b/kernel/trace/trace_entries.h
@@ -0,0 +1,366 @@
1/*
2 * This file defines the trace event structures that go into the ring
3 * buffer directly. They are created via macros so that changes for them
4 * appear in the format file. Using macros will automate this process.
5 *
6 * The macro used to create a ftrace data structure is:
7 *
8 * FTRACE_ENTRY( name, struct_name, id, structure, print )
9 *
10 * @name: the name used the event name, as well as the name of
11 * the directory that holds the format file.
12 *
13 * @struct_name: the name of the structure that is created.
14 *
15 * @id: The event identifier that is used to detect what event
16 * this is from the ring buffer.
17 *
18 * @structure: the structure layout
19 *
20 * - __field( type, item )
21 * This is equivalent to declaring
22 * type item;
23 * in the structure.
24 * - __array( type, item, size )
25 * This is equivalent to declaring
26 * type item[size];
27 * in the structure.
28 *
29 * * for structures within structures, the format of the internal
30 * structure is layed out. This allows the internal structure
31 * to be deciphered for the format file. Although these macros
32 * may become out of sync with the internal structure, they
33 * will create a compile error if it happens. Since the
34 * internel structures are just tracing helpers, this is not
35 * an issue.
36 *
37 * When an internal structure is used, it should use:
38 *
39 * __field_struct( type, item )
40 *
41 * instead of __field. This will prevent it from being shown in
42 * the output file. The fields in the structure should use.
43 *
44 * __field_desc( type, container, item )
45 * __array_desc( type, container, item, len )
46 *
47 * type, item and len are the same as __field and __array, but
48 * container is added. This is the name of the item in
49 * __field_struct that this is describing.
50 *
51 *
52 * @print: the print format shown to users in the format file.
53 */
54
55/*
56 * Function trace entry - function address and parent function addres:
57 */
58FTRACE_ENTRY(function, ftrace_entry,
59
60 TRACE_FN,
61
62 F_STRUCT(
63 __field( unsigned long, ip )
64 __field( unsigned long, parent_ip )
65 ),
66
67 F_printk(" %lx <-- %lx", __entry->ip, __entry->parent_ip)
68);
69
70/* Function call entry */
71FTRACE_ENTRY(funcgraph_entry, ftrace_graph_ent_entry,
72
73 TRACE_GRAPH_ENT,
74
75 F_STRUCT(
76 __field_struct( struct ftrace_graph_ent, graph_ent )
77 __field_desc( unsigned long, graph_ent, func )
78 __field_desc( int, graph_ent, depth )
79 ),
80
81 F_printk("--> %lx (%d)", __entry->func, __entry->depth)
82);
83
84/* Function return entry */
85FTRACE_ENTRY(funcgraph_exit, ftrace_graph_ret_entry,
86
87 TRACE_GRAPH_RET,
88
89 F_STRUCT(
90 __field_struct( struct ftrace_graph_ret, ret )
91 __field_desc( unsigned long, ret, func )
92 __field_desc( unsigned long long, ret, calltime)
93 __field_desc( unsigned long long, ret, rettime )
94 __field_desc( unsigned long, ret, overrun )
95 __field_desc( int, ret, depth )
96 ),
97
98 F_printk("<-- %lx (%d) (start: %llx end: %llx) over: %d",
99 __entry->func, __entry->depth,
100 __entry->calltime, __entry->rettime,
101 __entry->depth)
102);
103
104/*
105 * Context switch trace entry - which task (and prio) we switched from/to:
106 *
107 * This is used for both wakeup and context switches. We only want
108 * to create one structure, but we need two outputs for it.
109 */
110#define FTRACE_CTX_FIELDS \
111 __field( unsigned int, prev_pid ) \
112 __field( unsigned char, prev_prio ) \
113 __field( unsigned char, prev_state ) \
114 __field( unsigned int, next_pid ) \
115 __field( unsigned char, next_prio ) \
116 __field( unsigned char, next_state ) \
117 __field( unsigned int, next_cpu )
118
119FTRACE_ENTRY(context_switch, ctx_switch_entry,
120
121 TRACE_CTX,
122
123 F_STRUCT(
124 FTRACE_CTX_FIELDS
125 ),
126
127 F_printk("%u:%u:%u ==> %u:%u:%u [%03u]",
128 __entry->prev_pid, __entry->prev_prio, __entry->prev_state,
129 __entry->next_pid, __entry->next_prio, __entry->next_state,
130 __entry->next_cpu
131 )
132);
133
134/*
135 * FTRACE_ENTRY_DUP only creates the format file, it will not
136 * create another structure.
137 */
138FTRACE_ENTRY_DUP(wakeup, ctx_switch_entry,
139
140 TRACE_WAKE,
141
142 F_STRUCT(
143 FTRACE_CTX_FIELDS
144 ),
145
146 F_printk("%u:%u:%u ==+ %u:%u:%u [%03u]",
147 __entry->prev_pid, __entry->prev_prio, __entry->prev_state,
148 __entry->next_pid, __entry->next_prio, __entry->next_state,
149 __entry->next_cpu
150 )
151);
152
153/*
154 * Special (free-form) trace entry:
155 */
156FTRACE_ENTRY(special, special_entry,
157
158 TRACE_SPECIAL,
159
160 F_STRUCT(
161 __field( unsigned long, arg1 )
162 __field( unsigned long, arg2 )
163 __field( unsigned long, arg3 )
164 ),
165
166 F_printk("(%08lx) (%08lx) (%08lx)",
167 __entry->arg1, __entry->arg2, __entry->arg3)
168);
169
170/*
171 * Stack-trace entry:
172 */
173
174#define FTRACE_STACK_ENTRIES 8
175
176FTRACE_ENTRY(kernel_stack, stack_entry,
177
178 TRACE_STACK,
179
180 F_STRUCT(
181 __array( unsigned long, caller, FTRACE_STACK_ENTRIES )
182 ),
183
184 F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n"
185 "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n",
186 __entry->caller[0], __entry->caller[1], __entry->caller[2],
187 __entry->caller[3], __entry->caller[4], __entry->caller[5],
188 __entry->caller[6], __entry->caller[7])
189);
190
191FTRACE_ENTRY(user_stack, userstack_entry,
192
193 TRACE_USER_STACK,
194
195 F_STRUCT(
196 __field( unsigned int, tgid )
197 __array( unsigned long, caller, FTRACE_STACK_ENTRIES )
198 ),
199
200 F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n"
201 "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n",
202 __entry->caller[0], __entry->caller[1], __entry->caller[2],
203 __entry->caller[3], __entry->caller[4], __entry->caller[5],
204 __entry->caller[6], __entry->caller[7])
205);
206
207/*
208 * trace_printk entry:
209 */
210FTRACE_ENTRY(bprint, bprint_entry,
211
212 TRACE_BPRINT,
213
214 F_STRUCT(
215 __field( unsigned long, ip )
216 __field( const char *, fmt )
217 __dynamic_array( u32, buf )
218 ),
219
220 F_printk("%08lx fmt:%p",
221 __entry->ip, __entry->fmt)
222);
223
224FTRACE_ENTRY(print, print_entry,
225
226 TRACE_PRINT,
227
228 F_STRUCT(
229 __field( unsigned long, ip )
230 __dynamic_array( char, buf )
231 ),
232
233 F_printk("%08lx %s",
234 __entry->ip, __entry->buf)
235);
236
237FTRACE_ENTRY(mmiotrace_rw, trace_mmiotrace_rw,
238
239 TRACE_MMIO_RW,
240
241 F_STRUCT(
242 __field_struct( struct mmiotrace_rw, rw )
243 __field_desc( resource_size_t, rw, phys )
244 __field_desc( unsigned long, rw, value )
245 __field_desc( unsigned long, rw, pc )
246 __field_desc( int, rw, map_id )
247 __field_desc( unsigned char, rw, opcode )
248 __field_desc( unsigned char, rw, width )
249 ),
250
251 F_printk("%lx %lx %lx %d %x %x",
252 (unsigned long)__entry->phys, __entry->value, __entry->pc,
253 __entry->map_id, __entry->opcode, __entry->width)
254);
255
256FTRACE_ENTRY(mmiotrace_map, trace_mmiotrace_map,
257
258 TRACE_MMIO_MAP,
259
260 F_STRUCT(
261 __field_struct( struct mmiotrace_map, map )
262 __field_desc( resource_size_t, map, phys )
263 __field_desc( unsigned long, map, virt )
264 __field_desc( unsigned long, map, len )
265 __field_desc( int, map, map_id )
266 __field_desc( unsigned char, map, opcode )
267 ),
268
269 F_printk("%lx %lx %lx %d %x",
270 (unsigned long)__entry->phys, __entry->virt, __entry->len,
271 __entry->map_id, __entry->opcode)
272);
273
274FTRACE_ENTRY(boot_call, trace_boot_call,
275
276 TRACE_BOOT_CALL,
277
278 F_STRUCT(
279 __field_struct( struct boot_trace_call, boot_call )
280 __field_desc( pid_t, boot_call, caller )
281 __array_desc( char, boot_call, func, KSYM_SYMBOL_LEN)
282 ),
283
284 F_printk("%d %s", __entry->caller, __entry->func)
285);
286
287FTRACE_ENTRY(boot_ret, trace_boot_ret,
288
289 TRACE_BOOT_RET,
290
291 F_STRUCT(
292 __field_struct( struct boot_trace_ret, boot_ret )
293 __array_desc( char, boot_ret, func, KSYM_SYMBOL_LEN)
294 __field_desc( int, boot_ret, result )
295 __field_desc( unsigned long, boot_ret, duration )
296 ),
297
298 F_printk("%s %d %lx",
299 __entry->func, __entry->result, __entry->duration)
300);
301
302#define TRACE_FUNC_SIZE 30
303#define TRACE_FILE_SIZE 20
304
305FTRACE_ENTRY(branch, trace_branch,
306
307 TRACE_BRANCH,
308
309 F_STRUCT(
310 __field( unsigned int, line )
311 __array( char, func, TRACE_FUNC_SIZE+1 )
312 __array( char, file, TRACE_FILE_SIZE+1 )
313 __field( char, correct )
314 ),
315
316 F_printk("%u:%s:%s (%u)",
317 __entry->line,
318 __entry->func, __entry->file, __entry->correct)
319);
320
321FTRACE_ENTRY(hw_branch, hw_branch_entry,
322
323 TRACE_HW_BRANCHES,
324
325 F_STRUCT(
326 __field( u64, from )
327 __field( u64, to )
328 ),
329
330 F_printk("from: %llx to: %llx", __entry->from, __entry->to)
331);
332
333FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry,
334
335 TRACE_KMEM_ALLOC,
336
337 F_STRUCT(
338 __field( enum kmemtrace_type_id, type_id )
339 __field( unsigned long, call_site )
340 __field( const void *, ptr )
341 __field( size_t, bytes_req )
342 __field( size_t, bytes_alloc )
343 __field( gfp_t, gfp_flags )
344 __field( int, node )
345 ),
346
347 F_printk("type:%u call_site:%lx ptr:%p req:%zi alloc:%zi"
348 " flags:%x node:%d",
349 __entry->type_id, __entry->call_site, __entry->ptr,
350 __entry->bytes_req, __entry->bytes_alloc,
351 __entry->gfp_flags, __entry->node)
352);
353
354FTRACE_ENTRY(kmem_free, kmemtrace_free_entry,
355
356 TRACE_KMEM_FREE,
357
358 F_STRUCT(
359 __field( enum kmemtrace_type_id, type_id )
360 __field( unsigned long, call_site )
361 __field( const void *, ptr )
362 ),
363
364 F_printk("type:%u call_site:%lx ptr:%p",
365 __entry->type_id, __entry->call_site, __entry->ptr)
366);
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c
index 11ba5bb4ed0a..dd44b8768867 100644
--- a/kernel/trace/trace_event_profile.c
+++ b/kernel/trace/trace_event_profile.c
@@ -5,8 +5,60 @@
5 * 5 *
6 */ 6 */
7 7
8#include <linux/module.h>
8#include "trace.h" 9#include "trace.h"
9 10
11/*
12 * We can't use a size but a type in alloc_percpu()
13 * So let's create a dummy type that matches the desired size
14 */
15typedef struct {char buf[FTRACE_MAX_PROFILE_SIZE];} profile_buf_t;
16
17char *trace_profile_buf;
18EXPORT_SYMBOL_GPL(trace_profile_buf);
19
20char *trace_profile_buf_nmi;
21EXPORT_SYMBOL_GPL(trace_profile_buf_nmi);
22
23/* Count the events in use (per event id, not per instance) */
24static int total_profile_count;
25
26static int ftrace_profile_enable_event(struct ftrace_event_call *event)
27{
28 char *buf;
29 int ret = -ENOMEM;
30
31 if (atomic_inc_return(&event->profile_count))
32 return 0;
33
34 if (!total_profile_count++) {
35 buf = (char *)alloc_percpu(profile_buf_t);
36 if (!buf)
37 goto fail_buf;
38
39 rcu_assign_pointer(trace_profile_buf, buf);
40
41 buf = (char *)alloc_percpu(profile_buf_t);
42 if (!buf)
43 goto fail_buf_nmi;
44
45 rcu_assign_pointer(trace_profile_buf_nmi, buf);
46 }
47
48 ret = event->profile_enable();
49 if (!ret)
50 return 0;
51
52 kfree(trace_profile_buf_nmi);
53fail_buf_nmi:
54 kfree(trace_profile_buf);
55fail_buf:
56 total_profile_count--;
57 atomic_dec(&event->profile_count);
58
59 return ret;
60}
61
10int ftrace_profile_enable(int event_id) 62int ftrace_profile_enable(int event_id)
11{ 63{
12 struct ftrace_event_call *event; 64 struct ftrace_event_call *event;
@@ -14,8 +66,9 @@ int ftrace_profile_enable(int event_id)
14 66
15 mutex_lock(&event_mutex); 67 mutex_lock(&event_mutex);
16 list_for_each_entry(event, &ftrace_events, list) { 68 list_for_each_entry(event, &ftrace_events, list) {
17 if (event->id == event_id && event->profile_enable) { 69 if (event->id == event_id && event->profile_enable &&
18 ret = event->profile_enable(event); 70 try_module_get(event->mod)) {
71 ret = ftrace_profile_enable_event(event);
19 break; 72 break;
20 } 73 }
21 } 74 }
@@ -24,6 +77,33 @@ int ftrace_profile_enable(int event_id)
24 return ret; 77 return ret;
25} 78}
26 79
80static void ftrace_profile_disable_event(struct ftrace_event_call *event)
81{
82 char *buf, *nmi_buf;
83
84 if (!atomic_add_negative(-1, &event->profile_count))
85 return;
86
87 event->profile_disable();
88
89 if (!--total_profile_count) {
90 buf = trace_profile_buf;
91 rcu_assign_pointer(trace_profile_buf, NULL);
92
93 nmi_buf = trace_profile_buf_nmi;
94 rcu_assign_pointer(trace_profile_buf_nmi, NULL);
95
96 /*
97 * Ensure every events in profiling have finished before
98 * releasing the buffers
99 */
100 synchronize_sched();
101
102 free_percpu(buf);
103 free_percpu(nmi_buf);
104 }
105}
106
27void ftrace_profile_disable(int event_id) 107void ftrace_profile_disable(int event_id)
28{ 108{
29 struct ftrace_event_call *event; 109 struct ftrace_event_call *event;
@@ -31,7 +111,8 @@ void ftrace_profile_disable(int event_id)
31 mutex_lock(&event_mutex); 111 mutex_lock(&event_mutex);
32 list_for_each_entry(event, &ftrace_events, list) { 112 list_for_each_entry(event, &ftrace_events, list) {
33 if (event->id == event_id) { 113 if (event->id == event_id) {
34 event->profile_disable(event); 114 ftrace_profile_disable_event(event);
115 module_put(event->mod);
35 break; 116 break;
36 } 117 }
37 } 118 }
diff --git a/kernel/trace/trace_event_types.h b/kernel/trace/trace_event_types.h
deleted file mode 100644
index 6db005e12487..000000000000
--- a/kernel/trace/trace_event_types.h
+++ /dev/null
@@ -1,178 +0,0 @@
1#undef TRACE_SYSTEM
2#define TRACE_SYSTEM ftrace
3
4/*
5 * We cheat and use the proto type field as the ID
6 * and args as the entry type (minus 'struct')
7 */
8TRACE_EVENT_FORMAT(function, TRACE_FN, ftrace_entry, ignore,
9 TRACE_STRUCT(
10 TRACE_FIELD(unsigned long, ip, ip)
11 TRACE_FIELD(unsigned long, parent_ip, parent_ip)
12 ),
13 TP_RAW_FMT(" %lx <-- %lx")
14);
15
16TRACE_EVENT_FORMAT(funcgraph_entry, TRACE_GRAPH_ENT,
17 ftrace_graph_ent_entry, ignore,
18 TRACE_STRUCT(
19 TRACE_FIELD(unsigned long, graph_ent.func, func)
20 TRACE_FIELD(int, graph_ent.depth, depth)
21 ),
22 TP_RAW_FMT("--> %lx (%d)")
23);
24
25TRACE_EVENT_FORMAT(funcgraph_exit, TRACE_GRAPH_RET,
26 ftrace_graph_ret_entry, ignore,
27 TRACE_STRUCT(
28 TRACE_FIELD(unsigned long, ret.func, func)
29 TRACE_FIELD(unsigned long long, ret.calltime, calltime)
30 TRACE_FIELD(unsigned long long, ret.rettime, rettime)
31 TRACE_FIELD(unsigned long, ret.overrun, overrun)
32 TRACE_FIELD(int, ret.depth, depth)
33 ),
34 TP_RAW_FMT("<-- %lx (%d)")
35);
36
37TRACE_EVENT_FORMAT(wakeup, TRACE_WAKE, ctx_switch_entry, ignore,
38 TRACE_STRUCT(
39 TRACE_FIELD(unsigned int, prev_pid, prev_pid)
40 TRACE_FIELD(unsigned char, prev_prio, prev_prio)
41 TRACE_FIELD(unsigned char, prev_state, prev_state)
42 TRACE_FIELD(unsigned int, next_pid, next_pid)
43 TRACE_FIELD(unsigned char, next_prio, next_prio)
44 TRACE_FIELD(unsigned char, next_state, next_state)
45 TRACE_FIELD(unsigned int, next_cpu, next_cpu)
46 ),
47 TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]")
48);
49
50TRACE_EVENT_FORMAT(context_switch, TRACE_CTX, ctx_switch_entry, ignore,
51 TRACE_STRUCT(
52 TRACE_FIELD(unsigned int, prev_pid, prev_pid)
53 TRACE_FIELD(unsigned char, prev_prio, prev_prio)
54 TRACE_FIELD(unsigned char, prev_state, prev_state)
55 TRACE_FIELD(unsigned int, next_pid, next_pid)
56 TRACE_FIELD(unsigned char, next_prio, next_prio)
57 TRACE_FIELD(unsigned char, next_state, next_state)
58 TRACE_FIELD(unsigned int, next_cpu, next_cpu)
59 ),
60 TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]")
61);
62
63TRACE_EVENT_FORMAT_NOFILTER(special, TRACE_SPECIAL, special_entry, ignore,
64 TRACE_STRUCT(
65 TRACE_FIELD(unsigned long, arg1, arg1)
66 TRACE_FIELD(unsigned long, arg2, arg2)
67 TRACE_FIELD(unsigned long, arg3, arg3)
68 ),
69 TP_RAW_FMT("(%08lx) (%08lx) (%08lx)")
70);
71
72/*
73 * Stack-trace entry:
74 */
75
76/* #define FTRACE_STACK_ENTRIES 8 */
77
78TRACE_EVENT_FORMAT(kernel_stack, TRACE_STACK, stack_entry, ignore,
79 TRACE_STRUCT(
80 TRACE_FIELD(unsigned long, caller[0], stack0)
81 TRACE_FIELD(unsigned long, caller[1], stack1)
82 TRACE_FIELD(unsigned long, caller[2], stack2)
83 TRACE_FIELD(unsigned long, caller[3], stack3)
84 TRACE_FIELD(unsigned long, caller[4], stack4)
85 TRACE_FIELD(unsigned long, caller[5], stack5)
86 TRACE_FIELD(unsigned long, caller[6], stack6)
87 TRACE_FIELD(unsigned long, caller[7], stack7)
88 ),
89 TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n"
90 "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n")
91);
92
93TRACE_EVENT_FORMAT(user_stack, TRACE_USER_STACK, userstack_entry, ignore,
94 TRACE_STRUCT(
95 TRACE_FIELD(unsigned long, caller[0], stack0)
96 TRACE_FIELD(unsigned long, caller[1], stack1)
97 TRACE_FIELD(unsigned long, caller[2], stack2)
98 TRACE_FIELD(unsigned long, caller[3], stack3)
99 TRACE_FIELD(unsigned long, caller[4], stack4)
100 TRACE_FIELD(unsigned long, caller[5], stack5)
101 TRACE_FIELD(unsigned long, caller[6], stack6)
102 TRACE_FIELD(unsigned long, caller[7], stack7)
103 ),
104 TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n"
105 "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n")
106);
107
108TRACE_EVENT_FORMAT(bprint, TRACE_BPRINT, bprint_entry, ignore,
109 TRACE_STRUCT(
110 TRACE_FIELD(unsigned long, ip, ip)
111 TRACE_FIELD(char *, fmt, fmt)
112 TRACE_FIELD_ZERO_CHAR(buf)
113 ),
114 TP_RAW_FMT("%08lx (%d) fmt:%p %s")
115);
116
117TRACE_EVENT_FORMAT(print, TRACE_PRINT, print_entry, ignore,
118 TRACE_STRUCT(
119 TRACE_FIELD(unsigned long, ip, ip)
120 TRACE_FIELD_ZERO_CHAR(buf)
121 ),
122 TP_RAW_FMT("%08lx (%d) fmt:%p %s")
123);
124
125TRACE_EVENT_FORMAT(branch, TRACE_BRANCH, trace_branch, ignore,
126 TRACE_STRUCT(
127 TRACE_FIELD(unsigned int, line, line)
128 TRACE_FIELD_SPECIAL(char func[TRACE_FUNC_SIZE+1], func,
129 TRACE_FUNC_SIZE+1, func)
130 TRACE_FIELD_SPECIAL(char file[TRACE_FUNC_SIZE+1], file,
131 TRACE_FUNC_SIZE+1, file)
132 TRACE_FIELD(char, correct, correct)
133 ),
134 TP_RAW_FMT("%u:%s:%s (%u)")
135);
136
137TRACE_EVENT_FORMAT(hw_branch, TRACE_HW_BRANCHES, hw_branch_entry, ignore,
138 TRACE_STRUCT(
139 TRACE_FIELD(u64, from, from)
140 TRACE_FIELD(u64, to, to)
141 ),
142 TP_RAW_FMT("from: %llx to: %llx")
143);
144
145TRACE_EVENT_FORMAT(power, TRACE_POWER, trace_power, ignore,
146 TRACE_STRUCT(
147 TRACE_FIELD_SIGN(ktime_t, state_data.stamp, stamp, 1)
148 TRACE_FIELD_SIGN(ktime_t, state_data.end, end, 1)
149 TRACE_FIELD(int, state_data.type, type)
150 TRACE_FIELD(int, state_data.state, state)
151 ),
152 TP_RAW_FMT("%llx->%llx type:%u state:%u")
153);
154
155TRACE_EVENT_FORMAT(kmem_alloc, TRACE_KMEM_ALLOC, kmemtrace_alloc_entry, ignore,
156 TRACE_STRUCT(
157 TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id)
158 TRACE_FIELD(unsigned long, call_site, call_site)
159 TRACE_FIELD(const void *, ptr, ptr)
160 TRACE_FIELD(size_t, bytes_req, bytes_req)
161 TRACE_FIELD(size_t, bytes_alloc, bytes_alloc)
162 TRACE_FIELD(gfp_t, gfp_flags, gfp_flags)
163 TRACE_FIELD(int, node, node)
164 ),
165 TP_RAW_FMT("type:%u call_site:%lx ptr:%p req:%lu alloc:%lu"
166 " flags:%x node:%d")
167);
168
169TRACE_EVENT_FORMAT(kmem_free, TRACE_KMEM_FREE, kmemtrace_free_entry, ignore,
170 TRACE_STRUCT(
171 TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id)
172 TRACE_FIELD(unsigned long, call_site, call_site)
173 TRACE_FIELD(const void *, ptr, ptr)
174 ),
175 TP_RAW_FMT("type:%u call_site:%lx ptr:%p")
176);
177
178#undef TRACE_SYSTEM
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c
index 78b1ed230177..6f03c8a1105e 100644
--- a/kernel/trace/trace_events.c
+++ b/kernel/trace/trace_events.c
@@ -21,6 +21,7 @@
21 21
22#include "trace_output.h" 22#include "trace_output.h"
23 23
24#undef TRACE_SYSTEM
24#define TRACE_SYSTEM "TRACE_SYSTEM" 25#define TRACE_SYSTEM "TRACE_SYSTEM"
25 26
26DEFINE_MUTEX(event_mutex); 27DEFINE_MUTEX(event_mutex);
@@ -86,7 +87,7 @@ int trace_define_common_fields(struct ftrace_event_call *call)
86 __common_field(unsigned char, flags); 87 __common_field(unsigned char, flags);
87 __common_field(unsigned char, preempt_count); 88 __common_field(unsigned char, preempt_count);
88 __common_field(int, pid); 89 __common_field(int, pid);
89 __common_field(int, tgid); 90 __common_field(int, lock_depth);
90 91
91 return ret; 92 return ret;
92} 93}
@@ -230,11 +231,9 @@ static ssize_t
230ftrace_event_write(struct file *file, const char __user *ubuf, 231ftrace_event_write(struct file *file, const char __user *ubuf,
231 size_t cnt, loff_t *ppos) 232 size_t cnt, loff_t *ppos)
232{ 233{
234 struct trace_parser parser;
233 size_t read = 0; 235 size_t read = 0;
234 int i, set = 1;
235 ssize_t ret; 236 ssize_t ret;
236 char *buf;
237 char ch;
238 237
239 if (!cnt || cnt < 0) 238 if (!cnt || cnt < 0)
240 return 0; 239 return 0;
@@ -243,60 +242,28 @@ ftrace_event_write(struct file *file, const char __user *ubuf,
243 if (ret < 0) 242 if (ret < 0)
244 return ret; 243 return ret;
245 244
246 ret = get_user(ch, ubuf++); 245 if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1))
247 if (ret)
248 return ret;
249 read++;
250 cnt--;
251
252 /* skip white space */
253 while (cnt && isspace(ch)) {
254 ret = get_user(ch, ubuf++);
255 if (ret)
256 return ret;
257 read++;
258 cnt--;
259 }
260
261 /* Only white space found? */
262 if (isspace(ch)) {
263 file->f_pos += read;
264 ret = read;
265 return ret;
266 }
267
268 buf = kmalloc(EVENT_BUF_SIZE+1, GFP_KERNEL);
269 if (!buf)
270 return -ENOMEM; 246 return -ENOMEM;
271 247
272 if (cnt > EVENT_BUF_SIZE) 248 read = trace_get_user(&parser, ubuf, cnt, ppos);
273 cnt = EVENT_BUF_SIZE; 249
250 if (trace_parser_loaded((&parser))) {
251 int set = 1;
274 252
275 i = 0; 253 if (*parser.buffer == '!')
276 while (cnt && !isspace(ch)) {
277 if (!i && ch == '!')
278 set = 0; 254 set = 0;
279 else
280 buf[i++] = ch;
281 255
282 ret = get_user(ch, ubuf++); 256 parser.buffer[parser.idx] = 0;
257
258 ret = ftrace_set_clr_event(parser.buffer + !set, set);
283 if (ret) 259 if (ret)
284 goto out_free; 260 goto out_put;
285 read++;
286 cnt--;
287 } 261 }
288 buf[i] = 0;
289
290 file->f_pos += read;
291
292 ret = ftrace_set_clr_event(buf, set);
293 if (ret)
294 goto out_free;
295 262
296 ret = read; 263 ret = read;
297 264
298 out_free: 265 out_put:
299 kfree(buf); 266 trace_parser_put(&parser);
300 267
301 return ret; 268 return ret;
302} 269}
@@ -304,42 +271,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf,
304static void * 271static void *
305t_next(struct seq_file *m, void *v, loff_t *pos) 272t_next(struct seq_file *m, void *v, loff_t *pos)
306{ 273{
307 struct list_head *list = m->private; 274 struct ftrace_event_call *call = v;
308 struct ftrace_event_call *call;
309 275
310 (*pos)++; 276 (*pos)++;
311 277
312 for (;;) { 278 list_for_each_entry_continue(call, &ftrace_events, list) {
313 if (list == &ftrace_events)
314 return NULL;
315
316 call = list_entry(list, struct ftrace_event_call, list);
317
318 /* 279 /*
319 * The ftrace subsystem is for showing formats only. 280 * The ftrace subsystem is for showing formats only.
320 * They can not be enabled or disabled via the event files. 281 * They can not be enabled or disabled via the event files.
321 */ 282 */
322 if (call->regfunc) 283 if (call->regfunc)
323 break; 284 return call;
324
325 list = list->next;
326 } 285 }
327 286
328 m->private = list->next; 287 return NULL;
329
330 return call;
331} 288}
332 289
333static void *t_start(struct seq_file *m, loff_t *pos) 290static void *t_start(struct seq_file *m, loff_t *pos)
334{ 291{
335 struct ftrace_event_call *call = NULL; 292 struct ftrace_event_call *call;
336 loff_t l; 293 loff_t l;
337 294
338 mutex_lock(&event_mutex); 295 mutex_lock(&event_mutex);
339 296
340 m->private = ftrace_events.next; 297 call = list_entry(&ftrace_events, struct ftrace_event_call, list);
341 for (l = 0; l <= *pos; ) { 298 for (l = 0; l <= *pos; ) {
342 call = t_next(m, NULL, &l); 299 call = t_next(m, call, &l);
343 if (!call) 300 if (!call)
344 break; 301 break;
345 } 302 }
@@ -349,37 +306,28 @@ static void *t_start(struct seq_file *m, loff_t *pos)
349static void * 306static void *
350s_next(struct seq_file *m, void *v, loff_t *pos) 307s_next(struct seq_file *m, void *v, loff_t *pos)
351{ 308{
352 struct list_head *list = m->private; 309 struct ftrace_event_call *call = v;
353 struct ftrace_event_call *call;
354 310
355 (*pos)++; 311 (*pos)++;
356 312
357 retry: 313 list_for_each_entry_continue(call, &ftrace_events, list) {
358 if (list == &ftrace_events) 314 if (call->enabled)
359 return NULL; 315 return call;
360
361 call = list_entry(list, struct ftrace_event_call, list);
362
363 if (!call->enabled) {
364 list = list->next;
365 goto retry;
366 } 316 }
367 317
368 m->private = list->next; 318 return NULL;
369
370 return call;
371} 319}
372 320
373static void *s_start(struct seq_file *m, loff_t *pos) 321static void *s_start(struct seq_file *m, loff_t *pos)
374{ 322{
375 struct ftrace_event_call *call = NULL; 323 struct ftrace_event_call *call;
376 loff_t l; 324 loff_t l;
377 325
378 mutex_lock(&event_mutex); 326 mutex_lock(&event_mutex);
379 327
380 m->private = ftrace_events.next; 328 call = list_entry(&ftrace_events, struct ftrace_event_call, list);
381 for (l = 0; l <= *pos; ) { 329 for (l = 0; l <= *pos; ) {
382 call = s_next(m, NULL, &l); 330 call = s_next(m, call, &l);
383 if (!call) 331 if (!call)
384 break; 332 break;
385 } 333 }
@@ -578,7 +526,7 @@ static int trace_write_header(struct trace_seq *s)
578 FIELD(unsigned char, flags), 526 FIELD(unsigned char, flags),
579 FIELD(unsigned char, preempt_count), 527 FIELD(unsigned char, preempt_count),
580 FIELD(int, pid), 528 FIELD(int, pid),
581 FIELD(int, tgid)); 529 FIELD(int, lock_depth));
582} 530}
583 531
584static ssize_t 532static ssize_t
@@ -1187,7 +1135,7 @@ static int trace_module_notify(struct notifier_block *self,
1187} 1135}
1188#endif /* CONFIG_MODULES */ 1136#endif /* CONFIG_MODULES */
1189 1137
1190struct notifier_block trace_module_nb = { 1138static struct notifier_block trace_module_nb = {
1191 .notifier_call = trace_module_notify, 1139 .notifier_call = trace_module_notify,
1192 .priority = 0, 1140 .priority = 0,
1193}; 1141};
@@ -1359,6 +1307,18 @@ static __init void event_trace_self_tests(void)
1359 if (!call->regfunc) 1307 if (!call->regfunc)
1360 continue; 1308 continue;
1361 1309
1310/*
1311 * Testing syscall events here is pretty useless, but
1312 * we still do it if configured. But this is time consuming.
1313 * What we really need is a user thread to perform the
1314 * syscalls as we test.
1315 */
1316#ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS
1317 if (call->system &&
1318 strcmp(call->system, "syscalls") == 0)
1319 continue;
1320#endif
1321
1362 pr_info("Testing event %s: ", call->name); 1322 pr_info("Testing event %s: ", call->name);
1363 1323
1364 /* 1324 /*
@@ -1432,7 +1392,7 @@ static __init void event_trace_self_tests(void)
1432 1392
1433#ifdef CONFIG_FUNCTION_TRACER 1393#ifdef CONFIG_FUNCTION_TRACER
1434 1394
1435static DEFINE_PER_CPU(atomic_t, test_event_disable); 1395static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable);
1436 1396
1437static void 1397static void
1438function_test_events_call(unsigned long ip, unsigned long parent_ip) 1398function_test_events_call(unsigned long ip, unsigned long parent_ip)
@@ -1449,7 +1409,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip)
1449 pc = preempt_count(); 1409 pc = preempt_count();
1450 resched = ftrace_preempt_disable(); 1410 resched = ftrace_preempt_disable();
1451 cpu = raw_smp_processor_id(); 1411 cpu = raw_smp_processor_id();
1452 disabled = atomic_inc_return(&per_cpu(test_event_disable, cpu)); 1412 disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu));
1453 1413
1454 if (disabled != 1) 1414 if (disabled != 1)
1455 goto out; 1415 goto out;
@@ -1468,7 +1428,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip)
1468 trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); 1428 trace_nowake_buffer_unlock_commit(buffer, event, flags, pc);
1469 1429
1470 out: 1430 out:
1471 atomic_dec(&per_cpu(test_event_disable, cpu)); 1431 atomic_dec(&per_cpu(ftrace_test_event_disable, cpu));
1472 ftrace_preempt_enable(resched); 1432 ftrace_preempt_enable(resched);
1473} 1433}
1474 1434
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c
index 93660fbbf629..23245785927f 100644
--- a/kernel/trace/trace_events_filter.c
+++ b/kernel/trace/trace_events_filter.c
@@ -121,6 +121,47 @@ struct filter_parse_state {
121 } operand; 121 } operand;
122}; 122};
123 123
124#define DEFINE_COMPARISON_PRED(type) \
125static int filter_pred_##type(struct filter_pred *pred, void *event, \
126 int val1, int val2) \
127{ \
128 type *addr = (type *)(event + pred->offset); \
129 type val = (type)pred->val; \
130 int match = 0; \
131 \
132 switch (pred->op) { \
133 case OP_LT: \
134 match = (*addr < val); \
135 break; \
136 case OP_LE: \
137 match = (*addr <= val); \
138 break; \
139 case OP_GT: \
140 match = (*addr > val); \
141 break; \
142 case OP_GE: \
143 match = (*addr >= val); \
144 break; \
145 default: \
146 break; \
147 } \
148 \
149 return match; \
150}
151
152#define DEFINE_EQUALITY_PRED(size) \
153static int filter_pred_##size(struct filter_pred *pred, void *event, \
154 int val1, int val2) \
155{ \
156 u##size *addr = (u##size *)(event + pred->offset); \
157 u##size val = (u##size)pred->val; \
158 int match; \
159 \
160 match = (val == *addr) ^ pred->not; \
161 \
162 return match; \
163}
164
124DEFINE_COMPARISON_PRED(s64); 165DEFINE_COMPARISON_PRED(s64);
125DEFINE_COMPARISON_PRED(u64); 166DEFINE_COMPARISON_PRED(u64);
126DEFINE_COMPARISON_PRED(s32); 167DEFINE_COMPARISON_PRED(s32);
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c
index df1bf6e48bb9..9753fcc61bc5 100644
--- a/kernel/trace/trace_export.c
+++ b/kernel/trace/trace_export.c
@@ -15,146 +15,125 @@
15 15
16#include "trace_output.h" 16#include "trace_output.h"
17 17
18#undef TRACE_SYSTEM
19#define TRACE_SYSTEM ftrace
18 20
19#undef TRACE_STRUCT 21/* not needed for this file */
20#define TRACE_STRUCT(args...) args 22#undef __field_struct
23#define __field_struct(type, item)
21 24
22extern void __bad_type_size(void); 25#undef __field
26#define __field(type, item) type item;
23 27
24#undef TRACE_FIELD 28#undef __field_desc
25#define TRACE_FIELD(type, item, assign) \ 29#define __field_desc(type, container, item) type item;
26 if (sizeof(type) != sizeof(field.item)) \ 30
27 __bad_type_size(); \ 31#undef __array
32#define __array(type, item, size) type item[size];
33
34#undef __array_desc
35#define __array_desc(type, container, item, size) type item[size];
36
37#undef __dynamic_array
38#define __dynamic_array(type, item) type item[];
39
40#undef F_STRUCT
41#define F_STRUCT(args...) args
42
43#undef F_printk
44#define F_printk(fmt, args...) fmt, args
45
46#undef FTRACE_ENTRY
47#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \
48struct ____ftrace_##name { \
49 tstruct \
50}; \
51static void __used ____ftrace_check_##name(void) \
52{ \
53 struct ____ftrace_##name *__entry = NULL; \
54 \
55 /* force cmpile-time check on F_printk() */ \
56 printk(print); \
57}
58
59#undef FTRACE_ENTRY_DUP
60#define FTRACE_ENTRY_DUP(name, struct_name, id, tstruct, print) \
61 FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print))
62
63#include "trace_entries.h"
64
65
66#undef __field
67#define __field(type, item) \
28 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ 68 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \
29 "offset:%u;\tsize:%u;\n", \ 69 "offset:%zu;\tsize:%zu;\n", \
30 (unsigned int)offsetof(typeof(field), item), \ 70 offsetof(typeof(field), item), \
31 (unsigned int)sizeof(field.item)); \ 71 sizeof(field.item)); \
32 if (!ret) \ 72 if (!ret) \
33 return 0; 73 return 0;
34 74
75#undef __field_desc
76#define __field_desc(type, container, item) \
77 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \
78 "offset:%zu;\tsize:%zu;\n", \
79 offsetof(typeof(field), container.item), \
80 sizeof(field.container.item)); \
81 if (!ret) \
82 return 0;
35 83
36#undef TRACE_FIELD_SPECIAL 84#undef __array
37#define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ 85#define __array(type, item, len) \
38 ret = trace_seq_printf(s, "\tfield special:" #type_item ";\t" \ 86 ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \
39 "offset:%u;\tsize:%u;\n", \ 87 "offset:%zu;\tsize:%zu;\n", \
40 (unsigned int)offsetof(typeof(field), item), \ 88 offsetof(typeof(field), item), \
41 (unsigned int)sizeof(field.item)); \ 89 sizeof(field.item)); \
42 if (!ret) \ 90 if (!ret) \
43 return 0; 91 return 0;
44 92
45#undef TRACE_FIELD_ZERO_CHAR 93#undef __array_desc
46#define TRACE_FIELD_ZERO_CHAR(item) \ 94#define __array_desc(type, container, item, len) \
47 ret = trace_seq_printf(s, "\tfield:char " #item ";\t" \ 95 ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \
48 "offset:%u;\tsize:0;\n", \ 96 "offset:%zu;\tsize:%zu;\n", \
49 (unsigned int)offsetof(typeof(field), item)); \ 97 offsetof(typeof(field), container.item), \
98 sizeof(field.container.item)); \
50 if (!ret) \ 99 if (!ret) \
51 return 0; 100 return 0;
52 101
53#undef TRACE_FIELD_SIGN 102#undef __dynamic_array
54#define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ 103#define __dynamic_array(type, item) \
55 TRACE_FIELD(type, item, assign) 104 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \
105 "offset:%zu;\tsize:0;\n", \
106 offsetof(typeof(field), item)); \
107 if (!ret) \
108 return 0;
56 109
57#undef TP_RAW_FMT 110#undef F_printk
58#define TP_RAW_FMT(args...) args 111#define F_printk(fmt, args...) "%s, %s\n", #fmt, __stringify(args)
59 112
60#undef TRACE_EVENT_FORMAT 113#undef __entry
61#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ 114#define __entry REC
62static int \
63ftrace_format_##call(struct ftrace_event_call *unused, \
64 struct trace_seq *s) \
65{ \
66 struct args field; \
67 int ret; \
68 \
69 tstruct; \
70 \
71 trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \
72 \
73 return ret; \
74}
75 115
76#undef TRACE_EVENT_FORMAT_NOFILTER 116#undef FTRACE_ENTRY
77#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ 117#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \
78 tpfmt) \
79static int \ 118static int \
80ftrace_format_##call(struct ftrace_event_call *unused, \ 119ftrace_format_##name(struct ftrace_event_call *unused, \
81 struct trace_seq *s) \ 120 struct trace_seq *s) \
82{ \ 121{ \
83 struct args field; \ 122 struct struct_name field __attribute__((unused)); \
84 int ret; \ 123 int ret = 0; \
85 \ 124 \
86 tstruct; \ 125 tstruct; \
87 \ 126 \
88 trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ 127 trace_seq_printf(s, "\nprint fmt: " print); \
89 \ 128 \
90 return ret; \ 129 return ret; \
91} 130}
92 131
93#include "trace_event_types.h" 132#include "trace_entries.h"
94
95#undef TRACE_ZERO_CHAR
96#define TRACE_ZERO_CHAR(arg)
97
98#undef TRACE_FIELD
99#define TRACE_FIELD(type, item, assign)\
100 entry->item = assign;
101
102#undef TRACE_FIELD
103#define TRACE_FIELD(type, item, assign)\
104 entry->item = assign;
105
106#undef TRACE_FIELD_SIGN
107#define TRACE_FIELD_SIGN(type, item, assign, is_signed) \
108 TRACE_FIELD(type, item, assign)
109
110#undef TP_CMD
111#define TP_CMD(cmd...) cmd
112
113#undef TRACE_ENTRY
114#define TRACE_ENTRY entry
115
116#undef TRACE_FIELD_SPECIAL
117#define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \
118 cmd;
119
120#undef TRACE_EVENT_FORMAT
121#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \
122int ftrace_define_fields_##call(struct ftrace_event_call *event_call); \
123static int ftrace_raw_init_event_##call(void); \
124 \
125struct ftrace_event_call __used \
126__attribute__((__aligned__(4))) \
127__attribute__((section("_ftrace_events"))) event_##call = { \
128 .name = #call, \
129 .id = proto, \
130 .system = __stringify(TRACE_SYSTEM), \
131 .raw_init = ftrace_raw_init_event_##call, \
132 .show_format = ftrace_format_##call, \
133 .define_fields = ftrace_define_fields_##call, \
134}; \
135static int ftrace_raw_init_event_##call(void) \
136{ \
137 INIT_LIST_HEAD(&event_##call.fields); \
138 return 0; \
139} \
140
141#undef TRACE_EVENT_FORMAT_NOFILTER
142#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \
143 tpfmt) \
144 \
145struct ftrace_event_call __used \
146__attribute__((__aligned__(4))) \
147__attribute__((section("_ftrace_events"))) event_##call = { \
148 .name = #call, \
149 .id = proto, \
150 .system = __stringify(TRACE_SYSTEM), \
151 .show_format = ftrace_format_##call, \
152};
153 133
154#include "trace_event_types.h"
155 134
156#undef TRACE_FIELD 135#undef __field
157#define TRACE_FIELD(type, item, assign) \ 136#define __field(type, item) \
158 ret = trace_define_field(event_call, #type, #item, \ 137 ret = trace_define_field(event_call, #type, #item, \
159 offsetof(typeof(field), item), \ 138 offsetof(typeof(field), item), \
160 sizeof(field.item), \ 139 sizeof(field.item), \
@@ -162,32 +141,45 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
162 if (ret) \ 141 if (ret) \
163 return ret; 142 return ret;
164 143
165#undef TRACE_FIELD_SPECIAL 144#undef __field_desc
166#define TRACE_FIELD_SPECIAL(type, item, len, cmd) \ 145#define __field_desc(type, container, item) \
146 ret = trace_define_field(event_call, #type, #item, \
147 offsetof(typeof(field), \
148 container.item), \
149 sizeof(field.container.item), \
150 is_signed_type(type), FILTER_OTHER); \
151 if (ret) \
152 return ret;
153
154#undef __array
155#define __array(type, item, len) \
156 BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \
167 ret = trace_define_field(event_call, #type "[" #len "]", #item, \ 157 ret = trace_define_field(event_call, #type "[" #len "]", #item, \
168 offsetof(typeof(field), item), \ 158 offsetof(typeof(field), item), \
169 sizeof(field.item), 0, FILTER_OTHER); \ 159 sizeof(field.item), 0, FILTER_OTHER); \
170 if (ret) \ 160 if (ret) \
171 return ret; 161 return ret;
172 162
173#undef TRACE_FIELD_SIGN 163#undef __array_desc
174#define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ 164#define __array_desc(type, container, item, len) \
175 ret = trace_define_field(event_call, #type, #item, \ 165 BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \
176 offsetof(typeof(field), item), \ 166 ret = trace_define_field(event_call, #type "[" #len "]", #item, \
177 sizeof(field.item), is_signed, \ 167 offsetof(typeof(field), \
168 container.item), \
169 sizeof(field.container.item), 0, \
178 FILTER_OTHER); \ 170 FILTER_OTHER); \
179 if (ret) \ 171 if (ret) \
180 return ret; 172 return ret;
181 173
182#undef TRACE_FIELD_ZERO_CHAR 174#undef __dynamic_array
183#define TRACE_FIELD_ZERO_CHAR(item) 175#define __dynamic_array(type, item)
184 176
185#undef TRACE_EVENT_FORMAT 177#undef FTRACE_ENTRY
186#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ 178#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \
187int \ 179int \
188ftrace_define_fields_##call(struct ftrace_event_call *event_call) \ 180ftrace_define_fields_##name(struct ftrace_event_call *event_call) \
189{ \ 181{ \
190 struct args field; \ 182 struct struct_name field; \
191 int ret; \ 183 int ret; \
192 \ 184 \
193 ret = trace_define_common_fields(event_call); \ 185 ret = trace_define_common_fields(event_call); \
@@ -199,8 +191,42 @@ ftrace_define_fields_##call(struct ftrace_event_call *event_call) \
199 return ret; \ 191 return ret; \
200} 192}
201 193
202#undef TRACE_EVENT_FORMAT_NOFILTER 194#include "trace_entries.h"
203#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ 195
204 tpfmt) 196
197#undef __field
198#define __field(type, item)
199
200#undef __field_desc
201#define __field_desc(type, container, item)
202
203#undef __array
204#define __array(type, item, len)
205
206#undef __array_desc
207#define __array_desc(type, container, item, len)
208
209#undef __dynamic_array
210#define __dynamic_array(type, item)
211
212#undef FTRACE_ENTRY
213#define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \
214static int ftrace_raw_init_event_##call(void); \
215 \
216struct ftrace_event_call __used \
217__attribute__((__aligned__(4))) \
218__attribute__((section("_ftrace_events"))) event_##call = { \
219 .name = #call, \
220 .id = type, \
221 .system = __stringify(TRACE_SYSTEM), \
222 .raw_init = ftrace_raw_init_event_##call, \
223 .show_format = ftrace_format_##call, \
224 .define_fields = ftrace_define_fields_##call, \
225}; \
226static int ftrace_raw_init_event_##call(void) \
227{ \
228 INIT_LIST_HEAD(&event_##call.fields); \
229 return 0; \
230} \
205 231
206#include "trace_event_types.h" 232#include "trace_entries.h"
diff --git a/kernel/trace/trace_functions.c b/kernel/trace/trace_functions.c
index 5b01b94518fc..b3f3776b0cd6 100644
--- a/kernel/trace/trace_functions.c
+++ b/kernel/trace/trace_functions.c
@@ -290,7 +290,7 @@ ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip,
290{ 290{
291 long count = (long)data; 291 long count = (long)data;
292 292
293 seq_printf(m, "%pf:", (void *)ip); 293 seq_printf(m, "%ps:", (void *)ip);
294 294
295 if (ops == &traceon_probe_ops) 295 if (ops == &traceon_probe_ops)
296 seq_printf(m, "traceon"); 296 seq_printf(m, "traceon");
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c
index b3749a2c3132..45e6c01b2e4d 100644
--- a/kernel/trace/trace_functions_graph.c
+++ b/kernel/trace/trace_functions_graph.c
@@ -124,7 +124,7 @@ ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret,
124 if (unlikely(current->ret_stack[index].fp != frame_pointer)) { 124 if (unlikely(current->ret_stack[index].fp != frame_pointer)) {
125 ftrace_graph_stop(); 125 ftrace_graph_stop();
126 WARN(1, "Bad frame pointer: expected %lx, received %lx\n" 126 WARN(1, "Bad frame pointer: expected %lx, received %lx\n"
127 " from func %pF return to %lx\n", 127 " from func %ps return to %lx\n",
128 current->ret_stack[index].fp, 128 current->ret_stack[index].fp,
129 frame_pointer, 129 frame_pointer,
130 (void *)current->ret_stack[index].func, 130 (void *)current->ret_stack[index].func,
@@ -364,6 +364,15 @@ print_graph_proc(struct trace_seq *s, pid_t pid)
364} 364}
365 365
366 366
367static enum print_line_t
368print_graph_lat_fmt(struct trace_seq *s, struct trace_entry *entry)
369{
370 if (!trace_seq_putc(s, ' '))
371 return 0;
372
373 return trace_print_lat_fmt(s, entry);
374}
375
367/* If the pid changed since the last trace, output this event */ 376/* If the pid changed since the last trace, output this event */
368static enum print_line_t 377static enum print_line_t
369verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) 378verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data)
@@ -521,6 +530,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr,
521 if (ret == TRACE_TYPE_PARTIAL_LINE) 530 if (ret == TRACE_TYPE_PARTIAL_LINE)
522 return TRACE_TYPE_PARTIAL_LINE; 531 return TRACE_TYPE_PARTIAL_LINE;
523 } 532 }
533
524 /* Proc */ 534 /* Proc */
525 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { 535 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) {
526 ret = print_graph_proc(s, pid); 536 ret = print_graph_proc(s, pid);
@@ -659,7 +669,7 @@ print_graph_entry_leaf(struct trace_iterator *iter,
659 return TRACE_TYPE_PARTIAL_LINE; 669 return TRACE_TYPE_PARTIAL_LINE;
660 } 670 }
661 671
662 ret = trace_seq_printf(s, "%pf();\n", (void *)call->func); 672 ret = trace_seq_printf(s, "%ps();\n", (void *)call->func);
663 if (!ret) 673 if (!ret)
664 return TRACE_TYPE_PARTIAL_LINE; 674 return TRACE_TYPE_PARTIAL_LINE;
665 675
@@ -702,7 +712,7 @@ print_graph_entry_nested(struct trace_iterator *iter,
702 return TRACE_TYPE_PARTIAL_LINE; 712 return TRACE_TYPE_PARTIAL_LINE;
703 } 713 }
704 714
705 ret = trace_seq_printf(s, "%pf() {\n", (void *)call->func); 715 ret = trace_seq_printf(s, "%ps() {\n", (void *)call->func);
706 if (!ret) 716 if (!ret)
707 return TRACE_TYPE_PARTIAL_LINE; 717 return TRACE_TYPE_PARTIAL_LINE;
708 718
@@ -758,6 +768,13 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s,
758 return TRACE_TYPE_PARTIAL_LINE; 768 return TRACE_TYPE_PARTIAL_LINE;
759 } 769 }
760 770
771 /* Latency format */
772 if (trace_flags & TRACE_ITER_LATENCY_FMT) {
773 ret = print_graph_lat_fmt(s, ent);
774 if (ret == TRACE_TYPE_PARTIAL_LINE)
775 return TRACE_TYPE_PARTIAL_LINE;
776 }
777
761 return 0; 778 return 0;
762} 779}
763 780
@@ -952,28 +969,59 @@ print_graph_function(struct trace_iterator *iter)
952 return TRACE_TYPE_HANDLED; 969 return TRACE_TYPE_HANDLED;
953} 970}
954 971
972static void print_lat_header(struct seq_file *s)
973{
974 static const char spaces[] = " " /* 16 spaces */
975 " " /* 4 spaces */
976 " "; /* 17 spaces */
977 int size = 0;
978
979 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME)
980 size += 16;
981 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU)
982 size += 4;
983 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC)
984 size += 17;
985
986 seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces);
987 seq_printf(s, "#%.*s / _----=> need-resched \n", size, spaces);
988 seq_printf(s, "#%.*s| / _---=> hardirq/softirq \n", size, spaces);
989 seq_printf(s, "#%.*s|| / _--=> preempt-depth \n", size, spaces);
990 seq_printf(s, "#%.*s||| / _-=> lock-depth \n", size, spaces);
991 seq_printf(s, "#%.*s|||| / \n", size, spaces);
992}
993
955static void print_graph_headers(struct seq_file *s) 994static void print_graph_headers(struct seq_file *s)
956{ 995{
996 int lat = trace_flags & TRACE_ITER_LATENCY_FMT;
997
998 if (lat)
999 print_lat_header(s);
1000
957 /* 1st line */ 1001 /* 1st line */
958 seq_printf(s, "# "); 1002 seq_printf(s, "#");
959 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) 1003 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME)
960 seq_printf(s, " TIME "); 1004 seq_printf(s, " TIME ");
961 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) 1005 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU)
962 seq_printf(s, "CPU"); 1006 seq_printf(s, " CPU");
963 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) 1007 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC)
964 seq_printf(s, " TASK/PID "); 1008 seq_printf(s, " TASK/PID ");
1009 if (lat)
1010 seq_printf(s, "|||||");
965 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) 1011 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION)
966 seq_printf(s, " DURATION "); 1012 seq_printf(s, " DURATION ");
967 seq_printf(s, " FUNCTION CALLS\n"); 1013 seq_printf(s, " FUNCTION CALLS\n");
968 1014
969 /* 2nd line */ 1015 /* 2nd line */
970 seq_printf(s, "# "); 1016 seq_printf(s, "#");
971 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) 1017 if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME)
972 seq_printf(s, " | "); 1018 seq_printf(s, " | ");
973 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) 1019 if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU)
974 seq_printf(s, "| "); 1020 seq_printf(s, " | ");
975 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) 1021 if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC)
976 seq_printf(s, " | | "); 1022 seq_printf(s, " | | ");
1023 if (lat)
1024 seq_printf(s, "|||||");
977 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) 1025 if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION)
978 seq_printf(s, " | | "); 1026 seq_printf(s, " | | ");
979 seq_printf(s, " | | | |\n"); 1027 seq_printf(s, " | | | |\n");
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c
index ca7d7c4d0c2a..23b63859130e 100644
--- a/kernel/trace/trace_hw_branches.c
+++ b/kernel/trace/trace_hw_branches.c
@@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter)
155 seq_print_ip_sym(seq, it->from, symflags) && 155 seq_print_ip_sym(seq, it->from, symflags) &&
156 trace_seq_printf(seq, "\n")) 156 trace_seq_printf(seq, "\n"))
157 return TRACE_TYPE_HANDLED; 157 return TRACE_TYPE_HANDLED;
158 return TRACE_TYPE_PARTIAL_LINE;; 158 return TRACE_TYPE_PARTIAL_LINE;
159 } 159 }
160 return TRACE_TYPE_UNHANDLED; 160 return TRACE_TYPE_UNHANDLED;
161} 161}
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c
index 5555b75a0d12..3aa7eaa2114c 100644
--- a/kernel/trace/trace_irqsoff.c
+++ b/kernel/trace/trace_irqsoff.c
@@ -129,15 +129,10 @@ check_critical_timing(struct trace_array *tr,
129 unsigned long parent_ip, 129 unsigned long parent_ip,
130 int cpu) 130 int cpu)
131{ 131{
132 unsigned long latency, t0, t1;
133 cycle_t T0, T1, delta; 132 cycle_t T0, T1, delta;
134 unsigned long flags; 133 unsigned long flags;
135 int pc; 134 int pc;
136 135
137 /*
138 * usecs conversion is slow so we try to delay the conversion
139 * as long as possible:
140 */
141 T0 = data->preempt_timestamp; 136 T0 = data->preempt_timestamp;
142 T1 = ftrace_now(cpu); 137 T1 = ftrace_now(cpu);
143 delta = T1-T0; 138 delta = T1-T0;
@@ -157,18 +152,15 @@ check_critical_timing(struct trace_array *tr,
157 152
158 trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); 153 trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc);
159 154
160 latency = nsecs_to_usecs(delta);
161
162 if (data->critical_sequence != max_sequence) 155 if (data->critical_sequence != max_sequence)
163 goto out_unlock; 156 goto out_unlock;
164 157
165 tracing_max_latency = delta;
166 t0 = nsecs_to_usecs(T0);
167 t1 = nsecs_to_usecs(T1);
168
169 data->critical_end = parent_ip; 158 data->critical_end = parent_ip;
170 159
171 update_max_tr_single(tr, current, cpu); 160 if (likely(!is_tracing_stopped())) {
161 tracing_max_latency = delta;
162 update_max_tr_single(tr, current, cpu);
163 }
172 164
173 max_sequence++; 165 max_sequence++;
174 166
diff --git a/kernel/trace/trace_mmiotrace.c b/kernel/trace/trace_mmiotrace.c
index c4c9bbda53d3..0acd834659ed 100644
--- a/kernel/trace/trace_mmiotrace.c
+++ b/kernel/trace/trace_mmiotrace.c
@@ -307,6 +307,7 @@ static void __trace_mmiotrace_rw(struct trace_array *tr,
307 struct trace_array_cpu *data, 307 struct trace_array_cpu *data,
308 struct mmiotrace_rw *rw) 308 struct mmiotrace_rw *rw)
309{ 309{
310 struct ftrace_event_call *call = &event_mmiotrace_rw;
310 struct ring_buffer *buffer = tr->buffer; 311 struct ring_buffer *buffer = tr->buffer;
311 struct ring_buffer_event *event; 312 struct ring_buffer_event *event;
312 struct trace_mmiotrace_rw *entry; 313 struct trace_mmiotrace_rw *entry;
@@ -320,7 +321,9 @@ static void __trace_mmiotrace_rw(struct trace_array *tr,
320 } 321 }
321 entry = ring_buffer_event_data(event); 322 entry = ring_buffer_event_data(event);
322 entry->rw = *rw; 323 entry->rw = *rw;
323 trace_buffer_unlock_commit(buffer, event, 0, pc); 324
325 if (!filter_check_discard(call, entry, buffer, event))
326 trace_buffer_unlock_commit(buffer, event, 0, pc);
324} 327}
325 328
326void mmio_trace_rw(struct mmiotrace_rw *rw) 329void mmio_trace_rw(struct mmiotrace_rw *rw)
@@ -334,6 +337,7 @@ static void __trace_mmiotrace_map(struct trace_array *tr,
334 struct trace_array_cpu *data, 337 struct trace_array_cpu *data,
335 struct mmiotrace_map *map) 338 struct mmiotrace_map *map)
336{ 339{
340 struct ftrace_event_call *call = &event_mmiotrace_map;
337 struct ring_buffer *buffer = tr->buffer; 341 struct ring_buffer *buffer = tr->buffer;
338 struct ring_buffer_event *event; 342 struct ring_buffer_event *event;
339 struct trace_mmiotrace_map *entry; 343 struct trace_mmiotrace_map *entry;
@@ -347,7 +351,9 @@ static void __trace_mmiotrace_map(struct trace_array *tr,
347 } 351 }
348 entry = ring_buffer_event_data(event); 352 entry = ring_buffer_event_data(event);
349 entry->map = *map; 353 entry->map = *map;
350 trace_buffer_unlock_commit(buffer, event, 0, pc); 354
355 if (!filter_check_discard(call, entry, buffer, event))
356 trace_buffer_unlock_commit(buffer, event, 0, pc);
351} 357}
352 358
353void mmio_trace_mapping(struct mmiotrace_map *map) 359void mmio_trace_mapping(struct mmiotrace_map *map)
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c
index e0c2545622e8..f572f44c6e1e 100644
--- a/kernel/trace/trace_output.c
+++ b/kernel/trace/trace_output.c
@@ -407,7 +407,7 @@ seq_print_userip_objs(const struct userstack_entry *entry, struct trace_seq *s,
407 * since individual threads might have already quit! 407 * since individual threads might have already quit!
408 */ 408 */
409 rcu_read_lock(); 409 rcu_read_lock();
410 task = find_task_by_vpid(entry->ent.tgid); 410 task = find_task_by_vpid(entry->tgid);
411 if (task) 411 if (task)
412 mm = get_task_mm(task); 412 mm = get_task_mm(task);
413 rcu_read_unlock(); 413 rcu_read_unlock();
@@ -460,18 +460,23 @@ seq_print_ip_sym(struct trace_seq *s, unsigned long ip, unsigned long sym_flags)
460 return ret; 460 return ret;
461} 461}
462 462
463static int 463/**
464lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) 464 * trace_print_lat_fmt - print the irq, preempt and lockdep fields
465 * @s: trace seq struct to write to
466 * @entry: The trace entry field from the ring buffer
467 *
468 * Prints the generic fields of irqs off, in hard or softirq, preempt
469 * count and lock depth.
470 */
471int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry)
465{ 472{
466 int hardirq, softirq; 473 int hardirq, softirq;
467 char comm[TASK_COMM_LEN]; 474 int ret;
468 475
469 trace_find_cmdline(entry->pid, comm);
470 hardirq = entry->flags & TRACE_FLAG_HARDIRQ; 476 hardirq = entry->flags & TRACE_FLAG_HARDIRQ;
471 softirq = entry->flags & TRACE_FLAG_SOFTIRQ; 477 softirq = entry->flags & TRACE_FLAG_SOFTIRQ;
472 478
473 if (!trace_seq_printf(s, "%8.8s-%-5d %3d%c%c%c", 479 if (!trace_seq_printf(s, "%c%c%c",
474 comm, entry->pid, cpu,
475 (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : 480 (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
476 (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? 481 (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
477 'X' : '.', 482 'X' : '.',
@@ -481,9 +486,30 @@ lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu)
481 hardirq ? 'h' : softirq ? 's' : '.')) 486 hardirq ? 'h' : softirq ? 's' : '.'))
482 return 0; 487 return 0;
483 488
489 if (entry->lock_depth < 0)
490 ret = trace_seq_putc(s, '.');
491 else
492 ret = trace_seq_printf(s, "%d", entry->lock_depth);
493 if (!ret)
494 return 0;
495
484 if (entry->preempt_count) 496 if (entry->preempt_count)
485 return trace_seq_printf(s, "%x", entry->preempt_count); 497 return trace_seq_printf(s, "%x", entry->preempt_count);
486 return trace_seq_puts(s, "."); 498 return trace_seq_putc(s, '.');
499}
500
501static int
502lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu)
503{
504 char comm[TASK_COMM_LEN];
505
506 trace_find_cmdline(entry->pid, comm);
507
508 if (!trace_seq_printf(s, "%8.8s-%-5d %3d",
509 comm, entry->pid, cpu))
510 return 0;
511
512 return trace_print_lat_fmt(s, entry);
487} 513}
488 514
489static unsigned long preempt_mark_thresh = 100; 515static unsigned long preempt_mark_thresh = 100;
diff --git a/kernel/trace/trace_output.h b/kernel/trace/trace_output.h
index d38bec4a9c30..9d91c72ba38b 100644
--- a/kernel/trace/trace_output.h
+++ b/kernel/trace/trace_output.h
@@ -26,6 +26,8 @@ extern struct trace_event *ftrace_find_event(int type);
26 26
27extern enum print_line_t trace_nop_print(struct trace_iterator *iter, 27extern enum print_line_t trace_nop_print(struct trace_iterator *iter,
28 int flags); 28 int flags);
29extern int
30trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry);
29 31
30/* used by module unregistering */ 32/* used by module unregistering */
31extern int __unregister_ftrace_event(struct trace_event *event); 33extern int __unregister_ftrace_event(struct trace_event *event);
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c
deleted file mode 100644
index fe1a00f1445a..000000000000
--- a/kernel/trace/trace_power.c
+++ /dev/null
@@ -1,218 +0,0 @@
1/*
2 * ring buffer based C-state tracer
3 *
4 * Arjan van de Ven <arjan@linux.intel.com>
5 * Copyright (C) 2008 Intel Corporation
6 *
7 * Much is borrowed from trace_boot.c which is
8 * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com>
9 *
10 */
11
12#include <linux/init.h>
13#include <linux/debugfs.h>
14#include <trace/power.h>
15#include <linux/kallsyms.h>
16#include <linux/module.h>
17
18#include "trace.h"
19#include "trace_output.h"
20
21static struct trace_array *power_trace;
22static int __read_mostly trace_power_enabled;
23
24static void probe_power_start(struct power_trace *it, unsigned int type,
25 unsigned int level)
26{
27 if (!trace_power_enabled)
28 return;
29
30 memset(it, 0, sizeof(struct power_trace));
31 it->state = level;
32 it->type = type;
33 it->stamp = ktime_get();
34}
35
36
37static void probe_power_end(struct power_trace *it)
38{
39 struct ftrace_event_call *call = &event_power;
40 struct ring_buffer_event *event;
41 struct ring_buffer *buffer;
42 struct trace_power *entry;
43 struct trace_array_cpu *data;
44 struct trace_array *tr = power_trace;
45
46 if (!trace_power_enabled)
47 return;
48
49 buffer = tr->buffer;
50
51 preempt_disable();
52 it->end = ktime_get();
53 data = tr->data[smp_processor_id()];
54
55 event = trace_buffer_lock_reserve(buffer, TRACE_POWER,
56 sizeof(*entry), 0, 0);
57 if (!event)
58 goto out;
59 entry = ring_buffer_event_data(event);
60 entry->state_data = *it;
61 if (!filter_check_discard(call, entry, buffer, event))
62 trace_buffer_unlock_commit(buffer, event, 0, 0);
63 out:
64 preempt_enable();
65}
66
67static void probe_power_mark(struct power_trace *it, unsigned int type,
68 unsigned int level)
69{
70 struct ftrace_event_call *call = &event_power;
71 struct ring_buffer_event *event;
72 struct ring_buffer *buffer;
73 struct trace_power *entry;
74 struct trace_array_cpu *data;
75 struct trace_array *tr = power_trace;
76
77 if (!trace_power_enabled)
78 return;
79
80 buffer = tr->buffer;
81
82 memset(it, 0, sizeof(struct power_trace));
83 it->state = level;
84 it->type = type;
85 it->stamp = ktime_get();
86 preempt_disable();
87 it->end = it->stamp;
88 data = tr->data[smp_processor_id()];
89
90 event = trace_buffer_lock_reserve(buffer, TRACE_POWER,
91 sizeof(*entry), 0, 0);
92 if (!event)
93 goto out;
94 entry = ring_buffer_event_data(event);
95 entry->state_data = *it;
96 if (!filter_check_discard(call, entry, buffer, event))
97 trace_buffer_unlock_commit(buffer, event, 0, 0);
98 out:
99 preempt_enable();
100}
101
102static int tracing_power_register(void)
103{
104 int ret;
105
106 ret = register_trace_power_start(probe_power_start);
107 if (ret) {
108 pr_info("power trace: Couldn't activate tracepoint"
109 " probe to trace_power_start\n");
110 return ret;
111 }
112 ret = register_trace_power_end(probe_power_end);
113 if (ret) {
114 pr_info("power trace: Couldn't activate tracepoint"
115 " probe to trace_power_end\n");
116 goto fail_start;
117 }
118 ret = register_trace_power_mark(probe_power_mark);
119 if (ret) {
120 pr_info("power trace: Couldn't activate tracepoint"
121 " probe to trace_power_mark\n");
122 goto fail_end;
123 }
124 return ret;
125fail_end:
126 unregister_trace_power_end(probe_power_end);
127fail_start:
128 unregister_trace_power_start(probe_power_start);
129 return ret;
130}
131
132static void start_power_trace(struct trace_array *tr)
133{
134 trace_power_enabled = 1;
135}
136
137static void stop_power_trace(struct trace_array *tr)
138{
139 trace_power_enabled = 0;
140}
141
142static void power_trace_reset(struct trace_array *tr)
143{
144 trace_power_enabled = 0;
145 unregister_trace_power_start(probe_power_start);
146 unregister_trace_power_end(probe_power_end);
147 unregister_trace_power_mark(probe_power_mark);
148}
149
150
151static int power_trace_init(struct trace_array *tr)
152{
153 power_trace = tr;
154
155 trace_power_enabled = 1;
156 tracing_power_register();
157
158 tracing_reset_online_cpus(tr);
159 return 0;
160}
161
162static enum print_line_t power_print_line(struct trace_iterator *iter)
163{
164 int ret = 0;
165 struct trace_entry *entry = iter->ent;
166 struct trace_power *field ;
167 struct power_trace *it;
168 struct trace_seq *s = &iter->seq;
169 struct timespec stamp;
170 struct timespec duration;
171
172 trace_assign_type(field, entry);
173 it = &field->state_data;
174 stamp = ktime_to_timespec(it->stamp);
175 duration = ktime_to_timespec(ktime_sub(it->end, it->stamp));
176
177 if (entry->type == TRACE_POWER) {
178 if (it->type == POWER_CSTATE)
179 ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n",
180 stamp.tv_sec,
181 stamp.tv_nsec,
182 it->state, iter->cpu,
183 duration.tv_sec,
184 duration.tv_nsec);
185 if (it->type == POWER_PSTATE)
186 ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n",
187 stamp.tv_sec,
188 stamp.tv_nsec,
189 it->state, iter->cpu);
190 if (!ret)
191 return TRACE_TYPE_PARTIAL_LINE;
192 return TRACE_TYPE_HANDLED;
193 }
194 return TRACE_TYPE_UNHANDLED;
195}
196
197static void power_print_header(struct seq_file *s)
198{
199 seq_puts(s, "# TIMESTAMP STATE EVENT\n");
200 seq_puts(s, "# | | |\n");
201}
202
203static struct tracer power_tracer __read_mostly =
204{
205 .name = "power",
206 .init = power_trace_init,
207 .start = start_power_trace,
208 .stop = stop_power_trace,
209 .reset = power_trace_reset,
210 .print_line = power_print_line,
211 .print_header = power_print_header,
212};
213
214static int init_power_trace(void)
215{
216 return register_tracer(&power_tracer);
217}
218device_initcall(init_power_trace);
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c
index 687699d365ae..2547d8813cf0 100644
--- a/kernel/trace/trace_printk.c
+++ b/kernel/trace/trace_printk.c
@@ -11,7 +11,6 @@
11#include <linux/ftrace.h> 11#include <linux/ftrace.h>
12#include <linux/string.h> 12#include <linux/string.h>
13#include <linux/module.h> 13#include <linux/module.h>
14#include <linux/marker.h>
15#include <linux/mutex.h> 14#include <linux/mutex.h>
16#include <linux/ctype.h> 15#include <linux/ctype.h>
17#include <linux/list.h> 16#include <linux/list.h>
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index ad69f105a7c6..26185d727676 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -24,6 +24,7 @@ static int __read_mostly tracer_enabled;
24 24
25static struct task_struct *wakeup_task; 25static struct task_struct *wakeup_task;
26static int wakeup_cpu; 26static int wakeup_cpu;
27static int wakeup_current_cpu;
27static unsigned wakeup_prio = -1; 28static unsigned wakeup_prio = -1;
28static int wakeup_rt; 29static int wakeup_rt;
29 30
@@ -56,33 +57,23 @@ wakeup_tracer_call(unsigned long ip, unsigned long parent_ip)
56 resched = ftrace_preempt_disable(); 57 resched = ftrace_preempt_disable();
57 58
58 cpu = raw_smp_processor_id(); 59 cpu = raw_smp_processor_id();
60 if (cpu != wakeup_current_cpu)
61 goto out_enable;
62
59 data = tr->data[cpu]; 63 data = tr->data[cpu];
60 disabled = atomic_inc_return(&data->disabled); 64 disabled = atomic_inc_return(&data->disabled);
61 if (unlikely(disabled != 1)) 65 if (unlikely(disabled != 1))
62 goto out; 66 goto out;
63 67
64 local_irq_save(flags); 68 local_irq_save(flags);
65 __raw_spin_lock(&wakeup_lock);
66
67 if (unlikely(!wakeup_task))
68 goto unlock;
69
70 /*
71 * The task can't disappear because it needs to
72 * wake up first, and we have the wakeup_lock.
73 */
74 if (task_cpu(wakeup_task) != cpu)
75 goto unlock;
76 69
77 trace_function(tr, ip, parent_ip, flags, pc); 70 trace_function(tr, ip, parent_ip, flags, pc);
78 71
79 unlock:
80 __raw_spin_unlock(&wakeup_lock);
81 local_irq_restore(flags); 72 local_irq_restore(flags);
82 73
83 out: 74 out:
84 atomic_dec(&data->disabled); 75 atomic_dec(&data->disabled);
85 76 out_enable:
86 ftrace_preempt_enable(resched); 77 ftrace_preempt_enable(resched);
87} 78}
88 79
@@ -107,11 +98,18 @@ static int report_latency(cycle_t delta)
107 return 1; 98 return 1;
108} 99}
109 100
101static void probe_wakeup_migrate_task(struct task_struct *task, int cpu)
102{
103 if (task != wakeup_task)
104 return;
105
106 wakeup_current_cpu = cpu;
107}
108
110static void notrace 109static void notrace
111probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, 110probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev,
112 struct task_struct *next) 111 struct task_struct *next)
113{ 112{
114 unsigned long latency = 0, t0 = 0, t1 = 0;
115 struct trace_array_cpu *data; 113 struct trace_array_cpu *data;
116 cycle_t T0, T1, delta; 114 cycle_t T0, T1, delta;
117 unsigned long flags; 115 unsigned long flags;
@@ -157,10 +155,6 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev,
157 trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); 155 trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc);
158 tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); 156 tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc);
159 157
160 /*
161 * usecs conversion is slow so we try to delay the conversion
162 * as long as possible:
163 */
164 T0 = data->preempt_timestamp; 158 T0 = data->preempt_timestamp;
165 T1 = ftrace_now(cpu); 159 T1 = ftrace_now(cpu);
166 delta = T1-T0; 160 delta = T1-T0;
@@ -168,13 +162,10 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev,
168 if (!report_latency(delta)) 162 if (!report_latency(delta))
169 goto out_unlock; 163 goto out_unlock;
170 164
171 latency = nsecs_to_usecs(delta); 165 if (likely(!is_tracing_stopped())) {
172 166 tracing_max_latency = delta;
173 tracing_max_latency = delta; 167 update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu);
174 t0 = nsecs_to_usecs(T0); 168 }
175 t1 = nsecs_to_usecs(T1);
176
177 update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu);
178 169
179out_unlock: 170out_unlock:
180 __wakeup_reset(wakeup_trace); 171 __wakeup_reset(wakeup_trace);
@@ -244,6 +235,7 @@ probe_wakeup(struct rq *rq, struct task_struct *p, int success)
244 __wakeup_reset(wakeup_trace); 235 __wakeup_reset(wakeup_trace);
245 236
246 wakeup_cpu = task_cpu(p); 237 wakeup_cpu = task_cpu(p);
238 wakeup_current_cpu = wakeup_cpu;
247 wakeup_prio = p->prio; 239 wakeup_prio = p->prio;
248 240
249 wakeup_task = p; 241 wakeup_task = p;
@@ -293,6 +285,13 @@ static void start_wakeup_tracer(struct trace_array *tr)
293 goto fail_deprobe_wake_new; 285 goto fail_deprobe_wake_new;
294 } 286 }
295 287
288 ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task);
289 if (ret) {
290 pr_info("wakeup trace: Couldn't activate tracepoint"
291 " probe to kernel_sched_migrate_task\n");
292 return;
293 }
294
296 wakeup_reset(tr); 295 wakeup_reset(tr);
297 296
298 /* 297 /*
@@ -325,6 +324,7 @@ static void stop_wakeup_tracer(struct trace_array *tr)
325 unregister_trace_sched_switch(probe_wakeup_sched_switch); 324 unregister_trace_sched_switch(probe_wakeup_sched_switch);
326 unregister_trace_sched_wakeup_new(probe_wakeup); 325 unregister_trace_sched_wakeup_new(probe_wakeup);
327 unregister_trace_sched_wakeup(probe_wakeup); 326 unregister_trace_sched_wakeup(probe_wakeup);
327 unregister_trace_sched_migrate_task(probe_wakeup_migrate_task);
328} 328}
329 329
330static int __wakeup_tracer_init(struct trace_array *tr) 330static int __wakeup_tracer_init(struct trace_array *tr)
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c
index 0f6facb050a1..8504ac71e4e8 100644
--- a/kernel/trace/trace_stack.c
+++ b/kernel/trace/trace_stack.c
@@ -296,14 +296,14 @@ static const struct file_operations stack_trace_fops = {
296 296
297int 297int
298stack_trace_sysctl(struct ctl_table *table, int write, 298stack_trace_sysctl(struct ctl_table *table, int write,
299 struct file *file, void __user *buffer, size_t *lenp, 299 void __user *buffer, size_t *lenp,
300 loff_t *ppos) 300 loff_t *ppos)
301{ 301{
302 int ret; 302 int ret;
303 303
304 mutex_lock(&stack_sysctl_mutex); 304 mutex_lock(&stack_sysctl_mutex);
305 305
306 ret = proc_dointvec(table, write, file, buffer, lenp, ppos); 306 ret = proc_dointvec(table, write, buffer, lenp, ppos);
307 307
308 if (ret || !write || 308 if (ret || !write ||
309 (last_stack_tracer_enabled == !!stack_tracer_enabled)) 309 (last_stack_tracer_enabled == !!stack_tracer_enabled))
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c
index 8712ce3c6a0e..9fbce6c9d2e1 100644
--- a/kernel/trace/trace_syscalls.c
+++ b/kernel/trace/trace_syscalls.c
@@ -2,7 +2,7 @@
2#include <trace/events/syscalls.h> 2#include <trace/events/syscalls.h>
3#include <linux/kernel.h> 3#include <linux/kernel.h>
4#include <linux/ftrace.h> 4#include <linux/ftrace.h>
5#include <linux/perf_counter.h> 5#include <linux/perf_event.h>
6#include <asm/syscall.h> 6#include <asm/syscall.h>
7 7
8#include "trace_output.h" 8#include "trace_output.h"
@@ -384,10 +384,13 @@ static int sys_prof_refcount_exit;
384 384
385static void prof_syscall_enter(struct pt_regs *regs, long id) 385static void prof_syscall_enter(struct pt_regs *regs, long id)
386{ 386{
387 struct syscall_trace_enter *rec;
388 struct syscall_metadata *sys_data; 387 struct syscall_metadata *sys_data;
388 struct syscall_trace_enter *rec;
389 unsigned long flags;
390 char *raw_data;
389 int syscall_nr; 391 int syscall_nr;
390 int size; 392 int size;
393 int cpu;
391 394
392 syscall_nr = syscall_get_nr(current, regs); 395 syscall_nr = syscall_get_nr(current, regs);
393 if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) 396 if (!test_bit(syscall_nr, enabled_prof_enter_syscalls))
@@ -402,20 +405,38 @@ static void prof_syscall_enter(struct pt_regs *regs, long id)
402 size = ALIGN(size + sizeof(u32), sizeof(u64)); 405 size = ALIGN(size + sizeof(u32), sizeof(u64));
403 size -= sizeof(u32); 406 size -= sizeof(u32);
404 407
405 do { 408 if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE,
406 char raw_data[size]; 409 "profile buffer not large enough"))
410 return;
411
412 /* Protect the per cpu buffer, begin the rcu read side */
413 local_irq_save(flags);
407 414
408 /* zero the dead bytes from align to not leak stack to user */ 415 cpu = smp_processor_id();
409 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; 416
417 if (in_nmi())
418 raw_data = rcu_dereference(trace_profile_buf_nmi);
419 else
420 raw_data = rcu_dereference(trace_profile_buf);
421
422 if (!raw_data)
423 goto end;
410 424
411 rec = (struct syscall_trace_enter *) raw_data; 425 raw_data = per_cpu_ptr(raw_data, cpu);
412 tracing_generic_entry_update(&rec->ent, 0, 0); 426
413 rec->ent.type = sys_data->enter_id; 427 /* zero the dead bytes from align to not leak stack to user */
414 rec->nr = syscall_nr; 428 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
415 syscall_get_arguments(current, regs, 0, sys_data->nb_args, 429
416 (unsigned long *)&rec->args); 430 rec = (struct syscall_trace_enter *) raw_data;
417 perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); 431 tracing_generic_entry_update(&rec->ent, 0, 0);
418 } while(0); 432 rec->ent.type = sys_data->enter_id;
433 rec->nr = syscall_nr;
434 syscall_get_arguments(current, regs, 0, sys_data->nb_args,
435 (unsigned long *)&rec->args);
436 perf_tp_event(sys_data->enter_id, 0, 1, rec, size);
437
438end:
439 local_irq_restore(flags);
419} 440}
420 441
421int reg_prof_syscall_enter(char *name) 442int reg_prof_syscall_enter(char *name)
@@ -460,8 +481,12 @@ void unreg_prof_syscall_enter(char *name)
460static void prof_syscall_exit(struct pt_regs *regs, long ret) 481static void prof_syscall_exit(struct pt_regs *regs, long ret)
461{ 482{
462 struct syscall_metadata *sys_data; 483 struct syscall_metadata *sys_data;
463 struct syscall_trace_exit rec; 484 struct syscall_trace_exit *rec;
485 unsigned long flags;
464 int syscall_nr; 486 int syscall_nr;
487 char *raw_data;
488 int size;
489 int cpu;
465 490
466 syscall_nr = syscall_get_nr(current, regs); 491 syscall_nr = syscall_get_nr(current, regs);
467 if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) 492 if (!test_bit(syscall_nr, enabled_prof_exit_syscalls))
@@ -471,12 +496,46 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret)
471 if (!sys_data) 496 if (!sys_data)
472 return; 497 return;
473 498
474 tracing_generic_entry_update(&rec.ent, 0, 0); 499 /* We can probably do that at build time */
475 rec.ent.type = sys_data->exit_id; 500 size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64));
476 rec.nr = syscall_nr; 501 size -= sizeof(u32);
477 rec.ret = syscall_get_return_value(current, regs);
478 502
479 perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec)); 503 /*
504 * Impossible, but be paranoid with the future
505 * How to put this check outside runtime?
506 */
507 if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE,
508 "exit event has grown above profile buffer size"))
509 return;
510
511 /* Protect the per cpu buffer, begin the rcu read side */
512 local_irq_save(flags);
513 cpu = smp_processor_id();
514
515 if (in_nmi())
516 raw_data = rcu_dereference(trace_profile_buf_nmi);
517 else
518 raw_data = rcu_dereference(trace_profile_buf);
519
520 if (!raw_data)
521 goto end;
522
523 raw_data = per_cpu_ptr(raw_data, cpu);
524
525 /* zero the dead bytes from align to not leak stack to user */
526 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
527
528 rec = (struct syscall_trace_exit *)raw_data;
529
530 tracing_generic_entry_update(&rec->ent, 0, 0);
531 rec->ent.type = sys_data->exit_id;
532 rec->nr = syscall_nr;
533 rec->ret = syscall_get_return_value(current, regs);
534
535 perf_tp_event(sys_data->exit_id, 0, 1, rec, size);
536
537end:
538 local_irq_restore(flags);
480} 539}
481 540
482int reg_prof_syscall_exit(char *name) 541int reg_prof_syscall_exit(char *name)
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c
index 9489a0a9b1be..cc89be5bc0f8 100644
--- a/kernel/tracepoint.c
+++ b/kernel/tracepoint.c
@@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE];
48 48
49/* 49/*
50 * Note about RCU : 50 * Note about RCU :
51 * It is used to to delay the free of multiple probes array until a quiescent 51 * It is used to delay the free of multiple probes array until a quiescent
52 * state is reached. 52 * state is reached.
53 * Tracepoint entries modifications are protected by the tracepoints_mutex. 53 * Tracepoint entries modifications are protected by the tracepoints_mutex.
54 */ 54 */
diff --git a/kernel/uid16.c b/kernel/uid16.c
index 0314501688b9..419209893d87 100644
--- a/kernel/uid16.c
+++ b/kernel/uid16.c
@@ -4,7 +4,6 @@
4 */ 4 */
5 5
6#include <linux/mm.h> 6#include <linux/mm.h>
7#include <linux/utsname.h>
8#include <linux/mman.h> 7#include <linux/mman.h>
9#include <linux/notifier.h> 8#include <linux/notifier.h>
10#include <linux/reboot.h> 9#include <linux/reboot.h>
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c
index 92359cc747a7..69eae358a726 100644
--- a/kernel/utsname_sysctl.c
+++ b/kernel/utsname_sysctl.c
@@ -42,14 +42,14 @@ static void put_uts(ctl_table *table, int write, void *which)
42 * Special case of dostring for the UTS structure. This has locks 42 * Special case of dostring for the UTS structure. This has locks
43 * to observe. Should this be in kernel/sys.c ???? 43 * to observe. Should this be in kernel/sys.c ????
44 */ 44 */
45static int proc_do_uts_string(ctl_table *table, int write, struct file *filp, 45static int proc_do_uts_string(ctl_table *table, int write,
46 void __user *buffer, size_t *lenp, loff_t *ppos) 46 void __user *buffer, size_t *lenp, loff_t *ppos)
47{ 47{
48 struct ctl_table uts_table; 48 struct ctl_table uts_table;
49 int r; 49 int r;
50 memcpy(&uts_table, table, sizeof(uts_table)); 50 memcpy(&uts_table, table, sizeof(uts_table));
51 uts_table.data = get_uts(table, write); 51 uts_table.data = get_uts(table, write);
52 r = proc_dostring(&uts_table,write,filp,buffer,lenp, ppos); 52 r = proc_dostring(&uts_table,write,buffer,lenp, ppos);
53 put_uts(table, write, uts_table.data); 53 put_uts(table, write, uts_table.data);
54 return r; 54 return r;
55} 55}