diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2014-06-22 06:06:40 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2014-06-23 05:22:35 -0400 |
commit | 5cee964597260237dd2cabb3ec22bba0da24b25d (patch) | |
tree | f548efb4181a4cffb026adf43178e65330533e87 /kernel/timer.c | |
parent | 58394271c610e9c65dd0165a1c1f6dec75dc5f3e (diff) |
time/timers: Move all time(r) related files into kernel/time
Except for Kconfig.HZ. That needs a separate treatment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'kernel/timer.c')
-rw-r--r-- | kernel/timer.c | 1734 |
1 files changed, 0 insertions, 1734 deletions
diff --git a/kernel/timer.c b/kernel/timer.c deleted file mode 100644 index 3bb01a323b2a..000000000000 --- a/kernel/timer.c +++ /dev/null | |||
@@ -1,1734 +0,0 @@ | |||
1 | /* | ||
2 | * linux/kernel/timer.c | ||
3 | * | ||
4 | * Kernel internal timers | ||
5 | * | ||
6 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
7 | * | ||
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | ||
9 | * | ||
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | ||
13 | * serialize accesses to xtime/lost_ticks). | ||
14 | * Copyright (C) 1998 Andrea Arcangeli | ||
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | ||
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | ||
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | ||
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | ||
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | ||
20 | */ | ||
21 | |||
22 | #include <linux/kernel_stat.h> | ||
23 | #include <linux/export.h> | ||
24 | #include <linux/interrupt.h> | ||
25 | #include <linux/percpu.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/mm.h> | ||
28 | #include <linux/swap.h> | ||
29 | #include <linux/pid_namespace.h> | ||
30 | #include <linux/notifier.h> | ||
31 | #include <linux/thread_info.h> | ||
32 | #include <linux/time.h> | ||
33 | #include <linux/jiffies.h> | ||
34 | #include <linux/posix-timers.h> | ||
35 | #include <linux/cpu.h> | ||
36 | #include <linux/syscalls.h> | ||
37 | #include <linux/delay.h> | ||
38 | #include <linux/tick.h> | ||
39 | #include <linux/kallsyms.h> | ||
40 | #include <linux/irq_work.h> | ||
41 | #include <linux/sched.h> | ||
42 | #include <linux/sched/sysctl.h> | ||
43 | #include <linux/slab.h> | ||
44 | #include <linux/compat.h> | ||
45 | |||
46 | #include <asm/uaccess.h> | ||
47 | #include <asm/unistd.h> | ||
48 | #include <asm/div64.h> | ||
49 | #include <asm/timex.h> | ||
50 | #include <asm/io.h> | ||
51 | |||
52 | #define CREATE_TRACE_POINTS | ||
53 | #include <trace/events/timer.h> | ||
54 | |||
55 | __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | ||
56 | |||
57 | EXPORT_SYMBOL(jiffies_64); | ||
58 | |||
59 | /* | ||
60 | * per-CPU timer vector definitions: | ||
61 | */ | ||
62 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | ||
63 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | ||
64 | #define TVN_SIZE (1 << TVN_BITS) | ||
65 | #define TVR_SIZE (1 << TVR_BITS) | ||
66 | #define TVN_MASK (TVN_SIZE - 1) | ||
67 | #define TVR_MASK (TVR_SIZE - 1) | ||
68 | #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1)) | ||
69 | |||
70 | struct tvec { | ||
71 | struct list_head vec[TVN_SIZE]; | ||
72 | }; | ||
73 | |||
74 | struct tvec_root { | ||
75 | struct list_head vec[TVR_SIZE]; | ||
76 | }; | ||
77 | |||
78 | struct tvec_base { | ||
79 | spinlock_t lock; | ||
80 | struct timer_list *running_timer; | ||
81 | unsigned long timer_jiffies; | ||
82 | unsigned long next_timer; | ||
83 | unsigned long active_timers; | ||
84 | unsigned long all_timers; | ||
85 | struct tvec_root tv1; | ||
86 | struct tvec tv2; | ||
87 | struct tvec tv3; | ||
88 | struct tvec tv4; | ||
89 | struct tvec tv5; | ||
90 | } ____cacheline_aligned; | ||
91 | |||
92 | struct tvec_base boot_tvec_bases; | ||
93 | EXPORT_SYMBOL(boot_tvec_bases); | ||
94 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; | ||
95 | |||
96 | /* Functions below help us manage 'deferrable' flag */ | ||
97 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) | ||
98 | { | ||
99 | return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE); | ||
100 | } | ||
101 | |||
102 | static inline unsigned int tbase_get_irqsafe(struct tvec_base *base) | ||
103 | { | ||
104 | return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE); | ||
105 | } | ||
106 | |||
107 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) | ||
108 | { | ||
109 | return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK)); | ||
110 | } | ||
111 | |||
112 | static inline void | ||
113 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) | ||
114 | { | ||
115 | unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK; | ||
116 | |||
117 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags); | ||
118 | } | ||
119 | |||
120 | static unsigned long round_jiffies_common(unsigned long j, int cpu, | ||
121 | bool force_up) | ||
122 | { | ||
123 | int rem; | ||
124 | unsigned long original = j; | ||
125 | |||
126 | /* | ||
127 | * We don't want all cpus firing their timers at once hitting the | ||
128 | * same lock or cachelines, so we skew each extra cpu with an extra | ||
129 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | ||
130 | * already did this. | ||
131 | * The skew is done by adding 3*cpunr, then round, then subtract this | ||
132 | * extra offset again. | ||
133 | */ | ||
134 | j += cpu * 3; | ||
135 | |||
136 | rem = j % HZ; | ||
137 | |||
138 | /* | ||
139 | * If the target jiffie is just after a whole second (which can happen | ||
140 | * due to delays of the timer irq, long irq off times etc etc) then | ||
141 | * we should round down to the whole second, not up. Use 1/4th second | ||
142 | * as cutoff for this rounding as an extreme upper bound for this. | ||
143 | * But never round down if @force_up is set. | ||
144 | */ | ||
145 | if (rem < HZ/4 && !force_up) /* round down */ | ||
146 | j = j - rem; | ||
147 | else /* round up */ | ||
148 | j = j - rem + HZ; | ||
149 | |||
150 | /* now that we have rounded, subtract the extra skew again */ | ||
151 | j -= cpu * 3; | ||
152 | |||
153 | /* | ||
154 | * Make sure j is still in the future. Otherwise return the | ||
155 | * unmodified value. | ||
156 | */ | ||
157 | return time_is_after_jiffies(j) ? j : original; | ||
158 | } | ||
159 | |||
160 | /** | ||
161 | * __round_jiffies - function to round jiffies to a full second | ||
162 | * @j: the time in (absolute) jiffies that should be rounded | ||
163 | * @cpu: the processor number on which the timeout will happen | ||
164 | * | ||
165 | * __round_jiffies() rounds an absolute time in the future (in jiffies) | ||
166 | * up or down to (approximately) full seconds. This is useful for timers | ||
167 | * for which the exact time they fire does not matter too much, as long as | ||
168 | * they fire approximately every X seconds. | ||
169 | * | ||
170 | * By rounding these timers to whole seconds, all such timers will fire | ||
171 | * at the same time, rather than at various times spread out. The goal | ||
172 | * of this is to have the CPU wake up less, which saves power. | ||
173 | * | ||
174 | * The exact rounding is skewed for each processor to avoid all | ||
175 | * processors firing at the exact same time, which could lead | ||
176 | * to lock contention or spurious cache line bouncing. | ||
177 | * | ||
178 | * The return value is the rounded version of the @j parameter. | ||
179 | */ | ||
180 | unsigned long __round_jiffies(unsigned long j, int cpu) | ||
181 | { | ||
182 | return round_jiffies_common(j, cpu, false); | ||
183 | } | ||
184 | EXPORT_SYMBOL_GPL(__round_jiffies); | ||
185 | |||
186 | /** | ||
187 | * __round_jiffies_relative - function to round jiffies to a full second | ||
188 | * @j: the time in (relative) jiffies that should be rounded | ||
189 | * @cpu: the processor number on which the timeout will happen | ||
190 | * | ||
191 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) | ||
192 | * up or down to (approximately) full seconds. This is useful for timers | ||
193 | * for which the exact time they fire does not matter too much, as long as | ||
194 | * they fire approximately every X seconds. | ||
195 | * | ||
196 | * By rounding these timers to whole seconds, all such timers will fire | ||
197 | * at the same time, rather than at various times spread out. The goal | ||
198 | * of this is to have the CPU wake up less, which saves power. | ||
199 | * | ||
200 | * The exact rounding is skewed for each processor to avoid all | ||
201 | * processors firing at the exact same time, which could lead | ||
202 | * to lock contention or spurious cache line bouncing. | ||
203 | * | ||
204 | * The return value is the rounded version of the @j parameter. | ||
205 | */ | ||
206 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | ||
207 | { | ||
208 | unsigned long j0 = jiffies; | ||
209 | |||
210 | /* Use j0 because jiffies might change while we run */ | ||
211 | return round_jiffies_common(j + j0, cpu, false) - j0; | ||
212 | } | ||
213 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | ||
214 | |||
215 | /** | ||
216 | * round_jiffies - function to round jiffies to a full second | ||
217 | * @j: the time in (absolute) jiffies that should be rounded | ||
218 | * | ||
219 | * round_jiffies() rounds an absolute time in the future (in jiffies) | ||
220 | * up or down to (approximately) full seconds. This is useful for timers | ||
221 | * for which the exact time they fire does not matter too much, as long as | ||
222 | * they fire approximately every X seconds. | ||
223 | * | ||
224 | * By rounding these timers to whole seconds, all such timers will fire | ||
225 | * at the same time, rather than at various times spread out. The goal | ||
226 | * of this is to have the CPU wake up less, which saves power. | ||
227 | * | ||
228 | * The return value is the rounded version of the @j parameter. | ||
229 | */ | ||
230 | unsigned long round_jiffies(unsigned long j) | ||
231 | { | ||
232 | return round_jiffies_common(j, raw_smp_processor_id(), false); | ||
233 | } | ||
234 | EXPORT_SYMBOL_GPL(round_jiffies); | ||
235 | |||
236 | /** | ||
237 | * round_jiffies_relative - function to round jiffies to a full second | ||
238 | * @j: the time in (relative) jiffies that should be rounded | ||
239 | * | ||
240 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) | ||
241 | * up or down to (approximately) full seconds. This is useful for timers | ||
242 | * for which the exact time they fire does not matter too much, as long as | ||
243 | * they fire approximately every X seconds. | ||
244 | * | ||
245 | * By rounding these timers to whole seconds, all such timers will fire | ||
246 | * at the same time, rather than at various times spread out. The goal | ||
247 | * of this is to have the CPU wake up less, which saves power. | ||
248 | * | ||
249 | * The return value is the rounded version of the @j parameter. | ||
250 | */ | ||
251 | unsigned long round_jiffies_relative(unsigned long j) | ||
252 | { | ||
253 | return __round_jiffies_relative(j, raw_smp_processor_id()); | ||
254 | } | ||
255 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | ||
256 | |||
257 | /** | ||
258 | * __round_jiffies_up - function to round jiffies up to a full second | ||
259 | * @j: the time in (absolute) jiffies that should be rounded | ||
260 | * @cpu: the processor number on which the timeout will happen | ||
261 | * | ||
262 | * This is the same as __round_jiffies() except that it will never | ||
263 | * round down. This is useful for timeouts for which the exact time | ||
264 | * of firing does not matter too much, as long as they don't fire too | ||
265 | * early. | ||
266 | */ | ||
267 | unsigned long __round_jiffies_up(unsigned long j, int cpu) | ||
268 | { | ||
269 | return round_jiffies_common(j, cpu, true); | ||
270 | } | ||
271 | EXPORT_SYMBOL_GPL(__round_jiffies_up); | ||
272 | |||
273 | /** | ||
274 | * __round_jiffies_up_relative - function to round jiffies up to a full second | ||
275 | * @j: the time in (relative) jiffies that should be rounded | ||
276 | * @cpu: the processor number on which the timeout will happen | ||
277 | * | ||
278 | * This is the same as __round_jiffies_relative() except that it will never | ||
279 | * round down. This is useful for timeouts for which the exact time | ||
280 | * of firing does not matter too much, as long as they don't fire too | ||
281 | * early. | ||
282 | */ | ||
283 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) | ||
284 | { | ||
285 | unsigned long j0 = jiffies; | ||
286 | |||
287 | /* Use j0 because jiffies might change while we run */ | ||
288 | return round_jiffies_common(j + j0, cpu, true) - j0; | ||
289 | } | ||
290 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); | ||
291 | |||
292 | /** | ||
293 | * round_jiffies_up - function to round jiffies up to a full second | ||
294 | * @j: the time in (absolute) jiffies that should be rounded | ||
295 | * | ||
296 | * This is the same as round_jiffies() except that it will never | ||
297 | * round down. This is useful for timeouts for which the exact time | ||
298 | * of firing does not matter too much, as long as they don't fire too | ||
299 | * early. | ||
300 | */ | ||
301 | unsigned long round_jiffies_up(unsigned long j) | ||
302 | { | ||
303 | return round_jiffies_common(j, raw_smp_processor_id(), true); | ||
304 | } | ||
305 | EXPORT_SYMBOL_GPL(round_jiffies_up); | ||
306 | |||
307 | /** | ||
308 | * round_jiffies_up_relative - function to round jiffies up to a full second | ||
309 | * @j: the time in (relative) jiffies that should be rounded | ||
310 | * | ||
311 | * This is the same as round_jiffies_relative() except that it will never | ||
312 | * round down. This is useful for timeouts for which the exact time | ||
313 | * of firing does not matter too much, as long as they don't fire too | ||
314 | * early. | ||
315 | */ | ||
316 | unsigned long round_jiffies_up_relative(unsigned long j) | ||
317 | { | ||
318 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); | ||
319 | } | ||
320 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | ||
321 | |||
322 | /** | ||
323 | * set_timer_slack - set the allowed slack for a timer | ||
324 | * @timer: the timer to be modified | ||
325 | * @slack_hz: the amount of time (in jiffies) allowed for rounding | ||
326 | * | ||
327 | * Set the amount of time, in jiffies, that a certain timer has | ||
328 | * in terms of slack. By setting this value, the timer subsystem | ||
329 | * will schedule the actual timer somewhere between | ||
330 | * the time mod_timer() asks for, and that time plus the slack. | ||
331 | * | ||
332 | * By setting the slack to -1, a percentage of the delay is used | ||
333 | * instead. | ||
334 | */ | ||
335 | void set_timer_slack(struct timer_list *timer, int slack_hz) | ||
336 | { | ||
337 | timer->slack = slack_hz; | ||
338 | } | ||
339 | EXPORT_SYMBOL_GPL(set_timer_slack); | ||
340 | |||
341 | /* | ||
342 | * If the list is empty, catch up ->timer_jiffies to the current time. | ||
343 | * The caller must hold the tvec_base lock. Returns true if the list | ||
344 | * was empty and therefore ->timer_jiffies was updated. | ||
345 | */ | ||
346 | static bool catchup_timer_jiffies(struct tvec_base *base) | ||
347 | { | ||
348 | if (!base->all_timers) { | ||
349 | base->timer_jiffies = jiffies; | ||
350 | return true; | ||
351 | } | ||
352 | return false; | ||
353 | } | ||
354 | |||
355 | static void | ||
356 | __internal_add_timer(struct tvec_base *base, struct timer_list *timer) | ||
357 | { | ||
358 | unsigned long expires = timer->expires; | ||
359 | unsigned long idx = expires - base->timer_jiffies; | ||
360 | struct list_head *vec; | ||
361 | |||
362 | if (idx < TVR_SIZE) { | ||
363 | int i = expires & TVR_MASK; | ||
364 | vec = base->tv1.vec + i; | ||
365 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | ||
366 | int i = (expires >> TVR_BITS) & TVN_MASK; | ||
367 | vec = base->tv2.vec + i; | ||
368 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | ||
369 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | ||
370 | vec = base->tv3.vec + i; | ||
371 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | ||
372 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | ||
373 | vec = base->tv4.vec + i; | ||
374 | } else if ((signed long) idx < 0) { | ||
375 | /* | ||
376 | * Can happen if you add a timer with expires == jiffies, | ||
377 | * or you set a timer to go off in the past | ||
378 | */ | ||
379 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | ||
380 | } else { | ||
381 | int i; | ||
382 | /* If the timeout is larger than MAX_TVAL (on 64-bit | ||
383 | * architectures or with CONFIG_BASE_SMALL=1) then we | ||
384 | * use the maximum timeout. | ||
385 | */ | ||
386 | if (idx > MAX_TVAL) { | ||
387 | idx = MAX_TVAL; | ||
388 | expires = idx + base->timer_jiffies; | ||
389 | } | ||
390 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | ||
391 | vec = base->tv5.vec + i; | ||
392 | } | ||
393 | /* | ||
394 | * Timers are FIFO: | ||
395 | */ | ||
396 | list_add_tail(&timer->entry, vec); | ||
397 | } | ||
398 | |||
399 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) | ||
400 | { | ||
401 | (void)catchup_timer_jiffies(base); | ||
402 | __internal_add_timer(base, timer); | ||
403 | /* | ||
404 | * Update base->active_timers and base->next_timer | ||
405 | */ | ||
406 | if (!tbase_get_deferrable(timer->base)) { | ||
407 | if (!base->active_timers++ || | ||
408 | time_before(timer->expires, base->next_timer)) | ||
409 | base->next_timer = timer->expires; | ||
410 | } | ||
411 | base->all_timers++; | ||
412 | } | ||
413 | |||
414 | #ifdef CONFIG_TIMER_STATS | ||
415 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | ||
416 | { | ||
417 | if (timer->start_site) | ||
418 | return; | ||
419 | |||
420 | timer->start_site = addr; | ||
421 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | ||
422 | timer->start_pid = current->pid; | ||
423 | } | ||
424 | |||
425 | static void timer_stats_account_timer(struct timer_list *timer) | ||
426 | { | ||
427 | unsigned int flag = 0; | ||
428 | |||
429 | if (likely(!timer->start_site)) | ||
430 | return; | ||
431 | if (unlikely(tbase_get_deferrable(timer->base))) | ||
432 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | ||
433 | |||
434 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | ||
435 | timer->function, timer->start_comm, flag); | ||
436 | } | ||
437 | |||
438 | #else | ||
439 | static void timer_stats_account_timer(struct timer_list *timer) {} | ||
440 | #endif | ||
441 | |||
442 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS | ||
443 | |||
444 | static struct debug_obj_descr timer_debug_descr; | ||
445 | |||
446 | static void *timer_debug_hint(void *addr) | ||
447 | { | ||
448 | return ((struct timer_list *) addr)->function; | ||
449 | } | ||
450 | |||
451 | /* | ||
452 | * fixup_init is called when: | ||
453 | * - an active object is initialized | ||
454 | */ | ||
455 | static int timer_fixup_init(void *addr, enum debug_obj_state state) | ||
456 | { | ||
457 | struct timer_list *timer = addr; | ||
458 | |||
459 | switch (state) { | ||
460 | case ODEBUG_STATE_ACTIVE: | ||
461 | del_timer_sync(timer); | ||
462 | debug_object_init(timer, &timer_debug_descr); | ||
463 | return 1; | ||
464 | default: | ||
465 | return 0; | ||
466 | } | ||
467 | } | ||
468 | |||
469 | /* Stub timer callback for improperly used timers. */ | ||
470 | static void stub_timer(unsigned long data) | ||
471 | { | ||
472 | WARN_ON(1); | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * fixup_activate is called when: | ||
477 | * - an active object is activated | ||
478 | * - an unknown object is activated (might be a statically initialized object) | ||
479 | */ | ||
480 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | ||
481 | { | ||
482 | struct timer_list *timer = addr; | ||
483 | |||
484 | switch (state) { | ||
485 | |||
486 | case ODEBUG_STATE_NOTAVAILABLE: | ||
487 | /* | ||
488 | * This is not really a fixup. The timer was | ||
489 | * statically initialized. We just make sure that it | ||
490 | * is tracked in the object tracker. | ||
491 | */ | ||
492 | if (timer->entry.next == NULL && | ||
493 | timer->entry.prev == TIMER_ENTRY_STATIC) { | ||
494 | debug_object_init(timer, &timer_debug_descr); | ||
495 | debug_object_activate(timer, &timer_debug_descr); | ||
496 | return 0; | ||
497 | } else { | ||
498 | setup_timer(timer, stub_timer, 0); | ||
499 | return 1; | ||
500 | } | ||
501 | return 0; | ||
502 | |||
503 | case ODEBUG_STATE_ACTIVE: | ||
504 | WARN_ON(1); | ||
505 | |||
506 | default: | ||
507 | return 0; | ||
508 | } | ||
509 | } | ||
510 | |||
511 | /* | ||
512 | * fixup_free is called when: | ||
513 | * - an active object is freed | ||
514 | */ | ||
515 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | ||
516 | { | ||
517 | struct timer_list *timer = addr; | ||
518 | |||
519 | switch (state) { | ||
520 | case ODEBUG_STATE_ACTIVE: | ||
521 | del_timer_sync(timer); | ||
522 | debug_object_free(timer, &timer_debug_descr); | ||
523 | return 1; | ||
524 | default: | ||
525 | return 0; | ||
526 | } | ||
527 | } | ||
528 | |||
529 | /* | ||
530 | * fixup_assert_init is called when: | ||
531 | * - an untracked/uninit-ed object is found | ||
532 | */ | ||
533 | static int timer_fixup_assert_init(void *addr, enum debug_obj_state state) | ||
534 | { | ||
535 | struct timer_list *timer = addr; | ||
536 | |||
537 | switch (state) { | ||
538 | case ODEBUG_STATE_NOTAVAILABLE: | ||
539 | if (timer->entry.prev == TIMER_ENTRY_STATIC) { | ||
540 | /* | ||
541 | * This is not really a fixup. The timer was | ||
542 | * statically initialized. We just make sure that it | ||
543 | * is tracked in the object tracker. | ||
544 | */ | ||
545 | debug_object_init(timer, &timer_debug_descr); | ||
546 | return 0; | ||
547 | } else { | ||
548 | setup_timer(timer, stub_timer, 0); | ||
549 | return 1; | ||
550 | } | ||
551 | default: | ||
552 | return 0; | ||
553 | } | ||
554 | } | ||
555 | |||
556 | static struct debug_obj_descr timer_debug_descr = { | ||
557 | .name = "timer_list", | ||
558 | .debug_hint = timer_debug_hint, | ||
559 | .fixup_init = timer_fixup_init, | ||
560 | .fixup_activate = timer_fixup_activate, | ||
561 | .fixup_free = timer_fixup_free, | ||
562 | .fixup_assert_init = timer_fixup_assert_init, | ||
563 | }; | ||
564 | |||
565 | static inline void debug_timer_init(struct timer_list *timer) | ||
566 | { | ||
567 | debug_object_init(timer, &timer_debug_descr); | ||
568 | } | ||
569 | |||
570 | static inline void debug_timer_activate(struct timer_list *timer) | ||
571 | { | ||
572 | debug_object_activate(timer, &timer_debug_descr); | ||
573 | } | ||
574 | |||
575 | static inline void debug_timer_deactivate(struct timer_list *timer) | ||
576 | { | ||
577 | debug_object_deactivate(timer, &timer_debug_descr); | ||
578 | } | ||
579 | |||
580 | static inline void debug_timer_free(struct timer_list *timer) | ||
581 | { | ||
582 | debug_object_free(timer, &timer_debug_descr); | ||
583 | } | ||
584 | |||
585 | static inline void debug_timer_assert_init(struct timer_list *timer) | ||
586 | { | ||
587 | debug_object_assert_init(timer, &timer_debug_descr); | ||
588 | } | ||
589 | |||
590 | static void do_init_timer(struct timer_list *timer, unsigned int flags, | ||
591 | const char *name, struct lock_class_key *key); | ||
592 | |||
593 | void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, | ||
594 | const char *name, struct lock_class_key *key) | ||
595 | { | ||
596 | debug_object_init_on_stack(timer, &timer_debug_descr); | ||
597 | do_init_timer(timer, flags, name, key); | ||
598 | } | ||
599 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); | ||
600 | |||
601 | void destroy_timer_on_stack(struct timer_list *timer) | ||
602 | { | ||
603 | debug_object_free(timer, &timer_debug_descr); | ||
604 | } | ||
605 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | ||
606 | |||
607 | #else | ||
608 | static inline void debug_timer_init(struct timer_list *timer) { } | ||
609 | static inline void debug_timer_activate(struct timer_list *timer) { } | ||
610 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | ||
611 | static inline void debug_timer_assert_init(struct timer_list *timer) { } | ||
612 | #endif | ||
613 | |||
614 | static inline void debug_init(struct timer_list *timer) | ||
615 | { | ||
616 | debug_timer_init(timer); | ||
617 | trace_timer_init(timer); | ||
618 | } | ||
619 | |||
620 | static inline void | ||
621 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
622 | { | ||
623 | debug_timer_activate(timer); | ||
624 | trace_timer_start(timer, expires); | ||
625 | } | ||
626 | |||
627 | static inline void debug_deactivate(struct timer_list *timer) | ||
628 | { | ||
629 | debug_timer_deactivate(timer); | ||
630 | trace_timer_cancel(timer); | ||
631 | } | ||
632 | |||
633 | static inline void debug_assert_init(struct timer_list *timer) | ||
634 | { | ||
635 | debug_timer_assert_init(timer); | ||
636 | } | ||
637 | |||
638 | static void do_init_timer(struct timer_list *timer, unsigned int flags, | ||
639 | const char *name, struct lock_class_key *key) | ||
640 | { | ||
641 | struct tvec_base *base = __raw_get_cpu_var(tvec_bases); | ||
642 | |||
643 | timer->entry.next = NULL; | ||
644 | timer->base = (void *)((unsigned long)base | flags); | ||
645 | timer->slack = -1; | ||
646 | #ifdef CONFIG_TIMER_STATS | ||
647 | timer->start_site = NULL; | ||
648 | timer->start_pid = -1; | ||
649 | memset(timer->start_comm, 0, TASK_COMM_LEN); | ||
650 | #endif | ||
651 | lockdep_init_map(&timer->lockdep_map, name, key, 0); | ||
652 | } | ||
653 | |||
654 | /** | ||
655 | * init_timer_key - initialize a timer | ||
656 | * @timer: the timer to be initialized | ||
657 | * @flags: timer flags | ||
658 | * @name: name of the timer | ||
659 | * @key: lockdep class key of the fake lock used for tracking timer | ||
660 | * sync lock dependencies | ||
661 | * | ||
662 | * init_timer_key() must be done to a timer prior calling *any* of the | ||
663 | * other timer functions. | ||
664 | */ | ||
665 | void init_timer_key(struct timer_list *timer, unsigned int flags, | ||
666 | const char *name, struct lock_class_key *key) | ||
667 | { | ||
668 | debug_init(timer); | ||
669 | do_init_timer(timer, flags, name, key); | ||
670 | } | ||
671 | EXPORT_SYMBOL(init_timer_key); | ||
672 | |||
673 | static inline void detach_timer(struct timer_list *timer, bool clear_pending) | ||
674 | { | ||
675 | struct list_head *entry = &timer->entry; | ||
676 | |||
677 | debug_deactivate(timer); | ||
678 | |||
679 | __list_del(entry->prev, entry->next); | ||
680 | if (clear_pending) | ||
681 | entry->next = NULL; | ||
682 | entry->prev = LIST_POISON2; | ||
683 | } | ||
684 | |||
685 | static inline void | ||
686 | detach_expired_timer(struct timer_list *timer, struct tvec_base *base) | ||
687 | { | ||
688 | detach_timer(timer, true); | ||
689 | if (!tbase_get_deferrable(timer->base)) | ||
690 | base->active_timers--; | ||
691 | base->all_timers--; | ||
692 | (void)catchup_timer_jiffies(base); | ||
693 | } | ||
694 | |||
695 | static int detach_if_pending(struct timer_list *timer, struct tvec_base *base, | ||
696 | bool clear_pending) | ||
697 | { | ||
698 | if (!timer_pending(timer)) | ||
699 | return 0; | ||
700 | |||
701 | detach_timer(timer, clear_pending); | ||
702 | if (!tbase_get_deferrable(timer->base)) { | ||
703 | base->active_timers--; | ||
704 | if (timer->expires == base->next_timer) | ||
705 | base->next_timer = base->timer_jiffies; | ||
706 | } | ||
707 | base->all_timers--; | ||
708 | (void)catchup_timer_jiffies(base); | ||
709 | return 1; | ||
710 | } | ||
711 | |||
712 | /* | ||
713 | * We are using hashed locking: holding per_cpu(tvec_bases).lock | ||
714 | * means that all timers which are tied to this base via timer->base are | ||
715 | * locked, and the base itself is locked too. | ||
716 | * | ||
717 | * So __run_timers/migrate_timers can safely modify all timers which could | ||
718 | * be found on ->tvX lists. | ||
719 | * | ||
720 | * When the timer's base is locked, and the timer removed from list, it is | ||
721 | * possible to set timer->base = NULL and drop the lock: the timer remains | ||
722 | * locked. | ||
723 | */ | ||
724 | static struct tvec_base *lock_timer_base(struct timer_list *timer, | ||
725 | unsigned long *flags) | ||
726 | __acquires(timer->base->lock) | ||
727 | { | ||
728 | struct tvec_base *base; | ||
729 | |||
730 | for (;;) { | ||
731 | struct tvec_base *prelock_base = timer->base; | ||
732 | base = tbase_get_base(prelock_base); | ||
733 | if (likely(base != NULL)) { | ||
734 | spin_lock_irqsave(&base->lock, *flags); | ||
735 | if (likely(prelock_base == timer->base)) | ||
736 | return base; | ||
737 | /* The timer has migrated to another CPU */ | ||
738 | spin_unlock_irqrestore(&base->lock, *flags); | ||
739 | } | ||
740 | cpu_relax(); | ||
741 | } | ||
742 | } | ||
743 | |||
744 | static inline int | ||
745 | __mod_timer(struct timer_list *timer, unsigned long expires, | ||
746 | bool pending_only, int pinned) | ||
747 | { | ||
748 | struct tvec_base *base, *new_base; | ||
749 | unsigned long flags; | ||
750 | int ret = 0 , cpu; | ||
751 | |||
752 | timer_stats_timer_set_start_info(timer); | ||
753 | BUG_ON(!timer->function); | ||
754 | |||
755 | base = lock_timer_base(timer, &flags); | ||
756 | |||
757 | ret = detach_if_pending(timer, base, false); | ||
758 | if (!ret && pending_only) | ||
759 | goto out_unlock; | ||
760 | |||
761 | debug_activate(timer, expires); | ||
762 | |||
763 | cpu = get_nohz_timer_target(pinned); | ||
764 | new_base = per_cpu(tvec_bases, cpu); | ||
765 | |||
766 | if (base != new_base) { | ||
767 | /* | ||
768 | * We are trying to schedule the timer on the local CPU. | ||
769 | * However we can't change timer's base while it is running, | ||
770 | * otherwise del_timer_sync() can't detect that the timer's | ||
771 | * handler yet has not finished. This also guarantees that | ||
772 | * the timer is serialized wrt itself. | ||
773 | */ | ||
774 | if (likely(base->running_timer != timer)) { | ||
775 | /* See the comment in lock_timer_base() */ | ||
776 | timer_set_base(timer, NULL); | ||
777 | spin_unlock(&base->lock); | ||
778 | base = new_base; | ||
779 | spin_lock(&base->lock); | ||
780 | timer_set_base(timer, base); | ||
781 | } | ||
782 | } | ||
783 | |||
784 | timer->expires = expires; | ||
785 | internal_add_timer(base, timer); | ||
786 | |||
787 | out_unlock: | ||
788 | spin_unlock_irqrestore(&base->lock, flags); | ||
789 | |||
790 | return ret; | ||
791 | } | ||
792 | |||
793 | /** | ||
794 | * mod_timer_pending - modify a pending timer's timeout | ||
795 | * @timer: the pending timer to be modified | ||
796 | * @expires: new timeout in jiffies | ||
797 | * | ||
798 | * mod_timer_pending() is the same for pending timers as mod_timer(), | ||
799 | * but will not re-activate and modify already deleted timers. | ||
800 | * | ||
801 | * It is useful for unserialized use of timers. | ||
802 | */ | ||
803 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) | ||
804 | { | ||
805 | return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); | ||
806 | } | ||
807 | EXPORT_SYMBOL(mod_timer_pending); | ||
808 | |||
809 | /* | ||
810 | * Decide where to put the timer while taking the slack into account | ||
811 | * | ||
812 | * Algorithm: | ||
813 | * 1) calculate the maximum (absolute) time | ||
814 | * 2) calculate the highest bit where the expires and new max are different | ||
815 | * 3) use this bit to make a mask | ||
816 | * 4) use the bitmask to round down the maximum time, so that all last | ||
817 | * bits are zeros | ||
818 | */ | ||
819 | static inline | ||
820 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | ||
821 | { | ||
822 | unsigned long expires_limit, mask; | ||
823 | int bit; | ||
824 | |||
825 | if (timer->slack >= 0) { | ||
826 | expires_limit = expires + timer->slack; | ||
827 | } else { | ||
828 | long delta = expires - jiffies; | ||
829 | |||
830 | if (delta < 256) | ||
831 | return expires; | ||
832 | |||
833 | expires_limit = expires + delta / 256; | ||
834 | } | ||
835 | mask = expires ^ expires_limit; | ||
836 | if (mask == 0) | ||
837 | return expires; | ||
838 | |||
839 | bit = find_last_bit(&mask, BITS_PER_LONG); | ||
840 | |||
841 | mask = (1UL << bit) - 1; | ||
842 | |||
843 | expires_limit = expires_limit & ~(mask); | ||
844 | |||
845 | return expires_limit; | ||
846 | } | ||
847 | |||
848 | /** | ||
849 | * mod_timer - modify a timer's timeout | ||
850 | * @timer: the timer to be modified | ||
851 | * @expires: new timeout in jiffies | ||
852 | * | ||
853 | * mod_timer() is a more efficient way to update the expire field of an | ||
854 | * active timer (if the timer is inactive it will be activated) | ||
855 | * | ||
856 | * mod_timer(timer, expires) is equivalent to: | ||
857 | * | ||
858 | * del_timer(timer); timer->expires = expires; add_timer(timer); | ||
859 | * | ||
860 | * Note that if there are multiple unserialized concurrent users of the | ||
861 | * same timer, then mod_timer() is the only safe way to modify the timeout, | ||
862 | * since add_timer() cannot modify an already running timer. | ||
863 | * | ||
864 | * The function returns whether it has modified a pending timer or not. | ||
865 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | ||
866 | * active timer returns 1.) | ||
867 | */ | ||
868 | int mod_timer(struct timer_list *timer, unsigned long expires) | ||
869 | { | ||
870 | expires = apply_slack(timer, expires); | ||
871 | |||
872 | /* | ||
873 | * This is a common optimization triggered by the | ||
874 | * networking code - if the timer is re-modified | ||
875 | * to be the same thing then just return: | ||
876 | */ | ||
877 | if (timer_pending(timer) && timer->expires == expires) | ||
878 | return 1; | ||
879 | |||
880 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); | ||
881 | } | ||
882 | EXPORT_SYMBOL(mod_timer); | ||
883 | |||
884 | /** | ||
885 | * mod_timer_pinned - modify a timer's timeout | ||
886 | * @timer: the timer to be modified | ||
887 | * @expires: new timeout in jiffies | ||
888 | * | ||
889 | * mod_timer_pinned() is a way to update the expire field of an | ||
890 | * active timer (if the timer is inactive it will be activated) | ||
891 | * and to ensure that the timer is scheduled on the current CPU. | ||
892 | * | ||
893 | * Note that this does not prevent the timer from being migrated | ||
894 | * when the current CPU goes offline. If this is a problem for | ||
895 | * you, use CPU-hotplug notifiers to handle it correctly, for | ||
896 | * example, cancelling the timer when the corresponding CPU goes | ||
897 | * offline. | ||
898 | * | ||
899 | * mod_timer_pinned(timer, expires) is equivalent to: | ||
900 | * | ||
901 | * del_timer(timer); timer->expires = expires; add_timer(timer); | ||
902 | */ | ||
903 | int mod_timer_pinned(struct timer_list *timer, unsigned long expires) | ||
904 | { | ||
905 | if (timer->expires == expires && timer_pending(timer)) | ||
906 | return 1; | ||
907 | |||
908 | return __mod_timer(timer, expires, false, TIMER_PINNED); | ||
909 | } | ||
910 | EXPORT_SYMBOL(mod_timer_pinned); | ||
911 | |||
912 | /** | ||
913 | * add_timer - start a timer | ||
914 | * @timer: the timer to be added | ||
915 | * | ||
916 | * The kernel will do a ->function(->data) callback from the | ||
917 | * timer interrupt at the ->expires point in the future. The | ||
918 | * current time is 'jiffies'. | ||
919 | * | ||
920 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | ||
921 | * fields must be set prior calling this function. | ||
922 | * | ||
923 | * Timers with an ->expires field in the past will be executed in the next | ||
924 | * timer tick. | ||
925 | */ | ||
926 | void add_timer(struct timer_list *timer) | ||
927 | { | ||
928 | BUG_ON(timer_pending(timer)); | ||
929 | mod_timer(timer, timer->expires); | ||
930 | } | ||
931 | EXPORT_SYMBOL(add_timer); | ||
932 | |||
933 | /** | ||
934 | * add_timer_on - start a timer on a particular CPU | ||
935 | * @timer: the timer to be added | ||
936 | * @cpu: the CPU to start it on | ||
937 | * | ||
938 | * This is not very scalable on SMP. Double adds are not possible. | ||
939 | */ | ||
940 | void add_timer_on(struct timer_list *timer, int cpu) | ||
941 | { | ||
942 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | ||
943 | unsigned long flags; | ||
944 | |||
945 | timer_stats_timer_set_start_info(timer); | ||
946 | BUG_ON(timer_pending(timer) || !timer->function); | ||
947 | spin_lock_irqsave(&base->lock, flags); | ||
948 | timer_set_base(timer, base); | ||
949 | debug_activate(timer, timer->expires); | ||
950 | internal_add_timer(base, timer); | ||
951 | /* | ||
952 | * Check whether the other CPU is in dynticks mode and needs | ||
953 | * to be triggered to reevaluate the timer wheel. | ||
954 | * We are protected against the other CPU fiddling | ||
955 | * with the timer by holding the timer base lock. This also | ||
956 | * makes sure that a CPU on the way to stop its tick can not | ||
957 | * evaluate the timer wheel. | ||
958 | * | ||
959 | * Spare the IPI for deferrable timers on idle targets though. | ||
960 | * The next busy ticks will take care of it. Except full dynticks | ||
961 | * require special care against races with idle_cpu(), lets deal | ||
962 | * with that later. | ||
963 | */ | ||
964 | if (!tbase_get_deferrable(timer->base) || tick_nohz_full_cpu(cpu)) | ||
965 | wake_up_nohz_cpu(cpu); | ||
966 | |||
967 | spin_unlock_irqrestore(&base->lock, flags); | ||
968 | } | ||
969 | EXPORT_SYMBOL_GPL(add_timer_on); | ||
970 | |||
971 | /** | ||
972 | * del_timer - deactive a timer. | ||
973 | * @timer: the timer to be deactivated | ||
974 | * | ||
975 | * del_timer() deactivates a timer - this works on both active and inactive | ||
976 | * timers. | ||
977 | * | ||
978 | * The function returns whether it has deactivated a pending timer or not. | ||
979 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | ||
980 | * active timer returns 1.) | ||
981 | */ | ||
982 | int del_timer(struct timer_list *timer) | ||
983 | { | ||
984 | struct tvec_base *base; | ||
985 | unsigned long flags; | ||
986 | int ret = 0; | ||
987 | |||
988 | debug_assert_init(timer); | ||
989 | |||
990 | timer_stats_timer_clear_start_info(timer); | ||
991 | if (timer_pending(timer)) { | ||
992 | base = lock_timer_base(timer, &flags); | ||
993 | ret = detach_if_pending(timer, base, true); | ||
994 | spin_unlock_irqrestore(&base->lock, flags); | ||
995 | } | ||
996 | |||
997 | return ret; | ||
998 | } | ||
999 | EXPORT_SYMBOL(del_timer); | ||
1000 | |||
1001 | /** | ||
1002 | * try_to_del_timer_sync - Try to deactivate a timer | ||
1003 | * @timer: timer do del | ||
1004 | * | ||
1005 | * This function tries to deactivate a timer. Upon successful (ret >= 0) | ||
1006 | * exit the timer is not queued and the handler is not running on any CPU. | ||
1007 | */ | ||
1008 | int try_to_del_timer_sync(struct timer_list *timer) | ||
1009 | { | ||
1010 | struct tvec_base *base; | ||
1011 | unsigned long flags; | ||
1012 | int ret = -1; | ||
1013 | |||
1014 | debug_assert_init(timer); | ||
1015 | |||
1016 | base = lock_timer_base(timer, &flags); | ||
1017 | |||
1018 | if (base->running_timer != timer) { | ||
1019 | timer_stats_timer_clear_start_info(timer); | ||
1020 | ret = detach_if_pending(timer, base, true); | ||
1021 | } | ||
1022 | spin_unlock_irqrestore(&base->lock, flags); | ||
1023 | |||
1024 | return ret; | ||
1025 | } | ||
1026 | EXPORT_SYMBOL(try_to_del_timer_sync); | ||
1027 | |||
1028 | #ifdef CONFIG_SMP | ||
1029 | /** | ||
1030 | * del_timer_sync - deactivate a timer and wait for the handler to finish. | ||
1031 | * @timer: the timer to be deactivated | ||
1032 | * | ||
1033 | * This function only differs from del_timer() on SMP: besides deactivating | ||
1034 | * the timer it also makes sure the handler has finished executing on other | ||
1035 | * CPUs. | ||
1036 | * | ||
1037 | * Synchronization rules: Callers must prevent restarting of the timer, | ||
1038 | * otherwise this function is meaningless. It must not be called from | ||
1039 | * interrupt contexts unless the timer is an irqsafe one. The caller must | ||
1040 | * not hold locks which would prevent completion of the timer's | ||
1041 | * handler. The timer's handler must not call add_timer_on(). Upon exit the | ||
1042 | * timer is not queued and the handler is not running on any CPU. | ||
1043 | * | ||
1044 | * Note: For !irqsafe timers, you must not hold locks that are held in | ||
1045 | * interrupt context while calling this function. Even if the lock has | ||
1046 | * nothing to do with the timer in question. Here's why: | ||
1047 | * | ||
1048 | * CPU0 CPU1 | ||
1049 | * ---- ---- | ||
1050 | * <SOFTIRQ> | ||
1051 | * call_timer_fn(); | ||
1052 | * base->running_timer = mytimer; | ||
1053 | * spin_lock_irq(somelock); | ||
1054 | * <IRQ> | ||
1055 | * spin_lock(somelock); | ||
1056 | * del_timer_sync(mytimer); | ||
1057 | * while (base->running_timer == mytimer); | ||
1058 | * | ||
1059 | * Now del_timer_sync() will never return and never release somelock. | ||
1060 | * The interrupt on the other CPU is waiting to grab somelock but | ||
1061 | * it has interrupted the softirq that CPU0 is waiting to finish. | ||
1062 | * | ||
1063 | * The function returns whether it has deactivated a pending timer or not. | ||
1064 | */ | ||
1065 | int del_timer_sync(struct timer_list *timer) | ||
1066 | { | ||
1067 | #ifdef CONFIG_LOCKDEP | ||
1068 | unsigned long flags; | ||
1069 | |||
1070 | /* | ||
1071 | * If lockdep gives a backtrace here, please reference | ||
1072 | * the synchronization rules above. | ||
1073 | */ | ||
1074 | local_irq_save(flags); | ||
1075 | lock_map_acquire(&timer->lockdep_map); | ||
1076 | lock_map_release(&timer->lockdep_map); | ||
1077 | local_irq_restore(flags); | ||
1078 | #endif | ||
1079 | /* | ||
1080 | * don't use it in hardirq context, because it | ||
1081 | * could lead to deadlock. | ||
1082 | */ | ||
1083 | WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base)); | ||
1084 | for (;;) { | ||
1085 | int ret = try_to_del_timer_sync(timer); | ||
1086 | if (ret >= 0) | ||
1087 | return ret; | ||
1088 | cpu_relax(); | ||
1089 | } | ||
1090 | } | ||
1091 | EXPORT_SYMBOL(del_timer_sync); | ||
1092 | #endif | ||
1093 | |||
1094 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) | ||
1095 | { | ||
1096 | /* cascade all the timers from tv up one level */ | ||
1097 | struct timer_list *timer, *tmp; | ||
1098 | struct list_head tv_list; | ||
1099 | |||
1100 | list_replace_init(tv->vec + index, &tv_list); | ||
1101 | |||
1102 | /* | ||
1103 | * We are removing _all_ timers from the list, so we | ||
1104 | * don't have to detach them individually. | ||
1105 | */ | ||
1106 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { | ||
1107 | BUG_ON(tbase_get_base(timer->base) != base); | ||
1108 | /* No accounting, while moving them */ | ||
1109 | __internal_add_timer(base, timer); | ||
1110 | } | ||
1111 | |||
1112 | return index; | ||
1113 | } | ||
1114 | |||
1115 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), | ||
1116 | unsigned long data) | ||
1117 | { | ||
1118 | int count = preempt_count(); | ||
1119 | |||
1120 | #ifdef CONFIG_LOCKDEP | ||
1121 | /* | ||
1122 | * It is permissible to free the timer from inside the | ||
1123 | * function that is called from it, this we need to take into | ||
1124 | * account for lockdep too. To avoid bogus "held lock freed" | ||
1125 | * warnings as well as problems when looking into | ||
1126 | * timer->lockdep_map, make a copy and use that here. | ||
1127 | */ | ||
1128 | struct lockdep_map lockdep_map; | ||
1129 | |||
1130 | lockdep_copy_map(&lockdep_map, &timer->lockdep_map); | ||
1131 | #endif | ||
1132 | /* | ||
1133 | * Couple the lock chain with the lock chain at | ||
1134 | * del_timer_sync() by acquiring the lock_map around the fn() | ||
1135 | * call here and in del_timer_sync(). | ||
1136 | */ | ||
1137 | lock_map_acquire(&lockdep_map); | ||
1138 | |||
1139 | trace_timer_expire_entry(timer); | ||
1140 | fn(data); | ||
1141 | trace_timer_expire_exit(timer); | ||
1142 | |||
1143 | lock_map_release(&lockdep_map); | ||
1144 | |||
1145 | if (count != preempt_count()) { | ||
1146 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", | ||
1147 | fn, count, preempt_count()); | ||
1148 | /* | ||
1149 | * Restore the preempt count. That gives us a decent | ||
1150 | * chance to survive and extract information. If the | ||
1151 | * callback kept a lock held, bad luck, but not worse | ||
1152 | * than the BUG() we had. | ||
1153 | */ | ||
1154 | preempt_count_set(count); | ||
1155 | } | ||
1156 | } | ||
1157 | |||
1158 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) | ||
1159 | |||
1160 | /** | ||
1161 | * __run_timers - run all expired timers (if any) on this CPU. | ||
1162 | * @base: the timer vector to be processed. | ||
1163 | * | ||
1164 | * This function cascades all vectors and executes all expired timer | ||
1165 | * vectors. | ||
1166 | */ | ||
1167 | static inline void __run_timers(struct tvec_base *base) | ||
1168 | { | ||
1169 | struct timer_list *timer; | ||
1170 | |||
1171 | spin_lock_irq(&base->lock); | ||
1172 | if (catchup_timer_jiffies(base)) { | ||
1173 | spin_unlock_irq(&base->lock); | ||
1174 | return; | ||
1175 | } | ||
1176 | while (time_after_eq(jiffies, base->timer_jiffies)) { | ||
1177 | struct list_head work_list; | ||
1178 | struct list_head *head = &work_list; | ||
1179 | int index = base->timer_jiffies & TVR_MASK; | ||
1180 | |||
1181 | /* | ||
1182 | * Cascade timers: | ||
1183 | */ | ||
1184 | if (!index && | ||
1185 | (!cascade(base, &base->tv2, INDEX(0))) && | ||
1186 | (!cascade(base, &base->tv3, INDEX(1))) && | ||
1187 | !cascade(base, &base->tv4, INDEX(2))) | ||
1188 | cascade(base, &base->tv5, INDEX(3)); | ||
1189 | ++base->timer_jiffies; | ||
1190 | list_replace_init(base->tv1.vec + index, head); | ||
1191 | while (!list_empty(head)) { | ||
1192 | void (*fn)(unsigned long); | ||
1193 | unsigned long data; | ||
1194 | bool irqsafe; | ||
1195 | |||
1196 | timer = list_first_entry(head, struct timer_list,entry); | ||
1197 | fn = timer->function; | ||
1198 | data = timer->data; | ||
1199 | irqsafe = tbase_get_irqsafe(timer->base); | ||
1200 | |||
1201 | timer_stats_account_timer(timer); | ||
1202 | |||
1203 | base->running_timer = timer; | ||
1204 | detach_expired_timer(timer, base); | ||
1205 | |||
1206 | if (irqsafe) { | ||
1207 | spin_unlock(&base->lock); | ||
1208 | call_timer_fn(timer, fn, data); | ||
1209 | spin_lock(&base->lock); | ||
1210 | } else { | ||
1211 | spin_unlock_irq(&base->lock); | ||
1212 | call_timer_fn(timer, fn, data); | ||
1213 | spin_lock_irq(&base->lock); | ||
1214 | } | ||
1215 | } | ||
1216 | } | ||
1217 | base->running_timer = NULL; | ||
1218 | spin_unlock_irq(&base->lock); | ||
1219 | } | ||
1220 | |||
1221 | #ifdef CONFIG_NO_HZ_COMMON | ||
1222 | /* | ||
1223 | * Find out when the next timer event is due to happen. This | ||
1224 | * is used on S/390 to stop all activity when a CPU is idle. | ||
1225 | * This function needs to be called with interrupts disabled. | ||
1226 | */ | ||
1227 | static unsigned long __next_timer_interrupt(struct tvec_base *base) | ||
1228 | { | ||
1229 | unsigned long timer_jiffies = base->timer_jiffies; | ||
1230 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; | ||
1231 | int index, slot, array, found = 0; | ||
1232 | struct timer_list *nte; | ||
1233 | struct tvec *varray[4]; | ||
1234 | |||
1235 | /* Look for timer events in tv1. */ | ||
1236 | index = slot = timer_jiffies & TVR_MASK; | ||
1237 | do { | ||
1238 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { | ||
1239 | if (tbase_get_deferrable(nte->base)) | ||
1240 | continue; | ||
1241 | |||
1242 | found = 1; | ||
1243 | expires = nte->expires; | ||
1244 | /* Look at the cascade bucket(s)? */ | ||
1245 | if (!index || slot < index) | ||
1246 | goto cascade; | ||
1247 | return expires; | ||
1248 | } | ||
1249 | slot = (slot + 1) & TVR_MASK; | ||
1250 | } while (slot != index); | ||
1251 | |||
1252 | cascade: | ||
1253 | /* Calculate the next cascade event */ | ||
1254 | if (index) | ||
1255 | timer_jiffies += TVR_SIZE - index; | ||
1256 | timer_jiffies >>= TVR_BITS; | ||
1257 | |||
1258 | /* Check tv2-tv5. */ | ||
1259 | varray[0] = &base->tv2; | ||
1260 | varray[1] = &base->tv3; | ||
1261 | varray[2] = &base->tv4; | ||
1262 | varray[3] = &base->tv5; | ||
1263 | |||
1264 | for (array = 0; array < 4; array++) { | ||
1265 | struct tvec *varp = varray[array]; | ||
1266 | |||
1267 | index = slot = timer_jiffies & TVN_MASK; | ||
1268 | do { | ||
1269 | list_for_each_entry(nte, varp->vec + slot, entry) { | ||
1270 | if (tbase_get_deferrable(nte->base)) | ||
1271 | continue; | ||
1272 | |||
1273 | found = 1; | ||
1274 | if (time_before(nte->expires, expires)) | ||
1275 | expires = nte->expires; | ||
1276 | } | ||
1277 | /* | ||
1278 | * Do we still search for the first timer or are | ||
1279 | * we looking up the cascade buckets ? | ||
1280 | */ | ||
1281 | if (found) { | ||
1282 | /* Look at the cascade bucket(s)? */ | ||
1283 | if (!index || slot < index) | ||
1284 | break; | ||
1285 | return expires; | ||
1286 | } | ||
1287 | slot = (slot + 1) & TVN_MASK; | ||
1288 | } while (slot != index); | ||
1289 | |||
1290 | if (index) | ||
1291 | timer_jiffies += TVN_SIZE - index; | ||
1292 | timer_jiffies >>= TVN_BITS; | ||
1293 | } | ||
1294 | return expires; | ||
1295 | } | ||
1296 | |||
1297 | /* | ||
1298 | * Check, if the next hrtimer event is before the next timer wheel | ||
1299 | * event: | ||
1300 | */ | ||
1301 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | ||
1302 | unsigned long expires) | ||
1303 | { | ||
1304 | ktime_t hr_delta = hrtimer_get_next_event(); | ||
1305 | struct timespec tsdelta; | ||
1306 | unsigned long delta; | ||
1307 | |||
1308 | if (hr_delta.tv64 == KTIME_MAX) | ||
1309 | return expires; | ||
1310 | |||
1311 | /* | ||
1312 | * Expired timer available, let it expire in the next tick | ||
1313 | */ | ||
1314 | if (hr_delta.tv64 <= 0) | ||
1315 | return now + 1; | ||
1316 | |||
1317 | tsdelta = ktime_to_timespec(hr_delta); | ||
1318 | delta = timespec_to_jiffies(&tsdelta); | ||
1319 | |||
1320 | /* | ||
1321 | * Limit the delta to the max value, which is checked in | ||
1322 | * tick_nohz_stop_sched_tick(): | ||
1323 | */ | ||
1324 | if (delta > NEXT_TIMER_MAX_DELTA) | ||
1325 | delta = NEXT_TIMER_MAX_DELTA; | ||
1326 | |||
1327 | /* | ||
1328 | * Take rounding errors in to account and make sure, that it | ||
1329 | * expires in the next tick. Otherwise we go into an endless | ||
1330 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | ||
1331 | * the timer softirq | ||
1332 | */ | ||
1333 | if (delta < 1) | ||
1334 | delta = 1; | ||
1335 | now += delta; | ||
1336 | if (time_before(now, expires)) | ||
1337 | return now; | ||
1338 | return expires; | ||
1339 | } | ||
1340 | |||
1341 | /** | ||
1342 | * get_next_timer_interrupt - return the jiffy of the next pending timer | ||
1343 | * @now: current time (in jiffies) | ||
1344 | */ | ||
1345 | unsigned long get_next_timer_interrupt(unsigned long now) | ||
1346 | { | ||
1347 | struct tvec_base *base = __this_cpu_read(tvec_bases); | ||
1348 | unsigned long expires = now + NEXT_TIMER_MAX_DELTA; | ||
1349 | |||
1350 | /* | ||
1351 | * Pretend that there is no timer pending if the cpu is offline. | ||
1352 | * Possible pending timers will be migrated later to an active cpu. | ||
1353 | */ | ||
1354 | if (cpu_is_offline(smp_processor_id())) | ||
1355 | return expires; | ||
1356 | |||
1357 | spin_lock(&base->lock); | ||
1358 | if (base->active_timers) { | ||
1359 | if (time_before_eq(base->next_timer, base->timer_jiffies)) | ||
1360 | base->next_timer = __next_timer_interrupt(base); | ||
1361 | expires = base->next_timer; | ||
1362 | } | ||
1363 | spin_unlock(&base->lock); | ||
1364 | |||
1365 | if (time_before_eq(expires, now)) | ||
1366 | return now; | ||
1367 | |||
1368 | return cmp_next_hrtimer_event(now, expires); | ||
1369 | } | ||
1370 | #endif | ||
1371 | |||
1372 | /* | ||
1373 | * Called from the timer interrupt handler to charge one tick to the current | ||
1374 | * process. user_tick is 1 if the tick is user time, 0 for system. | ||
1375 | */ | ||
1376 | void update_process_times(int user_tick) | ||
1377 | { | ||
1378 | struct task_struct *p = current; | ||
1379 | int cpu = smp_processor_id(); | ||
1380 | |||
1381 | /* Note: this timer irq context must be accounted for as well. */ | ||
1382 | account_process_tick(p, user_tick); | ||
1383 | run_local_timers(); | ||
1384 | rcu_check_callbacks(cpu, user_tick); | ||
1385 | #ifdef CONFIG_IRQ_WORK | ||
1386 | if (in_irq()) | ||
1387 | irq_work_run(); | ||
1388 | #endif | ||
1389 | scheduler_tick(); | ||
1390 | run_posix_cpu_timers(p); | ||
1391 | } | ||
1392 | |||
1393 | /* | ||
1394 | * This function runs timers and the timer-tq in bottom half context. | ||
1395 | */ | ||
1396 | static void run_timer_softirq(struct softirq_action *h) | ||
1397 | { | ||
1398 | struct tvec_base *base = __this_cpu_read(tvec_bases); | ||
1399 | |||
1400 | hrtimer_run_pending(); | ||
1401 | |||
1402 | if (time_after_eq(jiffies, base->timer_jiffies)) | ||
1403 | __run_timers(base); | ||
1404 | } | ||
1405 | |||
1406 | /* | ||
1407 | * Called by the local, per-CPU timer interrupt on SMP. | ||
1408 | */ | ||
1409 | void run_local_timers(void) | ||
1410 | { | ||
1411 | hrtimer_run_queues(); | ||
1412 | raise_softirq(TIMER_SOFTIRQ); | ||
1413 | } | ||
1414 | |||
1415 | #ifdef __ARCH_WANT_SYS_ALARM | ||
1416 | |||
1417 | /* | ||
1418 | * For backwards compatibility? This can be done in libc so Alpha | ||
1419 | * and all newer ports shouldn't need it. | ||
1420 | */ | ||
1421 | SYSCALL_DEFINE1(alarm, unsigned int, seconds) | ||
1422 | { | ||
1423 | return alarm_setitimer(seconds); | ||
1424 | } | ||
1425 | |||
1426 | #endif | ||
1427 | |||
1428 | static void process_timeout(unsigned long __data) | ||
1429 | { | ||
1430 | wake_up_process((struct task_struct *)__data); | ||
1431 | } | ||
1432 | |||
1433 | /** | ||
1434 | * schedule_timeout - sleep until timeout | ||
1435 | * @timeout: timeout value in jiffies | ||
1436 | * | ||
1437 | * Make the current task sleep until @timeout jiffies have | ||
1438 | * elapsed. The routine will return immediately unless | ||
1439 | * the current task state has been set (see set_current_state()). | ||
1440 | * | ||
1441 | * You can set the task state as follows - | ||
1442 | * | ||
1443 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | ||
1444 | * pass before the routine returns. The routine will return 0 | ||
1445 | * | ||
1446 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
1447 | * delivered to the current task. In this case the remaining time | ||
1448 | * in jiffies will be returned, or 0 if the timer expired in time | ||
1449 | * | ||
1450 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
1451 | * routine returns. | ||
1452 | * | ||
1453 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | ||
1454 | * the CPU away without a bound on the timeout. In this case the return | ||
1455 | * value will be %MAX_SCHEDULE_TIMEOUT. | ||
1456 | * | ||
1457 | * In all cases the return value is guaranteed to be non-negative. | ||
1458 | */ | ||
1459 | signed long __sched schedule_timeout(signed long timeout) | ||
1460 | { | ||
1461 | struct timer_list timer; | ||
1462 | unsigned long expire; | ||
1463 | |||
1464 | switch (timeout) | ||
1465 | { | ||
1466 | case MAX_SCHEDULE_TIMEOUT: | ||
1467 | /* | ||
1468 | * These two special cases are useful to be comfortable | ||
1469 | * in the caller. Nothing more. We could take | ||
1470 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | ||
1471 | * but I' d like to return a valid offset (>=0) to allow | ||
1472 | * the caller to do everything it want with the retval. | ||
1473 | */ | ||
1474 | schedule(); | ||
1475 | goto out; | ||
1476 | default: | ||
1477 | /* | ||
1478 | * Another bit of PARANOID. Note that the retval will be | ||
1479 | * 0 since no piece of kernel is supposed to do a check | ||
1480 | * for a negative retval of schedule_timeout() (since it | ||
1481 | * should never happens anyway). You just have the printk() | ||
1482 | * that will tell you if something is gone wrong and where. | ||
1483 | */ | ||
1484 | if (timeout < 0) { | ||
1485 | printk(KERN_ERR "schedule_timeout: wrong timeout " | ||
1486 | "value %lx\n", timeout); | ||
1487 | dump_stack(); | ||
1488 | current->state = TASK_RUNNING; | ||
1489 | goto out; | ||
1490 | } | ||
1491 | } | ||
1492 | |||
1493 | expire = timeout + jiffies; | ||
1494 | |||
1495 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); | ||
1496 | __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); | ||
1497 | schedule(); | ||
1498 | del_singleshot_timer_sync(&timer); | ||
1499 | |||
1500 | /* Remove the timer from the object tracker */ | ||
1501 | destroy_timer_on_stack(&timer); | ||
1502 | |||
1503 | timeout = expire - jiffies; | ||
1504 | |||
1505 | out: | ||
1506 | return timeout < 0 ? 0 : timeout; | ||
1507 | } | ||
1508 | EXPORT_SYMBOL(schedule_timeout); | ||
1509 | |||
1510 | /* | ||
1511 | * We can use __set_current_state() here because schedule_timeout() calls | ||
1512 | * schedule() unconditionally. | ||
1513 | */ | ||
1514 | signed long __sched schedule_timeout_interruptible(signed long timeout) | ||
1515 | { | ||
1516 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1517 | return schedule_timeout(timeout); | ||
1518 | } | ||
1519 | EXPORT_SYMBOL(schedule_timeout_interruptible); | ||
1520 | |||
1521 | signed long __sched schedule_timeout_killable(signed long timeout) | ||
1522 | { | ||
1523 | __set_current_state(TASK_KILLABLE); | ||
1524 | return schedule_timeout(timeout); | ||
1525 | } | ||
1526 | EXPORT_SYMBOL(schedule_timeout_killable); | ||
1527 | |||
1528 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | ||
1529 | { | ||
1530 | __set_current_state(TASK_UNINTERRUPTIBLE); | ||
1531 | return schedule_timeout(timeout); | ||
1532 | } | ||
1533 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | ||
1534 | |||
1535 | static int init_timers_cpu(int cpu) | ||
1536 | { | ||
1537 | int j; | ||
1538 | struct tvec_base *base; | ||
1539 | static char tvec_base_done[NR_CPUS]; | ||
1540 | |||
1541 | if (!tvec_base_done[cpu]) { | ||
1542 | static char boot_done; | ||
1543 | |||
1544 | if (boot_done) { | ||
1545 | /* | ||
1546 | * The APs use this path later in boot | ||
1547 | */ | ||
1548 | base = kzalloc_node(sizeof(*base), GFP_KERNEL, | ||
1549 | cpu_to_node(cpu)); | ||
1550 | if (!base) | ||
1551 | return -ENOMEM; | ||
1552 | |||
1553 | /* Make sure tvec_base has TIMER_FLAG_MASK bits free */ | ||
1554 | if (WARN_ON(base != tbase_get_base(base))) { | ||
1555 | kfree(base); | ||
1556 | return -ENOMEM; | ||
1557 | } | ||
1558 | per_cpu(tvec_bases, cpu) = base; | ||
1559 | } else { | ||
1560 | /* | ||
1561 | * This is for the boot CPU - we use compile-time | ||
1562 | * static initialisation because per-cpu memory isn't | ||
1563 | * ready yet and because the memory allocators are not | ||
1564 | * initialised either. | ||
1565 | */ | ||
1566 | boot_done = 1; | ||
1567 | base = &boot_tvec_bases; | ||
1568 | } | ||
1569 | spin_lock_init(&base->lock); | ||
1570 | tvec_base_done[cpu] = 1; | ||
1571 | } else { | ||
1572 | base = per_cpu(tvec_bases, cpu); | ||
1573 | } | ||
1574 | |||
1575 | |||
1576 | for (j = 0; j < TVN_SIZE; j++) { | ||
1577 | INIT_LIST_HEAD(base->tv5.vec + j); | ||
1578 | INIT_LIST_HEAD(base->tv4.vec + j); | ||
1579 | INIT_LIST_HEAD(base->tv3.vec + j); | ||
1580 | INIT_LIST_HEAD(base->tv2.vec + j); | ||
1581 | } | ||
1582 | for (j = 0; j < TVR_SIZE; j++) | ||
1583 | INIT_LIST_HEAD(base->tv1.vec + j); | ||
1584 | |||
1585 | base->timer_jiffies = jiffies; | ||
1586 | base->next_timer = base->timer_jiffies; | ||
1587 | base->active_timers = 0; | ||
1588 | base->all_timers = 0; | ||
1589 | return 0; | ||
1590 | } | ||
1591 | |||
1592 | #ifdef CONFIG_HOTPLUG_CPU | ||
1593 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) | ||
1594 | { | ||
1595 | struct timer_list *timer; | ||
1596 | |||
1597 | while (!list_empty(head)) { | ||
1598 | timer = list_first_entry(head, struct timer_list, entry); | ||
1599 | /* We ignore the accounting on the dying cpu */ | ||
1600 | detach_timer(timer, false); | ||
1601 | timer_set_base(timer, new_base); | ||
1602 | internal_add_timer(new_base, timer); | ||
1603 | } | ||
1604 | } | ||
1605 | |||
1606 | static void migrate_timers(int cpu) | ||
1607 | { | ||
1608 | struct tvec_base *old_base; | ||
1609 | struct tvec_base *new_base; | ||
1610 | int i; | ||
1611 | |||
1612 | BUG_ON(cpu_online(cpu)); | ||
1613 | old_base = per_cpu(tvec_bases, cpu); | ||
1614 | new_base = get_cpu_var(tvec_bases); | ||
1615 | /* | ||
1616 | * The caller is globally serialized and nobody else | ||
1617 | * takes two locks at once, deadlock is not possible. | ||
1618 | */ | ||
1619 | spin_lock_irq(&new_base->lock); | ||
1620 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | ||
1621 | |||
1622 | BUG_ON(old_base->running_timer); | ||
1623 | |||
1624 | for (i = 0; i < TVR_SIZE; i++) | ||
1625 | migrate_timer_list(new_base, old_base->tv1.vec + i); | ||
1626 | for (i = 0; i < TVN_SIZE; i++) { | ||
1627 | migrate_timer_list(new_base, old_base->tv2.vec + i); | ||
1628 | migrate_timer_list(new_base, old_base->tv3.vec + i); | ||
1629 | migrate_timer_list(new_base, old_base->tv4.vec + i); | ||
1630 | migrate_timer_list(new_base, old_base->tv5.vec + i); | ||
1631 | } | ||
1632 | |||
1633 | spin_unlock(&old_base->lock); | ||
1634 | spin_unlock_irq(&new_base->lock); | ||
1635 | put_cpu_var(tvec_bases); | ||
1636 | } | ||
1637 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
1638 | |||
1639 | static int timer_cpu_notify(struct notifier_block *self, | ||
1640 | unsigned long action, void *hcpu) | ||
1641 | { | ||
1642 | long cpu = (long)hcpu; | ||
1643 | int err; | ||
1644 | |||
1645 | switch(action) { | ||
1646 | case CPU_UP_PREPARE: | ||
1647 | case CPU_UP_PREPARE_FROZEN: | ||
1648 | err = init_timers_cpu(cpu); | ||
1649 | if (err < 0) | ||
1650 | return notifier_from_errno(err); | ||
1651 | break; | ||
1652 | #ifdef CONFIG_HOTPLUG_CPU | ||
1653 | case CPU_DEAD: | ||
1654 | case CPU_DEAD_FROZEN: | ||
1655 | migrate_timers(cpu); | ||
1656 | break; | ||
1657 | #endif | ||
1658 | default: | ||
1659 | break; | ||
1660 | } | ||
1661 | return NOTIFY_OK; | ||
1662 | } | ||
1663 | |||
1664 | static struct notifier_block timers_nb = { | ||
1665 | .notifier_call = timer_cpu_notify, | ||
1666 | }; | ||
1667 | |||
1668 | |||
1669 | void __init init_timers(void) | ||
1670 | { | ||
1671 | int err; | ||
1672 | |||
1673 | /* ensure there are enough low bits for flags in timer->base pointer */ | ||
1674 | BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK); | ||
1675 | |||
1676 | err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | ||
1677 | (void *)(long)smp_processor_id()); | ||
1678 | BUG_ON(err != NOTIFY_OK); | ||
1679 | |||
1680 | init_timer_stats(); | ||
1681 | register_cpu_notifier(&timers_nb); | ||
1682 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); | ||
1683 | } | ||
1684 | |||
1685 | /** | ||
1686 | * msleep - sleep safely even with waitqueue interruptions | ||
1687 | * @msecs: Time in milliseconds to sleep for | ||
1688 | */ | ||
1689 | void msleep(unsigned int msecs) | ||
1690 | { | ||
1691 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | ||
1692 | |||
1693 | while (timeout) | ||
1694 | timeout = schedule_timeout_uninterruptible(timeout); | ||
1695 | } | ||
1696 | |||
1697 | EXPORT_SYMBOL(msleep); | ||
1698 | |||
1699 | /** | ||
1700 | * msleep_interruptible - sleep waiting for signals | ||
1701 | * @msecs: Time in milliseconds to sleep for | ||
1702 | */ | ||
1703 | unsigned long msleep_interruptible(unsigned int msecs) | ||
1704 | { | ||
1705 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | ||
1706 | |||
1707 | while (timeout && !signal_pending(current)) | ||
1708 | timeout = schedule_timeout_interruptible(timeout); | ||
1709 | return jiffies_to_msecs(timeout); | ||
1710 | } | ||
1711 | |||
1712 | EXPORT_SYMBOL(msleep_interruptible); | ||
1713 | |||
1714 | static int __sched do_usleep_range(unsigned long min, unsigned long max) | ||
1715 | { | ||
1716 | ktime_t kmin; | ||
1717 | unsigned long delta; | ||
1718 | |||
1719 | kmin = ktime_set(0, min * NSEC_PER_USEC); | ||
1720 | delta = (max - min) * NSEC_PER_USEC; | ||
1721 | return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); | ||
1722 | } | ||
1723 | |||
1724 | /** | ||
1725 | * usleep_range - Drop in replacement for udelay where wakeup is flexible | ||
1726 | * @min: Minimum time in usecs to sleep | ||
1727 | * @max: Maximum time in usecs to sleep | ||
1728 | */ | ||
1729 | void usleep_range(unsigned long min, unsigned long max) | ||
1730 | { | ||
1731 | __set_current_state(TASK_UNINTERRUPTIBLE); | ||
1732 | do_usleep_range(min, max); | ||
1733 | } | ||
1734 | EXPORT_SYMBOL(usleep_range); | ||