aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2011-12-15 02:21:21 -0500
committerIngo Molnar <mingo@elte.hu>2011-12-15 02:21:30 -0500
commit6a54aebf6978e9f296a4d3da3e40af425163c22e (patch)
tree8217c7114db02d8b69c22fc44880749426949bc3 /kernel/time
parent067491b7313c41f49607fce782d29344d1472587 (diff)
parentdc47ce90c3a822cd7c9e9339fe4d5f61dcb26b50 (diff)
Merge commit 'v3.2-rc5' into sched/core
Merge reason: Pick up the latest fixes. Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/time')
-rw-r--r--kernel/time/alarmtimer.c2
-rw-r--r--kernel/time/clockevents.c1
-rw-r--r--kernel/time/clocksource.c62
-rw-r--r--kernel/time/tick-broadcast.c2
-rw-r--r--kernel/time/timekeeping.c92
5 files changed, 144 insertions, 15 deletions
diff --git a/kernel/time/alarmtimer.c b/kernel/time/alarmtimer.c
index c436e790b21b..8a46f5d64504 100644
--- a/kernel/time/alarmtimer.c
+++ b/kernel/time/alarmtimer.c
@@ -195,7 +195,7 @@ static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
195 struct alarm *alarm; 195 struct alarm *alarm;
196 ktime_t expired = next->expires; 196 ktime_t expired = next->expires;
197 197
198 if (expired.tv64 >= now.tv64) 198 if (expired.tv64 > now.tv64)
199 break; 199 break;
200 200
201 alarm = container_of(next, struct alarm, node); 201 alarm = container_of(next, struct alarm, node);
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 1ecd6ba36d6c..c4eb71c8b2ea 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -387,6 +387,7 @@ void clockevents_exchange_device(struct clock_event_device *old,
387 * released list and do a notify add later. 387 * released list and do a notify add later.
388 */ 388 */
389 if (old) { 389 if (old) {
390 old->event_handler = clockevents_handle_noop;
390 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED); 391 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
391 list_del(&old->list); 392 list_del(&old->list);
392 list_add(&old->list, &clockevents_released); 393 list_add(&old->list, &clockevents_released);
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index cf52fda2e096..da2f760e780c 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -492,6 +492,22 @@ void clocksource_touch_watchdog(void)
492} 492}
493 493
494/** 494/**
495 * clocksource_max_adjustment- Returns max adjustment amount
496 * @cs: Pointer to clocksource
497 *
498 */
499static u32 clocksource_max_adjustment(struct clocksource *cs)
500{
501 u64 ret;
502 /*
503 * We won't try to correct for more then 11% adjustments (110,000 ppm),
504 */
505 ret = (u64)cs->mult * 11;
506 do_div(ret,100);
507 return (u32)ret;
508}
509
510/**
495 * clocksource_max_deferment - Returns max time the clocksource can be deferred 511 * clocksource_max_deferment - Returns max time the clocksource can be deferred
496 * @cs: Pointer to clocksource 512 * @cs: Pointer to clocksource
497 * 513 *
@@ -503,25 +519,28 @@ static u64 clocksource_max_deferment(struct clocksource *cs)
503 /* 519 /*
504 * Calculate the maximum number of cycles that we can pass to the 520 * Calculate the maximum number of cycles that we can pass to the
505 * cyc2ns function without overflowing a 64-bit signed result. The 521 * cyc2ns function without overflowing a 64-bit signed result. The
506 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which 522 * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
507 * is equivalent to the below. 523 * which is equivalent to the below.
508 * max_cycles < (2^63)/cs->mult 524 * max_cycles < (2^63)/(cs->mult + cs->maxadj)
509 * max_cycles < 2^(log2((2^63)/cs->mult)) 525 * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
510 * max_cycles < 2^(log2(2^63) - log2(cs->mult)) 526 * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
511 * max_cycles < 2^(63 - log2(cs->mult)) 527 * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
512 * max_cycles < 1 << (63 - log2(cs->mult)) 528 * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
513 * Please note that we add 1 to the result of the log2 to account for 529 * Please note that we add 1 to the result of the log2 to account for
514 * any rounding errors, ensure the above inequality is satisfied and 530 * any rounding errors, ensure the above inequality is satisfied and
515 * no overflow will occur. 531 * no overflow will occur.
516 */ 532 */
517 max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1)); 533 max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
518 534
519 /* 535 /*
520 * The actual maximum number of cycles we can defer the clocksource is 536 * The actual maximum number of cycles we can defer the clocksource is
521 * determined by the minimum of max_cycles and cs->mask. 537 * determined by the minimum of max_cycles and cs->mask.
538 * Note: Here we subtract the maxadj to make sure we don't sleep for
539 * too long if there's a large negative adjustment.
522 */ 540 */
523 max_cycles = min_t(u64, max_cycles, (u64) cs->mask); 541 max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
524 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift); 542 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
543 cs->shift);
525 544
526 /* 545 /*
527 * To ensure that the clocksource does not wrap whilst we are idle, 546 * To ensure that the clocksource does not wrap whilst we are idle,
@@ -529,7 +548,7 @@ static u64 clocksource_max_deferment(struct clocksource *cs)
529 * note a margin of 12.5% is used because this can be computed with 548 * note a margin of 12.5% is used because this can be computed with
530 * a shift, versus say 10% which would require division. 549 * a shift, versus say 10% which would require division.
531 */ 550 */
532 return max_nsecs - (max_nsecs >> 5); 551 return max_nsecs - (max_nsecs >> 3);
533} 552}
534 553
535#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 554#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
@@ -640,7 +659,6 @@ static void clocksource_enqueue(struct clocksource *cs)
640void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) 659void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
641{ 660{
642 u64 sec; 661 u64 sec;
643
644 /* 662 /*
645 * Calc the maximum number of seconds which we can run before 663 * Calc the maximum number of seconds which we can run before
646 * wrapping around. For clocksources which have a mask > 32bit 664 * wrapping around. For clocksources which have a mask > 32bit
@@ -651,7 +669,7 @@ void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
651 * ~ 0.06ppm granularity for NTP. We apply the same 12.5% 669 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
652 * margin as we do in clocksource_max_deferment() 670 * margin as we do in clocksource_max_deferment()
653 */ 671 */
654 sec = (cs->mask - (cs->mask >> 5)); 672 sec = (cs->mask - (cs->mask >> 3));
655 do_div(sec, freq); 673 do_div(sec, freq);
656 do_div(sec, scale); 674 do_div(sec, scale);
657 if (!sec) 675 if (!sec)
@@ -661,6 +679,20 @@ void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
661 679
662 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 680 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
663 NSEC_PER_SEC / scale, sec * scale); 681 NSEC_PER_SEC / scale, sec * scale);
682
683 /*
684 * for clocksources that have large mults, to avoid overflow.
685 * Since mult may be adjusted by ntp, add an safety extra margin
686 *
687 */
688 cs->maxadj = clocksource_max_adjustment(cs);
689 while ((cs->mult + cs->maxadj < cs->mult)
690 || (cs->mult - cs->maxadj > cs->mult)) {
691 cs->mult >>= 1;
692 cs->shift--;
693 cs->maxadj = clocksource_max_adjustment(cs);
694 }
695
664 cs->max_idle_ns = clocksource_max_deferment(cs); 696 cs->max_idle_ns = clocksource_max_deferment(cs);
665} 697}
666EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale); 698EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
@@ -701,6 +733,12 @@ EXPORT_SYMBOL_GPL(__clocksource_register_scale);
701 */ 733 */
702int clocksource_register(struct clocksource *cs) 734int clocksource_register(struct clocksource *cs)
703{ 735{
736 /* calculate max adjustment for given mult/shift */
737 cs->maxadj = clocksource_max_adjustment(cs);
738 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
739 "Clocksource %s might overflow on 11%% adjustment\n",
740 cs->name);
741
704 /* calculate max idle time permitted for this clocksource */ 742 /* calculate max idle time permitted for this clocksource */
705 cs->max_idle_ns = clocksource_max_deferment(cs); 743 cs->max_idle_ns = clocksource_max_deferment(cs);
706 744
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c
index f954282d9a82..fd4a7b1625a2 100644
--- a/kernel/time/tick-broadcast.c
+++ b/kernel/time/tick-broadcast.c
@@ -71,7 +71,7 @@ int tick_check_broadcast_device(struct clock_event_device *dev)
71 (dev->features & CLOCK_EVT_FEAT_C3STOP)) 71 (dev->features & CLOCK_EVT_FEAT_C3STOP))
72 return 0; 72 return 0;
73 73
74 clockevents_exchange_device(NULL, dev); 74 clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
75 tick_broadcast_device.evtdev = dev; 75 tick_broadcast_device.evtdev = dev;
76 if (!cpumask_empty(tick_get_broadcast_mask())) 76 if (!cpumask_empty(tick_get_broadcast_mask()))
77 tick_broadcast_start_periodic(dev); 77 tick_broadcast_start_periodic(dev);
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 2b021b0e8507..237841378c03 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -249,6 +249,8 @@ ktime_t ktime_get(void)
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec; 249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; 250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 nsecs += timekeeping_get_ns(); 251 nsecs += timekeeping_get_ns();
252 /* If arch requires, add in gettimeoffset() */
253 nsecs += arch_gettimeoffset();
252 254
253 } while (read_seqretry(&xtime_lock, seq)); 255 } while (read_seqretry(&xtime_lock, seq));
254 /* 256 /*
@@ -280,6 +282,8 @@ void ktime_get_ts(struct timespec *ts)
280 *ts = xtime; 282 *ts = xtime;
281 tomono = wall_to_monotonic; 283 tomono = wall_to_monotonic;
282 nsecs = timekeeping_get_ns(); 284 nsecs = timekeeping_get_ns();
285 /* If arch requires, add in gettimeoffset() */
286 nsecs += arch_gettimeoffset();
283 287
284 } while (read_seqretry(&xtime_lock, seq)); 288 } while (read_seqretry(&xtime_lock, seq));
285 289
@@ -802,14 +806,44 @@ static void timekeeping_adjust(s64 offset)
802 s64 error, interval = timekeeper.cycle_interval; 806 s64 error, interval = timekeeper.cycle_interval;
803 int adj; 807 int adj;
804 808
809 /*
810 * The point of this is to check if the error is greater then half
811 * an interval.
812 *
813 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
814 *
815 * Note we subtract one in the shift, so that error is really error*2.
816 * This "saves" dividing(shifting) intererval twice, but keeps the
817 * (error > interval) comparision as still measuring if error is
818 * larger then half an interval.
819 *
820 * Note: It does not "save" on aggrivation when reading the code.
821 */
805 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 822 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
806 if (error > interval) { 823 if (error > interval) {
824 /*
825 * We now divide error by 4(via shift), which checks if
826 * the error is greater then twice the interval.
827 * If it is greater, we need a bigadjust, if its smaller,
828 * we can adjust by 1.
829 */
807 error >>= 2; 830 error >>= 2;
831 /*
832 * XXX - In update_wall_time, we round up to the next
833 * nanosecond, and store the amount rounded up into
834 * the error. This causes the likely below to be unlikely.
835 *
836 * The properfix is to avoid rounding up by using
837 * the high precision timekeeper.xtime_nsec instead of
838 * xtime.tv_nsec everywhere. Fixing this will take some
839 * time.
840 */
808 if (likely(error <= interval)) 841 if (likely(error <= interval))
809 adj = 1; 842 adj = 1;
810 else 843 else
811 adj = timekeeping_bigadjust(error, &interval, &offset); 844 adj = timekeeping_bigadjust(error, &interval, &offset);
812 } else if (error < -interval) { 845 } else if (error < -interval) {
846 /* See comment above, this is just switched for the negative */
813 error >>= 2; 847 error >>= 2;
814 if (likely(error >= -interval)) { 848 if (likely(error >= -interval)) {
815 adj = -1; 849 adj = -1;
@@ -817,9 +851,65 @@ static void timekeeping_adjust(s64 offset)
817 offset = -offset; 851 offset = -offset;
818 } else 852 } else
819 adj = timekeeping_bigadjust(error, &interval, &offset); 853 adj = timekeeping_bigadjust(error, &interval, &offset);
820 } else 854 } else /* No adjustment needed */
821 return; 855 return;
822 856
857 WARN_ONCE(timekeeper.clock->maxadj &&
858 (timekeeper.mult + adj > timekeeper.clock->mult +
859 timekeeper.clock->maxadj),
860 "Adjusting %s more then 11%% (%ld vs %ld)\n",
861 timekeeper.clock->name, (long)timekeeper.mult + adj,
862 (long)timekeeper.clock->mult +
863 timekeeper.clock->maxadj);
864 /*
865 * So the following can be confusing.
866 *
867 * To keep things simple, lets assume adj == 1 for now.
868 *
869 * When adj != 1, remember that the interval and offset values
870 * have been appropriately scaled so the math is the same.
871 *
872 * The basic idea here is that we're increasing the multiplier
873 * by one, this causes the xtime_interval to be incremented by
874 * one cycle_interval. This is because:
875 * xtime_interval = cycle_interval * mult
876 * So if mult is being incremented by one:
877 * xtime_interval = cycle_interval * (mult + 1)
878 * Its the same as:
879 * xtime_interval = (cycle_interval * mult) + cycle_interval
880 * Which can be shortened to:
881 * xtime_interval += cycle_interval
882 *
883 * So offset stores the non-accumulated cycles. Thus the current
884 * time (in shifted nanoseconds) is:
885 * now = (offset * adj) + xtime_nsec
886 * Now, even though we're adjusting the clock frequency, we have
887 * to keep time consistent. In other words, we can't jump back
888 * in time, and we also want to avoid jumping forward in time.
889 *
890 * So given the same offset value, we need the time to be the same
891 * both before and after the freq adjustment.
892 * now = (offset * adj_1) + xtime_nsec_1
893 * now = (offset * adj_2) + xtime_nsec_2
894 * So:
895 * (offset * adj_1) + xtime_nsec_1 =
896 * (offset * adj_2) + xtime_nsec_2
897 * And we know:
898 * adj_2 = adj_1 + 1
899 * So:
900 * (offset * adj_1) + xtime_nsec_1 =
901 * (offset * (adj_1+1)) + xtime_nsec_2
902 * (offset * adj_1) + xtime_nsec_1 =
903 * (offset * adj_1) + offset + xtime_nsec_2
904 * Canceling the sides:
905 * xtime_nsec_1 = offset + xtime_nsec_2
906 * Which gives us:
907 * xtime_nsec_2 = xtime_nsec_1 - offset
908 * Which simplfies to:
909 * xtime_nsec -= offset
910 *
911 * XXX - TODO: Doc ntp_error calculation.
912 */
823 timekeeper.mult += adj; 913 timekeeper.mult += adj;
824 timekeeper.xtime_interval += interval; 914 timekeeper.xtime_interval += interval;
825 timekeeper.xtime_nsec -= offset; 915 timekeeper.xtime_nsec -= offset;