diff options
author | john stultz <johnstul@us.ibm.com> | 2006-10-01 02:28:22 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-10-01 03:39:26 -0400 |
commit | 4c7ee8de956fc250fe31e2fa91f6da980fabe317 (patch) | |
tree | e2d7c207a7ca9f785c256513686f6d7f7234ef93 /kernel/time | |
parent | c902e0a0102f1095eec4b3511c13c84ca2bc4577 (diff) |
[PATCH] NTP: Move all the NTP related code to ntp.c
Move all the NTP related code to ntp.c
[akpm@osdl.org: cleanups, build fix]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'kernel/time')
-rw-r--r-- | kernel/time/Makefile | 2 | ||||
-rw-r--r-- | kernel/time/ntp.c | 389 |
2 files changed, 390 insertions, 1 deletions
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index e1dfd8e86cce..61a3907d16fb 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
@@ -1 +1 @@ | |||
obj-y += clocksource.o jiffies.o | obj-y += ntp.o clocksource.o jiffies.o | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c new file mode 100644 index 000000000000..8ccce15b4b23 --- /dev/null +++ b/kernel/time/ntp.c | |||
@@ -0,0 +1,389 @@ | |||
1 | /* | ||
2 | * linux/kernel/time/ntp.c | ||
3 | * | ||
4 | * NTP state machine interfaces and logic. | ||
5 | * | ||
6 | * This code was mainly moved from kernel/timer.c and kernel/time.c | ||
7 | * Please see those files for relevant copyright info and historical | ||
8 | * changelogs. | ||
9 | */ | ||
10 | |||
11 | #include <linux/mm.h> | ||
12 | #include <linux/time.h> | ||
13 | #include <linux/timex.h> | ||
14 | |||
15 | #include <asm/div64.h> | ||
16 | #include <asm/timex.h> | ||
17 | |||
18 | /* Don't completely fail for HZ > 500. */ | ||
19 | int tickadj = 500/HZ ? : 1; /* microsecs */ | ||
20 | |||
21 | /* | ||
22 | * phase-lock loop variables | ||
23 | */ | ||
24 | /* TIME_ERROR prevents overwriting the CMOS clock */ | ||
25 | int time_state = TIME_OK; /* clock synchronization status */ | ||
26 | int time_status = STA_UNSYNC; /* clock status bits */ | ||
27 | long time_offset; /* time adjustment (us) */ | ||
28 | long time_constant = 2; /* pll time constant */ | ||
29 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ | ||
30 | long time_precision = 1; /* clock precision (us) */ | ||
31 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | ||
32 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | ||
33 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | ||
34 | /* frequency offset (scaled ppm)*/ | ||
35 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ | ||
36 | long time_reftime; /* time at last adjustment (s) */ | ||
37 | long time_adjust; | ||
38 | long time_next_adjust; | ||
39 | |||
40 | /* | ||
41 | * this routine handles the overflow of the microsecond field | ||
42 | * | ||
43 | * The tricky bits of code to handle the accurate clock support | ||
44 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | ||
45 | * They were originally developed for SUN and DEC kernels. | ||
46 | * All the kudos should go to Dave for this stuff. | ||
47 | */ | ||
48 | void second_overflow(void) | ||
49 | { | ||
50 | long ltemp; | ||
51 | |||
52 | /* Bump the maxerror field */ | ||
53 | time_maxerror += time_tolerance >> SHIFT_USEC; | ||
54 | if (time_maxerror > NTP_PHASE_LIMIT) { | ||
55 | time_maxerror = NTP_PHASE_LIMIT; | ||
56 | time_status |= STA_UNSYNC; | ||
57 | } | ||
58 | |||
59 | /* | ||
60 | * Leap second processing. If in leap-insert state at the end of the | ||
61 | * day, the system clock is set back one second; if in leap-delete | ||
62 | * state, the system clock is set ahead one second. The microtime() | ||
63 | * routine or external clock driver will insure that reported time is | ||
64 | * always monotonic. The ugly divides should be replaced. | ||
65 | */ | ||
66 | switch (time_state) { | ||
67 | case TIME_OK: | ||
68 | if (time_status & STA_INS) | ||
69 | time_state = TIME_INS; | ||
70 | else if (time_status & STA_DEL) | ||
71 | time_state = TIME_DEL; | ||
72 | break; | ||
73 | case TIME_INS: | ||
74 | if (xtime.tv_sec % 86400 == 0) { | ||
75 | xtime.tv_sec--; | ||
76 | wall_to_monotonic.tv_sec++; | ||
77 | /* | ||
78 | * The timer interpolator will make time change | ||
79 | * gradually instead of an immediate jump by one second | ||
80 | */ | ||
81 | time_interpolator_update(-NSEC_PER_SEC); | ||
82 | time_state = TIME_OOP; | ||
83 | clock_was_set(); | ||
84 | printk(KERN_NOTICE "Clock: inserting leap second " | ||
85 | "23:59:60 UTC\n"); | ||
86 | } | ||
87 | break; | ||
88 | case TIME_DEL: | ||
89 | if ((xtime.tv_sec + 1) % 86400 == 0) { | ||
90 | xtime.tv_sec++; | ||
91 | wall_to_monotonic.tv_sec--; | ||
92 | /* | ||
93 | * Use of time interpolator for a gradual change of | ||
94 | * time | ||
95 | */ | ||
96 | time_interpolator_update(NSEC_PER_SEC); | ||
97 | time_state = TIME_WAIT; | ||
98 | clock_was_set(); | ||
99 | printk(KERN_NOTICE "Clock: deleting leap second " | ||
100 | "23:59:59 UTC\n"); | ||
101 | } | ||
102 | break; | ||
103 | case TIME_OOP: | ||
104 | time_state = TIME_WAIT; | ||
105 | break; | ||
106 | case TIME_WAIT: | ||
107 | if (!(time_status & (STA_INS | STA_DEL))) | ||
108 | time_state = TIME_OK; | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * Compute the phase adjustment for the next second. In PLL mode, the | ||
113 | * offset is reduced by a fixed factor times the time constant. In FLL | ||
114 | * mode the offset is used directly. In either mode, the maximum phase | ||
115 | * adjustment for each second is clamped so as to spread the adjustment | ||
116 | * over not more than the number of seconds between updates. | ||
117 | */ | ||
118 | ltemp = time_offset; | ||
119 | if (!(time_status & STA_FLL)) | ||
120 | ltemp = shift_right(ltemp, SHIFT_KG + time_constant); | ||
121 | ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); | ||
122 | ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); | ||
123 | time_offset -= ltemp; | ||
124 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | ||
125 | |||
126 | /* | ||
127 | * Compute the frequency estimate and additional phase adjustment due | ||
128 | * to frequency error for the next second. | ||
129 | */ | ||
130 | ltemp = time_freq; | ||
131 | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | ||
132 | |||
133 | #if HZ == 100 | ||
134 | /* | ||
135 | * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to | ||
136 | * get 128.125; => only 0.125% error (p. 14) | ||
137 | */ | ||
138 | time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); | ||
139 | #endif | ||
140 | #if HZ == 250 | ||
141 | /* | ||
142 | * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and | ||
143 | * 0.78125% to get 255.85938; => only 0.05% error (p. 14) | ||
144 | */ | ||
145 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | ||
146 | #endif | ||
147 | #if HZ == 1000 | ||
148 | /* | ||
149 | * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and | ||
150 | * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | ||
151 | */ | ||
152 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | ||
153 | #endif | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * Returns how many microseconds we need to add to xtime this tick | ||
158 | * in doing an adjustment requested with adjtime. | ||
159 | */ | ||
160 | static long adjtime_adjustment(void) | ||
161 | { | ||
162 | long time_adjust_step; | ||
163 | |||
164 | time_adjust_step = time_adjust; | ||
165 | if (time_adjust_step) { | ||
166 | /* | ||
167 | * We are doing an adjtime thing. Prepare time_adjust_step to | ||
168 | * be within bounds. Note that a positive time_adjust means we | ||
169 | * want the clock to run faster. | ||
170 | * | ||
171 | * Limit the amount of the step to be in the range | ||
172 | * -tickadj .. +tickadj | ||
173 | */ | ||
174 | time_adjust_step = min(time_adjust_step, (long)tickadj); | ||
175 | time_adjust_step = max(time_adjust_step, (long)-tickadj); | ||
176 | } | ||
177 | return time_adjust_step; | ||
178 | } | ||
179 | |||
180 | /* in the NTP reference this is called "hardclock()" */ | ||
181 | void update_ntp_one_tick(void) | ||
182 | { | ||
183 | long time_adjust_step; | ||
184 | |||
185 | time_adjust_step = adjtime_adjustment(); | ||
186 | if (time_adjust_step) | ||
187 | /* Reduce by this step the amount of time left */ | ||
188 | time_adjust -= time_adjust_step; | ||
189 | |||
190 | /* Changes by adjtime() do not take effect till next tick. */ | ||
191 | if (time_next_adjust != 0) { | ||
192 | time_adjust = time_next_adjust; | ||
193 | time_next_adjust = 0; | ||
194 | } | ||
195 | } | ||
196 | |||
197 | /* | ||
198 | * Return how long ticks are at the moment, that is, how much time | ||
199 | * update_wall_time_one_tick will add to xtime next time we call it | ||
200 | * (assuming no calls to do_adjtimex in the meantime). | ||
201 | * The return value is in fixed-point nanoseconds shifted by the | ||
202 | * specified number of bits to the right of the binary point. | ||
203 | * This function has no side-effects. | ||
204 | */ | ||
205 | u64 current_tick_length(void) | ||
206 | { | ||
207 | long delta_nsec; | ||
208 | u64 ret; | ||
209 | |||
210 | /* calculate the finest interval NTP will allow. | ||
211 | * ie: nanosecond value shifted by (SHIFT_SCALE - 10) | ||
212 | */ | ||
213 | delta_nsec = tick_nsec + adjtime_adjustment() * 1000; | ||
214 | ret = (u64)delta_nsec << TICK_LENGTH_SHIFT; | ||
215 | ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10)); | ||
216 | |||
217 | return ret; | ||
218 | } | ||
219 | |||
220 | |||
221 | void __attribute__ ((weak)) notify_arch_cmos_timer(void) | ||
222 | { | ||
223 | return; | ||
224 | } | ||
225 | |||
226 | /* adjtimex mainly allows reading (and writing, if superuser) of | ||
227 | * kernel time-keeping variables. used by xntpd. | ||
228 | */ | ||
229 | int do_adjtimex(struct timex *txc) | ||
230 | { | ||
231 | long ltemp, mtemp, save_adjust; | ||
232 | int result; | ||
233 | |||
234 | /* In order to modify anything, you gotta be super-user! */ | ||
235 | if (txc->modes && !capable(CAP_SYS_TIME)) | ||
236 | return -EPERM; | ||
237 | |||
238 | /* Now we validate the data before disabling interrupts */ | ||
239 | |||
240 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | ||
241 | /* singleshot must not be used with any other mode bits */ | ||
242 | if (txc->modes != ADJ_OFFSET_SINGLESHOT) | ||
243 | return -EINVAL; | ||
244 | |||
245 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) | ||
246 | /* adjustment Offset limited to +- .512 seconds */ | ||
247 | if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) | ||
248 | return -EINVAL; | ||
249 | |||
250 | /* if the quartz is off by more than 10% something is VERY wrong ! */ | ||
251 | if (txc->modes & ADJ_TICK) | ||
252 | if (txc->tick < 900000/USER_HZ || | ||
253 | txc->tick > 1100000/USER_HZ) | ||
254 | return -EINVAL; | ||
255 | |||
256 | write_seqlock_irq(&xtime_lock); | ||
257 | result = time_state; /* mostly `TIME_OK' */ | ||
258 | |||
259 | /* Save for later - semantics of adjtime is to return old value */ | ||
260 | save_adjust = time_next_adjust ? time_next_adjust : time_adjust; | ||
261 | |||
262 | #if 0 /* STA_CLOCKERR is never set yet */ | ||
263 | time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ | ||
264 | #endif | ||
265 | /* If there are input parameters, then process them */ | ||
266 | if (txc->modes) | ||
267 | { | ||
268 | if (txc->modes & ADJ_STATUS) /* only set allowed bits */ | ||
269 | time_status = (txc->status & ~STA_RONLY) | | ||
270 | (time_status & STA_RONLY); | ||
271 | |||
272 | if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ | ||
273 | if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { | ||
274 | result = -EINVAL; | ||
275 | goto leave; | ||
276 | } | ||
277 | time_freq = txc->freq; | ||
278 | } | ||
279 | |||
280 | if (txc->modes & ADJ_MAXERROR) { | ||
281 | if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { | ||
282 | result = -EINVAL; | ||
283 | goto leave; | ||
284 | } | ||
285 | time_maxerror = txc->maxerror; | ||
286 | } | ||
287 | |||
288 | if (txc->modes & ADJ_ESTERROR) { | ||
289 | if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { | ||
290 | result = -EINVAL; | ||
291 | goto leave; | ||
292 | } | ||
293 | time_esterror = txc->esterror; | ||
294 | } | ||
295 | |||
296 | if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ | ||
297 | if (txc->constant < 0) { /* NTP v4 uses values > 6 */ | ||
298 | result = -EINVAL; | ||
299 | goto leave; | ||
300 | } | ||
301 | time_constant = txc->constant; | ||
302 | } | ||
303 | |||
304 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ | ||
305 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) { | ||
306 | /* adjtime() is independent from ntp_adjtime() */ | ||
307 | if ((time_next_adjust = txc->offset) == 0) | ||
308 | time_adjust = 0; | ||
309 | } | ||
310 | else if (time_status & STA_PLL) { | ||
311 | ltemp = txc->offset; | ||
312 | |||
313 | /* | ||
314 | * Scale the phase adjustment and | ||
315 | * clamp to the operating range. | ||
316 | */ | ||
317 | if (ltemp > MAXPHASE) | ||
318 | time_offset = MAXPHASE << SHIFT_UPDATE; | ||
319 | else if (ltemp < -MAXPHASE) | ||
320 | time_offset = -(MAXPHASE << SHIFT_UPDATE); | ||
321 | else | ||
322 | time_offset = ltemp << SHIFT_UPDATE; | ||
323 | |||
324 | /* | ||
325 | * Select whether the frequency is to be controlled | ||
326 | * and in which mode (PLL or FLL). Clamp to the operating | ||
327 | * range. Ugly multiply/divide should be replaced someday. | ||
328 | */ | ||
329 | |||
330 | if (time_status & STA_FREQHOLD || time_reftime == 0) | ||
331 | time_reftime = xtime.tv_sec; | ||
332 | mtemp = xtime.tv_sec - time_reftime; | ||
333 | time_reftime = xtime.tv_sec; | ||
334 | if (time_status & STA_FLL) { | ||
335 | if (mtemp >= MINSEC) { | ||
336 | ltemp = (time_offset / mtemp) << (SHIFT_USEC - | ||
337 | SHIFT_UPDATE); | ||
338 | time_freq += shift_right(ltemp, SHIFT_KH); | ||
339 | } else /* calibration interval too short (p. 12) */ | ||
340 | result = TIME_ERROR; | ||
341 | } else { /* PLL mode */ | ||
342 | if (mtemp < MAXSEC) { | ||
343 | ltemp *= mtemp; | ||
344 | time_freq += shift_right(ltemp,(time_constant + | ||
345 | time_constant + | ||
346 | SHIFT_KF - SHIFT_USEC)); | ||
347 | } else /* calibration interval too long (p. 12) */ | ||
348 | result = TIME_ERROR; | ||
349 | } | ||
350 | time_freq = min(time_freq, time_tolerance); | ||
351 | time_freq = max(time_freq, -time_tolerance); | ||
352 | } /* STA_PLL */ | ||
353 | } /* txc->modes & ADJ_OFFSET */ | ||
354 | if (txc->modes & ADJ_TICK) { | ||
355 | tick_usec = txc->tick; | ||
356 | tick_nsec = TICK_USEC_TO_NSEC(tick_usec); | ||
357 | } | ||
358 | } /* txc->modes */ | ||
359 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) | ||
360 | result = TIME_ERROR; | ||
361 | |||
362 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | ||
363 | txc->offset = save_adjust; | ||
364 | else { | ||
365 | txc->offset = shift_right(time_offset, SHIFT_UPDATE); | ||
366 | } | ||
367 | txc->freq = time_freq; | ||
368 | txc->maxerror = time_maxerror; | ||
369 | txc->esterror = time_esterror; | ||
370 | txc->status = time_status; | ||
371 | txc->constant = time_constant; | ||
372 | txc->precision = time_precision; | ||
373 | txc->tolerance = time_tolerance; | ||
374 | txc->tick = tick_usec; | ||
375 | |||
376 | /* PPS is not implemented, so these are zero */ | ||
377 | txc->ppsfreq = 0; | ||
378 | txc->jitter = 0; | ||
379 | txc->shift = 0; | ||
380 | txc->stabil = 0; | ||
381 | txc->jitcnt = 0; | ||
382 | txc->calcnt = 0; | ||
383 | txc->errcnt = 0; | ||
384 | txc->stbcnt = 0; | ||
385 | write_sequnlock_irq(&xtime_lock); | ||
386 | do_gettimeofday(&txc->time); | ||
387 | notify_arch_cmos_timer(); | ||
388 | return(result); | ||
389 | } | ||