aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/seccomp.c
diff options
context:
space:
mode:
authorAlexei Starovoitov <ast@plumgrid.com>2014-03-28 13:58:25 -0400
committerDavid S. Miller <davem@davemloft.net>2014-03-31 00:45:09 -0400
commitbd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8 (patch)
tree6ffb15296ce4cdc1f272e31bd43a5804b8da588c /kernel/seccomp.c
parent77e0114ae9ae08685c503772a57af21d299c6701 (diff)
net: filter: rework/optimize internal BPF interpreter's instruction set
This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'kernel/seccomp.c')
-rw-r--r--kernel/seccomp.c119
1 files changed, 58 insertions, 61 deletions
diff --git a/kernel/seccomp.c b/kernel/seccomp.c
index b7a10048a32c..4f18e754c23e 100644
--- a/kernel/seccomp.c
+++ b/kernel/seccomp.c
@@ -55,60 +55,33 @@ struct seccomp_filter {
55 atomic_t usage; 55 atomic_t usage;
56 struct seccomp_filter *prev; 56 struct seccomp_filter *prev;
57 unsigned short len; /* Instruction count */ 57 unsigned short len; /* Instruction count */
58 struct sock_filter insns[]; 58 struct sock_filter_int insnsi[];
59}; 59};
60 60
61/* Limit any path through the tree to 256KB worth of instructions. */ 61/* Limit any path through the tree to 256KB worth of instructions. */
62#define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 62#define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
63 63
64/** 64/*
65 * get_u32 - returns a u32 offset into data
66 * @data: a unsigned 64 bit value
67 * @index: 0 or 1 to return the first or second 32-bits
68 *
69 * This inline exists to hide the length of unsigned long. If a 32-bit
70 * unsigned long is passed in, it will be extended and the top 32-bits will be
71 * 0. If it is a 64-bit unsigned long, then whatever data is resident will be
72 * properly returned.
73 *
74 * Endianness is explicitly ignored and left for BPF program authors to manage 65 * Endianness is explicitly ignored and left for BPF program authors to manage
75 * as per the specific architecture. 66 * as per the specific architecture.
76 */ 67 */
77static inline u32 get_u32(u64 data, int index) 68static void populate_seccomp_data(struct seccomp_data *sd)
78{ 69{
79 return ((u32 *)&data)[index]; 70 struct task_struct *task = current;
80} 71 struct pt_regs *regs = task_pt_regs(task);
81 72
82/* Helper for bpf_load below. */ 73 sd->nr = syscall_get_nr(task, regs);
83#define BPF_DATA(_name) offsetof(struct seccomp_data, _name) 74 sd->arch = syscall_get_arch(task, regs);
84/** 75
85 * bpf_load: checks and returns a pointer to the requested offset 76 /* Unroll syscall_get_args to help gcc on arm. */
86 * @off: offset into struct seccomp_data to load from 77 syscall_get_arguments(task, regs, 0, 1, (unsigned long *) &sd->args[0]);
87 * 78 syscall_get_arguments(task, regs, 1, 1, (unsigned long *) &sd->args[1]);
88 * Returns the requested 32-bits of data. 79 syscall_get_arguments(task, regs, 2, 1, (unsigned long *) &sd->args[2]);
89 * seccomp_check_filter() should assure that @off is 32-bit aligned 80 syscall_get_arguments(task, regs, 3, 1, (unsigned long *) &sd->args[3]);
90 * and not out of bounds. Failure to do so is a BUG. 81 syscall_get_arguments(task, regs, 4, 1, (unsigned long *) &sd->args[4]);
91 */ 82 syscall_get_arguments(task, regs, 5, 1, (unsigned long *) &sd->args[5]);
92u32 seccomp_bpf_load(int off) 83
93{ 84 sd->instruction_pointer = KSTK_EIP(task);
94 struct pt_regs *regs = task_pt_regs(current);
95 if (off == BPF_DATA(nr))
96 return syscall_get_nr(current, regs);
97 if (off == BPF_DATA(arch))
98 return syscall_get_arch(current, regs);
99 if (off >= BPF_DATA(args[0]) && off < BPF_DATA(args[6])) {
100 unsigned long value;
101 int arg = (off - BPF_DATA(args[0])) / sizeof(u64);
102 int index = !!(off % sizeof(u64));
103 syscall_get_arguments(current, regs, arg, 1, &value);
104 return get_u32(value, index);
105 }
106 if (off == BPF_DATA(instruction_pointer))
107 return get_u32(KSTK_EIP(current), 0);
108 if (off == BPF_DATA(instruction_pointer) + sizeof(u32))
109 return get_u32(KSTK_EIP(current), 1);
110 /* seccomp_check_filter should make this impossible. */
111 BUG();
112} 85}
113 86
114/** 87/**
@@ -133,17 +106,17 @@ static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
133 106
134 switch (code) { 107 switch (code) {
135 case BPF_S_LD_W_ABS: 108 case BPF_S_LD_W_ABS:
136 ftest->code = BPF_S_ANC_SECCOMP_LD_W; 109 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
137 /* 32-bit aligned and not out of bounds. */ 110 /* 32-bit aligned and not out of bounds. */
138 if (k >= sizeof(struct seccomp_data) || k & 3) 111 if (k >= sizeof(struct seccomp_data) || k & 3)
139 return -EINVAL; 112 return -EINVAL;
140 continue; 113 continue;
141 case BPF_S_LD_W_LEN: 114 case BPF_S_LD_W_LEN:
142 ftest->code = BPF_S_LD_IMM; 115 ftest->code = BPF_LD | BPF_IMM;
143 ftest->k = sizeof(struct seccomp_data); 116 ftest->k = sizeof(struct seccomp_data);
144 continue; 117 continue;
145 case BPF_S_LDX_W_LEN: 118 case BPF_S_LDX_W_LEN:
146 ftest->code = BPF_S_LDX_IMM; 119 ftest->code = BPF_LDX | BPF_IMM;
147 ftest->k = sizeof(struct seccomp_data); 120 ftest->k = sizeof(struct seccomp_data);
148 continue; 121 continue;
149 /* Explicitly include allowed calls. */ 122 /* Explicitly include allowed calls. */
@@ -185,6 +158,7 @@ static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
185 case BPF_S_JMP_JGT_X: 158 case BPF_S_JMP_JGT_X:
186 case BPF_S_JMP_JSET_K: 159 case BPF_S_JMP_JSET_K:
187 case BPF_S_JMP_JSET_X: 160 case BPF_S_JMP_JSET_X:
161 sk_decode_filter(ftest, ftest);
188 continue; 162 continue;
189 default: 163 default:
190 return -EINVAL; 164 return -EINVAL;
@@ -202,18 +176,21 @@ static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
202static u32 seccomp_run_filters(int syscall) 176static u32 seccomp_run_filters(int syscall)
203{ 177{
204 struct seccomp_filter *f; 178 struct seccomp_filter *f;
179 struct seccomp_data sd;
205 u32 ret = SECCOMP_RET_ALLOW; 180 u32 ret = SECCOMP_RET_ALLOW;
206 181
207 /* Ensure unexpected behavior doesn't result in failing open. */ 182 /* Ensure unexpected behavior doesn't result in failing open. */
208 if (WARN_ON(current->seccomp.filter == NULL)) 183 if (WARN_ON(current->seccomp.filter == NULL))
209 return SECCOMP_RET_KILL; 184 return SECCOMP_RET_KILL;
210 185
186 populate_seccomp_data(&sd);
187
211 /* 188 /*
212 * All filters in the list are evaluated and the lowest BPF return 189 * All filters in the list are evaluated and the lowest BPF return
213 * value always takes priority (ignoring the DATA). 190 * value always takes priority (ignoring the DATA).
214 */ 191 */
215 for (f = current->seccomp.filter; f; f = f->prev) { 192 for (f = current->seccomp.filter; f; f = f->prev) {
216 u32 cur_ret = sk_run_filter(NULL, f->insns); 193 u32 cur_ret = sk_run_filter_int_seccomp(&sd, f->insnsi);
217 if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION)) 194 if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION))
218 ret = cur_ret; 195 ret = cur_ret;
219 } 196 }
@@ -231,6 +208,8 @@ static long seccomp_attach_filter(struct sock_fprog *fprog)
231 struct seccomp_filter *filter; 208 struct seccomp_filter *filter;
232 unsigned long fp_size = fprog->len * sizeof(struct sock_filter); 209 unsigned long fp_size = fprog->len * sizeof(struct sock_filter);
233 unsigned long total_insns = fprog->len; 210 unsigned long total_insns = fprog->len;
211 struct sock_filter *fp;
212 int new_len;
234 long ret; 213 long ret;
235 214
236 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 215 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
@@ -252,28 +231,43 @@ static long seccomp_attach_filter(struct sock_fprog *fprog)
252 CAP_SYS_ADMIN) != 0) 231 CAP_SYS_ADMIN) != 0)
253 return -EACCES; 232 return -EACCES;
254 233
255 /* Allocate a new seccomp_filter */ 234 fp = kzalloc(fp_size, GFP_KERNEL|__GFP_NOWARN);
256 filter = kzalloc(sizeof(struct seccomp_filter) + fp_size, 235 if (!fp)
257 GFP_KERNEL|__GFP_NOWARN);
258 if (!filter)
259 return -ENOMEM; 236 return -ENOMEM;
260 atomic_set(&filter->usage, 1);
261 filter->len = fprog->len;
262 237
263 /* Copy the instructions from fprog. */ 238 /* Copy the instructions from fprog. */
264 ret = -EFAULT; 239 ret = -EFAULT;
265 if (copy_from_user(filter->insns, fprog->filter, fp_size)) 240 if (copy_from_user(fp, fprog->filter, fp_size))
266 goto fail; 241 goto free_prog;
267 242
268 /* Check and rewrite the fprog via the skb checker */ 243 /* Check and rewrite the fprog via the skb checker */
269 ret = sk_chk_filter(filter->insns, filter->len); 244 ret = sk_chk_filter(fp, fprog->len);
270 if (ret) 245 if (ret)
271 goto fail; 246 goto free_prog;
272 247
273 /* Check and rewrite the fprog for seccomp use */ 248 /* Check and rewrite the fprog for seccomp use */
274 ret = seccomp_check_filter(filter->insns, filter->len); 249 ret = seccomp_check_filter(fp, fprog->len);
250 if (ret)
251 goto free_prog;
252
253 /* Convert 'sock_filter' insns to 'sock_filter_int' insns */
254 ret = sk_convert_filter(fp, fprog->len, NULL, &new_len);
255 if (ret)
256 goto free_prog;
257
258 /* Allocate a new seccomp_filter */
259 filter = kzalloc(sizeof(struct seccomp_filter) +
260 sizeof(struct sock_filter_int) * new_len,
261 GFP_KERNEL|__GFP_NOWARN);
262 if (!filter)
263 goto free_prog;
264
265 ret = sk_convert_filter(fp, fprog->len, filter->insnsi, &new_len);
275 if (ret) 266 if (ret)
276 goto fail; 267 goto free_filter;
268
269 atomic_set(&filter->usage, 1);
270 filter->len = new_len;
277 271
278 /* 272 /*
279 * If there is an existing filter, make it the prev and don't drop its 273 * If there is an existing filter, make it the prev and don't drop its
@@ -282,8 +276,11 @@ static long seccomp_attach_filter(struct sock_fprog *fprog)
282 filter->prev = current->seccomp.filter; 276 filter->prev = current->seccomp.filter;
283 current->seccomp.filter = filter; 277 current->seccomp.filter = filter;
284 return 0; 278 return 0;
285fail: 279
280free_filter:
286 kfree(filter); 281 kfree(filter);
282free_prog:
283 kfree(fp);
287 return ret; 284 return ret;
288} 285}
289 286