diff options
author | Peter Zijlstra <a.p.zijlstra@chello.nl> | 2008-01-25 15:08:30 -0500 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-01-25 15:08:30 -0500 |
commit | 6f505b16425a51270058e4a93441fe64de3dd435 (patch) | |
tree | be21e711d93bc4d088b97c4a4f585a5044dbaa7d /kernel/sched_rt.c | |
parent | fa85ae2418e6843953107cd6a06f645752829bc0 (diff) |
sched: rt group scheduling
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.
The hard time limit is required to keep behaviour deterministic.
The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.
[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r-- | kernel/sched_rt.c | 455 |
1 files changed, 336 insertions, 119 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index fd10d965aa06..1178257613ad 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -45,47 +45,167 @@ static void update_rt_migration(struct rq *rq) | |||
45 | } | 45 | } |
46 | #endif /* CONFIG_SMP */ | 46 | #endif /* CONFIG_SMP */ |
47 | 47 | ||
48 | static int sched_rt_ratio_exceeded(struct rq *rq, struct rt_rq *rt_rq) | 48 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
49 | { | 49 | { |
50 | return container_of(rt_se, struct task_struct, rt); | ||
51 | } | ||
52 | |||
53 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | ||
54 | { | ||
55 | return !list_empty(&rt_se->run_list); | ||
56 | } | ||
57 | |||
58 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
59 | |||
60 | static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq) | ||
61 | { | ||
62 | if (!rt_rq->tg) | ||
63 | return SCHED_RT_FRAC; | ||
64 | |||
65 | return rt_rq->tg->rt_ratio; | ||
66 | } | ||
67 | |||
68 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
69 | list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | ||
70 | |||
71 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
72 | { | ||
73 | return rt_rq->rq; | ||
74 | } | ||
75 | |||
76 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
77 | { | ||
78 | return rt_se->rt_rq; | ||
79 | } | ||
80 | |||
81 | #define for_each_sched_rt_entity(rt_se) \ | ||
82 | for (; rt_se; rt_se = rt_se->parent) | ||
83 | |||
84 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
85 | { | ||
86 | return rt_se->my_q; | ||
87 | } | ||
88 | |||
89 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se); | ||
90 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | ||
91 | |||
92 | static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq) | ||
93 | { | ||
94 | struct sched_rt_entity *rt_se = rt_rq->rt_se; | ||
95 | |||
96 | if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { | ||
97 | enqueue_rt_entity(rt_se); | ||
98 | resched_task(rq_of_rt_rq(rt_rq)->curr); | ||
99 | } | ||
100 | } | ||
101 | |||
102 | static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) | ||
103 | { | ||
104 | struct sched_rt_entity *rt_se = rt_rq->rt_se; | ||
105 | |||
106 | if (rt_se && on_rt_rq(rt_se)) | ||
107 | dequeue_rt_entity(rt_se); | ||
108 | } | ||
109 | |||
110 | #else | ||
111 | |||
112 | static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq) | ||
113 | { | ||
114 | return sysctl_sched_rt_ratio; | ||
115 | } | ||
116 | |||
117 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
118 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | ||
119 | |||
120 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
121 | { | ||
122 | return container_of(rt_rq, struct rq, rt); | ||
123 | } | ||
124 | |||
125 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
126 | { | ||
127 | struct task_struct *p = rt_task_of(rt_se); | ||
128 | struct rq *rq = task_rq(p); | ||
129 | |||
130 | return &rq->rt; | ||
131 | } | ||
132 | |||
133 | #define for_each_sched_rt_entity(rt_se) \ | ||
134 | for (; rt_se; rt_se = NULL) | ||
135 | |||
136 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
137 | { | ||
138 | return NULL; | ||
139 | } | ||
140 | |||
141 | static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq) | ||
142 | { | ||
143 | } | ||
144 | |||
145 | static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) | ||
146 | { | ||
147 | } | ||
148 | |||
149 | #endif | ||
150 | |||
151 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | ||
152 | { | ||
153 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
154 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
155 | |||
156 | if (rt_rq) | ||
157 | return rt_rq->highest_prio; | ||
158 | #endif | ||
159 | |||
160 | return rt_task_of(rt_se)->prio; | ||
161 | } | ||
162 | |||
163 | static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq) | ||
164 | { | ||
165 | unsigned int rt_ratio = sched_rt_ratio(rt_rq); | ||
50 | u64 period, ratio; | 166 | u64 period, ratio; |
51 | 167 | ||
52 | if (sysctl_sched_rt_ratio == SCHED_RT_FRAC) | 168 | if (rt_ratio == SCHED_RT_FRAC) |
53 | return 0; | 169 | return 0; |
54 | 170 | ||
55 | if (rt_rq->rt_throttled) | 171 | if (rt_rq->rt_throttled) |
56 | return 1; | 172 | return 1; |
57 | 173 | ||
58 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; | 174 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; |
59 | ratio = (period * sysctl_sched_rt_ratio) >> SCHED_RT_FRAC_SHIFT; | 175 | ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT; |
60 | 176 | ||
61 | if (rt_rq->rt_time > ratio) { | 177 | if (rt_rq->rt_time > ratio) { |
62 | rt_rq->rt_throttled = rq->clock + period - rt_rq->rt_time; | 178 | rt_rq->rt_throttled = 1; |
179 | sched_rt_ratio_dequeue(rt_rq); | ||
63 | return 1; | 180 | return 1; |
64 | } | 181 | } |
65 | 182 | ||
66 | return 0; | 183 | return 0; |
67 | } | 184 | } |
68 | 185 | ||
186 | static void __update_sched_rt_period(struct rt_rq *rt_rq, u64 period) | ||
187 | { | ||
188 | unsigned long rt_ratio = sched_rt_ratio(rt_rq); | ||
189 | u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT; | ||
190 | |||
191 | rt_rq->rt_time -= min(rt_rq->rt_time, ratio); | ||
192 | if (rt_rq->rt_throttled) { | ||
193 | rt_rq->rt_throttled = 0; | ||
194 | sched_rt_ratio_enqueue(rt_rq); | ||
195 | } | ||
196 | } | ||
197 | |||
69 | static void update_sched_rt_period(struct rq *rq) | 198 | static void update_sched_rt_period(struct rq *rq) |
70 | { | 199 | { |
71 | while (rq->clock > rq->rt_period_expire) { | 200 | struct rt_rq *rt_rq; |
72 | u64 period, ratio; | 201 | u64 period; |
73 | 202 | ||
203 | while (rq->clock > rq->rt_period_expire) { | ||
74 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; | 204 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; |
75 | ratio = (period * sysctl_sched_rt_ratio) >> SCHED_RT_FRAC_SHIFT; | ||
76 | |||
77 | rq->rt.rt_time -= min(rq->rt.rt_time, ratio); | ||
78 | rq->rt_period_expire += period; | 205 | rq->rt_period_expire += period; |
79 | } | ||
80 | 206 | ||
81 | /* | 207 | for_each_leaf_rt_rq(rt_rq, rq) |
82 | * When the rt throttle is expired, let them rip. | 208 | __update_sched_rt_period(rt_rq, period); |
83 | * (XXX: use hrtick when available) | ||
84 | */ | ||
85 | if (rq->rt.rt_throttled && rq->clock > rq->rt.rt_throttled) { | ||
86 | rq->rt.rt_throttled = 0; | ||
87 | if (!sched_rt_ratio_exceeded(rq, &rq->rt)) | ||
88 | resched_task(rq->curr); | ||
89 | } | 209 | } |
90 | } | 210 | } |
91 | 211 | ||
@@ -96,6 +216,8 @@ static void update_sched_rt_period(struct rq *rq) | |||
96 | static void update_curr_rt(struct rq *rq) | 216 | static void update_curr_rt(struct rq *rq) |
97 | { | 217 | { |
98 | struct task_struct *curr = rq->curr; | 218 | struct task_struct *curr = rq->curr; |
219 | struct sched_rt_entity *rt_se = &curr->rt; | ||
220 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
99 | u64 delta_exec; | 221 | u64 delta_exec; |
100 | 222 | ||
101 | if (!task_has_rt_policy(curr)) | 223 | if (!task_has_rt_policy(curr)) |
@@ -111,95 +233,184 @@ static void update_curr_rt(struct rq *rq) | |||
111 | curr->se.exec_start = rq->clock; | 233 | curr->se.exec_start = rq->clock; |
112 | cpuacct_charge(curr, delta_exec); | 234 | cpuacct_charge(curr, delta_exec); |
113 | 235 | ||
114 | rq->rt.rt_time += delta_exec; | 236 | rt_rq->rt_time += delta_exec; |
115 | update_sched_rt_period(rq); | 237 | /* |
116 | if (sched_rt_ratio_exceeded(rq, &rq->rt)) | 238 | * might make it a tad more accurate: |
239 | * | ||
240 | * update_sched_rt_period(rq); | ||
241 | */ | ||
242 | if (sched_rt_ratio_exceeded(rt_rq)) | ||
117 | resched_task(curr); | 243 | resched_task(curr); |
118 | } | 244 | } |
119 | 245 | ||
120 | static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq) | 246 | static inline |
247 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
121 | { | 248 | { |
122 | WARN_ON(!rt_task(p)); | 249 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
123 | rq->rt.rt_nr_running++; | 250 | rt_rq->rt_nr_running++; |
251 | #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED | ||
252 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) | ||
253 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
254 | #endif | ||
124 | #ifdef CONFIG_SMP | 255 | #ifdef CONFIG_SMP |
125 | if (p->prio < rq->rt.highest_prio) | 256 | if (rt_se->nr_cpus_allowed > 1) { |
126 | rq->rt.highest_prio = p->prio; | 257 | struct rq *rq = rq_of_rt_rq(rt_rq); |
127 | if (p->nr_cpus_allowed > 1) | ||
128 | rq->rt.rt_nr_migratory++; | 258 | rq->rt.rt_nr_migratory++; |
259 | } | ||
129 | 260 | ||
130 | update_rt_migration(rq); | 261 | update_rt_migration(rq_of_rt_rq(rt_rq)); |
131 | #endif /* CONFIG_SMP */ | 262 | #endif |
132 | } | 263 | } |
133 | 264 | ||
134 | static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq) | 265 | static inline |
266 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
135 | { | 267 | { |
136 | WARN_ON(!rt_task(p)); | 268 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
137 | WARN_ON(!rq->rt.rt_nr_running); | 269 | WARN_ON(!rt_rq->rt_nr_running); |
138 | rq->rt.rt_nr_running--; | 270 | rt_rq->rt_nr_running--; |
139 | #ifdef CONFIG_SMP | 271 | #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED |
140 | if (rq->rt.rt_nr_running) { | 272 | if (rt_rq->rt_nr_running) { |
141 | struct rt_prio_array *array; | 273 | struct rt_prio_array *array; |
142 | 274 | ||
143 | WARN_ON(p->prio < rq->rt.highest_prio); | 275 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); |
144 | if (p->prio == rq->rt.highest_prio) { | 276 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { |
145 | /* recalculate */ | 277 | /* recalculate */ |
146 | array = &rq->rt.active; | 278 | array = &rt_rq->active; |
147 | rq->rt.highest_prio = | 279 | rt_rq->highest_prio = |
148 | sched_find_first_bit(array->bitmap); | 280 | sched_find_first_bit(array->bitmap); |
149 | } /* otherwise leave rq->highest prio alone */ | 281 | } /* otherwise leave rq->highest prio alone */ |
150 | } else | 282 | } else |
151 | rq->rt.highest_prio = MAX_RT_PRIO; | 283 | rt_rq->highest_prio = MAX_RT_PRIO; |
152 | if (p->nr_cpus_allowed > 1) | 284 | #endif |
285 | #ifdef CONFIG_SMP | ||
286 | if (rt_se->nr_cpus_allowed > 1) { | ||
287 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
153 | rq->rt.rt_nr_migratory--; | 288 | rq->rt.rt_nr_migratory--; |
289 | } | ||
154 | 290 | ||
155 | update_rt_migration(rq); | 291 | update_rt_migration(rq_of_rt_rq(rt_rq)); |
156 | #endif /* CONFIG_SMP */ | 292 | #endif /* CONFIG_SMP */ |
157 | } | 293 | } |
158 | 294 | ||
159 | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | 295 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se) |
160 | { | 296 | { |
161 | struct rt_prio_array *array = &rq->rt.active; | 297 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
298 | struct rt_prio_array *array = &rt_rq->active; | ||
299 | struct rt_rq *group_rq = group_rt_rq(rt_se); | ||
162 | 300 | ||
163 | list_add_tail(&p->rt.run_list, array->queue + p->prio); | 301 | if (group_rq && group_rq->rt_throttled) |
164 | __set_bit(p->prio, array->bitmap); | 302 | return; |
165 | inc_cpu_load(rq, p->se.load.weight); | ||
166 | 303 | ||
167 | inc_rt_tasks(p, rq); | 304 | list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); |
305 | __set_bit(rt_se_prio(rt_se), array->bitmap); | ||
168 | 306 | ||
169 | if (wakeup) | 307 | inc_rt_tasks(rt_se, rt_rq); |
170 | p->rt.timeout = 0; | 308 | } |
309 | |||
310 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
311 | { | ||
312 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
313 | struct rt_prio_array *array = &rt_rq->active; | ||
314 | |||
315 | list_del_init(&rt_se->run_list); | ||
316 | if (list_empty(array->queue + rt_se_prio(rt_se))) | ||
317 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | ||
318 | |||
319 | dec_rt_tasks(rt_se, rt_rq); | ||
320 | } | ||
321 | |||
322 | /* | ||
323 | * Because the prio of an upper entry depends on the lower | ||
324 | * entries, we must remove entries top - down. | ||
325 | * | ||
326 | * XXX: O(1/2 h^2) because we can only walk up, not down the chain. | ||
327 | * doesn't matter much for now, as h=2 for GROUP_SCHED. | ||
328 | */ | ||
329 | static void dequeue_rt_stack(struct task_struct *p) | ||
330 | { | ||
331 | struct sched_rt_entity *rt_se, *top_se; | ||
332 | |||
333 | /* | ||
334 | * dequeue all, top - down. | ||
335 | */ | ||
336 | do { | ||
337 | rt_se = &p->rt; | ||
338 | top_se = NULL; | ||
339 | for_each_sched_rt_entity(rt_se) { | ||
340 | if (on_rt_rq(rt_se)) | ||
341 | top_se = rt_se; | ||
342 | } | ||
343 | if (top_se) | ||
344 | dequeue_rt_entity(top_se); | ||
345 | } while (top_se); | ||
171 | } | 346 | } |
172 | 347 | ||
173 | /* | 348 | /* |
174 | * Adding/removing a task to/from a priority array: | 349 | * Adding/removing a task to/from a priority array: |
175 | */ | 350 | */ |
351 | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | ||
352 | { | ||
353 | struct sched_rt_entity *rt_se = &p->rt; | ||
354 | |||
355 | if (wakeup) | ||
356 | rt_se->timeout = 0; | ||
357 | |||
358 | dequeue_rt_stack(p); | ||
359 | |||
360 | /* | ||
361 | * enqueue everybody, bottom - up. | ||
362 | */ | ||
363 | for_each_sched_rt_entity(rt_se) | ||
364 | enqueue_rt_entity(rt_se); | ||
365 | |||
366 | inc_cpu_load(rq, p->se.load.weight); | ||
367 | } | ||
368 | |||
176 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 369 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
177 | { | 370 | { |
178 | struct rt_prio_array *array = &rq->rt.active; | 371 | struct sched_rt_entity *rt_se = &p->rt; |
372 | struct rt_rq *rt_rq; | ||
179 | 373 | ||
180 | update_curr_rt(rq); | 374 | update_curr_rt(rq); |
181 | 375 | ||
182 | list_del(&p->rt.run_list); | 376 | dequeue_rt_stack(p); |
183 | if (list_empty(array->queue + p->prio)) | 377 | |
184 | __clear_bit(p->prio, array->bitmap); | 378 | /* |
185 | dec_cpu_load(rq, p->se.load.weight); | 379 | * re-enqueue all non-empty rt_rq entities. |
380 | */ | ||
381 | for_each_sched_rt_entity(rt_se) { | ||
382 | rt_rq = group_rt_rq(rt_se); | ||
383 | if (rt_rq && rt_rq->rt_nr_running) | ||
384 | enqueue_rt_entity(rt_se); | ||
385 | } | ||
186 | 386 | ||
187 | dec_rt_tasks(p, rq); | 387 | dec_cpu_load(rq, p->se.load.weight); |
188 | } | 388 | } |
189 | 389 | ||
190 | /* | 390 | /* |
191 | * Put task to the end of the run list without the overhead of dequeue | 391 | * Put task to the end of the run list without the overhead of dequeue |
192 | * followed by enqueue. | 392 | * followed by enqueue. |
193 | */ | 393 | */ |
394 | static | ||
395 | void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | ||
396 | { | ||
397 | struct rt_prio_array *array = &rt_rq->active; | ||
398 | |||
399 | list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); | ||
400 | } | ||
401 | |||
194 | static void requeue_task_rt(struct rq *rq, struct task_struct *p) | 402 | static void requeue_task_rt(struct rq *rq, struct task_struct *p) |
195 | { | 403 | { |
196 | struct rt_prio_array *array = &rq->rt.active; | 404 | struct sched_rt_entity *rt_se = &p->rt; |
405 | struct rt_rq *rt_rq; | ||
197 | 406 | ||
198 | list_move_tail(&p->rt.run_list, array->queue + p->prio); | 407 | for_each_sched_rt_entity(rt_se) { |
408 | rt_rq = rt_rq_of_se(rt_se); | ||
409 | requeue_rt_entity(rt_rq, rt_se); | ||
410 | } | ||
199 | } | 411 | } |
200 | 412 | ||
201 | static void | 413 | static void yield_task_rt(struct rq *rq) |
202 | yield_task_rt(struct rq *rq) | ||
203 | { | 414 | { |
204 | requeue_task_rt(rq, rq->curr); | 415 | requeue_task_rt(rq, rq->curr); |
205 | } | 416 | } |
@@ -229,7 +440,7 @@ static int select_task_rq_rt(struct task_struct *p, int sync) | |||
229 | * cold cache anyway. | 440 | * cold cache anyway. |
230 | */ | 441 | */ |
231 | if (unlikely(rt_task(rq->curr)) && | 442 | if (unlikely(rt_task(rq->curr)) && |
232 | (p->nr_cpus_allowed > 1)) { | 443 | (p->rt.nr_cpus_allowed > 1)) { |
233 | int cpu = find_lowest_rq(p); | 444 | int cpu = find_lowest_rq(p); |
234 | 445 | ||
235 | return (cpu == -1) ? task_cpu(p) : cpu; | 446 | return (cpu == -1) ? task_cpu(p) : cpu; |
@@ -252,27 +463,51 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) | |||
252 | resched_task(rq->curr); | 463 | resched_task(rq->curr); |
253 | } | 464 | } |
254 | 465 | ||
255 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 466 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
467 | struct rt_rq *rt_rq) | ||
256 | { | 468 | { |
257 | struct rt_prio_array *array = &rq->rt.active; | 469 | struct rt_prio_array *array = &rt_rq->active; |
258 | struct task_struct *next; | 470 | struct sched_rt_entity *next = NULL; |
259 | struct list_head *queue; | 471 | struct list_head *queue; |
260 | struct rt_rq *rt_rq = &rq->rt; | ||
261 | int idx; | 472 | int idx; |
262 | 473 | ||
263 | if (sched_rt_ratio_exceeded(rq, rt_rq)) | 474 | if (sched_rt_ratio_exceeded(rt_rq)) |
264 | return NULL; | 475 | goto out; |
265 | 476 | ||
266 | idx = sched_find_first_bit(array->bitmap); | 477 | idx = sched_find_first_bit(array->bitmap); |
267 | if (idx >= MAX_RT_PRIO) | 478 | BUG_ON(idx >= MAX_RT_PRIO); |
268 | return NULL; | ||
269 | 479 | ||
270 | queue = array->queue + idx; | 480 | queue = array->queue + idx; |
271 | next = list_entry(queue->next, struct task_struct, rt.run_list); | 481 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
482 | out: | ||
483 | return next; | ||
484 | } | ||
272 | 485 | ||
273 | next->se.exec_start = rq->clock; | 486 | static struct task_struct *pick_next_task_rt(struct rq *rq) |
487 | { | ||
488 | struct sched_rt_entity *rt_se; | ||
489 | struct task_struct *p; | ||
490 | struct rt_rq *rt_rq; | ||
274 | 491 | ||
275 | return next; | 492 | retry: |
493 | rt_rq = &rq->rt; | ||
494 | |||
495 | if (unlikely(!rt_rq->rt_nr_running)) | ||
496 | return NULL; | ||
497 | |||
498 | if (sched_rt_ratio_exceeded(rt_rq)) | ||
499 | return NULL; | ||
500 | |||
501 | do { | ||
502 | rt_se = pick_next_rt_entity(rq, rt_rq); | ||
503 | if (unlikely(!rt_se)) | ||
504 | goto retry; | ||
505 | rt_rq = group_rt_rq(rt_se); | ||
506 | } while (rt_rq); | ||
507 | |||
508 | p = rt_task_of(rt_se); | ||
509 | p->se.exec_start = rq->clock; | ||
510 | return p; | ||
276 | } | 511 | } |
277 | 512 | ||
278 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 513 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
@@ -282,6 +517,7 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
282 | } | 517 | } |
283 | 518 | ||
284 | #ifdef CONFIG_SMP | 519 | #ifdef CONFIG_SMP |
520 | |||
285 | /* Only try algorithms three times */ | 521 | /* Only try algorithms three times */ |
286 | #define RT_MAX_TRIES 3 | 522 | #define RT_MAX_TRIES 3 |
287 | 523 | ||
@@ -292,7 +528,7 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | |||
292 | { | 528 | { |
293 | if (!task_running(rq, p) && | 529 | if (!task_running(rq, p) && |
294 | (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && | 530 | (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && |
295 | (p->nr_cpus_allowed > 1)) | 531 | (p->rt.nr_cpus_allowed > 1)) |
296 | return 1; | 532 | return 1; |
297 | return 0; | 533 | return 0; |
298 | } | 534 | } |
@@ -300,52 +536,33 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | |||
300 | /* Return the second highest RT task, NULL otherwise */ | 536 | /* Return the second highest RT task, NULL otherwise */ |
301 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | 537 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) |
302 | { | 538 | { |
303 | struct rt_prio_array *array = &rq->rt.active; | 539 | struct task_struct *next = NULL; |
304 | struct task_struct *next; | 540 | struct sched_rt_entity *rt_se; |
305 | struct list_head *queue; | 541 | struct rt_prio_array *array; |
542 | struct rt_rq *rt_rq; | ||
306 | int idx; | 543 | int idx; |
307 | 544 | ||
308 | if (likely(rq->rt.rt_nr_running < 2)) | 545 | for_each_leaf_rt_rq(rt_rq, rq) { |
309 | return NULL; | 546 | array = &rt_rq->active; |
310 | 547 | idx = sched_find_first_bit(array->bitmap); | |
311 | idx = sched_find_first_bit(array->bitmap); | 548 | next_idx: |
312 | if (unlikely(idx >= MAX_RT_PRIO)) { | 549 | if (idx >= MAX_RT_PRIO) |
313 | WARN_ON(1); /* rt_nr_running is bad */ | 550 | continue; |
314 | return NULL; | 551 | if (next && next->prio < idx) |
315 | } | 552 | continue; |
316 | 553 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | |
317 | queue = array->queue + idx; | 554 | struct task_struct *p = rt_task_of(rt_se); |
318 | BUG_ON(list_empty(queue)); | 555 | if (pick_rt_task(rq, p, cpu)) { |
319 | 556 | next = p; | |
320 | next = list_entry(queue->next, struct task_struct, rt.run_list); | 557 | break; |
321 | if (unlikely(pick_rt_task(rq, next, cpu))) | 558 | } |
322 | goto out; | 559 | } |
323 | 560 | if (!next) { | |
324 | if (queue->next->next != queue) { | 561 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); |
325 | /* same prio task */ | 562 | goto next_idx; |
326 | next = list_entry(queue->next->next, struct task_struct, | 563 | } |
327 | rt.run_list); | ||
328 | if (pick_rt_task(rq, next, cpu)) | ||
329 | goto out; | ||
330 | } | ||
331 | |||
332 | retry: | ||
333 | /* slower, but more flexible */ | ||
334 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | ||
335 | if (unlikely(idx >= MAX_RT_PRIO)) | ||
336 | return NULL; | ||
337 | |||
338 | queue = array->queue + idx; | ||
339 | BUG_ON(list_empty(queue)); | ||
340 | |||
341 | list_for_each_entry(next, queue, rt.run_list) { | ||
342 | if (pick_rt_task(rq, next, cpu)) | ||
343 | goto out; | ||
344 | } | 564 | } |
345 | 565 | ||
346 | goto retry; | ||
347 | |||
348 | out: | ||
349 | return next; | 566 | return next; |
350 | } | 567 | } |
351 | 568 | ||
@@ -774,12 +991,12 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) | |||
774 | * Update the migration status of the RQ if we have an RT task | 991 | * Update the migration status of the RQ if we have an RT task |
775 | * which is running AND changing its weight value. | 992 | * which is running AND changing its weight value. |
776 | */ | 993 | */ |
777 | if (p->se.on_rq && (weight != p->nr_cpus_allowed)) { | 994 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
778 | struct rq *rq = task_rq(p); | 995 | struct rq *rq = task_rq(p); |
779 | 996 | ||
780 | if ((p->nr_cpus_allowed <= 1) && (weight > 1)) { | 997 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
781 | rq->rt.rt_nr_migratory++; | 998 | rq->rt.rt_nr_migratory++; |
782 | } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) { | 999 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
783 | BUG_ON(!rq->rt.rt_nr_migratory); | 1000 | BUG_ON(!rq->rt.rt_nr_migratory); |
784 | rq->rt.rt_nr_migratory--; | 1001 | rq->rt.rt_nr_migratory--; |
785 | } | 1002 | } |
@@ -788,7 +1005,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) | |||
788 | } | 1005 | } |
789 | 1006 | ||
790 | p->cpus_allowed = *new_mask; | 1007 | p->cpus_allowed = *new_mask; |
791 | p->nr_cpus_allowed = weight; | 1008 | p->rt.nr_cpus_allowed = weight; |
792 | } | 1009 | } |
793 | 1010 | ||
794 | /* Assumes rq->lock is held */ | 1011 | /* Assumes rq->lock is held */ |