diff options
author | Ingo Molnar <mingo@elte.hu> | 2009-09-19 05:27:32 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2009-09-19 05:28:41 -0400 |
commit | 929bf0d0156562ce631728b6fa53d68004d456d2 (patch) | |
tree | 739063990a8077b29ef97e69d73bce94573daae4 /kernel/sched_fair.c | |
parent | def0a9b2573e00ab0b486cb5382625203ab4c4a6 (diff) | |
parent | 202c4675c55ddf6b443c7e057d2dff6b42ef71aa (diff) |
Merge branch 'linus' into perfcounters/core
Merge reason: Bring in tracing changes we depend on.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched_fair.c')
-rw-r--r-- | kernel/sched_fair.c | 414 |
1 files changed, 261 insertions, 153 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index a097e909e80f..990b188803ce 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -712,7 +712,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
712 | 712 | ||
713 | if (!initial) { | 713 | if (!initial) { |
714 | /* sleeps upto a single latency don't count. */ | 714 | /* sleeps upto a single latency don't count. */ |
715 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 715 | if (sched_feat(FAIR_SLEEPERS)) { |
716 | unsigned long thresh = sysctl_sched_latency; | 716 | unsigned long thresh = sysctl_sched_latency; |
717 | 717 | ||
718 | /* | 718 | /* |
@@ -726,6 +726,13 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
726 | task_of(se)->policy != SCHED_IDLE)) | 726 | task_of(se)->policy != SCHED_IDLE)) |
727 | thresh = calc_delta_fair(thresh, se); | 727 | thresh = calc_delta_fair(thresh, se); |
728 | 728 | ||
729 | /* | ||
730 | * Halve their sleep time's effect, to allow | ||
731 | * for a gentler effect of sleepers: | ||
732 | */ | ||
733 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
734 | thresh >>= 1; | ||
735 | |||
729 | vruntime -= thresh; | 736 | vruntime -= thresh; |
730 | } | 737 | } |
731 | } | 738 | } |
@@ -758,10 +765,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | |||
758 | 765 | ||
759 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 766 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
760 | { | 767 | { |
761 | if (cfs_rq->last == se) | 768 | if (!se || cfs_rq->last == se) |
762 | cfs_rq->last = NULL; | 769 | cfs_rq->last = NULL; |
763 | 770 | ||
764 | if (cfs_rq->next == se) | 771 | if (!se || cfs_rq->next == se) |
765 | cfs_rq->next = NULL; | 772 | cfs_rq->next = NULL; |
766 | } | 773 | } |
767 | 774 | ||
@@ -1063,83 +1070,6 @@ static void yield_task_fair(struct rq *rq) | |||
1063 | se->vruntime = rightmost->vruntime + 1; | 1070 | se->vruntime = rightmost->vruntime + 1; |
1064 | } | 1071 | } |
1065 | 1072 | ||
1066 | /* | ||
1067 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
1068 | * not idle and an idle cpu is available. The span of cpus to | ||
1069 | * search starts with cpus closest then further out as needed, | ||
1070 | * so we always favor a closer, idle cpu. | ||
1071 | * Domains may include CPUs that are not usable for migration, | ||
1072 | * hence we need to mask them out (rq->rd->online) | ||
1073 | * | ||
1074 | * Returns the CPU we should wake onto. | ||
1075 | */ | ||
1076 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
1077 | |||
1078 | #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) | ||
1079 | |||
1080 | static int wake_idle(int cpu, struct task_struct *p) | ||
1081 | { | ||
1082 | struct sched_domain *sd; | ||
1083 | int i; | ||
1084 | unsigned int chosen_wakeup_cpu; | ||
1085 | int this_cpu; | ||
1086 | struct rq *task_rq = task_rq(p); | ||
1087 | |||
1088 | /* | ||
1089 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | ||
1090 | * are idle and this is not a kernel thread and this task's affinity | ||
1091 | * allows it to be moved to preferred cpu, then just move! | ||
1092 | */ | ||
1093 | |||
1094 | this_cpu = smp_processor_id(); | ||
1095 | chosen_wakeup_cpu = | ||
1096 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | ||
1097 | |||
1098 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | ||
1099 | idle_cpu(cpu) && idle_cpu(this_cpu) && | ||
1100 | p->mm && !(p->flags & PF_KTHREAD) && | ||
1101 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | ||
1102 | return chosen_wakeup_cpu; | ||
1103 | |||
1104 | /* | ||
1105 | * If it is idle, then it is the best cpu to run this task. | ||
1106 | * | ||
1107 | * This cpu is also the best, if it has more than one task already. | ||
1108 | * Siblings must be also busy(in most cases) as they didn't already | ||
1109 | * pickup the extra load from this cpu and hence we need not check | ||
1110 | * sibling runqueue info. This will avoid the checks and cache miss | ||
1111 | * penalities associated with that. | ||
1112 | */ | ||
1113 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | ||
1114 | return cpu; | ||
1115 | |||
1116 | for_each_domain(cpu, sd) { | ||
1117 | if ((sd->flags & SD_WAKE_IDLE) | ||
1118 | || ((sd->flags & SD_WAKE_IDLE_FAR) | ||
1119 | && !task_hot(p, task_rq->clock, sd))) { | ||
1120 | for_each_cpu_and(i, sched_domain_span(sd), | ||
1121 | &p->cpus_allowed) { | ||
1122 | if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { | ||
1123 | if (i != task_cpu(p)) { | ||
1124 | schedstat_inc(p, | ||
1125 | se.nr_wakeups_idle); | ||
1126 | } | ||
1127 | return i; | ||
1128 | } | ||
1129 | } | ||
1130 | } else { | ||
1131 | break; | ||
1132 | } | ||
1133 | } | ||
1134 | return cpu; | ||
1135 | } | ||
1136 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | ||
1137 | static inline int wake_idle(int cpu, struct task_struct *p) | ||
1138 | { | ||
1139 | return cpu; | ||
1140 | } | ||
1141 | #endif | ||
1142 | |||
1143 | #ifdef CONFIG_SMP | 1073 | #ifdef CONFIG_SMP |
1144 | 1074 | ||
1145 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1075 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1226,25 +1156,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
1226 | 1156 | ||
1227 | #endif | 1157 | #endif |
1228 | 1158 | ||
1229 | static int | 1159 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
1230 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | ||
1231 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | ||
1232 | int idx, unsigned long load, unsigned long this_load, | ||
1233 | unsigned int imbalance) | ||
1234 | { | 1160 | { |
1235 | struct task_struct *curr = this_rq->curr; | 1161 | struct task_struct *curr = current; |
1236 | struct task_group *tg; | 1162 | unsigned long this_load, load; |
1237 | unsigned long tl = this_load; | 1163 | int idx, this_cpu, prev_cpu; |
1238 | unsigned long tl_per_task; | 1164 | unsigned long tl_per_task; |
1165 | unsigned int imbalance; | ||
1166 | struct task_group *tg; | ||
1239 | unsigned long weight; | 1167 | unsigned long weight; |
1240 | int balanced; | 1168 | int balanced; |
1241 | 1169 | ||
1242 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1170 | idx = sd->wake_idx; |
1243 | return 0; | 1171 | this_cpu = smp_processor_id(); |
1172 | prev_cpu = task_cpu(p); | ||
1173 | load = source_load(prev_cpu, idx); | ||
1174 | this_load = target_load(this_cpu, idx); | ||
1244 | 1175 | ||
1245 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1176 | if (sync) { |
1246 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1177 | if (sched_feat(SYNC_LESS) && |
1247 | sync = 0; | 1178 | (curr->se.avg_overlap > sysctl_sched_migration_cost || |
1179 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
1180 | sync = 0; | ||
1181 | } else { | ||
1182 | if (sched_feat(SYNC_MORE) && | ||
1183 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
1184 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
1185 | sync = 1; | ||
1186 | } | ||
1248 | 1187 | ||
1249 | /* | 1188 | /* |
1250 | * If sync wakeup then subtract the (maximum possible) | 1189 | * If sync wakeup then subtract the (maximum possible) |
@@ -1255,24 +1194,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1255 | tg = task_group(current); | 1194 | tg = task_group(current); |
1256 | weight = current->se.load.weight; | 1195 | weight = current->se.load.weight; |
1257 | 1196 | ||
1258 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1197 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
1259 | load += effective_load(tg, prev_cpu, 0, -weight); | 1198 | load += effective_load(tg, prev_cpu, 0, -weight); |
1260 | } | 1199 | } |
1261 | 1200 | ||
1262 | tg = task_group(p); | 1201 | tg = task_group(p); |
1263 | weight = p->se.load.weight; | 1202 | weight = p->se.load.weight; |
1264 | 1203 | ||
1204 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; | ||
1205 | |||
1265 | /* | 1206 | /* |
1266 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | 1207 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
1267 | * due to the sync cause above having dropped tl to 0, we'll always have | 1208 | * due to the sync cause above having dropped this_load to 0, we'll |
1268 | * an imbalance, but there's really nothing you can do about that, so | 1209 | * always have an imbalance, but there's really nothing you can do |
1269 | * that's good too. | 1210 | * about that, so that's good too. |
1270 | * | 1211 | * |
1271 | * Otherwise check if either cpus are near enough in load to allow this | 1212 | * Otherwise check if either cpus are near enough in load to allow this |
1272 | * task to be woken on this_cpu. | 1213 | * task to be woken on this_cpu. |
1273 | */ | 1214 | */ |
1274 | balanced = !tl || | 1215 | balanced = !this_load || |
1275 | 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1216 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= |
1276 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1217 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
1277 | 1218 | ||
1278 | /* | 1219 | /* |
@@ -1286,14 +1227,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1286 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1227 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
1287 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1228 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1288 | 1229 | ||
1289 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1230 | if (balanced || |
1290 | tl_per_task)) { | 1231 | (this_load <= load && |
1232 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
1291 | /* | 1233 | /* |
1292 | * This domain has SD_WAKE_AFFINE and | 1234 | * This domain has SD_WAKE_AFFINE and |
1293 | * p is cache cold in this domain, and | 1235 | * p is cache cold in this domain, and |
1294 | * there is no bad imbalance. | 1236 | * there is no bad imbalance. |
1295 | */ | 1237 | */ |
1296 | schedstat_inc(this_sd, ttwu_move_affine); | 1238 | schedstat_inc(sd, ttwu_move_affine); |
1297 | schedstat_inc(p, se.nr_wakeups_affine); | 1239 | schedstat_inc(p, se.nr_wakeups_affine); |
1298 | 1240 | ||
1299 | return 1; | 1241 | return 1; |
@@ -1301,65 +1243,215 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1301 | return 0; | 1243 | return 0; |
1302 | } | 1244 | } |
1303 | 1245 | ||
1304 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1246 | /* |
1247 | * find_idlest_group finds and returns the least busy CPU group within the | ||
1248 | * domain. | ||
1249 | */ | ||
1250 | static struct sched_group * | ||
1251 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
1252 | int this_cpu, int load_idx) | ||
1305 | { | 1253 | { |
1306 | struct sched_domain *sd, *this_sd = NULL; | 1254 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
1307 | int prev_cpu, this_cpu, new_cpu; | 1255 | unsigned long min_load = ULONG_MAX, this_load = 0; |
1308 | unsigned long load, this_load; | 1256 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
1309 | struct rq *this_rq; | ||
1310 | unsigned int imbalance; | ||
1311 | int idx; | ||
1312 | 1257 | ||
1313 | prev_cpu = task_cpu(p); | 1258 | do { |
1314 | this_cpu = smp_processor_id(); | 1259 | unsigned long load, avg_load; |
1315 | this_rq = cpu_rq(this_cpu); | 1260 | int local_group; |
1316 | new_cpu = prev_cpu; | 1261 | int i; |
1317 | 1262 | ||
1318 | /* | 1263 | /* Skip over this group if it has no CPUs allowed */ |
1319 | * 'this_sd' is the first domain that both | 1264 | if (!cpumask_intersects(sched_group_cpus(group), |
1320 | * this_cpu and prev_cpu are present in: | 1265 | &p->cpus_allowed)) |
1321 | */ | 1266 | continue; |
1322 | for_each_domain(this_cpu, sd) { | 1267 | |
1323 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1268 | local_group = cpumask_test_cpu(this_cpu, |
1324 | this_sd = sd; | 1269 | sched_group_cpus(group)); |
1325 | break; | 1270 | |
1271 | /* Tally up the load of all CPUs in the group */ | ||
1272 | avg_load = 0; | ||
1273 | |||
1274 | for_each_cpu(i, sched_group_cpus(group)) { | ||
1275 | /* Bias balancing toward cpus of our domain */ | ||
1276 | if (local_group) | ||
1277 | load = source_load(i, load_idx); | ||
1278 | else | ||
1279 | load = target_load(i, load_idx); | ||
1280 | |||
1281 | avg_load += load; | ||
1282 | } | ||
1283 | |||
1284 | /* Adjust by relative CPU power of the group */ | ||
1285 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
1286 | |||
1287 | if (local_group) { | ||
1288 | this_load = avg_load; | ||
1289 | this = group; | ||
1290 | } else if (avg_load < min_load) { | ||
1291 | min_load = avg_load; | ||
1292 | idlest = group; | ||
1293 | } | ||
1294 | } while (group = group->next, group != sd->groups); | ||
1295 | |||
1296 | if (!idlest || 100*this_load < imbalance*min_load) | ||
1297 | return NULL; | ||
1298 | return idlest; | ||
1299 | } | ||
1300 | |||
1301 | /* | ||
1302 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
1303 | */ | ||
1304 | static int | ||
1305 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
1306 | { | ||
1307 | unsigned long load, min_load = ULONG_MAX; | ||
1308 | int idlest = -1; | ||
1309 | int i; | ||
1310 | |||
1311 | /* Traverse only the allowed CPUs */ | ||
1312 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
1313 | load = weighted_cpuload(i); | ||
1314 | |||
1315 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
1316 | min_load = load; | ||
1317 | idlest = i; | ||
1326 | } | 1318 | } |
1327 | } | 1319 | } |
1328 | 1320 | ||
1329 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1321 | return idlest; |
1330 | goto out; | 1322 | } |
1331 | 1323 | ||
1332 | /* | 1324 | /* |
1333 | * Check for affine wakeup and passive balancing possibilities. | 1325 | * sched_balance_self: balance the current task (running on cpu) in domains |
1334 | */ | 1326 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
1335 | if (!this_sd) | 1327 | * SD_BALANCE_EXEC. |
1328 | * | ||
1329 | * Balance, ie. select the least loaded group. | ||
1330 | * | ||
1331 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
1332 | * | ||
1333 | * preempt must be disabled. | ||
1334 | */ | ||
1335 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
1336 | { | ||
1337 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
1338 | int cpu = smp_processor_id(); | ||
1339 | int prev_cpu = task_cpu(p); | ||
1340 | int new_cpu = cpu; | ||
1341 | int want_affine = 0; | ||
1342 | int want_sd = 1; | ||
1343 | int sync = wake_flags & WF_SYNC; | ||
1344 | |||
1345 | if (sd_flag & SD_BALANCE_WAKE) { | ||
1346 | if (sched_feat(AFFINE_WAKEUPS)) | ||
1347 | want_affine = 1; | ||
1348 | new_cpu = prev_cpu; | ||
1349 | } | ||
1350 | |||
1351 | rcu_read_lock(); | ||
1352 | for_each_domain(cpu, tmp) { | ||
1353 | /* | ||
1354 | * If power savings logic is enabled for a domain, see if we | ||
1355 | * are not overloaded, if so, don't balance wider. | ||
1356 | */ | ||
1357 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
1358 | unsigned long power = 0; | ||
1359 | unsigned long nr_running = 0; | ||
1360 | unsigned long capacity; | ||
1361 | int i; | ||
1362 | |||
1363 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
1364 | power += power_of(i); | ||
1365 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
1366 | } | ||
1367 | |||
1368 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
1369 | |||
1370 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
1371 | nr_running /= 2; | ||
1372 | |||
1373 | if (nr_running < capacity) | ||
1374 | want_sd = 0; | ||
1375 | } | ||
1376 | |||
1377 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
1378 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
1379 | |||
1380 | affine_sd = tmp; | ||
1381 | want_affine = 0; | ||
1382 | } | ||
1383 | |||
1384 | if (!want_sd && !want_affine) | ||
1385 | break; | ||
1386 | |||
1387 | if (!(tmp->flags & sd_flag)) | ||
1388 | continue; | ||
1389 | |||
1390 | if (want_sd) | ||
1391 | sd = tmp; | ||
1392 | } | ||
1393 | |||
1394 | if (sched_feat(LB_SHARES_UPDATE)) { | ||
1395 | /* | ||
1396 | * Pick the largest domain to update shares over | ||
1397 | */ | ||
1398 | tmp = sd; | ||
1399 | if (affine_sd && (!tmp || | ||
1400 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
1401 | cpumask_weight(sched_domain_span(sd)))) | ||
1402 | tmp = affine_sd; | ||
1403 | |||
1404 | if (tmp) | ||
1405 | update_shares(tmp); | ||
1406 | } | ||
1407 | |||
1408 | if (affine_sd && wake_affine(affine_sd, p, sync)) { | ||
1409 | new_cpu = cpu; | ||
1336 | goto out; | 1410 | goto out; |
1411 | } | ||
1337 | 1412 | ||
1338 | idx = this_sd->wake_idx; | 1413 | while (sd) { |
1414 | int load_idx = sd->forkexec_idx; | ||
1415 | struct sched_group *group; | ||
1416 | int weight; | ||
1339 | 1417 | ||
1340 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1418 | if (!(sd->flags & sd_flag)) { |
1419 | sd = sd->child; | ||
1420 | continue; | ||
1421 | } | ||
1341 | 1422 | ||
1342 | load = source_load(prev_cpu, idx); | 1423 | if (sd_flag & SD_BALANCE_WAKE) |
1343 | this_load = target_load(this_cpu, idx); | 1424 | load_idx = sd->wake_idx; |
1344 | 1425 | ||
1345 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1426 | group = find_idlest_group(sd, p, cpu, load_idx); |
1346 | load, this_load, imbalance)) | 1427 | if (!group) { |
1347 | return this_cpu; | 1428 | sd = sd->child; |
1429 | continue; | ||
1430 | } | ||
1348 | 1431 | ||
1349 | /* | 1432 | new_cpu = find_idlest_cpu(group, p, cpu); |
1350 | * Start passive balancing when half the imbalance_pct | 1433 | if (new_cpu == -1 || new_cpu == cpu) { |
1351 | * limit is reached. | 1434 | /* Now try balancing at a lower domain level of cpu */ |
1352 | */ | 1435 | sd = sd->child; |
1353 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1436 | continue; |
1354 | if (imbalance*this_load <= 100*load) { | ||
1355 | schedstat_inc(this_sd, ttwu_move_balance); | ||
1356 | schedstat_inc(p, se.nr_wakeups_passive); | ||
1357 | return this_cpu; | ||
1358 | } | 1437 | } |
1438 | |||
1439 | /* Now try balancing at a lower domain level of new_cpu */ | ||
1440 | cpu = new_cpu; | ||
1441 | weight = cpumask_weight(sched_domain_span(sd)); | ||
1442 | sd = NULL; | ||
1443 | for_each_domain(cpu, tmp) { | ||
1444 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
1445 | break; | ||
1446 | if (tmp->flags & sd_flag) | ||
1447 | sd = tmp; | ||
1448 | } | ||
1449 | /* while loop will break here if sd == NULL */ | ||
1359 | } | 1450 | } |
1360 | 1451 | ||
1361 | out: | 1452 | out: |
1362 | return wake_idle(new_cpu, p); | 1453 | rcu_read_unlock(); |
1454 | return new_cpu; | ||
1363 | } | 1455 | } |
1364 | #endif /* CONFIG_SMP */ | 1456 | #endif /* CONFIG_SMP */ |
1365 | 1457 | ||
@@ -1472,11 +1564,12 @@ static void set_next_buddy(struct sched_entity *se) | |||
1472 | /* | 1564 | /* |
1473 | * Preempt the current task with a newly woken task if needed: | 1565 | * Preempt the current task with a newly woken task if needed: |
1474 | */ | 1566 | */ |
1475 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1567 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
1476 | { | 1568 | { |
1477 | struct task_struct *curr = rq->curr; | 1569 | struct task_struct *curr = rq->curr; |
1478 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1570 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1479 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1571 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1572 | int sync = wake_flags & WF_SYNC; | ||
1480 | 1573 | ||
1481 | update_curr(cfs_rq); | 1574 | update_curr(cfs_rq); |
1482 | 1575 | ||
@@ -1502,7 +1595,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
1502 | */ | 1595 | */ |
1503 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 1596 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) |
1504 | set_last_buddy(se); | 1597 | set_last_buddy(se); |
1505 | set_next_buddy(pse); | 1598 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) |
1599 | set_next_buddy(pse); | ||
1506 | 1600 | ||
1507 | /* | 1601 | /* |
1508 | * We can come here with TIF_NEED_RESCHED already set from new task | 1602 | * We can come here with TIF_NEED_RESCHED already set from new task |
@@ -1524,16 +1618,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
1524 | return; | 1618 | return; |
1525 | } | 1619 | } |
1526 | 1620 | ||
1527 | if (!sched_feat(WAKEUP_PREEMPT)) | 1621 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
1528 | return; | 1622 | (sched_feat(WAKEUP_OVERLAP) && |
1529 | 1623 | (se->avg_overlap < sysctl_sched_migration_cost && | |
1530 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1624 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
1531 | (se->avg_overlap < sysctl_sched_migration_cost && | ||
1532 | pse->avg_overlap < sysctl_sched_migration_cost))) { | ||
1533 | resched_task(curr); | 1625 | resched_task(curr); |
1534 | return; | 1626 | return; |
1535 | } | 1627 | } |
1536 | 1628 | ||
1629 | if (sched_feat(WAKEUP_RUNNING)) { | ||
1630 | if (pse->avg_running < se->avg_running) { | ||
1631 | set_next_buddy(pse); | ||
1632 | resched_task(curr); | ||
1633 | return; | ||
1634 | } | ||
1635 | } | ||
1636 | |||
1637 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
1638 | return; | ||
1639 | |||
1537 | find_matching_se(&se, &pse); | 1640 | find_matching_se(&se, &pse); |
1538 | 1641 | ||
1539 | BUG_ON(!pse); | 1642 | BUG_ON(!pse); |
@@ -1556,8 +1659,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
1556 | /* | 1659 | /* |
1557 | * If se was a buddy, clear it so that it will have to earn | 1660 | * If se was a buddy, clear it so that it will have to earn |
1558 | * the favour again. | 1661 | * the favour again. |
1662 | * | ||
1663 | * If se was not a buddy, clear the buddies because neither | ||
1664 | * was elegible to run, let them earn it again. | ||
1665 | * | ||
1666 | * IOW. unconditionally clear buddies. | ||
1559 | */ | 1667 | */ |
1560 | __clear_buddies(cfs_rq, se); | 1668 | __clear_buddies(cfs_rq, NULL); |
1561 | set_next_entity(cfs_rq, se); | 1669 | set_next_entity(cfs_rq, se); |
1562 | cfs_rq = group_cfs_rq(se); | 1670 | cfs_rq = group_cfs_rq(se); |
1563 | } while (cfs_rq); | 1671 | } while (cfs_rq); |