aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched_fair.c
diff options
context:
space:
mode:
authorPeter Zijlstra <a.p.zijlstra@chello.nl>2009-12-17 11:00:43 -0500
committerIngo Molnar <mingo@elte.hu>2010-01-21 07:40:08 -0500
commit1e3c88bdeb1260edc341e45c9fb8efd182a5c511 (patch)
tree532da8871a2a1954ecaa1bb35bdfa7386087fd7d /kernel/sched_fair.c
parent6d686f4564f3fc7c6e678852919e48ad331d276b (diff)
sched: Move load balance code into sched_fair.c
Straight fwd code movement. Since non of the load-balance abstractions are used anymore, do away with them and simplify the code some. In preparation move the code around. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched_fair.c')
-rw-r--r--kernel/sched_fair.c1765
1 files changed, 1765 insertions, 0 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 71778601c103..5116b81d7727 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -1952,6 +1952,1762 @@ move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1952 return 0; 1952 return 0;
1953} 1953}
1954 1954
1955/*
1956 * pull_task - move a task from a remote runqueue to the local runqueue.
1957 * Both runqueues must be locked.
1958 */
1959static void pull_task(struct rq *src_rq, struct task_struct *p,
1960 struct rq *this_rq, int this_cpu)
1961{
1962 deactivate_task(src_rq, p, 0);
1963 set_task_cpu(p, this_cpu);
1964 activate_task(this_rq, p, 0);
1965 check_preempt_curr(this_rq, p, 0);
1966}
1967
1968/*
1969 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1970 */
1971static
1972int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1973 struct sched_domain *sd, enum cpu_idle_type idle,
1974 int *all_pinned)
1975{
1976 int tsk_cache_hot = 0;
1977 /*
1978 * We do not migrate tasks that are:
1979 * 1) running (obviously), or
1980 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1981 * 3) are cache-hot on their current CPU.
1982 */
1983 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1984 schedstat_inc(p, se.nr_failed_migrations_affine);
1985 return 0;
1986 }
1987 *all_pinned = 0;
1988
1989 if (task_running(rq, p)) {
1990 schedstat_inc(p, se.nr_failed_migrations_running);
1991 return 0;
1992 }
1993
1994 /*
1995 * Aggressive migration if:
1996 * 1) task is cache cold, or
1997 * 2) too many balance attempts have failed.
1998 */
1999
2000 tsk_cache_hot = task_hot(p, rq->clock, sd);
2001 if (!tsk_cache_hot ||
2002 sd->nr_balance_failed > sd->cache_nice_tries) {
2003#ifdef CONFIG_SCHEDSTATS
2004 if (tsk_cache_hot) {
2005 schedstat_inc(sd, lb_hot_gained[idle]);
2006 schedstat_inc(p, se.nr_forced_migrations);
2007 }
2008#endif
2009 return 1;
2010 }
2011
2012 if (tsk_cache_hot) {
2013 schedstat_inc(p, se.nr_failed_migrations_hot);
2014 return 0;
2015 }
2016 return 1;
2017}
2018
2019static unsigned long
2020balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2021 unsigned long max_load_move, struct sched_domain *sd,
2022 enum cpu_idle_type idle, int *all_pinned,
2023 int *this_best_prio, struct rq_iterator *iterator)
2024{
2025 int loops = 0, pulled = 0, pinned = 0;
2026 struct task_struct *p;
2027 long rem_load_move = max_load_move;
2028
2029 if (max_load_move == 0)
2030 goto out;
2031
2032 pinned = 1;
2033
2034 /*
2035 * Start the load-balancing iterator:
2036 */
2037 p = iterator->start(iterator->arg);
2038next:
2039 if (!p || loops++ > sysctl_sched_nr_migrate)
2040 goto out;
2041
2042 if ((p->se.load.weight >> 1) > rem_load_move ||
2043 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2044 p = iterator->next(iterator->arg);
2045 goto next;
2046 }
2047
2048 pull_task(busiest, p, this_rq, this_cpu);
2049 pulled++;
2050 rem_load_move -= p->se.load.weight;
2051
2052#ifdef CONFIG_PREEMPT
2053 /*
2054 * NEWIDLE balancing is a source of latency, so preemptible kernels
2055 * will stop after the first task is pulled to minimize the critical
2056 * section.
2057 */
2058 if (idle == CPU_NEWLY_IDLE)
2059 goto out;
2060#endif
2061
2062 /*
2063 * We only want to steal up to the prescribed amount of weighted load.
2064 */
2065 if (rem_load_move > 0) {
2066 if (p->prio < *this_best_prio)
2067 *this_best_prio = p->prio;
2068 p = iterator->next(iterator->arg);
2069 goto next;
2070 }
2071out:
2072 /*
2073 * Right now, this is one of only two places pull_task() is called,
2074 * so we can safely collect pull_task() stats here rather than
2075 * inside pull_task().
2076 */
2077 schedstat_add(sd, lb_gained[idle], pulled);
2078
2079 if (all_pinned)
2080 *all_pinned = pinned;
2081
2082 return max_load_move - rem_load_move;
2083}
2084
2085/*
2086 * move_tasks tries to move up to max_load_move weighted load from busiest to
2087 * this_rq, as part of a balancing operation within domain "sd".
2088 * Returns 1 if successful and 0 otherwise.
2089 *
2090 * Called with both runqueues locked.
2091 */
2092static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2093 unsigned long max_load_move,
2094 struct sched_domain *sd, enum cpu_idle_type idle,
2095 int *all_pinned)
2096{
2097 const struct sched_class *class = sched_class_highest;
2098 unsigned long total_load_moved = 0;
2099 int this_best_prio = this_rq->curr->prio;
2100
2101 do {
2102 total_load_moved +=
2103 class->load_balance(this_rq, this_cpu, busiest,
2104 max_load_move - total_load_moved,
2105 sd, idle, all_pinned, &this_best_prio);
2106 class = class->next;
2107
2108#ifdef CONFIG_PREEMPT
2109 /*
2110 * NEWIDLE balancing is a source of latency, so preemptible
2111 * kernels will stop after the first task is pulled to minimize
2112 * the critical section.
2113 */
2114 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2115 break;
2116#endif
2117 } while (class && max_load_move > total_load_moved);
2118
2119 return total_load_moved > 0;
2120}
2121
2122static int
2123iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2124 struct sched_domain *sd, enum cpu_idle_type idle,
2125 struct rq_iterator *iterator)
2126{
2127 struct task_struct *p = iterator->start(iterator->arg);
2128 int pinned = 0;
2129
2130 while (p) {
2131 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2132 pull_task(busiest, p, this_rq, this_cpu);
2133 /*
2134 * Right now, this is only the second place pull_task()
2135 * is called, so we can safely collect pull_task()
2136 * stats here rather than inside pull_task().
2137 */
2138 schedstat_inc(sd, lb_gained[idle]);
2139
2140 return 1;
2141 }
2142 p = iterator->next(iterator->arg);
2143 }
2144
2145 return 0;
2146}
2147
2148/*
2149 * move_one_task tries to move exactly one task from busiest to this_rq, as
2150 * part of active balancing operations within "domain".
2151 * Returns 1 if successful and 0 otherwise.
2152 *
2153 * Called with both runqueues locked.
2154 */
2155static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2156 struct sched_domain *sd, enum cpu_idle_type idle)
2157{
2158 const struct sched_class *class;
2159
2160 for_each_class(class) {
2161 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2162 return 1;
2163 }
2164
2165 return 0;
2166}
2167/********** Helpers for find_busiest_group ************************/
2168/*
2169 * sd_lb_stats - Structure to store the statistics of a sched_domain
2170 * during load balancing.
2171 */
2172struct sd_lb_stats {
2173 struct sched_group *busiest; /* Busiest group in this sd */
2174 struct sched_group *this; /* Local group in this sd */
2175 unsigned long total_load; /* Total load of all groups in sd */
2176 unsigned long total_pwr; /* Total power of all groups in sd */
2177 unsigned long avg_load; /* Average load across all groups in sd */
2178
2179 /** Statistics of this group */
2180 unsigned long this_load;
2181 unsigned long this_load_per_task;
2182 unsigned long this_nr_running;
2183
2184 /* Statistics of the busiest group */
2185 unsigned long max_load;
2186 unsigned long busiest_load_per_task;
2187 unsigned long busiest_nr_running;
2188
2189 int group_imb; /* Is there imbalance in this sd */
2190#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2191 int power_savings_balance; /* Is powersave balance needed for this sd */
2192 struct sched_group *group_min; /* Least loaded group in sd */
2193 struct sched_group *group_leader; /* Group which relieves group_min */
2194 unsigned long min_load_per_task; /* load_per_task in group_min */
2195 unsigned long leader_nr_running; /* Nr running of group_leader */
2196 unsigned long min_nr_running; /* Nr running of group_min */
2197#endif
2198};
2199
2200/*
2201 * sg_lb_stats - stats of a sched_group required for load_balancing
2202 */
2203struct sg_lb_stats {
2204 unsigned long avg_load; /*Avg load across the CPUs of the group */
2205 unsigned long group_load; /* Total load over the CPUs of the group */
2206 unsigned long sum_nr_running; /* Nr tasks running in the group */
2207 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2208 unsigned long group_capacity;
2209 int group_imb; /* Is there an imbalance in the group ? */
2210};
2211
2212/**
2213 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2214 * @group: The group whose first cpu is to be returned.
2215 */
2216static inline unsigned int group_first_cpu(struct sched_group *group)
2217{
2218 return cpumask_first(sched_group_cpus(group));
2219}
2220
2221/**
2222 * get_sd_load_idx - Obtain the load index for a given sched domain.
2223 * @sd: The sched_domain whose load_idx is to be obtained.
2224 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2225 */
2226static inline int get_sd_load_idx(struct sched_domain *sd,
2227 enum cpu_idle_type idle)
2228{
2229 int load_idx;
2230
2231 switch (idle) {
2232 case CPU_NOT_IDLE:
2233 load_idx = sd->busy_idx;
2234 break;
2235
2236 case CPU_NEWLY_IDLE:
2237 load_idx = sd->newidle_idx;
2238 break;
2239 default:
2240 load_idx = sd->idle_idx;
2241 break;
2242 }
2243
2244 return load_idx;
2245}
2246
2247
2248#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2249/**
2250 * init_sd_power_savings_stats - Initialize power savings statistics for
2251 * the given sched_domain, during load balancing.
2252 *
2253 * @sd: Sched domain whose power-savings statistics are to be initialized.
2254 * @sds: Variable containing the statistics for sd.
2255 * @idle: Idle status of the CPU at which we're performing load-balancing.
2256 */
2257static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2258 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2259{
2260 /*
2261 * Busy processors will not participate in power savings
2262 * balance.
2263 */
2264 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2265 sds->power_savings_balance = 0;
2266 else {
2267 sds->power_savings_balance = 1;
2268 sds->min_nr_running = ULONG_MAX;
2269 sds->leader_nr_running = 0;
2270 }
2271}
2272
2273/**
2274 * update_sd_power_savings_stats - Update the power saving stats for a
2275 * sched_domain while performing load balancing.
2276 *
2277 * @group: sched_group belonging to the sched_domain under consideration.
2278 * @sds: Variable containing the statistics of the sched_domain
2279 * @local_group: Does group contain the CPU for which we're performing
2280 * load balancing ?
2281 * @sgs: Variable containing the statistics of the group.
2282 */
2283static inline void update_sd_power_savings_stats(struct sched_group *group,
2284 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2285{
2286
2287 if (!sds->power_savings_balance)
2288 return;
2289
2290 /*
2291 * If the local group is idle or completely loaded
2292 * no need to do power savings balance at this domain
2293 */
2294 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2295 !sds->this_nr_running))
2296 sds->power_savings_balance = 0;
2297
2298 /*
2299 * If a group is already running at full capacity or idle,
2300 * don't include that group in power savings calculations
2301 */
2302 if (!sds->power_savings_balance ||
2303 sgs->sum_nr_running >= sgs->group_capacity ||
2304 !sgs->sum_nr_running)
2305 return;
2306
2307 /*
2308 * Calculate the group which has the least non-idle load.
2309 * This is the group from where we need to pick up the load
2310 * for saving power
2311 */
2312 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2313 (sgs->sum_nr_running == sds->min_nr_running &&
2314 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2315 sds->group_min = group;
2316 sds->min_nr_running = sgs->sum_nr_running;
2317 sds->min_load_per_task = sgs->sum_weighted_load /
2318 sgs->sum_nr_running;
2319 }
2320
2321 /*
2322 * Calculate the group which is almost near its
2323 * capacity but still has some space to pick up some load
2324 * from other group and save more power
2325 */
2326 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2327 return;
2328
2329 if (sgs->sum_nr_running > sds->leader_nr_running ||
2330 (sgs->sum_nr_running == sds->leader_nr_running &&
2331 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2332 sds->group_leader = group;
2333 sds->leader_nr_running = sgs->sum_nr_running;
2334 }
2335}
2336
2337/**
2338 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2339 * @sds: Variable containing the statistics of the sched_domain
2340 * under consideration.
2341 * @this_cpu: Cpu at which we're currently performing load-balancing.
2342 * @imbalance: Variable to store the imbalance.
2343 *
2344 * Description:
2345 * Check if we have potential to perform some power-savings balance.
2346 * If yes, set the busiest group to be the least loaded group in the
2347 * sched_domain, so that it's CPUs can be put to idle.
2348 *
2349 * Returns 1 if there is potential to perform power-savings balance.
2350 * Else returns 0.
2351 */
2352static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2353 int this_cpu, unsigned long *imbalance)
2354{
2355 if (!sds->power_savings_balance)
2356 return 0;
2357
2358 if (sds->this != sds->group_leader ||
2359 sds->group_leader == sds->group_min)
2360 return 0;
2361
2362 *imbalance = sds->min_load_per_task;
2363 sds->busiest = sds->group_min;
2364
2365 return 1;
2366
2367}
2368#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2369static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2370 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2371{
2372 return;
2373}
2374
2375static inline void update_sd_power_savings_stats(struct sched_group *group,
2376 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2377{
2378 return;
2379}
2380
2381static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2382 int this_cpu, unsigned long *imbalance)
2383{
2384 return 0;
2385}
2386#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2387
2388
2389unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2390{
2391 return SCHED_LOAD_SCALE;
2392}
2393
2394unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2395{
2396 return default_scale_freq_power(sd, cpu);
2397}
2398
2399unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2400{
2401 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2402 unsigned long smt_gain = sd->smt_gain;
2403
2404 smt_gain /= weight;
2405
2406 return smt_gain;
2407}
2408
2409unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2410{
2411 return default_scale_smt_power(sd, cpu);
2412}
2413
2414unsigned long scale_rt_power(int cpu)
2415{
2416 struct rq *rq = cpu_rq(cpu);
2417 u64 total, available;
2418
2419 sched_avg_update(rq);
2420
2421 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2422 available = total - rq->rt_avg;
2423
2424 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2425 total = SCHED_LOAD_SCALE;
2426
2427 total >>= SCHED_LOAD_SHIFT;
2428
2429 return div_u64(available, total);
2430}
2431
2432static void update_cpu_power(struct sched_domain *sd, int cpu)
2433{
2434 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2435 unsigned long power = SCHED_LOAD_SCALE;
2436 struct sched_group *sdg = sd->groups;
2437
2438 if (sched_feat(ARCH_POWER))
2439 power *= arch_scale_freq_power(sd, cpu);
2440 else
2441 power *= default_scale_freq_power(sd, cpu);
2442
2443 power >>= SCHED_LOAD_SHIFT;
2444
2445 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2446 if (sched_feat(ARCH_POWER))
2447 power *= arch_scale_smt_power(sd, cpu);
2448 else
2449 power *= default_scale_smt_power(sd, cpu);
2450
2451 power >>= SCHED_LOAD_SHIFT;
2452 }
2453
2454 power *= scale_rt_power(cpu);
2455 power >>= SCHED_LOAD_SHIFT;
2456
2457 if (!power)
2458 power = 1;
2459
2460 sdg->cpu_power = power;
2461}
2462
2463static void update_group_power(struct sched_domain *sd, int cpu)
2464{
2465 struct sched_domain *child = sd->child;
2466 struct sched_group *group, *sdg = sd->groups;
2467 unsigned long power;
2468
2469 if (!child) {
2470 update_cpu_power(sd, cpu);
2471 return;
2472 }
2473
2474 power = 0;
2475
2476 group = child->groups;
2477 do {
2478 power += group->cpu_power;
2479 group = group->next;
2480 } while (group != child->groups);
2481
2482 sdg->cpu_power = power;
2483}
2484
2485/**
2486 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2487 * @sd: The sched_domain whose statistics are to be updated.
2488 * @group: sched_group whose statistics are to be updated.
2489 * @this_cpu: Cpu for which load balance is currently performed.
2490 * @idle: Idle status of this_cpu
2491 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2492 * @sd_idle: Idle status of the sched_domain containing group.
2493 * @local_group: Does group contain this_cpu.
2494 * @cpus: Set of cpus considered for load balancing.
2495 * @balance: Should we balance.
2496 * @sgs: variable to hold the statistics for this group.
2497 */
2498static inline void update_sg_lb_stats(struct sched_domain *sd,
2499 struct sched_group *group, int this_cpu,
2500 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2501 int local_group, const struct cpumask *cpus,
2502 int *balance, struct sg_lb_stats *sgs)
2503{
2504 unsigned long load, max_cpu_load, min_cpu_load;
2505 int i;
2506 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2507 unsigned long sum_avg_load_per_task;
2508 unsigned long avg_load_per_task;
2509
2510 if (local_group) {
2511 balance_cpu = group_first_cpu(group);
2512 if (balance_cpu == this_cpu)
2513 update_group_power(sd, this_cpu);
2514 }
2515
2516 /* Tally up the load of all CPUs in the group */
2517 sum_avg_load_per_task = avg_load_per_task = 0;
2518 max_cpu_load = 0;
2519 min_cpu_load = ~0UL;
2520
2521 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2522 struct rq *rq = cpu_rq(i);
2523
2524 if (*sd_idle && rq->nr_running)
2525 *sd_idle = 0;
2526
2527 /* Bias balancing toward cpus of our domain */
2528 if (local_group) {
2529 if (idle_cpu(i) && !first_idle_cpu) {
2530 first_idle_cpu = 1;
2531 balance_cpu = i;
2532 }
2533
2534 load = target_load(i, load_idx);
2535 } else {
2536 load = source_load(i, load_idx);
2537 if (load > max_cpu_load)
2538 max_cpu_load = load;
2539 if (min_cpu_load > load)
2540 min_cpu_load = load;
2541 }
2542
2543 sgs->group_load += load;
2544 sgs->sum_nr_running += rq->nr_running;
2545 sgs->sum_weighted_load += weighted_cpuload(i);
2546
2547 sum_avg_load_per_task += cpu_avg_load_per_task(i);
2548 }
2549
2550 /*
2551 * First idle cpu or the first cpu(busiest) in this sched group
2552 * is eligible for doing load balancing at this and above
2553 * domains. In the newly idle case, we will allow all the cpu's
2554 * to do the newly idle load balance.
2555 */
2556 if (idle != CPU_NEWLY_IDLE && local_group &&
2557 balance_cpu != this_cpu && balance) {
2558 *balance = 0;
2559 return;
2560 }
2561
2562 /* Adjust by relative CPU power of the group */
2563 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2564
2565
2566 /*
2567 * Consider the group unbalanced when the imbalance is larger
2568 * than the average weight of two tasks.
2569 *
2570 * APZ: with cgroup the avg task weight can vary wildly and
2571 * might not be a suitable number - should we keep a
2572 * normalized nr_running number somewhere that negates
2573 * the hierarchy?
2574 */
2575 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
2576 group->cpu_power;
2577
2578 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2579 sgs->group_imb = 1;
2580
2581 sgs->group_capacity =
2582 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2583}
2584
2585/**
2586 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2587 * @sd: sched_domain whose statistics are to be updated.
2588 * @this_cpu: Cpu for which load balance is currently performed.
2589 * @idle: Idle status of this_cpu
2590 * @sd_idle: Idle status of the sched_domain containing group.
2591 * @cpus: Set of cpus considered for load balancing.
2592 * @balance: Should we balance.
2593 * @sds: variable to hold the statistics for this sched_domain.
2594 */
2595static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2596 enum cpu_idle_type idle, int *sd_idle,
2597 const struct cpumask *cpus, int *balance,
2598 struct sd_lb_stats *sds)
2599{
2600 struct sched_domain *child = sd->child;
2601 struct sched_group *group = sd->groups;
2602 struct sg_lb_stats sgs;
2603 int load_idx, prefer_sibling = 0;
2604
2605 if (child && child->flags & SD_PREFER_SIBLING)
2606 prefer_sibling = 1;
2607
2608 init_sd_power_savings_stats(sd, sds, idle);
2609 load_idx = get_sd_load_idx(sd, idle);
2610
2611 do {
2612 int local_group;
2613
2614 local_group = cpumask_test_cpu(this_cpu,
2615 sched_group_cpus(group));
2616 memset(&sgs, 0, sizeof(sgs));
2617 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2618 local_group, cpus, balance, &sgs);
2619
2620 if (local_group && balance && !(*balance))
2621 return;
2622
2623 sds->total_load += sgs.group_load;
2624 sds->total_pwr += group->cpu_power;
2625
2626 /*
2627 * In case the child domain prefers tasks go to siblings
2628 * first, lower the group capacity to one so that we'll try
2629 * and move all the excess tasks away.
2630 */
2631 if (prefer_sibling)
2632 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2633
2634 if (local_group) {
2635 sds->this_load = sgs.avg_load;
2636 sds->this = group;
2637 sds->this_nr_running = sgs.sum_nr_running;
2638 sds->this_load_per_task = sgs.sum_weighted_load;
2639 } else if (sgs.avg_load > sds->max_load &&
2640 (sgs.sum_nr_running > sgs.group_capacity ||
2641 sgs.group_imb)) {
2642 sds->max_load = sgs.avg_load;
2643 sds->busiest = group;
2644 sds->busiest_nr_running = sgs.sum_nr_running;
2645 sds->busiest_load_per_task = sgs.sum_weighted_load;
2646 sds->group_imb = sgs.group_imb;
2647 }
2648
2649 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2650 group = group->next;
2651 } while (group != sd->groups);
2652}
2653
2654/**
2655 * fix_small_imbalance - Calculate the minor imbalance that exists
2656 * amongst the groups of a sched_domain, during
2657 * load balancing.
2658 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2659 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2660 * @imbalance: Variable to store the imbalance.
2661 */
2662static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2663 int this_cpu, unsigned long *imbalance)
2664{
2665 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2666 unsigned int imbn = 2;
2667
2668 if (sds->this_nr_running) {
2669 sds->this_load_per_task /= sds->this_nr_running;
2670 if (sds->busiest_load_per_task >
2671 sds->this_load_per_task)
2672 imbn = 1;
2673 } else
2674 sds->this_load_per_task =
2675 cpu_avg_load_per_task(this_cpu);
2676
2677 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
2678 sds->busiest_load_per_task * imbn) {
2679 *imbalance = sds->busiest_load_per_task;
2680 return;
2681 }
2682
2683 /*
2684 * OK, we don't have enough imbalance to justify moving tasks,
2685 * however we may be able to increase total CPU power used by
2686 * moving them.
2687 */
2688
2689 pwr_now += sds->busiest->cpu_power *
2690 min(sds->busiest_load_per_task, sds->max_load);
2691 pwr_now += sds->this->cpu_power *
2692 min(sds->this_load_per_task, sds->this_load);
2693 pwr_now /= SCHED_LOAD_SCALE;
2694
2695 /* Amount of load we'd subtract */
2696 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2697 sds->busiest->cpu_power;
2698 if (sds->max_load > tmp)
2699 pwr_move += sds->busiest->cpu_power *
2700 min(sds->busiest_load_per_task, sds->max_load - tmp);
2701
2702 /* Amount of load we'd add */
2703 if (sds->max_load * sds->busiest->cpu_power <
2704 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2705 tmp = (sds->max_load * sds->busiest->cpu_power) /
2706 sds->this->cpu_power;
2707 else
2708 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2709 sds->this->cpu_power;
2710 pwr_move += sds->this->cpu_power *
2711 min(sds->this_load_per_task, sds->this_load + tmp);
2712 pwr_move /= SCHED_LOAD_SCALE;
2713
2714 /* Move if we gain throughput */
2715 if (pwr_move > pwr_now)
2716 *imbalance = sds->busiest_load_per_task;
2717}
2718
2719/**
2720 * calculate_imbalance - Calculate the amount of imbalance present within the
2721 * groups of a given sched_domain during load balance.
2722 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2723 * @this_cpu: Cpu for which currently load balance is being performed.
2724 * @imbalance: The variable to store the imbalance.
2725 */
2726static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2727 unsigned long *imbalance)
2728{
2729 unsigned long max_pull;
2730 /*
2731 * In the presence of smp nice balancing, certain scenarios can have
2732 * max load less than avg load(as we skip the groups at or below
2733 * its cpu_power, while calculating max_load..)
2734 */
2735 if (sds->max_load < sds->avg_load) {
2736 *imbalance = 0;
2737 return fix_small_imbalance(sds, this_cpu, imbalance);
2738 }
2739
2740 /* Don't want to pull so many tasks that a group would go idle */
2741 max_pull = min(sds->max_load - sds->avg_load,
2742 sds->max_load - sds->busiest_load_per_task);
2743
2744 /* How much load to actually move to equalise the imbalance */
2745 *imbalance = min(max_pull * sds->busiest->cpu_power,
2746 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2747 / SCHED_LOAD_SCALE;
2748
2749 /*
2750 * if *imbalance is less than the average load per runnable task
2751 * there is no gaurantee that any tasks will be moved so we'll have
2752 * a think about bumping its value to force at least one task to be
2753 * moved
2754 */
2755 if (*imbalance < sds->busiest_load_per_task)
2756 return fix_small_imbalance(sds, this_cpu, imbalance);
2757
2758}
2759/******* find_busiest_group() helpers end here *********************/
2760
2761/**
2762 * find_busiest_group - Returns the busiest group within the sched_domain
2763 * if there is an imbalance. If there isn't an imbalance, and
2764 * the user has opted for power-savings, it returns a group whose
2765 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2766 * such a group exists.
2767 *
2768 * Also calculates the amount of weighted load which should be moved
2769 * to restore balance.
2770 *
2771 * @sd: The sched_domain whose busiest group is to be returned.
2772 * @this_cpu: The cpu for which load balancing is currently being performed.
2773 * @imbalance: Variable which stores amount of weighted load which should
2774 * be moved to restore balance/put a group to idle.
2775 * @idle: The idle status of this_cpu.
2776 * @sd_idle: The idleness of sd
2777 * @cpus: The set of CPUs under consideration for load-balancing.
2778 * @balance: Pointer to a variable indicating if this_cpu
2779 * is the appropriate cpu to perform load balancing at this_level.
2780 *
2781 * Returns: - the busiest group if imbalance exists.
2782 * - If no imbalance and user has opted for power-savings balance,
2783 * return the least loaded group whose CPUs can be
2784 * put to idle by rebalancing its tasks onto our group.
2785 */
2786static struct sched_group *
2787find_busiest_group(struct sched_domain *sd, int this_cpu,
2788 unsigned long *imbalance, enum cpu_idle_type idle,
2789 int *sd_idle, const struct cpumask *cpus, int *balance)
2790{
2791 struct sd_lb_stats sds;
2792
2793 memset(&sds, 0, sizeof(sds));
2794
2795 /*
2796 * Compute the various statistics relavent for load balancing at
2797 * this level.
2798 */
2799 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2800 balance, &sds);
2801
2802 /* Cases where imbalance does not exist from POV of this_cpu */
2803 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2804 * at this level.
2805 * 2) There is no busy sibling group to pull from.
2806 * 3) This group is the busiest group.
2807 * 4) This group is more busy than the avg busieness at this
2808 * sched_domain.
2809 * 5) The imbalance is within the specified limit.
2810 * 6) Any rebalance would lead to ping-pong
2811 */
2812 if (balance && !(*balance))
2813 goto ret;
2814
2815 if (!sds.busiest || sds.busiest_nr_running == 0)
2816 goto out_balanced;
2817
2818 if (sds.this_load >= sds.max_load)
2819 goto out_balanced;
2820
2821 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2822
2823 if (sds.this_load >= sds.avg_load)
2824 goto out_balanced;
2825
2826 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2827 goto out_balanced;
2828
2829 sds.busiest_load_per_task /= sds.busiest_nr_running;
2830 if (sds.group_imb)
2831 sds.busiest_load_per_task =
2832 min(sds.busiest_load_per_task, sds.avg_load);
2833
2834 /*
2835 * We're trying to get all the cpus to the average_load, so we don't
2836 * want to push ourselves above the average load, nor do we wish to
2837 * reduce the max loaded cpu below the average load, as either of these
2838 * actions would just result in more rebalancing later, and ping-pong
2839 * tasks around. Thus we look for the minimum possible imbalance.
2840 * Negative imbalances (*we* are more loaded than anyone else) will
2841 * be counted as no imbalance for these purposes -- we can't fix that
2842 * by pulling tasks to us. Be careful of negative numbers as they'll
2843 * appear as very large values with unsigned longs.
2844 */
2845 if (sds.max_load <= sds.busiest_load_per_task)
2846 goto out_balanced;
2847
2848 /* Looks like there is an imbalance. Compute it */
2849 calculate_imbalance(&sds, this_cpu, imbalance);
2850 return sds.busiest;
2851
2852out_balanced:
2853 /*
2854 * There is no obvious imbalance. But check if we can do some balancing
2855 * to save power.
2856 */
2857 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2858 return sds.busiest;
2859ret:
2860 *imbalance = 0;
2861 return NULL;
2862}
2863
2864/*
2865 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2866 */
2867static struct rq *
2868find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2869 unsigned long imbalance, const struct cpumask *cpus)
2870{
2871 struct rq *busiest = NULL, *rq;
2872 unsigned long max_load = 0;
2873 int i;
2874
2875 for_each_cpu(i, sched_group_cpus(group)) {
2876 unsigned long power = power_of(i);
2877 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2878 unsigned long wl;
2879
2880 if (!cpumask_test_cpu(i, cpus))
2881 continue;
2882
2883 rq = cpu_rq(i);
2884 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
2885 wl /= power;
2886
2887 if (capacity && rq->nr_running == 1 && wl > imbalance)
2888 continue;
2889
2890 if (wl > max_load) {
2891 max_load = wl;
2892 busiest = rq;
2893 }
2894 }
2895
2896 return busiest;
2897}
2898
2899/*
2900 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2901 * so long as it is large enough.
2902 */
2903#define MAX_PINNED_INTERVAL 512
2904
2905/* Working cpumask for load_balance and load_balance_newidle. */
2906static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2907
2908/*
2909 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2910 * tasks if there is an imbalance.
2911 */
2912static int load_balance(int this_cpu, struct rq *this_rq,
2913 struct sched_domain *sd, enum cpu_idle_type idle,
2914 int *balance)
2915{
2916 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2917 struct sched_group *group;
2918 unsigned long imbalance;
2919 struct rq *busiest;
2920 unsigned long flags;
2921 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2922
2923 cpumask_copy(cpus, cpu_active_mask);
2924
2925 /*
2926 * When power savings policy is enabled for the parent domain, idle
2927 * sibling can pick up load irrespective of busy siblings. In this case,
2928 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2929 * portraying it as CPU_NOT_IDLE.
2930 */
2931 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2932 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2933 sd_idle = 1;
2934
2935 schedstat_inc(sd, lb_count[idle]);
2936
2937redo:
2938 update_shares(sd);
2939 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2940 cpus, balance);
2941
2942 if (*balance == 0)
2943 goto out_balanced;
2944
2945 if (!group) {
2946 schedstat_inc(sd, lb_nobusyg[idle]);
2947 goto out_balanced;
2948 }
2949
2950 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2951 if (!busiest) {
2952 schedstat_inc(sd, lb_nobusyq[idle]);
2953 goto out_balanced;
2954 }
2955
2956 BUG_ON(busiest == this_rq);
2957
2958 schedstat_add(sd, lb_imbalance[idle], imbalance);
2959
2960 ld_moved = 0;
2961 if (busiest->nr_running > 1) {
2962 /*
2963 * Attempt to move tasks. If find_busiest_group has found
2964 * an imbalance but busiest->nr_running <= 1, the group is
2965 * still unbalanced. ld_moved simply stays zero, so it is
2966 * correctly treated as an imbalance.
2967 */
2968 local_irq_save(flags);
2969 double_rq_lock(this_rq, busiest);
2970 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2971 imbalance, sd, idle, &all_pinned);
2972 double_rq_unlock(this_rq, busiest);
2973 local_irq_restore(flags);
2974
2975 /*
2976 * some other cpu did the load balance for us.
2977 */
2978 if (ld_moved && this_cpu != smp_processor_id())
2979 resched_cpu(this_cpu);
2980
2981 /* All tasks on this runqueue were pinned by CPU affinity */
2982 if (unlikely(all_pinned)) {
2983 cpumask_clear_cpu(cpu_of(busiest), cpus);
2984 if (!cpumask_empty(cpus))
2985 goto redo;
2986 goto out_balanced;
2987 }
2988 }
2989
2990 if (!ld_moved) {
2991 schedstat_inc(sd, lb_failed[idle]);
2992 sd->nr_balance_failed++;
2993
2994 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2995
2996 raw_spin_lock_irqsave(&busiest->lock, flags);
2997
2998 /* don't kick the migration_thread, if the curr
2999 * task on busiest cpu can't be moved to this_cpu
3000 */
3001 if (!cpumask_test_cpu(this_cpu,
3002 &busiest->curr->cpus_allowed)) {
3003 raw_spin_unlock_irqrestore(&busiest->lock,
3004 flags);
3005 all_pinned = 1;
3006 goto out_one_pinned;
3007 }
3008
3009 if (!busiest->active_balance) {
3010 busiest->active_balance = 1;
3011 busiest->push_cpu = this_cpu;
3012 active_balance = 1;
3013 }
3014 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3015 if (active_balance)
3016 wake_up_process(busiest->migration_thread);
3017
3018 /*
3019 * We've kicked active balancing, reset the failure
3020 * counter.
3021 */
3022 sd->nr_balance_failed = sd->cache_nice_tries+1;
3023 }
3024 } else
3025 sd->nr_balance_failed = 0;
3026
3027 if (likely(!active_balance)) {
3028 /* We were unbalanced, so reset the balancing interval */
3029 sd->balance_interval = sd->min_interval;
3030 } else {
3031 /*
3032 * If we've begun active balancing, start to back off. This
3033 * case may not be covered by the all_pinned logic if there
3034 * is only 1 task on the busy runqueue (because we don't call
3035 * move_tasks).
3036 */
3037 if (sd->balance_interval < sd->max_interval)
3038 sd->balance_interval *= 2;
3039 }
3040
3041 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3042 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3043 ld_moved = -1;
3044
3045 goto out;
3046
3047out_balanced:
3048 schedstat_inc(sd, lb_balanced[idle]);
3049
3050 sd->nr_balance_failed = 0;
3051
3052out_one_pinned:
3053 /* tune up the balancing interval */
3054 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3055 (sd->balance_interval < sd->max_interval))
3056 sd->balance_interval *= 2;
3057
3058 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3059 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3060 ld_moved = -1;
3061 else
3062 ld_moved = 0;
3063out:
3064 if (ld_moved)
3065 update_shares(sd);
3066 return ld_moved;
3067}
3068
3069/*
3070 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3071 * tasks if there is an imbalance.
3072 *
3073 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3074 * this_rq is locked.
3075 */
3076static int
3077load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3078{
3079 struct sched_group *group;
3080 struct rq *busiest = NULL;
3081 unsigned long imbalance;
3082 int ld_moved = 0;
3083 int sd_idle = 0;
3084 int all_pinned = 0;
3085 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3086
3087 cpumask_copy(cpus, cpu_active_mask);
3088
3089 /*
3090 * When power savings policy is enabled for the parent domain, idle
3091 * sibling can pick up load irrespective of busy siblings. In this case,
3092 * let the state of idle sibling percolate up as IDLE, instead of
3093 * portraying it as CPU_NOT_IDLE.
3094 */
3095 if (sd->flags & SD_SHARE_CPUPOWER &&
3096 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3097 sd_idle = 1;
3098
3099 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3100redo:
3101 update_shares_locked(this_rq, sd);
3102 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3103 &sd_idle, cpus, NULL);
3104 if (!group) {
3105 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3106 goto out_balanced;
3107 }
3108
3109 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3110 if (!busiest) {
3111 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3112 goto out_balanced;
3113 }
3114
3115 BUG_ON(busiest == this_rq);
3116
3117 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3118
3119 ld_moved = 0;
3120 if (busiest->nr_running > 1) {
3121 /* Attempt to move tasks */
3122 double_lock_balance(this_rq, busiest);
3123 /* this_rq->clock is already updated */
3124 update_rq_clock(busiest);
3125 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3126 imbalance, sd, CPU_NEWLY_IDLE,
3127 &all_pinned);
3128 double_unlock_balance(this_rq, busiest);
3129
3130 if (unlikely(all_pinned)) {
3131 cpumask_clear_cpu(cpu_of(busiest), cpus);
3132 if (!cpumask_empty(cpus))
3133 goto redo;
3134 }
3135 }
3136
3137 if (!ld_moved) {
3138 int active_balance = 0;
3139
3140 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3141 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3142 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3143 return -1;
3144
3145 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3146 return -1;
3147
3148 if (sd->nr_balance_failed++ < 2)
3149 return -1;
3150
3151 /*
3152 * The only task running in a non-idle cpu can be moved to this
3153 * cpu in an attempt to completely freeup the other CPU
3154 * package. The same method used to move task in load_balance()
3155 * have been extended for load_balance_newidle() to speedup
3156 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3157 *
3158 * The package power saving logic comes from
3159 * find_busiest_group(). If there are no imbalance, then
3160 * f_b_g() will return NULL. However when sched_mc={1,2} then
3161 * f_b_g() will select a group from which a running task may be
3162 * pulled to this cpu in order to make the other package idle.
3163 * If there is no opportunity to make a package idle and if
3164 * there are no imbalance, then f_b_g() will return NULL and no
3165 * action will be taken in load_balance_newidle().
3166 *
3167 * Under normal task pull operation due to imbalance, there
3168 * will be more than one task in the source run queue and
3169 * move_tasks() will succeed. ld_moved will be true and this
3170 * active balance code will not be triggered.
3171 */
3172
3173 /* Lock busiest in correct order while this_rq is held */
3174 double_lock_balance(this_rq, busiest);
3175
3176 /*
3177 * don't kick the migration_thread, if the curr
3178 * task on busiest cpu can't be moved to this_cpu
3179 */
3180 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3181 double_unlock_balance(this_rq, busiest);
3182 all_pinned = 1;
3183 return ld_moved;
3184 }
3185
3186 if (!busiest->active_balance) {
3187 busiest->active_balance = 1;
3188 busiest->push_cpu = this_cpu;
3189 active_balance = 1;
3190 }
3191
3192 double_unlock_balance(this_rq, busiest);
3193 /*
3194 * Should not call ttwu while holding a rq->lock
3195 */
3196 raw_spin_unlock(&this_rq->lock);
3197 if (active_balance)
3198 wake_up_process(busiest->migration_thread);
3199 raw_spin_lock(&this_rq->lock);
3200
3201 } else
3202 sd->nr_balance_failed = 0;
3203
3204 update_shares_locked(this_rq, sd);
3205 return ld_moved;
3206
3207out_balanced:
3208 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3209 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3210 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3211 return -1;
3212 sd->nr_balance_failed = 0;
3213
3214 return 0;
3215}
3216
3217/*
3218 * idle_balance is called by schedule() if this_cpu is about to become
3219 * idle. Attempts to pull tasks from other CPUs.
3220 */
3221static void idle_balance(int this_cpu, struct rq *this_rq)
3222{
3223 struct sched_domain *sd;
3224 int pulled_task = 0;
3225 unsigned long next_balance = jiffies + HZ;
3226
3227 this_rq->idle_stamp = this_rq->clock;
3228
3229 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3230 return;
3231
3232 for_each_domain(this_cpu, sd) {
3233 unsigned long interval;
3234
3235 if (!(sd->flags & SD_LOAD_BALANCE))
3236 continue;
3237
3238 if (sd->flags & SD_BALANCE_NEWIDLE)
3239 /* If we've pulled tasks over stop searching: */
3240 pulled_task = load_balance_newidle(this_cpu, this_rq,
3241 sd);
3242
3243 interval = msecs_to_jiffies(sd->balance_interval);
3244 if (time_after(next_balance, sd->last_balance + interval))
3245 next_balance = sd->last_balance + interval;
3246 if (pulled_task) {
3247 this_rq->idle_stamp = 0;
3248 break;
3249 }
3250 }
3251 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3252 /*
3253 * We are going idle. next_balance may be set based on
3254 * a busy processor. So reset next_balance.
3255 */
3256 this_rq->next_balance = next_balance;
3257 }
3258}
3259
3260/*
3261 * active_load_balance is run by migration threads. It pushes running tasks
3262 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3263 * running on each physical CPU where possible, and avoids physical /
3264 * logical imbalances.
3265 *
3266 * Called with busiest_rq locked.
3267 */
3268static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3269{
3270 int target_cpu = busiest_rq->push_cpu;
3271 struct sched_domain *sd;
3272 struct rq *target_rq;
3273
3274 /* Is there any task to move? */
3275 if (busiest_rq->nr_running <= 1)
3276 return;
3277
3278 target_rq = cpu_rq(target_cpu);
3279
3280 /*
3281 * This condition is "impossible", if it occurs
3282 * we need to fix it. Originally reported by
3283 * Bjorn Helgaas on a 128-cpu setup.
3284 */
3285 BUG_ON(busiest_rq == target_rq);
3286
3287 /* move a task from busiest_rq to target_rq */
3288 double_lock_balance(busiest_rq, target_rq);
3289 update_rq_clock(busiest_rq);
3290 update_rq_clock(target_rq);
3291
3292 /* Search for an sd spanning us and the target CPU. */
3293 for_each_domain(target_cpu, sd) {
3294 if ((sd->flags & SD_LOAD_BALANCE) &&
3295 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3296 break;
3297 }
3298
3299 if (likely(sd)) {
3300 schedstat_inc(sd, alb_count);
3301
3302 if (move_one_task(target_rq, target_cpu, busiest_rq,
3303 sd, CPU_IDLE))
3304 schedstat_inc(sd, alb_pushed);
3305 else
3306 schedstat_inc(sd, alb_failed);
3307 }
3308 double_unlock_balance(busiest_rq, target_rq);
3309}
3310
3311#ifdef CONFIG_NO_HZ
3312static struct {
3313 atomic_t load_balancer;
3314 cpumask_var_t cpu_mask;
3315 cpumask_var_t ilb_grp_nohz_mask;
3316} nohz ____cacheline_aligned = {
3317 .load_balancer = ATOMIC_INIT(-1),
3318};
3319
3320int get_nohz_load_balancer(void)
3321{
3322 return atomic_read(&nohz.load_balancer);
3323}
3324
3325#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3326/**
3327 * lowest_flag_domain - Return lowest sched_domain containing flag.
3328 * @cpu: The cpu whose lowest level of sched domain is to
3329 * be returned.
3330 * @flag: The flag to check for the lowest sched_domain
3331 * for the given cpu.
3332 *
3333 * Returns the lowest sched_domain of a cpu which contains the given flag.
3334 */
3335static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3336{
3337 struct sched_domain *sd;
3338
3339 for_each_domain(cpu, sd)
3340 if (sd && (sd->flags & flag))
3341 break;
3342
3343 return sd;
3344}
3345
3346/**
3347 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3348 * @cpu: The cpu whose domains we're iterating over.
3349 * @sd: variable holding the value of the power_savings_sd
3350 * for cpu.
3351 * @flag: The flag to filter the sched_domains to be iterated.
3352 *
3353 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3354 * set, starting from the lowest sched_domain to the highest.
3355 */
3356#define for_each_flag_domain(cpu, sd, flag) \
3357 for (sd = lowest_flag_domain(cpu, flag); \
3358 (sd && (sd->flags & flag)); sd = sd->parent)
3359
3360/**
3361 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3362 * @ilb_group: group to be checked for semi-idleness
3363 *
3364 * Returns: 1 if the group is semi-idle. 0 otherwise.
3365 *
3366 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3367 * and atleast one non-idle CPU. This helper function checks if the given
3368 * sched_group is semi-idle or not.
3369 */
3370static inline int is_semi_idle_group(struct sched_group *ilb_group)
3371{
3372 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3373 sched_group_cpus(ilb_group));
3374
3375 /*
3376 * A sched_group is semi-idle when it has atleast one busy cpu
3377 * and atleast one idle cpu.
3378 */
3379 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3380 return 0;
3381
3382 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3383 return 0;
3384
3385 return 1;
3386}
3387/**
3388 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3389 * @cpu: The cpu which is nominating a new idle_load_balancer.
3390 *
3391 * Returns: Returns the id of the idle load balancer if it exists,
3392 * Else, returns >= nr_cpu_ids.
3393 *
3394 * This algorithm picks the idle load balancer such that it belongs to a
3395 * semi-idle powersavings sched_domain. The idea is to try and avoid
3396 * completely idle packages/cores just for the purpose of idle load balancing
3397 * when there are other idle cpu's which are better suited for that job.
3398 */
3399static int find_new_ilb(int cpu)
3400{
3401 struct sched_domain *sd;
3402 struct sched_group *ilb_group;
3403
3404 /*
3405 * Have idle load balancer selection from semi-idle packages only
3406 * when power-aware load balancing is enabled
3407 */
3408 if (!(sched_smt_power_savings || sched_mc_power_savings))
3409 goto out_done;
3410
3411 /*
3412 * Optimize for the case when we have no idle CPUs or only one
3413 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3414 */
3415 if (cpumask_weight(nohz.cpu_mask) < 2)
3416 goto out_done;
3417
3418 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3419 ilb_group = sd->groups;
3420
3421 do {
3422 if (is_semi_idle_group(ilb_group))
3423 return cpumask_first(nohz.ilb_grp_nohz_mask);
3424
3425 ilb_group = ilb_group->next;
3426
3427 } while (ilb_group != sd->groups);
3428 }
3429
3430out_done:
3431 return cpumask_first(nohz.cpu_mask);
3432}
3433#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3434static inline int find_new_ilb(int call_cpu)
3435{
3436 return cpumask_first(nohz.cpu_mask);
3437}
3438#endif
3439
3440/*
3441 * This routine will try to nominate the ilb (idle load balancing)
3442 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3443 * load balancing on behalf of all those cpus. If all the cpus in the system
3444 * go into this tickless mode, then there will be no ilb owner (as there is
3445 * no need for one) and all the cpus will sleep till the next wakeup event
3446 * arrives...
3447 *
3448 * For the ilb owner, tick is not stopped. And this tick will be used
3449 * for idle load balancing. ilb owner will still be part of
3450 * nohz.cpu_mask..
3451 *
3452 * While stopping the tick, this cpu will become the ilb owner if there
3453 * is no other owner. And will be the owner till that cpu becomes busy
3454 * or if all cpus in the system stop their ticks at which point
3455 * there is no need for ilb owner.
3456 *
3457 * When the ilb owner becomes busy, it nominates another owner, during the
3458 * next busy scheduler_tick()
3459 */
3460int select_nohz_load_balancer(int stop_tick)
3461{
3462 int cpu = smp_processor_id();
3463
3464 if (stop_tick) {
3465 cpu_rq(cpu)->in_nohz_recently = 1;
3466
3467 if (!cpu_active(cpu)) {
3468 if (atomic_read(&nohz.load_balancer) != cpu)
3469 return 0;
3470
3471 /*
3472 * If we are going offline and still the leader,
3473 * give up!
3474 */
3475 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3476 BUG();
3477
3478 return 0;
3479 }
3480
3481 cpumask_set_cpu(cpu, nohz.cpu_mask);
3482
3483 /* time for ilb owner also to sleep */
3484 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3485 if (atomic_read(&nohz.load_balancer) == cpu)
3486 atomic_set(&nohz.load_balancer, -1);
3487 return 0;
3488 }
3489
3490 if (atomic_read(&nohz.load_balancer) == -1) {
3491 /* make me the ilb owner */
3492 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3493 return 1;
3494 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3495 int new_ilb;
3496
3497 if (!(sched_smt_power_savings ||
3498 sched_mc_power_savings))
3499 return 1;
3500 /*
3501 * Check to see if there is a more power-efficient
3502 * ilb.
3503 */
3504 new_ilb = find_new_ilb(cpu);
3505 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3506 atomic_set(&nohz.load_balancer, -1);
3507 resched_cpu(new_ilb);
3508 return 0;
3509 }
3510 return 1;
3511 }
3512 } else {
3513 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3514 return 0;
3515
3516 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3517
3518 if (atomic_read(&nohz.load_balancer) == cpu)
3519 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3520 BUG();
3521 }
3522 return 0;
3523}
3524#endif
3525
3526static DEFINE_SPINLOCK(balancing);
3527
3528/*
3529 * It checks each scheduling domain to see if it is due to be balanced,
3530 * and initiates a balancing operation if so.
3531 *
3532 * Balancing parameters are set up in arch_init_sched_domains.
3533 */
3534static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3535{
3536 int balance = 1;
3537 struct rq *rq = cpu_rq(cpu);
3538 unsigned long interval;
3539 struct sched_domain *sd;
3540 /* Earliest time when we have to do rebalance again */
3541 unsigned long next_balance = jiffies + 60*HZ;
3542 int update_next_balance = 0;
3543 int need_serialize;
3544
3545 for_each_domain(cpu, sd) {
3546 if (!(sd->flags & SD_LOAD_BALANCE))
3547 continue;
3548
3549 interval = sd->balance_interval;
3550 if (idle != CPU_IDLE)
3551 interval *= sd->busy_factor;
3552
3553 /* scale ms to jiffies */
3554 interval = msecs_to_jiffies(interval);
3555 if (unlikely(!interval))
3556 interval = 1;
3557 if (interval > HZ*NR_CPUS/10)
3558 interval = HZ*NR_CPUS/10;
3559
3560 need_serialize = sd->flags & SD_SERIALIZE;
3561
3562 if (need_serialize) {
3563 if (!spin_trylock(&balancing))
3564 goto out;
3565 }
3566
3567 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3568 if (load_balance(cpu, rq, sd, idle, &balance)) {
3569 /*
3570 * We've pulled tasks over so either we're no
3571 * longer idle, or one of our SMT siblings is
3572 * not idle.
3573 */
3574 idle = CPU_NOT_IDLE;
3575 }
3576 sd->last_balance = jiffies;
3577 }
3578 if (need_serialize)
3579 spin_unlock(&balancing);
3580out:
3581 if (time_after(next_balance, sd->last_balance + interval)) {
3582 next_balance = sd->last_balance + interval;
3583 update_next_balance = 1;
3584 }
3585
3586 /*
3587 * Stop the load balance at this level. There is another
3588 * CPU in our sched group which is doing load balancing more
3589 * actively.
3590 */
3591 if (!balance)
3592 break;
3593 }
3594
3595 /*
3596 * next_balance will be updated only when there is a need.
3597 * When the cpu is attached to null domain for ex, it will not be
3598 * updated.
3599 */
3600 if (likely(update_next_balance))
3601 rq->next_balance = next_balance;
3602}
3603
3604/*
3605 * run_rebalance_domains is triggered when needed from the scheduler tick.
3606 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3607 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3608 */
3609static void run_rebalance_domains(struct softirq_action *h)
3610{
3611 int this_cpu = smp_processor_id();
3612 struct rq *this_rq = cpu_rq(this_cpu);
3613 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3614 CPU_IDLE : CPU_NOT_IDLE;
3615
3616 rebalance_domains(this_cpu, idle);
3617
3618#ifdef CONFIG_NO_HZ
3619 /*
3620 * If this cpu is the owner for idle load balancing, then do the
3621 * balancing on behalf of the other idle cpus whose ticks are
3622 * stopped.
3623 */
3624 if (this_rq->idle_at_tick &&
3625 atomic_read(&nohz.load_balancer) == this_cpu) {
3626 struct rq *rq;
3627 int balance_cpu;
3628
3629 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3630 if (balance_cpu == this_cpu)
3631 continue;
3632
3633 /*
3634 * If this cpu gets work to do, stop the load balancing
3635 * work being done for other cpus. Next load
3636 * balancing owner will pick it up.
3637 */
3638 if (need_resched())
3639 break;
3640
3641 rebalance_domains(balance_cpu, CPU_IDLE);
3642
3643 rq = cpu_rq(balance_cpu);
3644 if (time_after(this_rq->next_balance, rq->next_balance))
3645 this_rq->next_balance = rq->next_balance;
3646 }
3647 }
3648#endif
3649}
3650
3651static inline int on_null_domain(int cpu)
3652{
3653 return !rcu_dereference(cpu_rq(cpu)->sd);
3654}
3655
3656/*
3657 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3658 *
3659 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3660 * idle load balancing owner or decide to stop the periodic load balancing,
3661 * if the whole system is idle.
3662 */
3663static inline void trigger_load_balance(struct rq *rq, int cpu)
3664{
3665#ifdef CONFIG_NO_HZ
3666 /*
3667 * If we were in the nohz mode recently and busy at the current
3668 * scheduler tick, then check if we need to nominate new idle
3669 * load balancer.
3670 */
3671 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3672 rq->in_nohz_recently = 0;
3673
3674 if (atomic_read(&nohz.load_balancer) == cpu) {
3675 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3676 atomic_set(&nohz.load_balancer, -1);
3677 }
3678
3679 if (atomic_read(&nohz.load_balancer) == -1) {
3680 int ilb = find_new_ilb(cpu);
3681
3682 if (ilb < nr_cpu_ids)
3683 resched_cpu(ilb);
3684 }
3685 }
3686
3687 /*
3688 * If this cpu is idle and doing idle load balancing for all the
3689 * cpus with ticks stopped, is it time for that to stop?
3690 */
3691 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3692 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3693 resched_cpu(cpu);
3694 return;
3695 }
3696
3697 /*
3698 * If this cpu is idle and the idle load balancing is done by
3699 * someone else, then no need raise the SCHED_SOFTIRQ
3700 */
3701 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3702 cpumask_test_cpu(cpu, nohz.cpu_mask))
3703 return;
3704#endif
3705 /* Don't need to rebalance while attached to NULL domain */
3706 if (time_after_eq(jiffies, rq->next_balance) &&
3707 likely(!on_null_domain(cpu)))
3708 raise_softirq(SCHED_SOFTIRQ);
3709}
3710
1955static void rq_online_fair(struct rq *rq) 3711static void rq_online_fair(struct rq *rq)
1956{ 3712{
1957 update_sysctl(); 3713 update_sysctl();
@@ -1962,6 +3718,15 @@ static void rq_offline_fair(struct rq *rq)
1962 update_sysctl(); 3718 update_sysctl();
1963} 3719}
1964 3720
3721#else /* CONFIG_SMP */
3722
3723/*
3724 * on UP we do not need to balance between CPUs:
3725 */
3726static inline void idle_balance(int cpu, struct rq *rq)
3727{
3728}
3729
1965#endif /* CONFIG_SMP */ 3730#endif /* CONFIG_SMP */
1966 3731
1967/* 3732/*