aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched
diff options
context:
space:
mode:
authorPeter Zijlstra <peterz@infradead.org>2013-10-31 13:07:08 -0400
committerIngo Molnar <mingo@kernel.org>2013-11-06 01:49:16 -0500
commit7a6354e241d8fbc145836ac24e47630f12754536 (patch)
tree90e4bb2c4affd4a3ee4c758769c85d8770c8e857 /kernel/sched
parent7d716456a0ee4e9bd63be9234f886d20382ac950 (diff)
sched: Move wait.c into kernel/sched/
Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-5q5yqvdaen0rmapwloeaotx3@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/sched')
-rw-r--r--kernel/sched/Makefile1
-rw-r--r--kernel/sched/wait.c401
2 files changed, 402 insertions, 0 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 54adcf35f495..f8d3f4baa1a1 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -12,6 +12,7 @@ CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
12endif 12endif
13 13
14obj-y += core.o proc.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o 14obj-y += core.o proc.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o
15obj-y += wait.o
15obj-$(CONFIG_SMP) += cpupri.o 16obj-$(CONFIG_SMP) += cpupri.o
16obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o 17obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
17obj-$(CONFIG_SCHEDSTATS) += stats.o 18obj-$(CONFIG_SCHEDSTATS) += stats.o
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c
new file mode 100644
index 000000000000..de21c6305a44
--- /dev/null
+++ b/kernel/sched/wait.c
@@ -0,0 +1,401 @@
1/*
2 * Generic waiting primitives.
3 *
4 * (C) 2004 Nadia Yvette Chambers, Oracle
5 */
6#include <linux/init.h>
7#include <linux/export.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/wait.h>
11#include <linux/hash.h>
12
13void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
14{
15 spin_lock_init(&q->lock);
16 lockdep_set_class_and_name(&q->lock, key, name);
17 INIT_LIST_HEAD(&q->task_list);
18}
19
20EXPORT_SYMBOL(__init_waitqueue_head);
21
22void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
23{
24 unsigned long flags;
25
26 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
27 spin_lock_irqsave(&q->lock, flags);
28 __add_wait_queue(q, wait);
29 spin_unlock_irqrestore(&q->lock, flags);
30}
31EXPORT_SYMBOL(add_wait_queue);
32
33void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
34{
35 unsigned long flags;
36
37 wait->flags |= WQ_FLAG_EXCLUSIVE;
38 spin_lock_irqsave(&q->lock, flags);
39 __add_wait_queue_tail(q, wait);
40 spin_unlock_irqrestore(&q->lock, flags);
41}
42EXPORT_SYMBOL(add_wait_queue_exclusive);
43
44void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
45{
46 unsigned long flags;
47
48 spin_lock_irqsave(&q->lock, flags);
49 __remove_wait_queue(q, wait);
50 spin_unlock_irqrestore(&q->lock, flags);
51}
52EXPORT_SYMBOL(remove_wait_queue);
53
54
55/*
56 * Note: we use "set_current_state()" _after_ the wait-queue add,
57 * because we need a memory barrier there on SMP, so that any
58 * wake-function that tests for the wait-queue being active
59 * will be guaranteed to see waitqueue addition _or_ subsequent
60 * tests in this thread will see the wakeup having taken place.
61 *
62 * The spin_unlock() itself is semi-permeable and only protects
63 * one way (it only protects stuff inside the critical region and
64 * stops them from bleeding out - it would still allow subsequent
65 * loads to move into the critical region).
66 */
67void
68prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
69{
70 unsigned long flags;
71
72 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
73 spin_lock_irqsave(&q->lock, flags);
74 if (list_empty(&wait->task_list))
75 __add_wait_queue(q, wait);
76 set_current_state(state);
77 spin_unlock_irqrestore(&q->lock, flags);
78}
79EXPORT_SYMBOL(prepare_to_wait);
80
81void
82prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
83{
84 unsigned long flags;
85
86 wait->flags |= WQ_FLAG_EXCLUSIVE;
87 spin_lock_irqsave(&q->lock, flags);
88 if (list_empty(&wait->task_list))
89 __add_wait_queue_tail(q, wait);
90 set_current_state(state);
91 spin_unlock_irqrestore(&q->lock, flags);
92}
93EXPORT_SYMBOL(prepare_to_wait_exclusive);
94
95long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
96{
97 unsigned long flags;
98
99 if (signal_pending_state(state, current))
100 return -ERESTARTSYS;
101
102 wait->private = current;
103 wait->func = autoremove_wake_function;
104
105 spin_lock_irqsave(&q->lock, flags);
106 if (list_empty(&wait->task_list)) {
107 if (wait->flags & WQ_FLAG_EXCLUSIVE)
108 __add_wait_queue_tail(q, wait);
109 else
110 __add_wait_queue(q, wait);
111 }
112 set_current_state(state);
113 spin_unlock_irqrestore(&q->lock, flags);
114
115 return 0;
116}
117EXPORT_SYMBOL(prepare_to_wait_event);
118
119/**
120 * finish_wait - clean up after waiting in a queue
121 * @q: waitqueue waited on
122 * @wait: wait descriptor
123 *
124 * Sets current thread back to running state and removes
125 * the wait descriptor from the given waitqueue if still
126 * queued.
127 */
128void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
129{
130 unsigned long flags;
131
132 __set_current_state(TASK_RUNNING);
133 /*
134 * We can check for list emptiness outside the lock
135 * IFF:
136 * - we use the "careful" check that verifies both
137 * the next and prev pointers, so that there cannot
138 * be any half-pending updates in progress on other
139 * CPU's that we haven't seen yet (and that might
140 * still change the stack area.
141 * and
142 * - all other users take the lock (ie we can only
143 * have _one_ other CPU that looks at or modifies
144 * the list).
145 */
146 if (!list_empty_careful(&wait->task_list)) {
147 spin_lock_irqsave(&q->lock, flags);
148 list_del_init(&wait->task_list);
149 spin_unlock_irqrestore(&q->lock, flags);
150 }
151}
152EXPORT_SYMBOL(finish_wait);
153
154/**
155 * abort_exclusive_wait - abort exclusive waiting in a queue
156 * @q: waitqueue waited on
157 * @wait: wait descriptor
158 * @mode: runstate of the waiter to be woken
159 * @key: key to identify a wait bit queue or %NULL
160 *
161 * Sets current thread back to running state and removes
162 * the wait descriptor from the given waitqueue if still
163 * queued.
164 *
165 * Wakes up the next waiter if the caller is concurrently
166 * woken up through the queue.
167 *
168 * This prevents waiter starvation where an exclusive waiter
169 * aborts and is woken up concurrently and no one wakes up
170 * the next waiter.
171 */
172void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
173 unsigned int mode, void *key)
174{
175 unsigned long flags;
176
177 __set_current_state(TASK_RUNNING);
178 spin_lock_irqsave(&q->lock, flags);
179 if (!list_empty(&wait->task_list))
180 list_del_init(&wait->task_list);
181 else if (waitqueue_active(q))
182 __wake_up_locked_key(q, mode, key);
183 spin_unlock_irqrestore(&q->lock, flags);
184}
185EXPORT_SYMBOL(abort_exclusive_wait);
186
187int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
188{
189 int ret = default_wake_function(wait, mode, sync, key);
190
191 if (ret)
192 list_del_init(&wait->task_list);
193 return ret;
194}
195EXPORT_SYMBOL(autoremove_wake_function);
196
197int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
198{
199 struct wait_bit_key *key = arg;
200 struct wait_bit_queue *wait_bit
201 = container_of(wait, struct wait_bit_queue, wait);
202
203 if (wait_bit->key.flags != key->flags ||
204 wait_bit->key.bit_nr != key->bit_nr ||
205 test_bit(key->bit_nr, key->flags))
206 return 0;
207 else
208 return autoremove_wake_function(wait, mode, sync, key);
209}
210EXPORT_SYMBOL(wake_bit_function);
211
212/*
213 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
214 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
215 * permitted return codes. Nonzero return codes halt waiting and return.
216 */
217int __sched
218__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
219 int (*action)(void *), unsigned mode)
220{
221 int ret = 0;
222
223 do {
224 prepare_to_wait(wq, &q->wait, mode);
225 if (test_bit(q->key.bit_nr, q->key.flags))
226 ret = (*action)(q->key.flags);
227 } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
228 finish_wait(wq, &q->wait);
229 return ret;
230}
231EXPORT_SYMBOL(__wait_on_bit);
232
233int __sched out_of_line_wait_on_bit(void *word, int bit,
234 int (*action)(void *), unsigned mode)
235{
236 wait_queue_head_t *wq = bit_waitqueue(word, bit);
237 DEFINE_WAIT_BIT(wait, word, bit);
238
239 return __wait_on_bit(wq, &wait, action, mode);
240}
241EXPORT_SYMBOL(out_of_line_wait_on_bit);
242
243int __sched
244__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
245 int (*action)(void *), unsigned mode)
246{
247 do {
248 int ret;
249
250 prepare_to_wait_exclusive(wq, &q->wait, mode);
251 if (!test_bit(q->key.bit_nr, q->key.flags))
252 continue;
253 ret = action(q->key.flags);
254 if (!ret)
255 continue;
256 abort_exclusive_wait(wq, &q->wait, mode, &q->key);
257 return ret;
258 } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
259 finish_wait(wq, &q->wait);
260 return 0;
261}
262EXPORT_SYMBOL(__wait_on_bit_lock);
263
264int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
265 int (*action)(void *), unsigned mode)
266{
267 wait_queue_head_t *wq = bit_waitqueue(word, bit);
268 DEFINE_WAIT_BIT(wait, word, bit);
269
270 return __wait_on_bit_lock(wq, &wait, action, mode);
271}
272EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
273
274void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
275{
276 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
277 if (waitqueue_active(wq))
278 __wake_up(wq, TASK_NORMAL, 1, &key);
279}
280EXPORT_SYMBOL(__wake_up_bit);
281
282/**
283 * wake_up_bit - wake up a waiter on a bit
284 * @word: the word being waited on, a kernel virtual address
285 * @bit: the bit of the word being waited on
286 *
287 * There is a standard hashed waitqueue table for generic use. This
288 * is the part of the hashtable's accessor API that wakes up waiters
289 * on a bit. For instance, if one were to have waiters on a bitflag,
290 * one would call wake_up_bit() after clearing the bit.
291 *
292 * In order for this to function properly, as it uses waitqueue_active()
293 * internally, some kind of memory barrier must be done prior to calling
294 * this. Typically, this will be smp_mb__after_clear_bit(), but in some
295 * cases where bitflags are manipulated non-atomically under a lock, one
296 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
297 * because spin_unlock() does not guarantee a memory barrier.
298 */
299void wake_up_bit(void *word, int bit)
300{
301 __wake_up_bit(bit_waitqueue(word, bit), word, bit);
302}
303EXPORT_SYMBOL(wake_up_bit);
304
305wait_queue_head_t *bit_waitqueue(void *word, int bit)
306{
307 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
308 const struct zone *zone = page_zone(virt_to_page(word));
309 unsigned long val = (unsigned long)word << shift | bit;
310
311 return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
312}
313EXPORT_SYMBOL(bit_waitqueue);
314
315/*
316 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
317 * index (we're keying off bit -1, but that would produce a horrible hash
318 * value).
319 */
320static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
321{
322 if (BITS_PER_LONG == 64) {
323 unsigned long q = (unsigned long)p;
324 return bit_waitqueue((void *)(q & ~1), q & 1);
325 }
326 return bit_waitqueue(p, 0);
327}
328
329static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
330 void *arg)
331{
332 struct wait_bit_key *key = arg;
333 struct wait_bit_queue *wait_bit
334 = container_of(wait, struct wait_bit_queue, wait);
335 atomic_t *val = key->flags;
336
337 if (wait_bit->key.flags != key->flags ||
338 wait_bit->key.bit_nr != key->bit_nr ||
339 atomic_read(val) != 0)
340 return 0;
341 return autoremove_wake_function(wait, mode, sync, key);
342}
343
344/*
345 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
346 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
347 * return codes halt waiting and return.
348 */
349static __sched
350int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
351 int (*action)(atomic_t *), unsigned mode)
352{
353 atomic_t *val;
354 int ret = 0;
355
356 do {
357 prepare_to_wait(wq, &q->wait, mode);
358 val = q->key.flags;
359 if (atomic_read(val) == 0)
360 break;
361 ret = (*action)(val);
362 } while (!ret && atomic_read(val) != 0);
363 finish_wait(wq, &q->wait);
364 return ret;
365}
366
367#define DEFINE_WAIT_ATOMIC_T(name, p) \
368 struct wait_bit_queue name = { \
369 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
370 .wait = { \
371 .private = current, \
372 .func = wake_atomic_t_function, \
373 .task_list = \
374 LIST_HEAD_INIT((name).wait.task_list), \
375 }, \
376 }
377
378__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
379 unsigned mode)
380{
381 wait_queue_head_t *wq = atomic_t_waitqueue(p);
382 DEFINE_WAIT_ATOMIC_T(wait, p);
383
384 return __wait_on_atomic_t(wq, &wait, action, mode);
385}
386EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
387
388/**
389 * wake_up_atomic_t - Wake up a waiter on a atomic_t
390 * @p: The atomic_t being waited on, a kernel virtual address
391 *
392 * Wake up anyone waiting for the atomic_t to go to zero.
393 *
394 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
395 * check is done by the waiter's wake function, not the by the waker itself).
396 */
397void wake_up_atomic_t(atomic_t *p)
398{
399 __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
400}
401EXPORT_SYMBOL(wake_up_atomic_t);