diff options
author | Peter Zijlstra <a.p.zijlstra@chello.nl> | 2011-11-15 11:14:39 -0500 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2011-11-17 06:20:22 -0500 |
commit | 391e43da797a96aeb65410281891f6d0b0e9611c (patch) | |
tree | 0ce6784525a5a8f75b377170cf1a7d60abccea29 /kernel/sched | |
parent | 029632fbb7b7c9d85063cc9eb470de6c54873df3 (diff) |
sched: Move all scheduler bits into kernel/sched/
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/Makefile | 20 | ||||
-rw-r--r-- | kernel/sched/auto_group.c | 258 | ||||
-rw-r--r-- | kernel/sched/auto_group.h | 64 | ||||
-rw-r--r-- | kernel/sched/clock.c | 350 | ||||
-rw-r--r-- | kernel/sched/core.c | 8101 | ||||
-rw-r--r-- | kernel/sched/cpupri.c | 241 | ||||
-rw-r--r-- | kernel/sched/cpupri.h | 34 | ||||
-rw-r--r-- | kernel/sched/debug.c | 510 | ||||
-rw-r--r-- | kernel/sched/fair.c | 5601 | ||||
-rw-r--r-- | kernel/sched/features.h | 70 | ||||
-rw-r--r-- | kernel/sched/idle_task.c | 99 | ||||
-rw-r--r-- | kernel/sched/rt.c | 2045 | ||||
-rw-r--r-- | kernel/sched/sched.h | 1064 | ||||
-rw-r--r-- | kernel/sched/stats.c | 111 | ||||
-rw-r--r-- | kernel/sched/stats.h | 233 | ||||
-rw-r--r-- | kernel/sched/stop_task.c | 108 |
16 files changed, 18909 insertions, 0 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile new file mode 100644 index 000000000000..9a7dd35102a3 --- /dev/null +++ b/kernel/sched/Makefile | |||
@@ -0,0 +1,20 @@ | |||
1 | ifdef CONFIG_FUNCTION_TRACER | ||
2 | CFLAGS_REMOVE_clock.o = -pg | ||
3 | endif | ||
4 | |||
5 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | ||
6 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | ||
7 | # needed for x86 only. Why this used to be enabled for all architectures is beyond | ||
8 | # me. I suspect most platforms don't need this, but until we know that for sure | ||
9 | # I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k | ||
10 | # to get a correct value for the wait-channel (WCHAN in ps). --davidm | ||
11 | CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer | ||
12 | endif | ||
13 | |||
14 | obj-y += core.o clock.o idle_task.o fair.o rt.o stop_task.o | ||
15 | obj-$(CONFIG_SMP) += cpupri.o | ||
16 | obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o | ||
17 | obj-$(CONFIG_SCHEDSTATS) += stats.o | ||
18 | obj-$(CONFIG_SCHED_DEBUG) += debug.o | ||
19 | |||
20 | |||
diff --git a/kernel/sched/auto_group.c b/kernel/sched/auto_group.c new file mode 100644 index 000000000000..e8a1f83ee0e7 --- /dev/null +++ b/kernel/sched/auto_group.c | |||
@@ -0,0 +1,258 @@ | |||
1 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
2 | |||
3 | #include "sched.h" | ||
4 | |||
5 | #include <linux/proc_fs.h> | ||
6 | #include <linux/seq_file.h> | ||
7 | #include <linux/kallsyms.h> | ||
8 | #include <linux/utsname.h> | ||
9 | #include <linux/security.h> | ||
10 | #include <linux/export.h> | ||
11 | |||
12 | unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1; | ||
13 | static struct autogroup autogroup_default; | ||
14 | static atomic_t autogroup_seq_nr; | ||
15 | |||
16 | void __init autogroup_init(struct task_struct *init_task) | ||
17 | { | ||
18 | autogroup_default.tg = &root_task_group; | ||
19 | kref_init(&autogroup_default.kref); | ||
20 | init_rwsem(&autogroup_default.lock); | ||
21 | init_task->signal->autogroup = &autogroup_default; | ||
22 | } | ||
23 | |||
24 | void autogroup_free(struct task_group *tg) | ||
25 | { | ||
26 | kfree(tg->autogroup); | ||
27 | } | ||
28 | |||
29 | static inline void autogroup_destroy(struct kref *kref) | ||
30 | { | ||
31 | struct autogroup *ag = container_of(kref, struct autogroup, kref); | ||
32 | |||
33 | #ifdef CONFIG_RT_GROUP_SCHED | ||
34 | /* We've redirected RT tasks to the root task group... */ | ||
35 | ag->tg->rt_se = NULL; | ||
36 | ag->tg->rt_rq = NULL; | ||
37 | #endif | ||
38 | sched_destroy_group(ag->tg); | ||
39 | } | ||
40 | |||
41 | static inline void autogroup_kref_put(struct autogroup *ag) | ||
42 | { | ||
43 | kref_put(&ag->kref, autogroup_destroy); | ||
44 | } | ||
45 | |||
46 | static inline struct autogroup *autogroup_kref_get(struct autogroup *ag) | ||
47 | { | ||
48 | kref_get(&ag->kref); | ||
49 | return ag; | ||
50 | } | ||
51 | |||
52 | static inline struct autogroup *autogroup_task_get(struct task_struct *p) | ||
53 | { | ||
54 | struct autogroup *ag; | ||
55 | unsigned long flags; | ||
56 | |||
57 | if (!lock_task_sighand(p, &flags)) | ||
58 | return autogroup_kref_get(&autogroup_default); | ||
59 | |||
60 | ag = autogroup_kref_get(p->signal->autogroup); | ||
61 | unlock_task_sighand(p, &flags); | ||
62 | |||
63 | return ag; | ||
64 | } | ||
65 | |||
66 | static inline struct autogroup *autogroup_create(void) | ||
67 | { | ||
68 | struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL); | ||
69 | struct task_group *tg; | ||
70 | |||
71 | if (!ag) | ||
72 | goto out_fail; | ||
73 | |||
74 | tg = sched_create_group(&root_task_group); | ||
75 | |||
76 | if (IS_ERR(tg)) | ||
77 | goto out_free; | ||
78 | |||
79 | kref_init(&ag->kref); | ||
80 | init_rwsem(&ag->lock); | ||
81 | ag->id = atomic_inc_return(&autogroup_seq_nr); | ||
82 | ag->tg = tg; | ||
83 | #ifdef CONFIG_RT_GROUP_SCHED | ||
84 | /* | ||
85 | * Autogroup RT tasks are redirected to the root task group | ||
86 | * so we don't have to move tasks around upon policy change, | ||
87 | * or flail around trying to allocate bandwidth on the fly. | ||
88 | * A bandwidth exception in __sched_setscheduler() allows | ||
89 | * the policy change to proceed. Thereafter, task_group() | ||
90 | * returns &root_task_group, so zero bandwidth is required. | ||
91 | */ | ||
92 | free_rt_sched_group(tg); | ||
93 | tg->rt_se = root_task_group.rt_se; | ||
94 | tg->rt_rq = root_task_group.rt_rq; | ||
95 | #endif | ||
96 | tg->autogroup = ag; | ||
97 | |||
98 | return ag; | ||
99 | |||
100 | out_free: | ||
101 | kfree(ag); | ||
102 | out_fail: | ||
103 | if (printk_ratelimit()) { | ||
104 | printk(KERN_WARNING "autogroup_create: %s failure.\n", | ||
105 | ag ? "sched_create_group()" : "kmalloc()"); | ||
106 | } | ||
107 | |||
108 | return autogroup_kref_get(&autogroup_default); | ||
109 | } | ||
110 | |||
111 | bool task_wants_autogroup(struct task_struct *p, struct task_group *tg) | ||
112 | { | ||
113 | if (tg != &root_task_group) | ||
114 | return false; | ||
115 | |||
116 | if (p->sched_class != &fair_sched_class) | ||
117 | return false; | ||
118 | |||
119 | /* | ||
120 | * We can only assume the task group can't go away on us if | ||
121 | * autogroup_move_group() can see us on ->thread_group list. | ||
122 | */ | ||
123 | if (p->flags & PF_EXITING) | ||
124 | return false; | ||
125 | |||
126 | return true; | ||
127 | } | ||
128 | |||
129 | static void | ||
130 | autogroup_move_group(struct task_struct *p, struct autogroup *ag) | ||
131 | { | ||
132 | struct autogroup *prev; | ||
133 | struct task_struct *t; | ||
134 | unsigned long flags; | ||
135 | |||
136 | BUG_ON(!lock_task_sighand(p, &flags)); | ||
137 | |||
138 | prev = p->signal->autogroup; | ||
139 | if (prev == ag) { | ||
140 | unlock_task_sighand(p, &flags); | ||
141 | return; | ||
142 | } | ||
143 | |||
144 | p->signal->autogroup = autogroup_kref_get(ag); | ||
145 | |||
146 | if (!ACCESS_ONCE(sysctl_sched_autogroup_enabled)) | ||
147 | goto out; | ||
148 | |||
149 | t = p; | ||
150 | do { | ||
151 | sched_move_task(t); | ||
152 | } while_each_thread(p, t); | ||
153 | |||
154 | out: | ||
155 | unlock_task_sighand(p, &flags); | ||
156 | autogroup_kref_put(prev); | ||
157 | } | ||
158 | |||
159 | /* Allocates GFP_KERNEL, cannot be called under any spinlock */ | ||
160 | void sched_autogroup_create_attach(struct task_struct *p) | ||
161 | { | ||
162 | struct autogroup *ag = autogroup_create(); | ||
163 | |||
164 | autogroup_move_group(p, ag); | ||
165 | /* drop extra reference added by autogroup_create() */ | ||
166 | autogroup_kref_put(ag); | ||
167 | } | ||
168 | EXPORT_SYMBOL(sched_autogroup_create_attach); | ||
169 | |||
170 | /* Cannot be called under siglock. Currently has no users */ | ||
171 | void sched_autogroup_detach(struct task_struct *p) | ||
172 | { | ||
173 | autogroup_move_group(p, &autogroup_default); | ||
174 | } | ||
175 | EXPORT_SYMBOL(sched_autogroup_detach); | ||
176 | |||
177 | void sched_autogroup_fork(struct signal_struct *sig) | ||
178 | { | ||
179 | sig->autogroup = autogroup_task_get(current); | ||
180 | } | ||
181 | |||
182 | void sched_autogroup_exit(struct signal_struct *sig) | ||
183 | { | ||
184 | autogroup_kref_put(sig->autogroup); | ||
185 | } | ||
186 | |||
187 | static int __init setup_autogroup(char *str) | ||
188 | { | ||
189 | sysctl_sched_autogroup_enabled = 0; | ||
190 | |||
191 | return 1; | ||
192 | } | ||
193 | |||
194 | __setup("noautogroup", setup_autogroup); | ||
195 | |||
196 | #ifdef CONFIG_PROC_FS | ||
197 | |||
198 | int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice) | ||
199 | { | ||
200 | static unsigned long next = INITIAL_JIFFIES; | ||
201 | struct autogroup *ag; | ||
202 | int err; | ||
203 | |||
204 | if (*nice < -20 || *nice > 19) | ||
205 | return -EINVAL; | ||
206 | |||
207 | err = security_task_setnice(current, *nice); | ||
208 | if (err) | ||
209 | return err; | ||
210 | |||
211 | if (*nice < 0 && !can_nice(current, *nice)) | ||
212 | return -EPERM; | ||
213 | |||
214 | /* this is a heavy operation taking global locks.. */ | ||
215 | if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next)) | ||
216 | return -EAGAIN; | ||
217 | |||
218 | next = HZ / 10 + jiffies; | ||
219 | ag = autogroup_task_get(p); | ||
220 | |||
221 | down_write(&ag->lock); | ||
222 | err = sched_group_set_shares(ag->tg, prio_to_weight[*nice + 20]); | ||
223 | if (!err) | ||
224 | ag->nice = *nice; | ||
225 | up_write(&ag->lock); | ||
226 | |||
227 | autogroup_kref_put(ag); | ||
228 | |||
229 | return err; | ||
230 | } | ||
231 | |||
232 | void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m) | ||
233 | { | ||
234 | struct autogroup *ag = autogroup_task_get(p); | ||
235 | |||
236 | if (!task_group_is_autogroup(ag->tg)) | ||
237 | goto out; | ||
238 | |||
239 | down_read(&ag->lock); | ||
240 | seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice); | ||
241 | up_read(&ag->lock); | ||
242 | |||
243 | out: | ||
244 | autogroup_kref_put(ag); | ||
245 | } | ||
246 | #endif /* CONFIG_PROC_FS */ | ||
247 | |||
248 | #ifdef CONFIG_SCHED_DEBUG | ||
249 | int autogroup_path(struct task_group *tg, char *buf, int buflen) | ||
250 | { | ||
251 | if (!task_group_is_autogroup(tg)) | ||
252 | return 0; | ||
253 | |||
254 | return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id); | ||
255 | } | ||
256 | #endif /* CONFIG_SCHED_DEBUG */ | ||
257 | |||
258 | #endif /* CONFIG_SCHED_AUTOGROUP */ | ||
diff --git a/kernel/sched/auto_group.h b/kernel/sched/auto_group.h new file mode 100644 index 000000000000..8bd047142816 --- /dev/null +++ b/kernel/sched/auto_group.h | |||
@@ -0,0 +1,64 @@ | |||
1 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
2 | |||
3 | #include <linux/kref.h> | ||
4 | #include <linux/rwsem.h> | ||
5 | |||
6 | struct autogroup { | ||
7 | /* | ||
8 | * reference doesn't mean how many thread attach to this | ||
9 | * autogroup now. It just stands for the number of task | ||
10 | * could use this autogroup. | ||
11 | */ | ||
12 | struct kref kref; | ||
13 | struct task_group *tg; | ||
14 | struct rw_semaphore lock; | ||
15 | unsigned long id; | ||
16 | int nice; | ||
17 | }; | ||
18 | |||
19 | extern void autogroup_init(struct task_struct *init_task); | ||
20 | extern void autogroup_free(struct task_group *tg); | ||
21 | |||
22 | static inline bool task_group_is_autogroup(struct task_group *tg) | ||
23 | { | ||
24 | return !!tg->autogroup; | ||
25 | } | ||
26 | |||
27 | extern bool task_wants_autogroup(struct task_struct *p, struct task_group *tg); | ||
28 | |||
29 | static inline struct task_group * | ||
30 | autogroup_task_group(struct task_struct *p, struct task_group *tg) | ||
31 | { | ||
32 | int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled); | ||
33 | |||
34 | if (enabled && task_wants_autogroup(p, tg)) | ||
35 | return p->signal->autogroup->tg; | ||
36 | |||
37 | return tg; | ||
38 | } | ||
39 | |||
40 | extern int autogroup_path(struct task_group *tg, char *buf, int buflen); | ||
41 | |||
42 | #else /* !CONFIG_SCHED_AUTOGROUP */ | ||
43 | |||
44 | static inline void autogroup_init(struct task_struct *init_task) { } | ||
45 | static inline void autogroup_free(struct task_group *tg) { } | ||
46 | static inline bool task_group_is_autogroup(struct task_group *tg) | ||
47 | { | ||
48 | return 0; | ||
49 | } | ||
50 | |||
51 | static inline struct task_group * | ||
52 | autogroup_task_group(struct task_struct *p, struct task_group *tg) | ||
53 | { | ||
54 | return tg; | ||
55 | } | ||
56 | |||
57 | #ifdef CONFIG_SCHED_DEBUG | ||
58 | static inline int autogroup_path(struct task_group *tg, char *buf, int buflen) | ||
59 | { | ||
60 | return 0; | ||
61 | } | ||
62 | #endif | ||
63 | |||
64 | #endif /* CONFIG_SCHED_AUTOGROUP */ | ||
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c new file mode 100644 index 000000000000..c685e31492df --- /dev/null +++ b/kernel/sched/clock.c | |||
@@ -0,0 +1,350 @@ | |||
1 | /* | ||
2 | * sched_clock for unstable cpu clocks | ||
3 | * | ||
4 | * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
5 | * | ||
6 | * Updates and enhancements: | ||
7 | * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> | ||
8 | * | ||
9 | * Based on code by: | ||
10 | * Ingo Molnar <mingo@redhat.com> | ||
11 | * Guillaume Chazarain <guichaz@gmail.com> | ||
12 | * | ||
13 | * | ||
14 | * What: | ||
15 | * | ||
16 | * cpu_clock(i) provides a fast (execution time) high resolution | ||
17 | * clock with bounded drift between CPUs. The value of cpu_clock(i) | ||
18 | * is monotonic for constant i. The timestamp returned is in nanoseconds. | ||
19 | * | ||
20 | * ######################### BIG FAT WARNING ########################## | ||
21 | * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # | ||
22 | * # go backwards !! # | ||
23 | * #################################################################### | ||
24 | * | ||
25 | * There is no strict promise about the base, although it tends to start | ||
26 | * at 0 on boot (but people really shouldn't rely on that). | ||
27 | * | ||
28 | * cpu_clock(i) -- can be used from any context, including NMI. | ||
29 | * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI) | ||
30 | * local_clock() -- is cpu_clock() on the current cpu. | ||
31 | * | ||
32 | * How: | ||
33 | * | ||
34 | * The implementation either uses sched_clock() when | ||
35 | * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the | ||
36 | * sched_clock() is assumed to provide these properties (mostly it means | ||
37 | * the architecture provides a globally synchronized highres time source). | ||
38 | * | ||
39 | * Otherwise it tries to create a semi stable clock from a mixture of other | ||
40 | * clocks, including: | ||
41 | * | ||
42 | * - GTOD (clock monotomic) | ||
43 | * - sched_clock() | ||
44 | * - explicit idle events | ||
45 | * | ||
46 | * We use GTOD as base and use sched_clock() deltas to improve resolution. The | ||
47 | * deltas are filtered to provide monotonicity and keeping it within an | ||
48 | * expected window. | ||
49 | * | ||
50 | * Furthermore, explicit sleep and wakeup hooks allow us to account for time | ||
51 | * that is otherwise invisible (TSC gets stopped). | ||
52 | * | ||
53 | * | ||
54 | * Notes: | ||
55 | * | ||
56 | * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things | ||
57 | * like cpufreq interrupts that can change the base clock (TSC) multiplier | ||
58 | * and cause funny jumps in time -- although the filtering provided by | ||
59 | * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it | ||
60 | * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on | ||
61 | * sched_clock(). | ||
62 | */ | ||
63 | #include <linux/spinlock.h> | ||
64 | #include <linux/hardirq.h> | ||
65 | #include <linux/export.h> | ||
66 | #include <linux/percpu.h> | ||
67 | #include <linux/ktime.h> | ||
68 | #include <linux/sched.h> | ||
69 | |||
70 | /* | ||
71 | * Scheduler clock - returns current time in nanosec units. | ||
72 | * This is default implementation. | ||
73 | * Architectures and sub-architectures can override this. | ||
74 | */ | ||
75 | unsigned long long __attribute__((weak)) sched_clock(void) | ||
76 | { | ||
77 | return (unsigned long long)(jiffies - INITIAL_JIFFIES) | ||
78 | * (NSEC_PER_SEC / HZ); | ||
79 | } | ||
80 | EXPORT_SYMBOL_GPL(sched_clock); | ||
81 | |||
82 | __read_mostly int sched_clock_running; | ||
83 | |||
84 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | ||
85 | __read_mostly int sched_clock_stable; | ||
86 | |||
87 | struct sched_clock_data { | ||
88 | u64 tick_raw; | ||
89 | u64 tick_gtod; | ||
90 | u64 clock; | ||
91 | }; | ||
92 | |||
93 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); | ||
94 | |||
95 | static inline struct sched_clock_data *this_scd(void) | ||
96 | { | ||
97 | return &__get_cpu_var(sched_clock_data); | ||
98 | } | ||
99 | |||
100 | static inline struct sched_clock_data *cpu_sdc(int cpu) | ||
101 | { | ||
102 | return &per_cpu(sched_clock_data, cpu); | ||
103 | } | ||
104 | |||
105 | void sched_clock_init(void) | ||
106 | { | ||
107 | u64 ktime_now = ktime_to_ns(ktime_get()); | ||
108 | int cpu; | ||
109 | |||
110 | for_each_possible_cpu(cpu) { | ||
111 | struct sched_clock_data *scd = cpu_sdc(cpu); | ||
112 | |||
113 | scd->tick_raw = 0; | ||
114 | scd->tick_gtod = ktime_now; | ||
115 | scd->clock = ktime_now; | ||
116 | } | ||
117 | |||
118 | sched_clock_running = 1; | ||
119 | } | ||
120 | |||
121 | /* | ||
122 | * min, max except they take wrapping into account | ||
123 | */ | ||
124 | |||
125 | static inline u64 wrap_min(u64 x, u64 y) | ||
126 | { | ||
127 | return (s64)(x - y) < 0 ? x : y; | ||
128 | } | ||
129 | |||
130 | static inline u64 wrap_max(u64 x, u64 y) | ||
131 | { | ||
132 | return (s64)(x - y) > 0 ? x : y; | ||
133 | } | ||
134 | |||
135 | /* | ||
136 | * update the percpu scd from the raw @now value | ||
137 | * | ||
138 | * - filter out backward motion | ||
139 | * - use the GTOD tick value to create a window to filter crazy TSC values | ||
140 | */ | ||
141 | static u64 sched_clock_local(struct sched_clock_data *scd) | ||
142 | { | ||
143 | u64 now, clock, old_clock, min_clock, max_clock; | ||
144 | s64 delta; | ||
145 | |||
146 | again: | ||
147 | now = sched_clock(); | ||
148 | delta = now - scd->tick_raw; | ||
149 | if (unlikely(delta < 0)) | ||
150 | delta = 0; | ||
151 | |||
152 | old_clock = scd->clock; | ||
153 | |||
154 | /* | ||
155 | * scd->clock = clamp(scd->tick_gtod + delta, | ||
156 | * max(scd->tick_gtod, scd->clock), | ||
157 | * scd->tick_gtod + TICK_NSEC); | ||
158 | */ | ||
159 | |||
160 | clock = scd->tick_gtod + delta; | ||
161 | min_clock = wrap_max(scd->tick_gtod, old_clock); | ||
162 | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); | ||
163 | |||
164 | clock = wrap_max(clock, min_clock); | ||
165 | clock = wrap_min(clock, max_clock); | ||
166 | |||
167 | if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) | ||
168 | goto again; | ||
169 | |||
170 | return clock; | ||
171 | } | ||
172 | |||
173 | static u64 sched_clock_remote(struct sched_clock_data *scd) | ||
174 | { | ||
175 | struct sched_clock_data *my_scd = this_scd(); | ||
176 | u64 this_clock, remote_clock; | ||
177 | u64 *ptr, old_val, val; | ||
178 | |||
179 | sched_clock_local(my_scd); | ||
180 | again: | ||
181 | this_clock = my_scd->clock; | ||
182 | remote_clock = scd->clock; | ||
183 | |||
184 | /* | ||
185 | * Use the opportunity that we have both locks | ||
186 | * taken to couple the two clocks: we take the | ||
187 | * larger time as the latest time for both | ||
188 | * runqueues. (this creates monotonic movement) | ||
189 | */ | ||
190 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
191 | ptr = &scd->clock; | ||
192 | old_val = remote_clock; | ||
193 | val = this_clock; | ||
194 | } else { | ||
195 | /* | ||
196 | * Should be rare, but possible: | ||
197 | */ | ||
198 | ptr = &my_scd->clock; | ||
199 | old_val = this_clock; | ||
200 | val = remote_clock; | ||
201 | } | ||
202 | |||
203 | if (cmpxchg64(ptr, old_val, val) != old_val) | ||
204 | goto again; | ||
205 | |||
206 | return val; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * Similar to cpu_clock(), but requires local IRQs to be disabled. | ||
211 | * | ||
212 | * See cpu_clock(). | ||
213 | */ | ||
214 | u64 sched_clock_cpu(int cpu) | ||
215 | { | ||
216 | struct sched_clock_data *scd; | ||
217 | u64 clock; | ||
218 | |||
219 | WARN_ON_ONCE(!irqs_disabled()); | ||
220 | |||
221 | if (sched_clock_stable) | ||
222 | return sched_clock(); | ||
223 | |||
224 | if (unlikely(!sched_clock_running)) | ||
225 | return 0ull; | ||
226 | |||
227 | scd = cpu_sdc(cpu); | ||
228 | |||
229 | if (cpu != smp_processor_id()) | ||
230 | clock = sched_clock_remote(scd); | ||
231 | else | ||
232 | clock = sched_clock_local(scd); | ||
233 | |||
234 | return clock; | ||
235 | } | ||
236 | |||
237 | void sched_clock_tick(void) | ||
238 | { | ||
239 | struct sched_clock_data *scd; | ||
240 | u64 now, now_gtod; | ||
241 | |||
242 | if (sched_clock_stable) | ||
243 | return; | ||
244 | |||
245 | if (unlikely(!sched_clock_running)) | ||
246 | return; | ||
247 | |||
248 | WARN_ON_ONCE(!irqs_disabled()); | ||
249 | |||
250 | scd = this_scd(); | ||
251 | now_gtod = ktime_to_ns(ktime_get()); | ||
252 | now = sched_clock(); | ||
253 | |||
254 | scd->tick_raw = now; | ||
255 | scd->tick_gtod = now_gtod; | ||
256 | sched_clock_local(scd); | ||
257 | } | ||
258 | |||
259 | /* | ||
260 | * We are going deep-idle (irqs are disabled): | ||
261 | */ | ||
262 | void sched_clock_idle_sleep_event(void) | ||
263 | { | ||
264 | sched_clock_cpu(smp_processor_id()); | ||
265 | } | ||
266 | EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); | ||
267 | |||
268 | /* | ||
269 | * We just idled delta nanoseconds (called with irqs disabled): | ||
270 | */ | ||
271 | void sched_clock_idle_wakeup_event(u64 delta_ns) | ||
272 | { | ||
273 | if (timekeeping_suspended) | ||
274 | return; | ||
275 | |||
276 | sched_clock_tick(); | ||
277 | touch_softlockup_watchdog(); | ||
278 | } | ||
279 | EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); | ||
280 | |||
281 | /* | ||
282 | * As outlined at the top, provides a fast, high resolution, nanosecond | ||
283 | * time source that is monotonic per cpu argument and has bounded drift | ||
284 | * between cpus. | ||
285 | * | ||
286 | * ######################### BIG FAT WARNING ########################## | ||
287 | * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # | ||
288 | * # go backwards !! # | ||
289 | * #################################################################### | ||
290 | */ | ||
291 | u64 cpu_clock(int cpu) | ||
292 | { | ||
293 | u64 clock; | ||
294 | unsigned long flags; | ||
295 | |||
296 | local_irq_save(flags); | ||
297 | clock = sched_clock_cpu(cpu); | ||
298 | local_irq_restore(flags); | ||
299 | |||
300 | return clock; | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Similar to cpu_clock() for the current cpu. Time will only be observed | ||
305 | * to be monotonic if care is taken to only compare timestampt taken on the | ||
306 | * same CPU. | ||
307 | * | ||
308 | * See cpu_clock(). | ||
309 | */ | ||
310 | u64 local_clock(void) | ||
311 | { | ||
312 | u64 clock; | ||
313 | unsigned long flags; | ||
314 | |||
315 | local_irq_save(flags); | ||
316 | clock = sched_clock_cpu(smp_processor_id()); | ||
317 | local_irq_restore(flags); | ||
318 | |||
319 | return clock; | ||
320 | } | ||
321 | |||
322 | #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ | ||
323 | |||
324 | void sched_clock_init(void) | ||
325 | { | ||
326 | sched_clock_running = 1; | ||
327 | } | ||
328 | |||
329 | u64 sched_clock_cpu(int cpu) | ||
330 | { | ||
331 | if (unlikely(!sched_clock_running)) | ||
332 | return 0; | ||
333 | |||
334 | return sched_clock(); | ||
335 | } | ||
336 | |||
337 | u64 cpu_clock(int cpu) | ||
338 | { | ||
339 | return sched_clock_cpu(cpu); | ||
340 | } | ||
341 | |||
342 | u64 local_clock(void) | ||
343 | { | ||
344 | return sched_clock_cpu(0); | ||
345 | } | ||
346 | |||
347 | #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ | ||
348 | |||
349 | EXPORT_SYMBOL_GPL(cpu_clock); | ||
350 | EXPORT_SYMBOL_GPL(local_clock); | ||
diff --git a/kernel/sched/core.c b/kernel/sched/core.c new file mode 100644 index 000000000000..ca8fd44145ac --- /dev/null +++ b/kernel/sched/core.c | |||
@@ -0,0 +1,8101 @@ | |||
1 | /* | ||
2 | * kernel/sched/core.c | ||
3 | * | ||
4 | * Kernel scheduler and related syscalls | ||
5 | * | ||
6 | * Copyright (C) 1991-2002 Linus Torvalds | ||
7 | * | ||
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | ||
9 | * make semaphores SMP safe | ||
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | ||
11 | * by Andrea Arcangeli | ||
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | ||
13 | * hybrid priority-list and round-robin design with | ||
14 | * an array-switch method of distributing timeslices | ||
15 | * and per-CPU runqueues. Cleanups and useful suggestions | ||
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | ||
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | ||
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | ||
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a | ||
20 | * fair scheduling design by Con Kolivas. | ||
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | ||
22 | * by Peter Williams | ||
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | ||
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | ||
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, | ||
26 | * Thomas Gleixner, Mike Kravetz | ||
27 | */ | ||
28 | |||
29 | #include <linux/mm.h> | ||
30 | #include <linux/module.h> | ||
31 | #include <linux/nmi.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/uaccess.h> | ||
34 | #include <linux/highmem.h> | ||
35 | #include <asm/mmu_context.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | #include <linux/capability.h> | ||
38 | #include <linux/completion.h> | ||
39 | #include <linux/kernel_stat.h> | ||
40 | #include <linux/debug_locks.h> | ||
41 | #include <linux/perf_event.h> | ||
42 | #include <linux/security.h> | ||
43 | #include <linux/notifier.h> | ||
44 | #include <linux/profile.h> | ||
45 | #include <linux/freezer.h> | ||
46 | #include <linux/vmalloc.h> | ||
47 | #include <linux/blkdev.h> | ||
48 | #include <linux/delay.h> | ||
49 | #include <linux/pid_namespace.h> | ||
50 | #include <linux/smp.h> | ||
51 | #include <linux/threads.h> | ||
52 | #include <linux/timer.h> | ||
53 | #include <linux/rcupdate.h> | ||
54 | #include <linux/cpu.h> | ||
55 | #include <linux/cpuset.h> | ||
56 | #include <linux/percpu.h> | ||
57 | #include <linux/proc_fs.h> | ||
58 | #include <linux/seq_file.h> | ||
59 | #include <linux/sysctl.h> | ||
60 | #include <linux/syscalls.h> | ||
61 | #include <linux/times.h> | ||
62 | #include <linux/tsacct_kern.h> | ||
63 | #include <linux/kprobes.h> | ||
64 | #include <linux/delayacct.h> | ||
65 | #include <linux/unistd.h> | ||
66 | #include <linux/pagemap.h> | ||
67 | #include <linux/hrtimer.h> | ||
68 | #include <linux/tick.h> | ||
69 | #include <linux/debugfs.h> | ||
70 | #include <linux/ctype.h> | ||
71 | #include <linux/ftrace.h> | ||
72 | #include <linux/slab.h> | ||
73 | #include <linux/init_task.h> | ||
74 | |||
75 | #include <asm/tlb.h> | ||
76 | #include <asm/irq_regs.h> | ||
77 | #ifdef CONFIG_PARAVIRT | ||
78 | #include <asm/paravirt.h> | ||
79 | #endif | ||
80 | |||
81 | #include "sched.h" | ||
82 | #include "../workqueue_sched.h" | ||
83 | |||
84 | #define CREATE_TRACE_POINTS | ||
85 | #include <trace/events/sched.h> | ||
86 | |||
87 | void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) | ||
88 | { | ||
89 | unsigned long delta; | ||
90 | ktime_t soft, hard, now; | ||
91 | |||
92 | for (;;) { | ||
93 | if (hrtimer_active(period_timer)) | ||
94 | break; | ||
95 | |||
96 | now = hrtimer_cb_get_time(period_timer); | ||
97 | hrtimer_forward(period_timer, now, period); | ||
98 | |||
99 | soft = hrtimer_get_softexpires(period_timer); | ||
100 | hard = hrtimer_get_expires(period_timer); | ||
101 | delta = ktime_to_ns(ktime_sub(hard, soft)); | ||
102 | __hrtimer_start_range_ns(period_timer, soft, delta, | ||
103 | HRTIMER_MODE_ABS_PINNED, 0); | ||
104 | } | ||
105 | } | ||
106 | |||
107 | DEFINE_MUTEX(sched_domains_mutex); | ||
108 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | ||
109 | |||
110 | static void update_rq_clock_task(struct rq *rq, s64 delta); | ||
111 | |||
112 | void update_rq_clock(struct rq *rq) | ||
113 | { | ||
114 | s64 delta; | ||
115 | |||
116 | if (rq->skip_clock_update > 0) | ||
117 | return; | ||
118 | |||
119 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; | ||
120 | rq->clock += delta; | ||
121 | update_rq_clock_task(rq, delta); | ||
122 | } | ||
123 | |||
124 | /* | ||
125 | * Debugging: various feature bits | ||
126 | */ | ||
127 | |||
128 | #define SCHED_FEAT(name, enabled) \ | ||
129 | (1UL << __SCHED_FEAT_##name) * enabled | | ||
130 | |||
131 | const_debug unsigned int sysctl_sched_features = | ||
132 | #include "features.h" | ||
133 | 0; | ||
134 | |||
135 | #undef SCHED_FEAT | ||
136 | |||
137 | #ifdef CONFIG_SCHED_DEBUG | ||
138 | #define SCHED_FEAT(name, enabled) \ | ||
139 | #name , | ||
140 | |||
141 | static __read_mostly char *sched_feat_names[] = { | ||
142 | #include "features.h" | ||
143 | NULL | ||
144 | }; | ||
145 | |||
146 | #undef SCHED_FEAT | ||
147 | |||
148 | static int sched_feat_show(struct seq_file *m, void *v) | ||
149 | { | ||
150 | int i; | ||
151 | |||
152 | for (i = 0; sched_feat_names[i]; i++) { | ||
153 | if (!(sysctl_sched_features & (1UL << i))) | ||
154 | seq_puts(m, "NO_"); | ||
155 | seq_printf(m, "%s ", sched_feat_names[i]); | ||
156 | } | ||
157 | seq_puts(m, "\n"); | ||
158 | |||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | static ssize_t | ||
163 | sched_feat_write(struct file *filp, const char __user *ubuf, | ||
164 | size_t cnt, loff_t *ppos) | ||
165 | { | ||
166 | char buf[64]; | ||
167 | char *cmp; | ||
168 | int neg = 0; | ||
169 | int i; | ||
170 | |||
171 | if (cnt > 63) | ||
172 | cnt = 63; | ||
173 | |||
174 | if (copy_from_user(&buf, ubuf, cnt)) | ||
175 | return -EFAULT; | ||
176 | |||
177 | buf[cnt] = 0; | ||
178 | cmp = strstrip(buf); | ||
179 | |||
180 | if (strncmp(cmp, "NO_", 3) == 0) { | ||
181 | neg = 1; | ||
182 | cmp += 3; | ||
183 | } | ||
184 | |||
185 | for (i = 0; sched_feat_names[i]; i++) { | ||
186 | if (strcmp(cmp, sched_feat_names[i]) == 0) { | ||
187 | if (neg) | ||
188 | sysctl_sched_features &= ~(1UL << i); | ||
189 | else | ||
190 | sysctl_sched_features |= (1UL << i); | ||
191 | break; | ||
192 | } | ||
193 | } | ||
194 | |||
195 | if (!sched_feat_names[i]) | ||
196 | return -EINVAL; | ||
197 | |||
198 | *ppos += cnt; | ||
199 | |||
200 | return cnt; | ||
201 | } | ||
202 | |||
203 | static int sched_feat_open(struct inode *inode, struct file *filp) | ||
204 | { | ||
205 | return single_open(filp, sched_feat_show, NULL); | ||
206 | } | ||
207 | |||
208 | static const struct file_operations sched_feat_fops = { | ||
209 | .open = sched_feat_open, | ||
210 | .write = sched_feat_write, | ||
211 | .read = seq_read, | ||
212 | .llseek = seq_lseek, | ||
213 | .release = single_release, | ||
214 | }; | ||
215 | |||
216 | static __init int sched_init_debug(void) | ||
217 | { | ||
218 | debugfs_create_file("sched_features", 0644, NULL, NULL, | ||
219 | &sched_feat_fops); | ||
220 | |||
221 | return 0; | ||
222 | } | ||
223 | late_initcall(sched_init_debug); | ||
224 | |||
225 | #endif | ||
226 | |||
227 | /* | ||
228 | * Number of tasks to iterate in a single balance run. | ||
229 | * Limited because this is done with IRQs disabled. | ||
230 | */ | ||
231 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | ||
232 | |||
233 | /* | ||
234 | * period over which we average the RT time consumption, measured | ||
235 | * in ms. | ||
236 | * | ||
237 | * default: 1s | ||
238 | */ | ||
239 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | ||
240 | |||
241 | /* | ||
242 | * period over which we measure -rt task cpu usage in us. | ||
243 | * default: 1s | ||
244 | */ | ||
245 | unsigned int sysctl_sched_rt_period = 1000000; | ||
246 | |||
247 | __read_mostly int scheduler_running; | ||
248 | |||
249 | /* | ||
250 | * part of the period that we allow rt tasks to run in us. | ||
251 | * default: 0.95s | ||
252 | */ | ||
253 | int sysctl_sched_rt_runtime = 950000; | ||
254 | |||
255 | |||
256 | |||
257 | /* | ||
258 | * __task_rq_lock - lock the rq @p resides on. | ||
259 | */ | ||
260 | static inline struct rq *__task_rq_lock(struct task_struct *p) | ||
261 | __acquires(rq->lock) | ||
262 | { | ||
263 | struct rq *rq; | ||
264 | |||
265 | lockdep_assert_held(&p->pi_lock); | ||
266 | |||
267 | for (;;) { | ||
268 | rq = task_rq(p); | ||
269 | raw_spin_lock(&rq->lock); | ||
270 | if (likely(rq == task_rq(p))) | ||
271 | return rq; | ||
272 | raw_spin_unlock(&rq->lock); | ||
273 | } | ||
274 | } | ||
275 | |||
276 | /* | ||
277 | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. | ||
278 | */ | ||
279 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | ||
280 | __acquires(p->pi_lock) | ||
281 | __acquires(rq->lock) | ||
282 | { | ||
283 | struct rq *rq; | ||
284 | |||
285 | for (;;) { | ||
286 | raw_spin_lock_irqsave(&p->pi_lock, *flags); | ||
287 | rq = task_rq(p); | ||
288 | raw_spin_lock(&rq->lock); | ||
289 | if (likely(rq == task_rq(p))) | ||
290 | return rq; | ||
291 | raw_spin_unlock(&rq->lock); | ||
292 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | ||
293 | } | ||
294 | } | ||
295 | |||
296 | static void __task_rq_unlock(struct rq *rq) | ||
297 | __releases(rq->lock) | ||
298 | { | ||
299 | raw_spin_unlock(&rq->lock); | ||
300 | } | ||
301 | |||
302 | static inline void | ||
303 | task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) | ||
304 | __releases(rq->lock) | ||
305 | __releases(p->pi_lock) | ||
306 | { | ||
307 | raw_spin_unlock(&rq->lock); | ||
308 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | ||
309 | } | ||
310 | |||
311 | /* | ||
312 | * this_rq_lock - lock this runqueue and disable interrupts. | ||
313 | */ | ||
314 | static struct rq *this_rq_lock(void) | ||
315 | __acquires(rq->lock) | ||
316 | { | ||
317 | struct rq *rq; | ||
318 | |||
319 | local_irq_disable(); | ||
320 | rq = this_rq(); | ||
321 | raw_spin_lock(&rq->lock); | ||
322 | |||
323 | return rq; | ||
324 | } | ||
325 | |||
326 | #ifdef CONFIG_SCHED_HRTICK | ||
327 | /* | ||
328 | * Use HR-timers to deliver accurate preemption points. | ||
329 | * | ||
330 | * Its all a bit involved since we cannot program an hrt while holding the | ||
331 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | ||
332 | * reschedule event. | ||
333 | * | ||
334 | * When we get rescheduled we reprogram the hrtick_timer outside of the | ||
335 | * rq->lock. | ||
336 | */ | ||
337 | |||
338 | static void hrtick_clear(struct rq *rq) | ||
339 | { | ||
340 | if (hrtimer_active(&rq->hrtick_timer)) | ||
341 | hrtimer_cancel(&rq->hrtick_timer); | ||
342 | } | ||
343 | |||
344 | /* | ||
345 | * High-resolution timer tick. | ||
346 | * Runs from hardirq context with interrupts disabled. | ||
347 | */ | ||
348 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | ||
349 | { | ||
350 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | ||
351 | |||
352 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | ||
353 | |||
354 | raw_spin_lock(&rq->lock); | ||
355 | update_rq_clock(rq); | ||
356 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | ||
357 | raw_spin_unlock(&rq->lock); | ||
358 | |||
359 | return HRTIMER_NORESTART; | ||
360 | } | ||
361 | |||
362 | #ifdef CONFIG_SMP | ||
363 | /* | ||
364 | * called from hardirq (IPI) context | ||
365 | */ | ||
366 | static void __hrtick_start(void *arg) | ||
367 | { | ||
368 | struct rq *rq = arg; | ||
369 | |||
370 | raw_spin_lock(&rq->lock); | ||
371 | hrtimer_restart(&rq->hrtick_timer); | ||
372 | rq->hrtick_csd_pending = 0; | ||
373 | raw_spin_unlock(&rq->lock); | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | * Called to set the hrtick timer state. | ||
378 | * | ||
379 | * called with rq->lock held and irqs disabled | ||
380 | */ | ||
381 | void hrtick_start(struct rq *rq, u64 delay) | ||
382 | { | ||
383 | struct hrtimer *timer = &rq->hrtick_timer; | ||
384 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | ||
385 | |||
386 | hrtimer_set_expires(timer, time); | ||
387 | |||
388 | if (rq == this_rq()) { | ||
389 | hrtimer_restart(timer); | ||
390 | } else if (!rq->hrtick_csd_pending) { | ||
391 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); | ||
392 | rq->hrtick_csd_pending = 1; | ||
393 | } | ||
394 | } | ||
395 | |||
396 | static int | ||
397 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | ||
398 | { | ||
399 | int cpu = (int)(long)hcpu; | ||
400 | |||
401 | switch (action) { | ||
402 | case CPU_UP_CANCELED: | ||
403 | case CPU_UP_CANCELED_FROZEN: | ||
404 | case CPU_DOWN_PREPARE: | ||
405 | case CPU_DOWN_PREPARE_FROZEN: | ||
406 | case CPU_DEAD: | ||
407 | case CPU_DEAD_FROZEN: | ||
408 | hrtick_clear(cpu_rq(cpu)); | ||
409 | return NOTIFY_OK; | ||
410 | } | ||
411 | |||
412 | return NOTIFY_DONE; | ||
413 | } | ||
414 | |||
415 | static __init void init_hrtick(void) | ||
416 | { | ||
417 | hotcpu_notifier(hotplug_hrtick, 0); | ||
418 | } | ||
419 | #else | ||
420 | /* | ||
421 | * Called to set the hrtick timer state. | ||
422 | * | ||
423 | * called with rq->lock held and irqs disabled | ||
424 | */ | ||
425 | void hrtick_start(struct rq *rq, u64 delay) | ||
426 | { | ||
427 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, | ||
428 | HRTIMER_MODE_REL_PINNED, 0); | ||
429 | } | ||
430 | |||
431 | static inline void init_hrtick(void) | ||
432 | { | ||
433 | } | ||
434 | #endif /* CONFIG_SMP */ | ||
435 | |||
436 | static void init_rq_hrtick(struct rq *rq) | ||
437 | { | ||
438 | #ifdef CONFIG_SMP | ||
439 | rq->hrtick_csd_pending = 0; | ||
440 | |||
441 | rq->hrtick_csd.flags = 0; | ||
442 | rq->hrtick_csd.func = __hrtick_start; | ||
443 | rq->hrtick_csd.info = rq; | ||
444 | #endif | ||
445 | |||
446 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
447 | rq->hrtick_timer.function = hrtick; | ||
448 | } | ||
449 | #else /* CONFIG_SCHED_HRTICK */ | ||
450 | static inline void hrtick_clear(struct rq *rq) | ||
451 | { | ||
452 | } | ||
453 | |||
454 | static inline void init_rq_hrtick(struct rq *rq) | ||
455 | { | ||
456 | } | ||
457 | |||
458 | static inline void init_hrtick(void) | ||
459 | { | ||
460 | } | ||
461 | #endif /* CONFIG_SCHED_HRTICK */ | ||
462 | |||
463 | /* | ||
464 | * resched_task - mark a task 'to be rescheduled now'. | ||
465 | * | ||
466 | * On UP this means the setting of the need_resched flag, on SMP it | ||
467 | * might also involve a cross-CPU call to trigger the scheduler on | ||
468 | * the target CPU. | ||
469 | */ | ||
470 | #ifdef CONFIG_SMP | ||
471 | |||
472 | #ifndef tsk_is_polling | ||
473 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | ||
474 | #endif | ||
475 | |||
476 | void resched_task(struct task_struct *p) | ||
477 | { | ||
478 | int cpu; | ||
479 | |||
480 | assert_raw_spin_locked(&task_rq(p)->lock); | ||
481 | |||
482 | if (test_tsk_need_resched(p)) | ||
483 | return; | ||
484 | |||
485 | set_tsk_need_resched(p); | ||
486 | |||
487 | cpu = task_cpu(p); | ||
488 | if (cpu == smp_processor_id()) | ||
489 | return; | ||
490 | |||
491 | /* NEED_RESCHED must be visible before we test polling */ | ||
492 | smp_mb(); | ||
493 | if (!tsk_is_polling(p)) | ||
494 | smp_send_reschedule(cpu); | ||
495 | } | ||
496 | |||
497 | void resched_cpu(int cpu) | ||
498 | { | ||
499 | struct rq *rq = cpu_rq(cpu); | ||
500 | unsigned long flags; | ||
501 | |||
502 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) | ||
503 | return; | ||
504 | resched_task(cpu_curr(cpu)); | ||
505 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
506 | } | ||
507 | |||
508 | #ifdef CONFIG_NO_HZ | ||
509 | /* | ||
510 | * In the semi idle case, use the nearest busy cpu for migrating timers | ||
511 | * from an idle cpu. This is good for power-savings. | ||
512 | * | ||
513 | * We don't do similar optimization for completely idle system, as | ||
514 | * selecting an idle cpu will add more delays to the timers than intended | ||
515 | * (as that cpu's timer base may not be uptodate wrt jiffies etc). | ||
516 | */ | ||
517 | int get_nohz_timer_target(void) | ||
518 | { | ||
519 | int cpu = smp_processor_id(); | ||
520 | int i; | ||
521 | struct sched_domain *sd; | ||
522 | |||
523 | rcu_read_lock(); | ||
524 | for_each_domain(cpu, sd) { | ||
525 | for_each_cpu(i, sched_domain_span(sd)) { | ||
526 | if (!idle_cpu(i)) { | ||
527 | cpu = i; | ||
528 | goto unlock; | ||
529 | } | ||
530 | } | ||
531 | } | ||
532 | unlock: | ||
533 | rcu_read_unlock(); | ||
534 | return cpu; | ||
535 | } | ||
536 | /* | ||
537 | * When add_timer_on() enqueues a timer into the timer wheel of an | ||
538 | * idle CPU then this timer might expire before the next timer event | ||
539 | * which is scheduled to wake up that CPU. In case of a completely | ||
540 | * idle system the next event might even be infinite time into the | ||
541 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | ||
542 | * leaves the inner idle loop so the newly added timer is taken into | ||
543 | * account when the CPU goes back to idle and evaluates the timer | ||
544 | * wheel for the next timer event. | ||
545 | */ | ||
546 | void wake_up_idle_cpu(int cpu) | ||
547 | { | ||
548 | struct rq *rq = cpu_rq(cpu); | ||
549 | |||
550 | if (cpu == smp_processor_id()) | ||
551 | return; | ||
552 | |||
553 | /* | ||
554 | * This is safe, as this function is called with the timer | ||
555 | * wheel base lock of (cpu) held. When the CPU is on the way | ||
556 | * to idle and has not yet set rq->curr to idle then it will | ||
557 | * be serialized on the timer wheel base lock and take the new | ||
558 | * timer into account automatically. | ||
559 | */ | ||
560 | if (rq->curr != rq->idle) | ||
561 | return; | ||
562 | |||
563 | /* | ||
564 | * We can set TIF_RESCHED on the idle task of the other CPU | ||
565 | * lockless. The worst case is that the other CPU runs the | ||
566 | * idle task through an additional NOOP schedule() | ||
567 | */ | ||
568 | set_tsk_need_resched(rq->idle); | ||
569 | |||
570 | /* NEED_RESCHED must be visible before we test polling */ | ||
571 | smp_mb(); | ||
572 | if (!tsk_is_polling(rq->idle)) | ||
573 | smp_send_reschedule(cpu); | ||
574 | } | ||
575 | |||
576 | static inline bool got_nohz_idle_kick(void) | ||
577 | { | ||
578 | return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick; | ||
579 | } | ||
580 | |||
581 | #else /* CONFIG_NO_HZ */ | ||
582 | |||
583 | static inline bool got_nohz_idle_kick(void) | ||
584 | { | ||
585 | return false; | ||
586 | } | ||
587 | |||
588 | #endif /* CONFIG_NO_HZ */ | ||
589 | |||
590 | void sched_avg_update(struct rq *rq) | ||
591 | { | ||
592 | s64 period = sched_avg_period(); | ||
593 | |||
594 | while ((s64)(rq->clock - rq->age_stamp) > period) { | ||
595 | /* | ||
596 | * Inline assembly required to prevent the compiler | ||
597 | * optimising this loop into a divmod call. | ||
598 | * See __iter_div_u64_rem() for another example of this. | ||
599 | */ | ||
600 | asm("" : "+rm" (rq->age_stamp)); | ||
601 | rq->age_stamp += period; | ||
602 | rq->rt_avg /= 2; | ||
603 | } | ||
604 | } | ||
605 | |||
606 | #else /* !CONFIG_SMP */ | ||
607 | void resched_task(struct task_struct *p) | ||
608 | { | ||
609 | assert_raw_spin_locked(&task_rq(p)->lock); | ||
610 | set_tsk_need_resched(p); | ||
611 | } | ||
612 | #endif /* CONFIG_SMP */ | ||
613 | |||
614 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ | ||
615 | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) | ||
616 | /* | ||
617 | * Iterate task_group tree rooted at *from, calling @down when first entering a | ||
618 | * node and @up when leaving it for the final time. | ||
619 | * | ||
620 | * Caller must hold rcu_lock or sufficient equivalent. | ||
621 | */ | ||
622 | int walk_tg_tree_from(struct task_group *from, | ||
623 | tg_visitor down, tg_visitor up, void *data) | ||
624 | { | ||
625 | struct task_group *parent, *child; | ||
626 | int ret; | ||
627 | |||
628 | parent = from; | ||
629 | |||
630 | down: | ||
631 | ret = (*down)(parent, data); | ||
632 | if (ret) | ||
633 | goto out; | ||
634 | list_for_each_entry_rcu(child, &parent->children, siblings) { | ||
635 | parent = child; | ||
636 | goto down; | ||
637 | |||
638 | up: | ||
639 | continue; | ||
640 | } | ||
641 | ret = (*up)(parent, data); | ||
642 | if (ret || parent == from) | ||
643 | goto out; | ||
644 | |||
645 | child = parent; | ||
646 | parent = parent->parent; | ||
647 | if (parent) | ||
648 | goto up; | ||
649 | out: | ||
650 | return ret; | ||
651 | } | ||
652 | |||
653 | int tg_nop(struct task_group *tg, void *data) | ||
654 | { | ||
655 | return 0; | ||
656 | } | ||
657 | #endif | ||
658 | |||
659 | void update_cpu_load(struct rq *this_rq); | ||
660 | |||
661 | static void set_load_weight(struct task_struct *p) | ||
662 | { | ||
663 | int prio = p->static_prio - MAX_RT_PRIO; | ||
664 | struct load_weight *load = &p->se.load; | ||
665 | |||
666 | /* | ||
667 | * SCHED_IDLE tasks get minimal weight: | ||
668 | */ | ||
669 | if (p->policy == SCHED_IDLE) { | ||
670 | load->weight = scale_load(WEIGHT_IDLEPRIO); | ||
671 | load->inv_weight = WMULT_IDLEPRIO; | ||
672 | return; | ||
673 | } | ||
674 | |||
675 | load->weight = scale_load(prio_to_weight[prio]); | ||
676 | load->inv_weight = prio_to_wmult[prio]; | ||
677 | } | ||
678 | |||
679 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) | ||
680 | { | ||
681 | update_rq_clock(rq); | ||
682 | sched_info_queued(p); | ||
683 | p->sched_class->enqueue_task(rq, p, flags); | ||
684 | } | ||
685 | |||
686 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) | ||
687 | { | ||
688 | update_rq_clock(rq); | ||
689 | sched_info_dequeued(p); | ||
690 | p->sched_class->dequeue_task(rq, p, flags); | ||
691 | } | ||
692 | |||
693 | /* | ||
694 | * activate_task - move a task to the runqueue. | ||
695 | */ | ||
696 | void activate_task(struct rq *rq, struct task_struct *p, int flags) | ||
697 | { | ||
698 | if (task_contributes_to_load(p)) | ||
699 | rq->nr_uninterruptible--; | ||
700 | |||
701 | enqueue_task(rq, p, flags); | ||
702 | } | ||
703 | |||
704 | /* | ||
705 | * deactivate_task - remove a task from the runqueue. | ||
706 | */ | ||
707 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | ||
708 | { | ||
709 | if (task_contributes_to_load(p)) | ||
710 | rq->nr_uninterruptible++; | ||
711 | |||
712 | dequeue_task(rq, p, flags); | ||
713 | } | ||
714 | |||
715 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
716 | |||
717 | /* | ||
718 | * There are no locks covering percpu hardirq/softirq time. | ||
719 | * They are only modified in account_system_vtime, on corresponding CPU | ||
720 | * with interrupts disabled. So, writes are safe. | ||
721 | * They are read and saved off onto struct rq in update_rq_clock(). | ||
722 | * This may result in other CPU reading this CPU's irq time and can | ||
723 | * race with irq/account_system_vtime on this CPU. We would either get old | ||
724 | * or new value with a side effect of accounting a slice of irq time to wrong | ||
725 | * task when irq is in progress while we read rq->clock. That is a worthy | ||
726 | * compromise in place of having locks on each irq in account_system_time. | ||
727 | */ | ||
728 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); | ||
729 | static DEFINE_PER_CPU(u64, cpu_softirq_time); | ||
730 | |||
731 | static DEFINE_PER_CPU(u64, irq_start_time); | ||
732 | static int sched_clock_irqtime; | ||
733 | |||
734 | void enable_sched_clock_irqtime(void) | ||
735 | { | ||
736 | sched_clock_irqtime = 1; | ||
737 | } | ||
738 | |||
739 | void disable_sched_clock_irqtime(void) | ||
740 | { | ||
741 | sched_clock_irqtime = 0; | ||
742 | } | ||
743 | |||
744 | #ifndef CONFIG_64BIT | ||
745 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); | ||
746 | |||
747 | static inline void irq_time_write_begin(void) | ||
748 | { | ||
749 | __this_cpu_inc(irq_time_seq.sequence); | ||
750 | smp_wmb(); | ||
751 | } | ||
752 | |||
753 | static inline void irq_time_write_end(void) | ||
754 | { | ||
755 | smp_wmb(); | ||
756 | __this_cpu_inc(irq_time_seq.sequence); | ||
757 | } | ||
758 | |||
759 | static inline u64 irq_time_read(int cpu) | ||
760 | { | ||
761 | u64 irq_time; | ||
762 | unsigned seq; | ||
763 | |||
764 | do { | ||
765 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | ||
766 | irq_time = per_cpu(cpu_softirq_time, cpu) + | ||
767 | per_cpu(cpu_hardirq_time, cpu); | ||
768 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | ||
769 | |||
770 | return irq_time; | ||
771 | } | ||
772 | #else /* CONFIG_64BIT */ | ||
773 | static inline void irq_time_write_begin(void) | ||
774 | { | ||
775 | } | ||
776 | |||
777 | static inline void irq_time_write_end(void) | ||
778 | { | ||
779 | } | ||
780 | |||
781 | static inline u64 irq_time_read(int cpu) | ||
782 | { | ||
783 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | ||
784 | } | ||
785 | #endif /* CONFIG_64BIT */ | ||
786 | |||
787 | /* | ||
788 | * Called before incrementing preempt_count on {soft,}irq_enter | ||
789 | * and before decrementing preempt_count on {soft,}irq_exit. | ||
790 | */ | ||
791 | void account_system_vtime(struct task_struct *curr) | ||
792 | { | ||
793 | unsigned long flags; | ||
794 | s64 delta; | ||
795 | int cpu; | ||
796 | |||
797 | if (!sched_clock_irqtime) | ||
798 | return; | ||
799 | |||
800 | local_irq_save(flags); | ||
801 | |||
802 | cpu = smp_processor_id(); | ||
803 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); | ||
804 | __this_cpu_add(irq_start_time, delta); | ||
805 | |||
806 | irq_time_write_begin(); | ||
807 | /* | ||
808 | * We do not account for softirq time from ksoftirqd here. | ||
809 | * We want to continue accounting softirq time to ksoftirqd thread | ||
810 | * in that case, so as not to confuse scheduler with a special task | ||
811 | * that do not consume any time, but still wants to run. | ||
812 | */ | ||
813 | if (hardirq_count()) | ||
814 | __this_cpu_add(cpu_hardirq_time, delta); | ||
815 | else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) | ||
816 | __this_cpu_add(cpu_softirq_time, delta); | ||
817 | |||
818 | irq_time_write_end(); | ||
819 | local_irq_restore(flags); | ||
820 | } | ||
821 | EXPORT_SYMBOL_GPL(account_system_vtime); | ||
822 | |||
823 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ | ||
824 | |||
825 | #ifdef CONFIG_PARAVIRT | ||
826 | static inline u64 steal_ticks(u64 steal) | ||
827 | { | ||
828 | if (unlikely(steal > NSEC_PER_SEC)) | ||
829 | return div_u64(steal, TICK_NSEC); | ||
830 | |||
831 | return __iter_div_u64_rem(steal, TICK_NSEC, &steal); | ||
832 | } | ||
833 | #endif | ||
834 | |||
835 | static void update_rq_clock_task(struct rq *rq, s64 delta) | ||
836 | { | ||
837 | /* | ||
838 | * In theory, the compile should just see 0 here, and optimize out the call | ||
839 | * to sched_rt_avg_update. But I don't trust it... | ||
840 | */ | ||
841 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) | ||
842 | s64 steal = 0, irq_delta = 0; | ||
843 | #endif | ||
844 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
845 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; | ||
846 | |||
847 | /* | ||
848 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | ||
849 | * this case when a previous update_rq_clock() happened inside a | ||
850 | * {soft,}irq region. | ||
851 | * | ||
852 | * When this happens, we stop ->clock_task and only update the | ||
853 | * prev_irq_time stamp to account for the part that fit, so that a next | ||
854 | * update will consume the rest. This ensures ->clock_task is | ||
855 | * monotonic. | ||
856 | * | ||
857 | * It does however cause some slight miss-attribution of {soft,}irq | ||
858 | * time, a more accurate solution would be to update the irq_time using | ||
859 | * the current rq->clock timestamp, except that would require using | ||
860 | * atomic ops. | ||
861 | */ | ||
862 | if (irq_delta > delta) | ||
863 | irq_delta = delta; | ||
864 | |||
865 | rq->prev_irq_time += irq_delta; | ||
866 | delta -= irq_delta; | ||
867 | #endif | ||
868 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | ||
869 | if (static_branch((¶virt_steal_rq_enabled))) { | ||
870 | u64 st; | ||
871 | |||
872 | steal = paravirt_steal_clock(cpu_of(rq)); | ||
873 | steal -= rq->prev_steal_time_rq; | ||
874 | |||
875 | if (unlikely(steal > delta)) | ||
876 | steal = delta; | ||
877 | |||
878 | st = steal_ticks(steal); | ||
879 | steal = st * TICK_NSEC; | ||
880 | |||
881 | rq->prev_steal_time_rq += steal; | ||
882 | |||
883 | delta -= steal; | ||
884 | } | ||
885 | #endif | ||
886 | |||
887 | rq->clock_task += delta; | ||
888 | |||
889 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) | ||
890 | if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) | ||
891 | sched_rt_avg_update(rq, irq_delta + steal); | ||
892 | #endif | ||
893 | } | ||
894 | |||
895 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
896 | static int irqtime_account_hi_update(void) | ||
897 | { | ||
898 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
899 | unsigned long flags; | ||
900 | u64 latest_ns; | ||
901 | int ret = 0; | ||
902 | |||
903 | local_irq_save(flags); | ||
904 | latest_ns = this_cpu_read(cpu_hardirq_time); | ||
905 | if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq)) | ||
906 | ret = 1; | ||
907 | local_irq_restore(flags); | ||
908 | return ret; | ||
909 | } | ||
910 | |||
911 | static int irqtime_account_si_update(void) | ||
912 | { | ||
913 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
914 | unsigned long flags; | ||
915 | u64 latest_ns; | ||
916 | int ret = 0; | ||
917 | |||
918 | local_irq_save(flags); | ||
919 | latest_ns = this_cpu_read(cpu_softirq_time); | ||
920 | if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq)) | ||
921 | ret = 1; | ||
922 | local_irq_restore(flags); | ||
923 | return ret; | ||
924 | } | ||
925 | |||
926 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ | ||
927 | |||
928 | #define sched_clock_irqtime (0) | ||
929 | |||
930 | #endif | ||
931 | |||
932 | void sched_set_stop_task(int cpu, struct task_struct *stop) | ||
933 | { | ||
934 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | ||
935 | struct task_struct *old_stop = cpu_rq(cpu)->stop; | ||
936 | |||
937 | if (stop) { | ||
938 | /* | ||
939 | * Make it appear like a SCHED_FIFO task, its something | ||
940 | * userspace knows about and won't get confused about. | ||
941 | * | ||
942 | * Also, it will make PI more or less work without too | ||
943 | * much confusion -- but then, stop work should not | ||
944 | * rely on PI working anyway. | ||
945 | */ | ||
946 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); | ||
947 | |||
948 | stop->sched_class = &stop_sched_class; | ||
949 | } | ||
950 | |||
951 | cpu_rq(cpu)->stop = stop; | ||
952 | |||
953 | if (old_stop) { | ||
954 | /* | ||
955 | * Reset it back to a normal scheduling class so that | ||
956 | * it can die in pieces. | ||
957 | */ | ||
958 | old_stop->sched_class = &rt_sched_class; | ||
959 | } | ||
960 | } | ||
961 | |||
962 | /* | ||
963 | * __normal_prio - return the priority that is based on the static prio | ||
964 | */ | ||
965 | static inline int __normal_prio(struct task_struct *p) | ||
966 | { | ||
967 | return p->static_prio; | ||
968 | } | ||
969 | |||
970 | /* | ||
971 | * Calculate the expected normal priority: i.e. priority | ||
972 | * without taking RT-inheritance into account. Might be | ||
973 | * boosted by interactivity modifiers. Changes upon fork, | ||
974 | * setprio syscalls, and whenever the interactivity | ||
975 | * estimator recalculates. | ||
976 | */ | ||
977 | static inline int normal_prio(struct task_struct *p) | ||
978 | { | ||
979 | int prio; | ||
980 | |||
981 | if (task_has_rt_policy(p)) | ||
982 | prio = MAX_RT_PRIO-1 - p->rt_priority; | ||
983 | else | ||
984 | prio = __normal_prio(p); | ||
985 | return prio; | ||
986 | } | ||
987 | |||
988 | /* | ||
989 | * Calculate the current priority, i.e. the priority | ||
990 | * taken into account by the scheduler. This value might | ||
991 | * be boosted by RT tasks, or might be boosted by | ||
992 | * interactivity modifiers. Will be RT if the task got | ||
993 | * RT-boosted. If not then it returns p->normal_prio. | ||
994 | */ | ||
995 | static int effective_prio(struct task_struct *p) | ||
996 | { | ||
997 | p->normal_prio = normal_prio(p); | ||
998 | /* | ||
999 | * If we are RT tasks or we were boosted to RT priority, | ||
1000 | * keep the priority unchanged. Otherwise, update priority | ||
1001 | * to the normal priority: | ||
1002 | */ | ||
1003 | if (!rt_prio(p->prio)) | ||
1004 | return p->normal_prio; | ||
1005 | return p->prio; | ||
1006 | } | ||
1007 | |||
1008 | /** | ||
1009 | * task_curr - is this task currently executing on a CPU? | ||
1010 | * @p: the task in question. | ||
1011 | */ | ||
1012 | inline int task_curr(const struct task_struct *p) | ||
1013 | { | ||
1014 | return cpu_curr(task_cpu(p)) == p; | ||
1015 | } | ||
1016 | |||
1017 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | ||
1018 | const struct sched_class *prev_class, | ||
1019 | int oldprio) | ||
1020 | { | ||
1021 | if (prev_class != p->sched_class) { | ||
1022 | if (prev_class->switched_from) | ||
1023 | prev_class->switched_from(rq, p); | ||
1024 | p->sched_class->switched_to(rq, p); | ||
1025 | } else if (oldprio != p->prio) | ||
1026 | p->sched_class->prio_changed(rq, p, oldprio); | ||
1027 | } | ||
1028 | |||
1029 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
1030 | { | ||
1031 | const struct sched_class *class; | ||
1032 | |||
1033 | if (p->sched_class == rq->curr->sched_class) { | ||
1034 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | ||
1035 | } else { | ||
1036 | for_each_class(class) { | ||
1037 | if (class == rq->curr->sched_class) | ||
1038 | break; | ||
1039 | if (class == p->sched_class) { | ||
1040 | resched_task(rq->curr); | ||
1041 | break; | ||
1042 | } | ||
1043 | } | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * A queue event has occurred, and we're going to schedule. In | ||
1048 | * this case, we can save a useless back to back clock update. | ||
1049 | */ | ||
1050 | if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) | ||
1051 | rq->skip_clock_update = 1; | ||
1052 | } | ||
1053 | |||
1054 | #ifdef CONFIG_SMP | ||
1055 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | ||
1056 | { | ||
1057 | #ifdef CONFIG_SCHED_DEBUG | ||
1058 | /* | ||
1059 | * We should never call set_task_cpu() on a blocked task, | ||
1060 | * ttwu() will sort out the placement. | ||
1061 | */ | ||
1062 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | ||
1063 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | ||
1064 | |||
1065 | #ifdef CONFIG_LOCKDEP | ||
1066 | /* | ||
1067 | * The caller should hold either p->pi_lock or rq->lock, when changing | ||
1068 | * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. | ||
1069 | * | ||
1070 | * sched_move_task() holds both and thus holding either pins the cgroup, | ||
1071 | * see set_task_rq(). | ||
1072 | * | ||
1073 | * Furthermore, all task_rq users should acquire both locks, see | ||
1074 | * task_rq_lock(). | ||
1075 | */ | ||
1076 | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || | ||
1077 | lockdep_is_held(&task_rq(p)->lock))); | ||
1078 | #endif | ||
1079 | #endif | ||
1080 | |||
1081 | trace_sched_migrate_task(p, new_cpu); | ||
1082 | |||
1083 | if (task_cpu(p) != new_cpu) { | ||
1084 | p->se.nr_migrations++; | ||
1085 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); | ||
1086 | } | ||
1087 | |||
1088 | __set_task_cpu(p, new_cpu); | ||
1089 | } | ||
1090 | |||
1091 | struct migration_arg { | ||
1092 | struct task_struct *task; | ||
1093 | int dest_cpu; | ||
1094 | }; | ||
1095 | |||
1096 | static int migration_cpu_stop(void *data); | ||
1097 | |||
1098 | /* | ||
1099 | * wait_task_inactive - wait for a thread to unschedule. | ||
1100 | * | ||
1101 | * If @match_state is nonzero, it's the @p->state value just checked and | ||
1102 | * not expected to change. If it changes, i.e. @p might have woken up, | ||
1103 | * then return zero. When we succeed in waiting for @p to be off its CPU, | ||
1104 | * we return a positive number (its total switch count). If a second call | ||
1105 | * a short while later returns the same number, the caller can be sure that | ||
1106 | * @p has remained unscheduled the whole time. | ||
1107 | * | ||
1108 | * The caller must ensure that the task *will* unschedule sometime soon, | ||
1109 | * else this function might spin for a *long* time. This function can't | ||
1110 | * be called with interrupts off, or it may introduce deadlock with | ||
1111 | * smp_call_function() if an IPI is sent by the same process we are | ||
1112 | * waiting to become inactive. | ||
1113 | */ | ||
1114 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | ||
1115 | { | ||
1116 | unsigned long flags; | ||
1117 | int running, on_rq; | ||
1118 | unsigned long ncsw; | ||
1119 | struct rq *rq; | ||
1120 | |||
1121 | for (;;) { | ||
1122 | /* | ||
1123 | * We do the initial early heuristics without holding | ||
1124 | * any task-queue locks at all. We'll only try to get | ||
1125 | * the runqueue lock when things look like they will | ||
1126 | * work out! | ||
1127 | */ | ||
1128 | rq = task_rq(p); | ||
1129 | |||
1130 | /* | ||
1131 | * If the task is actively running on another CPU | ||
1132 | * still, just relax and busy-wait without holding | ||
1133 | * any locks. | ||
1134 | * | ||
1135 | * NOTE! Since we don't hold any locks, it's not | ||
1136 | * even sure that "rq" stays as the right runqueue! | ||
1137 | * But we don't care, since "task_running()" will | ||
1138 | * return false if the runqueue has changed and p | ||
1139 | * is actually now running somewhere else! | ||
1140 | */ | ||
1141 | while (task_running(rq, p)) { | ||
1142 | if (match_state && unlikely(p->state != match_state)) | ||
1143 | return 0; | ||
1144 | cpu_relax(); | ||
1145 | } | ||
1146 | |||
1147 | /* | ||
1148 | * Ok, time to look more closely! We need the rq | ||
1149 | * lock now, to be *sure*. If we're wrong, we'll | ||
1150 | * just go back and repeat. | ||
1151 | */ | ||
1152 | rq = task_rq_lock(p, &flags); | ||
1153 | trace_sched_wait_task(p); | ||
1154 | running = task_running(rq, p); | ||
1155 | on_rq = p->on_rq; | ||
1156 | ncsw = 0; | ||
1157 | if (!match_state || p->state == match_state) | ||
1158 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | ||
1159 | task_rq_unlock(rq, p, &flags); | ||
1160 | |||
1161 | /* | ||
1162 | * If it changed from the expected state, bail out now. | ||
1163 | */ | ||
1164 | if (unlikely(!ncsw)) | ||
1165 | break; | ||
1166 | |||
1167 | /* | ||
1168 | * Was it really running after all now that we | ||
1169 | * checked with the proper locks actually held? | ||
1170 | * | ||
1171 | * Oops. Go back and try again.. | ||
1172 | */ | ||
1173 | if (unlikely(running)) { | ||
1174 | cpu_relax(); | ||
1175 | continue; | ||
1176 | } | ||
1177 | |||
1178 | /* | ||
1179 | * It's not enough that it's not actively running, | ||
1180 | * it must be off the runqueue _entirely_, and not | ||
1181 | * preempted! | ||
1182 | * | ||
1183 | * So if it was still runnable (but just not actively | ||
1184 | * running right now), it's preempted, and we should | ||
1185 | * yield - it could be a while. | ||
1186 | */ | ||
1187 | if (unlikely(on_rq)) { | ||
1188 | ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); | ||
1189 | |||
1190 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1191 | schedule_hrtimeout(&to, HRTIMER_MODE_REL); | ||
1192 | continue; | ||
1193 | } | ||
1194 | |||
1195 | /* | ||
1196 | * Ahh, all good. It wasn't running, and it wasn't | ||
1197 | * runnable, which means that it will never become | ||
1198 | * running in the future either. We're all done! | ||
1199 | */ | ||
1200 | break; | ||
1201 | } | ||
1202 | |||
1203 | return ncsw; | ||
1204 | } | ||
1205 | |||
1206 | /*** | ||
1207 | * kick_process - kick a running thread to enter/exit the kernel | ||
1208 | * @p: the to-be-kicked thread | ||
1209 | * | ||
1210 | * Cause a process which is running on another CPU to enter | ||
1211 | * kernel-mode, without any delay. (to get signals handled.) | ||
1212 | * | ||
1213 | * NOTE: this function doesn't have to take the runqueue lock, | ||
1214 | * because all it wants to ensure is that the remote task enters | ||
1215 | * the kernel. If the IPI races and the task has been migrated | ||
1216 | * to another CPU then no harm is done and the purpose has been | ||
1217 | * achieved as well. | ||
1218 | */ | ||
1219 | void kick_process(struct task_struct *p) | ||
1220 | { | ||
1221 | int cpu; | ||
1222 | |||
1223 | preempt_disable(); | ||
1224 | cpu = task_cpu(p); | ||
1225 | if ((cpu != smp_processor_id()) && task_curr(p)) | ||
1226 | smp_send_reschedule(cpu); | ||
1227 | preempt_enable(); | ||
1228 | } | ||
1229 | EXPORT_SYMBOL_GPL(kick_process); | ||
1230 | #endif /* CONFIG_SMP */ | ||
1231 | |||
1232 | #ifdef CONFIG_SMP | ||
1233 | /* | ||
1234 | * ->cpus_allowed is protected by both rq->lock and p->pi_lock | ||
1235 | */ | ||
1236 | static int select_fallback_rq(int cpu, struct task_struct *p) | ||
1237 | { | ||
1238 | int dest_cpu; | ||
1239 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | ||
1240 | |||
1241 | /* Look for allowed, online CPU in same node. */ | ||
1242 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | ||
1243 | if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) | ||
1244 | return dest_cpu; | ||
1245 | |||
1246 | /* Any allowed, online CPU? */ | ||
1247 | dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); | ||
1248 | if (dest_cpu < nr_cpu_ids) | ||
1249 | return dest_cpu; | ||
1250 | |||
1251 | /* No more Mr. Nice Guy. */ | ||
1252 | dest_cpu = cpuset_cpus_allowed_fallback(p); | ||
1253 | /* | ||
1254 | * Don't tell them about moving exiting tasks or | ||
1255 | * kernel threads (both mm NULL), since they never | ||
1256 | * leave kernel. | ||
1257 | */ | ||
1258 | if (p->mm && printk_ratelimit()) { | ||
1259 | printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", | ||
1260 | task_pid_nr(p), p->comm, cpu); | ||
1261 | } | ||
1262 | |||
1263 | return dest_cpu; | ||
1264 | } | ||
1265 | |||
1266 | /* | ||
1267 | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. | ||
1268 | */ | ||
1269 | static inline | ||
1270 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | ||
1271 | { | ||
1272 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | ||
1273 | |||
1274 | /* | ||
1275 | * In order not to call set_task_cpu() on a blocking task we need | ||
1276 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | ||
1277 | * cpu. | ||
1278 | * | ||
1279 | * Since this is common to all placement strategies, this lives here. | ||
1280 | * | ||
1281 | * [ this allows ->select_task() to simply return task_cpu(p) and | ||
1282 | * not worry about this generic constraint ] | ||
1283 | */ | ||
1284 | if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || | ||
1285 | !cpu_online(cpu))) | ||
1286 | cpu = select_fallback_rq(task_cpu(p), p); | ||
1287 | |||
1288 | return cpu; | ||
1289 | } | ||
1290 | |||
1291 | static void update_avg(u64 *avg, u64 sample) | ||
1292 | { | ||
1293 | s64 diff = sample - *avg; | ||
1294 | *avg += diff >> 3; | ||
1295 | } | ||
1296 | #endif | ||
1297 | |||
1298 | static void | ||
1299 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) | ||
1300 | { | ||
1301 | #ifdef CONFIG_SCHEDSTATS | ||
1302 | struct rq *rq = this_rq(); | ||
1303 | |||
1304 | #ifdef CONFIG_SMP | ||
1305 | int this_cpu = smp_processor_id(); | ||
1306 | |||
1307 | if (cpu == this_cpu) { | ||
1308 | schedstat_inc(rq, ttwu_local); | ||
1309 | schedstat_inc(p, se.statistics.nr_wakeups_local); | ||
1310 | } else { | ||
1311 | struct sched_domain *sd; | ||
1312 | |||
1313 | schedstat_inc(p, se.statistics.nr_wakeups_remote); | ||
1314 | rcu_read_lock(); | ||
1315 | for_each_domain(this_cpu, sd) { | ||
1316 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
1317 | schedstat_inc(sd, ttwu_wake_remote); | ||
1318 | break; | ||
1319 | } | ||
1320 | } | ||
1321 | rcu_read_unlock(); | ||
1322 | } | ||
1323 | |||
1324 | if (wake_flags & WF_MIGRATED) | ||
1325 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); | ||
1326 | |||
1327 | #endif /* CONFIG_SMP */ | ||
1328 | |||
1329 | schedstat_inc(rq, ttwu_count); | ||
1330 | schedstat_inc(p, se.statistics.nr_wakeups); | ||
1331 | |||
1332 | if (wake_flags & WF_SYNC) | ||
1333 | schedstat_inc(p, se.statistics.nr_wakeups_sync); | ||
1334 | |||
1335 | #endif /* CONFIG_SCHEDSTATS */ | ||
1336 | } | ||
1337 | |||
1338 | static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) | ||
1339 | { | ||
1340 | activate_task(rq, p, en_flags); | ||
1341 | p->on_rq = 1; | ||
1342 | |||
1343 | /* if a worker is waking up, notify workqueue */ | ||
1344 | if (p->flags & PF_WQ_WORKER) | ||
1345 | wq_worker_waking_up(p, cpu_of(rq)); | ||
1346 | } | ||
1347 | |||
1348 | /* | ||
1349 | * Mark the task runnable and perform wakeup-preemption. | ||
1350 | */ | ||
1351 | static void | ||
1352 | ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | ||
1353 | { | ||
1354 | trace_sched_wakeup(p, true); | ||
1355 | check_preempt_curr(rq, p, wake_flags); | ||
1356 | |||
1357 | p->state = TASK_RUNNING; | ||
1358 | #ifdef CONFIG_SMP | ||
1359 | if (p->sched_class->task_woken) | ||
1360 | p->sched_class->task_woken(rq, p); | ||
1361 | |||
1362 | if (rq->idle_stamp) { | ||
1363 | u64 delta = rq->clock - rq->idle_stamp; | ||
1364 | u64 max = 2*sysctl_sched_migration_cost; | ||
1365 | |||
1366 | if (delta > max) | ||
1367 | rq->avg_idle = max; | ||
1368 | else | ||
1369 | update_avg(&rq->avg_idle, delta); | ||
1370 | rq->idle_stamp = 0; | ||
1371 | } | ||
1372 | #endif | ||
1373 | } | ||
1374 | |||
1375 | static void | ||
1376 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) | ||
1377 | { | ||
1378 | #ifdef CONFIG_SMP | ||
1379 | if (p->sched_contributes_to_load) | ||
1380 | rq->nr_uninterruptible--; | ||
1381 | #endif | ||
1382 | |||
1383 | ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); | ||
1384 | ttwu_do_wakeup(rq, p, wake_flags); | ||
1385 | } | ||
1386 | |||
1387 | /* | ||
1388 | * Called in case the task @p isn't fully descheduled from its runqueue, | ||
1389 | * in this case we must do a remote wakeup. Its a 'light' wakeup though, | ||
1390 | * since all we need to do is flip p->state to TASK_RUNNING, since | ||
1391 | * the task is still ->on_rq. | ||
1392 | */ | ||
1393 | static int ttwu_remote(struct task_struct *p, int wake_flags) | ||
1394 | { | ||
1395 | struct rq *rq; | ||
1396 | int ret = 0; | ||
1397 | |||
1398 | rq = __task_rq_lock(p); | ||
1399 | if (p->on_rq) { | ||
1400 | ttwu_do_wakeup(rq, p, wake_flags); | ||
1401 | ret = 1; | ||
1402 | } | ||
1403 | __task_rq_unlock(rq); | ||
1404 | |||
1405 | return ret; | ||
1406 | } | ||
1407 | |||
1408 | #ifdef CONFIG_SMP | ||
1409 | static void sched_ttwu_pending(void) | ||
1410 | { | ||
1411 | struct rq *rq = this_rq(); | ||
1412 | struct llist_node *llist = llist_del_all(&rq->wake_list); | ||
1413 | struct task_struct *p; | ||
1414 | |||
1415 | raw_spin_lock(&rq->lock); | ||
1416 | |||
1417 | while (llist) { | ||
1418 | p = llist_entry(llist, struct task_struct, wake_entry); | ||
1419 | llist = llist_next(llist); | ||
1420 | ttwu_do_activate(rq, p, 0); | ||
1421 | } | ||
1422 | |||
1423 | raw_spin_unlock(&rq->lock); | ||
1424 | } | ||
1425 | |||
1426 | void scheduler_ipi(void) | ||
1427 | { | ||
1428 | if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) | ||
1429 | return; | ||
1430 | |||
1431 | /* | ||
1432 | * Not all reschedule IPI handlers call irq_enter/irq_exit, since | ||
1433 | * traditionally all their work was done from the interrupt return | ||
1434 | * path. Now that we actually do some work, we need to make sure | ||
1435 | * we do call them. | ||
1436 | * | ||
1437 | * Some archs already do call them, luckily irq_enter/exit nest | ||
1438 | * properly. | ||
1439 | * | ||
1440 | * Arguably we should visit all archs and update all handlers, | ||
1441 | * however a fair share of IPIs are still resched only so this would | ||
1442 | * somewhat pessimize the simple resched case. | ||
1443 | */ | ||
1444 | irq_enter(); | ||
1445 | sched_ttwu_pending(); | ||
1446 | |||
1447 | /* | ||
1448 | * Check if someone kicked us for doing the nohz idle load balance. | ||
1449 | */ | ||
1450 | if (unlikely(got_nohz_idle_kick() && !need_resched())) { | ||
1451 | this_rq()->idle_balance = 1; | ||
1452 | raise_softirq_irqoff(SCHED_SOFTIRQ); | ||
1453 | } | ||
1454 | irq_exit(); | ||
1455 | } | ||
1456 | |||
1457 | static void ttwu_queue_remote(struct task_struct *p, int cpu) | ||
1458 | { | ||
1459 | if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) | ||
1460 | smp_send_reschedule(cpu); | ||
1461 | } | ||
1462 | |||
1463 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
1464 | static int ttwu_activate_remote(struct task_struct *p, int wake_flags) | ||
1465 | { | ||
1466 | struct rq *rq; | ||
1467 | int ret = 0; | ||
1468 | |||
1469 | rq = __task_rq_lock(p); | ||
1470 | if (p->on_cpu) { | ||
1471 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); | ||
1472 | ttwu_do_wakeup(rq, p, wake_flags); | ||
1473 | ret = 1; | ||
1474 | } | ||
1475 | __task_rq_unlock(rq); | ||
1476 | |||
1477 | return ret; | ||
1478 | |||
1479 | } | ||
1480 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
1481 | #endif /* CONFIG_SMP */ | ||
1482 | |||
1483 | static void ttwu_queue(struct task_struct *p, int cpu) | ||
1484 | { | ||
1485 | struct rq *rq = cpu_rq(cpu); | ||
1486 | |||
1487 | #if defined(CONFIG_SMP) | ||
1488 | if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) { | ||
1489 | sched_clock_cpu(cpu); /* sync clocks x-cpu */ | ||
1490 | ttwu_queue_remote(p, cpu); | ||
1491 | return; | ||
1492 | } | ||
1493 | #endif | ||
1494 | |||
1495 | raw_spin_lock(&rq->lock); | ||
1496 | ttwu_do_activate(rq, p, 0); | ||
1497 | raw_spin_unlock(&rq->lock); | ||
1498 | } | ||
1499 | |||
1500 | /** | ||
1501 | * try_to_wake_up - wake up a thread | ||
1502 | * @p: the thread to be awakened | ||
1503 | * @state: the mask of task states that can be woken | ||
1504 | * @wake_flags: wake modifier flags (WF_*) | ||
1505 | * | ||
1506 | * Put it on the run-queue if it's not already there. The "current" | ||
1507 | * thread is always on the run-queue (except when the actual | ||
1508 | * re-schedule is in progress), and as such you're allowed to do | ||
1509 | * the simpler "current->state = TASK_RUNNING" to mark yourself | ||
1510 | * runnable without the overhead of this. | ||
1511 | * | ||
1512 | * Returns %true if @p was woken up, %false if it was already running | ||
1513 | * or @state didn't match @p's state. | ||
1514 | */ | ||
1515 | static int | ||
1516 | try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) | ||
1517 | { | ||
1518 | unsigned long flags; | ||
1519 | int cpu, success = 0; | ||
1520 | |||
1521 | smp_wmb(); | ||
1522 | raw_spin_lock_irqsave(&p->pi_lock, flags); | ||
1523 | if (!(p->state & state)) | ||
1524 | goto out; | ||
1525 | |||
1526 | success = 1; /* we're going to change ->state */ | ||
1527 | cpu = task_cpu(p); | ||
1528 | |||
1529 | if (p->on_rq && ttwu_remote(p, wake_flags)) | ||
1530 | goto stat; | ||
1531 | |||
1532 | #ifdef CONFIG_SMP | ||
1533 | /* | ||
1534 | * If the owning (remote) cpu is still in the middle of schedule() with | ||
1535 | * this task as prev, wait until its done referencing the task. | ||
1536 | */ | ||
1537 | while (p->on_cpu) { | ||
1538 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
1539 | /* | ||
1540 | * In case the architecture enables interrupts in | ||
1541 | * context_switch(), we cannot busy wait, since that | ||
1542 | * would lead to deadlocks when an interrupt hits and | ||
1543 | * tries to wake up @prev. So bail and do a complete | ||
1544 | * remote wakeup. | ||
1545 | */ | ||
1546 | if (ttwu_activate_remote(p, wake_flags)) | ||
1547 | goto stat; | ||
1548 | #else | ||
1549 | cpu_relax(); | ||
1550 | #endif | ||
1551 | } | ||
1552 | /* | ||
1553 | * Pairs with the smp_wmb() in finish_lock_switch(). | ||
1554 | */ | ||
1555 | smp_rmb(); | ||
1556 | |||
1557 | p->sched_contributes_to_load = !!task_contributes_to_load(p); | ||
1558 | p->state = TASK_WAKING; | ||
1559 | |||
1560 | if (p->sched_class->task_waking) | ||
1561 | p->sched_class->task_waking(p); | ||
1562 | |||
1563 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
1564 | if (task_cpu(p) != cpu) { | ||
1565 | wake_flags |= WF_MIGRATED; | ||
1566 | set_task_cpu(p, cpu); | ||
1567 | } | ||
1568 | #endif /* CONFIG_SMP */ | ||
1569 | |||
1570 | ttwu_queue(p, cpu); | ||
1571 | stat: | ||
1572 | ttwu_stat(p, cpu, wake_flags); | ||
1573 | out: | ||
1574 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | ||
1575 | |||
1576 | return success; | ||
1577 | } | ||
1578 | |||
1579 | /** | ||
1580 | * try_to_wake_up_local - try to wake up a local task with rq lock held | ||
1581 | * @p: the thread to be awakened | ||
1582 | * | ||
1583 | * Put @p on the run-queue if it's not already there. The caller must | ||
1584 | * ensure that this_rq() is locked, @p is bound to this_rq() and not | ||
1585 | * the current task. | ||
1586 | */ | ||
1587 | static void try_to_wake_up_local(struct task_struct *p) | ||
1588 | { | ||
1589 | struct rq *rq = task_rq(p); | ||
1590 | |||
1591 | BUG_ON(rq != this_rq()); | ||
1592 | BUG_ON(p == current); | ||
1593 | lockdep_assert_held(&rq->lock); | ||
1594 | |||
1595 | if (!raw_spin_trylock(&p->pi_lock)) { | ||
1596 | raw_spin_unlock(&rq->lock); | ||
1597 | raw_spin_lock(&p->pi_lock); | ||
1598 | raw_spin_lock(&rq->lock); | ||
1599 | } | ||
1600 | |||
1601 | if (!(p->state & TASK_NORMAL)) | ||
1602 | goto out; | ||
1603 | |||
1604 | if (!p->on_rq) | ||
1605 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); | ||
1606 | |||
1607 | ttwu_do_wakeup(rq, p, 0); | ||
1608 | ttwu_stat(p, smp_processor_id(), 0); | ||
1609 | out: | ||
1610 | raw_spin_unlock(&p->pi_lock); | ||
1611 | } | ||
1612 | |||
1613 | /** | ||
1614 | * wake_up_process - Wake up a specific process | ||
1615 | * @p: The process to be woken up. | ||
1616 | * | ||
1617 | * Attempt to wake up the nominated process and move it to the set of runnable | ||
1618 | * processes. Returns 1 if the process was woken up, 0 if it was already | ||
1619 | * running. | ||
1620 | * | ||
1621 | * It may be assumed that this function implies a write memory barrier before | ||
1622 | * changing the task state if and only if any tasks are woken up. | ||
1623 | */ | ||
1624 | int wake_up_process(struct task_struct *p) | ||
1625 | { | ||
1626 | return try_to_wake_up(p, TASK_ALL, 0); | ||
1627 | } | ||
1628 | EXPORT_SYMBOL(wake_up_process); | ||
1629 | |||
1630 | int wake_up_state(struct task_struct *p, unsigned int state) | ||
1631 | { | ||
1632 | return try_to_wake_up(p, state, 0); | ||
1633 | } | ||
1634 | |||
1635 | /* | ||
1636 | * Perform scheduler related setup for a newly forked process p. | ||
1637 | * p is forked by current. | ||
1638 | * | ||
1639 | * __sched_fork() is basic setup used by init_idle() too: | ||
1640 | */ | ||
1641 | static void __sched_fork(struct task_struct *p) | ||
1642 | { | ||
1643 | p->on_rq = 0; | ||
1644 | |||
1645 | p->se.on_rq = 0; | ||
1646 | p->se.exec_start = 0; | ||
1647 | p->se.sum_exec_runtime = 0; | ||
1648 | p->se.prev_sum_exec_runtime = 0; | ||
1649 | p->se.nr_migrations = 0; | ||
1650 | p->se.vruntime = 0; | ||
1651 | INIT_LIST_HEAD(&p->se.group_node); | ||
1652 | |||
1653 | #ifdef CONFIG_SCHEDSTATS | ||
1654 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); | ||
1655 | #endif | ||
1656 | |||
1657 | INIT_LIST_HEAD(&p->rt.run_list); | ||
1658 | |||
1659 | #ifdef CONFIG_PREEMPT_NOTIFIERS | ||
1660 | INIT_HLIST_HEAD(&p->preempt_notifiers); | ||
1661 | #endif | ||
1662 | } | ||
1663 | |||
1664 | /* | ||
1665 | * fork()/clone()-time setup: | ||
1666 | */ | ||
1667 | void sched_fork(struct task_struct *p) | ||
1668 | { | ||
1669 | unsigned long flags; | ||
1670 | int cpu = get_cpu(); | ||
1671 | |||
1672 | __sched_fork(p); | ||
1673 | /* | ||
1674 | * We mark the process as running here. This guarantees that | ||
1675 | * nobody will actually run it, and a signal or other external | ||
1676 | * event cannot wake it up and insert it on the runqueue either. | ||
1677 | */ | ||
1678 | p->state = TASK_RUNNING; | ||
1679 | |||
1680 | /* | ||
1681 | * Make sure we do not leak PI boosting priority to the child. | ||
1682 | */ | ||
1683 | p->prio = current->normal_prio; | ||
1684 | |||
1685 | /* | ||
1686 | * Revert to default priority/policy on fork if requested. | ||
1687 | */ | ||
1688 | if (unlikely(p->sched_reset_on_fork)) { | ||
1689 | if (task_has_rt_policy(p)) { | ||
1690 | p->policy = SCHED_NORMAL; | ||
1691 | p->static_prio = NICE_TO_PRIO(0); | ||
1692 | p->rt_priority = 0; | ||
1693 | } else if (PRIO_TO_NICE(p->static_prio) < 0) | ||
1694 | p->static_prio = NICE_TO_PRIO(0); | ||
1695 | |||
1696 | p->prio = p->normal_prio = __normal_prio(p); | ||
1697 | set_load_weight(p); | ||
1698 | |||
1699 | /* | ||
1700 | * We don't need the reset flag anymore after the fork. It has | ||
1701 | * fulfilled its duty: | ||
1702 | */ | ||
1703 | p->sched_reset_on_fork = 0; | ||
1704 | } | ||
1705 | |||
1706 | if (!rt_prio(p->prio)) | ||
1707 | p->sched_class = &fair_sched_class; | ||
1708 | |||
1709 | if (p->sched_class->task_fork) | ||
1710 | p->sched_class->task_fork(p); | ||
1711 | |||
1712 | /* | ||
1713 | * The child is not yet in the pid-hash so no cgroup attach races, | ||
1714 | * and the cgroup is pinned to this child due to cgroup_fork() | ||
1715 | * is ran before sched_fork(). | ||
1716 | * | ||
1717 | * Silence PROVE_RCU. | ||
1718 | */ | ||
1719 | raw_spin_lock_irqsave(&p->pi_lock, flags); | ||
1720 | set_task_cpu(p, cpu); | ||
1721 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | ||
1722 | |||
1723 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | ||
1724 | if (likely(sched_info_on())) | ||
1725 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | ||
1726 | #endif | ||
1727 | #if defined(CONFIG_SMP) | ||
1728 | p->on_cpu = 0; | ||
1729 | #endif | ||
1730 | #ifdef CONFIG_PREEMPT_COUNT | ||
1731 | /* Want to start with kernel preemption disabled. */ | ||
1732 | task_thread_info(p)->preempt_count = 1; | ||
1733 | #endif | ||
1734 | #ifdef CONFIG_SMP | ||
1735 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
1736 | #endif | ||
1737 | |||
1738 | put_cpu(); | ||
1739 | } | ||
1740 | |||
1741 | /* | ||
1742 | * wake_up_new_task - wake up a newly created task for the first time. | ||
1743 | * | ||
1744 | * This function will do some initial scheduler statistics housekeeping | ||
1745 | * that must be done for every newly created context, then puts the task | ||
1746 | * on the runqueue and wakes it. | ||
1747 | */ | ||
1748 | void wake_up_new_task(struct task_struct *p) | ||
1749 | { | ||
1750 | unsigned long flags; | ||
1751 | struct rq *rq; | ||
1752 | |||
1753 | raw_spin_lock_irqsave(&p->pi_lock, flags); | ||
1754 | #ifdef CONFIG_SMP | ||
1755 | /* | ||
1756 | * Fork balancing, do it here and not earlier because: | ||
1757 | * - cpus_allowed can change in the fork path | ||
1758 | * - any previously selected cpu might disappear through hotplug | ||
1759 | */ | ||
1760 | set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); | ||
1761 | #endif | ||
1762 | |||
1763 | rq = __task_rq_lock(p); | ||
1764 | activate_task(rq, p, 0); | ||
1765 | p->on_rq = 1; | ||
1766 | trace_sched_wakeup_new(p, true); | ||
1767 | check_preempt_curr(rq, p, WF_FORK); | ||
1768 | #ifdef CONFIG_SMP | ||
1769 | if (p->sched_class->task_woken) | ||
1770 | p->sched_class->task_woken(rq, p); | ||
1771 | #endif | ||
1772 | task_rq_unlock(rq, p, &flags); | ||
1773 | } | ||
1774 | |||
1775 | #ifdef CONFIG_PREEMPT_NOTIFIERS | ||
1776 | |||
1777 | /** | ||
1778 | * preempt_notifier_register - tell me when current is being preempted & rescheduled | ||
1779 | * @notifier: notifier struct to register | ||
1780 | */ | ||
1781 | void preempt_notifier_register(struct preempt_notifier *notifier) | ||
1782 | { | ||
1783 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | ||
1784 | } | ||
1785 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | ||
1786 | |||
1787 | /** | ||
1788 | * preempt_notifier_unregister - no longer interested in preemption notifications | ||
1789 | * @notifier: notifier struct to unregister | ||
1790 | * | ||
1791 | * This is safe to call from within a preemption notifier. | ||
1792 | */ | ||
1793 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | ||
1794 | { | ||
1795 | hlist_del(¬ifier->link); | ||
1796 | } | ||
1797 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | ||
1798 | |||
1799 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | ||
1800 | { | ||
1801 | struct preempt_notifier *notifier; | ||
1802 | struct hlist_node *node; | ||
1803 | |||
1804 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | ||
1805 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | ||
1806 | } | ||
1807 | |||
1808 | static void | ||
1809 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | ||
1810 | struct task_struct *next) | ||
1811 | { | ||
1812 | struct preempt_notifier *notifier; | ||
1813 | struct hlist_node *node; | ||
1814 | |||
1815 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | ||
1816 | notifier->ops->sched_out(notifier, next); | ||
1817 | } | ||
1818 | |||
1819 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | ||
1820 | |||
1821 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | ||
1822 | { | ||
1823 | } | ||
1824 | |||
1825 | static void | ||
1826 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | ||
1827 | struct task_struct *next) | ||
1828 | { | ||
1829 | } | ||
1830 | |||
1831 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | ||
1832 | |||
1833 | /** | ||
1834 | * prepare_task_switch - prepare to switch tasks | ||
1835 | * @rq: the runqueue preparing to switch | ||
1836 | * @prev: the current task that is being switched out | ||
1837 | * @next: the task we are going to switch to. | ||
1838 | * | ||
1839 | * This is called with the rq lock held and interrupts off. It must | ||
1840 | * be paired with a subsequent finish_task_switch after the context | ||
1841 | * switch. | ||
1842 | * | ||
1843 | * prepare_task_switch sets up locking and calls architecture specific | ||
1844 | * hooks. | ||
1845 | */ | ||
1846 | static inline void | ||
1847 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | ||
1848 | struct task_struct *next) | ||
1849 | { | ||
1850 | sched_info_switch(prev, next); | ||
1851 | perf_event_task_sched_out(prev, next); | ||
1852 | fire_sched_out_preempt_notifiers(prev, next); | ||
1853 | prepare_lock_switch(rq, next); | ||
1854 | prepare_arch_switch(next); | ||
1855 | trace_sched_switch(prev, next); | ||
1856 | } | ||
1857 | |||
1858 | /** | ||
1859 | * finish_task_switch - clean up after a task-switch | ||
1860 | * @rq: runqueue associated with task-switch | ||
1861 | * @prev: the thread we just switched away from. | ||
1862 | * | ||
1863 | * finish_task_switch must be called after the context switch, paired | ||
1864 | * with a prepare_task_switch call before the context switch. | ||
1865 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | ||
1866 | * and do any other architecture-specific cleanup actions. | ||
1867 | * | ||
1868 | * Note that we may have delayed dropping an mm in context_switch(). If | ||
1869 | * so, we finish that here outside of the runqueue lock. (Doing it | ||
1870 | * with the lock held can cause deadlocks; see schedule() for | ||
1871 | * details.) | ||
1872 | */ | ||
1873 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) | ||
1874 | __releases(rq->lock) | ||
1875 | { | ||
1876 | struct mm_struct *mm = rq->prev_mm; | ||
1877 | long prev_state; | ||
1878 | |||
1879 | rq->prev_mm = NULL; | ||
1880 | |||
1881 | /* | ||
1882 | * A task struct has one reference for the use as "current". | ||
1883 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls | ||
1884 | * schedule one last time. The schedule call will never return, and | ||
1885 | * the scheduled task must drop that reference. | ||
1886 | * The test for TASK_DEAD must occur while the runqueue locks are | ||
1887 | * still held, otherwise prev could be scheduled on another cpu, die | ||
1888 | * there before we look at prev->state, and then the reference would | ||
1889 | * be dropped twice. | ||
1890 | * Manfred Spraul <manfred@colorfullife.com> | ||
1891 | */ | ||
1892 | prev_state = prev->state; | ||
1893 | finish_arch_switch(prev); | ||
1894 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
1895 | local_irq_disable(); | ||
1896 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
1897 | perf_event_task_sched_in(prev, current); | ||
1898 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
1899 | local_irq_enable(); | ||
1900 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
1901 | finish_lock_switch(rq, prev); | ||
1902 | |||
1903 | fire_sched_in_preempt_notifiers(current); | ||
1904 | if (mm) | ||
1905 | mmdrop(mm); | ||
1906 | if (unlikely(prev_state == TASK_DEAD)) { | ||
1907 | /* | ||
1908 | * Remove function-return probe instances associated with this | ||
1909 | * task and put them back on the free list. | ||
1910 | */ | ||
1911 | kprobe_flush_task(prev); | ||
1912 | put_task_struct(prev); | ||
1913 | } | ||
1914 | } | ||
1915 | |||
1916 | #ifdef CONFIG_SMP | ||
1917 | |||
1918 | /* assumes rq->lock is held */ | ||
1919 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | ||
1920 | { | ||
1921 | if (prev->sched_class->pre_schedule) | ||
1922 | prev->sched_class->pre_schedule(rq, prev); | ||
1923 | } | ||
1924 | |||
1925 | /* rq->lock is NOT held, but preemption is disabled */ | ||
1926 | static inline void post_schedule(struct rq *rq) | ||
1927 | { | ||
1928 | if (rq->post_schedule) { | ||
1929 | unsigned long flags; | ||
1930 | |||
1931 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
1932 | if (rq->curr->sched_class->post_schedule) | ||
1933 | rq->curr->sched_class->post_schedule(rq); | ||
1934 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
1935 | |||
1936 | rq->post_schedule = 0; | ||
1937 | } | ||
1938 | } | ||
1939 | |||
1940 | #else | ||
1941 | |||
1942 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) | ||
1943 | { | ||
1944 | } | ||
1945 | |||
1946 | static inline void post_schedule(struct rq *rq) | ||
1947 | { | ||
1948 | } | ||
1949 | |||
1950 | #endif | ||
1951 | |||
1952 | /** | ||
1953 | * schedule_tail - first thing a freshly forked thread must call. | ||
1954 | * @prev: the thread we just switched away from. | ||
1955 | */ | ||
1956 | asmlinkage void schedule_tail(struct task_struct *prev) | ||
1957 | __releases(rq->lock) | ||
1958 | { | ||
1959 | struct rq *rq = this_rq(); | ||
1960 | |||
1961 | finish_task_switch(rq, prev); | ||
1962 | |||
1963 | /* | ||
1964 | * FIXME: do we need to worry about rq being invalidated by the | ||
1965 | * task_switch? | ||
1966 | */ | ||
1967 | post_schedule(rq); | ||
1968 | |||
1969 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | ||
1970 | /* In this case, finish_task_switch does not reenable preemption */ | ||
1971 | preempt_enable(); | ||
1972 | #endif | ||
1973 | if (current->set_child_tid) | ||
1974 | put_user(task_pid_vnr(current), current->set_child_tid); | ||
1975 | } | ||
1976 | |||
1977 | /* | ||
1978 | * context_switch - switch to the new MM and the new | ||
1979 | * thread's register state. | ||
1980 | */ | ||
1981 | static inline void | ||
1982 | context_switch(struct rq *rq, struct task_struct *prev, | ||
1983 | struct task_struct *next) | ||
1984 | { | ||
1985 | struct mm_struct *mm, *oldmm; | ||
1986 | |||
1987 | prepare_task_switch(rq, prev, next); | ||
1988 | |||
1989 | mm = next->mm; | ||
1990 | oldmm = prev->active_mm; | ||
1991 | /* | ||
1992 | * For paravirt, this is coupled with an exit in switch_to to | ||
1993 | * combine the page table reload and the switch backend into | ||
1994 | * one hypercall. | ||
1995 | */ | ||
1996 | arch_start_context_switch(prev); | ||
1997 | |||
1998 | if (!mm) { | ||
1999 | next->active_mm = oldmm; | ||
2000 | atomic_inc(&oldmm->mm_count); | ||
2001 | enter_lazy_tlb(oldmm, next); | ||
2002 | } else | ||
2003 | switch_mm(oldmm, mm, next); | ||
2004 | |||
2005 | if (!prev->mm) { | ||
2006 | prev->active_mm = NULL; | ||
2007 | rq->prev_mm = oldmm; | ||
2008 | } | ||
2009 | /* | ||
2010 | * Since the runqueue lock will be released by the next | ||
2011 | * task (which is an invalid locking op but in the case | ||
2012 | * of the scheduler it's an obvious special-case), so we | ||
2013 | * do an early lockdep release here: | ||
2014 | */ | ||
2015 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
2016 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | ||
2017 | #endif | ||
2018 | |||
2019 | /* Here we just switch the register state and the stack. */ | ||
2020 | switch_to(prev, next, prev); | ||
2021 | |||
2022 | barrier(); | ||
2023 | /* | ||
2024 | * this_rq must be evaluated again because prev may have moved | ||
2025 | * CPUs since it called schedule(), thus the 'rq' on its stack | ||
2026 | * frame will be invalid. | ||
2027 | */ | ||
2028 | finish_task_switch(this_rq(), prev); | ||
2029 | } | ||
2030 | |||
2031 | /* | ||
2032 | * nr_running, nr_uninterruptible and nr_context_switches: | ||
2033 | * | ||
2034 | * externally visible scheduler statistics: current number of runnable | ||
2035 | * threads, current number of uninterruptible-sleeping threads, total | ||
2036 | * number of context switches performed since bootup. | ||
2037 | */ | ||
2038 | unsigned long nr_running(void) | ||
2039 | { | ||
2040 | unsigned long i, sum = 0; | ||
2041 | |||
2042 | for_each_online_cpu(i) | ||
2043 | sum += cpu_rq(i)->nr_running; | ||
2044 | |||
2045 | return sum; | ||
2046 | } | ||
2047 | |||
2048 | unsigned long nr_uninterruptible(void) | ||
2049 | { | ||
2050 | unsigned long i, sum = 0; | ||
2051 | |||
2052 | for_each_possible_cpu(i) | ||
2053 | sum += cpu_rq(i)->nr_uninterruptible; | ||
2054 | |||
2055 | /* | ||
2056 | * Since we read the counters lockless, it might be slightly | ||
2057 | * inaccurate. Do not allow it to go below zero though: | ||
2058 | */ | ||
2059 | if (unlikely((long)sum < 0)) | ||
2060 | sum = 0; | ||
2061 | |||
2062 | return sum; | ||
2063 | } | ||
2064 | |||
2065 | unsigned long long nr_context_switches(void) | ||
2066 | { | ||
2067 | int i; | ||
2068 | unsigned long long sum = 0; | ||
2069 | |||
2070 | for_each_possible_cpu(i) | ||
2071 | sum += cpu_rq(i)->nr_switches; | ||
2072 | |||
2073 | return sum; | ||
2074 | } | ||
2075 | |||
2076 | unsigned long nr_iowait(void) | ||
2077 | { | ||
2078 | unsigned long i, sum = 0; | ||
2079 | |||
2080 | for_each_possible_cpu(i) | ||
2081 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | ||
2082 | |||
2083 | return sum; | ||
2084 | } | ||
2085 | |||
2086 | unsigned long nr_iowait_cpu(int cpu) | ||
2087 | { | ||
2088 | struct rq *this = cpu_rq(cpu); | ||
2089 | return atomic_read(&this->nr_iowait); | ||
2090 | } | ||
2091 | |||
2092 | unsigned long this_cpu_load(void) | ||
2093 | { | ||
2094 | struct rq *this = this_rq(); | ||
2095 | return this->cpu_load[0]; | ||
2096 | } | ||
2097 | |||
2098 | |||
2099 | /* Variables and functions for calc_load */ | ||
2100 | static atomic_long_t calc_load_tasks; | ||
2101 | static unsigned long calc_load_update; | ||
2102 | unsigned long avenrun[3]; | ||
2103 | EXPORT_SYMBOL(avenrun); | ||
2104 | |||
2105 | static long calc_load_fold_active(struct rq *this_rq) | ||
2106 | { | ||
2107 | long nr_active, delta = 0; | ||
2108 | |||
2109 | nr_active = this_rq->nr_running; | ||
2110 | nr_active += (long) this_rq->nr_uninterruptible; | ||
2111 | |||
2112 | if (nr_active != this_rq->calc_load_active) { | ||
2113 | delta = nr_active - this_rq->calc_load_active; | ||
2114 | this_rq->calc_load_active = nr_active; | ||
2115 | } | ||
2116 | |||
2117 | return delta; | ||
2118 | } | ||
2119 | |||
2120 | static unsigned long | ||
2121 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
2122 | { | ||
2123 | load *= exp; | ||
2124 | load += active * (FIXED_1 - exp); | ||
2125 | load += 1UL << (FSHIFT - 1); | ||
2126 | return load >> FSHIFT; | ||
2127 | } | ||
2128 | |||
2129 | #ifdef CONFIG_NO_HZ | ||
2130 | /* | ||
2131 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | ||
2132 | * | ||
2133 | * When making the ILB scale, we should try to pull this in as well. | ||
2134 | */ | ||
2135 | static atomic_long_t calc_load_tasks_idle; | ||
2136 | |||
2137 | void calc_load_account_idle(struct rq *this_rq) | ||
2138 | { | ||
2139 | long delta; | ||
2140 | |||
2141 | delta = calc_load_fold_active(this_rq); | ||
2142 | if (delta) | ||
2143 | atomic_long_add(delta, &calc_load_tasks_idle); | ||
2144 | } | ||
2145 | |||
2146 | static long calc_load_fold_idle(void) | ||
2147 | { | ||
2148 | long delta = 0; | ||
2149 | |||
2150 | /* | ||
2151 | * Its got a race, we don't care... | ||
2152 | */ | ||
2153 | if (atomic_long_read(&calc_load_tasks_idle)) | ||
2154 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | ||
2155 | |||
2156 | return delta; | ||
2157 | } | ||
2158 | |||
2159 | /** | ||
2160 | * fixed_power_int - compute: x^n, in O(log n) time | ||
2161 | * | ||
2162 | * @x: base of the power | ||
2163 | * @frac_bits: fractional bits of @x | ||
2164 | * @n: power to raise @x to. | ||
2165 | * | ||
2166 | * By exploiting the relation between the definition of the natural power | ||
2167 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | ||
2168 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | ||
2169 | * (where: n_i \elem {0, 1}, the binary vector representing n), | ||
2170 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | ||
2171 | * of course trivially computable in O(log_2 n), the length of our binary | ||
2172 | * vector. | ||
2173 | */ | ||
2174 | static unsigned long | ||
2175 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | ||
2176 | { | ||
2177 | unsigned long result = 1UL << frac_bits; | ||
2178 | |||
2179 | if (n) for (;;) { | ||
2180 | if (n & 1) { | ||
2181 | result *= x; | ||
2182 | result += 1UL << (frac_bits - 1); | ||
2183 | result >>= frac_bits; | ||
2184 | } | ||
2185 | n >>= 1; | ||
2186 | if (!n) | ||
2187 | break; | ||
2188 | x *= x; | ||
2189 | x += 1UL << (frac_bits - 1); | ||
2190 | x >>= frac_bits; | ||
2191 | } | ||
2192 | |||
2193 | return result; | ||
2194 | } | ||
2195 | |||
2196 | /* | ||
2197 | * a1 = a0 * e + a * (1 - e) | ||
2198 | * | ||
2199 | * a2 = a1 * e + a * (1 - e) | ||
2200 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | ||
2201 | * = a0 * e^2 + a * (1 - e) * (1 + e) | ||
2202 | * | ||
2203 | * a3 = a2 * e + a * (1 - e) | ||
2204 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | ||
2205 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | ||
2206 | * | ||
2207 | * ... | ||
2208 | * | ||
2209 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | ||
2210 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | ||
2211 | * = a0 * e^n + a * (1 - e^n) | ||
2212 | * | ||
2213 | * [1] application of the geometric series: | ||
2214 | * | ||
2215 | * n 1 - x^(n+1) | ||
2216 | * S_n := \Sum x^i = ------------- | ||
2217 | * i=0 1 - x | ||
2218 | */ | ||
2219 | static unsigned long | ||
2220 | calc_load_n(unsigned long load, unsigned long exp, | ||
2221 | unsigned long active, unsigned int n) | ||
2222 | { | ||
2223 | |||
2224 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | ||
2225 | } | ||
2226 | |||
2227 | /* | ||
2228 | * NO_HZ can leave us missing all per-cpu ticks calling | ||
2229 | * calc_load_account_active(), but since an idle CPU folds its delta into | ||
2230 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | ||
2231 | * in the pending idle delta if our idle period crossed a load cycle boundary. | ||
2232 | * | ||
2233 | * Once we've updated the global active value, we need to apply the exponential | ||
2234 | * weights adjusted to the number of cycles missed. | ||
2235 | */ | ||
2236 | static void calc_global_nohz(unsigned long ticks) | ||
2237 | { | ||
2238 | long delta, active, n; | ||
2239 | |||
2240 | if (time_before(jiffies, calc_load_update)) | ||
2241 | return; | ||
2242 | |||
2243 | /* | ||
2244 | * If we crossed a calc_load_update boundary, make sure to fold | ||
2245 | * any pending idle changes, the respective CPUs might have | ||
2246 | * missed the tick driven calc_load_account_active() update | ||
2247 | * due to NO_HZ. | ||
2248 | */ | ||
2249 | delta = calc_load_fold_idle(); | ||
2250 | if (delta) | ||
2251 | atomic_long_add(delta, &calc_load_tasks); | ||
2252 | |||
2253 | /* | ||
2254 | * If we were idle for multiple load cycles, apply them. | ||
2255 | */ | ||
2256 | if (ticks >= LOAD_FREQ) { | ||
2257 | n = ticks / LOAD_FREQ; | ||
2258 | |||
2259 | active = atomic_long_read(&calc_load_tasks); | ||
2260 | active = active > 0 ? active * FIXED_1 : 0; | ||
2261 | |||
2262 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||
2263 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||
2264 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||
2265 | |||
2266 | calc_load_update += n * LOAD_FREQ; | ||
2267 | } | ||
2268 | |||
2269 | /* | ||
2270 | * Its possible the remainder of the above division also crosses | ||
2271 | * a LOAD_FREQ period, the regular check in calc_global_load() | ||
2272 | * which comes after this will take care of that. | ||
2273 | * | ||
2274 | * Consider us being 11 ticks before a cycle completion, and us | ||
2275 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will | ||
2276 | * age us 4 cycles, and the test in calc_global_load() will | ||
2277 | * pick up the final one. | ||
2278 | */ | ||
2279 | } | ||
2280 | #else | ||
2281 | void calc_load_account_idle(struct rq *this_rq) | ||
2282 | { | ||
2283 | } | ||
2284 | |||
2285 | static inline long calc_load_fold_idle(void) | ||
2286 | { | ||
2287 | return 0; | ||
2288 | } | ||
2289 | |||
2290 | static void calc_global_nohz(unsigned long ticks) | ||
2291 | { | ||
2292 | } | ||
2293 | #endif | ||
2294 | |||
2295 | /** | ||
2296 | * get_avenrun - get the load average array | ||
2297 | * @loads: pointer to dest load array | ||
2298 | * @offset: offset to add | ||
2299 | * @shift: shift count to shift the result left | ||
2300 | * | ||
2301 | * These values are estimates at best, so no need for locking. | ||
2302 | */ | ||
2303 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | ||
2304 | { | ||
2305 | loads[0] = (avenrun[0] + offset) << shift; | ||
2306 | loads[1] = (avenrun[1] + offset) << shift; | ||
2307 | loads[2] = (avenrun[2] + offset) << shift; | ||
2308 | } | ||
2309 | |||
2310 | /* | ||
2311 | * calc_load - update the avenrun load estimates 10 ticks after the | ||
2312 | * CPUs have updated calc_load_tasks. | ||
2313 | */ | ||
2314 | void calc_global_load(unsigned long ticks) | ||
2315 | { | ||
2316 | long active; | ||
2317 | |||
2318 | calc_global_nohz(ticks); | ||
2319 | |||
2320 | if (time_before(jiffies, calc_load_update + 10)) | ||
2321 | return; | ||
2322 | |||
2323 | active = atomic_long_read(&calc_load_tasks); | ||
2324 | active = active > 0 ? active * FIXED_1 : 0; | ||
2325 | |||
2326 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); | ||
2327 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); | ||
2328 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); | ||
2329 | |||
2330 | calc_load_update += LOAD_FREQ; | ||
2331 | } | ||
2332 | |||
2333 | /* | ||
2334 | * Called from update_cpu_load() to periodically update this CPU's | ||
2335 | * active count. | ||
2336 | */ | ||
2337 | static void calc_load_account_active(struct rq *this_rq) | ||
2338 | { | ||
2339 | long delta; | ||
2340 | |||
2341 | if (time_before(jiffies, this_rq->calc_load_update)) | ||
2342 | return; | ||
2343 | |||
2344 | delta = calc_load_fold_active(this_rq); | ||
2345 | delta += calc_load_fold_idle(); | ||
2346 | if (delta) | ||
2347 | atomic_long_add(delta, &calc_load_tasks); | ||
2348 | |||
2349 | this_rq->calc_load_update += LOAD_FREQ; | ||
2350 | } | ||
2351 | |||
2352 | /* | ||
2353 | * The exact cpuload at various idx values, calculated at every tick would be | ||
2354 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | ||
2355 | * | ||
2356 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called | ||
2357 | * on nth tick when cpu may be busy, then we have: | ||
2358 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | ||
2359 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load | ||
2360 | * | ||
2361 | * decay_load_missed() below does efficient calculation of | ||
2362 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | ||
2363 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load | ||
2364 | * | ||
2365 | * The calculation is approximated on a 128 point scale. | ||
2366 | * degrade_zero_ticks is the number of ticks after which load at any | ||
2367 | * particular idx is approximated to be zero. | ||
2368 | * degrade_factor is a precomputed table, a row for each load idx. | ||
2369 | * Each column corresponds to degradation factor for a power of two ticks, | ||
2370 | * based on 128 point scale. | ||
2371 | * Example: | ||
2372 | * row 2, col 3 (=12) says that the degradation at load idx 2 after | ||
2373 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). | ||
2374 | * | ||
2375 | * With this power of 2 load factors, we can degrade the load n times | ||
2376 | * by looking at 1 bits in n and doing as many mult/shift instead of | ||
2377 | * n mult/shifts needed by the exact degradation. | ||
2378 | */ | ||
2379 | #define DEGRADE_SHIFT 7 | ||
2380 | static const unsigned char | ||
2381 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | ||
2382 | static const unsigned char | ||
2383 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | ||
2384 | {0, 0, 0, 0, 0, 0, 0, 0}, | ||
2385 | {64, 32, 8, 0, 0, 0, 0, 0}, | ||
2386 | {96, 72, 40, 12, 1, 0, 0}, | ||
2387 | {112, 98, 75, 43, 15, 1, 0}, | ||
2388 | {120, 112, 98, 76, 45, 16, 2} }; | ||
2389 | |||
2390 | /* | ||
2391 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | ||
2392 | * would be when CPU is idle and so we just decay the old load without | ||
2393 | * adding any new load. | ||
2394 | */ | ||
2395 | static unsigned long | ||
2396 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | ||
2397 | { | ||
2398 | int j = 0; | ||
2399 | |||
2400 | if (!missed_updates) | ||
2401 | return load; | ||
2402 | |||
2403 | if (missed_updates >= degrade_zero_ticks[idx]) | ||
2404 | return 0; | ||
2405 | |||
2406 | if (idx == 1) | ||
2407 | return load >> missed_updates; | ||
2408 | |||
2409 | while (missed_updates) { | ||
2410 | if (missed_updates % 2) | ||
2411 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | ||
2412 | |||
2413 | missed_updates >>= 1; | ||
2414 | j++; | ||
2415 | } | ||
2416 | return load; | ||
2417 | } | ||
2418 | |||
2419 | /* | ||
2420 | * Update rq->cpu_load[] statistics. This function is usually called every | ||
2421 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called | ||
2422 | * every tick. We fix it up based on jiffies. | ||
2423 | */ | ||
2424 | void update_cpu_load(struct rq *this_rq) | ||
2425 | { | ||
2426 | unsigned long this_load = this_rq->load.weight; | ||
2427 | unsigned long curr_jiffies = jiffies; | ||
2428 | unsigned long pending_updates; | ||
2429 | int i, scale; | ||
2430 | |||
2431 | this_rq->nr_load_updates++; | ||
2432 | |||
2433 | /* Avoid repeated calls on same jiffy, when moving in and out of idle */ | ||
2434 | if (curr_jiffies == this_rq->last_load_update_tick) | ||
2435 | return; | ||
2436 | |||
2437 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | ||
2438 | this_rq->last_load_update_tick = curr_jiffies; | ||
2439 | |||
2440 | /* Update our load: */ | ||
2441 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | ||
2442 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | ||
2443 | unsigned long old_load, new_load; | ||
2444 | |||
2445 | /* scale is effectively 1 << i now, and >> i divides by scale */ | ||
2446 | |||
2447 | old_load = this_rq->cpu_load[i]; | ||
2448 | old_load = decay_load_missed(old_load, pending_updates - 1, i); | ||
2449 | new_load = this_load; | ||
2450 | /* | ||
2451 | * Round up the averaging division if load is increasing. This | ||
2452 | * prevents us from getting stuck on 9 if the load is 10, for | ||
2453 | * example. | ||
2454 | */ | ||
2455 | if (new_load > old_load) | ||
2456 | new_load += scale - 1; | ||
2457 | |||
2458 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | ||
2459 | } | ||
2460 | |||
2461 | sched_avg_update(this_rq); | ||
2462 | } | ||
2463 | |||
2464 | static void update_cpu_load_active(struct rq *this_rq) | ||
2465 | { | ||
2466 | update_cpu_load(this_rq); | ||
2467 | |||
2468 | calc_load_account_active(this_rq); | ||
2469 | } | ||
2470 | |||
2471 | #ifdef CONFIG_SMP | ||
2472 | |||
2473 | /* | ||
2474 | * sched_exec - execve() is a valuable balancing opportunity, because at | ||
2475 | * this point the task has the smallest effective memory and cache footprint. | ||
2476 | */ | ||
2477 | void sched_exec(void) | ||
2478 | { | ||
2479 | struct task_struct *p = current; | ||
2480 | unsigned long flags; | ||
2481 | int dest_cpu; | ||
2482 | |||
2483 | raw_spin_lock_irqsave(&p->pi_lock, flags); | ||
2484 | dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); | ||
2485 | if (dest_cpu == smp_processor_id()) | ||
2486 | goto unlock; | ||
2487 | |||
2488 | if (likely(cpu_active(dest_cpu))) { | ||
2489 | struct migration_arg arg = { p, dest_cpu }; | ||
2490 | |||
2491 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | ||
2492 | stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); | ||
2493 | return; | ||
2494 | } | ||
2495 | unlock: | ||
2496 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | ||
2497 | } | ||
2498 | |||
2499 | #endif | ||
2500 | |||
2501 | DEFINE_PER_CPU(struct kernel_stat, kstat); | ||
2502 | |||
2503 | EXPORT_PER_CPU_SYMBOL(kstat); | ||
2504 | |||
2505 | /* | ||
2506 | * Return any ns on the sched_clock that have not yet been accounted in | ||
2507 | * @p in case that task is currently running. | ||
2508 | * | ||
2509 | * Called with task_rq_lock() held on @rq. | ||
2510 | */ | ||
2511 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) | ||
2512 | { | ||
2513 | u64 ns = 0; | ||
2514 | |||
2515 | if (task_current(rq, p)) { | ||
2516 | update_rq_clock(rq); | ||
2517 | ns = rq->clock_task - p->se.exec_start; | ||
2518 | if ((s64)ns < 0) | ||
2519 | ns = 0; | ||
2520 | } | ||
2521 | |||
2522 | return ns; | ||
2523 | } | ||
2524 | |||
2525 | unsigned long long task_delta_exec(struct task_struct *p) | ||
2526 | { | ||
2527 | unsigned long flags; | ||
2528 | struct rq *rq; | ||
2529 | u64 ns = 0; | ||
2530 | |||
2531 | rq = task_rq_lock(p, &flags); | ||
2532 | ns = do_task_delta_exec(p, rq); | ||
2533 | task_rq_unlock(rq, p, &flags); | ||
2534 | |||
2535 | return ns; | ||
2536 | } | ||
2537 | |||
2538 | /* | ||
2539 | * Return accounted runtime for the task. | ||
2540 | * In case the task is currently running, return the runtime plus current's | ||
2541 | * pending runtime that have not been accounted yet. | ||
2542 | */ | ||
2543 | unsigned long long task_sched_runtime(struct task_struct *p) | ||
2544 | { | ||
2545 | unsigned long flags; | ||
2546 | struct rq *rq; | ||
2547 | u64 ns = 0; | ||
2548 | |||
2549 | rq = task_rq_lock(p, &flags); | ||
2550 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | ||
2551 | task_rq_unlock(rq, p, &flags); | ||
2552 | |||
2553 | return ns; | ||
2554 | } | ||
2555 | |||
2556 | /* | ||
2557 | * Account user cpu time to a process. | ||
2558 | * @p: the process that the cpu time gets accounted to | ||
2559 | * @cputime: the cpu time spent in user space since the last update | ||
2560 | * @cputime_scaled: cputime scaled by cpu frequency | ||
2561 | */ | ||
2562 | void account_user_time(struct task_struct *p, cputime_t cputime, | ||
2563 | cputime_t cputime_scaled) | ||
2564 | { | ||
2565 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2566 | cputime64_t tmp; | ||
2567 | |||
2568 | /* Add user time to process. */ | ||
2569 | p->utime = cputime_add(p->utime, cputime); | ||
2570 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | ||
2571 | account_group_user_time(p, cputime); | ||
2572 | |||
2573 | /* Add user time to cpustat. */ | ||
2574 | tmp = cputime_to_cputime64(cputime); | ||
2575 | if (TASK_NICE(p) > 0) | ||
2576 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | ||
2577 | else | ||
2578 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
2579 | |||
2580 | cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | ||
2581 | /* Account for user time used */ | ||
2582 | acct_update_integrals(p); | ||
2583 | } | ||
2584 | |||
2585 | /* | ||
2586 | * Account guest cpu time to a process. | ||
2587 | * @p: the process that the cpu time gets accounted to | ||
2588 | * @cputime: the cpu time spent in virtual machine since the last update | ||
2589 | * @cputime_scaled: cputime scaled by cpu frequency | ||
2590 | */ | ||
2591 | static void account_guest_time(struct task_struct *p, cputime_t cputime, | ||
2592 | cputime_t cputime_scaled) | ||
2593 | { | ||
2594 | cputime64_t tmp; | ||
2595 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2596 | |||
2597 | tmp = cputime_to_cputime64(cputime); | ||
2598 | |||
2599 | /* Add guest time to process. */ | ||
2600 | p->utime = cputime_add(p->utime, cputime); | ||
2601 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | ||
2602 | account_group_user_time(p, cputime); | ||
2603 | p->gtime = cputime_add(p->gtime, cputime); | ||
2604 | |||
2605 | /* Add guest time to cpustat. */ | ||
2606 | if (TASK_NICE(p) > 0) { | ||
2607 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | ||
2608 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | ||
2609 | } else { | ||
2610 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
2611 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | ||
2612 | } | ||
2613 | } | ||
2614 | |||
2615 | /* | ||
2616 | * Account system cpu time to a process and desired cpustat field | ||
2617 | * @p: the process that the cpu time gets accounted to | ||
2618 | * @cputime: the cpu time spent in kernel space since the last update | ||
2619 | * @cputime_scaled: cputime scaled by cpu frequency | ||
2620 | * @target_cputime64: pointer to cpustat field that has to be updated | ||
2621 | */ | ||
2622 | static inline | ||
2623 | void __account_system_time(struct task_struct *p, cputime_t cputime, | ||
2624 | cputime_t cputime_scaled, cputime64_t *target_cputime64) | ||
2625 | { | ||
2626 | cputime64_t tmp = cputime_to_cputime64(cputime); | ||
2627 | |||
2628 | /* Add system time to process. */ | ||
2629 | p->stime = cputime_add(p->stime, cputime); | ||
2630 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); | ||
2631 | account_group_system_time(p, cputime); | ||
2632 | |||
2633 | /* Add system time to cpustat. */ | ||
2634 | *target_cputime64 = cputime64_add(*target_cputime64, tmp); | ||
2635 | cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); | ||
2636 | |||
2637 | /* Account for system time used */ | ||
2638 | acct_update_integrals(p); | ||
2639 | } | ||
2640 | |||
2641 | /* | ||
2642 | * Account system cpu time to a process. | ||
2643 | * @p: the process that the cpu time gets accounted to | ||
2644 | * @hardirq_offset: the offset to subtract from hardirq_count() | ||
2645 | * @cputime: the cpu time spent in kernel space since the last update | ||
2646 | * @cputime_scaled: cputime scaled by cpu frequency | ||
2647 | */ | ||
2648 | void account_system_time(struct task_struct *p, int hardirq_offset, | ||
2649 | cputime_t cputime, cputime_t cputime_scaled) | ||
2650 | { | ||
2651 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2652 | cputime64_t *target_cputime64; | ||
2653 | |||
2654 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | ||
2655 | account_guest_time(p, cputime, cputime_scaled); | ||
2656 | return; | ||
2657 | } | ||
2658 | |||
2659 | if (hardirq_count() - hardirq_offset) | ||
2660 | target_cputime64 = &cpustat->irq; | ||
2661 | else if (in_serving_softirq()) | ||
2662 | target_cputime64 = &cpustat->softirq; | ||
2663 | else | ||
2664 | target_cputime64 = &cpustat->system; | ||
2665 | |||
2666 | __account_system_time(p, cputime, cputime_scaled, target_cputime64); | ||
2667 | } | ||
2668 | |||
2669 | /* | ||
2670 | * Account for involuntary wait time. | ||
2671 | * @cputime: the cpu time spent in involuntary wait | ||
2672 | */ | ||
2673 | void account_steal_time(cputime_t cputime) | ||
2674 | { | ||
2675 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2676 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | ||
2677 | |||
2678 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); | ||
2679 | } | ||
2680 | |||
2681 | /* | ||
2682 | * Account for idle time. | ||
2683 | * @cputime: the cpu time spent in idle wait | ||
2684 | */ | ||
2685 | void account_idle_time(cputime_t cputime) | ||
2686 | { | ||
2687 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2688 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | ||
2689 | struct rq *rq = this_rq(); | ||
2690 | |||
2691 | if (atomic_read(&rq->nr_iowait) > 0) | ||
2692 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | ||
2693 | else | ||
2694 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); | ||
2695 | } | ||
2696 | |||
2697 | static __always_inline bool steal_account_process_tick(void) | ||
2698 | { | ||
2699 | #ifdef CONFIG_PARAVIRT | ||
2700 | if (static_branch(¶virt_steal_enabled)) { | ||
2701 | u64 steal, st = 0; | ||
2702 | |||
2703 | steal = paravirt_steal_clock(smp_processor_id()); | ||
2704 | steal -= this_rq()->prev_steal_time; | ||
2705 | |||
2706 | st = steal_ticks(steal); | ||
2707 | this_rq()->prev_steal_time += st * TICK_NSEC; | ||
2708 | |||
2709 | account_steal_time(st); | ||
2710 | return st; | ||
2711 | } | ||
2712 | #endif | ||
2713 | return false; | ||
2714 | } | ||
2715 | |||
2716 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | ||
2717 | |||
2718 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
2719 | /* | ||
2720 | * Account a tick to a process and cpustat | ||
2721 | * @p: the process that the cpu time gets accounted to | ||
2722 | * @user_tick: is the tick from userspace | ||
2723 | * @rq: the pointer to rq | ||
2724 | * | ||
2725 | * Tick demultiplexing follows the order | ||
2726 | * - pending hardirq update | ||
2727 | * - pending softirq update | ||
2728 | * - user_time | ||
2729 | * - idle_time | ||
2730 | * - system time | ||
2731 | * - check for guest_time | ||
2732 | * - else account as system_time | ||
2733 | * | ||
2734 | * Check for hardirq is done both for system and user time as there is | ||
2735 | * no timer going off while we are on hardirq and hence we may never get an | ||
2736 | * opportunity to update it solely in system time. | ||
2737 | * p->stime and friends are only updated on system time and not on irq | ||
2738 | * softirq as those do not count in task exec_runtime any more. | ||
2739 | */ | ||
2740 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | ||
2741 | struct rq *rq) | ||
2742 | { | ||
2743 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | ||
2744 | cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); | ||
2745 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2746 | |||
2747 | if (steal_account_process_tick()) | ||
2748 | return; | ||
2749 | |||
2750 | if (irqtime_account_hi_update()) { | ||
2751 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | ||
2752 | } else if (irqtime_account_si_update()) { | ||
2753 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | ||
2754 | } else if (this_cpu_ksoftirqd() == p) { | ||
2755 | /* | ||
2756 | * ksoftirqd time do not get accounted in cpu_softirq_time. | ||
2757 | * So, we have to handle it separately here. | ||
2758 | * Also, p->stime needs to be updated for ksoftirqd. | ||
2759 | */ | ||
2760 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | ||
2761 | &cpustat->softirq); | ||
2762 | } else if (user_tick) { | ||
2763 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | ||
2764 | } else if (p == rq->idle) { | ||
2765 | account_idle_time(cputime_one_jiffy); | ||
2766 | } else if (p->flags & PF_VCPU) { /* System time or guest time */ | ||
2767 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); | ||
2768 | } else { | ||
2769 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | ||
2770 | &cpustat->system); | ||
2771 | } | ||
2772 | } | ||
2773 | |||
2774 | static void irqtime_account_idle_ticks(int ticks) | ||
2775 | { | ||
2776 | int i; | ||
2777 | struct rq *rq = this_rq(); | ||
2778 | |||
2779 | for (i = 0; i < ticks; i++) | ||
2780 | irqtime_account_process_tick(current, 0, rq); | ||
2781 | } | ||
2782 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ | ||
2783 | static void irqtime_account_idle_ticks(int ticks) {} | ||
2784 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | ||
2785 | struct rq *rq) {} | ||
2786 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ | ||
2787 | |||
2788 | /* | ||
2789 | * Account a single tick of cpu time. | ||
2790 | * @p: the process that the cpu time gets accounted to | ||
2791 | * @user_tick: indicates if the tick is a user or a system tick | ||
2792 | */ | ||
2793 | void account_process_tick(struct task_struct *p, int user_tick) | ||
2794 | { | ||
2795 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | ||
2796 | struct rq *rq = this_rq(); | ||
2797 | |||
2798 | if (sched_clock_irqtime) { | ||
2799 | irqtime_account_process_tick(p, user_tick, rq); | ||
2800 | return; | ||
2801 | } | ||
2802 | |||
2803 | if (steal_account_process_tick()) | ||
2804 | return; | ||
2805 | |||
2806 | if (user_tick) | ||
2807 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | ||
2808 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | ||
2809 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, | ||
2810 | one_jiffy_scaled); | ||
2811 | else | ||
2812 | account_idle_time(cputime_one_jiffy); | ||
2813 | } | ||
2814 | |||
2815 | /* | ||
2816 | * Account multiple ticks of steal time. | ||
2817 | * @p: the process from which the cpu time has been stolen | ||
2818 | * @ticks: number of stolen ticks | ||
2819 | */ | ||
2820 | void account_steal_ticks(unsigned long ticks) | ||
2821 | { | ||
2822 | account_steal_time(jiffies_to_cputime(ticks)); | ||
2823 | } | ||
2824 | |||
2825 | /* | ||
2826 | * Account multiple ticks of idle time. | ||
2827 | * @ticks: number of stolen ticks | ||
2828 | */ | ||
2829 | void account_idle_ticks(unsigned long ticks) | ||
2830 | { | ||
2831 | |||
2832 | if (sched_clock_irqtime) { | ||
2833 | irqtime_account_idle_ticks(ticks); | ||
2834 | return; | ||
2835 | } | ||
2836 | |||
2837 | account_idle_time(jiffies_to_cputime(ticks)); | ||
2838 | } | ||
2839 | |||
2840 | #endif | ||
2841 | |||
2842 | /* | ||
2843 | * Use precise platform statistics if available: | ||
2844 | */ | ||
2845 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | ||
2846 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
2847 | { | ||
2848 | *ut = p->utime; | ||
2849 | *st = p->stime; | ||
2850 | } | ||
2851 | |||
2852 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
2853 | { | ||
2854 | struct task_cputime cputime; | ||
2855 | |||
2856 | thread_group_cputime(p, &cputime); | ||
2857 | |||
2858 | *ut = cputime.utime; | ||
2859 | *st = cputime.stime; | ||
2860 | } | ||
2861 | #else | ||
2862 | |||
2863 | #ifndef nsecs_to_cputime | ||
2864 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | ||
2865 | #endif | ||
2866 | |||
2867 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
2868 | { | ||
2869 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); | ||
2870 | |||
2871 | /* | ||
2872 | * Use CFS's precise accounting: | ||
2873 | */ | ||
2874 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); | ||
2875 | |||
2876 | if (total) { | ||
2877 | u64 temp = rtime; | ||
2878 | |||
2879 | temp *= utime; | ||
2880 | do_div(temp, total); | ||
2881 | utime = (cputime_t)temp; | ||
2882 | } else | ||
2883 | utime = rtime; | ||
2884 | |||
2885 | /* | ||
2886 | * Compare with previous values, to keep monotonicity: | ||
2887 | */ | ||
2888 | p->prev_utime = max(p->prev_utime, utime); | ||
2889 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | ||
2890 | |||
2891 | *ut = p->prev_utime; | ||
2892 | *st = p->prev_stime; | ||
2893 | } | ||
2894 | |||
2895 | /* | ||
2896 | * Must be called with siglock held. | ||
2897 | */ | ||
2898 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
2899 | { | ||
2900 | struct signal_struct *sig = p->signal; | ||
2901 | struct task_cputime cputime; | ||
2902 | cputime_t rtime, utime, total; | ||
2903 | |||
2904 | thread_group_cputime(p, &cputime); | ||
2905 | |||
2906 | total = cputime_add(cputime.utime, cputime.stime); | ||
2907 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | ||
2908 | |||
2909 | if (total) { | ||
2910 | u64 temp = rtime; | ||
2911 | |||
2912 | temp *= cputime.utime; | ||
2913 | do_div(temp, total); | ||
2914 | utime = (cputime_t)temp; | ||
2915 | } else | ||
2916 | utime = rtime; | ||
2917 | |||
2918 | sig->prev_utime = max(sig->prev_utime, utime); | ||
2919 | sig->prev_stime = max(sig->prev_stime, | ||
2920 | cputime_sub(rtime, sig->prev_utime)); | ||
2921 | |||
2922 | *ut = sig->prev_utime; | ||
2923 | *st = sig->prev_stime; | ||
2924 | } | ||
2925 | #endif | ||
2926 | |||
2927 | /* | ||
2928 | * This function gets called by the timer code, with HZ frequency. | ||
2929 | * We call it with interrupts disabled. | ||
2930 | */ | ||
2931 | void scheduler_tick(void) | ||
2932 | { | ||
2933 | int cpu = smp_processor_id(); | ||
2934 | struct rq *rq = cpu_rq(cpu); | ||
2935 | struct task_struct *curr = rq->curr; | ||
2936 | |||
2937 | sched_clock_tick(); | ||
2938 | |||
2939 | raw_spin_lock(&rq->lock); | ||
2940 | update_rq_clock(rq); | ||
2941 | update_cpu_load_active(rq); | ||
2942 | curr->sched_class->task_tick(rq, curr, 0); | ||
2943 | raw_spin_unlock(&rq->lock); | ||
2944 | |||
2945 | perf_event_task_tick(); | ||
2946 | |||
2947 | #ifdef CONFIG_SMP | ||
2948 | rq->idle_balance = idle_cpu(cpu); | ||
2949 | trigger_load_balance(rq, cpu); | ||
2950 | #endif | ||
2951 | } | ||
2952 | |||
2953 | notrace unsigned long get_parent_ip(unsigned long addr) | ||
2954 | { | ||
2955 | if (in_lock_functions(addr)) { | ||
2956 | addr = CALLER_ADDR2; | ||
2957 | if (in_lock_functions(addr)) | ||
2958 | addr = CALLER_ADDR3; | ||
2959 | } | ||
2960 | return addr; | ||
2961 | } | ||
2962 | |||
2963 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | ||
2964 | defined(CONFIG_PREEMPT_TRACER)) | ||
2965 | |||
2966 | void __kprobes add_preempt_count(int val) | ||
2967 | { | ||
2968 | #ifdef CONFIG_DEBUG_PREEMPT | ||
2969 | /* | ||
2970 | * Underflow? | ||
2971 | */ | ||
2972 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | ||
2973 | return; | ||
2974 | #endif | ||
2975 | preempt_count() += val; | ||
2976 | #ifdef CONFIG_DEBUG_PREEMPT | ||
2977 | /* | ||
2978 | * Spinlock count overflowing soon? | ||
2979 | */ | ||
2980 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | ||
2981 | PREEMPT_MASK - 10); | ||
2982 | #endif | ||
2983 | if (preempt_count() == val) | ||
2984 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | ||
2985 | } | ||
2986 | EXPORT_SYMBOL(add_preempt_count); | ||
2987 | |||
2988 | void __kprobes sub_preempt_count(int val) | ||
2989 | { | ||
2990 | #ifdef CONFIG_DEBUG_PREEMPT | ||
2991 | /* | ||
2992 | * Underflow? | ||
2993 | */ | ||
2994 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | ||
2995 | return; | ||
2996 | /* | ||
2997 | * Is the spinlock portion underflowing? | ||
2998 | */ | ||
2999 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | ||
3000 | !(preempt_count() & PREEMPT_MASK))) | ||
3001 | return; | ||
3002 | #endif | ||
3003 | |||
3004 | if (preempt_count() == val) | ||
3005 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | ||
3006 | preempt_count() -= val; | ||
3007 | } | ||
3008 | EXPORT_SYMBOL(sub_preempt_count); | ||
3009 | |||
3010 | #endif | ||
3011 | |||
3012 | /* | ||
3013 | * Print scheduling while atomic bug: | ||
3014 | */ | ||
3015 | static noinline void __schedule_bug(struct task_struct *prev) | ||
3016 | { | ||
3017 | struct pt_regs *regs = get_irq_regs(); | ||
3018 | |||
3019 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | ||
3020 | prev->comm, prev->pid, preempt_count()); | ||
3021 | |||
3022 | debug_show_held_locks(prev); | ||
3023 | print_modules(); | ||
3024 | if (irqs_disabled()) | ||
3025 | print_irqtrace_events(prev); | ||
3026 | |||
3027 | if (regs) | ||
3028 | show_regs(regs); | ||
3029 | else | ||
3030 | dump_stack(); | ||
3031 | } | ||
3032 | |||
3033 | /* | ||
3034 | * Various schedule()-time debugging checks and statistics: | ||
3035 | */ | ||
3036 | static inline void schedule_debug(struct task_struct *prev) | ||
3037 | { | ||
3038 | /* | ||
3039 | * Test if we are atomic. Since do_exit() needs to call into | ||
3040 | * schedule() atomically, we ignore that path for now. | ||
3041 | * Otherwise, whine if we are scheduling when we should not be. | ||
3042 | */ | ||
3043 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) | ||
3044 | __schedule_bug(prev); | ||
3045 | rcu_sleep_check(); | ||
3046 | |||
3047 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | ||
3048 | |||
3049 | schedstat_inc(this_rq(), sched_count); | ||
3050 | } | ||
3051 | |||
3052 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
3053 | { | ||
3054 | if (prev->on_rq || rq->skip_clock_update < 0) | ||
3055 | update_rq_clock(rq); | ||
3056 | prev->sched_class->put_prev_task(rq, prev); | ||
3057 | } | ||
3058 | |||
3059 | /* | ||
3060 | * Pick up the highest-prio task: | ||
3061 | */ | ||
3062 | static inline struct task_struct * | ||
3063 | pick_next_task(struct rq *rq) | ||
3064 | { | ||
3065 | const struct sched_class *class; | ||
3066 | struct task_struct *p; | ||
3067 | |||
3068 | /* | ||
3069 | * Optimization: we know that if all tasks are in | ||
3070 | * the fair class we can call that function directly: | ||
3071 | */ | ||
3072 | if (likely(rq->nr_running == rq->cfs.h_nr_running)) { | ||
3073 | p = fair_sched_class.pick_next_task(rq); | ||
3074 | if (likely(p)) | ||
3075 | return p; | ||
3076 | } | ||
3077 | |||
3078 | for_each_class(class) { | ||
3079 | p = class->pick_next_task(rq); | ||
3080 | if (p) | ||
3081 | return p; | ||
3082 | } | ||
3083 | |||
3084 | BUG(); /* the idle class will always have a runnable task */ | ||
3085 | } | ||
3086 | |||
3087 | /* | ||
3088 | * __schedule() is the main scheduler function. | ||
3089 | */ | ||
3090 | static void __sched __schedule(void) | ||
3091 | { | ||
3092 | struct task_struct *prev, *next; | ||
3093 | unsigned long *switch_count; | ||
3094 | struct rq *rq; | ||
3095 | int cpu; | ||
3096 | |||
3097 | need_resched: | ||
3098 | preempt_disable(); | ||
3099 | cpu = smp_processor_id(); | ||
3100 | rq = cpu_rq(cpu); | ||
3101 | rcu_note_context_switch(cpu); | ||
3102 | prev = rq->curr; | ||
3103 | |||
3104 | schedule_debug(prev); | ||
3105 | |||
3106 | if (sched_feat(HRTICK)) | ||
3107 | hrtick_clear(rq); | ||
3108 | |||
3109 | raw_spin_lock_irq(&rq->lock); | ||
3110 | |||
3111 | switch_count = &prev->nivcsw; | ||
3112 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | ||
3113 | if (unlikely(signal_pending_state(prev->state, prev))) { | ||
3114 | prev->state = TASK_RUNNING; | ||
3115 | } else { | ||
3116 | deactivate_task(rq, prev, DEQUEUE_SLEEP); | ||
3117 | prev->on_rq = 0; | ||
3118 | |||
3119 | /* | ||
3120 | * If a worker went to sleep, notify and ask workqueue | ||
3121 | * whether it wants to wake up a task to maintain | ||
3122 | * concurrency. | ||
3123 | */ | ||
3124 | if (prev->flags & PF_WQ_WORKER) { | ||
3125 | struct task_struct *to_wakeup; | ||
3126 | |||
3127 | to_wakeup = wq_worker_sleeping(prev, cpu); | ||
3128 | if (to_wakeup) | ||
3129 | try_to_wake_up_local(to_wakeup); | ||
3130 | } | ||
3131 | } | ||
3132 | switch_count = &prev->nvcsw; | ||
3133 | } | ||
3134 | |||
3135 | pre_schedule(rq, prev); | ||
3136 | |||
3137 | if (unlikely(!rq->nr_running)) | ||
3138 | idle_balance(cpu, rq); | ||
3139 | |||
3140 | put_prev_task(rq, prev); | ||
3141 | next = pick_next_task(rq); | ||
3142 | clear_tsk_need_resched(prev); | ||
3143 | rq->skip_clock_update = 0; | ||
3144 | |||
3145 | if (likely(prev != next)) { | ||
3146 | rq->nr_switches++; | ||
3147 | rq->curr = next; | ||
3148 | ++*switch_count; | ||
3149 | |||
3150 | context_switch(rq, prev, next); /* unlocks the rq */ | ||
3151 | /* | ||
3152 | * The context switch have flipped the stack from under us | ||
3153 | * and restored the local variables which were saved when | ||
3154 | * this task called schedule() in the past. prev == current | ||
3155 | * is still correct, but it can be moved to another cpu/rq. | ||
3156 | */ | ||
3157 | cpu = smp_processor_id(); | ||
3158 | rq = cpu_rq(cpu); | ||
3159 | } else | ||
3160 | raw_spin_unlock_irq(&rq->lock); | ||
3161 | |||
3162 | post_schedule(rq); | ||
3163 | |||
3164 | preempt_enable_no_resched(); | ||
3165 | if (need_resched()) | ||
3166 | goto need_resched; | ||
3167 | } | ||
3168 | |||
3169 | static inline void sched_submit_work(struct task_struct *tsk) | ||
3170 | { | ||
3171 | if (!tsk->state) | ||
3172 | return; | ||
3173 | /* | ||
3174 | * If we are going to sleep and we have plugged IO queued, | ||
3175 | * make sure to submit it to avoid deadlocks. | ||
3176 | */ | ||
3177 | if (blk_needs_flush_plug(tsk)) | ||
3178 | blk_schedule_flush_plug(tsk); | ||
3179 | } | ||
3180 | |||
3181 | asmlinkage void __sched schedule(void) | ||
3182 | { | ||
3183 | struct task_struct *tsk = current; | ||
3184 | |||
3185 | sched_submit_work(tsk); | ||
3186 | __schedule(); | ||
3187 | } | ||
3188 | EXPORT_SYMBOL(schedule); | ||
3189 | |||
3190 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER | ||
3191 | |||
3192 | static inline bool owner_running(struct mutex *lock, struct task_struct *owner) | ||
3193 | { | ||
3194 | if (lock->owner != owner) | ||
3195 | return false; | ||
3196 | |||
3197 | /* | ||
3198 | * Ensure we emit the owner->on_cpu, dereference _after_ checking | ||
3199 | * lock->owner still matches owner, if that fails, owner might | ||
3200 | * point to free()d memory, if it still matches, the rcu_read_lock() | ||
3201 | * ensures the memory stays valid. | ||
3202 | */ | ||
3203 | barrier(); | ||
3204 | |||
3205 | return owner->on_cpu; | ||
3206 | } | ||
3207 | |||
3208 | /* | ||
3209 | * Look out! "owner" is an entirely speculative pointer | ||
3210 | * access and not reliable. | ||
3211 | */ | ||
3212 | int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) | ||
3213 | { | ||
3214 | if (!sched_feat(OWNER_SPIN)) | ||
3215 | return 0; | ||
3216 | |||
3217 | rcu_read_lock(); | ||
3218 | while (owner_running(lock, owner)) { | ||
3219 | if (need_resched()) | ||
3220 | break; | ||
3221 | |||
3222 | arch_mutex_cpu_relax(); | ||
3223 | } | ||
3224 | rcu_read_unlock(); | ||
3225 | |||
3226 | /* | ||
3227 | * We break out the loop above on need_resched() and when the | ||
3228 | * owner changed, which is a sign for heavy contention. Return | ||
3229 | * success only when lock->owner is NULL. | ||
3230 | */ | ||
3231 | return lock->owner == NULL; | ||
3232 | } | ||
3233 | #endif | ||
3234 | |||
3235 | #ifdef CONFIG_PREEMPT | ||
3236 | /* | ||
3237 | * this is the entry point to schedule() from in-kernel preemption | ||
3238 | * off of preempt_enable. Kernel preemptions off return from interrupt | ||
3239 | * occur there and call schedule directly. | ||
3240 | */ | ||
3241 | asmlinkage void __sched notrace preempt_schedule(void) | ||
3242 | { | ||
3243 | struct thread_info *ti = current_thread_info(); | ||
3244 | |||
3245 | /* | ||
3246 | * If there is a non-zero preempt_count or interrupts are disabled, | ||
3247 | * we do not want to preempt the current task. Just return.. | ||
3248 | */ | ||
3249 | if (likely(ti->preempt_count || irqs_disabled())) | ||
3250 | return; | ||
3251 | |||
3252 | do { | ||
3253 | add_preempt_count_notrace(PREEMPT_ACTIVE); | ||
3254 | __schedule(); | ||
3255 | sub_preempt_count_notrace(PREEMPT_ACTIVE); | ||
3256 | |||
3257 | /* | ||
3258 | * Check again in case we missed a preemption opportunity | ||
3259 | * between schedule and now. | ||
3260 | */ | ||
3261 | barrier(); | ||
3262 | } while (need_resched()); | ||
3263 | } | ||
3264 | EXPORT_SYMBOL(preempt_schedule); | ||
3265 | |||
3266 | /* | ||
3267 | * this is the entry point to schedule() from kernel preemption | ||
3268 | * off of irq context. | ||
3269 | * Note, that this is called and return with irqs disabled. This will | ||
3270 | * protect us against recursive calling from irq. | ||
3271 | */ | ||
3272 | asmlinkage void __sched preempt_schedule_irq(void) | ||
3273 | { | ||
3274 | struct thread_info *ti = current_thread_info(); | ||
3275 | |||
3276 | /* Catch callers which need to be fixed */ | ||
3277 | BUG_ON(ti->preempt_count || !irqs_disabled()); | ||
3278 | |||
3279 | do { | ||
3280 | add_preempt_count(PREEMPT_ACTIVE); | ||
3281 | local_irq_enable(); | ||
3282 | __schedule(); | ||
3283 | local_irq_disable(); | ||
3284 | sub_preempt_count(PREEMPT_ACTIVE); | ||
3285 | |||
3286 | /* | ||
3287 | * Check again in case we missed a preemption opportunity | ||
3288 | * between schedule and now. | ||
3289 | */ | ||
3290 | barrier(); | ||
3291 | } while (need_resched()); | ||
3292 | } | ||
3293 | |||
3294 | #endif /* CONFIG_PREEMPT */ | ||
3295 | |||
3296 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, | ||
3297 | void *key) | ||
3298 | { | ||
3299 | return try_to_wake_up(curr->private, mode, wake_flags); | ||
3300 | } | ||
3301 | EXPORT_SYMBOL(default_wake_function); | ||
3302 | |||
3303 | /* | ||
3304 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | ||
3305 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | ||
3306 | * number) then we wake all the non-exclusive tasks and one exclusive task. | ||
3307 | * | ||
3308 | * There are circumstances in which we can try to wake a task which has already | ||
3309 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | ||
3310 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | ||
3311 | */ | ||
3312 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | ||
3313 | int nr_exclusive, int wake_flags, void *key) | ||
3314 | { | ||
3315 | wait_queue_t *curr, *next; | ||
3316 | |||
3317 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | ||
3318 | unsigned flags = curr->flags; | ||
3319 | |||
3320 | if (curr->func(curr, mode, wake_flags, key) && | ||
3321 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | ||
3322 | break; | ||
3323 | } | ||
3324 | } | ||
3325 | |||
3326 | /** | ||
3327 | * __wake_up - wake up threads blocked on a waitqueue. | ||
3328 | * @q: the waitqueue | ||
3329 | * @mode: which threads | ||
3330 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
3331 | * @key: is directly passed to the wakeup function | ||
3332 | * | ||
3333 | * It may be assumed that this function implies a write memory barrier before | ||
3334 | * changing the task state if and only if any tasks are woken up. | ||
3335 | */ | ||
3336 | void __wake_up(wait_queue_head_t *q, unsigned int mode, | ||
3337 | int nr_exclusive, void *key) | ||
3338 | { | ||
3339 | unsigned long flags; | ||
3340 | |||
3341 | spin_lock_irqsave(&q->lock, flags); | ||
3342 | __wake_up_common(q, mode, nr_exclusive, 0, key); | ||
3343 | spin_unlock_irqrestore(&q->lock, flags); | ||
3344 | } | ||
3345 | EXPORT_SYMBOL(__wake_up); | ||
3346 | |||
3347 | /* | ||
3348 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | ||
3349 | */ | ||
3350 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | ||
3351 | { | ||
3352 | __wake_up_common(q, mode, 1, 0, NULL); | ||
3353 | } | ||
3354 | EXPORT_SYMBOL_GPL(__wake_up_locked); | ||
3355 | |||
3356 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | ||
3357 | { | ||
3358 | __wake_up_common(q, mode, 1, 0, key); | ||
3359 | } | ||
3360 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); | ||
3361 | |||
3362 | /** | ||
3363 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. | ||
3364 | * @q: the waitqueue | ||
3365 | * @mode: which threads | ||
3366 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
3367 | * @key: opaque value to be passed to wakeup targets | ||
3368 | * | ||
3369 | * The sync wakeup differs that the waker knows that it will schedule | ||
3370 | * away soon, so while the target thread will be woken up, it will not | ||
3371 | * be migrated to another CPU - ie. the two threads are 'synchronized' | ||
3372 | * with each other. This can prevent needless bouncing between CPUs. | ||
3373 | * | ||
3374 | * On UP it can prevent extra preemption. | ||
3375 | * | ||
3376 | * It may be assumed that this function implies a write memory barrier before | ||
3377 | * changing the task state if and only if any tasks are woken up. | ||
3378 | */ | ||
3379 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | ||
3380 | int nr_exclusive, void *key) | ||
3381 | { | ||
3382 | unsigned long flags; | ||
3383 | int wake_flags = WF_SYNC; | ||
3384 | |||
3385 | if (unlikely(!q)) | ||
3386 | return; | ||
3387 | |||
3388 | if (unlikely(!nr_exclusive)) | ||
3389 | wake_flags = 0; | ||
3390 | |||
3391 | spin_lock_irqsave(&q->lock, flags); | ||
3392 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); | ||
3393 | spin_unlock_irqrestore(&q->lock, flags); | ||
3394 | } | ||
3395 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | ||
3396 | |||
3397 | /* | ||
3398 | * __wake_up_sync - see __wake_up_sync_key() | ||
3399 | */ | ||
3400 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | ||
3401 | { | ||
3402 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | ||
3403 | } | ||
3404 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | ||
3405 | |||
3406 | /** | ||
3407 | * complete: - signals a single thread waiting on this completion | ||
3408 | * @x: holds the state of this particular completion | ||
3409 | * | ||
3410 | * This will wake up a single thread waiting on this completion. Threads will be | ||
3411 | * awakened in the same order in which they were queued. | ||
3412 | * | ||
3413 | * See also complete_all(), wait_for_completion() and related routines. | ||
3414 | * | ||
3415 | * It may be assumed that this function implies a write memory barrier before | ||
3416 | * changing the task state if and only if any tasks are woken up. | ||
3417 | */ | ||
3418 | void complete(struct completion *x) | ||
3419 | { | ||
3420 | unsigned long flags; | ||
3421 | |||
3422 | spin_lock_irqsave(&x->wait.lock, flags); | ||
3423 | x->done++; | ||
3424 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); | ||
3425 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
3426 | } | ||
3427 | EXPORT_SYMBOL(complete); | ||
3428 | |||
3429 | /** | ||
3430 | * complete_all: - signals all threads waiting on this completion | ||
3431 | * @x: holds the state of this particular completion | ||
3432 | * | ||
3433 | * This will wake up all threads waiting on this particular completion event. | ||
3434 | * | ||
3435 | * It may be assumed that this function implies a write memory barrier before | ||
3436 | * changing the task state if and only if any tasks are woken up. | ||
3437 | */ | ||
3438 | void complete_all(struct completion *x) | ||
3439 | { | ||
3440 | unsigned long flags; | ||
3441 | |||
3442 | spin_lock_irqsave(&x->wait.lock, flags); | ||
3443 | x->done += UINT_MAX/2; | ||
3444 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); | ||
3445 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
3446 | } | ||
3447 | EXPORT_SYMBOL(complete_all); | ||
3448 | |||
3449 | static inline long __sched | ||
3450 | do_wait_for_common(struct completion *x, long timeout, int state) | ||
3451 | { | ||
3452 | if (!x->done) { | ||
3453 | DECLARE_WAITQUEUE(wait, current); | ||
3454 | |||
3455 | __add_wait_queue_tail_exclusive(&x->wait, &wait); | ||
3456 | do { | ||
3457 | if (signal_pending_state(state, current)) { | ||
3458 | timeout = -ERESTARTSYS; | ||
3459 | break; | ||
3460 | } | ||
3461 | __set_current_state(state); | ||
3462 | spin_unlock_irq(&x->wait.lock); | ||
3463 | timeout = schedule_timeout(timeout); | ||
3464 | spin_lock_irq(&x->wait.lock); | ||
3465 | } while (!x->done && timeout); | ||
3466 | __remove_wait_queue(&x->wait, &wait); | ||
3467 | if (!x->done) | ||
3468 | return timeout; | ||
3469 | } | ||
3470 | x->done--; | ||
3471 | return timeout ?: 1; | ||
3472 | } | ||
3473 | |||
3474 | static long __sched | ||
3475 | wait_for_common(struct completion *x, long timeout, int state) | ||
3476 | { | ||
3477 | might_sleep(); | ||
3478 | |||
3479 | spin_lock_irq(&x->wait.lock); | ||
3480 | timeout = do_wait_for_common(x, timeout, state); | ||
3481 | spin_unlock_irq(&x->wait.lock); | ||
3482 | return timeout; | ||
3483 | } | ||
3484 | |||
3485 | /** | ||
3486 | * wait_for_completion: - waits for completion of a task | ||
3487 | * @x: holds the state of this particular completion | ||
3488 | * | ||
3489 | * This waits to be signaled for completion of a specific task. It is NOT | ||
3490 | * interruptible and there is no timeout. | ||
3491 | * | ||
3492 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | ||
3493 | * and interrupt capability. Also see complete(). | ||
3494 | */ | ||
3495 | void __sched wait_for_completion(struct completion *x) | ||
3496 | { | ||
3497 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | ||
3498 | } | ||
3499 | EXPORT_SYMBOL(wait_for_completion); | ||
3500 | |||
3501 | /** | ||
3502 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | ||
3503 | * @x: holds the state of this particular completion | ||
3504 | * @timeout: timeout value in jiffies | ||
3505 | * | ||
3506 | * This waits for either a completion of a specific task to be signaled or for a | ||
3507 | * specified timeout to expire. The timeout is in jiffies. It is not | ||
3508 | * interruptible. | ||
3509 | * | ||
3510 | * The return value is 0 if timed out, and positive (at least 1, or number of | ||
3511 | * jiffies left till timeout) if completed. | ||
3512 | */ | ||
3513 | unsigned long __sched | ||
3514 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | ||
3515 | { | ||
3516 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); | ||
3517 | } | ||
3518 | EXPORT_SYMBOL(wait_for_completion_timeout); | ||
3519 | |||
3520 | /** | ||
3521 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | ||
3522 | * @x: holds the state of this particular completion | ||
3523 | * | ||
3524 | * This waits for completion of a specific task to be signaled. It is | ||
3525 | * interruptible. | ||
3526 | * | ||
3527 | * The return value is -ERESTARTSYS if interrupted, 0 if completed. | ||
3528 | */ | ||
3529 | int __sched wait_for_completion_interruptible(struct completion *x) | ||
3530 | { | ||
3531 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); | ||
3532 | if (t == -ERESTARTSYS) | ||
3533 | return t; | ||
3534 | return 0; | ||
3535 | } | ||
3536 | EXPORT_SYMBOL(wait_for_completion_interruptible); | ||
3537 | |||
3538 | /** | ||
3539 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | ||
3540 | * @x: holds the state of this particular completion | ||
3541 | * @timeout: timeout value in jiffies | ||
3542 | * | ||
3543 | * This waits for either a completion of a specific task to be signaled or for a | ||
3544 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | ||
3545 | * | ||
3546 | * The return value is -ERESTARTSYS if interrupted, 0 if timed out, | ||
3547 | * positive (at least 1, or number of jiffies left till timeout) if completed. | ||
3548 | */ | ||
3549 | long __sched | ||
3550 | wait_for_completion_interruptible_timeout(struct completion *x, | ||
3551 | unsigned long timeout) | ||
3552 | { | ||
3553 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); | ||
3554 | } | ||
3555 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | ||
3556 | |||
3557 | /** | ||
3558 | * wait_for_completion_killable: - waits for completion of a task (killable) | ||
3559 | * @x: holds the state of this particular completion | ||
3560 | * | ||
3561 | * This waits to be signaled for completion of a specific task. It can be | ||
3562 | * interrupted by a kill signal. | ||
3563 | * | ||
3564 | * The return value is -ERESTARTSYS if interrupted, 0 if completed. | ||
3565 | */ | ||
3566 | int __sched wait_for_completion_killable(struct completion *x) | ||
3567 | { | ||
3568 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | ||
3569 | if (t == -ERESTARTSYS) | ||
3570 | return t; | ||
3571 | return 0; | ||
3572 | } | ||
3573 | EXPORT_SYMBOL(wait_for_completion_killable); | ||
3574 | |||
3575 | /** | ||
3576 | * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) | ||
3577 | * @x: holds the state of this particular completion | ||
3578 | * @timeout: timeout value in jiffies | ||
3579 | * | ||
3580 | * This waits for either a completion of a specific task to be | ||
3581 | * signaled or for a specified timeout to expire. It can be | ||
3582 | * interrupted by a kill signal. The timeout is in jiffies. | ||
3583 | * | ||
3584 | * The return value is -ERESTARTSYS if interrupted, 0 if timed out, | ||
3585 | * positive (at least 1, or number of jiffies left till timeout) if completed. | ||
3586 | */ | ||
3587 | long __sched | ||
3588 | wait_for_completion_killable_timeout(struct completion *x, | ||
3589 | unsigned long timeout) | ||
3590 | { | ||
3591 | return wait_for_common(x, timeout, TASK_KILLABLE); | ||
3592 | } | ||
3593 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); | ||
3594 | |||
3595 | /** | ||
3596 | * try_wait_for_completion - try to decrement a completion without blocking | ||
3597 | * @x: completion structure | ||
3598 | * | ||
3599 | * Returns: 0 if a decrement cannot be done without blocking | ||
3600 | * 1 if a decrement succeeded. | ||
3601 | * | ||
3602 | * If a completion is being used as a counting completion, | ||
3603 | * attempt to decrement the counter without blocking. This | ||
3604 | * enables us to avoid waiting if the resource the completion | ||
3605 | * is protecting is not available. | ||
3606 | */ | ||
3607 | bool try_wait_for_completion(struct completion *x) | ||
3608 | { | ||
3609 | unsigned long flags; | ||
3610 | int ret = 1; | ||
3611 | |||
3612 | spin_lock_irqsave(&x->wait.lock, flags); | ||
3613 | if (!x->done) | ||
3614 | ret = 0; | ||
3615 | else | ||
3616 | x->done--; | ||
3617 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
3618 | return ret; | ||
3619 | } | ||
3620 | EXPORT_SYMBOL(try_wait_for_completion); | ||
3621 | |||
3622 | /** | ||
3623 | * completion_done - Test to see if a completion has any waiters | ||
3624 | * @x: completion structure | ||
3625 | * | ||
3626 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | ||
3627 | * 1 if there are no waiters. | ||
3628 | * | ||
3629 | */ | ||
3630 | bool completion_done(struct completion *x) | ||
3631 | { | ||
3632 | unsigned long flags; | ||
3633 | int ret = 1; | ||
3634 | |||
3635 | spin_lock_irqsave(&x->wait.lock, flags); | ||
3636 | if (!x->done) | ||
3637 | ret = 0; | ||
3638 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
3639 | return ret; | ||
3640 | } | ||
3641 | EXPORT_SYMBOL(completion_done); | ||
3642 | |||
3643 | static long __sched | ||
3644 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | ||
3645 | { | ||
3646 | unsigned long flags; | ||
3647 | wait_queue_t wait; | ||
3648 | |||
3649 | init_waitqueue_entry(&wait, current); | ||
3650 | |||
3651 | __set_current_state(state); | ||
3652 | |||
3653 | spin_lock_irqsave(&q->lock, flags); | ||
3654 | __add_wait_queue(q, &wait); | ||
3655 | spin_unlock(&q->lock); | ||
3656 | timeout = schedule_timeout(timeout); | ||
3657 | spin_lock_irq(&q->lock); | ||
3658 | __remove_wait_queue(q, &wait); | ||
3659 | spin_unlock_irqrestore(&q->lock, flags); | ||
3660 | |||
3661 | return timeout; | ||
3662 | } | ||
3663 | |||
3664 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | ||
3665 | { | ||
3666 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | ||
3667 | } | ||
3668 | EXPORT_SYMBOL(interruptible_sleep_on); | ||
3669 | |||
3670 | long __sched | ||
3671 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | ||
3672 | { | ||
3673 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); | ||
3674 | } | ||
3675 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | ||
3676 | |||
3677 | void __sched sleep_on(wait_queue_head_t *q) | ||
3678 | { | ||
3679 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | ||
3680 | } | ||
3681 | EXPORT_SYMBOL(sleep_on); | ||
3682 | |||
3683 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | ||
3684 | { | ||
3685 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); | ||
3686 | } | ||
3687 | EXPORT_SYMBOL(sleep_on_timeout); | ||
3688 | |||
3689 | #ifdef CONFIG_RT_MUTEXES | ||
3690 | |||
3691 | /* | ||
3692 | * rt_mutex_setprio - set the current priority of a task | ||
3693 | * @p: task | ||
3694 | * @prio: prio value (kernel-internal form) | ||
3695 | * | ||
3696 | * This function changes the 'effective' priority of a task. It does | ||
3697 | * not touch ->normal_prio like __setscheduler(). | ||
3698 | * | ||
3699 | * Used by the rt_mutex code to implement priority inheritance logic. | ||
3700 | */ | ||
3701 | void rt_mutex_setprio(struct task_struct *p, int prio) | ||
3702 | { | ||
3703 | int oldprio, on_rq, running; | ||
3704 | struct rq *rq; | ||
3705 | const struct sched_class *prev_class; | ||
3706 | |||
3707 | BUG_ON(prio < 0 || prio > MAX_PRIO); | ||
3708 | |||
3709 | rq = __task_rq_lock(p); | ||
3710 | |||
3711 | trace_sched_pi_setprio(p, prio); | ||
3712 | oldprio = p->prio; | ||
3713 | prev_class = p->sched_class; | ||
3714 | on_rq = p->on_rq; | ||
3715 | running = task_current(rq, p); | ||
3716 | if (on_rq) | ||
3717 | dequeue_task(rq, p, 0); | ||
3718 | if (running) | ||
3719 | p->sched_class->put_prev_task(rq, p); | ||
3720 | |||
3721 | if (rt_prio(prio)) | ||
3722 | p->sched_class = &rt_sched_class; | ||
3723 | else | ||
3724 | p->sched_class = &fair_sched_class; | ||
3725 | |||
3726 | p->prio = prio; | ||
3727 | |||
3728 | if (running) | ||
3729 | p->sched_class->set_curr_task(rq); | ||
3730 | if (on_rq) | ||
3731 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); | ||
3732 | |||
3733 | check_class_changed(rq, p, prev_class, oldprio); | ||
3734 | __task_rq_unlock(rq); | ||
3735 | } | ||
3736 | |||
3737 | #endif | ||
3738 | |||
3739 | void set_user_nice(struct task_struct *p, long nice) | ||
3740 | { | ||
3741 | int old_prio, delta, on_rq; | ||
3742 | unsigned long flags; | ||
3743 | struct rq *rq; | ||
3744 | |||
3745 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | ||
3746 | return; | ||
3747 | /* | ||
3748 | * We have to be careful, if called from sys_setpriority(), | ||
3749 | * the task might be in the middle of scheduling on another CPU. | ||
3750 | */ | ||
3751 | rq = task_rq_lock(p, &flags); | ||
3752 | /* | ||
3753 | * The RT priorities are set via sched_setscheduler(), but we still | ||
3754 | * allow the 'normal' nice value to be set - but as expected | ||
3755 | * it wont have any effect on scheduling until the task is | ||
3756 | * SCHED_FIFO/SCHED_RR: | ||
3757 | */ | ||
3758 | if (task_has_rt_policy(p)) { | ||
3759 | p->static_prio = NICE_TO_PRIO(nice); | ||
3760 | goto out_unlock; | ||
3761 | } | ||
3762 | on_rq = p->on_rq; | ||
3763 | if (on_rq) | ||
3764 | dequeue_task(rq, p, 0); | ||
3765 | |||
3766 | p->static_prio = NICE_TO_PRIO(nice); | ||
3767 | set_load_weight(p); | ||
3768 | old_prio = p->prio; | ||
3769 | p->prio = effective_prio(p); | ||
3770 | delta = p->prio - old_prio; | ||
3771 | |||
3772 | if (on_rq) { | ||
3773 | enqueue_task(rq, p, 0); | ||
3774 | /* | ||
3775 | * If the task increased its priority or is running and | ||
3776 | * lowered its priority, then reschedule its CPU: | ||
3777 | */ | ||
3778 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | ||
3779 | resched_task(rq->curr); | ||
3780 | } | ||
3781 | out_unlock: | ||
3782 | task_rq_unlock(rq, p, &flags); | ||
3783 | } | ||
3784 | EXPORT_SYMBOL(set_user_nice); | ||
3785 | |||
3786 | /* | ||
3787 | * can_nice - check if a task can reduce its nice value | ||
3788 | * @p: task | ||
3789 | * @nice: nice value | ||
3790 | */ | ||
3791 | int can_nice(const struct task_struct *p, const int nice) | ||
3792 | { | ||
3793 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | ||
3794 | int nice_rlim = 20 - nice; | ||
3795 | |||
3796 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || | ||
3797 | capable(CAP_SYS_NICE)); | ||
3798 | } | ||
3799 | |||
3800 | #ifdef __ARCH_WANT_SYS_NICE | ||
3801 | |||
3802 | /* | ||
3803 | * sys_nice - change the priority of the current process. | ||
3804 | * @increment: priority increment | ||
3805 | * | ||
3806 | * sys_setpriority is a more generic, but much slower function that | ||
3807 | * does similar things. | ||
3808 | */ | ||
3809 | SYSCALL_DEFINE1(nice, int, increment) | ||
3810 | { | ||
3811 | long nice, retval; | ||
3812 | |||
3813 | /* | ||
3814 | * Setpriority might change our priority at the same moment. | ||
3815 | * We don't have to worry. Conceptually one call occurs first | ||
3816 | * and we have a single winner. | ||
3817 | */ | ||
3818 | if (increment < -40) | ||
3819 | increment = -40; | ||
3820 | if (increment > 40) | ||
3821 | increment = 40; | ||
3822 | |||
3823 | nice = TASK_NICE(current) + increment; | ||
3824 | if (nice < -20) | ||
3825 | nice = -20; | ||
3826 | if (nice > 19) | ||
3827 | nice = 19; | ||
3828 | |||
3829 | if (increment < 0 && !can_nice(current, nice)) | ||
3830 | return -EPERM; | ||
3831 | |||
3832 | retval = security_task_setnice(current, nice); | ||
3833 | if (retval) | ||
3834 | return retval; | ||
3835 | |||
3836 | set_user_nice(current, nice); | ||
3837 | return 0; | ||
3838 | } | ||
3839 | |||
3840 | #endif | ||
3841 | |||
3842 | /** | ||
3843 | * task_prio - return the priority value of a given task. | ||
3844 | * @p: the task in question. | ||
3845 | * | ||
3846 | * This is the priority value as seen by users in /proc. | ||
3847 | * RT tasks are offset by -200. Normal tasks are centered | ||
3848 | * around 0, value goes from -16 to +15. | ||
3849 | */ | ||
3850 | int task_prio(const struct task_struct *p) | ||
3851 | { | ||
3852 | return p->prio - MAX_RT_PRIO; | ||
3853 | } | ||
3854 | |||
3855 | /** | ||
3856 | * task_nice - return the nice value of a given task. | ||
3857 | * @p: the task in question. | ||
3858 | */ | ||
3859 | int task_nice(const struct task_struct *p) | ||
3860 | { | ||
3861 | return TASK_NICE(p); | ||
3862 | } | ||
3863 | EXPORT_SYMBOL(task_nice); | ||
3864 | |||
3865 | /** | ||
3866 | * idle_cpu - is a given cpu idle currently? | ||
3867 | * @cpu: the processor in question. | ||
3868 | */ | ||
3869 | int idle_cpu(int cpu) | ||
3870 | { | ||
3871 | struct rq *rq = cpu_rq(cpu); | ||
3872 | |||
3873 | if (rq->curr != rq->idle) | ||
3874 | return 0; | ||
3875 | |||
3876 | if (rq->nr_running) | ||
3877 | return 0; | ||
3878 | |||
3879 | #ifdef CONFIG_SMP | ||
3880 | if (!llist_empty(&rq->wake_list)) | ||
3881 | return 0; | ||
3882 | #endif | ||
3883 | |||
3884 | return 1; | ||
3885 | } | ||
3886 | |||
3887 | /** | ||
3888 | * idle_task - return the idle task for a given cpu. | ||
3889 | * @cpu: the processor in question. | ||
3890 | */ | ||
3891 | struct task_struct *idle_task(int cpu) | ||
3892 | { | ||
3893 | return cpu_rq(cpu)->idle; | ||
3894 | } | ||
3895 | |||
3896 | /** | ||
3897 | * find_process_by_pid - find a process with a matching PID value. | ||
3898 | * @pid: the pid in question. | ||
3899 | */ | ||
3900 | static struct task_struct *find_process_by_pid(pid_t pid) | ||
3901 | { | ||
3902 | return pid ? find_task_by_vpid(pid) : current; | ||
3903 | } | ||
3904 | |||
3905 | /* Actually do priority change: must hold rq lock. */ | ||
3906 | static void | ||
3907 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | ||
3908 | { | ||
3909 | p->policy = policy; | ||
3910 | p->rt_priority = prio; | ||
3911 | p->normal_prio = normal_prio(p); | ||
3912 | /* we are holding p->pi_lock already */ | ||
3913 | p->prio = rt_mutex_getprio(p); | ||
3914 | if (rt_prio(p->prio)) | ||
3915 | p->sched_class = &rt_sched_class; | ||
3916 | else | ||
3917 | p->sched_class = &fair_sched_class; | ||
3918 | set_load_weight(p); | ||
3919 | } | ||
3920 | |||
3921 | /* | ||
3922 | * check the target process has a UID that matches the current process's | ||
3923 | */ | ||
3924 | static bool check_same_owner(struct task_struct *p) | ||
3925 | { | ||
3926 | const struct cred *cred = current_cred(), *pcred; | ||
3927 | bool match; | ||
3928 | |||
3929 | rcu_read_lock(); | ||
3930 | pcred = __task_cred(p); | ||
3931 | if (cred->user->user_ns == pcred->user->user_ns) | ||
3932 | match = (cred->euid == pcred->euid || | ||
3933 | cred->euid == pcred->uid); | ||
3934 | else | ||
3935 | match = false; | ||
3936 | rcu_read_unlock(); | ||
3937 | return match; | ||
3938 | } | ||
3939 | |||
3940 | static int __sched_setscheduler(struct task_struct *p, int policy, | ||
3941 | const struct sched_param *param, bool user) | ||
3942 | { | ||
3943 | int retval, oldprio, oldpolicy = -1, on_rq, running; | ||
3944 | unsigned long flags; | ||
3945 | const struct sched_class *prev_class; | ||
3946 | struct rq *rq; | ||
3947 | int reset_on_fork; | ||
3948 | |||
3949 | /* may grab non-irq protected spin_locks */ | ||
3950 | BUG_ON(in_interrupt()); | ||
3951 | recheck: | ||
3952 | /* double check policy once rq lock held */ | ||
3953 | if (policy < 0) { | ||
3954 | reset_on_fork = p->sched_reset_on_fork; | ||
3955 | policy = oldpolicy = p->policy; | ||
3956 | } else { | ||
3957 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | ||
3958 | policy &= ~SCHED_RESET_ON_FORK; | ||
3959 | |||
3960 | if (policy != SCHED_FIFO && policy != SCHED_RR && | ||
3961 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | ||
3962 | policy != SCHED_IDLE) | ||
3963 | return -EINVAL; | ||
3964 | } | ||
3965 | |||
3966 | /* | ||
3967 | * Valid priorities for SCHED_FIFO and SCHED_RR are | ||
3968 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | ||
3969 | * SCHED_BATCH and SCHED_IDLE is 0. | ||
3970 | */ | ||
3971 | if (param->sched_priority < 0 || | ||
3972 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | ||
3973 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | ||
3974 | return -EINVAL; | ||
3975 | if (rt_policy(policy) != (param->sched_priority != 0)) | ||
3976 | return -EINVAL; | ||
3977 | |||
3978 | /* | ||
3979 | * Allow unprivileged RT tasks to decrease priority: | ||
3980 | */ | ||
3981 | if (user && !capable(CAP_SYS_NICE)) { | ||
3982 | if (rt_policy(policy)) { | ||
3983 | unsigned long rlim_rtprio = | ||
3984 | task_rlimit(p, RLIMIT_RTPRIO); | ||
3985 | |||
3986 | /* can't set/change the rt policy */ | ||
3987 | if (policy != p->policy && !rlim_rtprio) | ||
3988 | return -EPERM; | ||
3989 | |||
3990 | /* can't increase priority */ | ||
3991 | if (param->sched_priority > p->rt_priority && | ||
3992 | param->sched_priority > rlim_rtprio) | ||
3993 | return -EPERM; | ||
3994 | } | ||
3995 | |||
3996 | /* | ||
3997 | * Treat SCHED_IDLE as nice 20. Only allow a switch to | ||
3998 | * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | ||
3999 | */ | ||
4000 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { | ||
4001 | if (!can_nice(p, TASK_NICE(p))) | ||
4002 | return -EPERM; | ||
4003 | } | ||
4004 | |||
4005 | /* can't change other user's priorities */ | ||
4006 | if (!check_same_owner(p)) | ||
4007 | return -EPERM; | ||
4008 | |||
4009 | /* Normal users shall not reset the sched_reset_on_fork flag */ | ||
4010 | if (p->sched_reset_on_fork && !reset_on_fork) | ||
4011 | return -EPERM; | ||
4012 | } | ||
4013 | |||
4014 | if (user) { | ||
4015 | retval = security_task_setscheduler(p); | ||
4016 | if (retval) | ||
4017 | return retval; | ||
4018 | } | ||
4019 | |||
4020 | /* | ||
4021 | * make sure no PI-waiters arrive (or leave) while we are | ||
4022 | * changing the priority of the task: | ||
4023 | * | ||
4024 | * To be able to change p->policy safely, the appropriate | ||
4025 | * runqueue lock must be held. | ||
4026 | */ | ||
4027 | rq = task_rq_lock(p, &flags); | ||
4028 | |||
4029 | /* | ||
4030 | * Changing the policy of the stop threads its a very bad idea | ||
4031 | */ | ||
4032 | if (p == rq->stop) { | ||
4033 | task_rq_unlock(rq, p, &flags); | ||
4034 | return -EINVAL; | ||
4035 | } | ||
4036 | |||
4037 | /* | ||
4038 | * If not changing anything there's no need to proceed further: | ||
4039 | */ | ||
4040 | if (unlikely(policy == p->policy && (!rt_policy(policy) || | ||
4041 | param->sched_priority == p->rt_priority))) { | ||
4042 | |||
4043 | __task_rq_unlock(rq); | ||
4044 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | ||
4045 | return 0; | ||
4046 | } | ||
4047 | |||
4048 | #ifdef CONFIG_RT_GROUP_SCHED | ||
4049 | if (user) { | ||
4050 | /* | ||
4051 | * Do not allow realtime tasks into groups that have no runtime | ||
4052 | * assigned. | ||
4053 | */ | ||
4054 | if (rt_bandwidth_enabled() && rt_policy(policy) && | ||
4055 | task_group(p)->rt_bandwidth.rt_runtime == 0 && | ||
4056 | !task_group_is_autogroup(task_group(p))) { | ||
4057 | task_rq_unlock(rq, p, &flags); | ||
4058 | return -EPERM; | ||
4059 | } | ||
4060 | } | ||
4061 | #endif | ||
4062 | |||
4063 | /* recheck policy now with rq lock held */ | ||
4064 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | ||
4065 | policy = oldpolicy = -1; | ||
4066 | task_rq_unlock(rq, p, &flags); | ||
4067 | goto recheck; | ||
4068 | } | ||
4069 | on_rq = p->on_rq; | ||
4070 | running = task_current(rq, p); | ||
4071 | if (on_rq) | ||
4072 | deactivate_task(rq, p, 0); | ||
4073 | if (running) | ||
4074 | p->sched_class->put_prev_task(rq, p); | ||
4075 | |||
4076 | p->sched_reset_on_fork = reset_on_fork; | ||
4077 | |||
4078 | oldprio = p->prio; | ||
4079 | prev_class = p->sched_class; | ||
4080 | __setscheduler(rq, p, policy, param->sched_priority); | ||
4081 | |||
4082 | if (running) | ||
4083 | p->sched_class->set_curr_task(rq); | ||
4084 | if (on_rq) | ||
4085 | activate_task(rq, p, 0); | ||
4086 | |||
4087 | check_class_changed(rq, p, prev_class, oldprio); | ||
4088 | task_rq_unlock(rq, p, &flags); | ||
4089 | |||
4090 | rt_mutex_adjust_pi(p); | ||
4091 | |||
4092 | return 0; | ||
4093 | } | ||
4094 | |||
4095 | /** | ||
4096 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | ||
4097 | * @p: the task in question. | ||
4098 | * @policy: new policy. | ||
4099 | * @param: structure containing the new RT priority. | ||
4100 | * | ||
4101 | * NOTE that the task may be already dead. | ||
4102 | */ | ||
4103 | int sched_setscheduler(struct task_struct *p, int policy, | ||
4104 | const struct sched_param *param) | ||
4105 | { | ||
4106 | return __sched_setscheduler(p, policy, param, true); | ||
4107 | } | ||
4108 | EXPORT_SYMBOL_GPL(sched_setscheduler); | ||
4109 | |||
4110 | /** | ||
4111 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | ||
4112 | * @p: the task in question. | ||
4113 | * @policy: new policy. | ||
4114 | * @param: structure containing the new RT priority. | ||
4115 | * | ||
4116 | * Just like sched_setscheduler, only don't bother checking if the | ||
4117 | * current context has permission. For example, this is needed in | ||
4118 | * stop_machine(): we create temporary high priority worker threads, | ||
4119 | * but our caller might not have that capability. | ||
4120 | */ | ||
4121 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | ||
4122 | const struct sched_param *param) | ||
4123 | { | ||
4124 | return __sched_setscheduler(p, policy, param, false); | ||
4125 | } | ||
4126 | |||
4127 | static int | ||
4128 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | ||
4129 | { | ||
4130 | struct sched_param lparam; | ||
4131 | struct task_struct *p; | ||
4132 | int retval; | ||
4133 | |||
4134 | if (!param || pid < 0) | ||
4135 | return -EINVAL; | ||
4136 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | ||
4137 | return -EFAULT; | ||
4138 | |||
4139 | rcu_read_lock(); | ||
4140 | retval = -ESRCH; | ||
4141 | p = find_process_by_pid(pid); | ||
4142 | if (p != NULL) | ||
4143 | retval = sched_setscheduler(p, policy, &lparam); | ||
4144 | rcu_read_unlock(); | ||
4145 | |||
4146 | return retval; | ||
4147 | } | ||
4148 | |||
4149 | /** | ||
4150 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | ||
4151 | * @pid: the pid in question. | ||
4152 | * @policy: new policy. | ||
4153 | * @param: structure containing the new RT priority. | ||
4154 | */ | ||
4155 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, | ||
4156 | struct sched_param __user *, param) | ||
4157 | { | ||
4158 | /* negative values for policy are not valid */ | ||
4159 | if (policy < 0) | ||
4160 | return -EINVAL; | ||
4161 | |||
4162 | return do_sched_setscheduler(pid, policy, param); | ||
4163 | } | ||
4164 | |||
4165 | /** | ||
4166 | * sys_sched_setparam - set/change the RT priority of a thread | ||
4167 | * @pid: the pid in question. | ||
4168 | * @param: structure containing the new RT priority. | ||
4169 | */ | ||
4170 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | ||
4171 | { | ||
4172 | return do_sched_setscheduler(pid, -1, param); | ||
4173 | } | ||
4174 | |||
4175 | /** | ||
4176 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | ||
4177 | * @pid: the pid in question. | ||
4178 | */ | ||
4179 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | ||
4180 | { | ||
4181 | struct task_struct *p; | ||
4182 | int retval; | ||
4183 | |||
4184 | if (pid < 0) | ||
4185 | return -EINVAL; | ||
4186 | |||
4187 | retval = -ESRCH; | ||
4188 | rcu_read_lock(); | ||
4189 | p = find_process_by_pid(pid); | ||
4190 | if (p) { | ||
4191 | retval = security_task_getscheduler(p); | ||
4192 | if (!retval) | ||
4193 | retval = p->policy | ||
4194 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | ||
4195 | } | ||
4196 | rcu_read_unlock(); | ||
4197 | return retval; | ||
4198 | } | ||
4199 | |||
4200 | /** | ||
4201 | * sys_sched_getparam - get the RT priority of a thread | ||
4202 | * @pid: the pid in question. | ||
4203 | * @param: structure containing the RT priority. | ||
4204 | */ | ||
4205 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | ||
4206 | { | ||
4207 | struct sched_param lp; | ||
4208 | struct task_struct *p; | ||
4209 | int retval; | ||
4210 | |||
4211 | if (!param || pid < 0) | ||
4212 | return -EINVAL; | ||
4213 | |||
4214 | rcu_read_lock(); | ||
4215 | p = find_process_by_pid(pid); | ||
4216 | retval = -ESRCH; | ||
4217 | if (!p) | ||
4218 | goto out_unlock; | ||
4219 | |||
4220 | retval = security_task_getscheduler(p); | ||
4221 | if (retval) | ||
4222 | goto out_unlock; | ||
4223 | |||
4224 | lp.sched_priority = p->rt_priority; | ||
4225 | rcu_read_unlock(); | ||
4226 | |||
4227 | /* | ||
4228 | * This one might sleep, we cannot do it with a spinlock held ... | ||
4229 | */ | ||
4230 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | ||
4231 | |||
4232 | return retval; | ||
4233 | |||
4234 | out_unlock: | ||
4235 | rcu_read_unlock(); | ||
4236 | return retval; | ||
4237 | } | ||
4238 | |||
4239 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | ||
4240 | { | ||
4241 | cpumask_var_t cpus_allowed, new_mask; | ||
4242 | struct task_struct *p; | ||
4243 | int retval; | ||
4244 | |||
4245 | get_online_cpus(); | ||
4246 | rcu_read_lock(); | ||
4247 | |||
4248 | p = find_process_by_pid(pid); | ||
4249 | if (!p) { | ||
4250 | rcu_read_unlock(); | ||
4251 | put_online_cpus(); | ||
4252 | return -ESRCH; | ||
4253 | } | ||
4254 | |||
4255 | /* Prevent p going away */ | ||
4256 | get_task_struct(p); | ||
4257 | rcu_read_unlock(); | ||
4258 | |||
4259 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | ||
4260 | retval = -ENOMEM; | ||
4261 | goto out_put_task; | ||
4262 | } | ||
4263 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | ||
4264 | retval = -ENOMEM; | ||
4265 | goto out_free_cpus_allowed; | ||
4266 | } | ||
4267 | retval = -EPERM; | ||
4268 | if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE)) | ||
4269 | goto out_unlock; | ||
4270 | |||
4271 | retval = security_task_setscheduler(p); | ||
4272 | if (retval) | ||
4273 | goto out_unlock; | ||
4274 | |||
4275 | cpuset_cpus_allowed(p, cpus_allowed); | ||
4276 | cpumask_and(new_mask, in_mask, cpus_allowed); | ||
4277 | again: | ||
4278 | retval = set_cpus_allowed_ptr(p, new_mask); | ||
4279 | |||
4280 | if (!retval) { | ||
4281 | cpuset_cpus_allowed(p, cpus_allowed); | ||
4282 | if (!cpumask_subset(new_mask, cpus_allowed)) { | ||
4283 | /* | ||
4284 | * We must have raced with a concurrent cpuset | ||
4285 | * update. Just reset the cpus_allowed to the | ||
4286 | * cpuset's cpus_allowed | ||
4287 | */ | ||
4288 | cpumask_copy(new_mask, cpus_allowed); | ||
4289 | goto again; | ||
4290 | } | ||
4291 | } | ||
4292 | out_unlock: | ||
4293 | free_cpumask_var(new_mask); | ||
4294 | out_free_cpus_allowed: | ||
4295 | free_cpumask_var(cpus_allowed); | ||
4296 | out_put_task: | ||
4297 | put_task_struct(p); | ||
4298 | put_online_cpus(); | ||
4299 | return retval; | ||
4300 | } | ||
4301 | |||
4302 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | ||
4303 | struct cpumask *new_mask) | ||
4304 | { | ||
4305 | if (len < cpumask_size()) | ||
4306 | cpumask_clear(new_mask); | ||
4307 | else if (len > cpumask_size()) | ||
4308 | len = cpumask_size(); | ||
4309 | |||
4310 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | ||
4311 | } | ||
4312 | |||
4313 | /** | ||
4314 | * sys_sched_setaffinity - set the cpu affinity of a process | ||
4315 | * @pid: pid of the process | ||
4316 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | ||
4317 | * @user_mask_ptr: user-space pointer to the new cpu mask | ||
4318 | */ | ||
4319 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | ||
4320 | unsigned long __user *, user_mask_ptr) | ||
4321 | { | ||
4322 | cpumask_var_t new_mask; | ||
4323 | int retval; | ||
4324 | |||
4325 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | ||
4326 | return -ENOMEM; | ||
4327 | |||
4328 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | ||
4329 | if (retval == 0) | ||
4330 | retval = sched_setaffinity(pid, new_mask); | ||
4331 | free_cpumask_var(new_mask); | ||
4332 | return retval; | ||
4333 | } | ||
4334 | |||
4335 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | ||
4336 | { | ||
4337 | struct task_struct *p; | ||
4338 | unsigned long flags; | ||
4339 | int retval; | ||
4340 | |||
4341 | get_online_cpus(); | ||
4342 | rcu_read_lock(); | ||
4343 | |||
4344 | retval = -ESRCH; | ||
4345 | p = find_process_by_pid(pid); | ||
4346 | if (!p) | ||
4347 | goto out_unlock; | ||
4348 | |||
4349 | retval = security_task_getscheduler(p); | ||
4350 | if (retval) | ||
4351 | goto out_unlock; | ||
4352 | |||
4353 | raw_spin_lock_irqsave(&p->pi_lock, flags); | ||
4354 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | ||
4355 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | ||
4356 | |||
4357 | out_unlock: | ||
4358 | rcu_read_unlock(); | ||
4359 | put_online_cpus(); | ||
4360 | |||
4361 | return retval; | ||
4362 | } | ||
4363 | |||
4364 | /** | ||
4365 | * sys_sched_getaffinity - get the cpu affinity of a process | ||
4366 | * @pid: pid of the process | ||
4367 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | ||
4368 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | ||
4369 | */ | ||
4370 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | ||
4371 | unsigned long __user *, user_mask_ptr) | ||
4372 | { | ||
4373 | int ret; | ||
4374 | cpumask_var_t mask; | ||
4375 | |||
4376 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) | ||
4377 | return -EINVAL; | ||
4378 | if (len & (sizeof(unsigned long)-1)) | ||
4379 | return -EINVAL; | ||
4380 | |||
4381 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | ||
4382 | return -ENOMEM; | ||
4383 | |||
4384 | ret = sched_getaffinity(pid, mask); | ||
4385 | if (ret == 0) { | ||
4386 | size_t retlen = min_t(size_t, len, cpumask_size()); | ||
4387 | |||
4388 | if (copy_to_user(user_mask_ptr, mask, retlen)) | ||
4389 | ret = -EFAULT; | ||
4390 | else | ||
4391 | ret = retlen; | ||
4392 | } | ||
4393 | free_cpumask_var(mask); | ||
4394 | |||
4395 | return ret; | ||
4396 | } | ||
4397 | |||
4398 | /** | ||
4399 | * sys_sched_yield - yield the current processor to other threads. | ||
4400 | * | ||
4401 | * This function yields the current CPU to other tasks. If there are no | ||
4402 | * other threads running on this CPU then this function will return. | ||
4403 | */ | ||
4404 | SYSCALL_DEFINE0(sched_yield) | ||
4405 | { | ||
4406 | struct rq *rq = this_rq_lock(); | ||
4407 | |||
4408 | schedstat_inc(rq, yld_count); | ||
4409 | current->sched_class->yield_task(rq); | ||
4410 | |||
4411 | /* | ||
4412 | * Since we are going to call schedule() anyway, there's | ||
4413 | * no need to preempt or enable interrupts: | ||
4414 | */ | ||
4415 | __release(rq->lock); | ||
4416 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | ||
4417 | do_raw_spin_unlock(&rq->lock); | ||
4418 | preempt_enable_no_resched(); | ||
4419 | |||
4420 | schedule(); | ||
4421 | |||
4422 | return 0; | ||
4423 | } | ||
4424 | |||
4425 | static inline int should_resched(void) | ||
4426 | { | ||
4427 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | ||
4428 | } | ||
4429 | |||
4430 | static void __cond_resched(void) | ||
4431 | { | ||
4432 | add_preempt_count(PREEMPT_ACTIVE); | ||
4433 | __schedule(); | ||
4434 | sub_preempt_count(PREEMPT_ACTIVE); | ||
4435 | } | ||
4436 | |||
4437 | int __sched _cond_resched(void) | ||
4438 | { | ||
4439 | if (should_resched()) { | ||
4440 | __cond_resched(); | ||
4441 | return 1; | ||
4442 | } | ||
4443 | return 0; | ||
4444 | } | ||
4445 | EXPORT_SYMBOL(_cond_resched); | ||
4446 | |||
4447 | /* | ||
4448 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | ||
4449 | * call schedule, and on return reacquire the lock. | ||
4450 | * | ||
4451 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | ||
4452 | * operations here to prevent schedule() from being called twice (once via | ||
4453 | * spin_unlock(), once by hand). | ||
4454 | */ | ||
4455 | int __cond_resched_lock(spinlock_t *lock) | ||
4456 | { | ||
4457 | int resched = should_resched(); | ||
4458 | int ret = 0; | ||
4459 | |||
4460 | lockdep_assert_held(lock); | ||
4461 | |||
4462 | if (spin_needbreak(lock) || resched) { | ||
4463 | spin_unlock(lock); | ||
4464 | if (resched) | ||
4465 | __cond_resched(); | ||
4466 | else | ||
4467 | cpu_relax(); | ||
4468 | ret = 1; | ||
4469 | spin_lock(lock); | ||
4470 | } | ||
4471 | return ret; | ||
4472 | } | ||
4473 | EXPORT_SYMBOL(__cond_resched_lock); | ||
4474 | |||
4475 | int __sched __cond_resched_softirq(void) | ||
4476 | { | ||
4477 | BUG_ON(!in_softirq()); | ||
4478 | |||
4479 | if (should_resched()) { | ||
4480 | local_bh_enable(); | ||
4481 | __cond_resched(); | ||
4482 | local_bh_disable(); | ||
4483 | return 1; | ||
4484 | } | ||
4485 | return 0; | ||
4486 | } | ||
4487 | EXPORT_SYMBOL(__cond_resched_softirq); | ||
4488 | |||
4489 | /** | ||
4490 | * yield - yield the current processor to other threads. | ||
4491 | * | ||
4492 | * This is a shortcut for kernel-space yielding - it marks the | ||
4493 | * thread runnable and calls sys_sched_yield(). | ||
4494 | */ | ||
4495 | void __sched yield(void) | ||
4496 | { | ||
4497 | set_current_state(TASK_RUNNING); | ||
4498 | sys_sched_yield(); | ||
4499 | } | ||
4500 | EXPORT_SYMBOL(yield); | ||
4501 | |||
4502 | /** | ||
4503 | * yield_to - yield the current processor to another thread in | ||
4504 | * your thread group, or accelerate that thread toward the | ||
4505 | * processor it's on. | ||
4506 | * @p: target task | ||
4507 | * @preempt: whether task preemption is allowed or not | ||
4508 | * | ||
4509 | * It's the caller's job to ensure that the target task struct | ||
4510 | * can't go away on us before we can do any checks. | ||
4511 | * | ||
4512 | * Returns true if we indeed boosted the target task. | ||
4513 | */ | ||
4514 | bool __sched yield_to(struct task_struct *p, bool preempt) | ||
4515 | { | ||
4516 | struct task_struct *curr = current; | ||
4517 | struct rq *rq, *p_rq; | ||
4518 | unsigned long flags; | ||
4519 | bool yielded = 0; | ||
4520 | |||
4521 | local_irq_save(flags); | ||
4522 | rq = this_rq(); | ||
4523 | |||
4524 | again: | ||
4525 | p_rq = task_rq(p); | ||
4526 | double_rq_lock(rq, p_rq); | ||
4527 | while (task_rq(p) != p_rq) { | ||
4528 | double_rq_unlock(rq, p_rq); | ||
4529 | goto again; | ||
4530 | } | ||
4531 | |||
4532 | if (!curr->sched_class->yield_to_task) | ||
4533 | goto out; | ||
4534 | |||
4535 | if (curr->sched_class != p->sched_class) | ||
4536 | goto out; | ||
4537 | |||
4538 | if (task_running(p_rq, p) || p->state) | ||
4539 | goto out; | ||
4540 | |||
4541 | yielded = curr->sched_class->yield_to_task(rq, p, preempt); | ||
4542 | if (yielded) { | ||
4543 | schedstat_inc(rq, yld_count); | ||
4544 | /* | ||
4545 | * Make p's CPU reschedule; pick_next_entity takes care of | ||
4546 | * fairness. | ||
4547 | */ | ||
4548 | if (preempt && rq != p_rq) | ||
4549 | resched_task(p_rq->curr); | ||
4550 | } | ||
4551 | |||
4552 | out: | ||
4553 | double_rq_unlock(rq, p_rq); | ||
4554 | local_irq_restore(flags); | ||
4555 | |||
4556 | if (yielded) | ||
4557 | schedule(); | ||
4558 | |||
4559 | return yielded; | ||
4560 | } | ||
4561 | EXPORT_SYMBOL_GPL(yield_to); | ||
4562 | |||
4563 | /* | ||
4564 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | ||
4565 | * that process accounting knows that this is a task in IO wait state. | ||
4566 | */ | ||
4567 | void __sched io_schedule(void) | ||
4568 | { | ||
4569 | struct rq *rq = raw_rq(); | ||
4570 | |||
4571 | delayacct_blkio_start(); | ||
4572 | atomic_inc(&rq->nr_iowait); | ||
4573 | blk_flush_plug(current); | ||
4574 | current->in_iowait = 1; | ||
4575 | schedule(); | ||
4576 | current->in_iowait = 0; | ||
4577 | atomic_dec(&rq->nr_iowait); | ||
4578 | delayacct_blkio_end(); | ||
4579 | } | ||
4580 | EXPORT_SYMBOL(io_schedule); | ||
4581 | |||
4582 | long __sched io_schedule_timeout(long timeout) | ||
4583 | { | ||
4584 | struct rq *rq = raw_rq(); | ||
4585 | long ret; | ||
4586 | |||
4587 | delayacct_blkio_start(); | ||
4588 | atomic_inc(&rq->nr_iowait); | ||
4589 | blk_flush_plug(current); | ||
4590 | current->in_iowait = 1; | ||
4591 | ret = schedule_timeout(timeout); | ||
4592 | current->in_iowait = 0; | ||
4593 | atomic_dec(&rq->nr_iowait); | ||
4594 | delayacct_blkio_end(); | ||
4595 | return ret; | ||
4596 | } | ||
4597 | |||
4598 | /** | ||
4599 | * sys_sched_get_priority_max - return maximum RT priority. | ||
4600 | * @policy: scheduling class. | ||
4601 | * | ||
4602 | * this syscall returns the maximum rt_priority that can be used | ||
4603 | * by a given scheduling class. | ||
4604 | */ | ||
4605 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | ||
4606 | { | ||
4607 | int ret = -EINVAL; | ||
4608 | |||
4609 | switch (policy) { | ||
4610 | case SCHED_FIFO: | ||
4611 | case SCHED_RR: | ||
4612 | ret = MAX_USER_RT_PRIO-1; | ||
4613 | break; | ||
4614 | case SCHED_NORMAL: | ||
4615 | case SCHED_BATCH: | ||
4616 | case SCHED_IDLE: | ||
4617 | ret = 0; | ||
4618 | break; | ||
4619 | } | ||
4620 | return ret; | ||
4621 | } | ||
4622 | |||
4623 | /** | ||
4624 | * sys_sched_get_priority_min - return minimum RT priority. | ||
4625 | * @policy: scheduling class. | ||
4626 | * | ||
4627 | * this syscall returns the minimum rt_priority that can be used | ||
4628 | * by a given scheduling class. | ||
4629 | */ | ||
4630 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | ||
4631 | { | ||
4632 | int ret = -EINVAL; | ||
4633 | |||
4634 | switch (policy) { | ||
4635 | case SCHED_FIFO: | ||
4636 | case SCHED_RR: | ||
4637 | ret = 1; | ||
4638 | break; | ||
4639 | case SCHED_NORMAL: | ||
4640 | case SCHED_BATCH: | ||
4641 | case SCHED_IDLE: | ||
4642 | ret = 0; | ||
4643 | } | ||
4644 | return ret; | ||
4645 | } | ||
4646 | |||
4647 | /** | ||
4648 | * sys_sched_rr_get_interval - return the default timeslice of a process. | ||
4649 | * @pid: pid of the process. | ||
4650 | * @interval: userspace pointer to the timeslice value. | ||
4651 | * | ||
4652 | * this syscall writes the default timeslice value of a given process | ||
4653 | * into the user-space timespec buffer. A value of '0' means infinity. | ||
4654 | */ | ||
4655 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | ||
4656 | struct timespec __user *, interval) | ||
4657 | { | ||
4658 | struct task_struct *p; | ||
4659 | unsigned int time_slice; | ||
4660 | unsigned long flags; | ||
4661 | struct rq *rq; | ||
4662 | int retval; | ||
4663 | struct timespec t; | ||
4664 | |||
4665 | if (pid < 0) | ||
4666 | return -EINVAL; | ||
4667 | |||
4668 | retval = -ESRCH; | ||
4669 | rcu_read_lock(); | ||
4670 | p = find_process_by_pid(pid); | ||
4671 | if (!p) | ||
4672 | goto out_unlock; | ||
4673 | |||
4674 | retval = security_task_getscheduler(p); | ||
4675 | if (retval) | ||
4676 | goto out_unlock; | ||
4677 | |||
4678 | rq = task_rq_lock(p, &flags); | ||
4679 | time_slice = p->sched_class->get_rr_interval(rq, p); | ||
4680 | task_rq_unlock(rq, p, &flags); | ||
4681 | |||
4682 | rcu_read_unlock(); | ||
4683 | jiffies_to_timespec(time_slice, &t); | ||
4684 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | ||
4685 | return retval; | ||
4686 | |||
4687 | out_unlock: | ||
4688 | rcu_read_unlock(); | ||
4689 | return retval; | ||
4690 | } | ||
4691 | |||
4692 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | ||
4693 | |||
4694 | void sched_show_task(struct task_struct *p) | ||
4695 | { | ||
4696 | unsigned long free = 0; | ||
4697 | unsigned state; | ||
4698 | |||
4699 | state = p->state ? __ffs(p->state) + 1 : 0; | ||
4700 | printk(KERN_INFO "%-15.15s %c", p->comm, | ||
4701 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | ||
4702 | #if BITS_PER_LONG == 32 | ||
4703 | if (state == TASK_RUNNING) | ||
4704 | printk(KERN_CONT " running "); | ||
4705 | else | ||
4706 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | ||
4707 | #else | ||
4708 | if (state == TASK_RUNNING) | ||
4709 | printk(KERN_CONT " running task "); | ||
4710 | else | ||
4711 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | ||
4712 | #endif | ||
4713 | #ifdef CONFIG_DEBUG_STACK_USAGE | ||
4714 | free = stack_not_used(p); | ||
4715 | #endif | ||
4716 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | ||
4717 | task_pid_nr(p), task_pid_nr(p->real_parent), | ||
4718 | (unsigned long)task_thread_info(p)->flags); | ||
4719 | |||
4720 | show_stack(p, NULL); | ||
4721 | } | ||
4722 | |||
4723 | void show_state_filter(unsigned long state_filter) | ||
4724 | { | ||
4725 | struct task_struct *g, *p; | ||
4726 | |||
4727 | #if BITS_PER_LONG == 32 | ||
4728 | printk(KERN_INFO | ||
4729 | " task PC stack pid father\n"); | ||
4730 | #else | ||
4731 | printk(KERN_INFO | ||
4732 | " task PC stack pid father\n"); | ||
4733 | #endif | ||
4734 | rcu_read_lock(); | ||
4735 | do_each_thread(g, p) { | ||
4736 | /* | ||
4737 | * reset the NMI-timeout, listing all files on a slow | ||
4738 | * console might take a lot of time: | ||
4739 | */ | ||
4740 | touch_nmi_watchdog(); | ||
4741 | if (!state_filter || (p->state & state_filter)) | ||
4742 | sched_show_task(p); | ||
4743 | } while_each_thread(g, p); | ||
4744 | |||
4745 | touch_all_softlockup_watchdogs(); | ||
4746 | |||
4747 | #ifdef CONFIG_SCHED_DEBUG | ||
4748 | sysrq_sched_debug_show(); | ||
4749 | #endif | ||
4750 | rcu_read_unlock(); | ||
4751 | /* | ||
4752 | * Only show locks if all tasks are dumped: | ||
4753 | */ | ||
4754 | if (!state_filter) | ||
4755 | debug_show_all_locks(); | ||
4756 | } | ||
4757 | |||
4758 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) | ||
4759 | { | ||
4760 | idle->sched_class = &idle_sched_class; | ||
4761 | } | ||
4762 | |||
4763 | /** | ||
4764 | * init_idle - set up an idle thread for a given CPU | ||
4765 | * @idle: task in question | ||
4766 | * @cpu: cpu the idle task belongs to | ||
4767 | * | ||
4768 | * NOTE: this function does not set the idle thread's NEED_RESCHED | ||
4769 | * flag, to make booting more robust. | ||
4770 | */ | ||
4771 | void __cpuinit init_idle(struct task_struct *idle, int cpu) | ||
4772 | { | ||
4773 | struct rq *rq = cpu_rq(cpu); | ||
4774 | unsigned long flags; | ||
4775 | |||
4776 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
4777 | |||
4778 | __sched_fork(idle); | ||
4779 | idle->state = TASK_RUNNING; | ||
4780 | idle->se.exec_start = sched_clock(); | ||
4781 | |||
4782 | do_set_cpus_allowed(idle, cpumask_of(cpu)); | ||
4783 | /* | ||
4784 | * We're having a chicken and egg problem, even though we are | ||
4785 | * holding rq->lock, the cpu isn't yet set to this cpu so the | ||
4786 | * lockdep check in task_group() will fail. | ||
4787 | * | ||
4788 | * Similar case to sched_fork(). / Alternatively we could | ||
4789 | * use task_rq_lock() here and obtain the other rq->lock. | ||
4790 | * | ||
4791 | * Silence PROVE_RCU | ||
4792 | */ | ||
4793 | rcu_read_lock(); | ||
4794 | __set_task_cpu(idle, cpu); | ||
4795 | rcu_read_unlock(); | ||
4796 | |||
4797 | rq->curr = rq->idle = idle; | ||
4798 | #if defined(CONFIG_SMP) | ||
4799 | idle->on_cpu = 1; | ||
4800 | #endif | ||
4801 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
4802 | |||
4803 | /* Set the preempt count _outside_ the spinlocks! */ | ||
4804 | task_thread_info(idle)->preempt_count = 0; | ||
4805 | |||
4806 | /* | ||
4807 | * The idle tasks have their own, simple scheduling class: | ||
4808 | */ | ||
4809 | idle->sched_class = &idle_sched_class; | ||
4810 | ftrace_graph_init_idle_task(idle, cpu); | ||
4811 | #if defined(CONFIG_SMP) | ||
4812 | sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); | ||
4813 | #endif | ||
4814 | } | ||
4815 | |||
4816 | #ifdef CONFIG_SMP | ||
4817 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | ||
4818 | { | ||
4819 | if (p->sched_class && p->sched_class->set_cpus_allowed) | ||
4820 | p->sched_class->set_cpus_allowed(p, new_mask); | ||
4821 | |||
4822 | cpumask_copy(&p->cpus_allowed, new_mask); | ||
4823 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | ||
4824 | } | ||
4825 | |||
4826 | /* | ||
4827 | * This is how migration works: | ||
4828 | * | ||
4829 | * 1) we invoke migration_cpu_stop() on the target CPU using | ||
4830 | * stop_one_cpu(). | ||
4831 | * 2) stopper starts to run (implicitly forcing the migrated thread | ||
4832 | * off the CPU) | ||
4833 | * 3) it checks whether the migrated task is still in the wrong runqueue. | ||
4834 | * 4) if it's in the wrong runqueue then the migration thread removes | ||
4835 | * it and puts it into the right queue. | ||
4836 | * 5) stopper completes and stop_one_cpu() returns and the migration | ||
4837 | * is done. | ||
4838 | */ | ||
4839 | |||
4840 | /* | ||
4841 | * Change a given task's CPU affinity. Migrate the thread to a | ||
4842 | * proper CPU and schedule it away if the CPU it's executing on | ||
4843 | * is removed from the allowed bitmask. | ||
4844 | * | ||
4845 | * NOTE: the caller must have a valid reference to the task, the | ||
4846 | * task must not exit() & deallocate itself prematurely. The | ||
4847 | * call is not atomic; no spinlocks may be held. | ||
4848 | */ | ||
4849 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | ||
4850 | { | ||
4851 | unsigned long flags; | ||
4852 | struct rq *rq; | ||
4853 | unsigned int dest_cpu; | ||
4854 | int ret = 0; | ||
4855 | |||
4856 | rq = task_rq_lock(p, &flags); | ||
4857 | |||
4858 | if (cpumask_equal(&p->cpus_allowed, new_mask)) | ||
4859 | goto out; | ||
4860 | |||
4861 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | ||
4862 | ret = -EINVAL; | ||
4863 | goto out; | ||
4864 | } | ||
4865 | |||
4866 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { | ||
4867 | ret = -EINVAL; | ||
4868 | goto out; | ||
4869 | } | ||
4870 | |||
4871 | do_set_cpus_allowed(p, new_mask); | ||
4872 | |||
4873 | /* Can the task run on the task's current CPU? If so, we're done */ | ||
4874 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | ||
4875 | goto out; | ||
4876 | |||
4877 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); | ||
4878 | if (p->on_rq) { | ||
4879 | struct migration_arg arg = { p, dest_cpu }; | ||
4880 | /* Need help from migration thread: drop lock and wait. */ | ||
4881 | task_rq_unlock(rq, p, &flags); | ||
4882 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); | ||
4883 | tlb_migrate_finish(p->mm); | ||
4884 | return 0; | ||
4885 | } | ||
4886 | out: | ||
4887 | task_rq_unlock(rq, p, &flags); | ||
4888 | |||
4889 | return ret; | ||
4890 | } | ||
4891 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | ||
4892 | |||
4893 | /* | ||
4894 | * Move (not current) task off this cpu, onto dest cpu. We're doing | ||
4895 | * this because either it can't run here any more (set_cpus_allowed() | ||
4896 | * away from this CPU, or CPU going down), or because we're | ||
4897 | * attempting to rebalance this task on exec (sched_exec). | ||
4898 | * | ||
4899 | * So we race with normal scheduler movements, but that's OK, as long | ||
4900 | * as the task is no longer on this CPU. | ||
4901 | * | ||
4902 | * Returns non-zero if task was successfully migrated. | ||
4903 | */ | ||
4904 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | ||
4905 | { | ||
4906 | struct rq *rq_dest, *rq_src; | ||
4907 | int ret = 0; | ||
4908 | |||
4909 | if (unlikely(!cpu_active(dest_cpu))) | ||
4910 | return ret; | ||
4911 | |||
4912 | rq_src = cpu_rq(src_cpu); | ||
4913 | rq_dest = cpu_rq(dest_cpu); | ||
4914 | |||
4915 | raw_spin_lock(&p->pi_lock); | ||
4916 | double_rq_lock(rq_src, rq_dest); | ||
4917 | /* Already moved. */ | ||
4918 | if (task_cpu(p) != src_cpu) | ||
4919 | goto done; | ||
4920 | /* Affinity changed (again). */ | ||
4921 | if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) | ||
4922 | goto fail; | ||
4923 | |||
4924 | /* | ||
4925 | * If we're not on a rq, the next wake-up will ensure we're | ||
4926 | * placed properly. | ||
4927 | */ | ||
4928 | if (p->on_rq) { | ||
4929 | deactivate_task(rq_src, p, 0); | ||
4930 | set_task_cpu(p, dest_cpu); | ||
4931 | activate_task(rq_dest, p, 0); | ||
4932 | check_preempt_curr(rq_dest, p, 0); | ||
4933 | } | ||
4934 | done: | ||
4935 | ret = 1; | ||
4936 | fail: | ||
4937 | double_rq_unlock(rq_src, rq_dest); | ||
4938 | raw_spin_unlock(&p->pi_lock); | ||
4939 | return ret; | ||
4940 | } | ||
4941 | |||
4942 | /* | ||
4943 | * migration_cpu_stop - this will be executed by a highprio stopper thread | ||
4944 | * and performs thread migration by bumping thread off CPU then | ||
4945 | * 'pushing' onto another runqueue. | ||
4946 | */ | ||
4947 | static int migration_cpu_stop(void *data) | ||
4948 | { | ||
4949 | struct migration_arg *arg = data; | ||
4950 | |||
4951 | /* | ||
4952 | * The original target cpu might have gone down and we might | ||
4953 | * be on another cpu but it doesn't matter. | ||
4954 | */ | ||
4955 | local_irq_disable(); | ||
4956 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); | ||
4957 | local_irq_enable(); | ||
4958 | return 0; | ||
4959 | } | ||
4960 | |||
4961 | #ifdef CONFIG_HOTPLUG_CPU | ||
4962 | |||
4963 | /* | ||
4964 | * Ensures that the idle task is using init_mm right before its cpu goes | ||
4965 | * offline. | ||
4966 | */ | ||
4967 | void idle_task_exit(void) | ||
4968 | { | ||
4969 | struct mm_struct *mm = current->active_mm; | ||
4970 | |||
4971 | BUG_ON(cpu_online(smp_processor_id())); | ||
4972 | |||
4973 | if (mm != &init_mm) | ||
4974 | switch_mm(mm, &init_mm, current); | ||
4975 | mmdrop(mm); | ||
4976 | } | ||
4977 | |||
4978 | /* | ||
4979 | * While a dead CPU has no uninterruptible tasks queued at this point, | ||
4980 | * it might still have a nonzero ->nr_uninterruptible counter, because | ||
4981 | * for performance reasons the counter is not stricly tracking tasks to | ||
4982 | * their home CPUs. So we just add the counter to another CPU's counter, | ||
4983 | * to keep the global sum constant after CPU-down: | ||
4984 | */ | ||
4985 | static void migrate_nr_uninterruptible(struct rq *rq_src) | ||
4986 | { | ||
4987 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); | ||
4988 | |||
4989 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | ||
4990 | rq_src->nr_uninterruptible = 0; | ||
4991 | } | ||
4992 | |||
4993 | /* | ||
4994 | * remove the tasks which were accounted by rq from calc_load_tasks. | ||
4995 | */ | ||
4996 | static void calc_global_load_remove(struct rq *rq) | ||
4997 | { | ||
4998 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | ||
4999 | rq->calc_load_active = 0; | ||
5000 | } | ||
5001 | |||
5002 | /* | ||
5003 | * Migrate all tasks from the rq, sleeping tasks will be migrated by | ||
5004 | * try_to_wake_up()->select_task_rq(). | ||
5005 | * | ||
5006 | * Called with rq->lock held even though we'er in stop_machine() and | ||
5007 | * there's no concurrency possible, we hold the required locks anyway | ||
5008 | * because of lock validation efforts. | ||
5009 | */ | ||
5010 | static void migrate_tasks(unsigned int dead_cpu) | ||
5011 | { | ||
5012 | struct rq *rq = cpu_rq(dead_cpu); | ||
5013 | struct task_struct *next, *stop = rq->stop; | ||
5014 | int dest_cpu; | ||
5015 | |||
5016 | /* | ||
5017 | * Fudge the rq selection such that the below task selection loop | ||
5018 | * doesn't get stuck on the currently eligible stop task. | ||
5019 | * | ||
5020 | * We're currently inside stop_machine() and the rq is either stuck | ||
5021 | * in the stop_machine_cpu_stop() loop, or we're executing this code, | ||
5022 | * either way we should never end up calling schedule() until we're | ||
5023 | * done here. | ||
5024 | */ | ||
5025 | rq->stop = NULL; | ||
5026 | |||
5027 | /* Ensure any throttled groups are reachable by pick_next_task */ | ||
5028 | unthrottle_offline_cfs_rqs(rq); | ||
5029 | |||
5030 | for ( ; ; ) { | ||
5031 | /* | ||
5032 | * There's this thread running, bail when that's the only | ||
5033 | * remaining thread. | ||
5034 | */ | ||
5035 | if (rq->nr_running == 1) | ||
5036 | break; | ||
5037 | |||
5038 | next = pick_next_task(rq); | ||
5039 | BUG_ON(!next); | ||
5040 | next->sched_class->put_prev_task(rq, next); | ||
5041 | |||
5042 | /* Find suitable destination for @next, with force if needed. */ | ||
5043 | dest_cpu = select_fallback_rq(dead_cpu, next); | ||
5044 | raw_spin_unlock(&rq->lock); | ||
5045 | |||
5046 | __migrate_task(next, dead_cpu, dest_cpu); | ||
5047 | |||
5048 | raw_spin_lock(&rq->lock); | ||
5049 | } | ||
5050 | |||
5051 | rq->stop = stop; | ||
5052 | } | ||
5053 | |||
5054 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
5055 | |||
5056 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | ||
5057 | |||
5058 | static struct ctl_table sd_ctl_dir[] = { | ||
5059 | { | ||
5060 | .procname = "sched_domain", | ||
5061 | .mode = 0555, | ||
5062 | }, | ||
5063 | {} | ||
5064 | }; | ||
5065 | |||
5066 | static struct ctl_table sd_ctl_root[] = { | ||
5067 | { | ||
5068 | .procname = "kernel", | ||
5069 | .mode = 0555, | ||
5070 | .child = sd_ctl_dir, | ||
5071 | }, | ||
5072 | {} | ||
5073 | }; | ||
5074 | |||
5075 | static struct ctl_table *sd_alloc_ctl_entry(int n) | ||
5076 | { | ||
5077 | struct ctl_table *entry = | ||
5078 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | ||
5079 | |||
5080 | return entry; | ||
5081 | } | ||
5082 | |||
5083 | static void sd_free_ctl_entry(struct ctl_table **tablep) | ||
5084 | { | ||
5085 | struct ctl_table *entry; | ||
5086 | |||
5087 | /* | ||
5088 | * In the intermediate directories, both the child directory and | ||
5089 | * procname are dynamically allocated and could fail but the mode | ||
5090 | * will always be set. In the lowest directory the names are | ||
5091 | * static strings and all have proc handlers. | ||
5092 | */ | ||
5093 | for (entry = *tablep; entry->mode; entry++) { | ||
5094 | if (entry->child) | ||
5095 | sd_free_ctl_entry(&entry->child); | ||
5096 | if (entry->proc_handler == NULL) | ||
5097 | kfree(entry->procname); | ||
5098 | } | ||
5099 | |||
5100 | kfree(*tablep); | ||
5101 | *tablep = NULL; | ||
5102 | } | ||
5103 | |||
5104 | static void | ||
5105 | set_table_entry(struct ctl_table *entry, | ||
5106 | const char *procname, void *data, int maxlen, | ||
5107 | mode_t mode, proc_handler *proc_handler) | ||
5108 | { | ||
5109 | entry->procname = procname; | ||
5110 | entry->data = data; | ||
5111 | entry->maxlen = maxlen; | ||
5112 | entry->mode = mode; | ||
5113 | entry->proc_handler = proc_handler; | ||
5114 | } | ||
5115 | |||
5116 | static struct ctl_table * | ||
5117 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | ||
5118 | { | ||
5119 | struct ctl_table *table = sd_alloc_ctl_entry(13); | ||
5120 | |||
5121 | if (table == NULL) | ||
5122 | return NULL; | ||
5123 | |||
5124 | set_table_entry(&table[0], "min_interval", &sd->min_interval, | ||
5125 | sizeof(long), 0644, proc_doulongvec_minmax); | ||
5126 | set_table_entry(&table[1], "max_interval", &sd->max_interval, | ||
5127 | sizeof(long), 0644, proc_doulongvec_minmax); | ||
5128 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | ||
5129 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5130 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | ||
5131 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5132 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | ||
5133 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5134 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | ||
5135 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5136 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | ||
5137 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5138 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | ||
5139 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5140 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | ||
5141 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5142 | set_table_entry(&table[9], "cache_nice_tries", | ||
5143 | &sd->cache_nice_tries, | ||
5144 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5145 | set_table_entry(&table[10], "flags", &sd->flags, | ||
5146 | sizeof(int), 0644, proc_dointvec_minmax); | ||
5147 | set_table_entry(&table[11], "name", sd->name, | ||
5148 | CORENAME_MAX_SIZE, 0444, proc_dostring); | ||
5149 | /* &table[12] is terminator */ | ||
5150 | |||
5151 | return table; | ||
5152 | } | ||
5153 | |||
5154 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | ||
5155 | { | ||
5156 | struct ctl_table *entry, *table; | ||
5157 | struct sched_domain *sd; | ||
5158 | int domain_num = 0, i; | ||
5159 | char buf[32]; | ||
5160 | |||
5161 | for_each_domain(cpu, sd) | ||
5162 | domain_num++; | ||
5163 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | ||
5164 | if (table == NULL) | ||
5165 | return NULL; | ||
5166 | |||
5167 | i = 0; | ||
5168 | for_each_domain(cpu, sd) { | ||
5169 | snprintf(buf, 32, "domain%d", i); | ||
5170 | entry->procname = kstrdup(buf, GFP_KERNEL); | ||
5171 | entry->mode = 0555; | ||
5172 | entry->child = sd_alloc_ctl_domain_table(sd); | ||
5173 | entry++; | ||
5174 | i++; | ||
5175 | } | ||
5176 | return table; | ||
5177 | } | ||
5178 | |||
5179 | static struct ctl_table_header *sd_sysctl_header; | ||
5180 | static void register_sched_domain_sysctl(void) | ||
5181 | { | ||
5182 | int i, cpu_num = num_possible_cpus(); | ||
5183 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | ||
5184 | char buf[32]; | ||
5185 | |||
5186 | WARN_ON(sd_ctl_dir[0].child); | ||
5187 | sd_ctl_dir[0].child = entry; | ||
5188 | |||
5189 | if (entry == NULL) | ||
5190 | return; | ||
5191 | |||
5192 | for_each_possible_cpu(i) { | ||
5193 | snprintf(buf, 32, "cpu%d", i); | ||
5194 | entry->procname = kstrdup(buf, GFP_KERNEL); | ||
5195 | entry->mode = 0555; | ||
5196 | entry->child = sd_alloc_ctl_cpu_table(i); | ||
5197 | entry++; | ||
5198 | } | ||
5199 | |||
5200 | WARN_ON(sd_sysctl_header); | ||
5201 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); | ||
5202 | } | ||
5203 | |||
5204 | /* may be called multiple times per register */ | ||
5205 | static void unregister_sched_domain_sysctl(void) | ||
5206 | { | ||
5207 | if (sd_sysctl_header) | ||
5208 | unregister_sysctl_table(sd_sysctl_header); | ||
5209 | sd_sysctl_header = NULL; | ||
5210 | if (sd_ctl_dir[0].child) | ||
5211 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | ||
5212 | } | ||
5213 | #else | ||
5214 | static void register_sched_domain_sysctl(void) | ||
5215 | { | ||
5216 | } | ||
5217 | static void unregister_sched_domain_sysctl(void) | ||
5218 | { | ||
5219 | } | ||
5220 | #endif | ||
5221 | |||
5222 | static void set_rq_online(struct rq *rq) | ||
5223 | { | ||
5224 | if (!rq->online) { | ||
5225 | const struct sched_class *class; | ||
5226 | |||
5227 | cpumask_set_cpu(rq->cpu, rq->rd->online); | ||
5228 | rq->online = 1; | ||
5229 | |||
5230 | for_each_class(class) { | ||
5231 | if (class->rq_online) | ||
5232 | class->rq_online(rq); | ||
5233 | } | ||
5234 | } | ||
5235 | } | ||
5236 | |||
5237 | static void set_rq_offline(struct rq *rq) | ||
5238 | { | ||
5239 | if (rq->online) { | ||
5240 | const struct sched_class *class; | ||
5241 | |||
5242 | for_each_class(class) { | ||
5243 | if (class->rq_offline) | ||
5244 | class->rq_offline(rq); | ||
5245 | } | ||
5246 | |||
5247 | cpumask_clear_cpu(rq->cpu, rq->rd->online); | ||
5248 | rq->online = 0; | ||
5249 | } | ||
5250 | } | ||
5251 | |||
5252 | /* | ||
5253 | * migration_call - callback that gets triggered when a CPU is added. | ||
5254 | * Here we can start up the necessary migration thread for the new CPU. | ||
5255 | */ | ||
5256 | static int __cpuinit | ||
5257 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | ||
5258 | { | ||
5259 | int cpu = (long)hcpu; | ||
5260 | unsigned long flags; | ||
5261 | struct rq *rq = cpu_rq(cpu); | ||
5262 | |||
5263 | switch (action & ~CPU_TASKS_FROZEN) { | ||
5264 | |||
5265 | case CPU_UP_PREPARE: | ||
5266 | rq->calc_load_update = calc_load_update; | ||
5267 | break; | ||
5268 | |||
5269 | case CPU_ONLINE: | ||
5270 | /* Update our root-domain */ | ||
5271 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5272 | if (rq->rd) { | ||
5273 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | ||
5274 | |||
5275 | set_rq_online(rq); | ||
5276 | } | ||
5277 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5278 | break; | ||
5279 | |||
5280 | #ifdef CONFIG_HOTPLUG_CPU | ||
5281 | case CPU_DYING: | ||
5282 | sched_ttwu_pending(); | ||
5283 | /* Update our root-domain */ | ||
5284 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5285 | if (rq->rd) { | ||
5286 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | ||
5287 | set_rq_offline(rq); | ||
5288 | } | ||
5289 | migrate_tasks(cpu); | ||
5290 | BUG_ON(rq->nr_running != 1); /* the migration thread */ | ||
5291 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5292 | |||
5293 | migrate_nr_uninterruptible(rq); | ||
5294 | calc_global_load_remove(rq); | ||
5295 | break; | ||
5296 | #endif | ||
5297 | } | ||
5298 | |||
5299 | update_max_interval(); | ||
5300 | |||
5301 | return NOTIFY_OK; | ||
5302 | } | ||
5303 | |||
5304 | /* | ||
5305 | * Register at high priority so that task migration (migrate_all_tasks) | ||
5306 | * happens before everything else. This has to be lower priority than | ||
5307 | * the notifier in the perf_event subsystem, though. | ||
5308 | */ | ||
5309 | static struct notifier_block __cpuinitdata migration_notifier = { | ||
5310 | .notifier_call = migration_call, | ||
5311 | .priority = CPU_PRI_MIGRATION, | ||
5312 | }; | ||
5313 | |||
5314 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, | ||
5315 | unsigned long action, void *hcpu) | ||
5316 | { | ||
5317 | switch (action & ~CPU_TASKS_FROZEN) { | ||
5318 | case CPU_ONLINE: | ||
5319 | case CPU_DOWN_FAILED: | ||
5320 | set_cpu_active((long)hcpu, true); | ||
5321 | return NOTIFY_OK; | ||
5322 | default: | ||
5323 | return NOTIFY_DONE; | ||
5324 | } | ||
5325 | } | ||
5326 | |||
5327 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, | ||
5328 | unsigned long action, void *hcpu) | ||
5329 | { | ||
5330 | switch (action & ~CPU_TASKS_FROZEN) { | ||
5331 | case CPU_DOWN_PREPARE: | ||
5332 | set_cpu_active((long)hcpu, false); | ||
5333 | return NOTIFY_OK; | ||
5334 | default: | ||
5335 | return NOTIFY_DONE; | ||
5336 | } | ||
5337 | } | ||
5338 | |||
5339 | static int __init migration_init(void) | ||
5340 | { | ||
5341 | void *cpu = (void *)(long)smp_processor_id(); | ||
5342 | int err; | ||
5343 | |||
5344 | /* Initialize migration for the boot CPU */ | ||
5345 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | ||
5346 | BUG_ON(err == NOTIFY_BAD); | ||
5347 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | ||
5348 | register_cpu_notifier(&migration_notifier); | ||
5349 | |||
5350 | /* Register cpu active notifiers */ | ||
5351 | cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); | ||
5352 | cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); | ||
5353 | |||
5354 | return 0; | ||
5355 | } | ||
5356 | early_initcall(migration_init); | ||
5357 | #endif | ||
5358 | |||
5359 | #ifdef CONFIG_SMP | ||
5360 | |||
5361 | static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ | ||
5362 | |||
5363 | #ifdef CONFIG_SCHED_DEBUG | ||
5364 | |||
5365 | static __read_mostly int sched_domain_debug_enabled; | ||
5366 | |||
5367 | static int __init sched_domain_debug_setup(char *str) | ||
5368 | { | ||
5369 | sched_domain_debug_enabled = 1; | ||
5370 | |||
5371 | return 0; | ||
5372 | } | ||
5373 | early_param("sched_debug", sched_domain_debug_setup); | ||
5374 | |||
5375 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | ||
5376 | struct cpumask *groupmask) | ||
5377 | { | ||
5378 | struct sched_group *group = sd->groups; | ||
5379 | char str[256]; | ||
5380 | |||
5381 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); | ||
5382 | cpumask_clear(groupmask); | ||
5383 | |||
5384 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | ||
5385 | |||
5386 | if (!(sd->flags & SD_LOAD_BALANCE)) { | ||
5387 | printk("does not load-balance\n"); | ||
5388 | if (sd->parent) | ||
5389 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | ||
5390 | " has parent"); | ||
5391 | return -1; | ||
5392 | } | ||
5393 | |||
5394 | printk(KERN_CONT "span %s level %s\n", str, sd->name); | ||
5395 | |||
5396 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
5397 | printk(KERN_ERR "ERROR: domain->span does not contain " | ||
5398 | "CPU%d\n", cpu); | ||
5399 | } | ||
5400 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { | ||
5401 | printk(KERN_ERR "ERROR: domain->groups does not contain" | ||
5402 | " CPU%d\n", cpu); | ||
5403 | } | ||
5404 | |||
5405 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); | ||
5406 | do { | ||
5407 | if (!group) { | ||
5408 | printk("\n"); | ||
5409 | printk(KERN_ERR "ERROR: group is NULL\n"); | ||
5410 | break; | ||
5411 | } | ||
5412 | |||
5413 | if (!group->sgp->power) { | ||
5414 | printk(KERN_CONT "\n"); | ||
5415 | printk(KERN_ERR "ERROR: domain->cpu_power not " | ||
5416 | "set\n"); | ||
5417 | break; | ||
5418 | } | ||
5419 | |||
5420 | if (!cpumask_weight(sched_group_cpus(group))) { | ||
5421 | printk(KERN_CONT "\n"); | ||
5422 | printk(KERN_ERR "ERROR: empty group\n"); | ||
5423 | break; | ||
5424 | } | ||
5425 | |||
5426 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { | ||
5427 | printk(KERN_CONT "\n"); | ||
5428 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | ||
5429 | break; | ||
5430 | } | ||
5431 | |||
5432 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); | ||
5433 | |||
5434 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | ||
5435 | |||
5436 | printk(KERN_CONT " %s", str); | ||
5437 | if (group->sgp->power != SCHED_POWER_SCALE) { | ||
5438 | printk(KERN_CONT " (cpu_power = %d)", | ||
5439 | group->sgp->power); | ||
5440 | } | ||
5441 | |||
5442 | group = group->next; | ||
5443 | } while (group != sd->groups); | ||
5444 | printk(KERN_CONT "\n"); | ||
5445 | |||
5446 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) | ||
5447 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | ||
5448 | |||
5449 | if (sd->parent && | ||
5450 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | ||
5451 | printk(KERN_ERR "ERROR: parent span is not a superset " | ||
5452 | "of domain->span\n"); | ||
5453 | return 0; | ||
5454 | } | ||
5455 | |||
5456 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | ||
5457 | { | ||
5458 | int level = 0; | ||
5459 | |||
5460 | if (!sched_domain_debug_enabled) | ||
5461 | return; | ||
5462 | |||
5463 | if (!sd) { | ||
5464 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | ||
5465 | return; | ||
5466 | } | ||
5467 | |||
5468 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | ||
5469 | |||
5470 | for (;;) { | ||
5471 | if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) | ||
5472 | break; | ||
5473 | level++; | ||
5474 | sd = sd->parent; | ||
5475 | if (!sd) | ||
5476 | break; | ||
5477 | } | ||
5478 | } | ||
5479 | #else /* !CONFIG_SCHED_DEBUG */ | ||
5480 | # define sched_domain_debug(sd, cpu) do { } while (0) | ||
5481 | #endif /* CONFIG_SCHED_DEBUG */ | ||
5482 | |||
5483 | static int sd_degenerate(struct sched_domain *sd) | ||
5484 | { | ||
5485 | if (cpumask_weight(sched_domain_span(sd)) == 1) | ||
5486 | return 1; | ||
5487 | |||
5488 | /* Following flags need at least 2 groups */ | ||
5489 | if (sd->flags & (SD_LOAD_BALANCE | | ||
5490 | SD_BALANCE_NEWIDLE | | ||
5491 | SD_BALANCE_FORK | | ||
5492 | SD_BALANCE_EXEC | | ||
5493 | SD_SHARE_CPUPOWER | | ||
5494 | SD_SHARE_PKG_RESOURCES)) { | ||
5495 | if (sd->groups != sd->groups->next) | ||
5496 | return 0; | ||
5497 | } | ||
5498 | |||
5499 | /* Following flags don't use groups */ | ||
5500 | if (sd->flags & (SD_WAKE_AFFINE)) | ||
5501 | return 0; | ||
5502 | |||
5503 | return 1; | ||
5504 | } | ||
5505 | |||
5506 | static int | ||
5507 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | ||
5508 | { | ||
5509 | unsigned long cflags = sd->flags, pflags = parent->flags; | ||
5510 | |||
5511 | if (sd_degenerate(parent)) | ||
5512 | return 1; | ||
5513 | |||
5514 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | ||
5515 | return 0; | ||
5516 | |||
5517 | /* Flags needing groups don't count if only 1 group in parent */ | ||
5518 | if (parent->groups == parent->groups->next) { | ||
5519 | pflags &= ~(SD_LOAD_BALANCE | | ||
5520 | SD_BALANCE_NEWIDLE | | ||
5521 | SD_BALANCE_FORK | | ||
5522 | SD_BALANCE_EXEC | | ||
5523 | SD_SHARE_CPUPOWER | | ||
5524 | SD_SHARE_PKG_RESOURCES); | ||
5525 | if (nr_node_ids == 1) | ||
5526 | pflags &= ~SD_SERIALIZE; | ||
5527 | } | ||
5528 | if (~cflags & pflags) | ||
5529 | return 0; | ||
5530 | |||
5531 | return 1; | ||
5532 | } | ||
5533 | |||
5534 | static void free_rootdomain(struct rcu_head *rcu) | ||
5535 | { | ||
5536 | struct root_domain *rd = container_of(rcu, struct root_domain, rcu); | ||
5537 | |||
5538 | cpupri_cleanup(&rd->cpupri); | ||
5539 | free_cpumask_var(rd->rto_mask); | ||
5540 | free_cpumask_var(rd->online); | ||
5541 | free_cpumask_var(rd->span); | ||
5542 | kfree(rd); | ||
5543 | } | ||
5544 | |||
5545 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | ||
5546 | { | ||
5547 | struct root_domain *old_rd = NULL; | ||
5548 | unsigned long flags; | ||
5549 | |||
5550 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5551 | |||
5552 | if (rq->rd) { | ||
5553 | old_rd = rq->rd; | ||
5554 | |||
5555 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) | ||
5556 | set_rq_offline(rq); | ||
5557 | |||
5558 | cpumask_clear_cpu(rq->cpu, old_rd->span); | ||
5559 | |||
5560 | /* | ||
5561 | * If we dont want to free the old_rt yet then | ||
5562 | * set old_rd to NULL to skip the freeing later | ||
5563 | * in this function: | ||
5564 | */ | ||
5565 | if (!atomic_dec_and_test(&old_rd->refcount)) | ||
5566 | old_rd = NULL; | ||
5567 | } | ||
5568 | |||
5569 | atomic_inc(&rd->refcount); | ||
5570 | rq->rd = rd; | ||
5571 | |||
5572 | cpumask_set_cpu(rq->cpu, rd->span); | ||
5573 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | ||
5574 | set_rq_online(rq); | ||
5575 | |||
5576 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5577 | |||
5578 | if (old_rd) | ||
5579 | call_rcu_sched(&old_rd->rcu, free_rootdomain); | ||
5580 | } | ||
5581 | |||
5582 | static int init_rootdomain(struct root_domain *rd) | ||
5583 | { | ||
5584 | memset(rd, 0, sizeof(*rd)); | ||
5585 | |||
5586 | if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) | ||
5587 | goto out; | ||
5588 | if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) | ||
5589 | goto free_span; | ||
5590 | if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) | ||
5591 | goto free_online; | ||
5592 | |||
5593 | if (cpupri_init(&rd->cpupri) != 0) | ||
5594 | goto free_rto_mask; | ||
5595 | return 0; | ||
5596 | |||
5597 | free_rto_mask: | ||
5598 | free_cpumask_var(rd->rto_mask); | ||
5599 | free_online: | ||
5600 | free_cpumask_var(rd->online); | ||
5601 | free_span: | ||
5602 | free_cpumask_var(rd->span); | ||
5603 | out: | ||
5604 | return -ENOMEM; | ||
5605 | } | ||
5606 | |||
5607 | /* | ||
5608 | * By default the system creates a single root-domain with all cpus as | ||
5609 | * members (mimicking the global state we have today). | ||
5610 | */ | ||
5611 | struct root_domain def_root_domain; | ||
5612 | |||
5613 | static void init_defrootdomain(void) | ||
5614 | { | ||
5615 | init_rootdomain(&def_root_domain); | ||
5616 | |||
5617 | atomic_set(&def_root_domain.refcount, 1); | ||
5618 | } | ||
5619 | |||
5620 | static struct root_domain *alloc_rootdomain(void) | ||
5621 | { | ||
5622 | struct root_domain *rd; | ||
5623 | |||
5624 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | ||
5625 | if (!rd) | ||
5626 | return NULL; | ||
5627 | |||
5628 | if (init_rootdomain(rd) != 0) { | ||
5629 | kfree(rd); | ||
5630 | return NULL; | ||
5631 | } | ||
5632 | |||
5633 | return rd; | ||
5634 | } | ||
5635 | |||
5636 | static void free_sched_groups(struct sched_group *sg, int free_sgp) | ||
5637 | { | ||
5638 | struct sched_group *tmp, *first; | ||
5639 | |||
5640 | if (!sg) | ||
5641 | return; | ||
5642 | |||
5643 | first = sg; | ||
5644 | do { | ||
5645 | tmp = sg->next; | ||
5646 | |||
5647 | if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) | ||
5648 | kfree(sg->sgp); | ||
5649 | |||
5650 | kfree(sg); | ||
5651 | sg = tmp; | ||
5652 | } while (sg != first); | ||
5653 | } | ||
5654 | |||
5655 | static void free_sched_domain(struct rcu_head *rcu) | ||
5656 | { | ||
5657 | struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); | ||
5658 | |||
5659 | /* | ||
5660 | * If its an overlapping domain it has private groups, iterate and | ||
5661 | * nuke them all. | ||
5662 | */ | ||
5663 | if (sd->flags & SD_OVERLAP) { | ||
5664 | free_sched_groups(sd->groups, 1); | ||
5665 | } else if (atomic_dec_and_test(&sd->groups->ref)) { | ||
5666 | kfree(sd->groups->sgp); | ||
5667 | kfree(sd->groups); | ||
5668 | } | ||
5669 | kfree(sd); | ||
5670 | } | ||
5671 | |||
5672 | static void destroy_sched_domain(struct sched_domain *sd, int cpu) | ||
5673 | { | ||
5674 | call_rcu(&sd->rcu, free_sched_domain); | ||
5675 | } | ||
5676 | |||
5677 | static void destroy_sched_domains(struct sched_domain *sd, int cpu) | ||
5678 | { | ||
5679 | for (; sd; sd = sd->parent) | ||
5680 | destroy_sched_domain(sd, cpu); | ||
5681 | } | ||
5682 | |||
5683 | /* | ||
5684 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | ||
5685 | * hold the hotplug lock. | ||
5686 | */ | ||
5687 | static void | ||
5688 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | ||
5689 | { | ||
5690 | struct rq *rq = cpu_rq(cpu); | ||
5691 | struct sched_domain *tmp; | ||
5692 | |||
5693 | /* Remove the sched domains which do not contribute to scheduling. */ | ||
5694 | for (tmp = sd; tmp; ) { | ||
5695 | struct sched_domain *parent = tmp->parent; | ||
5696 | if (!parent) | ||
5697 | break; | ||
5698 | |||
5699 | if (sd_parent_degenerate(tmp, parent)) { | ||
5700 | tmp->parent = parent->parent; | ||
5701 | if (parent->parent) | ||
5702 | parent->parent->child = tmp; | ||
5703 | destroy_sched_domain(parent, cpu); | ||
5704 | } else | ||
5705 | tmp = tmp->parent; | ||
5706 | } | ||
5707 | |||
5708 | if (sd && sd_degenerate(sd)) { | ||
5709 | tmp = sd; | ||
5710 | sd = sd->parent; | ||
5711 | destroy_sched_domain(tmp, cpu); | ||
5712 | if (sd) | ||
5713 | sd->child = NULL; | ||
5714 | } | ||
5715 | |||
5716 | sched_domain_debug(sd, cpu); | ||
5717 | |||
5718 | rq_attach_root(rq, rd); | ||
5719 | tmp = rq->sd; | ||
5720 | rcu_assign_pointer(rq->sd, sd); | ||
5721 | destroy_sched_domains(tmp, cpu); | ||
5722 | } | ||
5723 | |||
5724 | /* cpus with isolated domains */ | ||
5725 | static cpumask_var_t cpu_isolated_map; | ||
5726 | |||
5727 | /* Setup the mask of cpus configured for isolated domains */ | ||
5728 | static int __init isolated_cpu_setup(char *str) | ||
5729 | { | ||
5730 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | ||
5731 | cpulist_parse(str, cpu_isolated_map); | ||
5732 | return 1; | ||
5733 | } | ||
5734 | |||
5735 | __setup("isolcpus=", isolated_cpu_setup); | ||
5736 | |||
5737 | #ifdef CONFIG_NUMA | ||
5738 | |||
5739 | /** | ||
5740 | * find_next_best_node - find the next node to include in a sched_domain | ||
5741 | * @node: node whose sched_domain we're building | ||
5742 | * @used_nodes: nodes already in the sched_domain | ||
5743 | * | ||
5744 | * Find the next node to include in a given scheduling domain. Simply | ||
5745 | * finds the closest node not already in the @used_nodes map. | ||
5746 | * | ||
5747 | * Should use nodemask_t. | ||
5748 | */ | ||
5749 | static int find_next_best_node(int node, nodemask_t *used_nodes) | ||
5750 | { | ||
5751 | int i, n, val, min_val, best_node = -1; | ||
5752 | |||
5753 | min_val = INT_MAX; | ||
5754 | |||
5755 | for (i = 0; i < nr_node_ids; i++) { | ||
5756 | /* Start at @node */ | ||
5757 | n = (node + i) % nr_node_ids; | ||
5758 | |||
5759 | if (!nr_cpus_node(n)) | ||
5760 | continue; | ||
5761 | |||
5762 | /* Skip already used nodes */ | ||
5763 | if (node_isset(n, *used_nodes)) | ||
5764 | continue; | ||
5765 | |||
5766 | /* Simple min distance search */ | ||
5767 | val = node_distance(node, n); | ||
5768 | |||
5769 | if (val < min_val) { | ||
5770 | min_val = val; | ||
5771 | best_node = n; | ||
5772 | } | ||
5773 | } | ||
5774 | |||
5775 | if (best_node != -1) | ||
5776 | node_set(best_node, *used_nodes); | ||
5777 | return best_node; | ||
5778 | } | ||
5779 | |||
5780 | /** | ||
5781 | * sched_domain_node_span - get a cpumask for a node's sched_domain | ||
5782 | * @node: node whose cpumask we're constructing | ||
5783 | * @span: resulting cpumask | ||
5784 | * | ||
5785 | * Given a node, construct a good cpumask for its sched_domain to span. It | ||
5786 | * should be one that prevents unnecessary balancing, but also spreads tasks | ||
5787 | * out optimally. | ||
5788 | */ | ||
5789 | static void sched_domain_node_span(int node, struct cpumask *span) | ||
5790 | { | ||
5791 | nodemask_t used_nodes; | ||
5792 | int i; | ||
5793 | |||
5794 | cpumask_clear(span); | ||
5795 | nodes_clear(used_nodes); | ||
5796 | |||
5797 | cpumask_or(span, span, cpumask_of_node(node)); | ||
5798 | node_set(node, used_nodes); | ||
5799 | |||
5800 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | ||
5801 | int next_node = find_next_best_node(node, &used_nodes); | ||
5802 | if (next_node < 0) | ||
5803 | break; | ||
5804 | cpumask_or(span, span, cpumask_of_node(next_node)); | ||
5805 | } | ||
5806 | } | ||
5807 | |||
5808 | static const struct cpumask *cpu_node_mask(int cpu) | ||
5809 | { | ||
5810 | lockdep_assert_held(&sched_domains_mutex); | ||
5811 | |||
5812 | sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); | ||
5813 | |||
5814 | return sched_domains_tmpmask; | ||
5815 | } | ||
5816 | |||
5817 | static const struct cpumask *cpu_allnodes_mask(int cpu) | ||
5818 | { | ||
5819 | return cpu_possible_mask; | ||
5820 | } | ||
5821 | #endif /* CONFIG_NUMA */ | ||
5822 | |||
5823 | static const struct cpumask *cpu_cpu_mask(int cpu) | ||
5824 | { | ||
5825 | return cpumask_of_node(cpu_to_node(cpu)); | ||
5826 | } | ||
5827 | |||
5828 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | ||
5829 | |||
5830 | struct sd_data { | ||
5831 | struct sched_domain **__percpu sd; | ||
5832 | struct sched_group **__percpu sg; | ||
5833 | struct sched_group_power **__percpu sgp; | ||
5834 | }; | ||
5835 | |||
5836 | struct s_data { | ||
5837 | struct sched_domain ** __percpu sd; | ||
5838 | struct root_domain *rd; | ||
5839 | }; | ||
5840 | |||
5841 | enum s_alloc { | ||
5842 | sa_rootdomain, | ||
5843 | sa_sd, | ||
5844 | sa_sd_storage, | ||
5845 | sa_none, | ||
5846 | }; | ||
5847 | |||
5848 | struct sched_domain_topology_level; | ||
5849 | |||
5850 | typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); | ||
5851 | typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); | ||
5852 | |||
5853 | #define SDTL_OVERLAP 0x01 | ||
5854 | |||
5855 | struct sched_domain_topology_level { | ||
5856 | sched_domain_init_f init; | ||
5857 | sched_domain_mask_f mask; | ||
5858 | int flags; | ||
5859 | struct sd_data data; | ||
5860 | }; | ||
5861 | |||
5862 | static int | ||
5863 | build_overlap_sched_groups(struct sched_domain *sd, int cpu) | ||
5864 | { | ||
5865 | struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; | ||
5866 | const struct cpumask *span = sched_domain_span(sd); | ||
5867 | struct cpumask *covered = sched_domains_tmpmask; | ||
5868 | struct sd_data *sdd = sd->private; | ||
5869 | struct sched_domain *child; | ||
5870 | int i; | ||
5871 | |||
5872 | cpumask_clear(covered); | ||
5873 | |||
5874 | for_each_cpu(i, span) { | ||
5875 | struct cpumask *sg_span; | ||
5876 | |||
5877 | if (cpumask_test_cpu(i, covered)) | ||
5878 | continue; | ||
5879 | |||
5880 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | ||
5881 | GFP_KERNEL, cpu_to_node(i)); | ||
5882 | |||
5883 | if (!sg) | ||
5884 | goto fail; | ||
5885 | |||
5886 | sg_span = sched_group_cpus(sg); | ||
5887 | |||
5888 | child = *per_cpu_ptr(sdd->sd, i); | ||
5889 | if (child->child) { | ||
5890 | child = child->child; | ||
5891 | cpumask_copy(sg_span, sched_domain_span(child)); | ||
5892 | } else | ||
5893 | cpumask_set_cpu(i, sg_span); | ||
5894 | |||
5895 | cpumask_or(covered, covered, sg_span); | ||
5896 | |||
5897 | sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); | ||
5898 | atomic_inc(&sg->sgp->ref); | ||
5899 | |||
5900 | if (cpumask_test_cpu(cpu, sg_span)) | ||
5901 | groups = sg; | ||
5902 | |||
5903 | if (!first) | ||
5904 | first = sg; | ||
5905 | if (last) | ||
5906 | last->next = sg; | ||
5907 | last = sg; | ||
5908 | last->next = first; | ||
5909 | } | ||
5910 | sd->groups = groups; | ||
5911 | |||
5912 | return 0; | ||
5913 | |||
5914 | fail: | ||
5915 | free_sched_groups(first, 0); | ||
5916 | |||
5917 | return -ENOMEM; | ||
5918 | } | ||
5919 | |||
5920 | static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) | ||
5921 | { | ||
5922 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); | ||
5923 | struct sched_domain *child = sd->child; | ||
5924 | |||
5925 | if (child) | ||
5926 | cpu = cpumask_first(sched_domain_span(child)); | ||
5927 | |||
5928 | if (sg) { | ||
5929 | *sg = *per_cpu_ptr(sdd->sg, cpu); | ||
5930 | (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); | ||
5931 | atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ | ||
5932 | } | ||
5933 | |||
5934 | return cpu; | ||
5935 | } | ||
5936 | |||
5937 | /* | ||
5938 | * build_sched_groups will build a circular linked list of the groups | ||
5939 | * covered by the given span, and will set each group's ->cpumask correctly, | ||
5940 | * and ->cpu_power to 0. | ||
5941 | * | ||
5942 | * Assumes the sched_domain tree is fully constructed | ||
5943 | */ | ||
5944 | static int | ||
5945 | build_sched_groups(struct sched_domain *sd, int cpu) | ||
5946 | { | ||
5947 | struct sched_group *first = NULL, *last = NULL; | ||
5948 | struct sd_data *sdd = sd->private; | ||
5949 | const struct cpumask *span = sched_domain_span(sd); | ||
5950 | struct cpumask *covered; | ||
5951 | int i; | ||
5952 | |||
5953 | get_group(cpu, sdd, &sd->groups); | ||
5954 | atomic_inc(&sd->groups->ref); | ||
5955 | |||
5956 | if (cpu != cpumask_first(sched_domain_span(sd))) | ||
5957 | return 0; | ||
5958 | |||
5959 | lockdep_assert_held(&sched_domains_mutex); | ||
5960 | covered = sched_domains_tmpmask; | ||
5961 | |||
5962 | cpumask_clear(covered); | ||
5963 | |||
5964 | for_each_cpu(i, span) { | ||
5965 | struct sched_group *sg; | ||
5966 | int group = get_group(i, sdd, &sg); | ||
5967 | int j; | ||
5968 | |||
5969 | if (cpumask_test_cpu(i, covered)) | ||
5970 | continue; | ||
5971 | |||
5972 | cpumask_clear(sched_group_cpus(sg)); | ||
5973 | sg->sgp->power = 0; | ||
5974 | |||
5975 | for_each_cpu(j, span) { | ||
5976 | if (get_group(j, sdd, NULL) != group) | ||
5977 | continue; | ||
5978 | |||
5979 | cpumask_set_cpu(j, covered); | ||
5980 | cpumask_set_cpu(j, sched_group_cpus(sg)); | ||
5981 | } | ||
5982 | |||
5983 | if (!first) | ||
5984 | first = sg; | ||
5985 | if (last) | ||
5986 | last->next = sg; | ||
5987 | last = sg; | ||
5988 | } | ||
5989 | last->next = first; | ||
5990 | |||
5991 | return 0; | ||
5992 | } | ||
5993 | |||
5994 | /* | ||
5995 | * Initialize sched groups cpu_power. | ||
5996 | * | ||
5997 | * cpu_power indicates the capacity of sched group, which is used while | ||
5998 | * distributing the load between different sched groups in a sched domain. | ||
5999 | * Typically cpu_power for all the groups in a sched domain will be same unless | ||
6000 | * there are asymmetries in the topology. If there are asymmetries, group | ||
6001 | * having more cpu_power will pickup more load compared to the group having | ||
6002 | * less cpu_power. | ||
6003 | */ | ||
6004 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | ||
6005 | { | ||
6006 | struct sched_group *sg = sd->groups; | ||
6007 | |||
6008 | WARN_ON(!sd || !sg); | ||
6009 | |||
6010 | do { | ||
6011 | sg->group_weight = cpumask_weight(sched_group_cpus(sg)); | ||
6012 | sg = sg->next; | ||
6013 | } while (sg != sd->groups); | ||
6014 | |||
6015 | if (cpu != group_first_cpu(sg)) | ||
6016 | return; | ||
6017 | |||
6018 | update_group_power(sd, cpu); | ||
6019 | } | ||
6020 | |||
6021 | int __weak arch_sd_sibling_asym_packing(void) | ||
6022 | { | ||
6023 | return 0*SD_ASYM_PACKING; | ||
6024 | } | ||
6025 | |||
6026 | /* | ||
6027 | * Initializers for schedule domains | ||
6028 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | ||
6029 | */ | ||
6030 | |||
6031 | #ifdef CONFIG_SCHED_DEBUG | ||
6032 | # define SD_INIT_NAME(sd, type) sd->name = #type | ||
6033 | #else | ||
6034 | # define SD_INIT_NAME(sd, type) do { } while (0) | ||
6035 | #endif | ||
6036 | |||
6037 | #define SD_INIT_FUNC(type) \ | ||
6038 | static noinline struct sched_domain * \ | ||
6039 | sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ | ||
6040 | { \ | ||
6041 | struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ | ||
6042 | *sd = SD_##type##_INIT; \ | ||
6043 | SD_INIT_NAME(sd, type); \ | ||
6044 | sd->private = &tl->data; \ | ||
6045 | return sd; \ | ||
6046 | } | ||
6047 | |||
6048 | SD_INIT_FUNC(CPU) | ||
6049 | #ifdef CONFIG_NUMA | ||
6050 | SD_INIT_FUNC(ALLNODES) | ||
6051 | SD_INIT_FUNC(NODE) | ||
6052 | #endif | ||
6053 | #ifdef CONFIG_SCHED_SMT | ||
6054 | SD_INIT_FUNC(SIBLING) | ||
6055 | #endif | ||
6056 | #ifdef CONFIG_SCHED_MC | ||
6057 | SD_INIT_FUNC(MC) | ||
6058 | #endif | ||
6059 | #ifdef CONFIG_SCHED_BOOK | ||
6060 | SD_INIT_FUNC(BOOK) | ||
6061 | #endif | ||
6062 | |||
6063 | static int default_relax_domain_level = -1; | ||
6064 | int sched_domain_level_max; | ||
6065 | |||
6066 | static int __init setup_relax_domain_level(char *str) | ||
6067 | { | ||
6068 | unsigned long val; | ||
6069 | |||
6070 | val = simple_strtoul(str, NULL, 0); | ||
6071 | if (val < sched_domain_level_max) | ||
6072 | default_relax_domain_level = val; | ||
6073 | |||
6074 | return 1; | ||
6075 | } | ||
6076 | __setup("relax_domain_level=", setup_relax_domain_level); | ||
6077 | |||
6078 | static void set_domain_attribute(struct sched_domain *sd, | ||
6079 | struct sched_domain_attr *attr) | ||
6080 | { | ||
6081 | int request; | ||
6082 | |||
6083 | if (!attr || attr->relax_domain_level < 0) { | ||
6084 | if (default_relax_domain_level < 0) | ||
6085 | return; | ||
6086 | else | ||
6087 | request = default_relax_domain_level; | ||
6088 | } else | ||
6089 | request = attr->relax_domain_level; | ||
6090 | if (request < sd->level) { | ||
6091 | /* turn off idle balance on this domain */ | ||
6092 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | ||
6093 | } else { | ||
6094 | /* turn on idle balance on this domain */ | ||
6095 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | ||
6096 | } | ||
6097 | } | ||
6098 | |||
6099 | static void __sdt_free(const struct cpumask *cpu_map); | ||
6100 | static int __sdt_alloc(const struct cpumask *cpu_map); | ||
6101 | |||
6102 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | ||
6103 | const struct cpumask *cpu_map) | ||
6104 | { | ||
6105 | switch (what) { | ||
6106 | case sa_rootdomain: | ||
6107 | if (!atomic_read(&d->rd->refcount)) | ||
6108 | free_rootdomain(&d->rd->rcu); /* fall through */ | ||
6109 | case sa_sd: | ||
6110 | free_percpu(d->sd); /* fall through */ | ||
6111 | case sa_sd_storage: | ||
6112 | __sdt_free(cpu_map); /* fall through */ | ||
6113 | case sa_none: | ||
6114 | break; | ||
6115 | } | ||
6116 | } | ||
6117 | |||
6118 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, | ||
6119 | const struct cpumask *cpu_map) | ||
6120 | { | ||
6121 | memset(d, 0, sizeof(*d)); | ||
6122 | |||
6123 | if (__sdt_alloc(cpu_map)) | ||
6124 | return sa_sd_storage; | ||
6125 | d->sd = alloc_percpu(struct sched_domain *); | ||
6126 | if (!d->sd) | ||
6127 | return sa_sd_storage; | ||
6128 | d->rd = alloc_rootdomain(); | ||
6129 | if (!d->rd) | ||
6130 | return sa_sd; | ||
6131 | return sa_rootdomain; | ||
6132 | } | ||
6133 | |||
6134 | /* | ||
6135 | * NULL the sd_data elements we've used to build the sched_domain and | ||
6136 | * sched_group structure so that the subsequent __free_domain_allocs() | ||
6137 | * will not free the data we're using. | ||
6138 | */ | ||
6139 | static void claim_allocations(int cpu, struct sched_domain *sd) | ||
6140 | { | ||
6141 | struct sd_data *sdd = sd->private; | ||
6142 | |||
6143 | WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); | ||
6144 | *per_cpu_ptr(sdd->sd, cpu) = NULL; | ||
6145 | |||
6146 | if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) | ||
6147 | *per_cpu_ptr(sdd->sg, cpu) = NULL; | ||
6148 | |||
6149 | if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) | ||
6150 | *per_cpu_ptr(sdd->sgp, cpu) = NULL; | ||
6151 | } | ||
6152 | |||
6153 | #ifdef CONFIG_SCHED_SMT | ||
6154 | static const struct cpumask *cpu_smt_mask(int cpu) | ||
6155 | { | ||
6156 | return topology_thread_cpumask(cpu); | ||
6157 | } | ||
6158 | #endif | ||
6159 | |||
6160 | /* | ||
6161 | * Topology list, bottom-up. | ||
6162 | */ | ||
6163 | static struct sched_domain_topology_level default_topology[] = { | ||
6164 | #ifdef CONFIG_SCHED_SMT | ||
6165 | { sd_init_SIBLING, cpu_smt_mask, }, | ||
6166 | #endif | ||
6167 | #ifdef CONFIG_SCHED_MC | ||
6168 | { sd_init_MC, cpu_coregroup_mask, }, | ||
6169 | #endif | ||
6170 | #ifdef CONFIG_SCHED_BOOK | ||
6171 | { sd_init_BOOK, cpu_book_mask, }, | ||
6172 | #endif | ||
6173 | { sd_init_CPU, cpu_cpu_mask, }, | ||
6174 | #ifdef CONFIG_NUMA | ||
6175 | { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, | ||
6176 | { sd_init_ALLNODES, cpu_allnodes_mask, }, | ||
6177 | #endif | ||
6178 | { NULL, }, | ||
6179 | }; | ||
6180 | |||
6181 | static struct sched_domain_topology_level *sched_domain_topology = default_topology; | ||
6182 | |||
6183 | static int __sdt_alloc(const struct cpumask *cpu_map) | ||
6184 | { | ||
6185 | struct sched_domain_topology_level *tl; | ||
6186 | int j; | ||
6187 | |||
6188 | for (tl = sched_domain_topology; tl->init; tl++) { | ||
6189 | struct sd_data *sdd = &tl->data; | ||
6190 | |||
6191 | sdd->sd = alloc_percpu(struct sched_domain *); | ||
6192 | if (!sdd->sd) | ||
6193 | return -ENOMEM; | ||
6194 | |||
6195 | sdd->sg = alloc_percpu(struct sched_group *); | ||
6196 | if (!sdd->sg) | ||
6197 | return -ENOMEM; | ||
6198 | |||
6199 | sdd->sgp = alloc_percpu(struct sched_group_power *); | ||
6200 | if (!sdd->sgp) | ||
6201 | return -ENOMEM; | ||
6202 | |||
6203 | for_each_cpu(j, cpu_map) { | ||
6204 | struct sched_domain *sd; | ||
6205 | struct sched_group *sg; | ||
6206 | struct sched_group_power *sgp; | ||
6207 | |||
6208 | sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), | ||
6209 | GFP_KERNEL, cpu_to_node(j)); | ||
6210 | if (!sd) | ||
6211 | return -ENOMEM; | ||
6212 | |||
6213 | *per_cpu_ptr(sdd->sd, j) = sd; | ||
6214 | |||
6215 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | ||
6216 | GFP_KERNEL, cpu_to_node(j)); | ||
6217 | if (!sg) | ||
6218 | return -ENOMEM; | ||
6219 | |||
6220 | *per_cpu_ptr(sdd->sg, j) = sg; | ||
6221 | |||
6222 | sgp = kzalloc_node(sizeof(struct sched_group_power), | ||
6223 | GFP_KERNEL, cpu_to_node(j)); | ||
6224 | if (!sgp) | ||
6225 | return -ENOMEM; | ||
6226 | |||
6227 | *per_cpu_ptr(sdd->sgp, j) = sgp; | ||
6228 | } | ||
6229 | } | ||
6230 | |||
6231 | return 0; | ||
6232 | } | ||
6233 | |||
6234 | static void __sdt_free(const struct cpumask *cpu_map) | ||
6235 | { | ||
6236 | struct sched_domain_topology_level *tl; | ||
6237 | int j; | ||
6238 | |||
6239 | for (tl = sched_domain_topology; tl->init; tl++) { | ||
6240 | struct sd_data *sdd = &tl->data; | ||
6241 | |||
6242 | for_each_cpu(j, cpu_map) { | ||
6243 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); | ||
6244 | if (sd && (sd->flags & SD_OVERLAP)) | ||
6245 | free_sched_groups(sd->groups, 0); | ||
6246 | kfree(*per_cpu_ptr(sdd->sd, j)); | ||
6247 | kfree(*per_cpu_ptr(sdd->sg, j)); | ||
6248 | kfree(*per_cpu_ptr(sdd->sgp, j)); | ||
6249 | } | ||
6250 | free_percpu(sdd->sd); | ||
6251 | free_percpu(sdd->sg); | ||
6252 | free_percpu(sdd->sgp); | ||
6253 | } | ||
6254 | } | ||
6255 | |||
6256 | struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, | ||
6257 | struct s_data *d, const struct cpumask *cpu_map, | ||
6258 | struct sched_domain_attr *attr, struct sched_domain *child, | ||
6259 | int cpu) | ||
6260 | { | ||
6261 | struct sched_domain *sd = tl->init(tl, cpu); | ||
6262 | if (!sd) | ||
6263 | return child; | ||
6264 | |||
6265 | set_domain_attribute(sd, attr); | ||
6266 | cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); | ||
6267 | if (child) { | ||
6268 | sd->level = child->level + 1; | ||
6269 | sched_domain_level_max = max(sched_domain_level_max, sd->level); | ||
6270 | child->parent = sd; | ||
6271 | } | ||
6272 | sd->child = child; | ||
6273 | |||
6274 | return sd; | ||
6275 | } | ||
6276 | |||
6277 | /* | ||
6278 | * Build sched domains for a given set of cpus and attach the sched domains | ||
6279 | * to the individual cpus | ||
6280 | */ | ||
6281 | static int build_sched_domains(const struct cpumask *cpu_map, | ||
6282 | struct sched_domain_attr *attr) | ||
6283 | { | ||
6284 | enum s_alloc alloc_state = sa_none; | ||
6285 | struct sched_domain *sd; | ||
6286 | struct s_data d; | ||
6287 | int i, ret = -ENOMEM; | ||
6288 | |||
6289 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); | ||
6290 | if (alloc_state != sa_rootdomain) | ||
6291 | goto error; | ||
6292 | |||
6293 | /* Set up domains for cpus specified by the cpu_map. */ | ||
6294 | for_each_cpu(i, cpu_map) { | ||
6295 | struct sched_domain_topology_level *tl; | ||
6296 | |||
6297 | sd = NULL; | ||
6298 | for (tl = sched_domain_topology; tl->init; tl++) { | ||
6299 | sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); | ||
6300 | if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) | ||
6301 | sd->flags |= SD_OVERLAP; | ||
6302 | if (cpumask_equal(cpu_map, sched_domain_span(sd))) | ||
6303 | break; | ||
6304 | } | ||
6305 | |||
6306 | while (sd->child) | ||
6307 | sd = sd->child; | ||
6308 | |||
6309 | *per_cpu_ptr(d.sd, i) = sd; | ||
6310 | } | ||
6311 | |||
6312 | /* Build the groups for the domains */ | ||
6313 | for_each_cpu(i, cpu_map) { | ||
6314 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | ||
6315 | sd->span_weight = cpumask_weight(sched_domain_span(sd)); | ||
6316 | if (sd->flags & SD_OVERLAP) { | ||
6317 | if (build_overlap_sched_groups(sd, i)) | ||
6318 | goto error; | ||
6319 | } else { | ||
6320 | if (build_sched_groups(sd, i)) | ||
6321 | goto error; | ||
6322 | } | ||
6323 | } | ||
6324 | } | ||
6325 | |||
6326 | /* Calculate CPU power for physical packages and nodes */ | ||
6327 | for (i = nr_cpumask_bits-1; i >= 0; i--) { | ||
6328 | if (!cpumask_test_cpu(i, cpu_map)) | ||
6329 | continue; | ||
6330 | |||
6331 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | ||
6332 | claim_allocations(i, sd); | ||
6333 | init_sched_groups_power(i, sd); | ||
6334 | } | ||
6335 | } | ||
6336 | |||
6337 | /* Attach the domains */ | ||
6338 | rcu_read_lock(); | ||
6339 | for_each_cpu(i, cpu_map) { | ||
6340 | sd = *per_cpu_ptr(d.sd, i); | ||
6341 | cpu_attach_domain(sd, d.rd, i); | ||
6342 | } | ||
6343 | rcu_read_unlock(); | ||
6344 | |||
6345 | ret = 0; | ||
6346 | error: | ||
6347 | __free_domain_allocs(&d, alloc_state, cpu_map); | ||
6348 | return ret; | ||
6349 | } | ||
6350 | |||
6351 | static cpumask_var_t *doms_cur; /* current sched domains */ | ||
6352 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | ||
6353 | static struct sched_domain_attr *dattr_cur; | ||
6354 | /* attribues of custom domains in 'doms_cur' */ | ||
6355 | |||
6356 | /* | ||
6357 | * Special case: If a kmalloc of a doms_cur partition (array of | ||
6358 | * cpumask) fails, then fallback to a single sched domain, | ||
6359 | * as determined by the single cpumask fallback_doms. | ||
6360 | */ | ||
6361 | static cpumask_var_t fallback_doms; | ||
6362 | |||
6363 | /* | ||
6364 | * arch_update_cpu_topology lets virtualized architectures update the | ||
6365 | * cpu core maps. It is supposed to return 1 if the topology changed | ||
6366 | * or 0 if it stayed the same. | ||
6367 | */ | ||
6368 | int __attribute__((weak)) arch_update_cpu_topology(void) | ||
6369 | { | ||
6370 | return 0; | ||
6371 | } | ||
6372 | |||
6373 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | ||
6374 | { | ||
6375 | int i; | ||
6376 | cpumask_var_t *doms; | ||
6377 | |||
6378 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | ||
6379 | if (!doms) | ||
6380 | return NULL; | ||
6381 | for (i = 0; i < ndoms; i++) { | ||
6382 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | ||
6383 | free_sched_domains(doms, i); | ||
6384 | return NULL; | ||
6385 | } | ||
6386 | } | ||
6387 | return doms; | ||
6388 | } | ||
6389 | |||
6390 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | ||
6391 | { | ||
6392 | unsigned int i; | ||
6393 | for (i = 0; i < ndoms; i++) | ||
6394 | free_cpumask_var(doms[i]); | ||
6395 | kfree(doms); | ||
6396 | } | ||
6397 | |||
6398 | /* | ||
6399 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | ||
6400 | * For now this just excludes isolated cpus, but could be used to | ||
6401 | * exclude other special cases in the future. | ||
6402 | */ | ||
6403 | static int init_sched_domains(const struct cpumask *cpu_map) | ||
6404 | { | ||
6405 | int err; | ||
6406 | |||
6407 | arch_update_cpu_topology(); | ||
6408 | ndoms_cur = 1; | ||
6409 | doms_cur = alloc_sched_domains(ndoms_cur); | ||
6410 | if (!doms_cur) | ||
6411 | doms_cur = &fallback_doms; | ||
6412 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | ||
6413 | dattr_cur = NULL; | ||
6414 | err = build_sched_domains(doms_cur[0], NULL); | ||
6415 | register_sched_domain_sysctl(); | ||
6416 | |||
6417 | return err; | ||
6418 | } | ||
6419 | |||
6420 | /* | ||
6421 | * Detach sched domains from a group of cpus specified in cpu_map | ||
6422 | * These cpus will now be attached to the NULL domain | ||
6423 | */ | ||
6424 | static void detach_destroy_domains(const struct cpumask *cpu_map) | ||
6425 | { | ||
6426 | int i; | ||
6427 | |||
6428 | rcu_read_lock(); | ||
6429 | for_each_cpu(i, cpu_map) | ||
6430 | cpu_attach_domain(NULL, &def_root_domain, i); | ||
6431 | rcu_read_unlock(); | ||
6432 | } | ||
6433 | |||
6434 | /* handle null as "default" */ | ||
6435 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | ||
6436 | struct sched_domain_attr *new, int idx_new) | ||
6437 | { | ||
6438 | struct sched_domain_attr tmp; | ||
6439 | |||
6440 | /* fast path */ | ||
6441 | if (!new && !cur) | ||
6442 | return 1; | ||
6443 | |||
6444 | tmp = SD_ATTR_INIT; | ||
6445 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | ||
6446 | new ? (new + idx_new) : &tmp, | ||
6447 | sizeof(struct sched_domain_attr)); | ||
6448 | } | ||
6449 | |||
6450 | /* | ||
6451 | * Partition sched domains as specified by the 'ndoms_new' | ||
6452 | * cpumasks in the array doms_new[] of cpumasks. This compares | ||
6453 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | ||
6454 | * It destroys each deleted domain and builds each new domain. | ||
6455 | * | ||
6456 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. | ||
6457 | * The masks don't intersect (don't overlap.) We should setup one | ||
6458 | * sched domain for each mask. CPUs not in any of the cpumasks will | ||
6459 | * not be load balanced. If the same cpumask appears both in the | ||
6460 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | ||
6461 | * it as it is. | ||
6462 | * | ||
6463 | * The passed in 'doms_new' should be allocated using | ||
6464 | * alloc_sched_domains. This routine takes ownership of it and will | ||
6465 | * free_sched_domains it when done with it. If the caller failed the | ||
6466 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | ||
6467 | * and partition_sched_domains() will fallback to the single partition | ||
6468 | * 'fallback_doms', it also forces the domains to be rebuilt. | ||
6469 | * | ||
6470 | * If doms_new == NULL it will be replaced with cpu_online_mask. | ||
6471 | * ndoms_new == 0 is a special case for destroying existing domains, | ||
6472 | * and it will not create the default domain. | ||
6473 | * | ||
6474 | * Call with hotplug lock held | ||
6475 | */ | ||
6476 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | ||
6477 | struct sched_domain_attr *dattr_new) | ||
6478 | { | ||
6479 | int i, j, n; | ||
6480 | int new_topology; | ||
6481 | |||
6482 | mutex_lock(&sched_domains_mutex); | ||
6483 | |||
6484 | /* always unregister in case we don't destroy any domains */ | ||
6485 | unregister_sched_domain_sysctl(); | ||
6486 | |||
6487 | /* Let architecture update cpu core mappings. */ | ||
6488 | new_topology = arch_update_cpu_topology(); | ||
6489 | |||
6490 | n = doms_new ? ndoms_new : 0; | ||
6491 | |||
6492 | /* Destroy deleted domains */ | ||
6493 | for (i = 0; i < ndoms_cur; i++) { | ||
6494 | for (j = 0; j < n && !new_topology; j++) { | ||
6495 | if (cpumask_equal(doms_cur[i], doms_new[j]) | ||
6496 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | ||
6497 | goto match1; | ||
6498 | } | ||
6499 | /* no match - a current sched domain not in new doms_new[] */ | ||
6500 | detach_destroy_domains(doms_cur[i]); | ||
6501 | match1: | ||
6502 | ; | ||
6503 | } | ||
6504 | |||
6505 | if (doms_new == NULL) { | ||
6506 | ndoms_cur = 0; | ||
6507 | doms_new = &fallback_doms; | ||
6508 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); | ||
6509 | WARN_ON_ONCE(dattr_new); | ||
6510 | } | ||
6511 | |||
6512 | /* Build new domains */ | ||
6513 | for (i = 0; i < ndoms_new; i++) { | ||
6514 | for (j = 0; j < ndoms_cur && !new_topology; j++) { | ||
6515 | if (cpumask_equal(doms_new[i], doms_cur[j]) | ||
6516 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | ||
6517 | goto match2; | ||
6518 | } | ||
6519 | /* no match - add a new doms_new */ | ||
6520 | build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); | ||
6521 | match2: | ||
6522 | ; | ||
6523 | } | ||
6524 | |||
6525 | /* Remember the new sched domains */ | ||
6526 | if (doms_cur != &fallback_doms) | ||
6527 | free_sched_domains(doms_cur, ndoms_cur); | ||
6528 | kfree(dattr_cur); /* kfree(NULL) is safe */ | ||
6529 | doms_cur = doms_new; | ||
6530 | dattr_cur = dattr_new; | ||
6531 | ndoms_cur = ndoms_new; | ||
6532 | |||
6533 | register_sched_domain_sysctl(); | ||
6534 | |||
6535 | mutex_unlock(&sched_domains_mutex); | ||
6536 | } | ||
6537 | |||
6538 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
6539 | static void reinit_sched_domains(void) | ||
6540 | { | ||
6541 | get_online_cpus(); | ||
6542 | |||
6543 | /* Destroy domains first to force the rebuild */ | ||
6544 | partition_sched_domains(0, NULL, NULL); | ||
6545 | |||
6546 | rebuild_sched_domains(); | ||
6547 | put_online_cpus(); | ||
6548 | } | ||
6549 | |||
6550 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | ||
6551 | { | ||
6552 | unsigned int level = 0; | ||
6553 | |||
6554 | if (sscanf(buf, "%u", &level) != 1) | ||
6555 | return -EINVAL; | ||
6556 | |||
6557 | /* | ||
6558 | * level is always be positive so don't check for | ||
6559 | * level < POWERSAVINGS_BALANCE_NONE which is 0 | ||
6560 | * What happens on 0 or 1 byte write, | ||
6561 | * need to check for count as well? | ||
6562 | */ | ||
6563 | |||
6564 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | ||
6565 | return -EINVAL; | ||
6566 | |||
6567 | if (smt) | ||
6568 | sched_smt_power_savings = level; | ||
6569 | else | ||
6570 | sched_mc_power_savings = level; | ||
6571 | |||
6572 | reinit_sched_domains(); | ||
6573 | |||
6574 | return count; | ||
6575 | } | ||
6576 | |||
6577 | #ifdef CONFIG_SCHED_MC | ||
6578 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | ||
6579 | struct sysdev_class_attribute *attr, | ||
6580 | char *page) | ||
6581 | { | ||
6582 | return sprintf(page, "%u\n", sched_mc_power_savings); | ||
6583 | } | ||
6584 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | ||
6585 | struct sysdev_class_attribute *attr, | ||
6586 | const char *buf, size_t count) | ||
6587 | { | ||
6588 | return sched_power_savings_store(buf, count, 0); | ||
6589 | } | ||
6590 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | ||
6591 | sched_mc_power_savings_show, | ||
6592 | sched_mc_power_savings_store); | ||
6593 | #endif | ||
6594 | |||
6595 | #ifdef CONFIG_SCHED_SMT | ||
6596 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | ||
6597 | struct sysdev_class_attribute *attr, | ||
6598 | char *page) | ||
6599 | { | ||
6600 | return sprintf(page, "%u\n", sched_smt_power_savings); | ||
6601 | } | ||
6602 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | ||
6603 | struct sysdev_class_attribute *attr, | ||
6604 | const char *buf, size_t count) | ||
6605 | { | ||
6606 | return sched_power_savings_store(buf, count, 1); | ||
6607 | } | ||
6608 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, | ||
6609 | sched_smt_power_savings_show, | ||
6610 | sched_smt_power_savings_store); | ||
6611 | #endif | ||
6612 | |||
6613 | int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | ||
6614 | { | ||
6615 | int err = 0; | ||
6616 | |||
6617 | #ifdef CONFIG_SCHED_SMT | ||
6618 | if (smt_capable()) | ||
6619 | err = sysfs_create_file(&cls->kset.kobj, | ||
6620 | &attr_sched_smt_power_savings.attr); | ||
6621 | #endif | ||
6622 | #ifdef CONFIG_SCHED_MC | ||
6623 | if (!err && mc_capable()) | ||
6624 | err = sysfs_create_file(&cls->kset.kobj, | ||
6625 | &attr_sched_mc_power_savings.attr); | ||
6626 | #endif | ||
6627 | return err; | ||
6628 | } | ||
6629 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
6630 | |||
6631 | /* | ||
6632 | * Update cpusets according to cpu_active mask. If cpusets are | ||
6633 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper | ||
6634 | * around partition_sched_domains(). | ||
6635 | */ | ||
6636 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, | ||
6637 | void *hcpu) | ||
6638 | { | ||
6639 | switch (action & ~CPU_TASKS_FROZEN) { | ||
6640 | case CPU_ONLINE: | ||
6641 | case CPU_DOWN_FAILED: | ||
6642 | cpuset_update_active_cpus(); | ||
6643 | return NOTIFY_OK; | ||
6644 | default: | ||
6645 | return NOTIFY_DONE; | ||
6646 | } | ||
6647 | } | ||
6648 | |||
6649 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, | ||
6650 | void *hcpu) | ||
6651 | { | ||
6652 | switch (action & ~CPU_TASKS_FROZEN) { | ||
6653 | case CPU_DOWN_PREPARE: | ||
6654 | cpuset_update_active_cpus(); | ||
6655 | return NOTIFY_OK; | ||
6656 | default: | ||
6657 | return NOTIFY_DONE; | ||
6658 | } | ||
6659 | } | ||
6660 | |||
6661 | void __init sched_init_smp(void) | ||
6662 | { | ||
6663 | cpumask_var_t non_isolated_cpus; | ||
6664 | |||
6665 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | ||
6666 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
6667 | |||
6668 | get_online_cpus(); | ||
6669 | mutex_lock(&sched_domains_mutex); | ||
6670 | init_sched_domains(cpu_active_mask); | ||
6671 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | ||
6672 | if (cpumask_empty(non_isolated_cpus)) | ||
6673 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | ||
6674 | mutex_unlock(&sched_domains_mutex); | ||
6675 | put_online_cpus(); | ||
6676 | |||
6677 | hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); | ||
6678 | hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); | ||
6679 | |||
6680 | /* RT runtime code needs to handle some hotplug events */ | ||
6681 | hotcpu_notifier(update_runtime, 0); | ||
6682 | |||
6683 | init_hrtick(); | ||
6684 | |||
6685 | /* Move init over to a non-isolated CPU */ | ||
6686 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) | ||
6687 | BUG(); | ||
6688 | sched_init_granularity(); | ||
6689 | free_cpumask_var(non_isolated_cpus); | ||
6690 | |||
6691 | init_sched_rt_class(); | ||
6692 | } | ||
6693 | #else | ||
6694 | void __init sched_init_smp(void) | ||
6695 | { | ||
6696 | sched_init_granularity(); | ||
6697 | } | ||
6698 | #endif /* CONFIG_SMP */ | ||
6699 | |||
6700 | const_debug unsigned int sysctl_timer_migration = 1; | ||
6701 | |||
6702 | int in_sched_functions(unsigned long addr) | ||
6703 | { | ||
6704 | return in_lock_functions(addr) || | ||
6705 | (addr >= (unsigned long)__sched_text_start | ||
6706 | && addr < (unsigned long)__sched_text_end); | ||
6707 | } | ||
6708 | |||
6709 | #ifdef CONFIG_CGROUP_SCHED | ||
6710 | struct task_group root_task_group; | ||
6711 | #endif | ||
6712 | |||
6713 | DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
6714 | |||
6715 | void __init sched_init(void) | ||
6716 | { | ||
6717 | int i, j; | ||
6718 | unsigned long alloc_size = 0, ptr; | ||
6719 | |||
6720 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
6721 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | ||
6722 | #endif | ||
6723 | #ifdef CONFIG_RT_GROUP_SCHED | ||
6724 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | ||
6725 | #endif | ||
6726 | #ifdef CONFIG_CPUMASK_OFFSTACK | ||
6727 | alloc_size += num_possible_cpus() * cpumask_size(); | ||
6728 | #endif | ||
6729 | if (alloc_size) { | ||
6730 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | ||
6731 | |||
6732 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
6733 | root_task_group.se = (struct sched_entity **)ptr; | ||
6734 | ptr += nr_cpu_ids * sizeof(void **); | ||
6735 | |||
6736 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | ||
6737 | ptr += nr_cpu_ids * sizeof(void **); | ||
6738 | |||
6739 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
6740 | #ifdef CONFIG_RT_GROUP_SCHED | ||
6741 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | ||
6742 | ptr += nr_cpu_ids * sizeof(void **); | ||
6743 | |||
6744 | root_task_group.rt_rq = (struct rt_rq **)ptr; | ||
6745 | ptr += nr_cpu_ids * sizeof(void **); | ||
6746 | |||
6747 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
6748 | #ifdef CONFIG_CPUMASK_OFFSTACK | ||
6749 | for_each_possible_cpu(i) { | ||
6750 | per_cpu(load_balance_tmpmask, i) = (void *)ptr; | ||
6751 | ptr += cpumask_size(); | ||
6752 | } | ||
6753 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | ||
6754 | } | ||
6755 | |||
6756 | #ifdef CONFIG_SMP | ||
6757 | init_defrootdomain(); | ||
6758 | #endif | ||
6759 | |||
6760 | init_rt_bandwidth(&def_rt_bandwidth, | ||
6761 | global_rt_period(), global_rt_runtime()); | ||
6762 | |||
6763 | #ifdef CONFIG_RT_GROUP_SCHED | ||
6764 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | ||
6765 | global_rt_period(), global_rt_runtime()); | ||
6766 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
6767 | |||
6768 | #ifdef CONFIG_CGROUP_SCHED | ||
6769 | list_add(&root_task_group.list, &task_groups); | ||
6770 | INIT_LIST_HEAD(&root_task_group.children); | ||
6771 | INIT_LIST_HEAD(&root_task_group.siblings); | ||
6772 | autogroup_init(&init_task); | ||
6773 | #endif /* CONFIG_CGROUP_SCHED */ | ||
6774 | |||
6775 | for_each_possible_cpu(i) { | ||
6776 | struct rq *rq; | ||
6777 | |||
6778 | rq = cpu_rq(i); | ||
6779 | raw_spin_lock_init(&rq->lock); | ||
6780 | rq->nr_running = 0; | ||
6781 | rq->calc_load_active = 0; | ||
6782 | rq->calc_load_update = jiffies + LOAD_FREQ; | ||
6783 | init_cfs_rq(&rq->cfs); | ||
6784 | init_rt_rq(&rq->rt, rq); | ||
6785 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
6786 | root_task_group.shares = ROOT_TASK_GROUP_LOAD; | ||
6787 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | ||
6788 | /* | ||
6789 | * How much cpu bandwidth does root_task_group get? | ||
6790 | * | ||
6791 | * In case of task-groups formed thr' the cgroup filesystem, it | ||
6792 | * gets 100% of the cpu resources in the system. This overall | ||
6793 | * system cpu resource is divided among the tasks of | ||
6794 | * root_task_group and its child task-groups in a fair manner, | ||
6795 | * based on each entity's (task or task-group's) weight | ||
6796 | * (se->load.weight). | ||
6797 | * | ||
6798 | * In other words, if root_task_group has 10 tasks of weight | ||
6799 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | ||
6800 | * then A0's share of the cpu resource is: | ||
6801 | * | ||
6802 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | ||
6803 | * | ||
6804 | * We achieve this by letting root_task_group's tasks sit | ||
6805 | * directly in rq->cfs (i.e root_task_group->se[] = NULL). | ||
6806 | */ | ||
6807 | init_cfs_bandwidth(&root_task_group.cfs_bandwidth); | ||
6808 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); | ||
6809 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
6810 | |||
6811 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | ||
6812 | #ifdef CONFIG_RT_GROUP_SCHED | ||
6813 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | ||
6814 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); | ||
6815 | #endif | ||
6816 | |||
6817 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | ||
6818 | rq->cpu_load[j] = 0; | ||
6819 | |||
6820 | rq->last_load_update_tick = jiffies; | ||
6821 | |||
6822 | #ifdef CONFIG_SMP | ||
6823 | rq->sd = NULL; | ||
6824 | rq->rd = NULL; | ||
6825 | rq->cpu_power = SCHED_POWER_SCALE; | ||
6826 | rq->post_schedule = 0; | ||
6827 | rq->active_balance = 0; | ||
6828 | rq->next_balance = jiffies; | ||
6829 | rq->push_cpu = 0; | ||
6830 | rq->cpu = i; | ||
6831 | rq->online = 0; | ||
6832 | rq->idle_stamp = 0; | ||
6833 | rq->avg_idle = 2*sysctl_sched_migration_cost; | ||
6834 | rq_attach_root(rq, &def_root_domain); | ||
6835 | #ifdef CONFIG_NO_HZ | ||
6836 | rq->nohz_balance_kick = 0; | ||
6837 | #endif | ||
6838 | #endif | ||
6839 | init_rq_hrtick(rq); | ||
6840 | atomic_set(&rq->nr_iowait, 0); | ||
6841 | } | ||
6842 | |||
6843 | set_load_weight(&init_task); | ||
6844 | |||
6845 | #ifdef CONFIG_PREEMPT_NOTIFIERS | ||
6846 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | ||
6847 | #endif | ||
6848 | |||
6849 | #ifdef CONFIG_RT_MUTEXES | ||
6850 | plist_head_init(&init_task.pi_waiters); | ||
6851 | #endif | ||
6852 | |||
6853 | /* | ||
6854 | * The boot idle thread does lazy MMU switching as well: | ||
6855 | */ | ||
6856 | atomic_inc(&init_mm.mm_count); | ||
6857 | enter_lazy_tlb(&init_mm, current); | ||
6858 | |||
6859 | /* | ||
6860 | * Make us the idle thread. Technically, schedule() should not be | ||
6861 | * called from this thread, however somewhere below it might be, | ||
6862 | * but because we are the idle thread, we just pick up running again | ||
6863 | * when this runqueue becomes "idle". | ||
6864 | */ | ||
6865 | init_idle(current, smp_processor_id()); | ||
6866 | |||
6867 | calc_load_update = jiffies + LOAD_FREQ; | ||
6868 | |||
6869 | /* | ||
6870 | * During early bootup we pretend to be a normal task: | ||
6871 | */ | ||
6872 | current->sched_class = &fair_sched_class; | ||
6873 | |||
6874 | #ifdef CONFIG_SMP | ||
6875 | zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); | ||
6876 | /* May be allocated at isolcpus cmdline parse time */ | ||
6877 | if (cpu_isolated_map == NULL) | ||
6878 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | ||
6879 | #endif | ||
6880 | init_sched_fair_class(); | ||
6881 | |||
6882 | scheduler_running = 1; | ||
6883 | } | ||
6884 | |||
6885 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | ||
6886 | static inline int preempt_count_equals(int preempt_offset) | ||
6887 | { | ||
6888 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); | ||
6889 | |||
6890 | return (nested == preempt_offset); | ||
6891 | } | ||
6892 | |||
6893 | void __might_sleep(const char *file, int line, int preempt_offset) | ||
6894 | { | ||
6895 | static unsigned long prev_jiffy; /* ratelimiting */ | ||
6896 | |||
6897 | rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ | ||
6898 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || | ||
6899 | system_state != SYSTEM_RUNNING || oops_in_progress) | ||
6900 | return; | ||
6901 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | ||
6902 | return; | ||
6903 | prev_jiffy = jiffies; | ||
6904 | |||
6905 | printk(KERN_ERR | ||
6906 | "BUG: sleeping function called from invalid context at %s:%d\n", | ||
6907 | file, line); | ||
6908 | printk(KERN_ERR | ||
6909 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | ||
6910 | in_atomic(), irqs_disabled(), | ||
6911 | current->pid, current->comm); | ||
6912 | |||
6913 | debug_show_held_locks(current); | ||
6914 | if (irqs_disabled()) | ||
6915 | print_irqtrace_events(current); | ||
6916 | dump_stack(); | ||
6917 | } | ||
6918 | EXPORT_SYMBOL(__might_sleep); | ||
6919 | #endif | ||
6920 | |||
6921 | #ifdef CONFIG_MAGIC_SYSRQ | ||
6922 | static void normalize_task(struct rq *rq, struct task_struct *p) | ||
6923 | { | ||
6924 | const struct sched_class *prev_class = p->sched_class; | ||
6925 | int old_prio = p->prio; | ||
6926 | int on_rq; | ||
6927 | |||
6928 | on_rq = p->on_rq; | ||
6929 | if (on_rq) | ||
6930 | deactivate_task(rq, p, 0); | ||
6931 | __setscheduler(rq, p, SCHED_NORMAL, 0); | ||
6932 | if (on_rq) { | ||
6933 | activate_task(rq, p, 0); | ||
6934 | resched_task(rq->curr); | ||
6935 | } | ||
6936 | |||
6937 | check_class_changed(rq, p, prev_class, old_prio); | ||
6938 | } | ||
6939 | |||
6940 | void normalize_rt_tasks(void) | ||
6941 | { | ||
6942 | struct task_struct *g, *p; | ||
6943 | unsigned long flags; | ||
6944 | struct rq *rq; | ||
6945 | |||
6946 | read_lock_irqsave(&tasklist_lock, flags); | ||
6947 | do_each_thread(g, p) { | ||
6948 | /* | ||
6949 | * Only normalize user tasks: | ||
6950 | */ | ||
6951 | if (!p->mm) | ||
6952 | continue; | ||
6953 | |||
6954 | p->se.exec_start = 0; | ||
6955 | #ifdef CONFIG_SCHEDSTATS | ||
6956 | p->se.statistics.wait_start = 0; | ||
6957 | p->se.statistics.sleep_start = 0; | ||
6958 | p->se.statistics.block_start = 0; | ||
6959 | #endif | ||
6960 | |||
6961 | if (!rt_task(p)) { | ||
6962 | /* | ||
6963 | * Renice negative nice level userspace | ||
6964 | * tasks back to 0: | ||
6965 | */ | ||
6966 | if (TASK_NICE(p) < 0 && p->mm) | ||
6967 | set_user_nice(p, 0); | ||
6968 | continue; | ||
6969 | } | ||
6970 | |||
6971 | raw_spin_lock(&p->pi_lock); | ||
6972 | rq = __task_rq_lock(p); | ||
6973 | |||
6974 | normalize_task(rq, p); | ||
6975 | |||
6976 | __task_rq_unlock(rq); | ||
6977 | raw_spin_unlock(&p->pi_lock); | ||
6978 | } while_each_thread(g, p); | ||
6979 | |||
6980 | read_unlock_irqrestore(&tasklist_lock, flags); | ||
6981 | } | ||
6982 | |||
6983 | #endif /* CONFIG_MAGIC_SYSRQ */ | ||
6984 | |||
6985 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) | ||
6986 | /* | ||
6987 | * These functions are only useful for the IA64 MCA handling, or kdb. | ||
6988 | * | ||
6989 | * They can only be called when the whole system has been | ||
6990 | * stopped - every CPU needs to be quiescent, and no scheduling | ||
6991 | * activity can take place. Using them for anything else would | ||
6992 | * be a serious bug, and as a result, they aren't even visible | ||
6993 | * under any other configuration. | ||
6994 | */ | ||
6995 | |||
6996 | /** | ||
6997 | * curr_task - return the current task for a given cpu. | ||
6998 | * @cpu: the processor in question. | ||
6999 | * | ||
7000 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | ||
7001 | */ | ||
7002 | struct task_struct *curr_task(int cpu) | ||
7003 | { | ||
7004 | return cpu_curr(cpu); | ||
7005 | } | ||
7006 | |||
7007 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | ||
7008 | |||
7009 | #ifdef CONFIG_IA64 | ||
7010 | /** | ||
7011 | * set_curr_task - set the current task for a given cpu. | ||
7012 | * @cpu: the processor in question. | ||
7013 | * @p: the task pointer to set. | ||
7014 | * | ||
7015 | * Description: This function must only be used when non-maskable interrupts | ||
7016 | * are serviced on a separate stack. It allows the architecture to switch the | ||
7017 | * notion of the current task on a cpu in a non-blocking manner. This function | ||
7018 | * must be called with all CPU's synchronized, and interrupts disabled, the | ||
7019 | * and caller must save the original value of the current task (see | ||
7020 | * curr_task() above) and restore that value before reenabling interrupts and | ||
7021 | * re-starting the system. | ||
7022 | * | ||
7023 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | ||
7024 | */ | ||
7025 | void set_curr_task(int cpu, struct task_struct *p) | ||
7026 | { | ||
7027 | cpu_curr(cpu) = p; | ||
7028 | } | ||
7029 | |||
7030 | #endif | ||
7031 | |||
7032 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7033 | #else /* !CONFIG_RT_GROUP_SCHED */ | ||
7034 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
7035 | |||
7036 | #ifdef CONFIG_CGROUP_SCHED | ||
7037 | /* task_group_lock serializes the addition/removal of task groups */ | ||
7038 | static DEFINE_SPINLOCK(task_group_lock); | ||
7039 | |||
7040 | static void free_sched_group(struct task_group *tg) | ||
7041 | { | ||
7042 | free_fair_sched_group(tg); | ||
7043 | free_rt_sched_group(tg); | ||
7044 | autogroup_free(tg); | ||
7045 | kfree(tg); | ||
7046 | } | ||
7047 | |||
7048 | /* allocate runqueue etc for a new task group */ | ||
7049 | struct task_group *sched_create_group(struct task_group *parent) | ||
7050 | { | ||
7051 | struct task_group *tg; | ||
7052 | unsigned long flags; | ||
7053 | |||
7054 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | ||
7055 | if (!tg) | ||
7056 | return ERR_PTR(-ENOMEM); | ||
7057 | |||
7058 | if (!alloc_fair_sched_group(tg, parent)) | ||
7059 | goto err; | ||
7060 | |||
7061 | if (!alloc_rt_sched_group(tg, parent)) | ||
7062 | goto err; | ||
7063 | |||
7064 | spin_lock_irqsave(&task_group_lock, flags); | ||
7065 | list_add_rcu(&tg->list, &task_groups); | ||
7066 | |||
7067 | WARN_ON(!parent); /* root should already exist */ | ||
7068 | |||
7069 | tg->parent = parent; | ||
7070 | INIT_LIST_HEAD(&tg->children); | ||
7071 | list_add_rcu(&tg->siblings, &parent->children); | ||
7072 | spin_unlock_irqrestore(&task_group_lock, flags); | ||
7073 | |||
7074 | return tg; | ||
7075 | |||
7076 | err: | ||
7077 | free_sched_group(tg); | ||
7078 | return ERR_PTR(-ENOMEM); | ||
7079 | } | ||
7080 | |||
7081 | /* rcu callback to free various structures associated with a task group */ | ||
7082 | static void free_sched_group_rcu(struct rcu_head *rhp) | ||
7083 | { | ||
7084 | /* now it should be safe to free those cfs_rqs */ | ||
7085 | free_sched_group(container_of(rhp, struct task_group, rcu)); | ||
7086 | } | ||
7087 | |||
7088 | /* Destroy runqueue etc associated with a task group */ | ||
7089 | void sched_destroy_group(struct task_group *tg) | ||
7090 | { | ||
7091 | unsigned long flags; | ||
7092 | int i; | ||
7093 | |||
7094 | /* end participation in shares distribution */ | ||
7095 | for_each_possible_cpu(i) | ||
7096 | unregister_fair_sched_group(tg, i); | ||
7097 | |||
7098 | spin_lock_irqsave(&task_group_lock, flags); | ||
7099 | list_del_rcu(&tg->list); | ||
7100 | list_del_rcu(&tg->siblings); | ||
7101 | spin_unlock_irqrestore(&task_group_lock, flags); | ||
7102 | |||
7103 | /* wait for possible concurrent references to cfs_rqs complete */ | ||
7104 | call_rcu(&tg->rcu, free_sched_group_rcu); | ||
7105 | } | ||
7106 | |||
7107 | /* change task's runqueue when it moves between groups. | ||
7108 | * The caller of this function should have put the task in its new group | ||
7109 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | ||
7110 | * reflect its new group. | ||
7111 | */ | ||
7112 | void sched_move_task(struct task_struct *tsk) | ||
7113 | { | ||
7114 | int on_rq, running; | ||
7115 | unsigned long flags; | ||
7116 | struct rq *rq; | ||
7117 | |||
7118 | rq = task_rq_lock(tsk, &flags); | ||
7119 | |||
7120 | running = task_current(rq, tsk); | ||
7121 | on_rq = tsk->on_rq; | ||
7122 | |||
7123 | if (on_rq) | ||
7124 | dequeue_task(rq, tsk, 0); | ||
7125 | if (unlikely(running)) | ||
7126 | tsk->sched_class->put_prev_task(rq, tsk); | ||
7127 | |||
7128 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7129 | if (tsk->sched_class->task_move_group) | ||
7130 | tsk->sched_class->task_move_group(tsk, on_rq); | ||
7131 | else | ||
7132 | #endif | ||
7133 | set_task_rq(tsk, task_cpu(tsk)); | ||
7134 | |||
7135 | if (unlikely(running)) | ||
7136 | tsk->sched_class->set_curr_task(rq); | ||
7137 | if (on_rq) | ||
7138 | enqueue_task(rq, tsk, 0); | ||
7139 | |||
7140 | task_rq_unlock(rq, tsk, &flags); | ||
7141 | } | ||
7142 | #endif /* CONFIG_CGROUP_SCHED */ | ||
7143 | |||
7144 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7145 | #endif | ||
7146 | |||
7147 | #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) | ||
7148 | static unsigned long to_ratio(u64 period, u64 runtime) | ||
7149 | { | ||
7150 | if (runtime == RUNTIME_INF) | ||
7151 | return 1ULL << 20; | ||
7152 | |||
7153 | return div64_u64(runtime << 20, period); | ||
7154 | } | ||
7155 | #endif | ||
7156 | |||
7157 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7158 | /* | ||
7159 | * Ensure that the real time constraints are schedulable. | ||
7160 | */ | ||
7161 | static DEFINE_MUTEX(rt_constraints_mutex); | ||
7162 | |||
7163 | /* Must be called with tasklist_lock held */ | ||
7164 | static inline int tg_has_rt_tasks(struct task_group *tg) | ||
7165 | { | ||
7166 | struct task_struct *g, *p; | ||
7167 | |||
7168 | do_each_thread(g, p) { | ||
7169 | if (rt_task(p) && task_rq(p)->rt.tg == tg) | ||
7170 | return 1; | ||
7171 | } while_each_thread(g, p); | ||
7172 | |||
7173 | return 0; | ||
7174 | } | ||
7175 | |||
7176 | struct rt_schedulable_data { | ||
7177 | struct task_group *tg; | ||
7178 | u64 rt_period; | ||
7179 | u64 rt_runtime; | ||
7180 | }; | ||
7181 | |||
7182 | static int tg_rt_schedulable(struct task_group *tg, void *data) | ||
7183 | { | ||
7184 | struct rt_schedulable_data *d = data; | ||
7185 | struct task_group *child; | ||
7186 | unsigned long total, sum = 0; | ||
7187 | u64 period, runtime; | ||
7188 | |||
7189 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | ||
7190 | runtime = tg->rt_bandwidth.rt_runtime; | ||
7191 | |||
7192 | if (tg == d->tg) { | ||
7193 | period = d->rt_period; | ||
7194 | runtime = d->rt_runtime; | ||
7195 | } | ||
7196 | |||
7197 | /* | ||
7198 | * Cannot have more runtime than the period. | ||
7199 | */ | ||
7200 | if (runtime > period && runtime != RUNTIME_INF) | ||
7201 | return -EINVAL; | ||
7202 | |||
7203 | /* | ||
7204 | * Ensure we don't starve existing RT tasks. | ||
7205 | */ | ||
7206 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | ||
7207 | return -EBUSY; | ||
7208 | |||
7209 | total = to_ratio(period, runtime); | ||
7210 | |||
7211 | /* | ||
7212 | * Nobody can have more than the global setting allows. | ||
7213 | */ | ||
7214 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | ||
7215 | return -EINVAL; | ||
7216 | |||
7217 | /* | ||
7218 | * The sum of our children's runtime should not exceed our own. | ||
7219 | */ | ||
7220 | list_for_each_entry_rcu(child, &tg->children, siblings) { | ||
7221 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | ||
7222 | runtime = child->rt_bandwidth.rt_runtime; | ||
7223 | |||
7224 | if (child == d->tg) { | ||
7225 | period = d->rt_period; | ||
7226 | runtime = d->rt_runtime; | ||
7227 | } | ||
7228 | |||
7229 | sum += to_ratio(period, runtime); | ||
7230 | } | ||
7231 | |||
7232 | if (sum > total) | ||
7233 | return -EINVAL; | ||
7234 | |||
7235 | return 0; | ||
7236 | } | ||
7237 | |||
7238 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | ||
7239 | { | ||
7240 | int ret; | ||
7241 | |||
7242 | struct rt_schedulable_data data = { | ||
7243 | .tg = tg, | ||
7244 | .rt_period = period, | ||
7245 | .rt_runtime = runtime, | ||
7246 | }; | ||
7247 | |||
7248 | rcu_read_lock(); | ||
7249 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | ||
7250 | rcu_read_unlock(); | ||
7251 | |||
7252 | return ret; | ||
7253 | } | ||
7254 | |||
7255 | static int tg_set_rt_bandwidth(struct task_group *tg, | ||
7256 | u64 rt_period, u64 rt_runtime) | ||
7257 | { | ||
7258 | int i, err = 0; | ||
7259 | |||
7260 | mutex_lock(&rt_constraints_mutex); | ||
7261 | read_lock(&tasklist_lock); | ||
7262 | err = __rt_schedulable(tg, rt_period, rt_runtime); | ||
7263 | if (err) | ||
7264 | goto unlock; | ||
7265 | |||
7266 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | ||
7267 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | ||
7268 | tg->rt_bandwidth.rt_runtime = rt_runtime; | ||
7269 | |||
7270 | for_each_possible_cpu(i) { | ||
7271 | struct rt_rq *rt_rq = tg->rt_rq[i]; | ||
7272 | |||
7273 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
7274 | rt_rq->rt_runtime = rt_runtime; | ||
7275 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
7276 | } | ||
7277 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | ||
7278 | unlock: | ||
7279 | read_unlock(&tasklist_lock); | ||
7280 | mutex_unlock(&rt_constraints_mutex); | ||
7281 | |||
7282 | return err; | ||
7283 | } | ||
7284 | |||
7285 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | ||
7286 | { | ||
7287 | u64 rt_runtime, rt_period; | ||
7288 | |||
7289 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | ||
7290 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | ||
7291 | if (rt_runtime_us < 0) | ||
7292 | rt_runtime = RUNTIME_INF; | ||
7293 | |||
7294 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | ||
7295 | } | ||
7296 | |||
7297 | long sched_group_rt_runtime(struct task_group *tg) | ||
7298 | { | ||
7299 | u64 rt_runtime_us; | ||
7300 | |||
7301 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | ||
7302 | return -1; | ||
7303 | |||
7304 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | ||
7305 | do_div(rt_runtime_us, NSEC_PER_USEC); | ||
7306 | return rt_runtime_us; | ||
7307 | } | ||
7308 | |||
7309 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | ||
7310 | { | ||
7311 | u64 rt_runtime, rt_period; | ||
7312 | |||
7313 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | ||
7314 | rt_runtime = tg->rt_bandwidth.rt_runtime; | ||
7315 | |||
7316 | if (rt_period == 0) | ||
7317 | return -EINVAL; | ||
7318 | |||
7319 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | ||
7320 | } | ||
7321 | |||
7322 | long sched_group_rt_period(struct task_group *tg) | ||
7323 | { | ||
7324 | u64 rt_period_us; | ||
7325 | |||
7326 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | ||
7327 | do_div(rt_period_us, NSEC_PER_USEC); | ||
7328 | return rt_period_us; | ||
7329 | } | ||
7330 | |||
7331 | static int sched_rt_global_constraints(void) | ||
7332 | { | ||
7333 | u64 runtime, period; | ||
7334 | int ret = 0; | ||
7335 | |||
7336 | if (sysctl_sched_rt_period <= 0) | ||
7337 | return -EINVAL; | ||
7338 | |||
7339 | runtime = global_rt_runtime(); | ||
7340 | period = global_rt_period(); | ||
7341 | |||
7342 | /* | ||
7343 | * Sanity check on the sysctl variables. | ||
7344 | */ | ||
7345 | if (runtime > period && runtime != RUNTIME_INF) | ||
7346 | return -EINVAL; | ||
7347 | |||
7348 | mutex_lock(&rt_constraints_mutex); | ||
7349 | read_lock(&tasklist_lock); | ||
7350 | ret = __rt_schedulable(NULL, 0, 0); | ||
7351 | read_unlock(&tasklist_lock); | ||
7352 | mutex_unlock(&rt_constraints_mutex); | ||
7353 | |||
7354 | return ret; | ||
7355 | } | ||
7356 | |||
7357 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | ||
7358 | { | ||
7359 | /* Don't accept realtime tasks when there is no way for them to run */ | ||
7360 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | ||
7361 | return 0; | ||
7362 | |||
7363 | return 1; | ||
7364 | } | ||
7365 | |||
7366 | #else /* !CONFIG_RT_GROUP_SCHED */ | ||
7367 | static int sched_rt_global_constraints(void) | ||
7368 | { | ||
7369 | unsigned long flags; | ||
7370 | int i; | ||
7371 | |||
7372 | if (sysctl_sched_rt_period <= 0) | ||
7373 | return -EINVAL; | ||
7374 | |||
7375 | /* | ||
7376 | * There's always some RT tasks in the root group | ||
7377 | * -- migration, kstopmachine etc.. | ||
7378 | */ | ||
7379 | if (sysctl_sched_rt_runtime == 0) | ||
7380 | return -EBUSY; | ||
7381 | |||
7382 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | ||
7383 | for_each_possible_cpu(i) { | ||
7384 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | ||
7385 | |||
7386 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
7387 | rt_rq->rt_runtime = global_rt_runtime(); | ||
7388 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
7389 | } | ||
7390 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | ||
7391 | |||
7392 | return 0; | ||
7393 | } | ||
7394 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
7395 | |||
7396 | int sched_rt_handler(struct ctl_table *table, int write, | ||
7397 | void __user *buffer, size_t *lenp, | ||
7398 | loff_t *ppos) | ||
7399 | { | ||
7400 | int ret; | ||
7401 | int old_period, old_runtime; | ||
7402 | static DEFINE_MUTEX(mutex); | ||
7403 | |||
7404 | mutex_lock(&mutex); | ||
7405 | old_period = sysctl_sched_rt_period; | ||
7406 | old_runtime = sysctl_sched_rt_runtime; | ||
7407 | |||
7408 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | ||
7409 | |||
7410 | if (!ret && write) { | ||
7411 | ret = sched_rt_global_constraints(); | ||
7412 | if (ret) { | ||
7413 | sysctl_sched_rt_period = old_period; | ||
7414 | sysctl_sched_rt_runtime = old_runtime; | ||
7415 | } else { | ||
7416 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | ||
7417 | def_rt_bandwidth.rt_period = | ||
7418 | ns_to_ktime(global_rt_period()); | ||
7419 | } | ||
7420 | } | ||
7421 | mutex_unlock(&mutex); | ||
7422 | |||
7423 | return ret; | ||
7424 | } | ||
7425 | |||
7426 | #ifdef CONFIG_CGROUP_SCHED | ||
7427 | |||
7428 | /* return corresponding task_group object of a cgroup */ | ||
7429 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) | ||
7430 | { | ||
7431 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), | ||
7432 | struct task_group, css); | ||
7433 | } | ||
7434 | |||
7435 | static struct cgroup_subsys_state * | ||
7436 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) | ||
7437 | { | ||
7438 | struct task_group *tg, *parent; | ||
7439 | |||
7440 | if (!cgrp->parent) { | ||
7441 | /* This is early initialization for the top cgroup */ | ||
7442 | return &root_task_group.css; | ||
7443 | } | ||
7444 | |||
7445 | parent = cgroup_tg(cgrp->parent); | ||
7446 | tg = sched_create_group(parent); | ||
7447 | if (IS_ERR(tg)) | ||
7448 | return ERR_PTR(-ENOMEM); | ||
7449 | |||
7450 | return &tg->css; | ||
7451 | } | ||
7452 | |||
7453 | static void | ||
7454 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | ||
7455 | { | ||
7456 | struct task_group *tg = cgroup_tg(cgrp); | ||
7457 | |||
7458 | sched_destroy_group(tg); | ||
7459 | } | ||
7460 | |||
7461 | static int | ||
7462 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | ||
7463 | { | ||
7464 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7465 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | ||
7466 | return -EINVAL; | ||
7467 | #else | ||
7468 | /* We don't support RT-tasks being in separate groups */ | ||
7469 | if (tsk->sched_class != &fair_sched_class) | ||
7470 | return -EINVAL; | ||
7471 | #endif | ||
7472 | return 0; | ||
7473 | } | ||
7474 | |||
7475 | static void | ||
7476 | cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | ||
7477 | { | ||
7478 | sched_move_task(tsk); | ||
7479 | } | ||
7480 | |||
7481 | static void | ||
7482 | cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
7483 | struct cgroup *old_cgrp, struct task_struct *task) | ||
7484 | { | ||
7485 | /* | ||
7486 | * cgroup_exit() is called in the copy_process() failure path. | ||
7487 | * Ignore this case since the task hasn't ran yet, this avoids | ||
7488 | * trying to poke a half freed task state from generic code. | ||
7489 | */ | ||
7490 | if (!(task->flags & PF_EXITING)) | ||
7491 | return; | ||
7492 | |||
7493 | sched_move_task(task); | ||
7494 | } | ||
7495 | |||
7496 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7497 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, | ||
7498 | u64 shareval) | ||
7499 | { | ||
7500 | return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); | ||
7501 | } | ||
7502 | |||
7503 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) | ||
7504 | { | ||
7505 | struct task_group *tg = cgroup_tg(cgrp); | ||
7506 | |||
7507 | return (u64) scale_load_down(tg->shares); | ||
7508 | } | ||
7509 | |||
7510 | #ifdef CONFIG_CFS_BANDWIDTH | ||
7511 | static DEFINE_MUTEX(cfs_constraints_mutex); | ||
7512 | |||
7513 | const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ | ||
7514 | const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ | ||
7515 | |||
7516 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); | ||
7517 | |||
7518 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | ||
7519 | { | ||
7520 | int i, ret = 0, runtime_enabled, runtime_was_enabled; | ||
7521 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | ||
7522 | |||
7523 | if (tg == &root_task_group) | ||
7524 | return -EINVAL; | ||
7525 | |||
7526 | /* | ||
7527 | * Ensure we have at some amount of bandwidth every period. This is | ||
7528 | * to prevent reaching a state of large arrears when throttled via | ||
7529 | * entity_tick() resulting in prolonged exit starvation. | ||
7530 | */ | ||
7531 | if (quota < min_cfs_quota_period || period < min_cfs_quota_period) | ||
7532 | return -EINVAL; | ||
7533 | |||
7534 | /* | ||
7535 | * Likewise, bound things on the otherside by preventing insane quota | ||
7536 | * periods. This also allows us to normalize in computing quota | ||
7537 | * feasibility. | ||
7538 | */ | ||
7539 | if (period > max_cfs_quota_period) | ||
7540 | return -EINVAL; | ||
7541 | |||
7542 | mutex_lock(&cfs_constraints_mutex); | ||
7543 | ret = __cfs_schedulable(tg, period, quota); | ||
7544 | if (ret) | ||
7545 | goto out_unlock; | ||
7546 | |||
7547 | runtime_enabled = quota != RUNTIME_INF; | ||
7548 | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; | ||
7549 | account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); | ||
7550 | raw_spin_lock_irq(&cfs_b->lock); | ||
7551 | cfs_b->period = ns_to_ktime(period); | ||
7552 | cfs_b->quota = quota; | ||
7553 | |||
7554 | __refill_cfs_bandwidth_runtime(cfs_b); | ||
7555 | /* restart the period timer (if active) to handle new period expiry */ | ||
7556 | if (runtime_enabled && cfs_b->timer_active) { | ||
7557 | /* force a reprogram */ | ||
7558 | cfs_b->timer_active = 0; | ||
7559 | __start_cfs_bandwidth(cfs_b); | ||
7560 | } | ||
7561 | raw_spin_unlock_irq(&cfs_b->lock); | ||
7562 | |||
7563 | for_each_possible_cpu(i) { | ||
7564 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; | ||
7565 | struct rq *rq = cfs_rq->rq; | ||
7566 | |||
7567 | raw_spin_lock_irq(&rq->lock); | ||
7568 | cfs_rq->runtime_enabled = runtime_enabled; | ||
7569 | cfs_rq->runtime_remaining = 0; | ||
7570 | |||
7571 | if (cfs_rq->throttled) | ||
7572 | unthrottle_cfs_rq(cfs_rq); | ||
7573 | raw_spin_unlock_irq(&rq->lock); | ||
7574 | } | ||
7575 | out_unlock: | ||
7576 | mutex_unlock(&cfs_constraints_mutex); | ||
7577 | |||
7578 | return ret; | ||
7579 | } | ||
7580 | |||
7581 | int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) | ||
7582 | { | ||
7583 | u64 quota, period; | ||
7584 | |||
7585 | period = ktime_to_ns(tg->cfs_bandwidth.period); | ||
7586 | if (cfs_quota_us < 0) | ||
7587 | quota = RUNTIME_INF; | ||
7588 | else | ||
7589 | quota = (u64)cfs_quota_us * NSEC_PER_USEC; | ||
7590 | |||
7591 | return tg_set_cfs_bandwidth(tg, period, quota); | ||
7592 | } | ||
7593 | |||
7594 | long tg_get_cfs_quota(struct task_group *tg) | ||
7595 | { | ||
7596 | u64 quota_us; | ||
7597 | |||
7598 | if (tg->cfs_bandwidth.quota == RUNTIME_INF) | ||
7599 | return -1; | ||
7600 | |||
7601 | quota_us = tg->cfs_bandwidth.quota; | ||
7602 | do_div(quota_us, NSEC_PER_USEC); | ||
7603 | |||
7604 | return quota_us; | ||
7605 | } | ||
7606 | |||
7607 | int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) | ||
7608 | { | ||
7609 | u64 quota, period; | ||
7610 | |||
7611 | period = (u64)cfs_period_us * NSEC_PER_USEC; | ||
7612 | quota = tg->cfs_bandwidth.quota; | ||
7613 | |||
7614 | if (period <= 0) | ||
7615 | return -EINVAL; | ||
7616 | |||
7617 | return tg_set_cfs_bandwidth(tg, period, quota); | ||
7618 | } | ||
7619 | |||
7620 | long tg_get_cfs_period(struct task_group *tg) | ||
7621 | { | ||
7622 | u64 cfs_period_us; | ||
7623 | |||
7624 | cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); | ||
7625 | do_div(cfs_period_us, NSEC_PER_USEC); | ||
7626 | |||
7627 | return cfs_period_us; | ||
7628 | } | ||
7629 | |||
7630 | static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) | ||
7631 | { | ||
7632 | return tg_get_cfs_quota(cgroup_tg(cgrp)); | ||
7633 | } | ||
7634 | |||
7635 | static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, | ||
7636 | s64 cfs_quota_us) | ||
7637 | { | ||
7638 | return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); | ||
7639 | } | ||
7640 | |||
7641 | static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) | ||
7642 | { | ||
7643 | return tg_get_cfs_period(cgroup_tg(cgrp)); | ||
7644 | } | ||
7645 | |||
7646 | static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, | ||
7647 | u64 cfs_period_us) | ||
7648 | { | ||
7649 | return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); | ||
7650 | } | ||
7651 | |||
7652 | struct cfs_schedulable_data { | ||
7653 | struct task_group *tg; | ||
7654 | u64 period, quota; | ||
7655 | }; | ||
7656 | |||
7657 | /* | ||
7658 | * normalize group quota/period to be quota/max_period | ||
7659 | * note: units are usecs | ||
7660 | */ | ||
7661 | static u64 normalize_cfs_quota(struct task_group *tg, | ||
7662 | struct cfs_schedulable_data *d) | ||
7663 | { | ||
7664 | u64 quota, period; | ||
7665 | |||
7666 | if (tg == d->tg) { | ||
7667 | period = d->period; | ||
7668 | quota = d->quota; | ||
7669 | } else { | ||
7670 | period = tg_get_cfs_period(tg); | ||
7671 | quota = tg_get_cfs_quota(tg); | ||
7672 | } | ||
7673 | |||
7674 | /* note: these should typically be equivalent */ | ||
7675 | if (quota == RUNTIME_INF || quota == -1) | ||
7676 | return RUNTIME_INF; | ||
7677 | |||
7678 | return to_ratio(period, quota); | ||
7679 | } | ||
7680 | |||
7681 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) | ||
7682 | { | ||
7683 | struct cfs_schedulable_data *d = data; | ||
7684 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | ||
7685 | s64 quota = 0, parent_quota = -1; | ||
7686 | |||
7687 | if (!tg->parent) { | ||
7688 | quota = RUNTIME_INF; | ||
7689 | } else { | ||
7690 | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; | ||
7691 | |||
7692 | quota = normalize_cfs_quota(tg, d); | ||
7693 | parent_quota = parent_b->hierarchal_quota; | ||
7694 | |||
7695 | /* | ||
7696 | * ensure max(child_quota) <= parent_quota, inherit when no | ||
7697 | * limit is set | ||
7698 | */ | ||
7699 | if (quota == RUNTIME_INF) | ||
7700 | quota = parent_quota; | ||
7701 | else if (parent_quota != RUNTIME_INF && quota > parent_quota) | ||
7702 | return -EINVAL; | ||
7703 | } | ||
7704 | cfs_b->hierarchal_quota = quota; | ||
7705 | |||
7706 | return 0; | ||
7707 | } | ||
7708 | |||
7709 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) | ||
7710 | { | ||
7711 | int ret; | ||
7712 | struct cfs_schedulable_data data = { | ||
7713 | .tg = tg, | ||
7714 | .period = period, | ||
7715 | .quota = quota, | ||
7716 | }; | ||
7717 | |||
7718 | if (quota != RUNTIME_INF) { | ||
7719 | do_div(data.period, NSEC_PER_USEC); | ||
7720 | do_div(data.quota, NSEC_PER_USEC); | ||
7721 | } | ||
7722 | |||
7723 | rcu_read_lock(); | ||
7724 | ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); | ||
7725 | rcu_read_unlock(); | ||
7726 | |||
7727 | return ret; | ||
7728 | } | ||
7729 | |||
7730 | static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, | ||
7731 | struct cgroup_map_cb *cb) | ||
7732 | { | ||
7733 | struct task_group *tg = cgroup_tg(cgrp); | ||
7734 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | ||
7735 | |||
7736 | cb->fill(cb, "nr_periods", cfs_b->nr_periods); | ||
7737 | cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); | ||
7738 | cb->fill(cb, "throttled_time", cfs_b->throttled_time); | ||
7739 | |||
7740 | return 0; | ||
7741 | } | ||
7742 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
7743 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
7744 | |||
7745 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7746 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, | ||
7747 | s64 val) | ||
7748 | { | ||
7749 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); | ||
7750 | } | ||
7751 | |||
7752 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) | ||
7753 | { | ||
7754 | return sched_group_rt_runtime(cgroup_tg(cgrp)); | ||
7755 | } | ||
7756 | |||
7757 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | ||
7758 | u64 rt_period_us) | ||
7759 | { | ||
7760 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | ||
7761 | } | ||
7762 | |||
7763 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | ||
7764 | { | ||
7765 | return sched_group_rt_period(cgroup_tg(cgrp)); | ||
7766 | } | ||
7767 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
7768 | |||
7769 | static struct cftype cpu_files[] = { | ||
7770 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7771 | { | ||
7772 | .name = "shares", | ||
7773 | .read_u64 = cpu_shares_read_u64, | ||
7774 | .write_u64 = cpu_shares_write_u64, | ||
7775 | }, | ||
7776 | #endif | ||
7777 | #ifdef CONFIG_CFS_BANDWIDTH | ||
7778 | { | ||
7779 | .name = "cfs_quota_us", | ||
7780 | .read_s64 = cpu_cfs_quota_read_s64, | ||
7781 | .write_s64 = cpu_cfs_quota_write_s64, | ||
7782 | }, | ||
7783 | { | ||
7784 | .name = "cfs_period_us", | ||
7785 | .read_u64 = cpu_cfs_period_read_u64, | ||
7786 | .write_u64 = cpu_cfs_period_write_u64, | ||
7787 | }, | ||
7788 | { | ||
7789 | .name = "stat", | ||
7790 | .read_map = cpu_stats_show, | ||
7791 | }, | ||
7792 | #endif | ||
7793 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7794 | { | ||
7795 | .name = "rt_runtime_us", | ||
7796 | .read_s64 = cpu_rt_runtime_read, | ||
7797 | .write_s64 = cpu_rt_runtime_write, | ||
7798 | }, | ||
7799 | { | ||
7800 | .name = "rt_period_us", | ||
7801 | .read_u64 = cpu_rt_period_read_uint, | ||
7802 | .write_u64 = cpu_rt_period_write_uint, | ||
7803 | }, | ||
7804 | #endif | ||
7805 | }; | ||
7806 | |||
7807 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
7808 | { | ||
7809 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); | ||
7810 | } | ||
7811 | |||
7812 | struct cgroup_subsys cpu_cgroup_subsys = { | ||
7813 | .name = "cpu", | ||
7814 | .create = cpu_cgroup_create, | ||
7815 | .destroy = cpu_cgroup_destroy, | ||
7816 | .can_attach_task = cpu_cgroup_can_attach_task, | ||
7817 | .attach_task = cpu_cgroup_attach_task, | ||
7818 | .exit = cpu_cgroup_exit, | ||
7819 | .populate = cpu_cgroup_populate, | ||
7820 | .subsys_id = cpu_cgroup_subsys_id, | ||
7821 | .early_init = 1, | ||
7822 | }; | ||
7823 | |||
7824 | #endif /* CONFIG_CGROUP_SCHED */ | ||
7825 | |||
7826 | #ifdef CONFIG_CGROUP_CPUACCT | ||
7827 | |||
7828 | /* | ||
7829 | * CPU accounting code for task groups. | ||
7830 | * | ||
7831 | * Based on the work by Paul Menage (menage@google.com) and Balbir Singh | ||
7832 | * (balbir@in.ibm.com). | ||
7833 | */ | ||
7834 | |||
7835 | /* track cpu usage of a group of tasks and its child groups */ | ||
7836 | struct cpuacct { | ||
7837 | struct cgroup_subsys_state css; | ||
7838 | /* cpuusage holds pointer to a u64-type object on every cpu */ | ||
7839 | u64 __percpu *cpuusage; | ||
7840 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | ||
7841 | struct cpuacct *parent; | ||
7842 | }; | ||
7843 | |||
7844 | struct cgroup_subsys cpuacct_subsys; | ||
7845 | |||
7846 | /* return cpu accounting group corresponding to this container */ | ||
7847 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | ||
7848 | { | ||
7849 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | ||
7850 | struct cpuacct, css); | ||
7851 | } | ||
7852 | |||
7853 | /* return cpu accounting group to which this task belongs */ | ||
7854 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | ||
7855 | { | ||
7856 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | ||
7857 | struct cpuacct, css); | ||
7858 | } | ||
7859 | |||
7860 | /* create a new cpu accounting group */ | ||
7861 | static struct cgroup_subsys_state *cpuacct_create( | ||
7862 | struct cgroup_subsys *ss, struct cgroup *cgrp) | ||
7863 | { | ||
7864 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | ||
7865 | int i; | ||
7866 | |||
7867 | if (!ca) | ||
7868 | goto out; | ||
7869 | |||
7870 | ca->cpuusage = alloc_percpu(u64); | ||
7871 | if (!ca->cpuusage) | ||
7872 | goto out_free_ca; | ||
7873 | |||
7874 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | ||
7875 | if (percpu_counter_init(&ca->cpustat[i], 0)) | ||
7876 | goto out_free_counters; | ||
7877 | |||
7878 | if (cgrp->parent) | ||
7879 | ca->parent = cgroup_ca(cgrp->parent); | ||
7880 | |||
7881 | return &ca->css; | ||
7882 | |||
7883 | out_free_counters: | ||
7884 | while (--i >= 0) | ||
7885 | percpu_counter_destroy(&ca->cpustat[i]); | ||
7886 | free_percpu(ca->cpuusage); | ||
7887 | out_free_ca: | ||
7888 | kfree(ca); | ||
7889 | out: | ||
7890 | return ERR_PTR(-ENOMEM); | ||
7891 | } | ||
7892 | |||
7893 | /* destroy an existing cpu accounting group */ | ||
7894 | static void | ||
7895 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | ||
7896 | { | ||
7897 | struct cpuacct *ca = cgroup_ca(cgrp); | ||
7898 | int i; | ||
7899 | |||
7900 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | ||
7901 | percpu_counter_destroy(&ca->cpustat[i]); | ||
7902 | free_percpu(ca->cpuusage); | ||
7903 | kfree(ca); | ||
7904 | } | ||
7905 | |||
7906 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | ||
7907 | { | ||
7908 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | ||
7909 | u64 data; | ||
7910 | |||
7911 | #ifndef CONFIG_64BIT | ||
7912 | /* | ||
7913 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | ||
7914 | */ | ||
7915 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); | ||
7916 | data = *cpuusage; | ||
7917 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | ||
7918 | #else | ||
7919 | data = *cpuusage; | ||
7920 | #endif | ||
7921 | |||
7922 | return data; | ||
7923 | } | ||
7924 | |||
7925 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | ||
7926 | { | ||
7927 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | ||
7928 | |||
7929 | #ifndef CONFIG_64BIT | ||
7930 | /* | ||
7931 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | ||
7932 | */ | ||
7933 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); | ||
7934 | *cpuusage = val; | ||
7935 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | ||
7936 | #else | ||
7937 | *cpuusage = val; | ||
7938 | #endif | ||
7939 | } | ||
7940 | |||
7941 | /* return total cpu usage (in nanoseconds) of a group */ | ||
7942 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) | ||
7943 | { | ||
7944 | struct cpuacct *ca = cgroup_ca(cgrp); | ||
7945 | u64 totalcpuusage = 0; | ||
7946 | int i; | ||
7947 | |||
7948 | for_each_present_cpu(i) | ||
7949 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | ||
7950 | |||
7951 | return totalcpuusage; | ||
7952 | } | ||
7953 | |||
7954 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, | ||
7955 | u64 reset) | ||
7956 | { | ||
7957 | struct cpuacct *ca = cgroup_ca(cgrp); | ||
7958 | int err = 0; | ||
7959 | int i; | ||
7960 | |||
7961 | if (reset) { | ||
7962 | err = -EINVAL; | ||
7963 | goto out; | ||
7964 | } | ||
7965 | |||
7966 | for_each_present_cpu(i) | ||
7967 | cpuacct_cpuusage_write(ca, i, 0); | ||
7968 | |||
7969 | out: | ||
7970 | return err; | ||
7971 | } | ||
7972 | |||
7973 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, | ||
7974 | struct seq_file *m) | ||
7975 | { | ||
7976 | struct cpuacct *ca = cgroup_ca(cgroup); | ||
7977 | u64 percpu; | ||
7978 | int i; | ||
7979 | |||
7980 | for_each_present_cpu(i) { | ||
7981 | percpu = cpuacct_cpuusage_read(ca, i); | ||
7982 | seq_printf(m, "%llu ", (unsigned long long) percpu); | ||
7983 | } | ||
7984 | seq_printf(m, "\n"); | ||
7985 | return 0; | ||
7986 | } | ||
7987 | |||
7988 | static const char *cpuacct_stat_desc[] = { | ||
7989 | [CPUACCT_STAT_USER] = "user", | ||
7990 | [CPUACCT_STAT_SYSTEM] = "system", | ||
7991 | }; | ||
7992 | |||
7993 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | ||
7994 | struct cgroup_map_cb *cb) | ||
7995 | { | ||
7996 | struct cpuacct *ca = cgroup_ca(cgrp); | ||
7997 | int i; | ||
7998 | |||
7999 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | ||
8000 | s64 val = percpu_counter_read(&ca->cpustat[i]); | ||
8001 | val = cputime64_to_clock_t(val); | ||
8002 | cb->fill(cb, cpuacct_stat_desc[i], val); | ||
8003 | } | ||
8004 | return 0; | ||
8005 | } | ||
8006 | |||
8007 | static struct cftype files[] = { | ||
8008 | { | ||
8009 | .name = "usage", | ||
8010 | .read_u64 = cpuusage_read, | ||
8011 | .write_u64 = cpuusage_write, | ||
8012 | }, | ||
8013 | { | ||
8014 | .name = "usage_percpu", | ||
8015 | .read_seq_string = cpuacct_percpu_seq_read, | ||
8016 | }, | ||
8017 | { | ||
8018 | .name = "stat", | ||
8019 | .read_map = cpuacct_stats_show, | ||
8020 | }, | ||
8021 | }; | ||
8022 | |||
8023 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | ||
8024 | { | ||
8025 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); | ||
8026 | } | ||
8027 | |||
8028 | /* | ||
8029 | * charge this task's execution time to its accounting group. | ||
8030 | * | ||
8031 | * called with rq->lock held. | ||
8032 | */ | ||
8033 | void cpuacct_charge(struct task_struct *tsk, u64 cputime) | ||
8034 | { | ||
8035 | struct cpuacct *ca; | ||
8036 | int cpu; | ||
8037 | |||
8038 | if (unlikely(!cpuacct_subsys.active)) | ||
8039 | return; | ||
8040 | |||
8041 | cpu = task_cpu(tsk); | ||
8042 | |||
8043 | rcu_read_lock(); | ||
8044 | |||
8045 | ca = task_ca(tsk); | ||
8046 | |||
8047 | for (; ca; ca = ca->parent) { | ||
8048 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | ||
8049 | *cpuusage += cputime; | ||
8050 | } | ||
8051 | |||
8052 | rcu_read_unlock(); | ||
8053 | } | ||
8054 | |||
8055 | /* | ||
8056 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
8057 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
8058 | * percpu_counter_add with values large enough to always overflow the | ||
8059 | * per cpu batch limit causing bad SMP scalability. | ||
8060 | * | ||
8061 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
8062 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
8063 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
8064 | */ | ||
8065 | #ifdef CONFIG_SMP | ||
8066 | #define CPUACCT_BATCH \ | ||
8067 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
8068 | #else | ||
8069 | #define CPUACCT_BATCH 0 | ||
8070 | #endif | ||
8071 | |||
8072 | /* | ||
8073 | * Charge the system/user time to the task's accounting group. | ||
8074 | */ | ||
8075 | void cpuacct_update_stats(struct task_struct *tsk, | ||
8076 | enum cpuacct_stat_index idx, cputime_t val) | ||
8077 | { | ||
8078 | struct cpuacct *ca; | ||
8079 | int batch = CPUACCT_BATCH; | ||
8080 | |||
8081 | if (unlikely(!cpuacct_subsys.active)) | ||
8082 | return; | ||
8083 | |||
8084 | rcu_read_lock(); | ||
8085 | ca = task_ca(tsk); | ||
8086 | |||
8087 | do { | ||
8088 | __percpu_counter_add(&ca->cpustat[idx], val, batch); | ||
8089 | ca = ca->parent; | ||
8090 | } while (ca); | ||
8091 | rcu_read_unlock(); | ||
8092 | } | ||
8093 | |||
8094 | struct cgroup_subsys cpuacct_subsys = { | ||
8095 | .name = "cpuacct", | ||
8096 | .create = cpuacct_create, | ||
8097 | .destroy = cpuacct_destroy, | ||
8098 | .populate = cpuacct_populate, | ||
8099 | .subsys_id = cpuacct_subsys_id, | ||
8100 | }; | ||
8101 | #endif /* CONFIG_CGROUP_CPUACCT */ | ||
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c new file mode 100644 index 000000000000..b0d798eaf130 --- /dev/null +++ b/kernel/sched/cpupri.c | |||
@@ -0,0 +1,241 @@ | |||
1 | /* | ||
2 | * kernel/sched/cpupri.c | ||
3 | * | ||
4 | * CPU priority management | ||
5 | * | ||
6 | * Copyright (C) 2007-2008 Novell | ||
7 | * | ||
8 | * Author: Gregory Haskins <ghaskins@novell.com> | ||
9 | * | ||
10 | * This code tracks the priority of each CPU so that global migration | ||
11 | * decisions are easy to calculate. Each CPU can be in a state as follows: | ||
12 | * | ||
13 | * (INVALID), IDLE, NORMAL, RT1, ... RT99 | ||
14 | * | ||
15 | * going from the lowest priority to the highest. CPUs in the INVALID state | ||
16 | * are not eligible for routing. The system maintains this state with | ||
17 | * a 2 dimensional bitmap (the first for priority class, the second for cpus | ||
18 | * in that class). Therefore a typical application without affinity | ||
19 | * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit | ||
20 | * searches). For tasks with affinity restrictions, the algorithm has a | ||
21 | * worst case complexity of O(min(102, nr_domcpus)), though the scenario that | ||
22 | * yields the worst case search is fairly contrived. | ||
23 | * | ||
24 | * This program is free software; you can redistribute it and/or | ||
25 | * modify it under the terms of the GNU General Public License | ||
26 | * as published by the Free Software Foundation; version 2 | ||
27 | * of the License. | ||
28 | */ | ||
29 | |||
30 | #include <linux/gfp.h> | ||
31 | #include "cpupri.h" | ||
32 | |||
33 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ | ||
34 | static int convert_prio(int prio) | ||
35 | { | ||
36 | int cpupri; | ||
37 | |||
38 | if (prio == CPUPRI_INVALID) | ||
39 | cpupri = CPUPRI_INVALID; | ||
40 | else if (prio == MAX_PRIO) | ||
41 | cpupri = CPUPRI_IDLE; | ||
42 | else if (prio >= MAX_RT_PRIO) | ||
43 | cpupri = CPUPRI_NORMAL; | ||
44 | else | ||
45 | cpupri = MAX_RT_PRIO - prio + 1; | ||
46 | |||
47 | return cpupri; | ||
48 | } | ||
49 | |||
50 | /** | ||
51 | * cpupri_find - find the best (lowest-pri) CPU in the system | ||
52 | * @cp: The cpupri context | ||
53 | * @p: The task | ||
54 | * @lowest_mask: A mask to fill in with selected CPUs (or NULL) | ||
55 | * | ||
56 | * Note: This function returns the recommended CPUs as calculated during the | ||
57 | * current invocation. By the time the call returns, the CPUs may have in | ||
58 | * fact changed priorities any number of times. While not ideal, it is not | ||
59 | * an issue of correctness since the normal rebalancer logic will correct | ||
60 | * any discrepancies created by racing against the uncertainty of the current | ||
61 | * priority configuration. | ||
62 | * | ||
63 | * Returns: (int)bool - CPUs were found | ||
64 | */ | ||
65 | int cpupri_find(struct cpupri *cp, struct task_struct *p, | ||
66 | struct cpumask *lowest_mask) | ||
67 | { | ||
68 | int idx = 0; | ||
69 | int task_pri = convert_prio(p->prio); | ||
70 | |||
71 | if (task_pri >= MAX_RT_PRIO) | ||
72 | return 0; | ||
73 | |||
74 | for (idx = 0; idx < task_pri; idx++) { | ||
75 | struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; | ||
76 | int skip = 0; | ||
77 | |||
78 | if (!atomic_read(&(vec)->count)) | ||
79 | skip = 1; | ||
80 | /* | ||
81 | * When looking at the vector, we need to read the counter, | ||
82 | * do a memory barrier, then read the mask. | ||
83 | * | ||
84 | * Note: This is still all racey, but we can deal with it. | ||
85 | * Ideally, we only want to look at masks that are set. | ||
86 | * | ||
87 | * If a mask is not set, then the only thing wrong is that we | ||
88 | * did a little more work than necessary. | ||
89 | * | ||
90 | * If we read a zero count but the mask is set, because of the | ||
91 | * memory barriers, that can only happen when the highest prio | ||
92 | * task for a run queue has left the run queue, in which case, | ||
93 | * it will be followed by a pull. If the task we are processing | ||
94 | * fails to find a proper place to go, that pull request will | ||
95 | * pull this task if the run queue is running at a lower | ||
96 | * priority. | ||
97 | */ | ||
98 | smp_rmb(); | ||
99 | |||
100 | /* Need to do the rmb for every iteration */ | ||
101 | if (skip) | ||
102 | continue; | ||
103 | |||
104 | if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) | ||
105 | continue; | ||
106 | |||
107 | if (lowest_mask) { | ||
108 | cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); | ||
109 | |||
110 | /* | ||
111 | * We have to ensure that we have at least one bit | ||
112 | * still set in the array, since the map could have | ||
113 | * been concurrently emptied between the first and | ||
114 | * second reads of vec->mask. If we hit this | ||
115 | * condition, simply act as though we never hit this | ||
116 | * priority level and continue on. | ||
117 | */ | ||
118 | if (cpumask_any(lowest_mask) >= nr_cpu_ids) | ||
119 | continue; | ||
120 | } | ||
121 | |||
122 | return 1; | ||
123 | } | ||
124 | |||
125 | return 0; | ||
126 | } | ||
127 | |||
128 | /** | ||
129 | * cpupri_set - update the cpu priority setting | ||
130 | * @cp: The cpupri context | ||
131 | * @cpu: The target cpu | ||
132 | * @pri: The priority (INVALID-RT99) to assign to this CPU | ||
133 | * | ||
134 | * Note: Assumes cpu_rq(cpu)->lock is locked | ||
135 | * | ||
136 | * Returns: (void) | ||
137 | */ | ||
138 | void cpupri_set(struct cpupri *cp, int cpu, int newpri) | ||
139 | { | ||
140 | int *currpri = &cp->cpu_to_pri[cpu]; | ||
141 | int oldpri = *currpri; | ||
142 | int do_mb = 0; | ||
143 | |||
144 | newpri = convert_prio(newpri); | ||
145 | |||
146 | BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); | ||
147 | |||
148 | if (newpri == oldpri) | ||
149 | return; | ||
150 | |||
151 | /* | ||
152 | * If the cpu was currently mapped to a different value, we | ||
153 | * need to map it to the new value then remove the old value. | ||
154 | * Note, we must add the new value first, otherwise we risk the | ||
155 | * cpu being missed by the priority loop in cpupri_find. | ||
156 | */ | ||
157 | if (likely(newpri != CPUPRI_INVALID)) { | ||
158 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | ||
159 | |||
160 | cpumask_set_cpu(cpu, vec->mask); | ||
161 | /* | ||
162 | * When adding a new vector, we update the mask first, | ||
163 | * do a write memory barrier, and then update the count, to | ||
164 | * make sure the vector is visible when count is set. | ||
165 | */ | ||
166 | smp_mb__before_atomic_inc(); | ||
167 | atomic_inc(&(vec)->count); | ||
168 | do_mb = 1; | ||
169 | } | ||
170 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
171 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
172 | |||
173 | /* | ||
174 | * Because the order of modification of the vec->count | ||
175 | * is important, we must make sure that the update | ||
176 | * of the new prio is seen before we decrement the | ||
177 | * old prio. This makes sure that the loop sees | ||
178 | * one or the other when we raise the priority of | ||
179 | * the run queue. We don't care about when we lower the | ||
180 | * priority, as that will trigger an rt pull anyway. | ||
181 | * | ||
182 | * We only need to do a memory barrier if we updated | ||
183 | * the new priority vec. | ||
184 | */ | ||
185 | if (do_mb) | ||
186 | smp_mb__after_atomic_inc(); | ||
187 | |||
188 | /* | ||
189 | * When removing from the vector, we decrement the counter first | ||
190 | * do a memory barrier and then clear the mask. | ||
191 | */ | ||
192 | atomic_dec(&(vec)->count); | ||
193 | smp_mb__after_atomic_inc(); | ||
194 | cpumask_clear_cpu(cpu, vec->mask); | ||
195 | } | ||
196 | |||
197 | *currpri = newpri; | ||
198 | } | ||
199 | |||
200 | /** | ||
201 | * cpupri_init - initialize the cpupri structure | ||
202 | * @cp: The cpupri context | ||
203 | * @bootmem: true if allocations need to use bootmem | ||
204 | * | ||
205 | * Returns: -ENOMEM if memory fails. | ||
206 | */ | ||
207 | int cpupri_init(struct cpupri *cp) | ||
208 | { | ||
209 | int i; | ||
210 | |||
211 | memset(cp, 0, sizeof(*cp)); | ||
212 | |||
213 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { | ||
214 | struct cpupri_vec *vec = &cp->pri_to_cpu[i]; | ||
215 | |||
216 | atomic_set(&vec->count, 0); | ||
217 | if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL)) | ||
218 | goto cleanup; | ||
219 | } | ||
220 | |||
221 | for_each_possible_cpu(i) | ||
222 | cp->cpu_to_pri[i] = CPUPRI_INVALID; | ||
223 | return 0; | ||
224 | |||
225 | cleanup: | ||
226 | for (i--; i >= 0; i--) | ||
227 | free_cpumask_var(cp->pri_to_cpu[i].mask); | ||
228 | return -ENOMEM; | ||
229 | } | ||
230 | |||
231 | /** | ||
232 | * cpupri_cleanup - clean up the cpupri structure | ||
233 | * @cp: The cpupri context | ||
234 | */ | ||
235 | void cpupri_cleanup(struct cpupri *cp) | ||
236 | { | ||
237 | int i; | ||
238 | |||
239 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) | ||
240 | free_cpumask_var(cp->pri_to_cpu[i].mask); | ||
241 | } | ||
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h new file mode 100644 index 000000000000..f6d756173491 --- /dev/null +++ b/kernel/sched/cpupri.h | |||
@@ -0,0 +1,34 @@ | |||
1 | #ifndef _LINUX_CPUPRI_H | ||
2 | #define _LINUX_CPUPRI_H | ||
3 | |||
4 | #include <linux/sched.h> | ||
5 | |||
6 | #define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO + 2) | ||
7 | |||
8 | #define CPUPRI_INVALID -1 | ||
9 | #define CPUPRI_IDLE 0 | ||
10 | #define CPUPRI_NORMAL 1 | ||
11 | /* values 2-101 are RT priorities 0-99 */ | ||
12 | |||
13 | struct cpupri_vec { | ||
14 | atomic_t count; | ||
15 | cpumask_var_t mask; | ||
16 | }; | ||
17 | |||
18 | struct cpupri { | ||
19 | struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES]; | ||
20 | int cpu_to_pri[NR_CPUS]; | ||
21 | }; | ||
22 | |||
23 | #ifdef CONFIG_SMP | ||
24 | int cpupri_find(struct cpupri *cp, | ||
25 | struct task_struct *p, struct cpumask *lowest_mask); | ||
26 | void cpupri_set(struct cpupri *cp, int cpu, int pri); | ||
27 | int cpupri_init(struct cpupri *cp); | ||
28 | void cpupri_cleanup(struct cpupri *cp); | ||
29 | #else | ||
30 | #define cpupri_set(cp, cpu, pri) do { } while (0) | ||
31 | #define cpupri_init() do { } while (0) | ||
32 | #endif | ||
33 | |||
34 | #endif /* _LINUX_CPUPRI_H */ | ||
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c new file mode 100644 index 000000000000..2a075e10004b --- /dev/null +++ b/kernel/sched/debug.c | |||
@@ -0,0 +1,510 @@ | |||
1 | /* | ||
2 | * kernel/sched/debug.c | ||
3 | * | ||
4 | * Print the CFS rbtree | ||
5 | * | ||
6 | * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License version 2 as | ||
10 | * published by the Free Software Foundation. | ||
11 | */ | ||
12 | |||
13 | #include <linux/proc_fs.h> | ||
14 | #include <linux/sched.h> | ||
15 | #include <linux/seq_file.h> | ||
16 | #include <linux/kallsyms.h> | ||
17 | #include <linux/utsname.h> | ||
18 | |||
19 | #include "sched.h" | ||
20 | |||
21 | static DEFINE_SPINLOCK(sched_debug_lock); | ||
22 | |||
23 | /* | ||
24 | * This allows printing both to /proc/sched_debug and | ||
25 | * to the console | ||
26 | */ | ||
27 | #define SEQ_printf(m, x...) \ | ||
28 | do { \ | ||
29 | if (m) \ | ||
30 | seq_printf(m, x); \ | ||
31 | else \ | ||
32 | printk(x); \ | ||
33 | } while (0) | ||
34 | |||
35 | /* | ||
36 | * Ease the printing of nsec fields: | ||
37 | */ | ||
38 | static long long nsec_high(unsigned long long nsec) | ||
39 | { | ||
40 | if ((long long)nsec < 0) { | ||
41 | nsec = -nsec; | ||
42 | do_div(nsec, 1000000); | ||
43 | return -nsec; | ||
44 | } | ||
45 | do_div(nsec, 1000000); | ||
46 | |||
47 | return nsec; | ||
48 | } | ||
49 | |||
50 | static unsigned long nsec_low(unsigned long long nsec) | ||
51 | { | ||
52 | if ((long long)nsec < 0) | ||
53 | nsec = -nsec; | ||
54 | |||
55 | return do_div(nsec, 1000000); | ||
56 | } | ||
57 | |||
58 | #define SPLIT_NS(x) nsec_high(x), nsec_low(x) | ||
59 | |||
60 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
61 | static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) | ||
62 | { | ||
63 | struct sched_entity *se = tg->se[cpu]; | ||
64 | if (!se) | ||
65 | return; | ||
66 | |||
67 | #define P(F) \ | ||
68 | SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) | ||
69 | #define PN(F) \ | ||
70 | SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) | ||
71 | |||
72 | PN(se->exec_start); | ||
73 | PN(se->vruntime); | ||
74 | PN(se->sum_exec_runtime); | ||
75 | #ifdef CONFIG_SCHEDSTATS | ||
76 | PN(se->statistics.wait_start); | ||
77 | PN(se->statistics.sleep_start); | ||
78 | PN(se->statistics.block_start); | ||
79 | PN(se->statistics.sleep_max); | ||
80 | PN(se->statistics.block_max); | ||
81 | PN(se->statistics.exec_max); | ||
82 | PN(se->statistics.slice_max); | ||
83 | PN(se->statistics.wait_max); | ||
84 | PN(se->statistics.wait_sum); | ||
85 | P(se->statistics.wait_count); | ||
86 | #endif | ||
87 | P(se->load.weight); | ||
88 | #undef PN | ||
89 | #undef P | ||
90 | } | ||
91 | #endif | ||
92 | |||
93 | #ifdef CONFIG_CGROUP_SCHED | ||
94 | static char group_path[PATH_MAX]; | ||
95 | |||
96 | static char *task_group_path(struct task_group *tg) | ||
97 | { | ||
98 | if (autogroup_path(tg, group_path, PATH_MAX)) | ||
99 | return group_path; | ||
100 | |||
101 | /* | ||
102 | * May be NULL if the underlying cgroup isn't fully-created yet | ||
103 | */ | ||
104 | if (!tg->css.cgroup) { | ||
105 | group_path[0] = '\0'; | ||
106 | return group_path; | ||
107 | } | ||
108 | cgroup_path(tg->css.cgroup, group_path, PATH_MAX); | ||
109 | return group_path; | ||
110 | } | ||
111 | #endif | ||
112 | |||
113 | static void | ||
114 | print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) | ||
115 | { | ||
116 | if (rq->curr == p) | ||
117 | SEQ_printf(m, "R"); | ||
118 | else | ||
119 | SEQ_printf(m, " "); | ||
120 | |||
121 | SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", | ||
122 | p->comm, p->pid, | ||
123 | SPLIT_NS(p->se.vruntime), | ||
124 | (long long)(p->nvcsw + p->nivcsw), | ||
125 | p->prio); | ||
126 | #ifdef CONFIG_SCHEDSTATS | ||
127 | SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", | ||
128 | SPLIT_NS(p->se.vruntime), | ||
129 | SPLIT_NS(p->se.sum_exec_runtime), | ||
130 | SPLIT_NS(p->se.statistics.sum_sleep_runtime)); | ||
131 | #else | ||
132 | SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", | ||
133 | 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); | ||
134 | #endif | ||
135 | #ifdef CONFIG_CGROUP_SCHED | ||
136 | SEQ_printf(m, " %s", task_group_path(task_group(p))); | ||
137 | #endif | ||
138 | |||
139 | SEQ_printf(m, "\n"); | ||
140 | } | ||
141 | |||
142 | static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) | ||
143 | { | ||
144 | struct task_struct *g, *p; | ||
145 | unsigned long flags; | ||
146 | |||
147 | SEQ_printf(m, | ||
148 | "\nrunnable tasks:\n" | ||
149 | " task PID tree-key switches prio" | ||
150 | " exec-runtime sum-exec sum-sleep\n" | ||
151 | "------------------------------------------------------" | ||
152 | "----------------------------------------------------\n"); | ||
153 | |||
154 | read_lock_irqsave(&tasklist_lock, flags); | ||
155 | |||
156 | do_each_thread(g, p) { | ||
157 | if (!p->on_rq || task_cpu(p) != rq_cpu) | ||
158 | continue; | ||
159 | |||
160 | print_task(m, rq, p); | ||
161 | } while_each_thread(g, p); | ||
162 | |||
163 | read_unlock_irqrestore(&tasklist_lock, flags); | ||
164 | } | ||
165 | |||
166 | void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) | ||
167 | { | ||
168 | s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, | ||
169 | spread, rq0_min_vruntime, spread0; | ||
170 | struct rq *rq = cpu_rq(cpu); | ||
171 | struct sched_entity *last; | ||
172 | unsigned long flags; | ||
173 | |||
174 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
175 | SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); | ||
176 | #else | ||
177 | SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); | ||
178 | #endif | ||
179 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", | ||
180 | SPLIT_NS(cfs_rq->exec_clock)); | ||
181 | |||
182 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
183 | if (cfs_rq->rb_leftmost) | ||
184 | MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; | ||
185 | last = __pick_last_entity(cfs_rq); | ||
186 | if (last) | ||
187 | max_vruntime = last->vruntime; | ||
188 | min_vruntime = cfs_rq->min_vruntime; | ||
189 | rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; | ||
190 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
191 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", | ||
192 | SPLIT_NS(MIN_vruntime)); | ||
193 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", | ||
194 | SPLIT_NS(min_vruntime)); | ||
195 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", | ||
196 | SPLIT_NS(max_vruntime)); | ||
197 | spread = max_vruntime - MIN_vruntime; | ||
198 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", | ||
199 | SPLIT_NS(spread)); | ||
200 | spread0 = min_vruntime - rq0_min_vruntime; | ||
201 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", | ||
202 | SPLIT_NS(spread0)); | ||
203 | SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", | ||
204 | cfs_rq->nr_spread_over); | ||
205 | SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running); | ||
206 | SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); | ||
207 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
208 | #ifdef CONFIG_SMP | ||
209 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_avg", | ||
210 | SPLIT_NS(cfs_rq->load_avg)); | ||
211 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_period", | ||
212 | SPLIT_NS(cfs_rq->load_period)); | ||
213 | SEQ_printf(m, " .%-30s: %ld\n", "load_contrib", | ||
214 | cfs_rq->load_contribution); | ||
215 | SEQ_printf(m, " .%-30s: %d\n", "load_tg", | ||
216 | atomic_read(&cfs_rq->tg->load_weight)); | ||
217 | #endif | ||
218 | |||
219 | print_cfs_group_stats(m, cpu, cfs_rq->tg); | ||
220 | #endif | ||
221 | } | ||
222 | |||
223 | void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) | ||
224 | { | ||
225 | #ifdef CONFIG_RT_GROUP_SCHED | ||
226 | SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); | ||
227 | #else | ||
228 | SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); | ||
229 | #endif | ||
230 | |||
231 | #define P(x) \ | ||
232 | SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) | ||
233 | #define PN(x) \ | ||
234 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) | ||
235 | |||
236 | P(rt_nr_running); | ||
237 | P(rt_throttled); | ||
238 | PN(rt_time); | ||
239 | PN(rt_runtime); | ||
240 | |||
241 | #undef PN | ||
242 | #undef P | ||
243 | } | ||
244 | |||
245 | extern __read_mostly int sched_clock_running; | ||
246 | |||
247 | static void print_cpu(struct seq_file *m, int cpu) | ||
248 | { | ||
249 | struct rq *rq = cpu_rq(cpu); | ||
250 | unsigned long flags; | ||
251 | |||
252 | #ifdef CONFIG_X86 | ||
253 | { | ||
254 | unsigned int freq = cpu_khz ? : 1; | ||
255 | |||
256 | SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n", | ||
257 | cpu, freq / 1000, (freq % 1000)); | ||
258 | } | ||
259 | #else | ||
260 | SEQ_printf(m, "\ncpu#%d\n", cpu); | ||
261 | #endif | ||
262 | |||
263 | #define P(x) \ | ||
264 | SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x)) | ||
265 | #define PN(x) \ | ||
266 | SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) | ||
267 | |||
268 | P(nr_running); | ||
269 | SEQ_printf(m, " .%-30s: %lu\n", "load", | ||
270 | rq->load.weight); | ||
271 | P(nr_switches); | ||
272 | P(nr_load_updates); | ||
273 | P(nr_uninterruptible); | ||
274 | PN(next_balance); | ||
275 | P(curr->pid); | ||
276 | PN(clock); | ||
277 | P(cpu_load[0]); | ||
278 | P(cpu_load[1]); | ||
279 | P(cpu_load[2]); | ||
280 | P(cpu_load[3]); | ||
281 | P(cpu_load[4]); | ||
282 | #undef P | ||
283 | #undef PN | ||
284 | |||
285 | #ifdef CONFIG_SCHEDSTATS | ||
286 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); | ||
287 | #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); | ||
288 | |||
289 | P(yld_count); | ||
290 | |||
291 | P(sched_switch); | ||
292 | P(sched_count); | ||
293 | P(sched_goidle); | ||
294 | #ifdef CONFIG_SMP | ||
295 | P64(avg_idle); | ||
296 | #endif | ||
297 | |||
298 | P(ttwu_count); | ||
299 | P(ttwu_local); | ||
300 | |||
301 | #undef P | ||
302 | #undef P64 | ||
303 | #endif | ||
304 | spin_lock_irqsave(&sched_debug_lock, flags); | ||
305 | print_cfs_stats(m, cpu); | ||
306 | print_rt_stats(m, cpu); | ||
307 | |||
308 | rcu_read_lock(); | ||
309 | print_rq(m, rq, cpu); | ||
310 | rcu_read_unlock(); | ||
311 | spin_unlock_irqrestore(&sched_debug_lock, flags); | ||
312 | } | ||
313 | |||
314 | static const char *sched_tunable_scaling_names[] = { | ||
315 | "none", | ||
316 | "logaritmic", | ||
317 | "linear" | ||
318 | }; | ||
319 | |||
320 | static int sched_debug_show(struct seq_file *m, void *v) | ||
321 | { | ||
322 | u64 ktime, sched_clk, cpu_clk; | ||
323 | unsigned long flags; | ||
324 | int cpu; | ||
325 | |||
326 | local_irq_save(flags); | ||
327 | ktime = ktime_to_ns(ktime_get()); | ||
328 | sched_clk = sched_clock(); | ||
329 | cpu_clk = local_clock(); | ||
330 | local_irq_restore(flags); | ||
331 | |||
332 | SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n", | ||
333 | init_utsname()->release, | ||
334 | (int)strcspn(init_utsname()->version, " "), | ||
335 | init_utsname()->version); | ||
336 | |||
337 | #define P(x) \ | ||
338 | SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) | ||
339 | #define PN(x) \ | ||
340 | SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | ||
341 | PN(ktime); | ||
342 | PN(sched_clk); | ||
343 | PN(cpu_clk); | ||
344 | P(jiffies); | ||
345 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | ||
346 | P(sched_clock_stable); | ||
347 | #endif | ||
348 | #undef PN | ||
349 | #undef P | ||
350 | |||
351 | SEQ_printf(m, "\n"); | ||
352 | SEQ_printf(m, "sysctl_sched\n"); | ||
353 | |||
354 | #define P(x) \ | ||
355 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) | ||
356 | #define PN(x) \ | ||
357 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | ||
358 | PN(sysctl_sched_latency); | ||
359 | PN(sysctl_sched_min_granularity); | ||
360 | PN(sysctl_sched_wakeup_granularity); | ||
361 | P(sysctl_sched_child_runs_first); | ||
362 | P(sysctl_sched_features); | ||
363 | #undef PN | ||
364 | #undef P | ||
365 | |||
366 | SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", | ||
367 | sysctl_sched_tunable_scaling, | ||
368 | sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); | ||
369 | |||
370 | for_each_online_cpu(cpu) | ||
371 | print_cpu(m, cpu); | ||
372 | |||
373 | SEQ_printf(m, "\n"); | ||
374 | |||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | void sysrq_sched_debug_show(void) | ||
379 | { | ||
380 | sched_debug_show(NULL, NULL); | ||
381 | } | ||
382 | |||
383 | static int sched_debug_open(struct inode *inode, struct file *filp) | ||
384 | { | ||
385 | return single_open(filp, sched_debug_show, NULL); | ||
386 | } | ||
387 | |||
388 | static const struct file_operations sched_debug_fops = { | ||
389 | .open = sched_debug_open, | ||
390 | .read = seq_read, | ||
391 | .llseek = seq_lseek, | ||
392 | .release = single_release, | ||
393 | }; | ||
394 | |||
395 | static int __init init_sched_debug_procfs(void) | ||
396 | { | ||
397 | struct proc_dir_entry *pe; | ||
398 | |||
399 | pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); | ||
400 | if (!pe) | ||
401 | return -ENOMEM; | ||
402 | return 0; | ||
403 | } | ||
404 | |||
405 | __initcall(init_sched_debug_procfs); | ||
406 | |||
407 | void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | ||
408 | { | ||
409 | unsigned long nr_switches; | ||
410 | |||
411 | SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, | ||
412 | get_nr_threads(p)); | ||
413 | SEQ_printf(m, | ||
414 | "---------------------------------------------------------\n"); | ||
415 | #define __P(F) \ | ||
416 | SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F) | ||
417 | #define P(F) \ | ||
418 | SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F) | ||
419 | #define __PN(F) \ | ||
420 | SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) | ||
421 | #define PN(F) \ | ||
422 | SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) | ||
423 | |||
424 | PN(se.exec_start); | ||
425 | PN(se.vruntime); | ||
426 | PN(se.sum_exec_runtime); | ||
427 | |||
428 | nr_switches = p->nvcsw + p->nivcsw; | ||
429 | |||
430 | #ifdef CONFIG_SCHEDSTATS | ||
431 | PN(se.statistics.wait_start); | ||
432 | PN(se.statistics.sleep_start); | ||
433 | PN(se.statistics.block_start); | ||
434 | PN(se.statistics.sleep_max); | ||
435 | PN(se.statistics.block_max); | ||
436 | PN(se.statistics.exec_max); | ||
437 | PN(se.statistics.slice_max); | ||
438 | PN(se.statistics.wait_max); | ||
439 | PN(se.statistics.wait_sum); | ||
440 | P(se.statistics.wait_count); | ||
441 | PN(se.statistics.iowait_sum); | ||
442 | P(se.statistics.iowait_count); | ||
443 | P(se.nr_migrations); | ||
444 | P(se.statistics.nr_migrations_cold); | ||
445 | P(se.statistics.nr_failed_migrations_affine); | ||
446 | P(se.statistics.nr_failed_migrations_running); | ||
447 | P(se.statistics.nr_failed_migrations_hot); | ||
448 | P(se.statistics.nr_forced_migrations); | ||
449 | P(se.statistics.nr_wakeups); | ||
450 | P(se.statistics.nr_wakeups_sync); | ||
451 | P(se.statistics.nr_wakeups_migrate); | ||
452 | P(se.statistics.nr_wakeups_local); | ||
453 | P(se.statistics.nr_wakeups_remote); | ||
454 | P(se.statistics.nr_wakeups_affine); | ||
455 | P(se.statistics.nr_wakeups_affine_attempts); | ||
456 | P(se.statistics.nr_wakeups_passive); | ||
457 | P(se.statistics.nr_wakeups_idle); | ||
458 | |||
459 | { | ||
460 | u64 avg_atom, avg_per_cpu; | ||
461 | |||
462 | avg_atom = p->se.sum_exec_runtime; | ||
463 | if (nr_switches) | ||
464 | do_div(avg_atom, nr_switches); | ||
465 | else | ||
466 | avg_atom = -1LL; | ||
467 | |||
468 | avg_per_cpu = p->se.sum_exec_runtime; | ||
469 | if (p->se.nr_migrations) { | ||
470 | avg_per_cpu = div64_u64(avg_per_cpu, | ||
471 | p->se.nr_migrations); | ||
472 | } else { | ||
473 | avg_per_cpu = -1LL; | ||
474 | } | ||
475 | |||
476 | __PN(avg_atom); | ||
477 | __PN(avg_per_cpu); | ||
478 | } | ||
479 | #endif | ||
480 | __P(nr_switches); | ||
481 | SEQ_printf(m, "%-35s:%21Ld\n", | ||
482 | "nr_voluntary_switches", (long long)p->nvcsw); | ||
483 | SEQ_printf(m, "%-35s:%21Ld\n", | ||
484 | "nr_involuntary_switches", (long long)p->nivcsw); | ||
485 | |||
486 | P(se.load.weight); | ||
487 | P(policy); | ||
488 | P(prio); | ||
489 | #undef PN | ||
490 | #undef __PN | ||
491 | #undef P | ||
492 | #undef __P | ||
493 | |||
494 | { | ||
495 | unsigned int this_cpu = raw_smp_processor_id(); | ||
496 | u64 t0, t1; | ||
497 | |||
498 | t0 = cpu_clock(this_cpu); | ||
499 | t1 = cpu_clock(this_cpu); | ||
500 | SEQ_printf(m, "%-35s:%21Ld\n", | ||
501 | "clock-delta", (long long)(t1-t0)); | ||
502 | } | ||
503 | } | ||
504 | |||
505 | void proc_sched_set_task(struct task_struct *p) | ||
506 | { | ||
507 | #ifdef CONFIG_SCHEDSTATS | ||
508 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); | ||
509 | #endif | ||
510 | } | ||
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c new file mode 100644 index 000000000000..cd3b64219d9f --- /dev/null +++ b/kernel/sched/fair.c | |||
@@ -0,0 +1,5601 @@ | |||
1 | /* | ||
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | ||
3 | * | ||
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
5 | * | ||
6 | * Interactivity improvements by Mike Galbraith | ||
7 | * (C) 2007 Mike Galbraith <efault@gmx.de> | ||
8 | * | ||
9 | * Various enhancements by Dmitry Adamushko. | ||
10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | ||
11 | * | ||
12 | * Group scheduling enhancements by Srivatsa Vaddagiri | ||
13 | * Copyright IBM Corporation, 2007 | ||
14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | ||
15 | * | ||
16 | * Scaled math optimizations by Thomas Gleixner | ||
17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | ||
18 | * | ||
19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | ||
20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
21 | */ | ||
22 | |||
23 | #include <linux/latencytop.h> | ||
24 | #include <linux/sched.h> | ||
25 | #include <linux/cpumask.h> | ||
26 | #include <linux/slab.h> | ||
27 | #include <linux/profile.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | |||
30 | #include <trace/events/sched.h> | ||
31 | |||
32 | #include "sched.h" | ||
33 | |||
34 | /* | ||
35 | * Targeted preemption latency for CPU-bound tasks: | ||
36 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | ||
37 | * | ||
38 | * NOTE: this latency value is not the same as the concept of | ||
39 | * 'timeslice length' - timeslices in CFS are of variable length | ||
40 | * and have no persistent notion like in traditional, time-slice | ||
41 | * based scheduling concepts. | ||
42 | * | ||
43 | * (to see the precise effective timeslice length of your workload, | ||
44 | * run vmstat and monitor the context-switches (cs) field) | ||
45 | */ | ||
46 | unsigned int sysctl_sched_latency = 6000000ULL; | ||
47 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | ||
48 | |||
49 | /* | ||
50 | * The initial- and re-scaling of tunables is configurable | ||
51 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | ||
52 | * | ||
53 | * Options are: | ||
54 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | ||
55 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | ||
56 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | ||
57 | */ | ||
58 | enum sched_tunable_scaling sysctl_sched_tunable_scaling | ||
59 | = SCHED_TUNABLESCALING_LOG; | ||
60 | |||
61 | /* | ||
62 | * Minimal preemption granularity for CPU-bound tasks: | ||
63 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||
64 | */ | ||
65 | unsigned int sysctl_sched_min_granularity = 750000ULL; | ||
66 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | ||
67 | |||
68 | /* | ||
69 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | ||
70 | */ | ||
71 | static unsigned int sched_nr_latency = 8; | ||
72 | |||
73 | /* | ||
74 | * After fork, child runs first. If set to 0 (default) then | ||
75 | * parent will (try to) run first. | ||
76 | */ | ||
77 | unsigned int sysctl_sched_child_runs_first __read_mostly; | ||
78 | |||
79 | /* | ||
80 | * SCHED_OTHER wake-up granularity. | ||
81 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||
82 | * | ||
83 | * This option delays the preemption effects of decoupled workloads | ||
84 | * and reduces their over-scheduling. Synchronous workloads will still | ||
85 | * have immediate wakeup/sleep latencies. | ||
86 | */ | ||
87 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | ||
88 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | ||
89 | |||
90 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | ||
91 | |||
92 | /* | ||
93 | * The exponential sliding window over which load is averaged for shares | ||
94 | * distribution. | ||
95 | * (default: 10msec) | ||
96 | */ | ||
97 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | ||
98 | |||
99 | #ifdef CONFIG_CFS_BANDWIDTH | ||
100 | /* | ||
101 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | ||
102 | * each time a cfs_rq requests quota. | ||
103 | * | ||
104 | * Note: in the case that the slice exceeds the runtime remaining (either due | ||
105 | * to consumption or the quota being specified to be smaller than the slice) | ||
106 | * we will always only issue the remaining available time. | ||
107 | * | ||
108 | * default: 5 msec, units: microseconds | ||
109 | */ | ||
110 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | ||
111 | #endif | ||
112 | |||
113 | /* | ||
114 | * Increase the granularity value when there are more CPUs, | ||
115 | * because with more CPUs the 'effective latency' as visible | ||
116 | * to users decreases. But the relationship is not linear, | ||
117 | * so pick a second-best guess by going with the log2 of the | ||
118 | * number of CPUs. | ||
119 | * | ||
120 | * This idea comes from the SD scheduler of Con Kolivas: | ||
121 | */ | ||
122 | static int get_update_sysctl_factor(void) | ||
123 | { | ||
124 | unsigned int cpus = min_t(int, num_online_cpus(), 8); | ||
125 | unsigned int factor; | ||
126 | |||
127 | switch (sysctl_sched_tunable_scaling) { | ||
128 | case SCHED_TUNABLESCALING_NONE: | ||
129 | factor = 1; | ||
130 | break; | ||
131 | case SCHED_TUNABLESCALING_LINEAR: | ||
132 | factor = cpus; | ||
133 | break; | ||
134 | case SCHED_TUNABLESCALING_LOG: | ||
135 | default: | ||
136 | factor = 1 + ilog2(cpus); | ||
137 | break; | ||
138 | } | ||
139 | |||
140 | return factor; | ||
141 | } | ||
142 | |||
143 | static void update_sysctl(void) | ||
144 | { | ||
145 | unsigned int factor = get_update_sysctl_factor(); | ||
146 | |||
147 | #define SET_SYSCTL(name) \ | ||
148 | (sysctl_##name = (factor) * normalized_sysctl_##name) | ||
149 | SET_SYSCTL(sched_min_granularity); | ||
150 | SET_SYSCTL(sched_latency); | ||
151 | SET_SYSCTL(sched_wakeup_granularity); | ||
152 | #undef SET_SYSCTL | ||
153 | } | ||
154 | |||
155 | void sched_init_granularity(void) | ||
156 | { | ||
157 | update_sysctl(); | ||
158 | } | ||
159 | |||
160 | #if BITS_PER_LONG == 32 | ||
161 | # define WMULT_CONST (~0UL) | ||
162 | #else | ||
163 | # define WMULT_CONST (1UL << 32) | ||
164 | #endif | ||
165 | |||
166 | #define WMULT_SHIFT 32 | ||
167 | |||
168 | /* | ||
169 | * Shift right and round: | ||
170 | */ | ||
171 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | ||
172 | |||
173 | /* | ||
174 | * delta *= weight / lw | ||
175 | */ | ||
176 | static unsigned long | ||
177 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | ||
178 | struct load_weight *lw) | ||
179 | { | ||
180 | u64 tmp; | ||
181 | |||
182 | /* | ||
183 | * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched | ||
184 | * entities since MIN_SHARES = 2. Treat weight as 1 if less than | ||
185 | * 2^SCHED_LOAD_RESOLUTION. | ||
186 | */ | ||
187 | if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) | ||
188 | tmp = (u64)delta_exec * scale_load_down(weight); | ||
189 | else | ||
190 | tmp = (u64)delta_exec; | ||
191 | |||
192 | if (!lw->inv_weight) { | ||
193 | unsigned long w = scale_load_down(lw->weight); | ||
194 | |||
195 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | ||
196 | lw->inv_weight = 1; | ||
197 | else if (unlikely(!w)) | ||
198 | lw->inv_weight = WMULT_CONST; | ||
199 | else | ||
200 | lw->inv_weight = WMULT_CONST / w; | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * Check whether we'd overflow the 64-bit multiplication: | ||
205 | */ | ||
206 | if (unlikely(tmp > WMULT_CONST)) | ||
207 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | ||
208 | WMULT_SHIFT/2); | ||
209 | else | ||
210 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | ||
211 | |||
212 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | ||
213 | } | ||
214 | |||
215 | |||
216 | const struct sched_class fair_sched_class; | ||
217 | |||
218 | /************************************************************** | ||
219 | * CFS operations on generic schedulable entities: | ||
220 | */ | ||
221 | |||
222 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
223 | |||
224 | /* cpu runqueue to which this cfs_rq is attached */ | ||
225 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
226 | { | ||
227 | return cfs_rq->rq; | ||
228 | } | ||
229 | |||
230 | /* An entity is a task if it doesn't "own" a runqueue */ | ||
231 | #define entity_is_task(se) (!se->my_q) | ||
232 | |||
233 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
234 | { | ||
235 | #ifdef CONFIG_SCHED_DEBUG | ||
236 | WARN_ON_ONCE(!entity_is_task(se)); | ||
237 | #endif | ||
238 | return container_of(se, struct task_struct, se); | ||
239 | } | ||
240 | |||
241 | /* Walk up scheduling entities hierarchy */ | ||
242 | #define for_each_sched_entity(se) \ | ||
243 | for (; se; se = se->parent) | ||
244 | |||
245 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
246 | { | ||
247 | return p->se.cfs_rq; | ||
248 | } | ||
249 | |||
250 | /* runqueue on which this entity is (to be) queued */ | ||
251 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
252 | { | ||
253 | return se->cfs_rq; | ||
254 | } | ||
255 | |||
256 | /* runqueue "owned" by this group */ | ||
257 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
258 | { | ||
259 | return grp->my_q; | ||
260 | } | ||
261 | |||
262 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
263 | { | ||
264 | if (!cfs_rq->on_list) { | ||
265 | /* | ||
266 | * Ensure we either appear before our parent (if already | ||
267 | * enqueued) or force our parent to appear after us when it is | ||
268 | * enqueued. The fact that we always enqueue bottom-up | ||
269 | * reduces this to two cases. | ||
270 | */ | ||
271 | if (cfs_rq->tg->parent && | ||
272 | cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { | ||
273 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | ||
274 | &rq_of(cfs_rq)->leaf_cfs_rq_list); | ||
275 | } else { | ||
276 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | ||
277 | &rq_of(cfs_rq)->leaf_cfs_rq_list); | ||
278 | } | ||
279 | |||
280 | cfs_rq->on_list = 1; | ||
281 | } | ||
282 | } | ||
283 | |||
284 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
285 | { | ||
286 | if (cfs_rq->on_list) { | ||
287 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | ||
288 | cfs_rq->on_list = 0; | ||
289 | } | ||
290 | } | ||
291 | |||
292 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | ||
293 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
294 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | ||
295 | |||
296 | /* Do the two (enqueued) entities belong to the same group ? */ | ||
297 | static inline int | ||
298 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | ||
299 | { | ||
300 | if (se->cfs_rq == pse->cfs_rq) | ||
301 | return 1; | ||
302 | |||
303 | return 0; | ||
304 | } | ||
305 | |||
306 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | ||
307 | { | ||
308 | return se->parent; | ||
309 | } | ||
310 | |||
311 | /* return depth at which a sched entity is present in the hierarchy */ | ||
312 | static inline int depth_se(struct sched_entity *se) | ||
313 | { | ||
314 | int depth = 0; | ||
315 | |||
316 | for_each_sched_entity(se) | ||
317 | depth++; | ||
318 | |||
319 | return depth; | ||
320 | } | ||
321 | |||
322 | static void | ||
323 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | ||
324 | { | ||
325 | int se_depth, pse_depth; | ||
326 | |||
327 | /* | ||
328 | * preemption test can be made between sibling entities who are in the | ||
329 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | ||
330 | * both tasks until we find their ancestors who are siblings of common | ||
331 | * parent. | ||
332 | */ | ||
333 | |||
334 | /* First walk up until both entities are at same depth */ | ||
335 | se_depth = depth_se(*se); | ||
336 | pse_depth = depth_se(*pse); | ||
337 | |||
338 | while (se_depth > pse_depth) { | ||
339 | se_depth--; | ||
340 | *se = parent_entity(*se); | ||
341 | } | ||
342 | |||
343 | while (pse_depth > se_depth) { | ||
344 | pse_depth--; | ||
345 | *pse = parent_entity(*pse); | ||
346 | } | ||
347 | |||
348 | while (!is_same_group(*se, *pse)) { | ||
349 | *se = parent_entity(*se); | ||
350 | *pse = parent_entity(*pse); | ||
351 | } | ||
352 | } | ||
353 | |||
354 | #else /* !CONFIG_FAIR_GROUP_SCHED */ | ||
355 | |||
356 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
357 | { | ||
358 | return container_of(se, struct task_struct, se); | ||
359 | } | ||
360 | |||
361 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
362 | { | ||
363 | return container_of(cfs_rq, struct rq, cfs); | ||
364 | } | ||
365 | |||
366 | #define entity_is_task(se) 1 | ||
367 | |||
368 | #define for_each_sched_entity(se) \ | ||
369 | for (; se; se = NULL) | ||
370 | |||
371 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
372 | { | ||
373 | return &task_rq(p)->cfs; | ||
374 | } | ||
375 | |||
376 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
377 | { | ||
378 | struct task_struct *p = task_of(se); | ||
379 | struct rq *rq = task_rq(p); | ||
380 | |||
381 | return &rq->cfs; | ||
382 | } | ||
383 | |||
384 | /* runqueue "owned" by this group */ | ||
385 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
386 | { | ||
387 | return NULL; | ||
388 | } | ||
389 | |||
390 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
391 | { | ||
392 | } | ||
393 | |||
394 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
395 | { | ||
396 | } | ||
397 | |||
398 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
399 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | ||
400 | |||
401 | static inline int | ||
402 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | ||
403 | { | ||
404 | return 1; | ||
405 | } | ||
406 | |||
407 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | ||
408 | { | ||
409 | return NULL; | ||
410 | } | ||
411 | |||
412 | static inline void | ||
413 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | ||
414 | { | ||
415 | } | ||
416 | |||
417 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
418 | |||
419 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | ||
420 | unsigned long delta_exec); | ||
421 | |||
422 | /************************************************************** | ||
423 | * Scheduling class tree data structure manipulation methods: | ||
424 | */ | ||
425 | |||
426 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | ||
427 | { | ||
428 | s64 delta = (s64)(vruntime - min_vruntime); | ||
429 | if (delta > 0) | ||
430 | min_vruntime = vruntime; | ||
431 | |||
432 | return min_vruntime; | ||
433 | } | ||
434 | |||
435 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | ||
436 | { | ||
437 | s64 delta = (s64)(vruntime - min_vruntime); | ||
438 | if (delta < 0) | ||
439 | min_vruntime = vruntime; | ||
440 | |||
441 | return min_vruntime; | ||
442 | } | ||
443 | |||
444 | static inline int entity_before(struct sched_entity *a, | ||
445 | struct sched_entity *b) | ||
446 | { | ||
447 | return (s64)(a->vruntime - b->vruntime) < 0; | ||
448 | } | ||
449 | |||
450 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | ||
451 | { | ||
452 | u64 vruntime = cfs_rq->min_vruntime; | ||
453 | |||
454 | if (cfs_rq->curr) | ||
455 | vruntime = cfs_rq->curr->vruntime; | ||
456 | |||
457 | if (cfs_rq->rb_leftmost) { | ||
458 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | ||
459 | struct sched_entity, | ||
460 | run_node); | ||
461 | |||
462 | if (!cfs_rq->curr) | ||
463 | vruntime = se->vruntime; | ||
464 | else | ||
465 | vruntime = min_vruntime(vruntime, se->vruntime); | ||
466 | } | ||
467 | |||
468 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | ||
469 | #ifndef CONFIG_64BIT | ||
470 | smp_wmb(); | ||
471 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | ||
472 | #endif | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * Enqueue an entity into the rb-tree: | ||
477 | */ | ||
478 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
479 | { | ||
480 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | ||
481 | struct rb_node *parent = NULL; | ||
482 | struct sched_entity *entry; | ||
483 | int leftmost = 1; | ||
484 | |||
485 | /* | ||
486 | * Find the right place in the rbtree: | ||
487 | */ | ||
488 | while (*link) { | ||
489 | parent = *link; | ||
490 | entry = rb_entry(parent, struct sched_entity, run_node); | ||
491 | /* | ||
492 | * We dont care about collisions. Nodes with | ||
493 | * the same key stay together. | ||
494 | */ | ||
495 | if (entity_before(se, entry)) { | ||
496 | link = &parent->rb_left; | ||
497 | } else { | ||
498 | link = &parent->rb_right; | ||
499 | leftmost = 0; | ||
500 | } | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Maintain a cache of leftmost tree entries (it is frequently | ||
505 | * used): | ||
506 | */ | ||
507 | if (leftmost) | ||
508 | cfs_rq->rb_leftmost = &se->run_node; | ||
509 | |||
510 | rb_link_node(&se->run_node, parent, link); | ||
511 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | ||
512 | } | ||
513 | |||
514 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
515 | { | ||
516 | if (cfs_rq->rb_leftmost == &se->run_node) { | ||
517 | struct rb_node *next_node; | ||
518 | |||
519 | next_node = rb_next(&se->run_node); | ||
520 | cfs_rq->rb_leftmost = next_node; | ||
521 | } | ||
522 | |||
523 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | ||
524 | } | ||
525 | |||
526 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | ||
527 | { | ||
528 | struct rb_node *left = cfs_rq->rb_leftmost; | ||
529 | |||
530 | if (!left) | ||
531 | return NULL; | ||
532 | |||
533 | return rb_entry(left, struct sched_entity, run_node); | ||
534 | } | ||
535 | |||
536 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) | ||
537 | { | ||
538 | struct rb_node *next = rb_next(&se->run_node); | ||
539 | |||
540 | if (!next) | ||
541 | return NULL; | ||
542 | |||
543 | return rb_entry(next, struct sched_entity, run_node); | ||
544 | } | ||
545 | |||
546 | #ifdef CONFIG_SCHED_DEBUG | ||
547 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | ||
548 | { | ||
549 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | ||
550 | |||
551 | if (!last) | ||
552 | return NULL; | ||
553 | |||
554 | return rb_entry(last, struct sched_entity, run_node); | ||
555 | } | ||
556 | |||
557 | /************************************************************** | ||
558 | * Scheduling class statistics methods: | ||
559 | */ | ||
560 | |||
561 | int sched_proc_update_handler(struct ctl_table *table, int write, | ||
562 | void __user *buffer, size_t *lenp, | ||
563 | loff_t *ppos) | ||
564 | { | ||
565 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | ||
566 | int factor = get_update_sysctl_factor(); | ||
567 | |||
568 | if (ret || !write) | ||
569 | return ret; | ||
570 | |||
571 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | ||
572 | sysctl_sched_min_granularity); | ||
573 | |||
574 | #define WRT_SYSCTL(name) \ | ||
575 | (normalized_sysctl_##name = sysctl_##name / (factor)) | ||
576 | WRT_SYSCTL(sched_min_granularity); | ||
577 | WRT_SYSCTL(sched_latency); | ||
578 | WRT_SYSCTL(sched_wakeup_granularity); | ||
579 | #undef WRT_SYSCTL | ||
580 | |||
581 | return 0; | ||
582 | } | ||
583 | #endif | ||
584 | |||
585 | /* | ||
586 | * delta /= w | ||
587 | */ | ||
588 | static inline unsigned long | ||
589 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | ||
590 | { | ||
591 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
592 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | ||
593 | |||
594 | return delta; | ||
595 | } | ||
596 | |||
597 | /* | ||
598 | * The idea is to set a period in which each task runs once. | ||
599 | * | ||
600 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | ||
601 | * this period because otherwise the slices get too small. | ||
602 | * | ||
603 | * p = (nr <= nl) ? l : l*nr/nl | ||
604 | */ | ||
605 | static u64 __sched_period(unsigned long nr_running) | ||
606 | { | ||
607 | u64 period = sysctl_sched_latency; | ||
608 | unsigned long nr_latency = sched_nr_latency; | ||
609 | |||
610 | if (unlikely(nr_running > nr_latency)) { | ||
611 | period = sysctl_sched_min_granularity; | ||
612 | period *= nr_running; | ||
613 | } | ||
614 | |||
615 | return period; | ||
616 | } | ||
617 | |||
618 | /* | ||
619 | * We calculate the wall-time slice from the period by taking a part | ||
620 | * proportional to the weight. | ||
621 | * | ||
622 | * s = p*P[w/rw] | ||
623 | */ | ||
624 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
625 | { | ||
626 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | ||
627 | |||
628 | for_each_sched_entity(se) { | ||
629 | struct load_weight *load; | ||
630 | struct load_weight lw; | ||
631 | |||
632 | cfs_rq = cfs_rq_of(se); | ||
633 | load = &cfs_rq->load; | ||
634 | |||
635 | if (unlikely(!se->on_rq)) { | ||
636 | lw = cfs_rq->load; | ||
637 | |||
638 | update_load_add(&lw, se->load.weight); | ||
639 | load = &lw; | ||
640 | } | ||
641 | slice = calc_delta_mine(slice, se->load.weight, load); | ||
642 | } | ||
643 | return slice; | ||
644 | } | ||
645 | |||
646 | /* | ||
647 | * We calculate the vruntime slice of a to be inserted task | ||
648 | * | ||
649 | * vs = s/w | ||
650 | */ | ||
651 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
652 | { | ||
653 | return calc_delta_fair(sched_slice(cfs_rq, se), se); | ||
654 | } | ||
655 | |||
656 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); | ||
657 | static void update_cfs_shares(struct cfs_rq *cfs_rq); | ||
658 | |||
659 | /* | ||
660 | * Update the current task's runtime statistics. Skip current tasks that | ||
661 | * are not in our scheduling class. | ||
662 | */ | ||
663 | static inline void | ||
664 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | ||
665 | unsigned long delta_exec) | ||
666 | { | ||
667 | unsigned long delta_exec_weighted; | ||
668 | |||
669 | schedstat_set(curr->statistics.exec_max, | ||
670 | max((u64)delta_exec, curr->statistics.exec_max)); | ||
671 | |||
672 | curr->sum_exec_runtime += delta_exec; | ||
673 | schedstat_add(cfs_rq, exec_clock, delta_exec); | ||
674 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | ||
675 | |||
676 | curr->vruntime += delta_exec_weighted; | ||
677 | update_min_vruntime(cfs_rq); | ||
678 | |||
679 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
680 | cfs_rq->load_unacc_exec_time += delta_exec; | ||
681 | #endif | ||
682 | } | ||
683 | |||
684 | static void update_curr(struct cfs_rq *cfs_rq) | ||
685 | { | ||
686 | struct sched_entity *curr = cfs_rq->curr; | ||
687 | u64 now = rq_of(cfs_rq)->clock_task; | ||
688 | unsigned long delta_exec; | ||
689 | |||
690 | if (unlikely(!curr)) | ||
691 | return; | ||
692 | |||
693 | /* | ||
694 | * Get the amount of time the current task was running | ||
695 | * since the last time we changed load (this cannot | ||
696 | * overflow on 32 bits): | ||
697 | */ | ||
698 | delta_exec = (unsigned long)(now - curr->exec_start); | ||
699 | if (!delta_exec) | ||
700 | return; | ||
701 | |||
702 | __update_curr(cfs_rq, curr, delta_exec); | ||
703 | curr->exec_start = now; | ||
704 | |||
705 | if (entity_is_task(curr)) { | ||
706 | struct task_struct *curtask = task_of(curr); | ||
707 | |||
708 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
709 | cpuacct_charge(curtask, delta_exec); | ||
710 | account_group_exec_runtime(curtask, delta_exec); | ||
711 | } | ||
712 | |||
713 | account_cfs_rq_runtime(cfs_rq, delta_exec); | ||
714 | } | ||
715 | |||
716 | static inline void | ||
717 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
718 | { | ||
719 | schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); | ||
720 | } | ||
721 | |||
722 | /* | ||
723 | * Task is being enqueued - update stats: | ||
724 | */ | ||
725 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
726 | { | ||
727 | /* | ||
728 | * Are we enqueueing a waiting task? (for current tasks | ||
729 | * a dequeue/enqueue event is a NOP) | ||
730 | */ | ||
731 | if (se != cfs_rq->curr) | ||
732 | update_stats_wait_start(cfs_rq, se); | ||
733 | } | ||
734 | |||
735 | static void | ||
736 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
737 | { | ||
738 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, | ||
739 | rq_of(cfs_rq)->clock - se->statistics.wait_start)); | ||
740 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); | ||
741 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + | ||
742 | rq_of(cfs_rq)->clock - se->statistics.wait_start); | ||
743 | #ifdef CONFIG_SCHEDSTATS | ||
744 | if (entity_is_task(se)) { | ||
745 | trace_sched_stat_wait(task_of(se), | ||
746 | rq_of(cfs_rq)->clock - se->statistics.wait_start); | ||
747 | } | ||
748 | #endif | ||
749 | schedstat_set(se->statistics.wait_start, 0); | ||
750 | } | ||
751 | |||
752 | static inline void | ||
753 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
754 | { | ||
755 | /* | ||
756 | * Mark the end of the wait period if dequeueing a | ||
757 | * waiting task: | ||
758 | */ | ||
759 | if (se != cfs_rq->curr) | ||
760 | update_stats_wait_end(cfs_rq, se); | ||
761 | } | ||
762 | |||
763 | /* | ||
764 | * We are picking a new current task - update its stats: | ||
765 | */ | ||
766 | static inline void | ||
767 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
768 | { | ||
769 | /* | ||
770 | * We are starting a new run period: | ||
771 | */ | ||
772 | se->exec_start = rq_of(cfs_rq)->clock_task; | ||
773 | } | ||
774 | |||
775 | /************************************************** | ||
776 | * Scheduling class queueing methods: | ||
777 | */ | ||
778 | |||
779 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
780 | static void | ||
781 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
782 | { | ||
783 | cfs_rq->task_weight += weight; | ||
784 | } | ||
785 | #else | ||
786 | static inline void | ||
787 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
788 | { | ||
789 | } | ||
790 | #endif | ||
791 | |||
792 | static void | ||
793 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
794 | { | ||
795 | update_load_add(&cfs_rq->load, se->load.weight); | ||
796 | if (!parent_entity(se)) | ||
797 | update_load_add(&rq_of(cfs_rq)->load, se->load.weight); | ||
798 | if (entity_is_task(se)) { | ||
799 | add_cfs_task_weight(cfs_rq, se->load.weight); | ||
800 | list_add(&se->group_node, &cfs_rq->tasks); | ||
801 | } | ||
802 | cfs_rq->nr_running++; | ||
803 | } | ||
804 | |||
805 | static void | ||
806 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
807 | { | ||
808 | update_load_sub(&cfs_rq->load, se->load.weight); | ||
809 | if (!parent_entity(se)) | ||
810 | update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); | ||
811 | if (entity_is_task(se)) { | ||
812 | add_cfs_task_weight(cfs_rq, -se->load.weight); | ||
813 | list_del_init(&se->group_node); | ||
814 | } | ||
815 | cfs_rq->nr_running--; | ||
816 | } | ||
817 | |||
818 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
819 | /* we need this in update_cfs_load and load-balance functions below */ | ||
820 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); | ||
821 | # ifdef CONFIG_SMP | ||
822 | static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, | ||
823 | int global_update) | ||
824 | { | ||
825 | struct task_group *tg = cfs_rq->tg; | ||
826 | long load_avg; | ||
827 | |||
828 | load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); | ||
829 | load_avg -= cfs_rq->load_contribution; | ||
830 | |||
831 | if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { | ||
832 | atomic_add(load_avg, &tg->load_weight); | ||
833 | cfs_rq->load_contribution += load_avg; | ||
834 | } | ||
835 | } | ||
836 | |||
837 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
838 | { | ||
839 | u64 period = sysctl_sched_shares_window; | ||
840 | u64 now, delta; | ||
841 | unsigned long load = cfs_rq->load.weight; | ||
842 | |||
843 | if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) | ||
844 | return; | ||
845 | |||
846 | now = rq_of(cfs_rq)->clock_task; | ||
847 | delta = now - cfs_rq->load_stamp; | ||
848 | |||
849 | /* truncate load history at 4 idle periods */ | ||
850 | if (cfs_rq->load_stamp > cfs_rq->load_last && | ||
851 | now - cfs_rq->load_last > 4 * period) { | ||
852 | cfs_rq->load_period = 0; | ||
853 | cfs_rq->load_avg = 0; | ||
854 | delta = period - 1; | ||
855 | } | ||
856 | |||
857 | cfs_rq->load_stamp = now; | ||
858 | cfs_rq->load_unacc_exec_time = 0; | ||
859 | cfs_rq->load_period += delta; | ||
860 | if (load) { | ||
861 | cfs_rq->load_last = now; | ||
862 | cfs_rq->load_avg += delta * load; | ||
863 | } | ||
864 | |||
865 | /* consider updating load contribution on each fold or truncate */ | ||
866 | if (global_update || cfs_rq->load_period > period | ||
867 | || !cfs_rq->load_period) | ||
868 | update_cfs_rq_load_contribution(cfs_rq, global_update); | ||
869 | |||
870 | while (cfs_rq->load_period > period) { | ||
871 | /* | ||
872 | * Inline assembly required to prevent the compiler | ||
873 | * optimising this loop into a divmod call. | ||
874 | * See __iter_div_u64_rem() for another example of this. | ||
875 | */ | ||
876 | asm("" : "+rm" (cfs_rq->load_period)); | ||
877 | cfs_rq->load_period /= 2; | ||
878 | cfs_rq->load_avg /= 2; | ||
879 | } | ||
880 | |||
881 | if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) | ||
882 | list_del_leaf_cfs_rq(cfs_rq); | ||
883 | } | ||
884 | |||
885 | static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) | ||
886 | { | ||
887 | long tg_weight; | ||
888 | |||
889 | /* | ||
890 | * Use this CPU's actual weight instead of the last load_contribution | ||
891 | * to gain a more accurate current total weight. See | ||
892 | * update_cfs_rq_load_contribution(). | ||
893 | */ | ||
894 | tg_weight = atomic_read(&tg->load_weight); | ||
895 | tg_weight -= cfs_rq->load_contribution; | ||
896 | tg_weight += cfs_rq->load.weight; | ||
897 | |||
898 | return tg_weight; | ||
899 | } | ||
900 | |||
901 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | ||
902 | { | ||
903 | long tg_weight, load, shares; | ||
904 | |||
905 | tg_weight = calc_tg_weight(tg, cfs_rq); | ||
906 | load = cfs_rq->load.weight; | ||
907 | |||
908 | shares = (tg->shares * load); | ||
909 | if (tg_weight) | ||
910 | shares /= tg_weight; | ||
911 | |||
912 | if (shares < MIN_SHARES) | ||
913 | shares = MIN_SHARES; | ||
914 | if (shares > tg->shares) | ||
915 | shares = tg->shares; | ||
916 | |||
917 | return shares; | ||
918 | } | ||
919 | |||
920 | static void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
921 | { | ||
922 | if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { | ||
923 | update_cfs_load(cfs_rq, 0); | ||
924 | update_cfs_shares(cfs_rq); | ||
925 | } | ||
926 | } | ||
927 | # else /* CONFIG_SMP */ | ||
928 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
929 | { | ||
930 | } | ||
931 | |||
932 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | ||
933 | { | ||
934 | return tg->shares; | ||
935 | } | ||
936 | |||
937 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
938 | { | ||
939 | } | ||
940 | # endif /* CONFIG_SMP */ | ||
941 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
942 | unsigned long weight) | ||
943 | { | ||
944 | if (se->on_rq) { | ||
945 | /* commit outstanding execution time */ | ||
946 | if (cfs_rq->curr == se) | ||
947 | update_curr(cfs_rq); | ||
948 | account_entity_dequeue(cfs_rq, se); | ||
949 | } | ||
950 | |||
951 | update_load_set(&se->load, weight); | ||
952 | |||
953 | if (se->on_rq) | ||
954 | account_entity_enqueue(cfs_rq, se); | ||
955 | } | ||
956 | |||
957 | static void update_cfs_shares(struct cfs_rq *cfs_rq) | ||
958 | { | ||
959 | struct task_group *tg; | ||
960 | struct sched_entity *se; | ||
961 | long shares; | ||
962 | |||
963 | tg = cfs_rq->tg; | ||
964 | se = tg->se[cpu_of(rq_of(cfs_rq))]; | ||
965 | if (!se || throttled_hierarchy(cfs_rq)) | ||
966 | return; | ||
967 | #ifndef CONFIG_SMP | ||
968 | if (likely(se->load.weight == tg->shares)) | ||
969 | return; | ||
970 | #endif | ||
971 | shares = calc_cfs_shares(cfs_rq, tg); | ||
972 | |||
973 | reweight_entity(cfs_rq_of(se), se, shares); | ||
974 | } | ||
975 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
976 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
977 | { | ||
978 | } | ||
979 | |||
980 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) | ||
981 | { | ||
982 | } | ||
983 | |||
984 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
985 | { | ||
986 | } | ||
987 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
988 | |||
989 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
990 | { | ||
991 | #ifdef CONFIG_SCHEDSTATS | ||
992 | struct task_struct *tsk = NULL; | ||
993 | |||
994 | if (entity_is_task(se)) | ||
995 | tsk = task_of(se); | ||
996 | |||
997 | if (se->statistics.sleep_start) { | ||
998 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; | ||
999 | |||
1000 | if ((s64)delta < 0) | ||
1001 | delta = 0; | ||
1002 | |||
1003 | if (unlikely(delta > se->statistics.sleep_max)) | ||
1004 | se->statistics.sleep_max = delta; | ||
1005 | |||
1006 | se->statistics.sleep_start = 0; | ||
1007 | se->statistics.sum_sleep_runtime += delta; | ||
1008 | |||
1009 | if (tsk) { | ||
1010 | account_scheduler_latency(tsk, delta >> 10, 1); | ||
1011 | trace_sched_stat_sleep(tsk, delta); | ||
1012 | } | ||
1013 | } | ||
1014 | if (se->statistics.block_start) { | ||
1015 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; | ||
1016 | |||
1017 | if ((s64)delta < 0) | ||
1018 | delta = 0; | ||
1019 | |||
1020 | if (unlikely(delta > se->statistics.block_max)) | ||
1021 | se->statistics.block_max = delta; | ||
1022 | |||
1023 | se->statistics.block_start = 0; | ||
1024 | se->statistics.sum_sleep_runtime += delta; | ||
1025 | |||
1026 | if (tsk) { | ||
1027 | if (tsk->in_iowait) { | ||
1028 | se->statistics.iowait_sum += delta; | ||
1029 | se->statistics.iowait_count++; | ||
1030 | trace_sched_stat_iowait(tsk, delta); | ||
1031 | } | ||
1032 | |||
1033 | /* | ||
1034 | * Blocking time is in units of nanosecs, so shift by | ||
1035 | * 20 to get a milliseconds-range estimation of the | ||
1036 | * amount of time that the task spent sleeping: | ||
1037 | */ | ||
1038 | if (unlikely(prof_on == SLEEP_PROFILING)) { | ||
1039 | profile_hits(SLEEP_PROFILING, | ||
1040 | (void *)get_wchan(tsk), | ||
1041 | delta >> 20); | ||
1042 | } | ||
1043 | account_scheduler_latency(tsk, delta >> 10, 0); | ||
1044 | } | ||
1045 | } | ||
1046 | #endif | ||
1047 | } | ||
1048 | |||
1049 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
1050 | { | ||
1051 | #ifdef CONFIG_SCHED_DEBUG | ||
1052 | s64 d = se->vruntime - cfs_rq->min_vruntime; | ||
1053 | |||
1054 | if (d < 0) | ||
1055 | d = -d; | ||
1056 | |||
1057 | if (d > 3*sysctl_sched_latency) | ||
1058 | schedstat_inc(cfs_rq, nr_spread_over); | ||
1059 | #endif | ||
1060 | } | ||
1061 | |||
1062 | static void | ||
1063 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | ||
1064 | { | ||
1065 | u64 vruntime = cfs_rq->min_vruntime; | ||
1066 | |||
1067 | /* | ||
1068 | * The 'current' period is already promised to the current tasks, | ||
1069 | * however the extra weight of the new task will slow them down a | ||
1070 | * little, place the new task so that it fits in the slot that | ||
1071 | * stays open at the end. | ||
1072 | */ | ||
1073 | if (initial && sched_feat(START_DEBIT)) | ||
1074 | vruntime += sched_vslice(cfs_rq, se); | ||
1075 | |||
1076 | /* sleeps up to a single latency don't count. */ | ||
1077 | if (!initial) { | ||
1078 | unsigned long thresh = sysctl_sched_latency; | ||
1079 | |||
1080 | /* | ||
1081 | * Halve their sleep time's effect, to allow | ||
1082 | * for a gentler effect of sleepers: | ||
1083 | */ | ||
1084 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
1085 | thresh >>= 1; | ||
1086 | |||
1087 | vruntime -= thresh; | ||
1088 | } | ||
1089 | |||
1090 | /* ensure we never gain time by being placed backwards. */ | ||
1091 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
1092 | |||
1093 | se->vruntime = vruntime; | ||
1094 | } | ||
1095 | |||
1096 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | ||
1097 | |||
1098 | static void | ||
1099 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | ||
1100 | { | ||
1101 | /* | ||
1102 | * Update the normalized vruntime before updating min_vruntime | ||
1103 | * through callig update_curr(). | ||
1104 | */ | ||
1105 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) | ||
1106 | se->vruntime += cfs_rq->min_vruntime; | ||
1107 | |||
1108 | /* | ||
1109 | * Update run-time statistics of the 'current'. | ||
1110 | */ | ||
1111 | update_curr(cfs_rq); | ||
1112 | update_cfs_load(cfs_rq, 0); | ||
1113 | account_entity_enqueue(cfs_rq, se); | ||
1114 | update_cfs_shares(cfs_rq); | ||
1115 | |||
1116 | if (flags & ENQUEUE_WAKEUP) { | ||
1117 | place_entity(cfs_rq, se, 0); | ||
1118 | enqueue_sleeper(cfs_rq, se); | ||
1119 | } | ||
1120 | |||
1121 | update_stats_enqueue(cfs_rq, se); | ||
1122 | check_spread(cfs_rq, se); | ||
1123 | if (se != cfs_rq->curr) | ||
1124 | __enqueue_entity(cfs_rq, se); | ||
1125 | se->on_rq = 1; | ||
1126 | |||
1127 | if (cfs_rq->nr_running == 1) { | ||
1128 | list_add_leaf_cfs_rq(cfs_rq); | ||
1129 | check_enqueue_throttle(cfs_rq); | ||
1130 | } | ||
1131 | } | ||
1132 | |||
1133 | static void __clear_buddies_last(struct sched_entity *se) | ||
1134 | { | ||
1135 | for_each_sched_entity(se) { | ||
1136 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1137 | if (cfs_rq->last == se) | ||
1138 | cfs_rq->last = NULL; | ||
1139 | else | ||
1140 | break; | ||
1141 | } | ||
1142 | } | ||
1143 | |||
1144 | static void __clear_buddies_next(struct sched_entity *se) | ||
1145 | { | ||
1146 | for_each_sched_entity(se) { | ||
1147 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1148 | if (cfs_rq->next == se) | ||
1149 | cfs_rq->next = NULL; | ||
1150 | else | ||
1151 | break; | ||
1152 | } | ||
1153 | } | ||
1154 | |||
1155 | static void __clear_buddies_skip(struct sched_entity *se) | ||
1156 | { | ||
1157 | for_each_sched_entity(se) { | ||
1158 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1159 | if (cfs_rq->skip == se) | ||
1160 | cfs_rq->skip = NULL; | ||
1161 | else | ||
1162 | break; | ||
1163 | } | ||
1164 | } | ||
1165 | |||
1166 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
1167 | { | ||
1168 | if (cfs_rq->last == se) | ||
1169 | __clear_buddies_last(se); | ||
1170 | |||
1171 | if (cfs_rq->next == se) | ||
1172 | __clear_buddies_next(se); | ||
1173 | |||
1174 | if (cfs_rq->skip == se) | ||
1175 | __clear_buddies_skip(se); | ||
1176 | } | ||
1177 | |||
1178 | static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | ||
1179 | |||
1180 | static void | ||
1181 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | ||
1182 | { | ||
1183 | /* | ||
1184 | * Update run-time statistics of the 'current'. | ||
1185 | */ | ||
1186 | update_curr(cfs_rq); | ||
1187 | |||
1188 | update_stats_dequeue(cfs_rq, se); | ||
1189 | if (flags & DEQUEUE_SLEEP) { | ||
1190 | #ifdef CONFIG_SCHEDSTATS | ||
1191 | if (entity_is_task(se)) { | ||
1192 | struct task_struct *tsk = task_of(se); | ||
1193 | |||
1194 | if (tsk->state & TASK_INTERRUPTIBLE) | ||
1195 | se->statistics.sleep_start = rq_of(cfs_rq)->clock; | ||
1196 | if (tsk->state & TASK_UNINTERRUPTIBLE) | ||
1197 | se->statistics.block_start = rq_of(cfs_rq)->clock; | ||
1198 | } | ||
1199 | #endif | ||
1200 | } | ||
1201 | |||
1202 | clear_buddies(cfs_rq, se); | ||
1203 | |||
1204 | if (se != cfs_rq->curr) | ||
1205 | __dequeue_entity(cfs_rq, se); | ||
1206 | se->on_rq = 0; | ||
1207 | update_cfs_load(cfs_rq, 0); | ||
1208 | account_entity_dequeue(cfs_rq, se); | ||
1209 | |||
1210 | /* | ||
1211 | * Normalize the entity after updating the min_vruntime because the | ||
1212 | * update can refer to the ->curr item and we need to reflect this | ||
1213 | * movement in our normalized position. | ||
1214 | */ | ||
1215 | if (!(flags & DEQUEUE_SLEEP)) | ||
1216 | se->vruntime -= cfs_rq->min_vruntime; | ||
1217 | |||
1218 | /* return excess runtime on last dequeue */ | ||
1219 | return_cfs_rq_runtime(cfs_rq); | ||
1220 | |||
1221 | update_min_vruntime(cfs_rq); | ||
1222 | update_cfs_shares(cfs_rq); | ||
1223 | } | ||
1224 | |||
1225 | /* | ||
1226 | * Preempt the current task with a newly woken task if needed: | ||
1227 | */ | ||
1228 | static void | ||
1229 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||
1230 | { | ||
1231 | unsigned long ideal_runtime, delta_exec; | ||
1232 | struct sched_entity *se; | ||
1233 | s64 delta; | ||
1234 | |||
1235 | ideal_runtime = sched_slice(cfs_rq, curr); | ||
1236 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
1237 | if (delta_exec > ideal_runtime) { | ||
1238 | resched_task(rq_of(cfs_rq)->curr); | ||
1239 | /* | ||
1240 | * The current task ran long enough, ensure it doesn't get | ||
1241 | * re-elected due to buddy favours. | ||
1242 | */ | ||
1243 | clear_buddies(cfs_rq, curr); | ||
1244 | return; | ||
1245 | } | ||
1246 | |||
1247 | /* | ||
1248 | * Ensure that a task that missed wakeup preemption by a | ||
1249 | * narrow margin doesn't have to wait for a full slice. | ||
1250 | * This also mitigates buddy induced latencies under load. | ||
1251 | */ | ||
1252 | if (delta_exec < sysctl_sched_min_granularity) | ||
1253 | return; | ||
1254 | |||
1255 | se = __pick_first_entity(cfs_rq); | ||
1256 | delta = curr->vruntime - se->vruntime; | ||
1257 | |||
1258 | if (delta < 0) | ||
1259 | return; | ||
1260 | |||
1261 | if (delta > ideal_runtime) | ||
1262 | resched_task(rq_of(cfs_rq)->curr); | ||
1263 | } | ||
1264 | |||
1265 | static void | ||
1266 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
1267 | { | ||
1268 | /* 'current' is not kept within the tree. */ | ||
1269 | if (se->on_rq) { | ||
1270 | /* | ||
1271 | * Any task has to be enqueued before it get to execute on | ||
1272 | * a CPU. So account for the time it spent waiting on the | ||
1273 | * runqueue. | ||
1274 | */ | ||
1275 | update_stats_wait_end(cfs_rq, se); | ||
1276 | __dequeue_entity(cfs_rq, se); | ||
1277 | } | ||
1278 | |||
1279 | update_stats_curr_start(cfs_rq, se); | ||
1280 | cfs_rq->curr = se; | ||
1281 | #ifdef CONFIG_SCHEDSTATS | ||
1282 | /* | ||
1283 | * Track our maximum slice length, if the CPU's load is at | ||
1284 | * least twice that of our own weight (i.e. dont track it | ||
1285 | * when there are only lesser-weight tasks around): | ||
1286 | */ | ||
1287 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | ||
1288 | se->statistics.slice_max = max(se->statistics.slice_max, | ||
1289 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | ||
1290 | } | ||
1291 | #endif | ||
1292 | se->prev_sum_exec_runtime = se->sum_exec_runtime; | ||
1293 | } | ||
1294 | |||
1295 | static int | ||
1296 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | ||
1297 | |||
1298 | /* | ||
1299 | * Pick the next process, keeping these things in mind, in this order: | ||
1300 | * 1) keep things fair between processes/task groups | ||
1301 | * 2) pick the "next" process, since someone really wants that to run | ||
1302 | * 3) pick the "last" process, for cache locality | ||
1303 | * 4) do not run the "skip" process, if something else is available | ||
1304 | */ | ||
1305 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | ||
1306 | { | ||
1307 | struct sched_entity *se = __pick_first_entity(cfs_rq); | ||
1308 | struct sched_entity *left = se; | ||
1309 | |||
1310 | /* | ||
1311 | * Avoid running the skip buddy, if running something else can | ||
1312 | * be done without getting too unfair. | ||
1313 | */ | ||
1314 | if (cfs_rq->skip == se) { | ||
1315 | struct sched_entity *second = __pick_next_entity(se); | ||
1316 | if (second && wakeup_preempt_entity(second, left) < 1) | ||
1317 | se = second; | ||
1318 | } | ||
1319 | |||
1320 | /* | ||
1321 | * Prefer last buddy, try to return the CPU to a preempted task. | ||
1322 | */ | ||
1323 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | ||
1324 | se = cfs_rq->last; | ||
1325 | |||
1326 | /* | ||
1327 | * Someone really wants this to run. If it's not unfair, run it. | ||
1328 | */ | ||
1329 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | ||
1330 | se = cfs_rq->next; | ||
1331 | |||
1332 | clear_buddies(cfs_rq, se); | ||
1333 | |||
1334 | return se; | ||
1335 | } | ||
1336 | |||
1337 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | ||
1338 | |||
1339 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | ||
1340 | { | ||
1341 | /* | ||
1342 | * If still on the runqueue then deactivate_task() | ||
1343 | * was not called and update_curr() has to be done: | ||
1344 | */ | ||
1345 | if (prev->on_rq) | ||
1346 | update_curr(cfs_rq); | ||
1347 | |||
1348 | /* throttle cfs_rqs exceeding runtime */ | ||
1349 | check_cfs_rq_runtime(cfs_rq); | ||
1350 | |||
1351 | check_spread(cfs_rq, prev); | ||
1352 | if (prev->on_rq) { | ||
1353 | update_stats_wait_start(cfs_rq, prev); | ||
1354 | /* Put 'current' back into the tree. */ | ||
1355 | __enqueue_entity(cfs_rq, prev); | ||
1356 | } | ||
1357 | cfs_rq->curr = NULL; | ||
1358 | } | ||
1359 | |||
1360 | static void | ||
1361 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | ||
1362 | { | ||
1363 | /* | ||
1364 | * Update run-time statistics of the 'current'. | ||
1365 | */ | ||
1366 | update_curr(cfs_rq); | ||
1367 | |||
1368 | /* | ||
1369 | * Update share accounting for long-running entities. | ||
1370 | */ | ||
1371 | update_entity_shares_tick(cfs_rq); | ||
1372 | |||
1373 | #ifdef CONFIG_SCHED_HRTICK | ||
1374 | /* | ||
1375 | * queued ticks are scheduled to match the slice, so don't bother | ||
1376 | * validating it and just reschedule. | ||
1377 | */ | ||
1378 | if (queued) { | ||
1379 | resched_task(rq_of(cfs_rq)->curr); | ||
1380 | return; | ||
1381 | } | ||
1382 | /* | ||
1383 | * don't let the period tick interfere with the hrtick preemption | ||
1384 | */ | ||
1385 | if (!sched_feat(DOUBLE_TICK) && | ||
1386 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | ||
1387 | return; | ||
1388 | #endif | ||
1389 | |||
1390 | if (cfs_rq->nr_running > 1) | ||
1391 | check_preempt_tick(cfs_rq, curr); | ||
1392 | } | ||
1393 | |||
1394 | |||
1395 | /************************************************** | ||
1396 | * CFS bandwidth control machinery | ||
1397 | */ | ||
1398 | |||
1399 | #ifdef CONFIG_CFS_BANDWIDTH | ||
1400 | |||
1401 | #ifdef HAVE_JUMP_LABEL | ||
1402 | static struct jump_label_key __cfs_bandwidth_used; | ||
1403 | |||
1404 | static inline bool cfs_bandwidth_used(void) | ||
1405 | { | ||
1406 | return static_branch(&__cfs_bandwidth_used); | ||
1407 | } | ||
1408 | |||
1409 | void account_cfs_bandwidth_used(int enabled, int was_enabled) | ||
1410 | { | ||
1411 | /* only need to count groups transitioning between enabled/!enabled */ | ||
1412 | if (enabled && !was_enabled) | ||
1413 | jump_label_inc(&__cfs_bandwidth_used); | ||
1414 | else if (!enabled && was_enabled) | ||
1415 | jump_label_dec(&__cfs_bandwidth_used); | ||
1416 | } | ||
1417 | #else /* HAVE_JUMP_LABEL */ | ||
1418 | static bool cfs_bandwidth_used(void) | ||
1419 | { | ||
1420 | return true; | ||
1421 | } | ||
1422 | |||
1423 | void account_cfs_bandwidth_used(int enabled, int was_enabled) {} | ||
1424 | #endif /* HAVE_JUMP_LABEL */ | ||
1425 | |||
1426 | /* | ||
1427 | * default period for cfs group bandwidth. | ||
1428 | * default: 0.1s, units: nanoseconds | ||
1429 | */ | ||
1430 | static inline u64 default_cfs_period(void) | ||
1431 | { | ||
1432 | return 100000000ULL; | ||
1433 | } | ||
1434 | |||
1435 | static inline u64 sched_cfs_bandwidth_slice(void) | ||
1436 | { | ||
1437 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | ||
1438 | } | ||
1439 | |||
1440 | /* | ||
1441 | * Replenish runtime according to assigned quota and update expiration time. | ||
1442 | * We use sched_clock_cpu directly instead of rq->clock to avoid adding | ||
1443 | * additional synchronization around rq->lock. | ||
1444 | * | ||
1445 | * requires cfs_b->lock | ||
1446 | */ | ||
1447 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | ||
1448 | { | ||
1449 | u64 now; | ||
1450 | |||
1451 | if (cfs_b->quota == RUNTIME_INF) | ||
1452 | return; | ||
1453 | |||
1454 | now = sched_clock_cpu(smp_processor_id()); | ||
1455 | cfs_b->runtime = cfs_b->quota; | ||
1456 | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | ||
1457 | } | ||
1458 | |||
1459 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | ||
1460 | { | ||
1461 | return &tg->cfs_bandwidth; | ||
1462 | } | ||
1463 | |||
1464 | /* returns 0 on failure to allocate runtime */ | ||
1465 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
1466 | { | ||
1467 | struct task_group *tg = cfs_rq->tg; | ||
1468 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | ||
1469 | u64 amount = 0, min_amount, expires; | ||
1470 | |||
1471 | /* note: this is a positive sum as runtime_remaining <= 0 */ | ||
1472 | min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | ||
1473 | |||
1474 | raw_spin_lock(&cfs_b->lock); | ||
1475 | if (cfs_b->quota == RUNTIME_INF) | ||
1476 | amount = min_amount; | ||
1477 | else { | ||
1478 | /* | ||
1479 | * If the bandwidth pool has become inactive, then at least one | ||
1480 | * period must have elapsed since the last consumption. | ||
1481 | * Refresh the global state and ensure bandwidth timer becomes | ||
1482 | * active. | ||
1483 | */ | ||
1484 | if (!cfs_b->timer_active) { | ||
1485 | __refill_cfs_bandwidth_runtime(cfs_b); | ||
1486 | __start_cfs_bandwidth(cfs_b); | ||
1487 | } | ||
1488 | |||
1489 | if (cfs_b->runtime > 0) { | ||
1490 | amount = min(cfs_b->runtime, min_amount); | ||
1491 | cfs_b->runtime -= amount; | ||
1492 | cfs_b->idle = 0; | ||
1493 | } | ||
1494 | } | ||
1495 | expires = cfs_b->runtime_expires; | ||
1496 | raw_spin_unlock(&cfs_b->lock); | ||
1497 | |||
1498 | cfs_rq->runtime_remaining += amount; | ||
1499 | /* | ||
1500 | * we may have advanced our local expiration to account for allowed | ||
1501 | * spread between our sched_clock and the one on which runtime was | ||
1502 | * issued. | ||
1503 | */ | ||
1504 | if ((s64)(expires - cfs_rq->runtime_expires) > 0) | ||
1505 | cfs_rq->runtime_expires = expires; | ||
1506 | |||
1507 | return cfs_rq->runtime_remaining > 0; | ||
1508 | } | ||
1509 | |||
1510 | /* | ||
1511 | * Note: This depends on the synchronization provided by sched_clock and the | ||
1512 | * fact that rq->clock snapshots this value. | ||
1513 | */ | ||
1514 | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
1515 | { | ||
1516 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
1517 | struct rq *rq = rq_of(cfs_rq); | ||
1518 | |||
1519 | /* if the deadline is ahead of our clock, nothing to do */ | ||
1520 | if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) | ||
1521 | return; | ||
1522 | |||
1523 | if (cfs_rq->runtime_remaining < 0) | ||
1524 | return; | ||
1525 | |||
1526 | /* | ||
1527 | * If the local deadline has passed we have to consider the | ||
1528 | * possibility that our sched_clock is 'fast' and the global deadline | ||
1529 | * has not truly expired. | ||
1530 | * | ||
1531 | * Fortunately we can check determine whether this the case by checking | ||
1532 | * whether the global deadline has advanced. | ||
1533 | */ | ||
1534 | |||
1535 | if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { | ||
1536 | /* extend local deadline, drift is bounded above by 2 ticks */ | ||
1537 | cfs_rq->runtime_expires += TICK_NSEC; | ||
1538 | } else { | ||
1539 | /* global deadline is ahead, expiration has passed */ | ||
1540 | cfs_rq->runtime_remaining = 0; | ||
1541 | } | ||
1542 | } | ||
1543 | |||
1544 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | ||
1545 | unsigned long delta_exec) | ||
1546 | { | ||
1547 | /* dock delta_exec before expiring quota (as it could span periods) */ | ||
1548 | cfs_rq->runtime_remaining -= delta_exec; | ||
1549 | expire_cfs_rq_runtime(cfs_rq); | ||
1550 | |||
1551 | if (likely(cfs_rq->runtime_remaining > 0)) | ||
1552 | return; | ||
1553 | |||
1554 | /* | ||
1555 | * if we're unable to extend our runtime we resched so that the active | ||
1556 | * hierarchy can be throttled | ||
1557 | */ | ||
1558 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | ||
1559 | resched_task(rq_of(cfs_rq)->curr); | ||
1560 | } | ||
1561 | |||
1562 | static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | ||
1563 | unsigned long delta_exec) | ||
1564 | { | ||
1565 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) | ||
1566 | return; | ||
1567 | |||
1568 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | ||
1569 | } | ||
1570 | |||
1571 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | ||
1572 | { | ||
1573 | return cfs_bandwidth_used() && cfs_rq->throttled; | ||
1574 | } | ||
1575 | |||
1576 | /* check whether cfs_rq, or any parent, is throttled */ | ||
1577 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | ||
1578 | { | ||
1579 | return cfs_bandwidth_used() && cfs_rq->throttle_count; | ||
1580 | } | ||
1581 | |||
1582 | /* | ||
1583 | * Ensure that neither of the group entities corresponding to src_cpu or | ||
1584 | * dest_cpu are members of a throttled hierarchy when performing group | ||
1585 | * load-balance operations. | ||
1586 | */ | ||
1587 | static inline int throttled_lb_pair(struct task_group *tg, | ||
1588 | int src_cpu, int dest_cpu) | ||
1589 | { | ||
1590 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | ||
1591 | |||
1592 | src_cfs_rq = tg->cfs_rq[src_cpu]; | ||
1593 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | ||
1594 | |||
1595 | return throttled_hierarchy(src_cfs_rq) || | ||
1596 | throttled_hierarchy(dest_cfs_rq); | ||
1597 | } | ||
1598 | |||
1599 | /* updated child weight may affect parent so we have to do this bottom up */ | ||
1600 | static int tg_unthrottle_up(struct task_group *tg, void *data) | ||
1601 | { | ||
1602 | struct rq *rq = data; | ||
1603 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | ||
1604 | |||
1605 | cfs_rq->throttle_count--; | ||
1606 | #ifdef CONFIG_SMP | ||
1607 | if (!cfs_rq->throttle_count) { | ||
1608 | u64 delta = rq->clock_task - cfs_rq->load_stamp; | ||
1609 | |||
1610 | /* leaving throttled state, advance shares averaging windows */ | ||
1611 | cfs_rq->load_stamp += delta; | ||
1612 | cfs_rq->load_last += delta; | ||
1613 | |||
1614 | /* update entity weight now that we are on_rq again */ | ||
1615 | update_cfs_shares(cfs_rq); | ||
1616 | } | ||
1617 | #endif | ||
1618 | |||
1619 | return 0; | ||
1620 | } | ||
1621 | |||
1622 | static int tg_throttle_down(struct task_group *tg, void *data) | ||
1623 | { | ||
1624 | struct rq *rq = data; | ||
1625 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | ||
1626 | |||
1627 | /* group is entering throttled state, record last load */ | ||
1628 | if (!cfs_rq->throttle_count) | ||
1629 | update_cfs_load(cfs_rq, 0); | ||
1630 | cfs_rq->throttle_count++; | ||
1631 | |||
1632 | return 0; | ||
1633 | } | ||
1634 | |||
1635 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) | ||
1636 | { | ||
1637 | struct rq *rq = rq_of(cfs_rq); | ||
1638 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
1639 | struct sched_entity *se; | ||
1640 | long task_delta, dequeue = 1; | ||
1641 | |||
1642 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | ||
1643 | |||
1644 | /* account load preceding throttle */ | ||
1645 | rcu_read_lock(); | ||
1646 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | ||
1647 | rcu_read_unlock(); | ||
1648 | |||
1649 | task_delta = cfs_rq->h_nr_running; | ||
1650 | for_each_sched_entity(se) { | ||
1651 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | ||
1652 | /* throttled entity or throttle-on-deactivate */ | ||
1653 | if (!se->on_rq) | ||
1654 | break; | ||
1655 | |||
1656 | if (dequeue) | ||
1657 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | ||
1658 | qcfs_rq->h_nr_running -= task_delta; | ||
1659 | |||
1660 | if (qcfs_rq->load.weight) | ||
1661 | dequeue = 0; | ||
1662 | } | ||
1663 | |||
1664 | if (!se) | ||
1665 | rq->nr_running -= task_delta; | ||
1666 | |||
1667 | cfs_rq->throttled = 1; | ||
1668 | cfs_rq->throttled_timestamp = rq->clock; | ||
1669 | raw_spin_lock(&cfs_b->lock); | ||
1670 | list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | ||
1671 | raw_spin_unlock(&cfs_b->lock); | ||
1672 | } | ||
1673 | |||
1674 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | ||
1675 | { | ||
1676 | struct rq *rq = rq_of(cfs_rq); | ||
1677 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
1678 | struct sched_entity *se; | ||
1679 | int enqueue = 1; | ||
1680 | long task_delta; | ||
1681 | |||
1682 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | ||
1683 | |||
1684 | cfs_rq->throttled = 0; | ||
1685 | raw_spin_lock(&cfs_b->lock); | ||
1686 | cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; | ||
1687 | list_del_rcu(&cfs_rq->throttled_list); | ||
1688 | raw_spin_unlock(&cfs_b->lock); | ||
1689 | cfs_rq->throttled_timestamp = 0; | ||
1690 | |||
1691 | update_rq_clock(rq); | ||
1692 | /* update hierarchical throttle state */ | ||
1693 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | ||
1694 | |||
1695 | if (!cfs_rq->load.weight) | ||
1696 | return; | ||
1697 | |||
1698 | task_delta = cfs_rq->h_nr_running; | ||
1699 | for_each_sched_entity(se) { | ||
1700 | if (se->on_rq) | ||
1701 | enqueue = 0; | ||
1702 | |||
1703 | cfs_rq = cfs_rq_of(se); | ||
1704 | if (enqueue) | ||
1705 | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | ||
1706 | cfs_rq->h_nr_running += task_delta; | ||
1707 | |||
1708 | if (cfs_rq_throttled(cfs_rq)) | ||
1709 | break; | ||
1710 | } | ||
1711 | |||
1712 | if (!se) | ||
1713 | rq->nr_running += task_delta; | ||
1714 | |||
1715 | /* determine whether we need to wake up potentially idle cpu */ | ||
1716 | if (rq->curr == rq->idle && rq->cfs.nr_running) | ||
1717 | resched_task(rq->curr); | ||
1718 | } | ||
1719 | |||
1720 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, | ||
1721 | u64 remaining, u64 expires) | ||
1722 | { | ||
1723 | struct cfs_rq *cfs_rq; | ||
1724 | u64 runtime = remaining; | ||
1725 | |||
1726 | rcu_read_lock(); | ||
1727 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | ||
1728 | throttled_list) { | ||
1729 | struct rq *rq = rq_of(cfs_rq); | ||
1730 | |||
1731 | raw_spin_lock(&rq->lock); | ||
1732 | if (!cfs_rq_throttled(cfs_rq)) | ||
1733 | goto next; | ||
1734 | |||
1735 | runtime = -cfs_rq->runtime_remaining + 1; | ||
1736 | if (runtime > remaining) | ||
1737 | runtime = remaining; | ||
1738 | remaining -= runtime; | ||
1739 | |||
1740 | cfs_rq->runtime_remaining += runtime; | ||
1741 | cfs_rq->runtime_expires = expires; | ||
1742 | |||
1743 | /* we check whether we're throttled above */ | ||
1744 | if (cfs_rq->runtime_remaining > 0) | ||
1745 | unthrottle_cfs_rq(cfs_rq); | ||
1746 | |||
1747 | next: | ||
1748 | raw_spin_unlock(&rq->lock); | ||
1749 | |||
1750 | if (!remaining) | ||
1751 | break; | ||
1752 | } | ||
1753 | rcu_read_unlock(); | ||
1754 | |||
1755 | return remaining; | ||
1756 | } | ||
1757 | |||
1758 | /* | ||
1759 | * Responsible for refilling a task_group's bandwidth and unthrottling its | ||
1760 | * cfs_rqs as appropriate. If there has been no activity within the last | ||
1761 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | ||
1762 | * used to track this state. | ||
1763 | */ | ||
1764 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) | ||
1765 | { | ||
1766 | u64 runtime, runtime_expires; | ||
1767 | int idle = 1, throttled; | ||
1768 | |||
1769 | raw_spin_lock(&cfs_b->lock); | ||
1770 | /* no need to continue the timer with no bandwidth constraint */ | ||
1771 | if (cfs_b->quota == RUNTIME_INF) | ||
1772 | goto out_unlock; | ||
1773 | |||
1774 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | ||
1775 | /* idle depends on !throttled (for the case of a large deficit) */ | ||
1776 | idle = cfs_b->idle && !throttled; | ||
1777 | cfs_b->nr_periods += overrun; | ||
1778 | |||
1779 | /* if we're going inactive then everything else can be deferred */ | ||
1780 | if (idle) | ||
1781 | goto out_unlock; | ||
1782 | |||
1783 | __refill_cfs_bandwidth_runtime(cfs_b); | ||
1784 | |||
1785 | if (!throttled) { | ||
1786 | /* mark as potentially idle for the upcoming period */ | ||
1787 | cfs_b->idle = 1; | ||
1788 | goto out_unlock; | ||
1789 | } | ||
1790 | |||
1791 | /* account preceding periods in which throttling occurred */ | ||
1792 | cfs_b->nr_throttled += overrun; | ||
1793 | |||
1794 | /* | ||
1795 | * There are throttled entities so we must first use the new bandwidth | ||
1796 | * to unthrottle them before making it generally available. This | ||
1797 | * ensures that all existing debts will be paid before a new cfs_rq is | ||
1798 | * allowed to run. | ||
1799 | */ | ||
1800 | runtime = cfs_b->runtime; | ||
1801 | runtime_expires = cfs_b->runtime_expires; | ||
1802 | cfs_b->runtime = 0; | ||
1803 | |||
1804 | /* | ||
1805 | * This check is repeated as we are holding onto the new bandwidth | ||
1806 | * while we unthrottle. This can potentially race with an unthrottled | ||
1807 | * group trying to acquire new bandwidth from the global pool. | ||
1808 | */ | ||
1809 | while (throttled && runtime > 0) { | ||
1810 | raw_spin_unlock(&cfs_b->lock); | ||
1811 | /* we can't nest cfs_b->lock while distributing bandwidth */ | ||
1812 | runtime = distribute_cfs_runtime(cfs_b, runtime, | ||
1813 | runtime_expires); | ||
1814 | raw_spin_lock(&cfs_b->lock); | ||
1815 | |||
1816 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | ||
1817 | } | ||
1818 | |||
1819 | /* return (any) remaining runtime */ | ||
1820 | cfs_b->runtime = runtime; | ||
1821 | /* | ||
1822 | * While we are ensured activity in the period following an | ||
1823 | * unthrottle, this also covers the case in which the new bandwidth is | ||
1824 | * insufficient to cover the existing bandwidth deficit. (Forcing the | ||
1825 | * timer to remain active while there are any throttled entities.) | ||
1826 | */ | ||
1827 | cfs_b->idle = 0; | ||
1828 | out_unlock: | ||
1829 | if (idle) | ||
1830 | cfs_b->timer_active = 0; | ||
1831 | raw_spin_unlock(&cfs_b->lock); | ||
1832 | |||
1833 | return idle; | ||
1834 | } | ||
1835 | |||
1836 | /* a cfs_rq won't donate quota below this amount */ | ||
1837 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | ||
1838 | /* minimum remaining period time to redistribute slack quota */ | ||
1839 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | ||
1840 | /* how long we wait to gather additional slack before distributing */ | ||
1841 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | ||
1842 | |||
1843 | /* are we near the end of the current quota period? */ | ||
1844 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) | ||
1845 | { | ||
1846 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | ||
1847 | u64 remaining; | ||
1848 | |||
1849 | /* if the call-back is running a quota refresh is already occurring */ | ||
1850 | if (hrtimer_callback_running(refresh_timer)) | ||
1851 | return 1; | ||
1852 | |||
1853 | /* is a quota refresh about to occur? */ | ||
1854 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | ||
1855 | if (remaining < min_expire) | ||
1856 | return 1; | ||
1857 | |||
1858 | return 0; | ||
1859 | } | ||
1860 | |||
1861 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | ||
1862 | { | ||
1863 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | ||
1864 | |||
1865 | /* if there's a quota refresh soon don't bother with slack */ | ||
1866 | if (runtime_refresh_within(cfs_b, min_left)) | ||
1867 | return; | ||
1868 | |||
1869 | start_bandwidth_timer(&cfs_b->slack_timer, | ||
1870 | ns_to_ktime(cfs_bandwidth_slack_period)); | ||
1871 | } | ||
1872 | |||
1873 | /* we know any runtime found here is valid as update_curr() precedes return */ | ||
1874 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
1875 | { | ||
1876 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
1877 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | ||
1878 | |||
1879 | if (slack_runtime <= 0) | ||
1880 | return; | ||
1881 | |||
1882 | raw_spin_lock(&cfs_b->lock); | ||
1883 | if (cfs_b->quota != RUNTIME_INF && | ||
1884 | cfs_rq->runtime_expires == cfs_b->runtime_expires) { | ||
1885 | cfs_b->runtime += slack_runtime; | ||
1886 | |||
1887 | /* we are under rq->lock, defer unthrottling using a timer */ | ||
1888 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | ||
1889 | !list_empty(&cfs_b->throttled_cfs_rq)) | ||
1890 | start_cfs_slack_bandwidth(cfs_b); | ||
1891 | } | ||
1892 | raw_spin_unlock(&cfs_b->lock); | ||
1893 | |||
1894 | /* even if it's not valid for return we don't want to try again */ | ||
1895 | cfs_rq->runtime_remaining -= slack_runtime; | ||
1896 | } | ||
1897 | |||
1898 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
1899 | { | ||
1900 | if (!cfs_bandwidth_used()) | ||
1901 | return; | ||
1902 | |||
1903 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) | ||
1904 | return; | ||
1905 | |||
1906 | __return_cfs_rq_runtime(cfs_rq); | ||
1907 | } | ||
1908 | |||
1909 | /* | ||
1910 | * This is done with a timer (instead of inline with bandwidth return) since | ||
1911 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | ||
1912 | */ | ||
1913 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | ||
1914 | { | ||
1915 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | ||
1916 | u64 expires; | ||
1917 | |||
1918 | /* confirm we're still not at a refresh boundary */ | ||
1919 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) | ||
1920 | return; | ||
1921 | |||
1922 | raw_spin_lock(&cfs_b->lock); | ||
1923 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { | ||
1924 | runtime = cfs_b->runtime; | ||
1925 | cfs_b->runtime = 0; | ||
1926 | } | ||
1927 | expires = cfs_b->runtime_expires; | ||
1928 | raw_spin_unlock(&cfs_b->lock); | ||
1929 | |||
1930 | if (!runtime) | ||
1931 | return; | ||
1932 | |||
1933 | runtime = distribute_cfs_runtime(cfs_b, runtime, expires); | ||
1934 | |||
1935 | raw_spin_lock(&cfs_b->lock); | ||
1936 | if (expires == cfs_b->runtime_expires) | ||
1937 | cfs_b->runtime = runtime; | ||
1938 | raw_spin_unlock(&cfs_b->lock); | ||
1939 | } | ||
1940 | |||
1941 | /* | ||
1942 | * When a group wakes up we want to make sure that its quota is not already | ||
1943 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | ||
1944 | * runtime as update_curr() throttling can not not trigger until it's on-rq. | ||
1945 | */ | ||
1946 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | ||
1947 | { | ||
1948 | if (!cfs_bandwidth_used()) | ||
1949 | return; | ||
1950 | |||
1951 | /* an active group must be handled by the update_curr()->put() path */ | ||
1952 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | ||
1953 | return; | ||
1954 | |||
1955 | /* ensure the group is not already throttled */ | ||
1956 | if (cfs_rq_throttled(cfs_rq)) | ||
1957 | return; | ||
1958 | |||
1959 | /* update runtime allocation */ | ||
1960 | account_cfs_rq_runtime(cfs_rq, 0); | ||
1961 | if (cfs_rq->runtime_remaining <= 0) | ||
1962 | throttle_cfs_rq(cfs_rq); | ||
1963 | } | ||
1964 | |||
1965 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | ||
1966 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
1967 | { | ||
1968 | if (!cfs_bandwidth_used()) | ||
1969 | return; | ||
1970 | |||
1971 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | ||
1972 | return; | ||
1973 | |||
1974 | /* | ||
1975 | * it's possible for a throttled entity to be forced into a running | ||
1976 | * state (e.g. set_curr_task), in this case we're finished. | ||
1977 | */ | ||
1978 | if (cfs_rq_throttled(cfs_rq)) | ||
1979 | return; | ||
1980 | |||
1981 | throttle_cfs_rq(cfs_rq); | ||
1982 | } | ||
1983 | |||
1984 | static inline u64 default_cfs_period(void); | ||
1985 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); | ||
1986 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); | ||
1987 | |||
1988 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | ||
1989 | { | ||
1990 | struct cfs_bandwidth *cfs_b = | ||
1991 | container_of(timer, struct cfs_bandwidth, slack_timer); | ||
1992 | do_sched_cfs_slack_timer(cfs_b); | ||
1993 | |||
1994 | return HRTIMER_NORESTART; | ||
1995 | } | ||
1996 | |||
1997 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | ||
1998 | { | ||
1999 | struct cfs_bandwidth *cfs_b = | ||
2000 | container_of(timer, struct cfs_bandwidth, period_timer); | ||
2001 | ktime_t now; | ||
2002 | int overrun; | ||
2003 | int idle = 0; | ||
2004 | |||
2005 | for (;;) { | ||
2006 | now = hrtimer_cb_get_time(timer); | ||
2007 | overrun = hrtimer_forward(timer, now, cfs_b->period); | ||
2008 | |||
2009 | if (!overrun) | ||
2010 | break; | ||
2011 | |||
2012 | idle = do_sched_cfs_period_timer(cfs_b, overrun); | ||
2013 | } | ||
2014 | |||
2015 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | ||
2016 | } | ||
2017 | |||
2018 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
2019 | { | ||
2020 | raw_spin_lock_init(&cfs_b->lock); | ||
2021 | cfs_b->runtime = 0; | ||
2022 | cfs_b->quota = RUNTIME_INF; | ||
2023 | cfs_b->period = ns_to_ktime(default_cfs_period()); | ||
2024 | |||
2025 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | ||
2026 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2027 | cfs_b->period_timer.function = sched_cfs_period_timer; | ||
2028 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2029 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | ||
2030 | } | ||
2031 | |||
2032 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
2033 | { | ||
2034 | cfs_rq->runtime_enabled = 0; | ||
2035 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | ||
2036 | } | ||
2037 | |||
2038 | /* requires cfs_b->lock, may release to reprogram timer */ | ||
2039 | void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
2040 | { | ||
2041 | /* | ||
2042 | * The timer may be active because we're trying to set a new bandwidth | ||
2043 | * period or because we're racing with the tear-down path | ||
2044 | * (timer_active==0 becomes visible before the hrtimer call-back | ||
2045 | * terminates). In either case we ensure that it's re-programmed | ||
2046 | */ | ||
2047 | while (unlikely(hrtimer_active(&cfs_b->period_timer))) { | ||
2048 | raw_spin_unlock(&cfs_b->lock); | ||
2049 | /* ensure cfs_b->lock is available while we wait */ | ||
2050 | hrtimer_cancel(&cfs_b->period_timer); | ||
2051 | |||
2052 | raw_spin_lock(&cfs_b->lock); | ||
2053 | /* if someone else restarted the timer then we're done */ | ||
2054 | if (cfs_b->timer_active) | ||
2055 | return; | ||
2056 | } | ||
2057 | |||
2058 | cfs_b->timer_active = 1; | ||
2059 | start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); | ||
2060 | } | ||
2061 | |||
2062 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
2063 | { | ||
2064 | hrtimer_cancel(&cfs_b->period_timer); | ||
2065 | hrtimer_cancel(&cfs_b->slack_timer); | ||
2066 | } | ||
2067 | |||
2068 | void unthrottle_offline_cfs_rqs(struct rq *rq) | ||
2069 | { | ||
2070 | struct cfs_rq *cfs_rq; | ||
2071 | |||
2072 | for_each_leaf_cfs_rq(rq, cfs_rq) { | ||
2073 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
2074 | |||
2075 | if (!cfs_rq->runtime_enabled) | ||
2076 | continue; | ||
2077 | |||
2078 | /* | ||
2079 | * clock_task is not advancing so we just need to make sure | ||
2080 | * there's some valid quota amount | ||
2081 | */ | ||
2082 | cfs_rq->runtime_remaining = cfs_b->quota; | ||
2083 | if (cfs_rq_throttled(cfs_rq)) | ||
2084 | unthrottle_cfs_rq(cfs_rq); | ||
2085 | } | ||
2086 | } | ||
2087 | |||
2088 | #else /* CONFIG_CFS_BANDWIDTH */ | ||
2089 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | ||
2090 | unsigned long delta_exec) {} | ||
2091 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | ||
2092 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} | ||
2093 | static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | ||
2094 | |||
2095 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | ||
2096 | { | ||
2097 | return 0; | ||
2098 | } | ||
2099 | |||
2100 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | ||
2101 | { | ||
2102 | return 0; | ||
2103 | } | ||
2104 | |||
2105 | static inline int throttled_lb_pair(struct task_group *tg, | ||
2106 | int src_cpu, int dest_cpu) | ||
2107 | { | ||
2108 | return 0; | ||
2109 | } | ||
2110 | |||
2111 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | ||
2112 | |||
2113 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
2114 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | ||
2115 | #endif | ||
2116 | |||
2117 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | ||
2118 | { | ||
2119 | return NULL; | ||
2120 | } | ||
2121 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | ||
2122 | void unthrottle_offline_cfs_rqs(struct rq *rq) {} | ||
2123 | |||
2124 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
2125 | |||
2126 | /************************************************** | ||
2127 | * CFS operations on tasks: | ||
2128 | */ | ||
2129 | |||
2130 | #ifdef CONFIG_SCHED_HRTICK | ||
2131 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | ||
2132 | { | ||
2133 | struct sched_entity *se = &p->se; | ||
2134 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
2135 | |||
2136 | WARN_ON(task_rq(p) != rq); | ||
2137 | |||
2138 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | ||
2139 | u64 slice = sched_slice(cfs_rq, se); | ||
2140 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | ||
2141 | s64 delta = slice - ran; | ||
2142 | |||
2143 | if (delta < 0) { | ||
2144 | if (rq->curr == p) | ||
2145 | resched_task(p); | ||
2146 | return; | ||
2147 | } | ||
2148 | |||
2149 | /* | ||
2150 | * Don't schedule slices shorter than 10000ns, that just | ||
2151 | * doesn't make sense. Rely on vruntime for fairness. | ||
2152 | */ | ||
2153 | if (rq->curr != p) | ||
2154 | delta = max_t(s64, 10000LL, delta); | ||
2155 | |||
2156 | hrtick_start(rq, delta); | ||
2157 | } | ||
2158 | } | ||
2159 | |||
2160 | /* | ||
2161 | * called from enqueue/dequeue and updates the hrtick when the | ||
2162 | * current task is from our class and nr_running is low enough | ||
2163 | * to matter. | ||
2164 | */ | ||
2165 | static void hrtick_update(struct rq *rq) | ||
2166 | { | ||
2167 | struct task_struct *curr = rq->curr; | ||
2168 | |||
2169 | if (curr->sched_class != &fair_sched_class) | ||
2170 | return; | ||
2171 | |||
2172 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | ||
2173 | hrtick_start_fair(rq, curr); | ||
2174 | } | ||
2175 | #else /* !CONFIG_SCHED_HRTICK */ | ||
2176 | static inline void | ||
2177 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | ||
2178 | { | ||
2179 | } | ||
2180 | |||
2181 | static inline void hrtick_update(struct rq *rq) | ||
2182 | { | ||
2183 | } | ||
2184 | #endif | ||
2185 | |||
2186 | /* | ||
2187 | * The enqueue_task method is called before nr_running is | ||
2188 | * increased. Here we update the fair scheduling stats and | ||
2189 | * then put the task into the rbtree: | ||
2190 | */ | ||
2191 | static void | ||
2192 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | ||
2193 | { | ||
2194 | struct cfs_rq *cfs_rq; | ||
2195 | struct sched_entity *se = &p->se; | ||
2196 | |||
2197 | for_each_sched_entity(se) { | ||
2198 | if (se->on_rq) | ||
2199 | break; | ||
2200 | cfs_rq = cfs_rq_of(se); | ||
2201 | enqueue_entity(cfs_rq, se, flags); | ||
2202 | |||
2203 | /* | ||
2204 | * end evaluation on encountering a throttled cfs_rq | ||
2205 | * | ||
2206 | * note: in the case of encountering a throttled cfs_rq we will | ||
2207 | * post the final h_nr_running increment below. | ||
2208 | */ | ||
2209 | if (cfs_rq_throttled(cfs_rq)) | ||
2210 | break; | ||
2211 | cfs_rq->h_nr_running++; | ||
2212 | |||
2213 | flags = ENQUEUE_WAKEUP; | ||
2214 | } | ||
2215 | |||
2216 | for_each_sched_entity(se) { | ||
2217 | cfs_rq = cfs_rq_of(se); | ||
2218 | cfs_rq->h_nr_running++; | ||
2219 | |||
2220 | if (cfs_rq_throttled(cfs_rq)) | ||
2221 | break; | ||
2222 | |||
2223 | update_cfs_load(cfs_rq, 0); | ||
2224 | update_cfs_shares(cfs_rq); | ||
2225 | } | ||
2226 | |||
2227 | if (!se) | ||
2228 | inc_nr_running(rq); | ||
2229 | hrtick_update(rq); | ||
2230 | } | ||
2231 | |||
2232 | static void set_next_buddy(struct sched_entity *se); | ||
2233 | |||
2234 | /* | ||
2235 | * The dequeue_task method is called before nr_running is | ||
2236 | * decreased. We remove the task from the rbtree and | ||
2237 | * update the fair scheduling stats: | ||
2238 | */ | ||
2239 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | ||
2240 | { | ||
2241 | struct cfs_rq *cfs_rq; | ||
2242 | struct sched_entity *se = &p->se; | ||
2243 | int task_sleep = flags & DEQUEUE_SLEEP; | ||
2244 | |||
2245 | for_each_sched_entity(se) { | ||
2246 | cfs_rq = cfs_rq_of(se); | ||
2247 | dequeue_entity(cfs_rq, se, flags); | ||
2248 | |||
2249 | /* | ||
2250 | * end evaluation on encountering a throttled cfs_rq | ||
2251 | * | ||
2252 | * note: in the case of encountering a throttled cfs_rq we will | ||
2253 | * post the final h_nr_running decrement below. | ||
2254 | */ | ||
2255 | if (cfs_rq_throttled(cfs_rq)) | ||
2256 | break; | ||
2257 | cfs_rq->h_nr_running--; | ||
2258 | |||
2259 | /* Don't dequeue parent if it has other entities besides us */ | ||
2260 | if (cfs_rq->load.weight) { | ||
2261 | /* | ||
2262 | * Bias pick_next to pick a task from this cfs_rq, as | ||
2263 | * p is sleeping when it is within its sched_slice. | ||
2264 | */ | ||
2265 | if (task_sleep && parent_entity(se)) | ||
2266 | set_next_buddy(parent_entity(se)); | ||
2267 | |||
2268 | /* avoid re-evaluating load for this entity */ | ||
2269 | se = parent_entity(se); | ||
2270 | break; | ||
2271 | } | ||
2272 | flags |= DEQUEUE_SLEEP; | ||
2273 | } | ||
2274 | |||
2275 | for_each_sched_entity(se) { | ||
2276 | cfs_rq = cfs_rq_of(se); | ||
2277 | cfs_rq->h_nr_running--; | ||
2278 | |||
2279 | if (cfs_rq_throttled(cfs_rq)) | ||
2280 | break; | ||
2281 | |||
2282 | update_cfs_load(cfs_rq, 0); | ||
2283 | update_cfs_shares(cfs_rq); | ||
2284 | } | ||
2285 | |||
2286 | if (!se) | ||
2287 | dec_nr_running(rq); | ||
2288 | hrtick_update(rq); | ||
2289 | } | ||
2290 | |||
2291 | #ifdef CONFIG_SMP | ||
2292 | /* Used instead of source_load when we know the type == 0 */ | ||
2293 | static unsigned long weighted_cpuload(const int cpu) | ||
2294 | { | ||
2295 | return cpu_rq(cpu)->load.weight; | ||
2296 | } | ||
2297 | |||
2298 | /* | ||
2299 | * Return a low guess at the load of a migration-source cpu weighted | ||
2300 | * according to the scheduling class and "nice" value. | ||
2301 | * | ||
2302 | * We want to under-estimate the load of migration sources, to | ||
2303 | * balance conservatively. | ||
2304 | */ | ||
2305 | static unsigned long source_load(int cpu, int type) | ||
2306 | { | ||
2307 | struct rq *rq = cpu_rq(cpu); | ||
2308 | unsigned long total = weighted_cpuload(cpu); | ||
2309 | |||
2310 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2311 | return total; | ||
2312 | |||
2313 | return min(rq->cpu_load[type-1], total); | ||
2314 | } | ||
2315 | |||
2316 | /* | ||
2317 | * Return a high guess at the load of a migration-target cpu weighted | ||
2318 | * according to the scheduling class and "nice" value. | ||
2319 | */ | ||
2320 | static unsigned long target_load(int cpu, int type) | ||
2321 | { | ||
2322 | struct rq *rq = cpu_rq(cpu); | ||
2323 | unsigned long total = weighted_cpuload(cpu); | ||
2324 | |||
2325 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2326 | return total; | ||
2327 | |||
2328 | return max(rq->cpu_load[type-1], total); | ||
2329 | } | ||
2330 | |||
2331 | static unsigned long power_of(int cpu) | ||
2332 | { | ||
2333 | return cpu_rq(cpu)->cpu_power; | ||
2334 | } | ||
2335 | |||
2336 | static unsigned long cpu_avg_load_per_task(int cpu) | ||
2337 | { | ||
2338 | struct rq *rq = cpu_rq(cpu); | ||
2339 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | ||
2340 | |||
2341 | if (nr_running) | ||
2342 | return rq->load.weight / nr_running; | ||
2343 | |||
2344 | return 0; | ||
2345 | } | ||
2346 | |||
2347 | |||
2348 | static void task_waking_fair(struct task_struct *p) | ||
2349 | { | ||
2350 | struct sched_entity *se = &p->se; | ||
2351 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
2352 | u64 min_vruntime; | ||
2353 | |||
2354 | #ifndef CONFIG_64BIT | ||
2355 | u64 min_vruntime_copy; | ||
2356 | |||
2357 | do { | ||
2358 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | ||
2359 | smp_rmb(); | ||
2360 | min_vruntime = cfs_rq->min_vruntime; | ||
2361 | } while (min_vruntime != min_vruntime_copy); | ||
2362 | #else | ||
2363 | min_vruntime = cfs_rq->min_vruntime; | ||
2364 | #endif | ||
2365 | |||
2366 | se->vruntime -= min_vruntime; | ||
2367 | } | ||
2368 | |||
2369 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
2370 | /* | ||
2371 | * effective_load() calculates the load change as seen from the root_task_group | ||
2372 | * | ||
2373 | * Adding load to a group doesn't make a group heavier, but can cause movement | ||
2374 | * of group shares between cpus. Assuming the shares were perfectly aligned one | ||
2375 | * can calculate the shift in shares. | ||
2376 | * | ||
2377 | * Calculate the effective load difference if @wl is added (subtracted) to @tg | ||
2378 | * on this @cpu and results in a total addition (subtraction) of @wg to the | ||
2379 | * total group weight. | ||
2380 | * | ||
2381 | * Given a runqueue weight distribution (rw_i) we can compute a shares | ||
2382 | * distribution (s_i) using: | ||
2383 | * | ||
2384 | * s_i = rw_i / \Sum rw_j (1) | ||
2385 | * | ||
2386 | * Suppose we have 4 CPUs and our @tg is a direct child of the root group and | ||
2387 | * has 7 equal weight tasks, distributed as below (rw_i), with the resulting | ||
2388 | * shares distribution (s_i): | ||
2389 | * | ||
2390 | * rw_i = { 2, 4, 1, 0 } | ||
2391 | * s_i = { 2/7, 4/7, 1/7, 0 } | ||
2392 | * | ||
2393 | * As per wake_affine() we're interested in the load of two CPUs (the CPU the | ||
2394 | * task used to run on and the CPU the waker is running on), we need to | ||
2395 | * compute the effect of waking a task on either CPU and, in case of a sync | ||
2396 | * wakeup, compute the effect of the current task going to sleep. | ||
2397 | * | ||
2398 | * So for a change of @wl to the local @cpu with an overall group weight change | ||
2399 | * of @wl we can compute the new shares distribution (s'_i) using: | ||
2400 | * | ||
2401 | * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) | ||
2402 | * | ||
2403 | * Suppose we're interested in CPUs 0 and 1, and want to compute the load | ||
2404 | * differences in waking a task to CPU 0. The additional task changes the | ||
2405 | * weight and shares distributions like: | ||
2406 | * | ||
2407 | * rw'_i = { 3, 4, 1, 0 } | ||
2408 | * s'_i = { 3/8, 4/8, 1/8, 0 } | ||
2409 | * | ||
2410 | * We can then compute the difference in effective weight by using: | ||
2411 | * | ||
2412 | * dw_i = S * (s'_i - s_i) (3) | ||
2413 | * | ||
2414 | * Where 'S' is the group weight as seen by its parent. | ||
2415 | * | ||
2416 | * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) | ||
2417 | * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - | ||
2418 | * 4/7) times the weight of the group. | ||
2419 | */ | ||
2420 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | ||
2421 | { | ||
2422 | struct sched_entity *se = tg->se[cpu]; | ||
2423 | |||
2424 | if (!tg->parent) /* the trivial, non-cgroup case */ | ||
2425 | return wl; | ||
2426 | |||
2427 | for_each_sched_entity(se) { | ||
2428 | long w, W; | ||
2429 | |||
2430 | tg = se->my_q->tg; | ||
2431 | |||
2432 | /* | ||
2433 | * W = @wg + \Sum rw_j | ||
2434 | */ | ||
2435 | W = wg + calc_tg_weight(tg, se->my_q); | ||
2436 | |||
2437 | /* | ||
2438 | * w = rw_i + @wl | ||
2439 | */ | ||
2440 | w = se->my_q->load.weight + wl; | ||
2441 | |||
2442 | /* | ||
2443 | * wl = S * s'_i; see (2) | ||
2444 | */ | ||
2445 | if (W > 0 && w < W) | ||
2446 | wl = (w * tg->shares) / W; | ||
2447 | else | ||
2448 | wl = tg->shares; | ||
2449 | |||
2450 | /* | ||
2451 | * Per the above, wl is the new se->load.weight value; since | ||
2452 | * those are clipped to [MIN_SHARES, ...) do so now. See | ||
2453 | * calc_cfs_shares(). | ||
2454 | */ | ||
2455 | if (wl < MIN_SHARES) | ||
2456 | wl = MIN_SHARES; | ||
2457 | |||
2458 | /* | ||
2459 | * wl = dw_i = S * (s'_i - s_i); see (3) | ||
2460 | */ | ||
2461 | wl -= se->load.weight; | ||
2462 | |||
2463 | /* | ||
2464 | * Recursively apply this logic to all parent groups to compute | ||
2465 | * the final effective load change on the root group. Since | ||
2466 | * only the @tg group gets extra weight, all parent groups can | ||
2467 | * only redistribute existing shares. @wl is the shift in shares | ||
2468 | * resulting from this level per the above. | ||
2469 | */ | ||
2470 | wg = 0; | ||
2471 | } | ||
2472 | |||
2473 | return wl; | ||
2474 | } | ||
2475 | #else | ||
2476 | |||
2477 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | ||
2478 | unsigned long wl, unsigned long wg) | ||
2479 | { | ||
2480 | return wl; | ||
2481 | } | ||
2482 | |||
2483 | #endif | ||
2484 | |||
2485 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | ||
2486 | { | ||
2487 | s64 this_load, load; | ||
2488 | int idx, this_cpu, prev_cpu; | ||
2489 | unsigned long tl_per_task; | ||
2490 | struct task_group *tg; | ||
2491 | unsigned long weight; | ||
2492 | int balanced; | ||
2493 | |||
2494 | idx = sd->wake_idx; | ||
2495 | this_cpu = smp_processor_id(); | ||
2496 | prev_cpu = task_cpu(p); | ||
2497 | load = source_load(prev_cpu, idx); | ||
2498 | this_load = target_load(this_cpu, idx); | ||
2499 | |||
2500 | /* | ||
2501 | * If sync wakeup then subtract the (maximum possible) | ||
2502 | * effect of the currently running task from the load | ||
2503 | * of the current CPU: | ||
2504 | */ | ||
2505 | if (sync) { | ||
2506 | tg = task_group(current); | ||
2507 | weight = current->se.load.weight; | ||
2508 | |||
2509 | this_load += effective_load(tg, this_cpu, -weight, -weight); | ||
2510 | load += effective_load(tg, prev_cpu, 0, -weight); | ||
2511 | } | ||
2512 | |||
2513 | tg = task_group(p); | ||
2514 | weight = p->se.load.weight; | ||
2515 | |||
2516 | /* | ||
2517 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | ||
2518 | * due to the sync cause above having dropped this_load to 0, we'll | ||
2519 | * always have an imbalance, but there's really nothing you can do | ||
2520 | * about that, so that's good too. | ||
2521 | * | ||
2522 | * Otherwise check if either cpus are near enough in load to allow this | ||
2523 | * task to be woken on this_cpu. | ||
2524 | */ | ||
2525 | if (this_load > 0) { | ||
2526 | s64 this_eff_load, prev_eff_load; | ||
2527 | |||
2528 | this_eff_load = 100; | ||
2529 | this_eff_load *= power_of(prev_cpu); | ||
2530 | this_eff_load *= this_load + | ||
2531 | effective_load(tg, this_cpu, weight, weight); | ||
2532 | |||
2533 | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | ||
2534 | prev_eff_load *= power_of(this_cpu); | ||
2535 | prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | ||
2536 | |||
2537 | balanced = this_eff_load <= prev_eff_load; | ||
2538 | } else | ||
2539 | balanced = true; | ||
2540 | |||
2541 | /* | ||
2542 | * If the currently running task will sleep within | ||
2543 | * a reasonable amount of time then attract this newly | ||
2544 | * woken task: | ||
2545 | */ | ||
2546 | if (sync && balanced) | ||
2547 | return 1; | ||
2548 | |||
2549 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | ||
2550 | tl_per_task = cpu_avg_load_per_task(this_cpu); | ||
2551 | |||
2552 | if (balanced || | ||
2553 | (this_load <= load && | ||
2554 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
2555 | /* | ||
2556 | * This domain has SD_WAKE_AFFINE and | ||
2557 | * p is cache cold in this domain, and | ||
2558 | * there is no bad imbalance. | ||
2559 | */ | ||
2560 | schedstat_inc(sd, ttwu_move_affine); | ||
2561 | schedstat_inc(p, se.statistics.nr_wakeups_affine); | ||
2562 | |||
2563 | return 1; | ||
2564 | } | ||
2565 | return 0; | ||
2566 | } | ||
2567 | |||
2568 | /* | ||
2569 | * find_idlest_group finds and returns the least busy CPU group within the | ||
2570 | * domain. | ||
2571 | */ | ||
2572 | static struct sched_group * | ||
2573 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
2574 | int this_cpu, int load_idx) | ||
2575 | { | ||
2576 | struct sched_group *idlest = NULL, *group = sd->groups; | ||
2577 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
2578 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
2579 | |||
2580 | do { | ||
2581 | unsigned long load, avg_load; | ||
2582 | int local_group; | ||
2583 | int i; | ||
2584 | |||
2585 | /* Skip over this group if it has no CPUs allowed */ | ||
2586 | if (!cpumask_intersects(sched_group_cpus(group), | ||
2587 | tsk_cpus_allowed(p))) | ||
2588 | continue; | ||
2589 | |||
2590 | local_group = cpumask_test_cpu(this_cpu, | ||
2591 | sched_group_cpus(group)); | ||
2592 | |||
2593 | /* Tally up the load of all CPUs in the group */ | ||
2594 | avg_load = 0; | ||
2595 | |||
2596 | for_each_cpu(i, sched_group_cpus(group)) { | ||
2597 | /* Bias balancing toward cpus of our domain */ | ||
2598 | if (local_group) | ||
2599 | load = source_load(i, load_idx); | ||
2600 | else | ||
2601 | load = target_load(i, load_idx); | ||
2602 | |||
2603 | avg_load += load; | ||
2604 | } | ||
2605 | |||
2606 | /* Adjust by relative CPU power of the group */ | ||
2607 | avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; | ||
2608 | |||
2609 | if (local_group) { | ||
2610 | this_load = avg_load; | ||
2611 | } else if (avg_load < min_load) { | ||
2612 | min_load = avg_load; | ||
2613 | idlest = group; | ||
2614 | } | ||
2615 | } while (group = group->next, group != sd->groups); | ||
2616 | |||
2617 | if (!idlest || 100*this_load < imbalance*min_load) | ||
2618 | return NULL; | ||
2619 | return idlest; | ||
2620 | } | ||
2621 | |||
2622 | /* | ||
2623 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
2624 | */ | ||
2625 | static int | ||
2626 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
2627 | { | ||
2628 | unsigned long load, min_load = ULONG_MAX; | ||
2629 | int idlest = -1; | ||
2630 | int i; | ||
2631 | |||
2632 | /* Traverse only the allowed CPUs */ | ||
2633 | for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { | ||
2634 | load = weighted_cpuload(i); | ||
2635 | |||
2636 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
2637 | min_load = load; | ||
2638 | idlest = i; | ||
2639 | } | ||
2640 | } | ||
2641 | |||
2642 | return idlest; | ||
2643 | } | ||
2644 | |||
2645 | /* | ||
2646 | * Try and locate an idle CPU in the sched_domain. | ||
2647 | */ | ||
2648 | static int select_idle_sibling(struct task_struct *p, int target) | ||
2649 | { | ||
2650 | int cpu = smp_processor_id(); | ||
2651 | int prev_cpu = task_cpu(p); | ||
2652 | struct sched_domain *sd; | ||
2653 | struct sched_group *sg; | ||
2654 | int i, smt = 0; | ||
2655 | |||
2656 | /* | ||
2657 | * If the task is going to be woken-up on this cpu and if it is | ||
2658 | * already idle, then it is the right target. | ||
2659 | */ | ||
2660 | if (target == cpu && idle_cpu(cpu)) | ||
2661 | return cpu; | ||
2662 | |||
2663 | /* | ||
2664 | * If the task is going to be woken-up on the cpu where it previously | ||
2665 | * ran and if it is currently idle, then it the right target. | ||
2666 | */ | ||
2667 | if (target == prev_cpu && idle_cpu(prev_cpu)) | ||
2668 | return prev_cpu; | ||
2669 | |||
2670 | /* | ||
2671 | * Otherwise, iterate the domains and find an elegible idle cpu. | ||
2672 | */ | ||
2673 | rcu_read_lock(); | ||
2674 | again: | ||
2675 | for_each_domain(target, sd) { | ||
2676 | if (!smt && (sd->flags & SD_SHARE_CPUPOWER)) | ||
2677 | continue; | ||
2678 | |||
2679 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) { | ||
2680 | if (!smt) { | ||
2681 | smt = 1; | ||
2682 | goto again; | ||
2683 | } | ||
2684 | break; | ||
2685 | } | ||
2686 | |||
2687 | sg = sd->groups; | ||
2688 | do { | ||
2689 | if (!cpumask_intersects(sched_group_cpus(sg), | ||
2690 | tsk_cpus_allowed(p))) | ||
2691 | goto next; | ||
2692 | |||
2693 | for_each_cpu(i, sched_group_cpus(sg)) { | ||
2694 | if (!idle_cpu(i)) | ||
2695 | goto next; | ||
2696 | } | ||
2697 | |||
2698 | target = cpumask_first_and(sched_group_cpus(sg), | ||
2699 | tsk_cpus_allowed(p)); | ||
2700 | goto done; | ||
2701 | next: | ||
2702 | sg = sg->next; | ||
2703 | } while (sg != sd->groups); | ||
2704 | } | ||
2705 | done: | ||
2706 | rcu_read_unlock(); | ||
2707 | |||
2708 | return target; | ||
2709 | } | ||
2710 | |||
2711 | /* | ||
2712 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
2713 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
2714 | * SD_BALANCE_EXEC. | ||
2715 | * | ||
2716 | * Balance, ie. select the least loaded group. | ||
2717 | * | ||
2718 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
2719 | * | ||
2720 | * preempt must be disabled. | ||
2721 | */ | ||
2722 | static int | ||
2723 | select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
2724 | { | ||
2725 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
2726 | int cpu = smp_processor_id(); | ||
2727 | int prev_cpu = task_cpu(p); | ||
2728 | int new_cpu = cpu; | ||
2729 | int want_affine = 0; | ||
2730 | int want_sd = 1; | ||
2731 | int sync = wake_flags & WF_SYNC; | ||
2732 | |||
2733 | if (sd_flag & SD_BALANCE_WAKE) { | ||
2734 | if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) | ||
2735 | want_affine = 1; | ||
2736 | new_cpu = prev_cpu; | ||
2737 | } | ||
2738 | |||
2739 | rcu_read_lock(); | ||
2740 | for_each_domain(cpu, tmp) { | ||
2741 | if (!(tmp->flags & SD_LOAD_BALANCE)) | ||
2742 | continue; | ||
2743 | |||
2744 | /* | ||
2745 | * If power savings logic is enabled for a domain, see if we | ||
2746 | * are not overloaded, if so, don't balance wider. | ||
2747 | */ | ||
2748 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
2749 | unsigned long power = 0; | ||
2750 | unsigned long nr_running = 0; | ||
2751 | unsigned long capacity; | ||
2752 | int i; | ||
2753 | |||
2754 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
2755 | power += power_of(i); | ||
2756 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
2757 | } | ||
2758 | |||
2759 | capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); | ||
2760 | |||
2761 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
2762 | nr_running /= 2; | ||
2763 | |||
2764 | if (nr_running < capacity) | ||
2765 | want_sd = 0; | ||
2766 | } | ||
2767 | |||
2768 | /* | ||
2769 | * If both cpu and prev_cpu are part of this domain, | ||
2770 | * cpu is a valid SD_WAKE_AFFINE target. | ||
2771 | */ | ||
2772 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
2773 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
2774 | affine_sd = tmp; | ||
2775 | want_affine = 0; | ||
2776 | } | ||
2777 | |||
2778 | if (!want_sd && !want_affine) | ||
2779 | break; | ||
2780 | |||
2781 | if (!(tmp->flags & sd_flag)) | ||
2782 | continue; | ||
2783 | |||
2784 | if (want_sd) | ||
2785 | sd = tmp; | ||
2786 | } | ||
2787 | |||
2788 | if (affine_sd) { | ||
2789 | if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) | ||
2790 | prev_cpu = cpu; | ||
2791 | |||
2792 | new_cpu = select_idle_sibling(p, prev_cpu); | ||
2793 | goto unlock; | ||
2794 | } | ||
2795 | |||
2796 | while (sd) { | ||
2797 | int load_idx = sd->forkexec_idx; | ||
2798 | struct sched_group *group; | ||
2799 | int weight; | ||
2800 | |||
2801 | if (!(sd->flags & sd_flag)) { | ||
2802 | sd = sd->child; | ||
2803 | continue; | ||
2804 | } | ||
2805 | |||
2806 | if (sd_flag & SD_BALANCE_WAKE) | ||
2807 | load_idx = sd->wake_idx; | ||
2808 | |||
2809 | group = find_idlest_group(sd, p, cpu, load_idx); | ||
2810 | if (!group) { | ||
2811 | sd = sd->child; | ||
2812 | continue; | ||
2813 | } | ||
2814 | |||
2815 | new_cpu = find_idlest_cpu(group, p, cpu); | ||
2816 | if (new_cpu == -1 || new_cpu == cpu) { | ||
2817 | /* Now try balancing at a lower domain level of cpu */ | ||
2818 | sd = sd->child; | ||
2819 | continue; | ||
2820 | } | ||
2821 | |||
2822 | /* Now try balancing at a lower domain level of new_cpu */ | ||
2823 | cpu = new_cpu; | ||
2824 | weight = sd->span_weight; | ||
2825 | sd = NULL; | ||
2826 | for_each_domain(cpu, tmp) { | ||
2827 | if (weight <= tmp->span_weight) | ||
2828 | break; | ||
2829 | if (tmp->flags & sd_flag) | ||
2830 | sd = tmp; | ||
2831 | } | ||
2832 | /* while loop will break here if sd == NULL */ | ||
2833 | } | ||
2834 | unlock: | ||
2835 | rcu_read_unlock(); | ||
2836 | |||
2837 | return new_cpu; | ||
2838 | } | ||
2839 | #endif /* CONFIG_SMP */ | ||
2840 | |||
2841 | static unsigned long | ||
2842 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
2843 | { | ||
2844 | unsigned long gran = sysctl_sched_wakeup_granularity; | ||
2845 | |||
2846 | /* | ||
2847 | * Since its curr running now, convert the gran from real-time | ||
2848 | * to virtual-time in his units. | ||
2849 | * | ||
2850 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
2851 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
2852 | * the resulting gran will be larger, therefore penalizing the | ||
2853 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
2854 | * be smaller, again penalizing the lighter task. | ||
2855 | * | ||
2856 | * This is especially important for buddies when the leftmost | ||
2857 | * task is higher priority than the buddy. | ||
2858 | */ | ||
2859 | return calc_delta_fair(gran, se); | ||
2860 | } | ||
2861 | |||
2862 | /* | ||
2863 | * Should 'se' preempt 'curr'. | ||
2864 | * | ||
2865 | * |s1 | ||
2866 | * |s2 | ||
2867 | * |s3 | ||
2868 | * g | ||
2869 | * |<--->|c | ||
2870 | * | ||
2871 | * w(c, s1) = -1 | ||
2872 | * w(c, s2) = 0 | ||
2873 | * w(c, s3) = 1 | ||
2874 | * | ||
2875 | */ | ||
2876 | static int | ||
2877 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | ||
2878 | { | ||
2879 | s64 gran, vdiff = curr->vruntime - se->vruntime; | ||
2880 | |||
2881 | if (vdiff <= 0) | ||
2882 | return -1; | ||
2883 | |||
2884 | gran = wakeup_gran(curr, se); | ||
2885 | if (vdiff > gran) | ||
2886 | return 1; | ||
2887 | |||
2888 | return 0; | ||
2889 | } | ||
2890 | |||
2891 | static void set_last_buddy(struct sched_entity *se) | ||
2892 | { | ||
2893 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | ||
2894 | return; | ||
2895 | |||
2896 | for_each_sched_entity(se) | ||
2897 | cfs_rq_of(se)->last = se; | ||
2898 | } | ||
2899 | |||
2900 | static void set_next_buddy(struct sched_entity *se) | ||
2901 | { | ||
2902 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | ||
2903 | return; | ||
2904 | |||
2905 | for_each_sched_entity(se) | ||
2906 | cfs_rq_of(se)->next = se; | ||
2907 | } | ||
2908 | |||
2909 | static void set_skip_buddy(struct sched_entity *se) | ||
2910 | { | ||
2911 | for_each_sched_entity(se) | ||
2912 | cfs_rq_of(se)->skip = se; | ||
2913 | } | ||
2914 | |||
2915 | /* | ||
2916 | * Preempt the current task with a newly woken task if needed: | ||
2917 | */ | ||
2918 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | ||
2919 | { | ||
2920 | struct task_struct *curr = rq->curr; | ||
2921 | struct sched_entity *se = &curr->se, *pse = &p->se; | ||
2922 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
2923 | int scale = cfs_rq->nr_running >= sched_nr_latency; | ||
2924 | int next_buddy_marked = 0; | ||
2925 | |||
2926 | if (unlikely(se == pse)) | ||
2927 | return; | ||
2928 | |||
2929 | /* | ||
2930 | * This is possible from callers such as pull_task(), in which we | ||
2931 | * unconditionally check_prempt_curr() after an enqueue (which may have | ||
2932 | * lead to a throttle). This both saves work and prevents false | ||
2933 | * next-buddy nomination below. | ||
2934 | */ | ||
2935 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | ||
2936 | return; | ||
2937 | |||
2938 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | ||
2939 | set_next_buddy(pse); | ||
2940 | next_buddy_marked = 1; | ||
2941 | } | ||
2942 | |||
2943 | /* | ||
2944 | * We can come here with TIF_NEED_RESCHED already set from new task | ||
2945 | * wake up path. | ||
2946 | * | ||
2947 | * Note: this also catches the edge-case of curr being in a throttled | ||
2948 | * group (e.g. via set_curr_task), since update_curr() (in the | ||
2949 | * enqueue of curr) will have resulted in resched being set. This | ||
2950 | * prevents us from potentially nominating it as a false LAST_BUDDY | ||
2951 | * below. | ||
2952 | */ | ||
2953 | if (test_tsk_need_resched(curr)) | ||
2954 | return; | ||
2955 | |||
2956 | /* Idle tasks are by definition preempted by non-idle tasks. */ | ||
2957 | if (unlikely(curr->policy == SCHED_IDLE) && | ||
2958 | likely(p->policy != SCHED_IDLE)) | ||
2959 | goto preempt; | ||
2960 | |||
2961 | /* | ||
2962 | * Batch and idle tasks do not preempt non-idle tasks (their preemption | ||
2963 | * is driven by the tick): | ||
2964 | */ | ||
2965 | if (unlikely(p->policy != SCHED_NORMAL)) | ||
2966 | return; | ||
2967 | |||
2968 | find_matching_se(&se, &pse); | ||
2969 | update_curr(cfs_rq_of(se)); | ||
2970 | BUG_ON(!pse); | ||
2971 | if (wakeup_preempt_entity(se, pse) == 1) { | ||
2972 | /* | ||
2973 | * Bias pick_next to pick the sched entity that is | ||
2974 | * triggering this preemption. | ||
2975 | */ | ||
2976 | if (!next_buddy_marked) | ||
2977 | set_next_buddy(pse); | ||
2978 | goto preempt; | ||
2979 | } | ||
2980 | |||
2981 | return; | ||
2982 | |||
2983 | preempt: | ||
2984 | resched_task(curr); | ||
2985 | /* | ||
2986 | * Only set the backward buddy when the current task is still | ||
2987 | * on the rq. This can happen when a wakeup gets interleaved | ||
2988 | * with schedule on the ->pre_schedule() or idle_balance() | ||
2989 | * point, either of which can * drop the rq lock. | ||
2990 | * | ||
2991 | * Also, during early boot the idle thread is in the fair class, | ||
2992 | * for obvious reasons its a bad idea to schedule back to it. | ||
2993 | */ | ||
2994 | if (unlikely(!se->on_rq || curr == rq->idle)) | ||
2995 | return; | ||
2996 | |||
2997 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | ||
2998 | set_last_buddy(se); | ||
2999 | } | ||
3000 | |||
3001 | static struct task_struct *pick_next_task_fair(struct rq *rq) | ||
3002 | { | ||
3003 | struct task_struct *p; | ||
3004 | struct cfs_rq *cfs_rq = &rq->cfs; | ||
3005 | struct sched_entity *se; | ||
3006 | |||
3007 | if (!cfs_rq->nr_running) | ||
3008 | return NULL; | ||
3009 | |||
3010 | do { | ||
3011 | se = pick_next_entity(cfs_rq); | ||
3012 | set_next_entity(cfs_rq, se); | ||
3013 | cfs_rq = group_cfs_rq(se); | ||
3014 | } while (cfs_rq); | ||
3015 | |||
3016 | p = task_of(se); | ||
3017 | hrtick_start_fair(rq, p); | ||
3018 | |||
3019 | return p; | ||
3020 | } | ||
3021 | |||
3022 | /* | ||
3023 | * Account for a descheduled task: | ||
3024 | */ | ||
3025 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | ||
3026 | { | ||
3027 | struct sched_entity *se = &prev->se; | ||
3028 | struct cfs_rq *cfs_rq; | ||
3029 | |||
3030 | for_each_sched_entity(se) { | ||
3031 | cfs_rq = cfs_rq_of(se); | ||
3032 | put_prev_entity(cfs_rq, se); | ||
3033 | } | ||
3034 | } | ||
3035 | |||
3036 | /* | ||
3037 | * sched_yield() is very simple | ||
3038 | * | ||
3039 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | ||
3040 | */ | ||
3041 | static void yield_task_fair(struct rq *rq) | ||
3042 | { | ||
3043 | struct task_struct *curr = rq->curr; | ||
3044 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
3045 | struct sched_entity *se = &curr->se; | ||
3046 | |||
3047 | /* | ||
3048 | * Are we the only task in the tree? | ||
3049 | */ | ||
3050 | if (unlikely(rq->nr_running == 1)) | ||
3051 | return; | ||
3052 | |||
3053 | clear_buddies(cfs_rq, se); | ||
3054 | |||
3055 | if (curr->policy != SCHED_BATCH) { | ||
3056 | update_rq_clock(rq); | ||
3057 | /* | ||
3058 | * Update run-time statistics of the 'current'. | ||
3059 | */ | ||
3060 | update_curr(cfs_rq); | ||
3061 | } | ||
3062 | |||
3063 | set_skip_buddy(se); | ||
3064 | } | ||
3065 | |||
3066 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) | ||
3067 | { | ||
3068 | struct sched_entity *se = &p->se; | ||
3069 | |||
3070 | /* throttled hierarchies are not runnable */ | ||
3071 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | ||
3072 | return false; | ||
3073 | |||
3074 | /* Tell the scheduler that we'd really like pse to run next. */ | ||
3075 | set_next_buddy(se); | ||
3076 | |||
3077 | yield_task_fair(rq); | ||
3078 | |||
3079 | return true; | ||
3080 | } | ||
3081 | |||
3082 | #ifdef CONFIG_SMP | ||
3083 | /************************************************** | ||
3084 | * Fair scheduling class load-balancing methods: | ||
3085 | */ | ||
3086 | |||
3087 | /* | ||
3088 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
3089 | * Both runqueues must be locked. | ||
3090 | */ | ||
3091 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
3092 | struct rq *this_rq, int this_cpu) | ||
3093 | { | ||
3094 | deactivate_task(src_rq, p, 0); | ||
3095 | set_task_cpu(p, this_cpu); | ||
3096 | activate_task(this_rq, p, 0); | ||
3097 | check_preempt_curr(this_rq, p, 0); | ||
3098 | } | ||
3099 | |||
3100 | /* | ||
3101 | * Is this task likely cache-hot: | ||
3102 | */ | ||
3103 | static int | ||
3104 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | ||
3105 | { | ||
3106 | s64 delta; | ||
3107 | |||
3108 | if (p->sched_class != &fair_sched_class) | ||
3109 | return 0; | ||
3110 | |||
3111 | if (unlikely(p->policy == SCHED_IDLE)) | ||
3112 | return 0; | ||
3113 | |||
3114 | /* | ||
3115 | * Buddy candidates are cache hot: | ||
3116 | */ | ||
3117 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | ||
3118 | (&p->se == cfs_rq_of(&p->se)->next || | ||
3119 | &p->se == cfs_rq_of(&p->se)->last)) | ||
3120 | return 1; | ||
3121 | |||
3122 | if (sysctl_sched_migration_cost == -1) | ||
3123 | return 1; | ||
3124 | if (sysctl_sched_migration_cost == 0) | ||
3125 | return 0; | ||
3126 | |||
3127 | delta = now - p->se.exec_start; | ||
3128 | |||
3129 | return delta < (s64)sysctl_sched_migration_cost; | ||
3130 | } | ||
3131 | |||
3132 | /* | ||
3133 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
3134 | */ | ||
3135 | static | ||
3136 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
3137 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3138 | int *all_pinned) | ||
3139 | { | ||
3140 | int tsk_cache_hot = 0; | ||
3141 | /* | ||
3142 | * We do not migrate tasks that are: | ||
3143 | * 1) running (obviously), or | ||
3144 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
3145 | * 3) are cache-hot on their current CPU. | ||
3146 | */ | ||
3147 | if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { | ||
3148 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | ||
3149 | return 0; | ||
3150 | } | ||
3151 | *all_pinned = 0; | ||
3152 | |||
3153 | if (task_running(rq, p)) { | ||
3154 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); | ||
3155 | return 0; | ||
3156 | } | ||
3157 | |||
3158 | /* | ||
3159 | * Aggressive migration if: | ||
3160 | * 1) task is cache cold, or | ||
3161 | * 2) too many balance attempts have failed. | ||
3162 | */ | ||
3163 | |||
3164 | tsk_cache_hot = task_hot(p, rq->clock_task, sd); | ||
3165 | if (!tsk_cache_hot || | ||
3166 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
3167 | #ifdef CONFIG_SCHEDSTATS | ||
3168 | if (tsk_cache_hot) { | ||
3169 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
3170 | schedstat_inc(p, se.statistics.nr_forced_migrations); | ||
3171 | } | ||
3172 | #endif | ||
3173 | return 1; | ||
3174 | } | ||
3175 | |||
3176 | if (tsk_cache_hot) { | ||
3177 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | ||
3178 | return 0; | ||
3179 | } | ||
3180 | return 1; | ||
3181 | } | ||
3182 | |||
3183 | /* | ||
3184 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
3185 | * part of active balancing operations within "domain". | ||
3186 | * Returns 1 if successful and 0 otherwise. | ||
3187 | * | ||
3188 | * Called with both runqueues locked. | ||
3189 | */ | ||
3190 | static int | ||
3191 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3192 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
3193 | { | ||
3194 | struct task_struct *p, *n; | ||
3195 | struct cfs_rq *cfs_rq; | ||
3196 | int pinned = 0; | ||
3197 | |||
3198 | for_each_leaf_cfs_rq(busiest, cfs_rq) { | ||
3199 | list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { | ||
3200 | if (throttled_lb_pair(task_group(p), | ||
3201 | busiest->cpu, this_cpu)) | ||
3202 | break; | ||
3203 | |||
3204 | if (!can_migrate_task(p, busiest, this_cpu, | ||
3205 | sd, idle, &pinned)) | ||
3206 | continue; | ||
3207 | |||
3208 | pull_task(busiest, p, this_rq, this_cpu); | ||
3209 | /* | ||
3210 | * Right now, this is only the second place pull_task() | ||
3211 | * is called, so we can safely collect pull_task() | ||
3212 | * stats here rather than inside pull_task(). | ||
3213 | */ | ||
3214 | schedstat_inc(sd, lb_gained[idle]); | ||
3215 | return 1; | ||
3216 | } | ||
3217 | } | ||
3218 | |||
3219 | return 0; | ||
3220 | } | ||
3221 | |||
3222 | static unsigned long | ||
3223 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3224 | unsigned long max_load_move, struct sched_domain *sd, | ||
3225 | enum cpu_idle_type idle, int *all_pinned, | ||
3226 | struct cfs_rq *busiest_cfs_rq) | ||
3227 | { | ||
3228 | int loops = 0, pulled = 0; | ||
3229 | long rem_load_move = max_load_move; | ||
3230 | struct task_struct *p, *n; | ||
3231 | |||
3232 | if (max_load_move == 0) | ||
3233 | goto out; | ||
3234 | |||
3235 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { | ||
3236 | if (loops++ > sysctl_sched_nr_migrate) | ||
3237 | break; | ||
3238 | |||
3239 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
3240 | !can_migrate_task(p, busiest, this_cpu, sd, idle, | ||
3241 | all_pinned)) | ||
3242 | continue; | ||
3243 | |||
3244 | pull_task(busiest, p, this_rq, this_cpu); | ||
3245 | pulled++; | ||
3246 | rem_load_move -= p->se.load.weight; | ||
3247 | |||
3248 | #ifdef CONFIG_PREEMPT | ||
3249 | /* | ||
3250 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3251 | * kernels will stop after the first task is pulled to minimize | ||
3252 | * the critical section. | ||
3253 | */ | ||
3254 | if (idle == CPU_NEWLY_IDLE) | ||
3255 | break; | ||
3256 | #endif | ||
3257 | |||
3258 | /* | ||
3259 | * We only want to steal up to the prescribed amount of | ||
3260 | * weighted load. | ||
3261 | */ | ||
3262 | if (rem_load_move <= 0) | ||
3263 | break; | ||
3264 | } | ||
3265 | out: | ||
3266 | /* | ||
3267 | * Right now, this is one of only two places pull_task() is called, | ||
3268 | * so we can safely collect pull_task() stats here rather than | ||
3269 | * inside pull_task(). | ||
3270 | */ | ||
3271 | schedstat_add(sd, lb_gained[idle], pulled); | ||
3272 | |||
3273 | return max_load_move - rem_load_move; | ||
3274 | } | ||
3275 | |||
3276 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
3277 | /* | ||
3278 | * update tg->load_weight by folding this cpu's load_avg | ||
3279 | */ | ||
3280 | static int update_shares_cpu(struct task_group *tg, int cpu) | ||
3281 | { | ||
3282 | struct cfs_rq *cfs_rq; | ||
3283 | unsigned long flags; | ||
3284 | struct rq *rq; | ||
3285 | |||
3286 | if (!tg->se[cpu]) | ||
3287 | return 0; | ||
3288 | |||
3289 | rq = cpu_rq(cpu); | ||
3290 | cfs_rq = tg->cfs_rq[cpu]; | ||
3291 | |||
3292 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
3293 | |||
3294 | update_rq_clock(rq); | ||
3295 | update_cfs_load(cfs_rq, 1); | ||
3296 | |||
3297 | /* | ||
3298 | * We need to update shares after updating tg->load_weight in | ||
3299 | * order to adjust the weight of groups with long running tasks. | ||
3300 | */ | ||
3301 | update_cfs_shares(cfs_rq); | ||
3302 | |||
3303 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
3304 | |||
3305 | return 0; | ||
3306 | } | ||
3307 | |||
3308 | static void update_shares(int cpu) | ||
3309 | { | ||
3310 | struct cfs_rq *cfs_rq; | ||
3311 | struct rq *rq = cpu_rq(cpu); | ||
3312 | |||
3313 | rcu_read_lock(); | ||
3314 | /* | ||
3315 | * Iterates the task_group tree in a bottom up fashion, see | ||
3316 | * list_add_leaf_cfs_rq() for details. | ||
3317 | */ | ||
3318 | for_each_leaf_cfs_rq(rq, cfs_rq) { | ||
3319 | /* throttled entities do not contribute to load */ | ||
3320 | if (throttled_hierarchy(cfs_rq)) | ||
3321 | continue; | ||
3322 | |||
3323 | update_shares_cpu(cfs_rq->tg, cpu); | ||
3324 | } | ||
3325 | rcu_read_unlock(); | ||
3326 | } | ||
3327 | |||
3328 | /* | ||
3329 | * Compute the cpu's hierarchical load factor for each task group. | ||
3330 | * This needs to be done in a top-down fashion because the load of a child | ||
3331 | * group is a fraction of its parents load. | ||
3332 | */ | ||
3333 | static int tg_load_down(struct task_group *tg, void *data) | ||
3334 | { | ||
3335 | unsigned long load; | ||
3336 | long cpu = (long)data; | ||
3337 | |||
3338 | if (!tg->parent) { | ||
3339 | load = cpu_rq(cpu)->load.weight; | ||
3340 | } else { | ||
3341 | load = tg->parent->cfs_rq[cpu]->h_load; | ||
3342 | load *= tg->se[cpu]->load.weight; | ||
3343 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | ||
3344 | } | ||
3345 | |||
3346 | tg->cfs_rq[cpu]->h_load = load; | ||
3347 | |||
3348 | return 0; | ||
3349 | } | ||
3350 | |||
3351 | static void update_h_load(long cpu) | ||
3352 | { | ||
3353 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | ||
3354 | } | ||
3355 | |||
3356 | static unsigned long | ||
3357 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3358 | unsigned long max_load_move, | ||
3359 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3360 | int *all_pinned) | ||
3361 | { | ||
3362 | long rem_load_move = max_load_move; | ||
3363 | struct cfs_rq *busiest_cfs_rq; | ||
3364 | |||
3365 | rcu_read_lock(); | ||
3366 | update_h_load(cpu_of(busiest)); | ||
3367 | |||
3368 | for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { | ||
3369 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; | ||
3370 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | ||
3371 | u64 rem_load, moved_load; | ||
3372 | |||
3373 | /* | ||
3374 | * empty group or part of a throttled hierarchy | ||
3375 | */ | ||
3376 | if (!busiest_cfs_rq->task_weight || | ||
3377 | throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu)) | ||
3378 | continue; | ||
3379 | |||
3380 | rem_load = (u64)rem_load_move * busiest_weight; | ||
3381 | rem_load = div_u64(rem_load, busiest_h_load + 1); | ||
3382 | |||
3383 | moved_load = balance_tasks(this_rq, this_cpu, busiest, | ||
3384 | rem_load, sd, idle, all_pinned, | ||
3385 | busiest_cfs_rq); | ||
3386 | |||
3387 | if (!moved_load) | ||
3388 | continue; | ||
3389 | |||
3390 | moved_load *= busiest_h_load; | ||
3391 | moved_load = div_u64(moved_load, busiest_weight + 1); | ||
3392 | |||
3393 | rem_load_move -= moved_load; | ||
3394 | if (rem_load_move < 0) | ||
3395 | break; | ||
3396 | } | ||
3397 | rcu_read_unlock(); | ||
3398 | |||
3399 | return max_load_move - rem_load_move; | ||
3400 | } | ||
3401 | #else | ||
3402 | static inline void update_shares(int cpu) | ||
3403 | { | ||
3404 | } | ||
3405 | |||
3406 | static unsigned long | ||
3407 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3408 | unsigned long max_load_move, | ||
3409 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3410 | int *all_pinned) | ||
3411 | { | ||
3412 | return balance_tasks(this_rq, this_cpu, busiest, | ||
3413 | max_load_move, sd, idle, all_pinned, | ||
3414 | &busiest->cfs); | ||
3415 | } | ||
3416 | #endif | ||
3417 | |||
3418 | /* | ||
3419 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
3420 | * this_rq, as part of a balancing operation within domain "sd". | ||
3421 | * Returns 1 if successful and 0 otherwise. | ||
3422 | * | ||
3423 | * Called with both runqueues locked. | ||
3424 | */ | ||
3425 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3426 | unsigned long max_load_move, | ||
3427 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3428 | int *all_pinned) | ||
3429 | { | ||
3430 | unsigned long total_load_moved = 0, load_moved; | ||
3431 | |||
3432 | do { | ||
3433 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, | ||
3434 | max_load_move - total_load_moved, | ||
3435 | sd, idle, all_pinned); | ||
3436 | |||
3437 | total_load_moved += load_moved; | ||
3438 | |||
3439 | #ifdef CONFIG_PREEMPT | ||
3440 | /* | ||
3441 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3442 | * kernels will stop after the first task is pulled to minimize | ||
3443 | * the critical section. | ||
3444 | */ | ||
3445 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
3446 | break; | ||
3447 | |||
3448 | if (raw_spin_is_contended(&this_rq->lock) || | ||
3449 | raw_spin_is_contended(&busiest->lock)) | ||
3450 | break; | ||
3451 | #endif | ||
3452 | } while (load_moved && max_load_move > total_load_moved); | ||
3453 | |||
3454 | return total_load_moved > 0; | ||
3455 | } | ||
3456 | |||
3457 | /********** Helpers for find_busiest_group ************************/ | ||
3458 | /* | ||
3459 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
3460 | * during load balancing. | ||
3461 | */ | ||
3462 | struct sd_lb_stats { | ||
3463 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
3464 | struct sched_group *this; /* Local group in this sd */ | ||
3465 | unsigned long total_load; /* Total load of all groups in sd */ | ||
3466 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
3467 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
3468 | |||
3469 | /** Statistics of this group */ | ||
3470 | unsigned long this_load; | ||
3471 | unsigned long this_load_per_task; | ||
3472 | unsigned long this_nr_running; | ||
3473 | unsigned long this_has_capacity; | ||
3474 | unsigned int this_idle_cpus; | ||
3475 | |||
3476 | /* Statistics of the busiest group */ | ||
3477 | unsigned int busiest_idle_cpus; | ||
3478 | unsigned long max_load; | ||
3479 | unsigned long busiest_load_per_task; | ||
3480 | unsigned long busiest_nr_running; | ||
3481 | unsigned long busiest_group_capacity; | ||
3482 | unsigned long busiest_has_capacity; | ||
3483 | unsigned int busiest_group_weight; | ||
3484 | |||
3485 | int group_imb; /* Is there imbalance in this sd */ | ||
3486 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3487 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
3488 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
3489 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
3490 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
3491 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3492 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3493 | #endif | ||
3494 | }; | ||
3495 | |||
3496 | /* | ||
3497 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3498 | */ | ||
3499 | struct sg_lb_stats { | ||
3500 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3501 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3502 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3503 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3504 | unsigned long group_capacity; | ||
3505 | unsigned long idle_cpus; | ||
3506 | unsigned long group_weight; | ||
3507 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3508 | int group_has_capacity; /* Is there extra capacity in the group? */ | ||
3509 | }; | ||
3510 | |||
3511 | /** | ||
3512 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3513 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3514 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3515 | */ | ||
3516 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3517 | enum cpu_idle_type idle) | ||
3518 | { | ||
3519 | int load_idx; | ||
3520 | |||
3521 | switch (idle) { | ||
3522 | case CPU_NOT_IDLE: | ||
3523 | load_idx = sd->busy_idx; | ||
3524 | break; | ||
3525 | |||
3526 | case CPU_NEWLY_IDLE: | ||
3527 | load_idx = sd->newidle_idx; | ||
3528 | break; | ||
3529 | default: | ||
3530 | load_idx = sd->idle_idx; | ||
3531 | break; | ||
3532 | } | ||
3533 | |||
3534 | return load_idx; | ||
3535 | } | ||
3536 | |||
3537 | |||
3538 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3539 | /** | ||
3540 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3541 | * the given sched_domain, during load balancing. | ||
3542 | * | ||
3543 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3544 | * @sds: Variable containing the statistics for sd. | ||
3545 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3546 | */ | ||
3547 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3548 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3549 | { | ||
3550 | /* | ||
3551 | * Busy processors will not participate in power savings | ||
3552 | * balance. | ||
3553 | */ | ||
3554 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3555 | sds->power_savings_balance = 0; | ||
3556 | else { | ||
3557 | sds->power_savings_balance = 1; | ||
3558 | sds->min_nr_running = ULONG_MAX; | ||
3559 | sds->leader_nr_running = 0; | ||
3560 | } | ||
3561 | } | ||
3562 | |||
3563 | /** | ||
3564 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3565 | * sched_domain while performing load balancing. | ||
3566 | * | ||
3567 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3568 | * @sds: Variable containing the statistics of the sched_domain | ||
3569 | * @local_group: Does group contain the CPU for which we're performing | ||
3570 | * load balancing ? | ||
3571 | * @sgs: Variable containing the statistics of the group. | ||
3572 | */ | ||
3573 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3574 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3575 | { | ||
3576 | |||
3577 | if (!sds->power_savings_balance) | ||
3578 | return; | ||
3579 | |||
3580 | /* | ||
3581 | * If the local group is idle or completely loaded | ||
3582 | * no need to do power savings balance at this domain | ||
3583 | */ | ||
3584 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3585 | !sds->this_nr_running)) | ||
3586 | sds->power_savings_balance = 0; | ||
3587 | |||
3588 | /* | ||
3589 | * If a group is already running at full capacity or idle, | ||
3590 | * don't include that group in power savings calculations | ||
3591 | */ | ||
3592 | if (!sds->power_savings_balance || | ||
3593 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3594 | !sgs->sum_nr_running) | ||
3595 | return; | ||
3596 | |||
3597 | /* | ||
3598 | * Calculate the group which has the least non-idle load. | ||
3599 | * This is the group from where we need to pick up the load | ||
3600 | * for saving power | ||
3601 | */ | ||
3602 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3603 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3604 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3605 | sds->group_min = group; | ||
3606 | sds->min_nr_running = sgs->sum_nr_running; | ||
3607 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3608 | sgs->sum_nr_running; | ||
3609 | } | ||
3610 | |||
3611 | /* | ||
3612 | * Calculate the group which is almost near its | ||
3613 | * capacity but still has some space to pick up some load | ||
3614 | * from other group and save more power | ||
3615 | */ | ||
3616 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
3617 | return; | ||
3618 | |||
3619 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
3620 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
3621 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
3622 | sds->group_leader = group; | ||
3623 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3624 | } | ||
3625 | } | ||
3626 | |||
3627 | /** | ||
3628 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
3629 | * @sds: Variable containing the statistics of the sched_domain | ||
3630 | * under consideration. | ||
3631 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3632 | * @imbalance: Variable to store the imbalance. | ||
3633 | * | ||
3634 | * Description: | ||
3635 | * Check if we have potential to perform some power-savings balance. | ||
3636 | * If yes, set the busiest group to be the least loaded group in the | ||
3637 | * sched_domain, so that it's CPUs can be put to idle. | ||
3638 | * | ||
3639 | * Returns 1 if there is potential to perform power-savings balance. | ||
3640 | * Else returns 0. | ||
3641 | */ | ||
3642 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3643 | int this_cpu, unsigned long *imbalance) | ||
3644 | { | ||
3645 | if (!sds->power_savings_balance) | ||
3646 | return 0; | ||
3647 | |||
3648 | if (sds->this != sds->group_leader || | ||
3649 | sds->group_leader == sds->group_min) | ||
3650 | return 0; | ||
3651 | |||
3652 | *imbalance = sds->min_load_per_task; | ||
3653 | sds->busiest = sds->group_min; | ||
3654 | |||
3655 | return 1; | ||
3656 | |||
3657 | } | ||
3658 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3659 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3660 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3661 | { | ||
3662 | return; | ||
3663 | } | ||
3664 | |||
3665 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3666 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3667 | { | ||
3668 | return; | ||
3669 | } | ||
3670 | |||
3671 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3672 | int this_cpu, unsigned long *imbalance) | ||
3673 | { | ||
3674 | return 0; | ||
3675 | } | ||
3676 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3677 | |||
3678 | |||
3679 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3680 | { | ||
3681 | return SCHED_POWER_SCALE; | ||
3682 | } | ||
3683 | |||
3684 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3685 | { | ||
3686 | return default_scale_freq_power(sd, cpu); | ||
3687 | } | ||
3688 | |||
3689 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3690 | { | ||
3691 | unsigned long weight = sd->span_weight; | ||
3692 | unsigned long smt_gain = sd->smt_gain; | ||
3693 | |||
3694 | smt_gain /= weight; | ||
3695 | |||
3696 | return smt_gain; | ||
3697 | } | ||
3698 | |||
3699 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3700 | { | ||
3701 | return default_scale_smt_power(sd, cpu); | ||
3702 | } | ||
3703 | |||
3704 | unsigned long scale_rt_power(int cpu) | ||
3705 | { | ||
3706 | struct rq *rq = cpu_rq(cpu); | ||
3707 | u64 total, available; | ||
3708 | |||
3709 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3710 | |||
3711 | if (unlikely(total < rq->rt_avg)) { | ||
3712 | /* Ensures that power won't end up being negative */ | ||
3713 | available = 0; | ||
3714 | } else { | ||
3715 | available = total - rq->rt_avg; | ||
3716 | } | ||
3717 | |||
3718 | if (unlikely((s64)total < SCHED_POWER_SCALE)) | ||
3719 | total = SCHED_POWER_SCALE; | ||
3720 | |||
3721 | total >>= SCHED_POWER_SHIFT; | ||
3722 | |||
3723 | return div_u64(available, total); | ||
3724 | } | ||
3725 | |||
3726 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3727 | { | ||
3728 | unsigned long weight = sd->span_weight; | ||
3729 | unsigned long power = SCHED_POWER_SCALE; | ||
3730 | struct sched_group *sdg = sd->groups; | ||
3731 | |||
3732 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3733 | if (sched_feat(ARCH_POWER)) | ||
3734 | power *= arch_scale_smt_power(sd, cpu); | ||
3735 | else | ||
3736 | power *= default_scale_smt_power(sd, cpu); | ||
3737 | |||
3738 | power >>= SCHED_POWER_SHIFT; | ||
3739 | } | ||
3740 | |||
3741 | sdg->sgp->power_orig = power; | ||
3742 | |||
3743 | if (sched_feat(ARCH_POWER)) | ||
3744 | power *= arch_scale_freq_power(sd, cpu); | ||
3745 | else | ||
3746 | power *= default_scale_freq_power(sd, cpu); | ||
3747 | |||
3748 | power >>= SCHED_POWER_SHIFT; | ||
3749 | |||
3750 | power *= scale_rt_power(cpu); | ||
3751 | power >>= SCHED_POWER_SHIFT; | ||
3752 | |||
3753 | if (!power) | ||
3754 | power = 1; | ||
3755 | |||
3756 | cpu_rq(cpu)->cpu_power = power; | ||
3757 | sdg->sgp->power = power; | ||
3758 | } | ||
3759 | |||
3760 | void update_group_power(struct sched_domain *sd, int cpu) | ||
3761 | { | ||
3762 | struct sched_domain *child = sd->child; | ||
3763 | struct sched_group *group, *sdg = sd->groups; | ||
3764 | unsigned long power; | ||
3765 | |||
3766 | if (!child) { | ||
3767 | update_cpu_power(sd, cpu); | ||
3768 | return; | ||
3769 | } | ||
3770 | |||
3771 | power = 0; | ||
3772 | |||
3773 | group = child->groups; | ||
3774 | do { | ||
3775 | power += group->sgp->power; | ||
3776 | group = group->next; | ||
3777 | } while (group != child->groups); | ||
3778 | |||
3779 | sdg->sgp->power = power; | ||
3780 | } | ||
3781 | |||
3782 | /* | ||
3783 | * Try and fix up capacity for tiny siblings, this is needed when | ||
3784 | * things like SD_ASYM_PACKING need f_b_g to select another sibling | ||
3785 | * which on its own isn't powerful enough. | ||
3786 | * | ||
3787 | * See update_sd_pick_busiest() and check_asym_packing(). | ||
3788 | */ | ||
3789 | static inline int | ||
3790 | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) | ||
3791 | { | ||
3792 | /* | ||
3793 | * Only siblings can have significantly less than SCHED_POWER_SCALE | ||
3794 | */ | ||
3795 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | ||
3796 | return 0; | ||
3797 | |||
3798 | /* | ||
3799 | * If ~90% of the cpu_power is still there, we're good. | ||
3800 | */ | ||
3801 | if (group->sgp->power * 32 > group->sgp->power_orig * 29) | ||
3802 | return 1; | ||
3803 | |||
3804 | return 0; | ||
3805 | } | ||
3806 | |||
3807 | /** | ||
3808 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3809 | * @sd: The sched_domain whose statistics are to be updated. | ||
3810 | * @group: sched_group whose statistics are to be updated. | ||
3811 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3812 | * @idle: Idle status of this_cpu | ||
3813 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3814 | * @local_group: Does group contain this_cpu. | ||
3815 | * @cpus: Set of cpus considered for load balancing. | ||
3816 | * @balance: Should we balance. | ||
3817 | * @sgs: variable to hold the statistics for this group. | ||
3818 | */ | ||
3819 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
3820 | struct sched_group *group, int this_cpu, | ||
3821 | enum cpu_idle_type idle, int load_idx, | ||
3822 | int local_group, const struct cpumask *cpus, | ||
3823 | int *balance, struct sg_lb_stats *sgs) | ||
3824 | { | ||
3825 | unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; | ||
3826 | int i; | ||
3827 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3828 | unsigned long avg_load_per_task = 0; | ||
3829 | |||
3830 | if (local_group) | ||
3831 | balance_cpu = group_first_cpu(group); | ||
3832 | |||
3833 | /* Tally up the load of all CPUs in the group */ | ||
3834 | max_cpu_load = 0; | ||
3835 | min_cpu_load = ~0UL; | ||
3836 | max_nr_running = 0; | ||
3837 | |||
3838 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3839 | struct rq *rq = cpu_rq(i); | ||
3840 | |||
3841 | /* Bias balancing toward cpus of our domain */ | ||
3842 | if (local_group) { | ||
3843 | if (idle_cpu(i) && !first_idle_cpu) { | ||
3844 | first_idle_cpu = 1; | ||
3845 | balance_cpu = i; | ||
3846 | } | ||
3847 | |||
3848 | load = target_load(i, load_idx); | ||
3849 | } else { | ||
3850 | load = source_load(i, load_idx); | ||
3851 | if (load > max_cpu_load) { | ||
3852 | max_cpu_load = load; | ||
3853 | max_nr_running = rq->nr_running; | ||
3854 | } | ||
3855 | if (min_cpu_load > load) | ||
3856 | min_cpu_load = load; | ||
3857 | } | ||
3858 | |||
3859 | sgs->group_load += load; | ||
3860 | sgs->sum_nr_running += rq->nr_running; | ||
3861 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
3862 | if (idle_cpu(i)) | ||
3863 | sgs->idle_cpus++; | ||
3864 | } | ||
3865 | |||
3866 | /* | ||
3867 | * First idle cpu or the first cpu(busiest) in this sched group | ||
3868 | * is eligible for doing load balancing at this and above | ||
3869 | * domains. In the newly idle case, we will allow all the cpu's | ||
3870 | * to do the newly idle load balance. | ||
3871 | */ | ||
3872 | if (idle != CPU_NEWLY_IDLE && local_group) { | ||
3873 | if (balance_cpu != this_cpu) { | ||
3874 | *balance = 0; | ||
3875 | return; | ||
3876 | } | ||
3877 | update_group_power(sd, this_cpu); | ||
3878 | } | ||
3879 | |||
3880 | /* Adjust by relative CPU power of the group */ | ||
3881 | sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; | ||
3882 | |||
3883 | /* | ||
3884 | * Consider the group unbalanced when the imbalance is larger | ||
3885 | * than the average weight of a task. | ||
3886 | * | ||
3887 | * APZ: with cgroup the avg task weight can vary wildly and | ||
3888 | * might not be a suitable number - should we keep a | ||
3889 | * normalized nr_running number somewhere that negates | ||
3890 | * the hierarchy? | ||
3891 | */ | ||
3892 | if (sgs->sum_nr_running) | ||
3893 | avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | ||
3894 | |||
3895 | if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) | ||
3896 | sgs->group_imb = 1; | ||
3897 | |||
3898 | sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, | ||
3899 | SCHED_POWER_SCALE); | ||
3900 | if (!sgs->group_capacity) | ||
3901 | sgs->group_capacity = fix_small_capacity(sd, group); | ||
3902 | sgs->group_weight = group->group_weight; | ||
3903 | |||
3904 | if (sgs->group_capacity > sgs->sum_nr_running) | ||
3905 | sgs->group_has_capacity = 1; | ||
3906 | } | ||
3907 | |||
3908 | /** | ||
3909 | * update_sd_pick_busiest - return 1 on busiest group | ||
3910 | * @sd: sched_domain whose statistics are to be checked | ||
3911 | * @sds: sched_domain statistics | ||
3912 | * @sg: sched_group candidate to be checked for being the busiest | ||
3913 | * @sgs: sched_group statistics | ||
3914 | * @this_cpu: the current cpu | ||
3915 | * | ||
3916 | * Determine if @sg is a busier group than the previously selected | ||
3917 | * busiest group. | ||
3918 | */ | ||
3919 | static bool update_sd_pick_busiest(struct sched_domain *sd, | ||
3920 | struct sd_lb_stats *sds, | ||
3921 | struct sched_group *sg, | ||
3922 | struct sg_lb_stats *sgs, | ||
3923 | int this_cpu) | ||
3924 | { | ||
3925 | if (sgs->avg_load <= sds->max_load) | ||
3926 | return false; | ||
3927 | |||
3928 | if (sgs->sum_nr_running > sgs->group_capacity) | ||
3929 | return true; | ||
3930 | |||
3931 | if (sgs->group_imb) | ||
3932 | return true; | ||
3933 | |||
3934 | /* | ||
3935 | * ASYM_PACKING needs to move all the work to the lowest | ||
3936 | * numbered CPUs in the group, therefore mark all groups | ||
3937 | * higher than ourself as busy. | ||
3938 | */ | ||
3939 | if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && | ||
3940 | this_cpu < group_first_cpu(sg)) { | ||
3941 | if (!sds->busiest) | ||
3942 | return true; | ||
3943 | |||
3944 | if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) | ||
3945 | return true; | ||
3946 | } | ||
3947 | |||
3948 | return false; | ||
3949 | } | ||
3950 | |||
3951 | /** | ||
3952 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. | ||
3953 | * @sd: sched_domain whose statistics are to be updated. | ||
3954 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3955 | * @idle: Idle status of this_cpu | ||
3956 | * @cpus: Set of cpus considered for load balancing. | ||
3957 | * @balance: Should we balance. | ||
3958 | * @sds: variable to hold the statistics for this sched_domain. | ||
3959 | */ | ||
3960 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3961 | enum cpu_idle_type idle, const struct cpumask *cpus, | ||
3962 | int *balance, struct sd_lb_stats *sds) | ||
3963 | { | ||
3964 | struct sched_domain *child = sd->child; | ||
3965 | struct sched_group *sg = sd->groups; | ||
3966 | struct sg_lb_stats sgs; | ||
3967 | int load_idx, prefer_sibling = 0; | ||
3968 | |||
3969 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3970 | prefer_sibling = 1; | ||
3971 | |||
3972 | init_sd_power_savings_stats(sd, sds, idle); | ||
3973 | load_idx = get_sd_load_idx(sd, idle); | ||
3974 | |||
3975 | do { | ||
3976 | int local_group; | ||
3977 | |||
3978 | local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); | ||
3979 | memset(&sgs, 0, sizeof(sgs)); | ||
3980 | update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, | ||
3981 | local_group, cpus, balance, &sgs); | ||
3982 | |||
3983 | if (local_group && !(*balance)) | ||
3984 | return; | ||
3985 | |||
3986 | sds->total_load += sgs.group_load; | ||
3987 | sds->total_pwr += sg->sgp->power; | ||
3988 | |||
3989 | /* | ||
3990 | * In case the child domain prefers tasks go to siblings | ||
3991 | * first, lower the sg capacity to one so that we'll try | ||
3992 | * and move all the excess tasks away. We lower the capacity | ||
3993 | * of a group only if the local group has the capacity to fit | ||
3994 | * these excess tasks, i.e. nr_running < group_capacity. The | ||
3995 | * extra check prevents the case where you always pull from the | ||
3996 | * heaviest group when it is already under-utilized (possible | ||
3997 | * with a large weight task outweighs the tasks on the system). | ||
3998 | */ | ||
3999 | if (prefer_sibling && !local_group && sds->this_has_capacity) | ||
4000 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
4001 | |||
4002 | if (local_group) { | ||
4003 | sds->this_load = sgs.avg_load; | ||
4004 | sds->this = sg; | ||
4005 | sds->this_nr_running = sgs.sum_nr_running; | ||
4006 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
4007 | sds->this_has_capacity = sgs.group_has_capacity; | ||
4008 | sds->this_idle_cpus = sgs.idle_cpus; | ||
4009 | } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { | ||
4010 | sds->max_load = sgs.avg_load; | ||
4011 | sds->busiest = sg; | ||
4012 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
4013 | sds->busiest_idle_cpus = sgs.idle_cpus; | ||
4014 | sds->busiest_group_capacity = sgs.group_capacity; | ||
4015 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
4016 | sds->busiest_has_capacity = sgs.group_has_capacity; | ||
4017 | sds->busiest_group_weight = sgs.group_weight; | ||
4018 | sds->group_imb = sgs.group_imb; | ||
4019 | } | ||
4020 | |||
4021 | update_sd_power_savings_stats(sg, sds, local_group, &sgs); | ||
4022 | sg = sg->next; | ||
4023 | } while (sg != sd->groups); | ||
4024 | } | ||
4025 | |||
4026 | /** | ||
4027 | * check_asym_packing - Check to see if the group is packed into the | ||
4028 | * sched doman. | ||
4029 | * | ||
4030 | * This is primarily intended to used at the sibling level. Some | ||
4031 | * cores like POWER7 prefer to use lower numbered SMT threads. In the | ||
4032 | * case of POWER7, it can move to lower SMT modes only when higher | ||
4033 | * threads are idle. When in lower SMT modes, the threads will | ||
4034 | * perform better since they share less core resources. Hence when we | ||
4035 | * have idle threads, we want them to be the higher ones. | ||
4036 | * | ||
4037 | * This packing function is run on idle threads. It checks to see if | ||
4038 | * the busiest CPU in this domain (core in the P7 case) has a higher | ||
4039 | * CPU number than the packing function is being run on. Here we are | ||
4040 | * assuming lower CPU number will be equivalent to lower a SMT thread | ||
4041 | * number. | ||
4042 | * | ||
4043 | * Returns 1 when packing is required and a task should be moved to | ||
4044 | * this CPU. The amount of the imbalance is returned in *imbalance. | ||
4045 | * | ||
4046 | * @sd: The sched_domain whose packing is to be checked. | ||
4047 | * @sds: Statistics of the sched_domain which is to be packed | ||
4048 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
4049 | * @imbalance: returns amount of imbalanced due to packing. | ||
4050 | */ | ||
4051 | static int check_asym_packing(struct sched_domain *sd, | ||
4052 | struct sd_lb_stats *sds, | ||
4053 | int this_cpu, unsigned long *imbalance) | ||
4054 | { | ||
4055 | int busiest_cpu; | ||
4056 | |||
4057 | if (!(sd->flags & SD_ASYM_PACKING)) | ||
4058 | return 0; | ||
4059 | |||
4060 | if (!sds->busiest) | ||
4061 | return 0; | ||
4062 | |||
4063 | busiest_cpu = group_first_cpu(sds->busiest); | ||
4064 | if (this_cpu > busiest_cpu) | ||
4065 | return 0; | ||
4066 | |||
4067 | *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, | ||
4068 | SCHED_POWER_SCALE); | ||
4069 | return 1; | ||
4070 | } | ||
4071 | |||
4072 | /** | ||
4073 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
4074 | * amongst the groups of a sched_domain, during | ||
4075 | * load balancing. | ||
4076 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
4077 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
4078 | * @imbalance: Variable to store the imbalance. | ||
4079 | */ | ||
4080 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
4081 | int this_cpu, unsigned long *imbalance) | ||
4082 | { | ||
4083 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
4084 | unsigned int imbn = 2; | ||
4085 | unsigned long scaled_busy_load_per_task; | ||
4086 | |||
4087 | if (sds->this_nr_running) { | ||
4088 | sds->this_load_per_task /= sds->this_nr_running; | ||
4089 | if (sds->busiest_load_per_task > | ||
4090 | sds->this_load_per_task) | ||
4091 | imbn = 1; | ||
4092 | } else | ||
4093 | sds->this_load_per_task = | ||
4094 | cpu_avg_load_per_task(this_cpu); | ||
4095 | |||
4096 | scaled_busy_load_per_task = sds->busiest_load_per_task | ||
4097 | * SCHED_POWER_SCALE; | ||
4098 | scaled_busy_load_per_task /= sds->busiest->sgp->power; | ||
4099 | |||
4100 | if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= | ||
4101 | (scaled_busy_load_per_task * imbn)) { | ||
4102 | *imbalance = sds->busiest_load_per_task; | ||
4103 | return; | ||
4104 | } | ||
4105 | |||
4106 | /* | ||
4107 | * OK, we don't have enough imbalance to justify moving tasks, | ||
4108 | * however we may be able to increase total CPU power used by | ||
4109 | * moving them. | ||
4110 | */ | ||
4111 | |||
4112 | pwr_now += sds->busiest->sgp->power * | ||
4113 | min(sds->busiest_load_per_task, sds->max_load); | ||
4114 | pwr_now += sds->this->sgp->power * | ||
4115 | min(sds->this_load_per_task, sds->this_load); | ||
4116 | pwr_now /= SCHED_POWER_SCALE; | ||
4117 | |||
4118 | /* Amount of load we'd subtract */ | ||
4119 | tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | ||
4120 | sds->busiest->sgp->power; | ||
4121 | if (sds->max_load > tmp) | ||
4122 | pwr_move += sds->busiest->sgp->power * | ||
4123 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
4124 | |||
4125 | /* Amount of load we'd add */ | ||
4126 | if (sds->max_load * sds->busiest->sgp->power < | ||
4127 | sds->busiest_load_per_task * SCHED_POWER_SCALE) | ||
4128 | tmp = (sds->max_load * sds->busiest->sgp->power) / | ||
4129 | sds->this->sgp->power; | ||
4130 | else | ||
4131 | tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | ||
4132 | sds->this->sgp->power; | ||
4133 | pwr_move += sds->this->sgp->power * | ||
4134 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
4135 | pwr_move /= SCHED_POWER_SCALE; | ||
4136 | |||
4137 | /* Move if we gain throughput */ | ||
4138 | if (pwr_move > pwr_now) | ||
4139 | *imbalance = sds->busiest_load_per_task; | ||
4140 | } | ||
4141 | |||
4142 | /** | ||
4143 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
4144 | * groups of a given sched_domain during load balance. | ||
4145 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
4146 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
4147 | * @imbalance: The variable to store the imbalance. | ||
4148 | */ | ||
4149 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
4150 | unsigned long *imbalance) | ||
4151 | { | ||
4152 | unsigned long max_pull, load_above_capacity = ~0UL; | ||
4153 | |||
4154 | sds->busiest_load_per_task /= sds->busiest_nr_running; | ||
4155 | if (sds->group_imb) { | ||
4156 | sds->busiest_load_per_task = | ||
4157 | min(sds->busiest_load_per_task, sds->avg_load); | ||
4158 | } | ||
4159 | |||
4160 | /* | ||
4161 | * In the presence of smp nice balancing, certain scenarios can have | ||
4162 | * max load less than avg load(as we skip the groups at or below | ||
4163 | * its cpu_power, while calculating max_load..) | ||
4164 | */ | ||
4165 | if (sds->max_load < sds->avg_load) { | ||
4166 | *imbalance = 0; | ||
4167 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
4168 | } | ||
4169 | |||
4170 | if (!sds->group_imb) { | ||
4171 | /* | ||
4172 | * Don't want to pull so many tasks that a group would go idle. | ||
4173 | */ | ||
4174 | load_above_capacity = (sds->busiest_nr_running - | ||
4175 | sds->busiest_group_capacity); | ||
4176 | |||
4177 | load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); | ||
4178 | |||
4179 | load_above_capacity /= sds->busiest->sgp->power; | ||
4180 | } | ||
4181 | |||
4182 | /* | ||
4183 | * We're trying to get all the cpus to the average_load, so we don't | ||
4184 | * want to push ourselves above the average load, nor do we wish to | ||
4185 | * reduce the max loaded cpu below the average load. At the same time, | ||
4186 | * we also don't want to reduce the group load below the group capacity | ||
4187 | * (so that we can implement power-savings policies etc). Thus we look | ||
4188 | * for the minimum possible imbalance. | ||
4189 | * Be careful of negative numbers as they'll appear as very large values | ||
4190 | * with unsigned longs. | ||
4191 | */ | ||
4192 | max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); | ||
4193 | |||
4194 | /* How much load to actually move to equalise the imbalance */ | ||
4195 | *imbalance = min(max_pull * sds->busiest->sgp->power, | ||
4196 | (sds->avg_load - sds->this_load) * sds->this->sgp->power) | ||
4197 | / SCHED_POWER_SCALE; | ||
4198 | |||
4199 | /* | ||
4200 | * if *imbalance is less than the average load per runnable task | ||
4201 | * there is no guarantee that any tasks will be moved so we'll have | ||
4202 | * a think about bumping its value to force at least one task to be | ||
4203 | * moved | ||
4204 | */ | ||
4205 | if (*imbalance < sds->busiest_load_per_task) | ||
4206 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
4207 | |||
4208 | } | ||
4209 | |||
4210 | /******* find_busiest_group() helpers end here *********************/ | ||
4211 | |||
4212 | /** | ||
4213 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
4214 | * if there is an imbalance. If there isn't an imbalance, and | ||
4215 | * the user has opted for power-savings, it returns a group whose | ||
4216 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
4217 | * such a group exists. | ||
4218 | * | ||
4219 | * Also calculates the amount of weighted load which should be moved | ||
4220 | * to restore balance. | ||
4221 | * | ||
4222 | * @sd: The sched_domain whose busiest group is to be returned. | ||
4223 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
4224 | * @imbalance: Variable which stores amount of weighted load which should | ||
4225 | * be moved to restore balance/put a group to idle. | ||
4226 | * @idle: The idle status of this_cpu. | ||
4227 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
4228 | * @balance: Pointer to a variable indicating if this_cpu | ||
4229 | * is the appropriate cpu to perform load balancing at this_level. | ||
4230 | * | ||
4231 | * Returns: - the busiest group if imbalance exists. | ||
4232 | * - If no imbalance and user has opted for power-savings balance, | ||
4233 | * return the least loaded group whose CPUs can be | ||
4234 | * put to idle by rebalancing its tasks onto our group. | ||
4235 | */ | ||
4236 | static struct sched_group * | ||
4237 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
4238 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
4239 | const struct cpumask *cpus, int *balance) | ||
4240 | { | ||
4241 | struct sd_lb_stats sds; | ||
4242 | |||
4243 | memset(&sds, 0, sizeof(sds)); | ||
4244 | |||
4245 | /* | ||
4246 | * Compute the various statistics relavent for load balancing at | ||
4247 | * this level. | ||
4248 | */ | ||
4249 | update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); | ||
4250 | |||
4251 | /* | ||
4252 | * this_cpu is not the appropriate cpu to perform load balancing at | ||
4253 | * this level. | ||
4254 | */ | ||
4255 | if (!(*balance)) | ||
4256 | goto ret; | ||
4257 | |||
4258 | if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && | ||
4259 | check_asym_packing(sd, &sds, this_cpu, imbalance)) | ||
4260 | return sds.busiest; | ||
4261 | |||
4262 | /* There is no busy sibling group to pull tasks from */ | ||
4263 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
4264 | goto out_balanced; | ||
4265 | |||
4266 | sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; | ||
4267 | |||
4268 | /* | ||
4269 | * If the busiest group is imbalanced the below checks don't | ||
4270 | * work because they assumes all things are equal, which typically | ||
4271 | * isn't true due to cpus_allowed constraints and the like. | ||
4272 | */ | ||
4273 | if (sds.group_imb) | ||
4274 | goto force_balance; | ||
4275 | |||
4276 | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ | ||
4277 | if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && | ||
4278 | !sds.busiest_has_capacity) | ||
4279 | goto force_balance; | ||
4280 | |||
4281 | /* | ||
4282 | * If the local group is more busy than the selected busiest group | ||
4283 | * don't try and pull any tasks. | ||
4284 | */ | ||
4285 | if (sds.this_load >= sds.max_load) | ||
4286 | goto out_balanced; | ||
4287 | |||
4288 | /* | ||
4289 | * Don't pull any tasks if this group is already above the domain | ||
4290 | * average load. | ||
4291 | */ | ||
4292 | if (sds.this_load >= sds.avg_load) | ||
4293 | goto out_balanced; | ||
4294 | |||
4295 | if (idle == CPU_IDLE) { | ||
4296 | /* | ||
4297 | * This cpu is idle. If the busiest group load doesn't | ||
4298 | * have more tasks than the number of available cpu's and | ||
4299 | * there is no imbalance between this and busiest group | ||
4300 | * wrt to idle cpu's, it is balanced. | ||
4301 | */ | ||
4302 | if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && | ||
4303 | sds.busiest_nr_running <= sds.busiest_group_weight) | ||
4304 | goto out_balanced; | ||
4305 | } else { | ||
4306 | /* | ||
4307 | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | ||
4308 | * imbalance_pct to be conservative. | ||
4309 | */ | ||
4310 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
4311 | goto out_balanced; | ||
4312 | } | ||
4313 | |||
4314 | force_balance: | ||
4315 | /* Looks like there is an imbalance. Compute it */ | ||
4316 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
4317 | return sds.busiest; | ||
4318 | |||
4319 | out_balanced: | ||
4320 | /* | ||
4321 | * There is no obvious imbalance. But check if we can do some balancing | ||
4322 | * to save power. | ||
4323 | */ | ||
4324 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
4325 | return sds.busiest; | ||
4326 | ret: | ||
4327 | *imbalance = 0; | ||
4328 | return NULL; | ||
4329 | } | ||
4330 | |||
4331 | /* | ||
4332 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
4333 | */ | ||
4334 | static struct rq * | ||
4335 | find_busiest_queue(struct sched_domain *sd, struct sched_group *group, | ||
4336 | enum cpu_idle_type idle, unsigned long imbalance, | ||
4337 | const struct cpumask *cpus) | ||
4338 | { | ||
4339 | struct rq *busiest = NULL, *rq; | ||
4340 | unsigned long max_load = 0; | ||
4341 | int i; | ||
4342 | |||
4343 | for_each_cpu(i, sched_group_cpus(group)) { | ||
4344 | unsigned long power = power_of(i); | ||
4345 | unsigned long capacity = DIV_ROUND_CLOSEST(power, | ||
4346 | SCHED_POWER_SCALE); | ||
4347 | unsigned long wl; | ||
4348 | |||
4349 | if (!capacity) | ||
4350 | capacity = fix_small_capacity(sd, group); | ||
4351 | |||
4352 | if (!cpumask_test_cpu(i, cpus)) | ||
4353 | continue; | ||
4354 | |||
4355 | rq = cpu_rq(i); | ||
4356 | wl = weighted_cpuload(i); | ||
4357 | |||
4358 | /* | ||
4359 | * When comparing with imbalance, use weighted_cpuload() | ||
4360 | * which is not scaled with the cpu power. | ||
4361 | */ | ||
4362 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
4363 | continue; | ||
4364 | |||
4365 | /* | ||
4366 | * For the load comparisons with the other cpu's, consider | ||
4367 | * the weighted_cpuload() scaled with the cpu power, so that | ||
4368 | * the load can be moved away from the cpu that is potentially | ||
4369 | * running at a lower capacity. | ||
4370 | */ | ||
4371 | wl = (wl * SCHED_POWER_SCALE) / power; | ||
4372 | |||
4373 | if (wl > max_load) { | ||
4374 | max_load = wl; | ||
4375 | busiest = rq; | ||
4376 | } | ||
4377 | } | ||
4378 | |||
4379 | return busiest; | ||
4380 | } | ||
4381 | |||
4382 | /* | ||
4383 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
4384 | * so long as it is large enough. | ||
4385 | */ | ||
4386 | #define MAX_PINNED_INTERVAL 512 | ||
4387 | |||
4388 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
4389 | DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
4390 | |||
4391 | static int need_active_balance(struct sched_domain *sd, int idle, | ||
4392 | int busiest_cpu, int this_cpu) | ||
4393 | { | ||
4394 | if (idle == CPU_NEWLY_IDLE) { | ||
4395 | |||
4396 | /* | ||
4397 | * ASYM_PACKING needs to force migrate tasks from busy but | ||
4398 | * higher numbered CPUs in order to pack all tasks in the | ||
4399 | * lowest numbered CPUs. | ||
4400 | */ | ||
4401 | if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) | ||
4402 | return 1; | ||
4403 | |||
4404 | /* | ||
4405 | * The only task running in a non-idle cpu can be moved to this | ||
4406 | * cpu in an attempt to completely freeup the other CPU | ||
4407 | * package. | ||
4408 | * | ||
4409 | * The package power saving logic comes from | ||
4410 | * find_busiest_group(). If there are no imbalance, then | ||
4411 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
4412 | * f_b_g() will select a group from which a running task may be | ||
4413 | * pulled to this cpu in order to make the other package idle. | ||
4414 | * If there is no opportunity to make a package idle and if | ||
4415 | * there are no imbalance, then f_b_g() will return NULL and no | ||
4416 | * action will be taken in load_balance_newidle(). | ||
4417 | * | ||
4418 | * Under normal task pull operation due to imbalance, there | ||
4419 | * will be more than one task in the source run queue and | ||
4420 | * move_tasks() will succeed. ld_moved will be true and this | ||
4421 | * active balance code will not be triggered. | ||
4422 | */ | ||
4423 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
4424 | return 0; | ||
4425 | } | ||
4426 | |||
4427 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | ||
4428 | } | ||
4429 | |||
4430 | static int active_load_balance_cpu_stop(void *data); | ||
4431 | |||
4432 | /* | ||
4433 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4434 | * tasks if there is an imbalance. | ||
4435 | */ | ||
4436 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
4437 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
4438 | int *balance) | ||
4439 | { | ||
4440 | int ld_moved, all_pinned = 0, active_balance = 0; | ||
4441 | struct sched_group *group; | ||
4442 | unsigned long imbalance; | ||
4443 | struct rq *busiest; | ||
4444 | unsigned long flags; | ||
4445 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4446 | |||
4447 | cpumask_copy(cpus, cpu_active_mask); | ||
4448 | |||
4449 | schedstat_inc(sd, lb_count[idle]); | ||
4450 | |||
4451 | redo: | ||
4452 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, | ||
4453 | cpus, balance); | ||
4454 | |||
4455 | if (*balance == 0) | ||
4456 | goto out_balanced; | ||
4457 | |||
4458 | if (!group) { | ||
4459 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
4460 | goto out_balanced; | ||
4461 | } | ||
4462 | |||
4463 | busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); | ||
4464 | if (!busiest) { | ||
4465 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
4466 | goto out_balanced; | ||
4467 | } | ||
4468 | |||
4469 | BUG_ON(busiest == this_rq); | ||
4470 | |||
4471 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
4472 | |||
4473 | ld_moved = 0; | ||
4474 | if (busiest->nr_running > 1) { | ||
4475 | /* | ||
4476 | * Attempt to move tasks. If find_busiest_group has found | ||
4477 | * an imbalance but busiest->nr_running <= 1, the group is | ||
4478 | * still unbalanced. ld_moved simply stays zero, so it is | ||
4479 | * correctly treated as an imbalance. | ||
4480 | */ | ||
4481 | all_pinned = 1; | ||
4482 | local_irq_save(flags); | ||
4483 | double_rq_lock(this_rq, busiest); | ||
4484 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4485 | imbalance, sd, idle, &all_pinned); | ||
4486 | double_rq_unlock(this_rq, busiest); | ||
4487 | local_irq_restore(flags); | ||
4488 | |||
4489 | /* | ||
4490 | * some other cpu did the load balance for us. | ||
4491 | */ | ||
4492 | if (ld_moved && this_cpu != smp_processor_id()) | ||
4493 | resched_cpu(this_cpu); | ||
4494 | |||
4495 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
4496 | if (unlikely(all_pinned)) { | ||
4497 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4498 | if (!cpumask_empty(cpus)) | ||
4499 | goto redo; | ||
4500 | goto out_balanced; | ||
4501 | } | ||
4502 | } | ||
4503 | |||
4504 | if (!ld_moved) { | ||
4505 | schedstat_inc(sd, lb_failed[idle]); | ||
4506 | /* | ||
4507 | * Increment the failure counter only on periodic balance. | ||
4508 | * We do not want newidle balance, which can be very | ||
4509 | * frequent, pollute the failure counter causing | ||
4510 | * excessive cache_hot migrations and active balances. | ||
4511 | */ | ||
4512 | if (idle != CPU_NEWLY_IDLE) | ||
4513 | sd->nr_balance_failed++; | ||
4514 | |||
4515 | if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { | ||
4516 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
4517 | |||
4518 | /* don't kick the active_load_balance_cpu_stop, | ||
4519 | * if the curr task on busiest cpu can't be | ||
4520 | * moved to this_cpu | ||
4521 | */ | ||
4522 | if (!cpumask_test_cpu(this_cpu, | ||
4523 | tsk_cpus_allowed(busiest->curr))) { | ||
4524 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
4525 | flags); | ||
4526 | all_pinned = 1; | ||
4527 | goto out_one_pinned; | ||
4528 | } | ||
4529 | |||
4530 | /* | ||
4531 | * ->active_balance synchronizes accesses to | ||
4532 | * ->active_balance_work. Once set, it's cleared | ||
4533 | * only after active load balance is finished. | ||
4534 | */ | ||
4535 | if (!busiest->active_balance) { | ||
4536 | busiest->active_balance = 1; | ||
4537 | busiest->push_cpu = this_cpu; | ||
4538 | active_balance = 1; | ||
4539 | } | ||
4540 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
4541 | |||
4542 | if (active_balance) | ||
4543 | stop_one_cpu_nowait(cpu_of(busiest), | ||
4544 | active_load_balance_cpu_stop, busiest, | ||
4545 | &busiest->active_balance_work); | ||
4546 | |||
4547 | /* | ||
4548 | * We've kicked active balancing, reset the failure | ||
4549 | * counter. | ||
4550 | */ | ||
4551 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
4552 | } | ||
4553 | } else | ||
4554 | sd->nr_balance_failed = 0; | ||
4555 | |||
4556 | if (likely(!active_balance)) { | ||
4557 | /* We were unbalanced, so reset the balancing interval */ | ||
4558 | sd->balance_interval = sd->min_interval; | ||
4559 | } else { | ||
4560 | /* | ||
4561 | * If we've begun active balancing, start to back off. This | ||
4562 | * case may not be covered by the all_pinned logic if there | ||
4563 | * is only 1 task on the busy runqueue (because we don't call | ||
4564 | * move_tasks). | ||
4565 | */ | ||
4566 | if (sd->balance_interval < sd->max_interval) | ||
4567 | sd->balance_interval *= 2; | ||
4568 | } | ||
4569 | |||
4570 | goto out; | ||
4571 | |||
4572 | out_balanced: | ||
4573 | schedstat_inc(sd, lb_balanced[idle]); | ||
4574 | |||
4575 | sd->nr_balance_failed = 0; | ||
4576 | |||
4577 | out_one_pinned: | ||
4578 | /* tune up the balancing interval */ | ||
4579 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4580 | (sd->balance_interval < sd->max_interval)) | ||
4581 | sd->balance_interval *= 2; | ||
4582 | |||
4583 | ld_moved = 0; | ||
4584 | out: | ||
4585 | return ld_moved; | ||
4586 | } | ||
4587 | |||
4588 | /* | ||
4589 | * idle_balance is called by schedule() if this_cpu is about to become | ||
4590 | * idle. Attempts to pull tasks from other CPUs. | ||
4591 | */ | ||
4592 | void idle_balance(int this_cpu, struct rq *this_rq) | ||
4593 | { | ||
4594 | struct sched_domain *sd; | ||
4595 | int pulled_task = 0; | ||
4596 | unsigned long next_balance = jiffies + HZ; | ||
4597 | |||
4598 | this_rq->idle_stamp = this_rq->clock; | ||
4599 | |||
4600 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
4601 | return; | ||
4602 | |||
4603 | /* | ||
4604 | * Drop the rq->lock, but keep IRQ/preempt disabled. | ||
4605 | */ | ||
4606 | raw_spin_unlock(&this_rq->lock); | ||
4607 | |||
4608 | update_shares(this_cpu); | ||
4609 | rcu_read_lock(); | ||
4610 | for_each_domain(this_cpu, sd) { | ||
4611 | unsigned long interval; | ||
4612 | int balance = 1; | ||
4613 | |||
4614 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4615 | continue; | ||
4616 | |||
4617 | if (sd->flags & SD_BALANCE_NEWIDLE) { | ||
4618 | /* If we've pulled tasks over stop searching: */ | ||
4619 | pulled_task = load_balance(this_cpu, this_rq, | ||
4620 | sd, CPU_NEWLY_IDLE, &balance); | ||
4621 | } | ||
4622 | |||
4623 | interval = msecs_to_jiffies(sd->balance_interval); | ||
4624 | if (time_after(next_balance, sd->last_balance + interval)) | ||
4625 | next_balance = sd->last_balance + interval; | ||
4626 | if (pulled_task) { | ||
4627 | this_rq->idle_stamp = 0; | ||
4628 | break; | ||
4629 | } | ||
4630 | } | ||
4631 | rcu_read_unlock(); | ||
4632 | |||
4633 | raw_spin_lock(&this_rq->lock); | ||
4634 | |||
4635 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
4636 | /* | ||
4637 | * We are going idle. next_balance may be set based on | ||
4638 | * a busy processor. So reset next_balance. | ||
4639 | */ | ||
4640 | this_rq->next_balance = next_balance; | ||
4641 | } | ||
4642 | } | ||
4643 | |||
4644 | /* | ||
4645 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes | ||
4646 | * running tasks off the busiest CPU onto idle CPUs. It requires at | ||
4647 | * least 1 task to be running on each physical CPU where possible, and | ||
4648 | * avoids physical / logical imbalances. | ||
4649 | */ | ||
4650 | static int active_load_balance_cpu_stop(void *data) | ||
4651 | { | ||
4652 | struct rq *busiest_rq = data; | ||
4653 | int busiest_cpu = cpu_of(busiest_rq); | ||
4654 | int target_cpu = busiest_rq->push_cpu; | ||
4655 | struct rq *target_rq = cpu_rq(target_cpu); | ||
4656 | struct sched_domain *sd; | ||
4657 | |||
4658 | raw_spin_lock_irq(&busiest_rq->lock); | ||
4659 | |||
4660 | /* make sure the requested cpu hasn't gone down in the meantime */ | ||
4661 | if (unlikely(busiest_cpu != smp_processor_id() || | ||
4662 | !busiest_rq->active_balance)) | ||
4663 | goto out_unlock; | ||
4664 | |||
4665 | /* Is there any task to move? */ | ||
4666 | if (busiest_rq->nr_running <= 1) | ||
4667 | goto out_unlock; | ||
4668 | |||
4669 | /* | ||
4670 | * This condition is "impossible", if it occurs | ||
4671 | * we need to fix it. Originally reported by | ||
4672 | * Bjorn Helgaas on a 128-cpu setup. | ||
4673 | */ | ||
4674 | BUG_ON(busiest_rq == target_rq); | ||
4675 | |||
4676 | /* move a task from busiest_rq to target_rq */ | ||
4677 | double_lock_balance(busiest_rq, target_rq); | ||
4678 | |||
4679 | /* Search for an sd spanning us and the target CPU. */ | ||
4680 | rcu_read_lock(); | ||
4681 | for_each_domain(target_cpu, sd) { | ||
4682 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
4683 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
4684 | break; | ||
4685 | } | ||
4686 | |||
4687 | if (likely(sd)) { | ||
4688 | schedstat_inc(sd, alb_count); | ||
4689 | |||
4690 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
4691 | sd, CPU_IDLE)) | ||
4692 | schedstat_inc(sd, alb_pushed); | ||
4693 | else | ||
4694 | schedstat_inc(sd, alb_failed); | ||
4695 | } | ||
4696 | rcu_read_unlock(); | ||
4697 | double_unlock_balance(busiest_rq, target_rq); | ||
4698 | out_unlock: | ||
4699 | busiest_rq->active_balance = 0; | ||
4700 | raw_spin_unlock_irq(&busiest_rq->lock); | ||
4701 | return 0; | ||
4702 | } | ||
4703 | |||
4704 | #ifdef CONFIG_NO_HZ | ||
4705 | /* | ||
4706 | * idle load balancing details | ||
4707 | * - One of the idle CPUs nominates itself as idle load_balancer, while | ||
4708 | * entering idle. | ||
4709 | * - This idle load balancer CPU will also go into tickless mode when | ||
4710 | * it is idle, just like all other idle CPUs | ||
4711 | * - When one of the busy CPUs notice that there may be an idle rebalancing | ||
4712 | * needed, they will kick the idle load balancer, which then does idle | ||
4713 | * load balancing for all the idle CPUs. | ||
4714 | */ | ||
4715 | static struct { | ||
4716 | atomic_t load_balancer; | ||
4717 | atomic_t first_pick_cpu; | ||
4718 | atomic_t second_pick_cpu; | ||
4719 | cpumask_var_t idle_cpus_mask; | ||
4720 | cpumask_var_t grp_idle_mask; | ||
4721 | unsigned long next_balance; /* in jiffy units */ | ||
4722 | } nohz ____cacheline_aligned; | ||
4723 | |||
4724 | int get_nohz_load_balancer(void) | ||
4725 | { | ||
4726 | return atomic_read(&nohz.load_balancer); | ||
4727 | } | ||
4728 | |||
4729 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
4730 | /** | ||
4731 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
4732 | * @cpu: The cpu whose lowest level of sched domain is to | ||
4733 | * be returned. | ||
4734 | * @flag: The flag to check for the lowest sched_domain | ||
4735 | * for the given cpu. | ||
4736 | * | ||
4737 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
4738 | */ | ||
4739 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
4740 | { | ||
4741 | struct sched_domain *sd; | ||
4742 | |||
4743 | for_each_domain(cpu, sd) | ||
4744 | if (sd->flags & flag) | ||
4745 | break; | ||
4746 | |||
4747 | return sd; | ||
4748 | } | ||
4749 | |||
4750 | /** | ||
4751 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
4752 | * @cpu: The cpu whose domains we're iterating over. | ||
4753 | * @sd: variable holding the value of the power_savings_sd | ||
4754 | * for cpu. | ||
4755 | * @flag: The flag to filter the sched_domains to be iterated. | ||
4756 | * | ||
4757 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
4758 | * set, starting from the lowest sched_domain to the highest. | ||
4759 | */ | ||
4760 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
4761 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
4762 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
4763 | |||
4764 | /** | ||
4765 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4766 | * @ilb_group: group to be checked for semi-idleness | ||
4767 | * | ||
4768 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4769 | * | ||
4770 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4771 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4772 | * sched_group is semi-idle or not. | ||
4773 | */ | ||
4774 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4775 | { | ||
4776 | cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask, | ||
4777 | sched_group_cpus(ilb_group)); | ||
4778 | |||
4779 | /* | ||
4780 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4781 | * and atleast one idle cpu. | ||
4782 | */ | ||
4783 | if (cpumask_empty(nohz.grp_idle_mask)) | ||
4784 | return 0; | ||
4785 | |||
4786 | if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group))) | ||
4787 | return 0; | ||
4788 | |||
4789 | return 1; | ||
4790 | } | ||
4791 | /** | ||
4792 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
4793 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
4794 | * | ||
4795 | * Returns: Returns the id of the idle load balancer if it exists, | ||
4796 | * Else, returns >= nr_cpu_ids. | ||
4797 | * | ||
4798 | * This algorithm picks the idle load balancer such that it belongs to a | ||
4799 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
4800 | * completely idle packages/cores just for the purpose of idle load balancing | ||
4801 | * when there are other idle cpu's which are better suited for that job. | ||
4802 | */ | ||
4803 | static int find_new_ilb(int cpu) | ||
4804 | { | ||
4805 | struct sched_domain *sd; | ||
4806 | struct sched_group *ilb_group; | ||
4807 | int ilb = nr_cpu_ids; | ||
4808 | |||
4809 | /* | ||
4810 | * Have idle load balancer selection from semi-idle packages only | ||
4811 | * when power-aware load balancing is enabled | ||
4812 | */ | ||
4813 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
4814 | goto out_done; | ||
4815 | |||
4816 | /* | ||
4817 | * Optimize for the case when we have no idle CPUs or only one | ||
4818 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
4819 | */ | ||
4820 | if (cpumask_weight(nohz.idle_cpus_mask) < 2) | ||
4821 | goto out_done; | ||
4822 | |||
4823 | rcu_read_lock(); | ||
4824 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
4825 | ilb_group = sd->groups; | ||
4826 | |||
4827 | do { | ||
4828 | if (is_semi_idle_group(ilb_group)) { | ||
4829 | ilb = cpumask_first(nohz.grp_idle_mask); | ||
4830 | goto unlock; | ||
4831 | } | ||
4832 | |||
4833 | ilb_group = ilb_group->next; | ||
4834 | |||
4835 | } while (ilb_group != sd->groups); | ||
4836 | } | ||
4837 | unlock: | ||
4838 | rcu_read_unlock(); | ||
4839 | |||
4840 | out_done: | ||
4841 | return ilb; | ||
4842 | } | ||
4843 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
4844 | static inline int find_new_ilb(int call_cpu) | ||
4845 | { | ||
4846 | return nr_cpu_ids; | ||
4847 | } | ||
4848 | #endif | ||
4849 | |||
4850 | /* | ||
4851 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | ||
4852 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | ||
4853 | * CPU (if there is one). | ||
4854 | */ | ||
4855 | static void nohz_balancer_kick(int cpu) | ||
4856 | { | ||
4857 | int ilb_cpu; | ||
4858 | |||
4859 | nohz.next_balance++; | ||
4860 | |||
4861 | ilb_cpu = get_nohz_load_balancer(); | ||
4862 | |||
4863 | if (ilb_cpu >= nr_cpu_ids) { | ||
4864 | ilb_cpu = cpumask_first(nohz.idle_cpus_mask); | ||
4865 | if (ilb_cpu >= nr_cpu_ids) | ||
4866 | return; | ||
4867 | } | ||
4868 | |||
4869 | if (!cpu_rq(ilb_cpu)->nohz_balance_kick) { | ||
4870 | cpu_rq(ilb_cpu)->nohz_balance_kick = 1; | ||
4871 | |||
4872 | smp_mb(); | ||
4873 | /* | ||
4874 | * Use smp_send_reschedule() instead of resched_cpu(). | ||
4875 | * This way we generate a sched IPI on the target cpu which | ||
4876 | * is idle. And the softirq performing nohz idle load balance | ||
4877 | * will be run before returning from the IPI. | ||
4878 | */ | ||
4879 | smp_send_reschedule(ilb_cpu); | ||
4880 | } | ||
4881 | return; | ||
4882 | } | ||
4883 | |||
4884 | /* | ||
4885 | * This routine will try to nominate the ilb (idle load balancing) | ||
4886 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4887 | * load balancing on behalf of all those cpus. | ||
4888 | * | ||
4889 | * When the ilb owner becomes busy, we will not have new ilb owner until some | ||
4890 | * idle CPU wakes up and goes back to idle or some busy CPU tries to kick | ||
4891 | * idle load balancing by kicking one of the idle CPUs. | ||
4892 | * | ||
4893 | * Ticks are stopped for the ilb owner as well, with busy CPU kicking this | ||
4894 | * ilb owner CPU in future (when there is a need for idle load balancing on | ||
4895 | * behalf of all idle CPUs). | ||
4896 | */ | ||
4897 | void select_nohz_load_balancer(int stop_tick) | ||
4898 | { | ||
4899 | int cpu = smp_processor_id(); | ||
4900 | |||
4901 | if (stop_tick) { | ||
4902 | if (!cpu_active(cpu)) { | ||
4903 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
4904 | return; | ||
4905 | |||
4906 | /* | ||
4907 | * If we are going offline and still the leader, | ||
4908 | * give up! | ||
4909 | */ | ||
4910 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
4911 | nr_cpu_ids) != cpu) | ||
4912 | BUG(); | ||
4913 | |||
4914 | return; | ||
4915 | } | ||
4916 | |||
4917 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | ||
4918 | |||
4919 | if (atomic_read(&nohz.first_pick_cpu) == cpu) | ||
4920 | atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids); | ||
4921 | if (atomic_read(&nohz.second_pick_cpu) == cpu) | ||
4922 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
4923 | |||
4924 | if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) { | ||
4925 | int new_ilb; | ||
4926 | |||
4927 | /* make me the ilb owner */ | ||
4928 | if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids, | ||
4929 | cpu) != nr_cpu_ids) | ||
4930 | return; | ||
4931 | |||
4932 | /* | ||
4933 | * Check to see if there is a more power-efficient | ||
4934 | * ilb. | ||
4935 | */ | ||
4936 | new_ilb = find_new_ilb(cpu); | ||
4937 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4938 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | ||
4939 | resched_cpu(new_ilb); | ||
4940 | return; | ||
4941 | } | ||
4942 | return; | ||
4943 | } | ||
4944 | } else { | ||
4945 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | ||
4946 | return; | ||
4947 | |||
4948 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | ||
4949 | |||
4950 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4951 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
4952 | nr_cpu_ids) != cpu) | ||
4953 | BUG(); | ||
4954 | } | ||
4955 | return; | ||
4956 | } | ||
4957 | #endif | ||
4958 | |||
4959 | static DEFINE_SPINLOCK(balancing); | ||
4960 | |||
4961 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | ||
4962 | |||
4963 | /* | ||
4964 | * Scale the max load_balance interval with the number of CPUs in the system. | ||
4965 | * This trades load-balance latency on larger machines for less cross talk. | ||
4966 | */ | ||
4967 | void update_max_interval(void) | ||
4968 | { | ||
4969 | max_load_balance_interval = HZ*num_online_cpus()/10; | ||
4970 | } | ||
4971 | |||
4972 | /* | ||
4973 | * It checks each scheduling domain to see if it is due to be balanced, | ||
4974 | * and initiates a balancing operation if so. | ||
4975 | * | ||
4976 | * Balancing parameters are set up in arch_init_sched_domains. | ||
4977 | */ | ||
4978 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
4979 | { | ||
4980 | int balance = 1; | ||
4981 | struct rq *rq = cpu_rq(cpu); | ||
4982 | unsigned long interval; | ||
4983 | struct sched_domain *sd; | ||
4984 | /* Earliest time when we have to do rebalance again */ | ||
4985 | unsigned long next_balance = jiffies + 60*HZ; | ||
4986 | int update_next_balance = 0; | ||
4987 | int need_serialize; | ||
4988 | |||
4989 | update_shares(cpu); | ||
4990 | |||
4991 | rcu_read_lock(); | ||
4992 | for_each_domain(cpu, sd) { | ||
4993 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4994 | continue; | ||
4995 | |||
4996 | interval = sd->balance_interval; | ||
4997 | if (idle != CPU_IDLE) | ||
4998 | interval *= sd->busy_factor; | ||
4999 | |||
5000 | /* scale ms to jiffies */ | ||
5001 | interval = msecs_to_jiffies(interval); | ||
5002 | interval = clamp(interval, 1UL, max_load_balance_interval); | ||
5003 | |||
5004 | need_serialize = sd->flags & SD_SERIALIZE; | ||
5005 | |||
5006 | if (need_serialize) { | ||
5007 | if (!spin_trylock(&balancing)) | ||
5008 | goto out; | ||
5009 | } | ||
5010 | |||
5011 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
5012 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
5013 | /* | ||
5014 | * We've pulled tasks over so either we're no | ||
5015 | * longer idle. | ||
5016 | */ | ||
5017 | idle = CPU_NOT_IDLE; | ||
5018 | } | ||
5019 | sd->last_balance = jiffies; | ||
5020 | } | ||
5021 | if (need_serialize) | ||
5022 | spin_unlock(&balancing); | ||
5023 | out: | ||
5024 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
5025 | next_balance = sd->last_balance + interval; | ||
5026 | update_next_balance = 1; | ||
5027 | } | ||
5028 | |||
5029 | /* | ||
5030 | * Stop the load balance at this level. There is another | ||
5031 | * CPU in our sched group which is doing load balancing more | ||
5032 | * actively. | ||
5033 | */ | ||
5034 | if (!balance) | ||
5035 | break; | ||
5036 | } | ||
5037 | rcu_read_unlock(); | ||
5038 | |||
5039 | /* | ||
5040 | * next_balance will be updated only when there is a need. | ||
5041 | * When the cpu is attached to null domain for ex, it will not be | ||
5042 | * updated. | ||
5043 | */ | ||
5044 | if (likely(update_next_balance)) | ||
5045 | rq->next_balance = next_balance; | ||
5046 | } | ||
5047 | |||
5048 | #ifdef CONFIG_NO_HZ | ||
5049 | /* | ||
5050 | * In CONFIG_NO_HZ case, the idle balance kickee will do the | ||
5051 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
5052 | */ | ||
5053 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | ||
5054 | { | ||
5055 | struct rq *this_rq = cpu_rq(this_cpu); | ||
5056 | struct rq *rq; | ||
5057 | int balance_cpu; | ||
5058 | |||
5059 | if (idle != CPU_IDLE || !this_rq->nohz_balance_kick) | ||
5060 | return; | ||
5061 | |||
5062 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | ||
5063 | if (balance_cpu == this_cpu) | ||
5064 | continue; | ||
5065 | |||
5066 | /* | ||
5067 | * If this cpu gets work to do, stop the load balancing | ||
5068 | * work being done for other cpus. Next load | ||
5069 | * balancing owner will pick it up. | ||
5070 | */ | ||
5071 | if (need_resched()) { | ||
5072 | this_rq->nohz_balance_kick = 0; | ||
5073 | break; | ||
5074 | } | ||
5075 | |||
5076 | raw_spin_lock_irq(&this_rq->lock); | ||
5077 | update_rq_clock(this_rq); | ||
5078 | update_cpu_load(this_rq); | ||
5079 | raw_spin_unlock_irq(&this_rq->lock); | ||
5080 | |||
5081 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
5082 | |||
5083 | rq = cpu_rq(balance_cpu); | ||
5084 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
5085 | this_rq->next_balance = rq->next_balance; | ||
5086 | } | ||
5087 | nohz.next_balance = this_rq->next_balance; | ||
5088 | this_rq->nohz_balance_kick = 0; | ||
5089 | } | ||
5090 | |||
5091 | /* | ||
5092 | * Current heuristic for kicking the idle load balancer | ||
5093 | * - first_pick_cpu is the one of the busy CPUs. It will kick | ||
5094 | * idle load balancer when it has more than one process active. This | ||
5095 | * eliminates the need for idle load balancing altogether when we have | ||
5096 | * only one running process in the system (common case). | ||
5097 | * - If there are more than one busy CPU, idle load balancer may have | ||
5098 | * to run for active_load_balance to happen (i.e., two busy CPUs are | ||
5099 | * SMT or core siblings and can run better if they move to different | ||
5100 | * physical CPUs). So, second_pick_cpu is the second of the busy CPUs | ||
5101 | * which will kick idle load balancer as soon as it has any load. | ||
5102 | */ | ||
5103 | static inline int nohz_kick_needed(struct rq *rq, int cpu) | ||
5104 | { | ||
5105 | unsigned long now = jiffies; | ||
5106 | int ret; | ||
5107 | int first_pick_cpu, second_pick_cpu; | ||
5108 | |||
5109 | if (time_before(now, nohz.next_balance)) | ||
5110 | return 0; | ||
5111 | |||
5112 | if (idle_cpu(cpu)) | ||
5113 | return 0; | ||
5114 | |||
5115 | first_pick_cpu = atomic_read(&nohz.first_pick_cpu); | ||
5116 | second_pick_cpu = atomic_read(&nohz.second_pick_cpu); | ||
5117 | |||
5118 | if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu && | ||
5119 | second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu) | ||
5120 | return 0; | ||
5121 | |||
5122 | ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu); | ||
5123 | if (ret == nr_cpu_ids || ret == cpu) { | ||
5124 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
5125 | if (rq->nr_running > 1) | ||
5126 | return 1; | ||
5127 | } else { | ||
5128 | ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu); | ||
5129 | if (ret == nr_cpu_ids || ret == cpu) { | ||
5130 | if (rq->nr_running) | ||
5131 | return 1; | ||
5132 | } | ||
5133 | } | ||
5134 | return 0; | ||
5135 | } | ||
5136 | #else | ||
5137 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } | ||
5138 | #endif | ||
5139 | |||
5140 | /* | ||
5141 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
5142 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | ||
5143 | */ | ||
5144 | static void run_rebalance_domains(struct softirq_action *h) | ||
5145 | { | ||
5146 | int this_cpu = smp_processor_id(); | ||
5147 | struct rq *this_rq = cpu_rq(this_cpu); | ||
5148 | enum cpu_idle_type idle = this_rq->idle_balance ? | ||
5149 | CPU_IDLE : CPU_NOT_IDLE; | ||
5150 | |||
5151 | rebalance_domains(this_cpu, idle); | ||
5152 | |||
5153 | /* | ||
5154 | * If this cpu has a pending nohz_balance_kick, then do the | ||
5155 | * balancing on behalf of the other idle cpus whose ticks are | ||
5156 | * stopped. | ||
5157 | */ | ||
5158 | nohz_idle_balance(this_cpu, idle); | ||
5159 | } | ||
5160 | |||
5161 | static inline int on_null_domain(int cpu) | ||
5162 | { | ||
5163 | return !rcu_dereference_sched(cpu_rq(cpu)->sd); | ||
5164 | } | ||
5165 | |||
5166 | /* | ||
5167 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
5168 | */ | ||
5169 | void trigger_load_balance(struct rq *rq, int cpu) | ||
5170 | { | ||
5171 | /* Don't need to rebalance while attached to NULL domain */ | ||
5172 | if (time_after_eq(jiffies, rq->next_balance) && | ||
5173 | likely(!on_null_domain(cpu))) | ||
5174 | raise_softirq(SCHED_SOFTIRQ); | ||
5175 | #ifdef CONFIG_NO_HZ | ||
5176 | else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) | ||
5177 | nohz_balancer_kick(cpu); | ||
5178 | #endif | ||
5179 | } | ||
5180 | |||
5181 | static void rq_online_fair(struct rq *rq) | ||
5182 | { | ||
5183 | update_sysctl(); | ||
5184 | } | ||
5185 | |||
5186 | static void rq_offline_fair(struct rq *rq) | ||
5187 | { | ||
5188 | update_sysctl(); | ||
5189 | } | ||
5190 | |||
5191 | #endif /* CONFIG_SMP */ | ||
5192 | |||
5193 | /* | ||
5194 | * scheduler tick hitting a task of our scheduling class: | ||
5195 | */ | ||
5196 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | ||
5197 | { | ||
5198 | struct cfs_rq *cfs_rq; | ||
5199 | struct sched_entity *se = &curr->se; | ||
5200 | |||
5201 | for_each_sched_entity(se) { | ||
5202 | cfs_rq = cfs_rq_of(se); | ||
5203 | entity_tick(cfs_rq, se, queued); | ||
5204 | } | ||
5205 | } | ||
5206 | |||
5207 | /* | ||
5208 | * called on fork with the child task as argument from the parent's context | ||
5209 | * - child not yet on the tasklist | ||
5210 | * - preemption disabled | ||
5211 | */ | ||
5212 | static void task_fork_fair(struct task_struct *p) | ||
5213 | { | ||
5214 | struct cfs_rq *cfs_rq = task_cfs_rq(current); | ||
5215 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | ||
5216 | int this_cpu = smp_processor_id(); | ||
5217 | struct rq *rq = this_rq(); | ||
5218 | unsigned long flags; | ||
5219 | |||
5220 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5221 | |||
5222 | update_rq_clock(rq); | ||
5223 | |||
5224 | if (unlikely(task_cpu(p) != this_cpu)) { | ||
5225 | rcu_read_lock(); | ||
5226 | __set_task_cpu(p, this_cpu); | ||
5227 | rcu_read_unlock(); | ||
5228 | } | ||
5229 | |||
5230 | update_curr(cfs_rq); | ||
5231 | |||
5232 | if (curr) | ||
5233 | se->vruntime = curr->vruntime; | ||
5234 | place_entity(cfs_rq, se, 1); | ||
5235 | |||
5236 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | ||
5237 | /* | ||
5238 | * Upon rescheduling, sched_class::put_prev_task() will place | ||
5239 | * 'current' within the tree based on its new key value. | ||
5240 | */ | ||
5241 | swap(curr->vruntime, se->vruntime); | ||
5242 | resched_task(rq->curr); | ||
5243 | } | ||
5244 | |||
5245 | se->vruntime -= cfs_rq->min_vruntime; | ||
5246 | |||
5247 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5248 | } | ||
5249 | |||
5250 | /* | ||
5251 | * Priority of the task has changed. Check to see if we preempt | ||
5252 | * the current task. | ||
5253 | */ | ||
5254 | static void | ||
5255 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | ||
5256 | { | ||
5257 | if (!p->se.on_rq) | ||
5258 | return; | ||
5259 | |||
5260 | /* | ||
5261 | * Reschedule if we are currently running on this runqueue and | ||
5262 | * our priority decreased, or if we are not currently running on | ||
5263 | * this runqueue and our priority is higher than the current's | ||
5264 | */ | ||
5265 | if (rq->curr == p) { | ||
5266 | if (p->prio > oldprio) | ||
5267 | resched_task(rq->curr); | ||
5268 | } else | ||
5269 | check_preempt_curr(rq, p, 0); | ||
5270 | } | ||
5271 | |||
5272 | static void switched_from_fair(struct rq *rq, struct task_struct *p) | ||
5273 | { | ||
5274 | struct sched_entity *se = &p->se; | ||
5275 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
5276 | |||
5277 | /* | ||
5278 | * Ensure the task's vruntime is normalized, so that when its | ||
5279 | * switched back to the fair class the enqueue_entity(.flags=0) will | ||
5280 | * do the right thing. | ||
5281 | * | ||
5282 | * If it was on_rq, then the dequeue_entity(.flags=0) will already | ||
5283 | * have normalized the vruntime, if it was !on_rq, then only when | ||
5284 | * the task is sleeping will it still have non-normalized vruntime. | ||
5285 | */ | ||
5286 | if (!se->on_rq && p->state != TASK_RUNNING) { | ||
5287 | /* | ||
5288 | * Fix up our vruntime so that the current sleep doesn't | ||
5289 | * cause 'unlimited' sleep bonus. | ||
5290 | */ | ||
5291 | place_entity(cfs_rq, se, 0); | ||
5292 | se->vruntime -= cfs_rq->min_vruntime; | ||
5293 | } | ||
5294 | } | ||
5295 | |||
5296 | /* | ||
5297 | * We switched to the sched_fair class. | ||
5298 | */ | ||
5299 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | ||
5300 | { | ||
5301 | if (!p->se.on_rq) | ||
5302 | return; | ||
5303 | |||
5304 | /* | ||
5305 | * We were most likely switched from sched_rt, so | ||
5306 | * kick off the schedule if running, otherwise just see | ||
5307 | * if we can still preempt the current task. | ||
5308 | */ | ||
5309 | if (rq->curr == p) | ||
5310 | resched_task(rq->curr); | ||
5311 | else | ||
5312 | check_preempt_curr(rq, p, 0); | ||
5313 | } | ||
5314 | |||
5315 | /* Account for a task changing its policy or group. | ||
5316 | * | ||
5317 | * This routine is mostly called to set cfs_rq->curr field when a task | ||
5318 | * migrates between groups/classes. | ||
5319 | */ | ||
5320 | static void set_curr_task_fair(struct rq *rq) | ||
5321 | { | ||
5322 | struct sched_entity *se = &rq->curr->se; | ||
5323 | |||
5324 | for_each_sched_entity(se) { | ||
5325 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
5326 | |||
5327 | set_next_entity(cfs_rq, se); | ||
5328 | /* ensure bandwidth has been allocated on our new cfs_rq */ | ||
5329 | account_cfs_rq_runtime(cfs_rq, 0); | ||
5330 | } | ||
5331 | } | ||
5332 | |||
5333 | void init_cfs_rq(struct cfs_rq *cfs_rq) | ||
5334 | { | ||
5335 | cfs_rq->tasks_timeline = RB_ROOT; | ||
5336 | INIT_LIST_HEAD(&cfs_rq->tasks); | ||
5337 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | ||
5338 | #ifndef CONFIG_64BIT | ||
5339 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | ||
5340 | #endif | ||
5341 | } | ||
5342 | |||
5343 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
5344 | static void task_move_group_fair(struct task_struct *p, int on_rq) | ||
5345 | { | ||
5346 | /* | ||
5347 | * If the task was not on the rq at the time of this cgroup movement | ||
5348 | * it must have been asleep, sleeping tasks keep their ->vruntime | ||
5349 | * absolute on their old rq until wakeup (needed for the fair sleeper | ||
5350 | * bonus in place_entity()). | ||
5351 | * | ||
5352 | * If it was on the rq, we've just 'preempted' it, which does convert | ||
5353 | * ->vruntime to a relative base. | ||
5354 | * | ||
5355 | * Make sure both cases convert their relative position when migrating | ||
5356 | * to another cgroup's rq. This does somewhat interfere with the | ||
5357 | * fair sleeper stuff for the first placement, but who cares. | ||
5358 | */ | ||
5359 | if (!on_rq) | ||
5360 | p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; | ||
5361 | set_task_rq(p, task_cpu(p)); | ||
5362 | if (!on_rq) | ||
5363 | p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; | ||
5364 | } | ||
5365 | |||
5366 | void free_fair_sched_group(struct task_group *tg) | ||
5367 | { | ||
5368 | int i; | ||
5369 | |||
5370 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | ||
5371 | |||
5372 | for_each_possible_cpu(i) { | ||
5373 | if (tg->cfs_rq) | ||
5374 | kfree(tg->cfs_rq[i]); | ||
5375 | if (tg->se) | ||
5376 | kfree(tg->se[i]); | ||
5377 | } | ||
5378 | |||
5379 | kfree(tg->cfs_rq); | ||
5380 | kfree(tg->se); | ||
5381 | } | ||
5382 | |||
5383 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | ||
5384 | { | ||
5385 | struct cfs_rq *cfs_rq; | ||
5386 | struct sched_entity *se; | ||
5387 | int i; | ||
5388 | |||
5389 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | ||
5390 | if (!tg->cfs_rq) | ||
5391 | goto err; | ||
5392 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | ||
5393 | if (!tg->se) | ||
5394 | goto err; | ||
5395 | |||
5396 | tg->shares = NICE_0_LOAD; | ||
5397 | |||
5398 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | ||
5399 | |||
5400 | for_each_possible_cpu(i) { | ||
5401 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | ||
5402 | GFP_KERNEL, cpu_to_node(i)); | ||
5403 | if (!cfs_rq) | ||
5404 | goto err; | ||
5405 | |||
5406 | se = kzalloc_node(sizeof(struct sched_entity), | ||
5407 | GFP_KERNEL, cpu_to_node(i)); | ||
5408 | if (!se) | ||
5409 | goto err_free_rq; | ||
5410 | |||
5411 | init_cfs_rq(cfs_rq); | ||
5412 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | ||
5413 | } | ||
5414 | |||
5415 | return 1; | ||
5416 | |||
5417 | err_free_rq: | ||
5418 | kfree(cfs_rq); | ||
5419 | err: | ||
5420 | return 0; | ||
5421 | } | ||
5422 | |||
5423 | void unregister_fair_sched_group(struct task_group *tg, int cpu) | ||
5424 | { | ||
5425 | struct rq *rq = cpu_rq(cpu); | ||
5426 | unsigned long flags; | ||
5427 | |||
5428 | /* | ||
5429 | * Only empty task groups can be destroyed; so we can speculatively | ||
5430 | * check on_list without danger of it being re-added. | ||
5431 | */ | ||
5432 | if (!tg->cfs_rq[cpu]->on_list) | ||
5433 | return; | ||
5434 | |||
5435 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5436 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | ||
5437 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5438 | } | ||
5439 | |||
5440 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
5441 | struct sched_entity *se, int cpu, | ||
5442 | struct sched_entity *parent) | ||
5443 | { | ||
5444 | struct rq *rq = cpu_rq(cpu); | ||
5445 | |||
5446 | cfs_rq->tg = tg; | ||
5447 | cfs_rq->rq = rq; | ||
5448 | #ifdef CONFIG_SMP | ||
5449 | /* allow initial update_cfs_load() to truncate */ | ||
5450 | cfs_rq->load_stamp = 1; | ||
5451 | #endif | ||
5452 | init_cfs_rq_runtime(cfs_rq); | ||
5453 | |||
5454 | tg->cfs_rq[cpu] = cfs_rq; | ||
5455 | tg->se[cpu] = se; | ||
5456 | |||
5457 | /* se could be NULL for root_task_group */ | ||
5458 | if (!se) | ||
5459 | return; | ||
5460 | |||
5461 | if (!parent) | ||
5462 | se->cfs_rq = &rq->cfs; | ||
5463 | else | ||
5464 | se->cfs_rq = parent->my_q; | ||
5465 | |||
5466 | se->my_q = cfs_rq; | ||
5467 | update_load_set(&se->load, 0); | ||
5468 | se->parent = parent; | ||
5469 | } | ||
5470 | |||
5471 | static DEFINE_MUTEX(shares_mutex); | ||
5472 | |||
5473 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | ||
5474 | { | ||
5475 | int i; | ||
5476 | unsigned long flags; | ||
5477 | |||
5478 | /* | ||
5479 | * We can't change the weight of the root cgroup. | ||
5480 | */ | ||
5481 | if (!tg->se[0]) | ||
5482 | return -EINVAL; | ||
5483 | |||
5484 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | ||
5485 | |||
5486 | mutex_lock(&shares_mutex); | ||
5487 | if (tg->shares == shares) | ||
5488 | goto done; | ||
5489 | |||
5490 | tg->shares = shares; | ||
5491 | for_each_possible_cpu(i) { | ||
5492 | struct rq *rq = cpu_rq(i); | ||
5493 | struct sched_entity *se; | ||
5494 | |||
5495 | se = tg->se[i]; | ||
5496 | /* Propagate contribution to hierarchy */ | ||
5497 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5498 | for_each_sched_entity(se) | ||
5499 | update_cfs_shares(group_cfs_rq(se)); | ||
5500 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5501 | } | ||
5502 | |||
5503 | done: | ||
5504 | mutex_unlock(&shares_mutex); | ||
5505 | return 0; | ||
5506 | } | ||
5507 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
5508 | |||
5509 | void free_fair_sched_group(struct task_group *tg) { } | ||
5510 | |||
5511 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | ||
5512 | { | ||
5513 | return 1; | ||
5514 | } | ||
5515 | |||
5516 | void unregister_fair_sched_group(struct task_group *tg, int cpu) { } | ||
5517 | |||
5518 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
5519 | |||
5520 | |||
5521 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | ||
5522 | { | ||
5523 | struct sched_entity *se = &task->se; | ||
5524 | unsigned int rr_interval = 0; | ||
5525 | |||
5526 | /* | ||
5527 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
5528 | * idle runqueue: | ||
5529 | */ | ||
5530 | if (rq->cfs.load.weight) | ||
5531 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
5532 | |||
5533 | return rr_interval; | ||
5534 | } | ||
5535 | |||
5536 | /* | ||
5537 | * All the scheduling class methods: | ||
5538 | */ | ||
5539 | const struct sched_class fair_sched_class = { | ||
5540 | .next = &idle_sched_class, | ||
5541 | .enqueue_task = enqueue_task_fair, | ||
5542 | .dequeue_task = dequeue_task_fair, | ||
5543 | .yield_task = yield_task_fair, | ||
5544 | .yield_to_task = yield_to_task_fair, | ||
5545 | |||
5546 | .check_preempt_curr = check_preempt_wakeup, | ||
5547 | |||
5548 | .pick_next_task = pick_next_task_fair, | ||
5549 | .put_prev_task = put_prev_task_fair, | ||
5550 | |||
5551 | #ifdef CONFIG_SMP | ||
5552 | .select_task_rq = select_task_rq_fair, | ||
5553 | |||
5554 | .rq_online = rq_online_fair, | ||
5555 | .rq_offline = rq_offline_fair, | ||
5556 | |||
5557 | .task_waking = task_waking_fair, | ||
5558 | #endif | ||
5559 | |||
5560 | .set_curr_task = set_curr_task_fair, | ||
5561 | .task_tick = task_tick_fair, | ||
5562 | .task_fork = task_fork_fair, | ||
5563 | |||
5564 | .prio_changed = prio_changed_fair, | ||
5565 | .switched_from = switched_from_fair, | ||
5566 | .switched_to = switched_to_fair, | ||
5567 | |||
5568 | .get_rr_interval = get_rr_interval_fair, | ||
5569 | |||
5570 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
5571 | .task_move_group = task_move_group_fair, | ||
5572 | #endif | ||
5573 | }; | ||
5574 | |||
5575 | #ifdef CONFIG_SCHED_DEBUG | ||
5576 | void print_cfs_stats(struct seq_file *m, int cpu) | ||
5577 | { | ||
5578 | struct cfs_rq *cfs_rq; | ||
5579 | |||
5580 | rcu_read_lock(); | ||
5581 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | ||
5582 | print_cfs_rq(m, cpu, cfs_rq); | ||
5583 | rcu_read_unlock(); | ||
5584 | } | ||
5585 | #endif | ||
5586 | |||
5587 | __init void init_sched_fair_class(void) | ||
5588 | { | ||
5589 | #ifdef CONFIG_SMP | ||
5590 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | ||
5591 | |||
5592 | #ifdef CONFIG_NO_HZ | ||
5593 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | ||
5594 | alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); | ||
5595 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | ||
5596 | atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); | ||
5597 | atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); | ||
5598 | #endif | ||
5599 | #endif /* SMP */ | ||
5600 | |||
5601 | } | ||
diff --git a/kernel/sched/features.h b/kernel/sched/features.h new file mode 100644 index 000000000000..84802245abd2 --- /dev/null +++ b/kernel/sched/features.h | |||
@@ -0,0 +1,70 @@ | |||
1 | /* | ||
2 | * Only give sleepers 50% of their service deficit. This allows | ||
3 | * them to run sooner, but does not allow tons of sleepers to | ||
4 | * rip the spread apart. | ||
5 | */ | ||
6 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | ||
7 | |||
8 | /* | ||
9 | * Place new tasks ahead so that they do not starve already running | ||
10 | * tasks | ||
11 | */ | ||
12 | SCHED_FEAT(START_DEBIT, 1) | ||
13 | |||
14 | /* | ||
15 | * Based on load and program behaviour, see if it makes sense to place | ||
16 | * a newly woken task on the same cpu as the task that woke it -- | ||
17 | * improve cache locality. Typically used with SYNC wakeups as | ||
18 | * generated by pipes and the like, see also SYNC_WAKEUPS. | ||
19 | */ | ||
20 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | ||
21 | |||
22 | /* | ||
23 | * Prefer to schedule the task we woke last (assuming it failed | ||
24 | * wakeup-preemption), since its likely going to consume data we | ||
25 | * touched, increases cache locality. | ||
26 | */ | ||
27 | SCHED_FEAT(NEXT_BUDDY, 0) | ||
28 | |||
29 | /* | ||
30 | * Prefer to schedule the task that ran last (when we did | ||
31 | * wake-preempt) as that likely will touch the same data, increases | ||
32 | * cache locality. | ||
33 | */ | ||
34 | SCHED_FEAT(LAST_BUDDY, 1) | ||
35 | |||
36 | /* | ||
37 | * Consider buddies to be cache hot, decreases the likelyness of a | ||
38 | * cache buddy being migrated away, increases cache locality. | ||
39 | */ | ||
40 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | ||
41 | |||
42 | /* | ||
43 | * Use arch dependent cpu power functions | ||
44 | */ | ||
45 | SCHED_FEAT(ARCH_POWER, 0) | ||
46 | |||
47 | SCHED_FEAT(HRTICK, 0) | ||
48 | SCHED_FEAT(DOUBLE_TICK, 0) | ||
49 | SCHED_FEAT(LB_BIAS, 1) | ||
50 | |||
51 | /* | ||
52 | * Spin-wait on mutex acquisition when the mutex owner is running on | ||
53 | * another cpu -- assumes that when the owner is running, it will soon | ||
54 | * release the lock. Decreases scheduling overhead. | ||
55 | */ | ||
56 | SCHED_FEAT(OWNER_SPIN, 1) | ||
57 | |||
58 | /* | ||
59 | * Decrement CPU power based on time not spent running tasks | ||
60 | */ | ||
61 | SCHED_FEAT(NONTASK_POWER, 1) | ||
62 | |||
63 | /* | ||
64 | * Queue remote wakeups on the target CPU and process them | ||
65 | * using the scheduler IPI. Reduces rq->lock contention/bounces. | ||
66 | */ | ||
67 | SCHED_FEAT(TTWU_QUEUE, 1) | ||
68 | |||
69 | SCHED_FEAT(FORCE_SD_OVERLAP, 0) | ||
70 | SCHED_FEAT(RT_RUNTIME_SHARE, 1) | ||
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c new file mode 100644 index 000000000000..91b4c957f289 --- /dev/null +++ b/kernel/sched/idle_task.c | |||
@@ -0,0 +1,99 @@ | |||
1 | #include "sched.h" | ||
2 | |||
3 | /* | ||
4 | * idle-task scheduling class. | ||
5 | * | ||
6 | * (NOTE: these are not related to SCHED_IDLE tasks which are | ||
7 | * handled in sched_fair.c) | ||
8 | */ | ||
9 | |||
10 | #ifdef CONFIG_SMP | ||
11 | static int | ||
12 | select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) | ||
13 | { | ||
14 | return task_cpu(p); /* IDLE tasks as never migrated */ | ||
15 | } | ||
16 | #endif /* CONFIG_SMP */ | ||
17 | /* | ||
18 | * Idle tasks are unconditionally rescheduled: | ||
19 | */ | ||
20 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) | ||
21 | { | ||
22 | resched_task(rq->idle); | ||
23 | } | ||
24 | |||
25 | static struct task_struct *pick_next_task_idle(struct rq *rq) | ||
26 | { | ||
27 | schedstat_inc(rq, sched_goidle); | ||
28 | calc_load_account_idle(rq); | ||
29 | return rq->idle; | ||
30 | } | ||
31 | |||
32 | /* | ||
33 | * It is not legal to sleep in the idle task - print a warning | ||
34 | * message if some code attempts to do it: | ||
35 | */ | ||
36 | static void | ||
37 | dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) | ||
38 | { | ||
39 | raw_spin_unlock_irq(&rq->lock); | ||
40 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | ||
41 | dump_stack(); | ||
42 | raw_spin_lock_irq(&rq->lock); | ||
43 | } | ||
44 | |||
45 | static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) | ||
46 | { | ||
47 | } | ||
48 | |||
49 | static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) | ||
50 | { | ||
51 | } | ||
52 | |||
53 | static void set_curr_task_idle(struct rq *rq) | ||
54 | { | ||
55 | } | ||
56 | |||
57 | static void switched_to_idle(struct rq *rq, struct task_struct *p) | ||
58 | { | ||
59 | BUG(); | ||
60 | } | ||
61 | |||
62 | static void | ||
63 | prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) | ||
64 | { | ||
65 | BUG(); | ||
66 | } | ||
67 | |||
68 | static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) | ||
69 | { | ||
70 | return 0; | ||
71 | } | ||
72 | |||
73 | /* | ||
74 | * Simple, special scheduling class for the per-CPU idle tasks: | ||
75 | */ | ||
76 | const struct sched_class idle_sched_class = { | ||
77 | /* .next is NULL */ | ||
78 | /* no enqueue/yield_task for idle tasks */ | ||
79 | |||
80 | /* dequeue is not valid, we print a debug message there: */ | ||
81 | .dequeue_task = dequeue_task_idle, | ||
82 | |||
83 | .check_preempt_curr = check_preempt_curr_idle, | ||
84 | |||
85 | .pick_next_task = pick_next_task_idle, | ||
86 | .put_prev_task = put_prev_task_idle, | ||
87 | |||
88 | #ifdef CONFIG_SMP | ||
89 | .select_task_rq = select_task_rq_idle, | ||
90 | #endif | ||
91 | |||
92 | .set_curr_task = set_curr_task_idle, | ||
93 | .task_tick = task_tick_idle, | ||
94 | |||
95 | .get_rr_interval = get_rr_interval_idle, | ||
96 | |||
97 | .prio_changed = prio_changed_idle, | ||
98 | .switched_to = switched_to_idle, | ||
99 | }; | ||
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c new file mode 100644 index 000000000000..023b35502509 --- /dev/null +++ b/kernel/sched/rt.c | |||
@@ -0,0 +1,2045 @@ | |||
1 | /* | ||
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | ||
3 | * policies) | ||
4 | */ | ||
5 | |||
6 | #include "sched.h" | ||
7 | |||
8 | #include <linux/slab.h> | ||
9 | |||
10 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | ||
11 | |||
12 | struct rt_bandwidth def_rt_bandwidth; | ||
13 | |||
14 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | ||
15 | { | ||
16 | struct rt_bandwidth *rt_b = | ||
17 | container_of(timer, struct rt_bandwidth, rt_period_timer); | ||
18 | ktime_t now; | ||
19 | int overrun; | ||
20 | int idle = 0; | ||
21 | |||
22 | for (;;) { | ||
23 | now = hrtimer_cb_get_time(timer); | ||
24 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | ||
25 | |||
26 | if (!overrun) | ||
27 | break; | ||
28 | |||
29 | idle = do_sched_rt_period_timer(rt_b, overrun); | ||
30 | } | ||
31 | |||
32 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | ||
33 | } | ||
34 | |||
35 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | ||
36 | { | ||
37 | rt_b->rt_period = ns_to_ktime(period); | ||
38 | rt_b->rt_runtime = runtime; | ||
39 | |||
40 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | ||
41 | |||
42 | hrtimer_init(&rt_b->rt_period_timer, | ||
43 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
44 | rt_b->rt_period_timer.function = sched_rt_period_timer; | ||
45 | } | ||
46 | |||
47 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | ||
48 | { | ||
49 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | ||
50 | return; | ||
51 | |||
52 | if (hrtimer_active(&rt_b->rt_period_timer)) | ||
53 | return; | ||
54 | |||
55 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
56 | start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); | ||
57 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
58 | } | ||
59 | |||
60 | void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | ||
61 | { | ||
62 | struct rt_prio_array *array; | ||
63 | int i; | ||
64 | |||
65 | array = &rt_rq->active; | ||
66 | for (i = 0; i < MAX_RT_PRIO; i++) { | ||
67 | INIT_LIST_HEAD(array->queue + i); | ||
68 | __clear_bit(i, array->bitmap); | ||
69 | } | ||
70 | /* delimiter for bitsearch: */ | ||
71 | __set_bit(MAX_RT_PRIO, array->bitmap); | ||
72 | |||
73 | #if defined CONFIG_SMP | ||
74 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
75 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
76 | rt_rq->rt_nr_migratory = 0; | ||
77 | rt_rq->overloaded = 0; | ||
78 | plist_head_init(&rt_rq->pushable_tasks); | ||
79 | #endif | ||
80 | |||
81 | rt_rq->rt_time = 0; | ||
82 | rt_rq->rt_throttled = 0; | ||
83 | rt_rq->rt_runtime = 0; | ||
84 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | ||
85 | } | ||
86 | |||
87 | #ifdef CONFIG_RT_GROUP_SCHED | ||
88 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | ||
89 | { | ||
90 | hrtimer_cancel(&rt_b->rt_period_timer); | ||
91 | } | ||
92 | |||
93 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | ||
94 | |||
95 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
96 | { | ||
97 | #ifdef CONFIG_SCHED_DEBUG | ||
98 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | ||
99 | #endif | ||
100 | return container_of(rt_se, struct task_struct, rt); | ||
101 | } | ||
102 | |||
103 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
104 | { | ||
105 | return rt_rq->rq; | ||
106 | } | ||
107 | |||
108 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
109 | { | ||
110 | return rt_se->rt_rq; | ||
111 | } | ||
112 | |||
113 | void free_rt_sched_group(struct task_group *tg) | ||
114 | { | ||
115 | int i; | ||
116 | |||
117 | if (tg->rt_se) | ||
118 | destroy_rt_bandwidth(&tg->rt_bandwidth); | ||
119 | |||
120 | for_each_possible_cpu(i) { | ||
121 | if (tg->rt_rq) | ||
122 | kfree(tg->rt_rq[i]); | ||
123 | if (tg->rt_se) | ||
124 | kfree(tg->rt_se[i]); | ||
125 | } | ||
126 | |||
127 | kfree(tg->rt_rq); | ||
128 | kfree(tg->rt_se); | ||
129 | } | ||
130 | |||
131 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
132 | struct sched_rt_entity *rt_se, int cpu, | ||
133 | struct sched_rt_entity *parent) | ||
134 | { | ||
135 | struct rq *rq = cpu_rq(cpu); | ||
136 | |||
137 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
138 | rt_rq->rt_nr_boosted = 0; | ||
139 | rt_rq->rq = rq; | ||
140 | rt_rq->tg = tg; | ||
141 | |||
142 | tg->rt_rq[cpu] = rt_rq; | ||
143 | tg->rt_se[cpu] = rt_se; | ||
144 | |||
145 | if (!rt_se) | ||
146 | return; | ||
147 | |||
148 | if (!parent) | ||
149 | rt_se->rt_rq = &rq->rt; | ||
150 | else | ||
151 | rt_se->rt_rq = parent->my_q; | ||
152 | |||
153 | rt_se->my_q = rt_rq; | ||
154 | rt_se->parent = parent; | ||
155 | INIT_LIST_HEAD(&rt_se->run_list); | ||
156 | } | ||
157 | |||
158 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | ||
159 | { | ||
160 | struct rt_rq *rt_rq; | ||
161 | struct sched_rt_entity *rt_se; | ||
162 | int i; | ||
163 | |||
164 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | ||
165 | if (!tg->rt_rq) | ||
166 | goto err; | ||
167 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | ||
168 | if (!tg->rt_se) | ||
169 | goto err; | ||
170 | |||
171 | init_rt_bandwidth(&tg->rt_bandwidth, | ||
172 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | ||
173 | |||
174 | for_each_possible_cpu(i) { | ||
175 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | ||
176 | GFP_KERNEL, cpu_to_node(i)); | ||
177 | if (!rt_rq) | ||
178 | goto err; | ||
179 | |||
180 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | ||
181 | GFP_KERNEL, cpu_to_node(i)); | ||
182 | if (!rt_se) | ||
183 | goto err_free_rq; | ||
184 | |||
185 | init_rt_rq(rt_rq, cpu_rq(i)); | ||
186 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | ||
187 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | ||
188 | } | ||
189 | |||
190 | return 1; | ||
191 | |||
192 | err_free_rq: | ||
193 | kfree(rt_rq); | ||
194 | err: | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
199 | |||
200 | #define rt_entity_is_task(rt_se) (1) | ||
201 | |||
202 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
203 | { | ||
204 | return container_of(rt_se, struct task_struct, rt); | ||
205 | } | ||
206 | |||
207 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
208 | { | ||
209 | return container_of(rt_rq, struct rq, rt); | ||
210 | } | ||
211 | |||
212 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
213 | { | ||
214 | struct task_struct *p = rt_task_of(rt_se); | ||
215 | struct rq *rq = task_rq(p); | ||
216 | |||
217 | return &rq->rt; | ||
218 | } | ||
219 | |||
220 | void free_rt_sched_group(struct task_group *tg) { } | ||
221 | |||
222 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | ||
223 | { | ||
224 | return 1; | ||
225 | } | ||
226 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
227 | |||
228 | #ifdef CONFIG_SMP | ||
229 | |||
230 | static inline int rt_overloaded(struct rq *rq) | ||
231 | { | ||
232 | return atomic_read(&rq->rd->rto_count); | ||
233 | } | ||
234 | |||
235 | static inline void rt_set_overload(struct rq *rq) | ||
236 | { | ||
237 | if (!rq->online) | ||
238 | return; | ||
239 | |||
240 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | ||
241 | /* | ||
242 | * Make sure the mask is visible before we set | ||
243 | * the overload count. That is checked to determine | ||
244 | * if we should look at the mask. It would be a shame | ||
245 | * if we looked at the mask, but the mask was not | ||
246 | * updated yet. | ||
247 | */ | ||
248 | wmb(); | ||
249 | atomic_inc(&rq->rd->rto_count); | ||
250 | } | ||
251 | |||
252 | static inline void rt_clear_overload(struct rq *rq) | ||
253 | { | ||
254 | if (!rq->online) | ||
255 | return; | ||
256 | |||
257 | /* the order here really doesn't matter */ | ||
258 | atomic_dec(&rq->rd->rto_count); | ||
259 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | ||
260 | } | ||
261 | |||
262 | static void update_rt_migration(struct rt_rq *rt_rq) | ||
263 | { | ||
264 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | ||
265 | if (!rt_rq->overloaded) { | ||
266 | rt_set_overload(rq_of_rt_rq(rt_rq)); | ||
267 | rt_rq->overloaded = 1; | ||
268 | } | ||
269 | } else if (rt_rq->overloaded) { | ||
270 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | ||
271 | rt_rq->overloaded = 0; | ||
272 | } | ||
273 | } | ||
274 | |||
275 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
276 | { | ||
277 | if (!rt_entity_is_task(rt_se)) | ||
278 | return; | ||
279 | |||
280 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | ||
281 | |||
282 | rt_rq->rt_nr_total++; | ||
283 | if (rt_se->nr_cpus_allowed > 1) | ||
284 | rt_rq->rt_nr_migratory++; | ||
285 | |||
286 | update_rt_migration(rt_rq); | ||
287 | } | ||
288 | |||
289 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
290 | { | ||
291 | if (!rt_entity_is_task(rt_se)) | ||
292 | return; | ||
293 | |||
294 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | ||
295 | |||
296 | rt_rq->rt_nr_total--; | ||
297 | if (rt_se->nr_cpus_allowed > 1) | ||
298 | rt_rq->rt_nr_migratory--; | ||
299 | |||
300 | update_rt_migration(rt_rq); | ||
301 | } | ||
302 | |||
303 | static inline int has_pushable_tasks(struct rq *rq) | ||
304 | { | ||
305 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
306 | } | ||
307 | |||
308 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
309 | { | ||
310 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
311 | plist_node_init(&p->pushable_tasks, p->prio); | ||
312 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
313 | |||
314 | /* Update the highest prio pushable task */ | ||
315 | if (p->prio < rq->rt.highest_prio.next) | ||
316 | rq->rt.highest_prio.next = p->prio; | ||
317 | } | ||
318 | |||
319 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
320 | { | ||
321 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
322 | |||
323 | /* Update the new highest prio pushable task */ | ||
324 | if (has_pushable_tasks(rq)) { | ||
325 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
326 | struct task_struct, pushable_tasks); | ||
327 | rq->rt.highest_prio.next = p->prio; | ||
328 | } else | ||
329 | rq->rt.highest_prio.next = MAX_RT_PRIO; | ||
330 | } | ||
331 | |||
332 | #else | ||
333 | |||
334 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
335 | { | ||
336 | } | ||
337 | |||
338 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
339 | { | ||
340 | } | ||
341 | |||
342 | static inline | ||
343 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
344 | { | ||
345 | } | ||
346 | |||
347 | static inline | ||
348 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
349 | { | ||
350 | } | ||
351 | |||
352 | #endif /* CONFIG_SMP */ | ||
353 | |||
354 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | ||
355 | { | ||
356 | return !list_empty(&rt_se->run_list); | ||
357 | } | ||
358 | |||
359 | #ifdef CONFIG_RT_GROUP_SCHED | ||
360 | |||
361 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | ||
362 | { | ||
363 | if (!rt_rq->tg) | ||
364 | return RUNTIME_INF; | ||
365 | |||
366 | return rt_rq->rt_runtime; | ||
367 | } | ||
368 | |||
369 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | ||
370 | { | ||
371 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | ||
372 | } | ||
373 | |||
374 | typedef struct task_group *rt_rq_iter_t; | ||
375 | |||
376 | static inline struct task_group *next_task_group(struct task_group *tg) | ||
377 | { | ||
378 | do { | ||
379 | tg = list_entry_rcu(tg->list.next, | ||
380 | typeof(struct task_group), list); | ||
381 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | ||
382 | |||
383 | if (&tg->list == &task_groups) | ||
384 | tg = NULL; | ||
385 | |||
386 | return tg; | ||
387 | } | ||
388 | |||
389 | #define for_each_rt_rq(rt_rq, iter, rq) \ | ||
390 | for (iter = container_of(&task_groups, typeof(*iter), list); \ | ||
391 | (iter = next_task_group(iter)) && \ | ||
392 | (rt_rq = iter->rt_rq[cpu_of(rq)]);) | ||
393 | |||
394 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | ||
395 | { | ||
396 | list_add_rcu(&rt_rq->leaf_rt_rq_list, | ||
397 | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); | ||
398 | } | ||
399 | |||
400 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | ||
401 | { | ||
402 | list_del_rcu(&rt_rq->leaf_rt_rq_list); | ||
403 | } | ||
404 | |||
405 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
406 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | ||
407 | |||
408 | #define for_each_sched_rt_entity(rt_se) \ | ||
409 | for (; rt_se; rt_se = rt_se->parent) | ||
410 | |||
411 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
412 | { | ||
413 | return rt_se->my_q; | ||
414 | } | ||
415 | |||
416 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); | ||
417 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | ||
418 | |||
419 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | ||
420 | { | ||
421 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | ||
422 | struct sched_rt_entity *rt_se; | ||
423 | |||
424 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | ||
425 | |||
426 | rt_se = rt_rq->tg->rt_se[cpu]; | ||
427 | |||
428 | if (rt_rq->rt_nr_running) { | ||
429 | if (rt_se && !on_rt_rq(rt_se)) | ||
430 | enqueue_rt_entity(rt_se, false); | ||
431 | if (rt_rq->highest_prio.curr < curr->prio) | ||
432 | resched_task(curr); | ||
433 | } | ||
434 | } | ||
435 | |||
436 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | ||
437 | { | ||
438 | struct sched_rt_entity *rt_se; | ||
439 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | ||
440 | |||
441 | rt_se = rt_rq->tg->rt_se[cpu]; | ||
442 | |||
443 | if (rt_se && on_rt_rq(rt_se)) | ||
444 | dequeue_rt_entity(rt_se); | ||
445 | } | ||
446 | |||
447 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | ||
448 | { | ||
449 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | ||
450 | } | ||
451 | |||
452 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | ||
453 | { | ||
454 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
455 | struct task_struct *p; | ||
456 | |||
457 | if (rt_rq) | ||
458 | return !!rt_rq->rt_nr_boosted; | ||
459 | |||
460 | p = rt_task_of(rt_se); | ||
461 | return p->prio != p->normal_prio; | ||
462 | } | ||
463 | |||
464 | #ifdef CONFIG_SMP | ||
465 | static inline const struct cpumask *sched_rt_period_mask(void) | ||
466 | { | ||
467 | return cpu_rq(smp_processor_id())->rd->span; | ||
468 | } | ||
469 | #else | ||
470 | static inline const struct cpumask *sched_rt_period_mask(void) | ||
471 | { | ||
472 | return cpu_online_mask; | ||
473 | } | ||
474 | #endif | ||
475 | |||
476 | static inline | ||
477 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | ||
478 | { | ||
479 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | ||
480 | } | ||
481 | |||
482 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | ||
483 | { | ||
484 | return &rt_rq->tg->rt_bandwidth; | ||
485 | } | ||
486 | |||
487 | #else /* !CONFIG_RT_GROUP_SCHED */ | ||
488 | |||
489 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | ||
490 | { | ||
491 | return rt_rq->rt_runtime; | ||
492 | } | ||
493 | |||
494 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | ||
495 | { | ||
496 | return ktime_to_ns(def_rt_bandwidth.rt_period); | ||
497 | } | ||
498 | |||
499 | typedef struct rt_rq *rt_rq_iter_t; | ||
500 | |||
501 | #define for_each_rt_rq(rt_rq, iter, rq) \ | ||
502 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | ||
503 | |||
504 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | ||
505 | { | ||
506 | } | ||
507 | |||
508 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | ||
509 | { | ||
510 | } | ||
511 | |||
512 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
513 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | ||
514 | |||
515 | #define for_each_sched_rt_entity(rt_se) \ | ||
516 | for (; rt_se; rt_se = NULL) | ||
517 | |||
518 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
519 | { | ||
520 | return NULL; | ||
521 | } | ||
522 | |||
523 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | ||
524 | { | ||
525 | if (rt_rq->rt_nr_running) | ||
526 | resched_task(rq_of_rt_rq(rt_rq)->curr); | ||
527 | } | ||
528 | |||
529 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | ||
530 | { | ||
531 | } | ||
532 | |||
533 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | ||
534 | { | ||
535 | return rt_rq->rt_throttled; | ||
536 | } | ||
537 | |||
538 | static inline const struct cpumask *sched_rt_period_mask(void) | ||
539 | { | ||
540 | return cpu_online_mask; | ||
541 | } | ||
542 | |||
543 | static inline | ||
544 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | ||
545 | { | ||
546 | return &cpu_rq(cpu)->rt; | ||
547 | } | ||
548 | |||
549 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | ||
550 | { | ||
551 | return &def_rt_bandwidth; | ||
552 | } | ||
553 | |||
554 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
555 | |||
556 | #ifdef CONFIG_SMP | ||
557 | /* | ||
558 | * We ran out of runtime, see if we can borrow some from our neighbours. | ||
559 | */ | ||
560 | static int do_balance_runtime(struct rt_rq *rt_rq) | ||
561 | { | ||
562 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | ||
563 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | ||
564 | int i, weight, more = 0; | ||
565 | u64 rt_period; | ||
566 | |||
567 | weight = cpumask_weight(rd->span); | ||
568 | |||
569 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
570 | rt_period = ktime_to_ns(rt_b->rt_period); | ||
571 | for_each_cpu(i, rd->span) { | ||
572 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | ||
573 | s64 diff; | ||
574 | |||
575 | if (iter == rt_rq) | ||
576 | continue; | ||
577 | |||
578 | raw_spin_lock(&iter->rt_runtime_lock); | ||
579 | /* | ||
580 | * Either all rqs have inf runtime and there's nothing to steal | ||
581 | * or __disable_runtime() below sets a specific rq to inf to | ||
582 | * indicate its been disabled and disalow stealing. | ||
583 | */ | ||
584 | if (iter->rt_runtime == RUNTIME_INF) | ||
585 | goto next; | ||
586 | |||
587 | /* | ||
588 | * From runqueues with spare time, take 1/n part of their | ||
589 | * spare time, but no more than our period. | ||
590 | */ | ||
591 | diff = iter->rt_runtime - iter->rt_time; | ||
592 | if (diff > 0) { | ||
593 | diff = div_u64((u64)diff, weight); | ||
594 | if (rt_rq->rt_runtime + diff > rt_period) | ||
595 | diff = rt_period - rt_rq->rt_runtime; | ||
596 | iter->rt_runtime -= diff; | ||
597 | rt_rq->rt_runtime += diff; | ||
598 | more = 1; | ||
599 | if (rt_rq->rt_runtime == rt_period) { | ||
600 | raw_spin_unlock(&iter->rt_runtime_lock); | ||
601 | break; | ||
602 | } | ||
603 | } | ||
604 | next: | ||
605 | raw_spin_unlock(&iter->rt_runtime_lock); | ||
606 | } | ||
607 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
608 | |||
609 | return more; | ||
610 | } | ||
611 | |||
612 | /* | ||
613 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | ||
614 | */ | ||
615 | static void __disable_runtime(struct rq *rq) | ||
616 | { | ||
617 | struct root_domain *rd = rq->rd; | ||
618 | rt_rq_iter_t iter; | ||
619 | struct rt_rq *rt_rq; | ||
620 | |||
621 | if (unlikely(!scheduler_running)) | ||
622 | return; | ||
623 | |||
624 | for_each_rt_rq(rt_rq, iter, rq) { | ||
625 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | ||
626 | s64 want; | ||
627 | int i; | ||
628 | |||
629 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
630 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
631 | /* | ||
632 | * Either we're all inf and nobody needs to borrow, or we're | ||
633 | * already disabled and thus have nothing to do, or we have | ||
634 | * exactly the right amount of runtime to take out. | ||
635 | */ | ||
636 | if (rt_rq->rt_runtime == RUNTIME_INF || | ||
637 | rt_rq->rt_runtime == rt_b->rt_runtime) | ||
638 | goto balanced; | ||
639 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
640 | |||
641 | /* | ||
642 | * Calculate the difference between what we started out with | ||
643 | * and what we current have, that's the amount of runtime | ||
644 | * we lend and now have to reclaim. | ||
645 | */ | ||
646 | want = rt_b->rt_runtime - rt_rq->rt_runtime; | ||
647 | |||
648 | /* | ||
649 | * Greedy reclaim, take back as much as we can. | ||
650 | */ | ||
651 | for_each_cpu(i, rd->span) { | ||
652 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | ||
653 | s64 diff; | ||
654 | |||
655 | /* | ||
656 | * Can't reclaim from ourselves or disabled runqueues. | ||
657 | */ | ||
658 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | ||
659 | continue; | ||
660 | |||
661 | raw_spin_lock(&iter->rt_runtime_lock); | ||
662 | if (want > 0) { | ||
663 | diff = min_t(s64, iter->rt_runtime, want); | ||
664 | iter->rt_runtime -= diff; | ||
665 | want -= diff; | ||
666 | } else { | ||
667 | iter->rt_runtime -= want; | ||
668 | want -= want; | ||
669 | } | ||
670 | raw_spin_unlock(&iter->rt_runtime_lock); | ||
671 | |||
672 | if (!want) | ||
673 | break; | ||
674 | } | ||
675 | |||
676 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
677 | /* | ||
678 | * We cannot be left wanting - that would mean some runtime | ||
679 | * leaked out of the system. | ||
680 | */ | ||
681 | BUG_ON(want); | ||
682 | balanced: | ||
683 | /* | ||
684 | * Disable all the borrow logic by pretending we have inf | ||
685 | * runtime - in which case borrowing doesn't make sense. | ||
686 | */ | ||
687 | rt_rq->rt_runtime = RUNTIME_INF; | ||
688 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
689 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
690 | } | ||
691 | } | ||
692 | |||
693 | static void disable_runtime(struct rq *rq) | ||
694 | { | ||
695 | unsigned long flags; | ||
696 | |||
697 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
698 | __disable_runtime(rq); | ||
699 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
700 | } | ||
701 | |||
702 | static void __enable_runtime(struct rq *rq) | ||
703 | { | ||
704 | rt_rq_iter_t iter; | ||
705 | struct rt_rq *rt_rq; | ||
706 | |||
707 | if (unlikely(!scheduler_running)) | ||
708 | return; | ||
709 | |||
710 | /* | ||
711 | * Reset each runqueue's bandwidth settings | ||
712 | */ | ||
713 | for_each_rt_rq(rt_rq, iter, rq) { | ||
714 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | ||
715 | |||
716 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
717 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
718 | rt_rq->rt_runtime = rt_b->rt_runtime; | ||
719 | rt_rq->rt_time = 0; | ||
720 | rt_rq->rt_throttled = 0; | ||
721 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
722 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
723 | } | ||
724 | } | ||
725 | |||
726 | static void enable_runtime(struct rq *rq) | ||
727 | { | ||
728 | unsigned long flags; | ||
729 | |||
730 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
731 | __enable_runtime(rq); | ||
732 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
733 | } | ||
734 | |||
735 | int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) | ||
736 | { | ||
737 | int cpu = (int)(long)hcpu; | ||
738 | |||
739 | switch (action) { | ||
740 | case CPU_DOWN_PREPARE: | ||
741 | case CPU_DOWN_PREPARE_FROZEN: | ||
742 | disable_runtime(cpu_rq(cpu)); | ||
743 | return NOTIFY_OK; | ||
744 | |||
745 | case CPU_DOWN_FAILED: | ||
746 | case CPU_DOWN_FAILED_FROZEN: | ||
747 | case CPU_ONLINE: | ||
748 | case CPU_ONLINE_FROZEN: | ||
749 | enable_runtime(cpu_rq(cpu)); | ||
750 | return NOTIFY_OK; | ||
751 | |||
752 | default: | ||
753 | return NOTIFY_DONE; | ||
754 | } | ||
755 | } | ||
756 | |||
757 | static int balance_runtime(struct rt_rq *rt_rq) | ||
758 | { | ||
759 | int more = 0; | ||
760 | |||
761 | if (!sched_feat(RT_RUNTIME_SHARE)) | ||
762 | return more; | ||
763 | |||
764 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | ||
765 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
766 | more = do_balance_runtime(rt_rq); | ||
767 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
768 | } | ||
769 | |||
770 | return more; | ||
771 | } | ||
772 | #else /* !CONFIG_SMP */ | ||
773 | static inline int balance_runtime(struct rt_rq *rt_rq) | ||
774 | { | ||
775 | return 0; | ||
776 | } | ||
777 | #endif /* CONFIG_SMP */ | ||
778 | |||
779 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | ||
780 | { | ||
781 | int i, idle = 1; | ||
782 | const struct cpumask *span; | ||
783 | |||
784 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | ||
785 | return 1; | ||
786 | |||
787 | span = sched_rt_period_mask(); | ||
788 | for_each_cpu(i, span) { | ||
789 | int enqueue = 0; | ||
790 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | ||
791 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
792 | |||
793 | raw_spin_lock(&rq->lock); | ||
794 | if (rt_rq->rt_time) { | ||
795 | u64 runtime; | ||
796 | |||
797 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
798 | if (rt_rq->rt_throttled) | ||
799 | balance_runtime(rt_rq); | ||
800 | runtime = rt_rq->rt_runtime; | ||
801 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | ||
802 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | ||
803 | rt_rq->rt_throttled = 0; | ||
804 | enqueue = 1; | ||
805 | |||
806 | /* | ||
807 | * Force a clock update if the CPU was idle, | ||
808 | * lest wakeup -> unthrottle time accumulate. | ||
809 | */ | ||
810 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | ||
811 | rq->skip_clock_update = -1; | ||
812 | } | ||
813 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | ||
814 | idle = 0; | ||
815 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
816 | } else if (rt_rq->rt_nr_running) { | ||
817 | idle = 0; | ||
818 | if (!rt_rq_throttled(rt_rq)) | ||
819 | enqueue = 1; | ||
820 | } | ||
821 | |||
822 | if (enqueue) | ||
823 | sched_rt_rq_enqueue(rt_rq); | ||
824 | raw_spin_unlock(&rq->lock); | ||
825 | } | ||
826 | |||
827 | return idle; | ||
828 | } | ||
829 | |||
830 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | ||
831 | { | ||
832 | #ifdef CONFIG_RT_GROUP_SCHED | ||
833 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
834 | |||
835 | if (rt_rq) | ||
836 | return rt_rq->highest_prio.curr; | ||
837 | #endif | ||
838 | |||
839 | return rt_task_of(rt_se)->prio; | ||
840 | } | ||
841 | |||
842 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | ||
843 | { | ||
844 | u64 runtime = sched_rt_runtime(rt_rq); | ||
845 | |||
846 | if (rt_rq->rt_throttled) | ||
847 | return rt_rq_throttled(rt_rq); | ||
848 | |||
849 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) | ||
850 | return 0; | ||
851 | |||
852 | balance_runtime(rt_rq); | ||
853 | runtime = sched_rt_runtime(rt_rq); | ||
854 | if (runtime == RUNTIME_INF) | ||
855 | return 0; | ||
856 | |||
857 | if (rt_rq->rt_time > runtime) { | ||
858 | rt_rq->rt_throttled = 1; | ||
859 | printk_once(KERN_WARNING "sched: RT throttling activated\n"); | ||
860 | if (rt_rq_throttled(rt_rq)) { | ||
861 | sched_rt_rq_dequeue(rt_rq); | ||
862 | return 1; | ||
863 | } | ||
864 | } | ||
865 | |||
866 | return 0; | ||
867 | } | ||
868 | |||
869 | /* | ||
870 | * Update the current task's runtime statistics. Skip current tasks that | ||
871 | * are not in our scheduling class. | ||
872 | */ | ||
873 | static void update_curr_rt(struct rq *rq) | ||
874 | { | ||
875 | struct task_struct *curr = rq->curr; | ||
876 | struct sched_rt_entity *rt_se = &curr->rt; | ||
877 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
878 | u64 delta_exec; | ||
879 | |||
880 | if (curr->sched_class != &rt_sched_class) | ||
881 | return; | ||
882 | |||
883 | delta_exec = rq->clock_task - curr->se.exec_start; | ||
884 | if (unlikely((s64)delta_exec < 0)) | ||
885 | delta_exec = 0; | ||
886 | |||
887 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); | ||
888 | |||
889 | curr->se.sum_exec_runtime += delta_exec; | ||
890 | account_group_exec_runtime(curr, delta_exec); | ||
891 | |||
892 | curr->se.exec_start = rq->clock_task; | ||
893 | cpuacct_charge(curr, delta_exec); | ||
894 | |||
895 | sched_rt_avg_update(rq, delta_exec); | ||
896 | |||
897 | if (!rt_bandwidth_enabled()) | ||
898 | return; | ||
899 | |||
900 | for_each_sched_rt_entity(rt_se) { | ||
901 | rt_rq = rt_rq_of_se(rt_se); | ||
902 | |||
903 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | ||
904 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
905 | rt_rq->rt_time += delta_exec; | ||
906 | if (sched_rt_runtime_exceeded(rt_rq)) | ||
907 | resched_task(curr); | ||
908 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
909 | } | ||
910 | } | ||
911 | } | ||
912 | |||
913 | #if defined CONFIG_SMP | ||
914 | |||
915 | static void | ||
916 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
917 | { | ||
918 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
919 | |||
920 | if (rq->online && prio < prev_prio) | ||
921 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | ||
922 | } | ||
923 | |||
924 | static void | ||
925 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
926 | { | ||
927 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
928 | |||
929 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | ||
930 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | ||
931 | } | ||
932 | |||
933 | #else /* CONFIG_SMP */ | ||
934 | |||
935 | static inline | ||
936 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | ||
937 | static inline | ||
938 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | ||
939 | |||
940 | #endif /* CONFIG_SMP */ | ||
941 | |||
942 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
943 | static void | ||
944 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
945 | { | ||
946 | int prev_prio = rt_rq->highest_prio.curr; | ||
947 | |||
948 | if (prio < prev_prio) | ||
949 | rt_rq->highest_prio.curr = prio; | ||
950 | |||
951 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
952 | } | ||
953 | |||
954 | static void | ||
955 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
956 | { | ||
957 | int prev_prio = rt_rq->highest_prio.curr; | ||
958 | |||
959 | if (rt_rq->rt_nr_running) { | ||
960 | |||
961 | WARN_ON(prio < prev_prio); | ||
962 | |||
963 | /* | ||
964 | * This may have been our highest task, and therefore | ||
965 | * we may have some recomputation to do | ||
966 | */ | ||
967 | if (prio == prev_prio) { | ||
968 | struct rt_prio_array *array = &rt_rq->active; | ||
969 | |||
970 | rt_rq->highest_prio.curr = | ||
971 | sched_find_first_bit(array->bitmap); | ||
972 | } | ||
973 | |||
974 | } else | ||
975 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
976 | |||
977 | dec_rt_prio_smp(rt_rq, prio, prev_prio); | ||
978 | } | ||
979 | |||
980 | #else | ||
981 | |||
982 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | ||
983 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | ||
984 | |||
985 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
986 | |||
987 | #ifdef CONFIG_RT_GROUP_SCHED | ||
988 | |||
989 | static void | ||
990 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
991 | { | ||
992 | if (rt_se_boosted(rt_se)) | ||
993 | rt_rq->rt_nr_boosted++; | ||
994 | |||
995 | if (rt_rq->tg) | ||
996 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
997 | } | ||
998 | |||
999 | static void | ||
1000 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
1001 | { | ||
1002 | if (rt_se_boosted(rt_se)) | ||
1003 | rt_rq->rt_nr_boosted--; | ||
1004 | |||
1005 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | ||
1006 | } | ||
1007 | |||
1008 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
1009 | |||
1010 | static void | ||
1011 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
1012 | { | ||
1013 | start_rt_bandwidth(&def_rt_bandwidth); | ||
1014 | } | ||
1015 | |||
1016 | static inline | ||
1017 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
1018 | |||
1019 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
1020 | |||
1021 | static inline | ||
1022 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
1023 | { | ||
1024 | int prio = rt_se_prio(rt_se); | ||
1025 | |||
1026 | WARN_ON(!rt_prio(prio)); | ||
1027 | rt_rq->rt_nr_running++; | ||
1028 | |||
1029 | inc_rt_prio(rt_rq, prio); | ||
1030 | inc_rt_migration(rt_se, rt_rq); | ||
1031 | inc_rt_group(rt_se, rt_rq); | ||
1032 | } | ||
1033 | |||
1034 | static inline | ||
1035 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
1036 | { | ||
1037 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
1038 | WARN_ON(!rt_rq->rt_nr_running); | ||
1039 | rt_rq->rt_nr_running--; | ||
1040 | |||
1041 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
1042 | dec_rt_migration(rt_se, rt_rq); | ||
1043 | dec_rt_group(rt_se, rt_rq); | ||
1044 | } | ||
1045 | |||
1046 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | ||
1047 | { | ||
1048 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
1049 | struct rt_prio_array *array = &rt_rq->active; | ||
1050 | struct rt_rq *group_rq = group_rt_rq(rt_se); | ||
1051 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | ||
1052 | |||
1053 | /* | ||
1054 | * Don't enqueue the group if its throttled, or when empty. | ||
1055 | * The latter is a consequence of the former when a child group | ||
1056 | * get throttled and the current group doesn't have any other | ||
1057 | * active members. | ||
1058 | */ | ||
1059 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | ||
1060 | return; | ||
1061 | |||
1062 | if (!rt_rq->rt_nr_running) | ||
1063 | list_add_leaf_rt_rq(rt_rq); | ||
1064 | |||
1065 | if (head) | ||
1066 | list_add(&rt_se->run_list, queue); | ||
1067 | else | ||
1068 | list_add_tail(&rt_se->run_list, queue); | ||
1069 | __set_bit(rt_se_prio(rt_se), array->bitmap); | ||
1070 | |||
1071 | inc_rt_tasks(rt_se, rt_rq); | ||
1072 | } | ||
1073 | |||
1074 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
1075 | { | ||
1076 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
1077 | struct rt_prio_array *array = &rt_rq->active; | ||
1078 | |||
1079 | list_del_init(&rt_se->run_list); | ||
1080 | if (list_empty(array->queue + rt_se_prio(rt_se))) | ||
1081 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | ||
1082 | |||
1083 | dec_rt_tasks(rt_se, rt_rq); | ||
1084 | if (!rt_rq->rt_nr_running) | ||
1085 | list_del_leaf_rt_rq(rt_rq); | ||
1086 | } | ||
1087 | |||
1088 | /* | ||
1089 | * Because the prio of an upper entry depends on the lower | ||
1090 | * entries, we must remove entries top - down. | ||
1091 | */ | ||
1092 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) | ||
1093 | { | ||
1094 | struct sched_rt_entity *back = NULL; | ||
1095 | |||
1096 | for_each_sched_rt_entity(rt_se) { | ||
1097 | rt_se->back = back; | ||
1098 | back = rt_se; | ||
1099 | } | ||
1100 | |||
1101 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | ||
1102 | if (on_rt_rq(rt_se)) | ||
1103 | __dequeue_rt_entity(rt_se); | ||
1104 | } | ||
1105 | } | ||
1106 | |||
1107 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | ||
1108 | { | ||
1109 | dequeue_rt_stack(rt_se); | ||
1110 | for_each_sched_rt_entity(rt_se) | ||
1111 | __enqueue_rt_entity(rt_se, head); | ||
1112 | } | ||
1113 | |||
1114 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
1115 | { | ||
1116 | dequeue_rt_stack(rt_se); | ||
1117 | |||
1118 | for_each_sched_rt_entity(rt_se) { | ||
1119 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
1120 | |||
1121 | if (rt_rq && rt_rq->rt_nr_running) | ||
1122 | __enqueue_rt_entity(rt_se, false); | ||
1123 | } | ||
1124 | } | ||
1125 | |||
1126 | /* | ||
1127 | * Adding/removing a task to/from a priority array: | ||
1128 | */ | ||
1129 | static void | ||
1130 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | ||
1131 | { | ||
1132 | struct sched_rt_entity *rt_se = &p->rt; | ||
1133 | |||
1134 | if (flags & ENQUEUE_WAKEUP) | ||
1135 | rt_se->timeout = 0; | ||
1136 | |||
1137 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); | ||
1138 | |||
1139 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
1140 | enqueue_pushable_task(rq, p); | ||
1141 | |||
1142 | inc_nr_running(rq); | ||
1143 | } | ||
1144 | |||
1145 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | ||
1146 | { | ||
1147 | struct sched_rt_entity *rt_se = &p->rt; | ||
1148 | |||
1149 | update_curr_rt(rq); | ||
1150 | dequeue_rt_entity(rt_se); | ||
1151 | |||
1152 | dequeue_pushable_task(rq, p); | ||
1153 | |||
1154 | dec_nr_running(rq); | ||
1155 | } | ||
1156 | |||
1157 | /* | ||
1158 | * Put task to the head or the end of the run list without the overhead of | ||
1159 | * dequeue followed by enqueue. | ||
1160 | */ | ||
1161 | static void | ||
1162 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | ||
1163 | { | ||
1164 | if (on_rt_rq(rt_se)) { | ||
1165 | struct rt_prio_array *array = &rt_rq->active; | ||
1166 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | ||
1167 | |||
1168 | if (head) | ||
1169 | list_move(&rt_se->run_list, queue); | ||
1170 | else | ||
1171 | list_move_tail(&rt_se->run_list, queue); | ||
1172 | } | ||
1173 | } | ||
1174 | |||
1175 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | ||
1176 | { | ||
1177 | struct sched_rt_entity *rt_se = &p->rt; | ||
1178 | struct rt_rq *rt_rq; | ||
1179 | |||
1180 | for_each_sched_rt_entity(rt_se) { | ||
1181 | rt_rq = rt_rq_of_se(rt_se); | ||
1182 | requeue_rt_entity(rt_rq, rt_se, head); | ||
1183 | } | ||
1184 | } | ||
1185 | |||
1186 | static void yield_task_rt(struct rq *rq) | ||
1187 | { | ||
1188 | requeue_task_rt(rq, rq->curr, 0); | ||
1189 | } | ||
1190 | |||
1191 | #ifdef CONFIG_SMP | ||
1192 | static int find_lowest_rq(struct task_struct *task); | ||
1193 | |||
1194 | static int | ||
1195 | select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) | ||
1196 | { | ||
1197 | struct task_struct *curr; | ||
1198 | struct rq *rq; | ||
1199 | int cpu; | ||
1200 | |||
1201 | cpu = task_cpu(p); | ||
1202 | |||
1203 | /* For anything but wake ups, just return the task_cpu */ | ||
1204 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) | ||
1205 | goto out; | ||
1206 | |||
1207 | rq = cpu_rq(cpu); | ||
1208 | |||
1209 | rcu_read_lock(); | ||
1210 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ | ||
1211 | |||
1212 | /* | ||
1213 | * If the current task on @p's runqueue is an RT task, then | ||
1214 | * try to see if we can wake this RT task up on another | ||
1215 | * runqueue. Otherwise simply start this RT task | ||
1216 | * on its current runqueue. | ||
1217 | * | ||
1218 | * We want to avoid overloading runqueues. If the woken | ||
1219 | * task is a higher priority, then it will stay on this CPU | ||
1220 | * and the lower prio task should be moved to another CPU. | ||
1221 | * Even though this will probably make the lower prio task | ||
1222 | * lose its cache, we do not want to bounce a higher task | ||
1223 | * around just because it gave up its CPU, perhaps for a | ||
1224 | * lock? | ||
1225 | * | ||
1226 | * For equal prio tasks, we just let the scheduler sort it out. | ||
1227 | * | ||
1228 | * Otherwise, just let it ride on the affined RQ and the | ||
1229 | * post-schedule router will push the preempted task away | ||
1230 | * | ||
1231 | * This test is optimistic, if we get it wrong the load-balancer | ||
1232 | * will have to sort it out. | ||
1233 | */ | ||
1234 | if (curr && unlikely(rt_task(curr)) && | ||
1235 | (curr->rt.nr_cpus_allowed < 2 || | ||
1236 | curr->prio <= p->prio) && | ||
1237 | (p->rt.nr_cpus_allowed > 1)) { | ||
1238 | int target = find_lowest_rq(p); | ||
1239 | |||
1240 | if (target != -1) | ||
1241 | cpu = target; | ||
1242 | } | ||
1243 | rcu_read_unlock(); | ||
1244 | |||
1245 | out: | ||
1246 | return cpu; | ||
1247 | } | ||
1248 | |||
1249 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | ||
1250 | { | ||
1251 | if (rq->curr->rt.nr_cpus_allowed == 1) | ||
1252 | return; | ||
1253 | |||
1254 | if (p->rt.nr_cpus_allowed != 1 | ||
1255 | && cpupri_find(&rq->rd->cpupri, p, NULL)) | ||
1256 | return; | ||
1257 | |||
1258 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | ||
1259 | return; | ||
1260 | |||
1261 | /* | ||
1262 | * There appears to be other cpus that can accept | ||
1263 | * current and none to run 'p', so lets reschedule | ||
1264 | * to try and push current away: | ||
1265 | */ | ||
1266 | requeue_task_rt(rq, p, 1); | ||
1267 | resched_task(rq->curr); | ||
1268 | } | ||
1269 | |||
1270 | #endif /* CONFIG_SMP */ | ||
1271 | |||
1272 | /* | ||
1273 | * Preempt the current task with a newly woken task if needed: | ||
1274 | */ | ||
1275 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | ||
1276 | { | ||
1277 | if (p->prio < rq->curr->prio) { | ||
1278 | resched_task(rq->curr); | ||
1279 | return; | ||
1280 | } | ||
1281 | |||
1282 | #ifdef CONFIG_SMP | ||
1283 | /* | ||
1284 | * If: | ||
1285 | * | ||
1286 | * - the newly woken task is of equal priority to the current task | ||
1287 | * - the newly woken task is non-migratable while current is migratable | ||
1288 | * - current will be preempted on the next reschedule | ||
1289 | * | ||
1290 | * we should check to see if current can readily move to a different | ||
1291 | * cpu. If so, we will reschedule to allow the push logic to try | ||
1292 | * to move current somewhere else, making room for our non-migratable | ||
1293 | * task. | ||
1294 | */ | ||
1295 | if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) | ||
1296 | check_preempt_equal_prio(rq, p); | ||
1297 | #endif | ||
1298 | } | ||
1299 | |||
1300 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | ||
1301 | struct rt_rq *rt_rq) | ||
1302 | { | ||
1303 | struct rt_prio_array *array = &rt_rq->active; | ||
1304 | struct sched_rt_entity *next = NULL; | ||
1305 | struct list_head *queue; | ||
1306 | int idx; | ||
1307 | |||
1308 | idx = sched_find_first_bit(array->bitmap); | ||
1309 | BUG_ON(idx >= MAX_RT_PRIO); | ||
1310 | |||
1311 | queue = array->queue + idx; | ||
1312 | next = list_entry(queue->next, struct sched_rt_entity, run_list); | ||
1313 | |||
1314 | return next; | ||
1315 | } | ||
1316 | |||
1317 | static struct task_struct *_pick_next_task_rt(struct rq *rq) | ||
1318 | { | ||
1319 | struct sched_rt_entity *rt_se; | ||
1320 | struct task_struct *p; | ||
1321 | struct rt_rq *rt_rq; | ||
1322 | |||
1323 | rt_rq = &rq->rt; | ||
1324 | |||
1325 | if (!rt_rq->rt_nr_running) | ||
1326 | return NULL; | ||
1327 | |||
1328 | if (rt_rq_throttled(rt_rq)) | ||
1329 | return NULL; | ||
1330 | |||
1331 | do { | ||
1332 | rt_se = pick_next_rt_entity(rq, rt_rq); | ||
1333 | BUG_ON(!rt_se); | ||
1334 | rt_rq = group_rt_rq(rt_se); | ||
1335 | } while (rt_rq); | ||
1336 | |||
1337 | p = rt_task_of(rt_se); | ||
1338 | p->se.exec_start = rq->clock_task; | ||
1339 | |||
1340 | return p; | ||
1341 | } | ||
1342 | |||
1343 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
1344 | { | ||
1345 | struct task_struct *p = _pick_next_task_rt(rq); | ||
1346 | |||
1347 | /* The running task is never eligible for pushing */ | ||
1348 | if (p) | ||
1349 | dequeue_pushable_task(rq, p); | ||
1350 | |||
1351 | #ifdef CONFIG_SMP | ||
1352 | /* | ||
1353 | * We detect this state here so that we can avoid taking the RQ | ||
1354 | * lock again later if there is no need to push | ||
1355 | */ | ||
1356 | rq->post_schedule = has_pushable_tasks(rq); | ||
1357 | #endif | ||
1358 | |||
1359 | return p; | ||
1360 | } | ||
1361 | |||
1362 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | ||
1363 | { | ||
1364 | update_curr_rt(rq); | ||
1365 | |||
1366 | /* | ||
1367 | * The previous task needs to be made eligible for pushing | ||
1368 | * if it is still active | ||
1369 | */ | ||
1370 | if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1) | ||
1371 | enqueue_pushable_task(rq, p); | ||
1372 | } | ||
1373 | |||
1374 | #ifdef CONFIG_SMP | ||
1375 | |||
1376 | /* Only try algorithms three times */ | ||
1377 | #define RT_MAX_TRIES 3 | ||
1378 | |||
1379 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | ||
1380 | { | ||
1381 | if (!task_running(rq, p) && | ||
1382 | (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && | ||
1383 | (p->rt.nr_cpus_allowed > 1)) | ||
1384 | return 1; | ||
1385 | return 0; | ||
1386 | } | ||
1387 | |||
1388 | /* Return the second highest RT task, NULL otherwise */ | ||
1389 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | ||
1390 | { | ||
1391 | struct task_struct *next = NULL; | ||
1392 | struct sched_rt_entity *rt_se; | ||
1393 | struct rt_prio_array *array; | ||
1394 | struct rt_rq *rt_rq; | ||
1395 | int idx; | ||
1396 | |||
1397 | for_each_leaf_rt_rq(rt_rq, rq) { | ||
1398 | array = &rt_rq->active; | ||
1399 | idx = sched_find_first_bit(array->bitmap); | ||
1400 | next_idx: | ||
1401 | if (idx >= MAX_RT_PRIO) | ||
1402 | continue; | ||
1403 | if (next && next->prio < idx) | ||
1404 | continue; | ||
1405 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | ||
1406 | struct task_struct *p; | ||
1407 | |||
1408 | if (!rt_entity_is_task(rt_se)) | ||
1409 | continue; | ||
1410 | |||
1411 | p = rt_task_of(rt_se); | ||
1412 | if (pick_rt_task(rq, p, cpu)) { | ||
1413 | next = p; | ||
1414 | break; | ||
1415 | } | ||
1416 | } | ||
1417 | if (!next) { | ||
1418 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | ||
1419 | goto next_idx; | ||
1420 | } | ||
1421 | } | ||
1422 | |||
1423 | return next; | ||
1424 | } | ||
1425 | |||
1426 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | ||
1427 | |||
1428 | static int find_lowest_rq(struct task_struct *task) | ||
1429 | { | ||
1430 | struct sched_domain *sd; | ||
1431 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | ||
1432 | int this_cpu = smp_processor_id(); | ||
1433 | int cpu = task_cpu(task); | ||
1434 | |||
1435 | /* Make sure the mask is initialized first */ | ||
1436 | if (unlikely(!lowest_mask)) | ||
1437 | return -1; | ||
1438 | |||
1439 | if (task->rt.nr_cpus_allowed == 1) | ||
1440 | return -1; /* No other targets possible */ | ||
1441 | |||
1442 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | ||
1443 | return -1; /* No targets found */ | ||
1444 | |||
1445 | /* | ||
1446 | * At this point we have built a mask of cpus representing the | ||
1447 | * lowest priority tasks in the system. Now we want to elect | ||
1448 | * the best one based on our affinity and topology. | ||
1449 | * | ||
1450 | * We prioritize the last cpu that the task executed on since | ||
1451 | * it is most likely cache-hot in that location. | ||
1452 | */ | ||
1453 | if (cpumask_test_cpu(cpu, lowest_mask)) | ||
1454 | return cpu; | ||
1455 | |||
1456 | /* | ||
1457 | * Otherwise, we consult the sched_domains span maps to figure | ||
1458 | * out which cpu is logically closest to our hot cache data. | ||
1459 | */ | ||
1460 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) | ||
1461 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | ||
1462 | |||
1463 | rcu_read_lock(); | ||
1464 | for_each_domain(cpu, sd) { | ||
1465 | if (sd->flags & SD_WAKE_AFFINE) { | ||
1466 | int best_cpu; | ||
1467 | |||
1468 | /* | ||
1469 | * "this_cpu" is cheaper to preempt than a | ||
1470 | * remote processor. | ||
1471 | */ | ||
1472 | if (this_cpu != -1 && | ||
1473 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { | ||
1474 | rcu_read_unlock(); | ||
1475 | return this_cpu; | ||
1476 | } | ||
1477 | |||
1478 | best_cpu = cpumask_first_and(lowest_mask, | ||
1479 | sched_domain_span(sd)); | ||
1480 | if (best_cpu < nr_cpu_ids) { | ||
1481 | rcu_read_unlock(); | ||
1482 | return best_cpu; | ||
1483 | } | ||
1484 | } | ||
1485 | } | ||
1486 | rcu_read_unlock(); | ||
1487 | |||
1488 | /* | ||
1489 | * And finally, if there were no matches within the domains | ||
1490 | * just give the caller *something* to work with from the compatible | ||
1491 | * locations. | ||
1492 | */ | ||
1493 | if (this_cpu != -1) | ||
1494 | return this_cpu; | ||
1495 | |||
1496 | cpu = cpumask_any(lowest_mask); | ||
1497 | if (cpu < nr_cpu_ids) | ||
1498 | return cpu; | ||
1499 | return -1; | ||
1500 | } | ||
1501 | |||
1502 | /* Will lock the rq it finds */ | ||
1503 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | ||
1504 | { | ||
1505 | struct rq *lowest_rq = NULL; | ||
1506 | int tries; | ||
1507 | int cpu; | ||
1508 | |||
1509 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | ||
1510 | cpu = find_lowest_rq(task); | ||
1511 | |||
1512 | if ((cpu == -1) || (cpu == rq->cpu)) | ||
1513 | break; | ||
1514 | |||
1515 | lowest_rq = cpu_rq(cpu); | ||
1516 | |||
1517 | /* if the prio of this runqueue changed, try again */ | ||
1518 | if (double_lock_balance(rq, lowest_rq)) { | ||
1519 | /* | ||
1520 | * We had to unlock the run queue. In | ||
1521 | * the mean time, task could have | ||
1522 | * migrated already or had its affinity changed. | ||
1523 | * Also make sure that it wasn't scheduled on its rq. | ||
1524 | */ | ||
1525 | if (unlikely(task_rq(task) != rq || | ||
1526 | !cpumask_test_cpu(lowest_rq->cpu, | ||
1527 | tsk_cpus_allowed(task)) || | ||
1528 | task_running(rq, task) || | ||
1529 | !task->on_rq)) { | ||
1530 | |||
1531 | raw_spin_unlock(&lowest_rq->lock); | ||
1532 | lowest_rq = NULL; | ||
1533 | break; | ||
1534 | } | ||
1535 | } | ||
1536 | |||
1537 | /* If this rq is still suitable use it. */ | ||
1538 | if (lowest_rq->rt.highest_prio.curr > task->prio) | ||
1539 | break; | ||
1540 | |||
1541 | /* try again */ | ||
1542 | double_unlock_balance(rq, lowest_rq); | ||
1543 | lowest_rq = NULL; | ||
1544 | } | ||
1545 | |||
1546 | return lowest_rq; | ||
1547 | } | ||
1548 | |||
1549 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
1550 | { | ||
1551 | struct task_struct *p; | ||
1552 | |||
1553 | if (!has_pushable_tasks(rq)) | ||
1554 | return NULL; | ||
1555 | |||
1556 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
1557 | struct task_struct, pushable_tasks); | ||
1558 | |||
1559 | BUG_ON(rq->cpu != task_cpu(p)); | ||
1560 | BUG_ON(task_current(rq, p)); | ||
1561 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
1562 | |||
1563 | BUG_ON(!p->on_rq); | ||
1564 | BUG_ON(!rt_task(p)); | ||
1565 | |||
1566 | return p; | ||
1567 | } | ||
1568 | |||
1569 | /* | ||
1570 | * If the current CPU has more than one RT task, see if the non | ||
1571 | * running task can migrate over to a CPU that is running a task | ||
1572 | * of lesser priority. | ||
1573 | */ | ||
1574 | static int push_rt_task(struct rq *rq) | ||
1575 | { | ||
1576 | struct task_struct *next_task; | ||
1577 | struct rq *lowest_rq; | ||
1578 | int ret = 0; | ||
1579 | |||
1580 | if (!rq->rt.overloaded) | ||
1581 | return 0; | ||
1582 | |||
1583 | next_task = pick_next_pushable_task(rq); | ||
1584 | if (!next_task) | ||
1585 | return 0; | ||
1586 | |||
1587 | retry: | ||
1588 | if (unlikely(next_task == rq->curr)) { | ||
1589 | WARN_ON(1); | ||
1590 | return 0; | ||
1591 | } | ||
1592 | |||
1593 | /* | ||
1594 | * It's possible that the next_task slipped in of | ||
1595 | * higher priority than current. If that's the case | ||
1596 | * just reschedule current. | ||
1597 | */ | ||
1598 | if (unlikely(next_task->prio < rq->curr->prio)) { | ||
1599 | resched_task(rq->curr); | ||
1600 | return 0; | ||
1601 | } | ||
1602 | |||
1603 | /* We might release rq lock */ | ||
1604 | get_task_struct(next_task); | ||
1605 | |||
1606 | /* find_lock_lowest_rq locks the rq if found */ | ||
1607 | lowest_rq = find_lock_lowest_rq(next_task, rq); | ||
1608 | if (!lowest_rq) { | ||
1609 | struct task_struct *task; | ||
1610 | /* | ||
1611 | * find_lock_lowest_rq releases rq->lock | ||
1612 | * so it is possible that next_task has migrated. | ||
1613 | * | ||
1614 | * We need to make sure that the task is still on the same | ||
1615 | * run-queue and is also still the next task eligible for | ||
1616 | * pushing. | ||
1617 | */ | ||
1618 | task = pick_next_pushable_task(rq); | ||
1619 | if (task_cpu(next_task) == rq->cpu && task == next_task) { | ||
1620 | /* | ||
1621 | * The task hasn't migrated, and is still the next | ||
1622 | * eligible task, but we failed to find a run-queue | ||
1623 | * to push it to. Do not retry in this case, since | ||
1624 | * other cpus will pull from us when ready. | ||
1625 | */ | ||
1626 | goto out; | ||
1627 | } | ||
1628 | |||
1629 | if (!task) | ||
1630 | /* No more tasks, just exit */ | ||
1631 | goto out; | ||
1632 | |||
1633 | /* | ||
1634 | * Something has shifted, try again. | ||
1635 | */ | ||
1636 | put_task_struct(next_task); | ||
1637 | next_task = task; | ||
1638 | goto retry; | ||
1639 | } | ||
1640 | |||
1641 | deactivate_task(rq, next_task, 0); | ||
1642 | set_task_cpu(next_task, lowest_rq->cpu); | ||
1643 | activate_task(lowest_rq, next_task, 0); | ||
1644 | ret = 1; | ||
1645 | |||
1646 | resched_task(lowest_rq->curr); | ||
1647 | |||
1648 | double_unlock_balance(rq, lowest_rq); | ||
1649 | |||
1650 | out: | ||
1651 | put_task_struct(next_task); | ||
1652 | |||
1653 | return ret; | ||
1654 | } | ||
1655 | |||
1656 | static void push_rt_tasks(struct rq *rq) | ||
1657 | { | ||
1658 | /* push_rt_task will return true if it moved an RT */ | ||
1659 | while (push_rt_task(rq)) | ||
1660 | ; | ||
1661 | } | ||
1662 | |||
1663 | static int pull_rt_task(struct rq *this_rq) | ||
1664 | { | ||
1665 | int this_cpu = this_rq->cpu, ret = 0, cpu; | ||
1666 | struct task_struct *p; | ||
1667 | struct rq *src_rq; | ||
1668 | |||
1669 | if (likely(!rt_overloaded(this_rq))) | ||
1670 | return 0; | ||
1671 | |||
1672 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | ||
1673 | if (this_cpu == cpu) | ||
1674 | continue; | ||
1675 | |||
1676 | src_rq = cpu_rq(cpu); | ||
1677 | |||
1678 | /* | ||
1679 | * Don't bother taking the src_rq->lock if the next highest | ||
1680 | * task is known to be lower-priority than our current task. | ||
1681 | * This may look racy, but if this value is about to go | ||
1682 | * logically higher, the src_rq will push this task away. | ||
1683 | * And if its going logically lower, we do not care | ||
1684 | */ | ||
1685 | if (src_rq->rt.highest_prio.next >= | ||
1686 | this_rq->rt.highest_prio.curr) | ||
1687 | continue; | ||
1688 | |||
1689 | /* | ||
1690 | * We can potentially drop this_rq's lock in | ||
1691 | * double_lock_balance, and another CPU could | ||
1692 | * alter this_rq | ||
1693 | */ | ||
1694 | double_lock_balance(this_rq, src_rq); | ||
1695 | |||
1696 | /* | ||
1697 | * Are there still pullable RT tasks? | ||
1698 | */ | ||
1699 | if (src_rq->rt.rt_nr_running <= 1) | ||
1700 | goto skip; | ||
1701 | |||
1702 | p = pick_next_highest_task_rt(src_rq, this_cpu); | ||
1703 | |||
1704 | /* | ||
1705 | * Do we have an RT task that preempts | ||
1706 | * the to-be-scheduled task? | ||
1707 | */ | ||
1708 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | ||
1709 | WARN_ON(p == src_rq->curr); | ||
1710 | WARN_ON(!p->on_rq); | ||
1711 | |||
1712 | /* | ||
1713 | * There's a chance that p is higher in priority | ||
1714 | * than what's currently running on its cpu. | ||
1715 | * This is just that p is wakeing up and hasn't | ||
1716 | * had a chance to schedule. We only pull | ||
1717 | * p if it is lower in priority than the | ||
1718 | * current task on the run queue | ||
1719 | */ | ||
1720 | if (p->prio < src_rq->curr->prio) | ||
1721 | goto skip; | ||
1722 | |||
1723 | ret = 1; | ||
1724 | |||
1725 | deactivate_task(src_rq, p, 0); | ||
1726 | set_task_cpu(p, this_cpu); | ||
1727 | activate_task(this_rq, p, 0); | ||
1728 | /* | ||
1729 | * We continue with the search, just in | ||
1730 | * case there's an even higher prio task | ||
1731 | * in another runqueue. (low likelihood | ||
1732 | * but possible) | ||
1733 | */ | ||
1734 | } | ||
1735 | skip: | ||
1736 | double_unlock_balance(this_rq, src_rq); | ||
1737 | } | ||
1738 | |||
1739 | return ret; | ||
1740 | } | ||
1741 | |||
1742 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | ||
1743 | { | ||
1744 | /* Try to pull RT tasks here if we lower this rq's prio */ | ||
1745 | if (rq->rt.highest_prio.curr > prev->prio) | ||
1746 | pull_rt_task(rq); | ||
1747 | } | ||
1748 | |||
1749 | static void post_schedule_rt(struct rq *rq) | ||
1750 | { | ||
1751 | push_rt_tasks(rq); | ||
1752 | } | ||
1753 | |||
1754 | /* | ||
1755 | * If we are not running and we are not going to reschedule soon, we should | ||
1756 | * try to push tasks away now | ||
1757 | */ | ||
1758 | static void task_woken_rt(struct rq *rq, struct task_struct *p) | ||
1759 | { | ||
1760 | if (!task_running(rq, p) && | ||
1761 | !test_tsk_need_resched(rq->curr) && | ||
1762 | has_pushable_tasks(rq) && | ||
1763 | p->rt.nr_cpus_allowed > 1 && | ||
1764 | rt_task(rq->curr) && | ||
1765 | (rq->curr->rt.nr_cpus_allowed < 2 || | ||
1766 | rq->curr->prio <= p->prio)) | ||
1767 | push_rt_tasks(rq); | ||
1768 | } | ||
1769 | |||
1770 | static void set_cpus_allowed_rt(struct task_struct *p, | ||
1771 | const struct cpumask *new_mask) | ||
1772 | { | ||
1773 | int weight = cpumask_weight(new_mask); | ||
1774 | |||
1775 | BUG_ON(!rt_task(p)); | ||
1776 | |||
1777 | /* | ||
1778 | * Update the migration status of the RQ if we have an RT task | ||
1779 | * which is running AND changing its weight value. | ||
1780 | */ | ||
1781 | if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) { | ||
1782 | struct rq *rq = task_rq(p); | ||
1783 | |||
1784 | if (!task_current(rq, p)) { | ||
1785 | /* | ||
1786 | * Make sure we dequeue this task from the pushable list | ||
1787 | * before going further. It will either remain off of | ||
1788 | * the list because we are no longer pushable, or it | ||
1789 | * will be requeued. | ||
1790 | */ | ||
1791 | if (p->rt.nr_cpus_allowed > 1) | ||
1792 | dequeue_pushable_task(rq, p); | ||
1793 | |||
1794 | /* | ||
1795 | * Requeue if our weight is changing and still > 1 | ||
1796 | */ | ||
1797 | if (weight > 1) | ||
1798 | enqueue_pushable_task(rq, p); | ||
1799 | |||
1800 | } | ||
1801 | |||
1802 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | ||
1803 | rq->rt.rt_nr_migratory++; | ||
1804 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | ||
1805 | BUG_ON(!rq->rt.rt_nr_migratory); | ||
1806 | rq->rt.rt_nr_migratory--; | ||
1807 | } | ||
1808 | |||
1809 | update_rt_migration(&rq->rt); | ||
1810 | } | ||
1811 | } | ||
1812 | |||
1813 | /* Assumes rq->lock is held */ | ||
1814 | static void rq_online_rt(struct rq *rq) | ||
1815 | { | ||
1816 | if (rq->rt.overloaded) | ||
1817 | rt_set_overload(rq); | ||
1818 | |||
1819 | __enable_runtime(rq); | ||
1820 | |||
1821 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | ||
1822 | } | ||
1823 | |||
1824 | /* Assumes rq->lock is held */ | ||
1825 | static void rq_offline_rt(struct rq *rq) | ||
1826 | { | ||
1827 | if (rq->rt.overloaded) | ||
1828 | rt_clear_overload(rq); | ||
1829 | |||
1830 | __disable_runtime(rq); | ||
1831 | |||
1832 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | ||
1833 | } | ||
1834 | |||
1835 | /* | ||
1836 | * When switch from the rt queue, we bring ourselves to a position | ||
1837 | * that we might want to pull RT tasks from other runqueues. | ||
1838 | */ | ||
1839 | static void switched_from_rt(struct rq *rq, struct task_struct *p) | ||
1840 | { | ||
1841 | /* | ||
1842 | * If there are other RT tasks then we will reschedule | ||
1843 | * and the scheduling of the other RT tasks will handle | ||
1844 | * the balancing. But if we are the last RT task | ||
1845 | * we may need to handle the pulling of RT tasks | ||
1846 | * now. | ||
1847 | */ | ||
1848 | if (p->on_rq && !rq->rt.rt_nr_running) | ||
1849 | pull_rt_task(rq); | ||
1850 | } | ||
1851 | |||
1852 | void init_sched_rt_class(void) | ||
1853 | { | ||
1854 | unsigned int i; | ||
1855 | |||
1856 | for_each_possible_cpu(i) { | ||
1857 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | ||
1858 | GFP_KERNEL, cpu_to_node(i)); | ||
1859 | } | ||
1860 | } | ||
1861 | #endif /* CONFIG_SMP */ | ||
1862 | |||
1863 | /* | ||
1864 | * When switching a task to RT, we may overload the runqueue | ||
1865 | * with RT tasks. In this case we try to push them off to | ||
1866 | * other runqueues. | ||
1867 | */ | ||
1868 | static void switched_to_rt(struct rq *rq, struct task_struct *p) | ||
1869 | { | ||
1870 | int check_resched = 1; | ||
1871 | |||
1872 | /* | ||
1873 | * If we are already running, then there's nothing | ||
1874 | * that needs to be done. But if we are not running | ||
1875 | * we may need to preempt the current running task. | ||
1876 | * If that current running task is also an RT task | ||
1877 | * then see if we can move to another run queue. | ||
1878 | */ | ||
1879 | if (p->on_rq && rq->curr != p) { | ||
1880 | #ifdef CONFIG_SMP | ||
1881 | if (rq->rt.overloaded && push_rt_task(rq) && | ||
1882 | /* Don't resched if we changed runqueues */ | ||
1883 | rq != task_rq(p)) | ||
1884 | check_resched = 0; | ||
1885 | #endif /* CONFIG_SMP */ | ||
1886 | if (check_resched && p->prio < rq->curr->prio) | ||
1887 | resched_task(rq->curr); | ||
1888 | } | ||
1889 | } | ||
1890 | |||
1891 | /* | ||
1892 | * Priority of the task has changed. This may cause | ||
1893 | * us to initiate a push or pull. | ||
1894 | */ | ||
1895 | static void | ||
1896 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | ||
1897 | { | ||
1898 | if (!p->on_rq) | ||
1899 | return; | ||
1900 | |||
1901 | if (rq->curr == p) { | ||
1902 | #ifdef CONFIG_SMP | ||
1903 | /* | ||
1904 | * If our priority decreases while running, we | ||
1905 | * may need to pull tasks to this runqueue. | ||
1906 | */ | ||
1907 | if (oldprio < p->prio) | ||
1908 | pull_rt_task(rq); | ||
1909 | /* | ||
1910 | * If there's a higher priority task waiting to run | ||
1911 | * then reschedule. Note, the above pull_rt_task | ||
1912 | * can release the rq lock and p could migrate. | ||
1913 | * Only reschedule if p is still on the same runqueue. | ||
1914 | */ | ||
1915 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) | ||
1916 | resched_task(p); | ||
1917 | #else | ||
1918 | /* For UP simply resched on drop of prio */ | ||
1919 | if (oldprio < p->prio) | ||
1920 | resched_task(p); | ||
1921 | #endif /* CONFIG_SMP */ | ||
1922 | } else { | ||
1923 | /* | ||
1924 | * This task is not running, but if it is | ||
1925 | * greater than the current running task | ||
1926 | * then reschedule. | ||
1927 | */ | ||
1928 | if (p->prio < rq->curr->prio) | ||
1929 | resched_task(rq->curr); | ||
1930 | } | ||
1931 | } | ||
1932 | |||
1933 | static void watchdog(struct rq *rq, struct task_struct *p) | ||
1934 | { | ||
1935 | unsigned long soft, hard; | ||
1936 | |||
1937 | /* max may change after cur was read, this will be fixed next tick */ | ||
1938 | soft = task_rlimit(p, RLIMIT_RTTIME); | ||
1939 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | ||
1940 | |||
1941 | if (soft != RLIM_INFINITY) { | ||
1942 | unsigned long next; | ||
1943 | |||
1944 | p->rt.timeout++; | ||
1945 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | ||
1946 | if (p->rt.timeout > next) | ||
1947 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | ||
1948 | } | ||
1949 | } | ||
1950 | |||
1951 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | ||
1952 | { | ||
1953 | update_curr_rt(rq); | ||
1954 | |||
1955 | watchdog(rq, p); | ||
1956 | |||
1957 | /* | ||
1958 | * RR tasks need a special form of timeslice management. | ||
1959 | * FIFO tasks have no timeslices. | ||
1960 | */ | ||
1961 | if (p->policy != SCHED_RR) | ||
1962 | return; | ||
1963 | |||
1964 | if (--p->rt.time_slice) | ||
1965 | return; | ||
1966 | |||
1967 | p->rt.time_slice = DEF_TIMESLICE; | ||
1968 | |||
1969 | /* | ||
1970 | * Requeue to the end of queue if we are not the only element | ||
1971 | * on the queue: | ||
1972 | */ | ||
1973 | if (p->rt.run_list.prev != p->rt.run_list.next) { | ||
1974 | requeue_task_rt(rq, p, 0); | ||
1975 | set_tsk_need_resched(p); | ||
1976 | } | ||
1977 | } | ||
1978 | |||
1979 | static void set_curr_task_rt(struct rq *rq) | ||
1980 | { | ||
1981 | struct task_struct *p = rq->curr; | ||
1982 | |||
1983 | p->se.exec_start = rq->clock_task; | ||
1984 | |||
1985 | /* The running task is never eligible for pushing */ | ||
1986 | dequeue_pushable_task(rq, p); | ||
1987 | } | ||
1988 | |||
1989 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | ||
1990 | { | ||
1991 | /* | ||
1992 | * Time slice is 0 for SCHED_FIFO tasks | ||
1993 | */ | ||
1994 | if (task->policy == SCHED_RR) | ||
1995 | return DEF_TIMESLICE; | ||
1996 | else | ||
1997 | return 0; | ||
1998 | } | ||
1999 | |||
2000 | const struct sched_class rt_sched_class = { | ||
2001 | .next = &fair_sched_class, | ||
2002 | .enqueue_task = enqueue_task_rt, | ||
2003 | .dequeue_task = dequeue_task_rt, | ||
2004 | .yield_task = yield_task_rt, | ||
2005 | |||
2006 | .check_preempt_curr = check_preempt_curr_rt, | ||
2007 | |||
2008 | .pick_next_task = pick_next_task_rt, | ||
2009 | .put_prev_task = put_prev_task_rt, | ||
2010 | |||
2011 | #ifdef CONFIG_SMP | ||
2012 | .select_task_rq = select_task_rq_rt, | ||
2013 | |||
2014 | .set_cpus_allowed = set_cpus_allowed_rt, | ||
2015 | .rq_online = rq_online_rt, | ||
2016 | .rq_offline = rq_offline_rt, | ||
2017 | .pre_schedule = pre_schedule_rt, | ||
2018 | .post_schedule = post_schedule_rt, | ||
2019 | .task_woken = task_woken_rt, | ||
2020 | .switched_from = switched_from_rt, | ||
2021 | #endif | ||
2022 | |||
2023 | .set_curr_task = set_curr_task_rt, | ||
2024 | .task_tick = task_tick_rt, | ||
2025 | |||
2026 | .get_rr_interval = get_rr_interval_rt, | ||
2027 | |||
2028 | .prio_changed = prio_changed_rt, | ||
2029 | .switched_to = switched_to_rt, | ||
2030 | }; | ||
2031 | |||
2032 | #ifdef CONFIG_SCHED_DEBUG | ||
2033 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | ||
2034 | |||
2035 | void print_rt_stats(struct seq_file *m, int cpu) | ||
2036 | { | ||
2037 | rt_rq_iter_t iter; | ||
2038 | struct rt_rq *rt_rq; | ||
2039 | |||
2040 | rcu_read_lock(); | ||
2041 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) | ||
2042 | print_rt_rq(m, cpu, rt_rq); | ||
2043 | rcu_read_unlock(); | ||
2044 | } | ||
2045 | #endif /* CONFIG_SCHED_DEBUG */ | ||
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 000000000000..c2e780234c31 --- /dev/null +++ b/kernel/sched/sched.h | |||
@@ -0,0 +1,1064 @@ | |||
1 | |||
2 | #include <linux/sched.h> | ||
3 | #include <linux/mutex.h> | ||
4 | #include <linux/spinlock.h> | ||
5 | #include <linux/stop_machine.h> | ||
6 | |||
7 | #include "cpupri.h" | ||
8 | |||
9 | extern __read_mostly int scheduler_running; | ||
10 | |||
11 | /* | ||
12 | * Convert user-nice values [ -20 ... 0 ... 19 ] | ||
13 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | ||
14 | * and back. | ||
15 | */ | ||
16 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | ||
17 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | ||
18 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | ||
19 | |||
20 | /* | ||
21 | * 'User priority' is the nice value converted to something we | ||
22 | * can work with better when scaling various scheduler parameters, | ||
23 | * it's a [ 0 ... 39 ] range. | ||
24 | */ | ||
25 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | ||
26 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | ||
27 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | ||
28 | |||
29 | /* | ||
30 | * Helpers for converting nanosecond timing to jiffy resolution | ||
31 | */ | ||
32 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | ||
33 | |||
34 | #define NICE_0_LOAD SCHED_LOAD_SCALE | ||
35 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | ||
36 | |||
37 | /* | ||
38 | * These are the 'tuning knobs' of the scheduler: | ||
39 | * | ||
40 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | ||
41 | * Timeslices get refilled after they expire. | ||
42 | */ | ||
43 | #define DEF_TIMESLICE (100 * HZ / 1000) | ||
44 | |||
45 | /* | ||
46 | * single value that denotes runtime == period, ie unlimited time. | ||
47 | */ | ||
48 | #define RUNTIME_INF ((u64)~0ULL) | ||
49 | |||
50 | static inline int rt_policy(int policy) | ||
51 | { | ||
52 | if (policy == SCHED_FIFO || policy == SCHED_RR) | ||
53 | return 1; | ||
54 | return 0; | ||
55 | } | ||
56 | |||
57 | static inline int task_has_rt_policy(struct task_struct *p) | ||
58 | { | ||
59 | return rt_policy(p->policy); | ||
60 | } | ||
61 | |||
62 | /* | ||
63 | * This is the priority-queue data structure of the RT scheduling class: | ||
64 | */ | ||
65 | struct rt_prio_array { | ||
66 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | ||
67 | struct list_head queue[MAX_RT_PRIO]; | ||
68 | }; | ||
69 | |||
70 | struct rt_bandwidth { | ||
71 | /* nests inside the rq lock: */ | ||
72 | raw_spinlock_t rt_runtime_lock; | ||
73 | ktime_t rt_period; | ||
74 | u64 rt_runtime; | ||
75 | struct hrtimer rt_period_timer; | ||
76 | }; | ||
77 | |||
78 | extern struct mutex sched_domains_mutex; | ||
79 | |||
80 | #ifdef CONFIG_CGROUP_SCHED | ||
81 | |||
82 | #include <linux/cgroup.h> | ||
83 | |||
84 | struct cfs_rq; | ||
85 | struct rt_rq; | ||
86 | |||
87 | static LIST_HEAD(task_groups); | ||
88 | |||
89 | struct cfs_bandwidth { | ||
90 | #ifdef CONFIG_CFS_BANDWIDTH | ||
91 | raw_spinlock_t lock; | ||
92 | ktime_t period; | ||
93 | u64 quota, runtime; | ||
94 | s64 hierarchal_quota; | ||
95 | u64 runtime_expires; | ||
96 | |||
97 | int idle, timer_active; | ||
98 | struct hrtimer period_timer, slack_timer; | ||
99 | struct list_head throttled_cfs_rq; | ||
100 | |||
101 | /* statistics */ | ||
102 | int nr_periods, nr_throttled; | ||
103 | u64 throttled_time; | ||
104 | #endif | ||
105 | }; | ||
106 | |||
107 | /* task group related information */ | ||
108 | struct task_group { | ||
109 | struct cgroup_subsys_state css; | ||
110 | |||
111 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
112 | /* schedulable entities of this group on each cpu */ | ||
113 | struct sched_entity **se; | ||
114 | /* runqueue "owned" by this group on each cpu */ | ||
115 | struct cfs_rq **cfs_rq; | ||
116 | unsigned long shares; | ||
117 | |||
118 | atomic_t load_weight; | ||
119 | #endif | ||
120 | |||
121 | #ifdef CONFIG_RT_GROUP_SCHED | ||
122 | struct sched_rt_entity **rt_se; | ||
123 | struct rt_rq **rt_rq; | ||
124 | |||
125 | struct rt_bandwidth rt_bandwidth; | ||
126 | #endif | ||
127 | |||
128 | struct rcu_head rcu; | ||
129 | struct list_head list; | ||
130 | |||
131 | struct task_group *parent; | ||
132 | struct list_head siblings; | ||
133 | struct list_head children; | ||
134 | |||
135 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
136 | struct autogroup *autogroup; | ||
137 | #endif | ||
138 | |||
139 | struct cfs_bandwidth cfs_bandwidth; | ||
140 | }; | ||
141 | |||
142 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
143 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | ||
144 | |||
145 | /* | ||
146 | * A weight of 0 or 1 can cause arithmetics problems. | ||
147 | * A weight of a cfs_rq is the sum of weights of which entities | ||
148 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
149 | * too large, so as the shares value of a task group. | ||
150 | * (The default weight is 1024 - so there's no practical | ||
151 | * limitation from this.) | ||
152 | */ | ||
153 | #define MIN_SHARES (1UL << 1) | ||
154 | #define MAX_SHARES (1UL << 18) | ||
155 | #endif | ||
156 | |||
157 | /* Default task group. | ||
158 | * Every task in system belong to this group at bootup. | ||
159 | */ | ||
160 | extern struct task_group root_task_group; | ||
161 | |||
162 | typedef int (*tg_visitor)(struct task_group *, void *); | ||
163 | |||
164 | extern int walk_tg_tree_from(struct task_group *from, | ||
165 | tg_visitor down, tg_visitor up, void *data); | ||
166 | |||
167 | /* | ||
168 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
169 | * leaving it for the final time. | ||
170 | * | ||
171 | * Caller must hold rcu_lock or sufficient equivalent. | ||
172 | */ | ||
173 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | ||
174 | { | ||
175 | return walk_tg_tree_from(&root_task_group, down, up, data); | ||
176 | } | ||
177 | |||
178 | extern int tg_nop(struct task_group *tg, void *data); | ||
179 | |||
180 | extern void free_fair_sched_group(struct task_group *tg); | ||
181 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | ||
182 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | ||
183 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
184 | struct sched_entity *se, int cpu, | ||
185 | struct sched_entity *parent); | ||
186 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
187 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | ||
188 | |||
189 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | ||
190 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
191 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | ||
192 | |||
193 | extern void free_rt_sched_group(struct task_group *tg); | ||
194 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | ||
195 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
196 | struct sched_rt_entity *rt_se, int cpu, | ||
197 | struct sched_rt_entity *parent); | ||
198 | |||
199 | #else /* CONFIG_CGROUP_SCHED */ | ||
200 | |||
201 | struct cfs_bandwidth { }; | ||
202 | |||
203 | #endif /* CONFIG_CGROUP_SCHED */ | ||
204 | |||
205 | /* CFS-related fields in a runqueue */ | ||
206 | struct cfs_rq { | ||
207 | struct load_weight load; | ||
208 | unsigned long nr_running, h_nr_running; | ||
209 | |||
210 | u64 exec_clock; | ||
211 | u64 min_vruntime; | ||
212 | #ifndef CONFIG_64BIT | ||
213 | u64 min_vruntime_copy; | ||
214 | #endif | ||
215 | |||
216 | struct rb_root tasks_timeline; | ||
217 | struct rb_node *rb_leftmost; | ||
218 | |||
219 | struct list_head tasks; | ||
220 | struct list_head *balance_iterator; | ||
221 | |||
222 | /* | ||
223 | * 'curr' points to currently running entity on this cfs_rq. | ||
224 | * It is set to NULL otherwise (i.e when none are currently running). | ||
225 | */ | ||
226 | struct sched_entity *curr, *next, *last, *skip; | ||
227 | |||
228 | #ifdef CONFIG_SCHED_DEBUG | ||
229 | unsigned int nr_spread_over; | ||
230 | #endif | ||
231 | |||
232 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
233 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | ||
234 | |||
235 | /* | ||
236 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | ||
237 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | ||
238 | * (like users, containers etc.) | ||
239 | * | ||
240 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | ||
241 | * list is used during load balance. | ||
242 | */ | ||
243 | int on_list; | ||
244 | struct list_head leaf_cfs_rq_list; | ||
245 | struct task_group *tg; /* group that "owns" this runqueue */ | ||
246 | |||
247 | #ifdef CONFIG_SMP | ||
248 | /* | ||
249 | * the part of load.weight contributed by tasks | ||
250 | */ | ||
251 | unsigned long task_weight; | ||
252 | |||
253 | /* | ||
254 | * h_load = weight * f(tg) | ||
255 | * | ||
256 | * Where f(tg) is the recursive weight fraction assigned to | ||
257 | * this group. | ||
258 | */ | ||
259 | unsigned long h_load; | ||
260 | |||
261 | /* | ||
262 | * Maintaining per-cpu shares distribution for group scheduling | ||
263 | * | ||
264 | * load_stamp is the last time we updated the load average | ||
265 | * load_last is the last time we updated the load average and saw load | ||
266 | * load_unacc_exec_time is currently unaccounted execution time | ||
267 | */ | ||
268 | u64 load_avg; | ||
269 | u64 load_period; | ||
270 | u64 load_stamp, load_last, load_unacc_exec_time; | ||
271 | |||
272 | unsigned long load_contribution; | ||
273 | #endif /* CONFIG_SMP */ | ||
274 | #ifdef CONFIG_CFS_BANDWIDTH | ||
275 | int runtime_enabled; | ||
276 | u64 runtime_expires; | ||
277 | s64 runtime_remaining; | ||
278 | |||
279 | u64 throttled_timestamp; | ||
280 | int throttled, throttle_count; | ||
281 | struct list_head throttled_list; | ||
282 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
283 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
284 | }; | ||
285 | |||
286 | static inline int rt_bandwidth_enabled(void) | ||
287 | { | ||
288 | return sysctl_sched_rt_runtime >= 0; | ||
289 | } | ||
290 | |||
291 | /* Real-Time classes' related field in a runqueue: */ | ||
292 | struct rt_rq { | ||
293 | struct rt_prio_array active; | ||
294 | unsigned long rt_nr_running; | ||
295 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
296 | struct { | ||
297 | int curr; /* highest queued rt task prio */ | ||
298 | #ifdef CONFIG_SMP | ||
299 | int next; /* next highest */ | ||
300 | #endif | ||
301 | } highest_prio; | ||
302 | #endif | ||
303 | #ifdef CONFIG_SMP | ||
304 | unsigned long rt_nr_migratory; | ||
305 | unsigned long rt_nr_total; | ||
306 | int overloaded; | ||
307 | struct plist_head pushable_tasks; | ||
308 | #endif | ||
309 | int rt_throttled; | ||
310 | u64 rt_time; | ||
311 | u64 rt_runtime; | ||
312 | /* Nests inside the rq lock: */ | ||
313 | raw_spinlock_t rt_runtime_lock; | ||
314 | |||
315 | #ifdef CONFIG_RT_GROUP_SCHED | ||
316 | unsigned long rt_nr_boosted; | ||
317 | |||
318 | struct rq *rq; | ||
319 | struct list_head leaf_rt_rq_list; | ||
320 | struct task_group *tg; | ||
321 | #endif | ||
322 | }; | ||
323 | |||
324 | #ifdef CONFIG_SMP | ||
325 | |||
326 | /* | ||
327 | * We add the notion of a root-domain which will be used to define per-domain | ||
328 | * variables. Each exclusive cpuset essentially defines an island domain by | ||
329 | * fully partitioning the member cpus from any other cpuset. Whenever a new | ||
330 | * exclusive cpuset is created, we also create and attach a new root-domain | ||
331 | * object. | ||
332 | * | ||
333 | */ | ||
334 | struct root_domain { | ||
335 | atomic_t refcount; | ||
336 | atomic_t rto_count; | ||
337 | struct rcu_head rcu; | ||
338 | cpumask_var_t span; | ||
339 | cpumask_var_t online; | ||
340 | |||
341 | /* | ||
342 | * The "RT overload" flag: it gets set if a CPU has more than | ||
343 | * one runnable RT task. | ||
344 | */ | ||
345 | cpumask_var_t rto_mask; | ||
346 | struct cpupri cpupri; | ||
347 | }; | ||
348 | |||
349 | extern struct root_domain def_root_domain; | ||
350 | |||
351 | #endif /* CONFIG_SMP */ | ||
352 | |||
353 | /* | ||
354 | * This is the main, per-CPU runqueue data structure. | ||
355 | * | ||
356 | * Locking rule: those places that want to lock multiple runqueues | ||
357 | * (such as the load balancing or the thread migration code), lock | ||
358 | * acquire operations must be ordered by ascending &runqueue. | ||
359 | */ | ||
360 | struct rq { | ||
361 | /* runqueue lock: */ | ||
362 | raw_spinlock_t lock; | ||
363 | |||
364 | /* | ||
365 | * nr_running and cpu_load should be in the same cacheline because | ||
366 | * remote CPUs use both these fields when doing load calculation. | ||
367 | */ | ||
368 | unsigned long nr_running; | ||
369 | #define CPU_LOAD_IDX_MAX 5 | ||
370 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | ||
371 | unsigned long last_load_update_tick; | ||
372 | #ifdef CONFIG_NO_HZ | ||
373 | u64 nohz_stamp; | ||
374 | unsigned char nohz_balance_kick; | ||
375 | #endif | ||
376 | int skip_clock_update; | ||
377 | |||
378 | /* capture load from *all* tasks on this cpu: */ | ||
379 | struct load_weight load; | ||
380 | unsigned long nr_load_updates; | ||
381 | u64 nr_switches; | ||
382 | |||
383 | struct cfs_rq cfs; | ||
384 | struct rt_rq rt; | ||
385 | |||
386 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
387 | /* list of leaf cfs_rq on this cpu: */ | ||
388 | struct list_head leaf_cfs_rq_list; | ||
389 | #endif | ||
390 | #ifdef CONFIG_RT_GROUP_SCHED | ||
391 | struct list_head leaf_rt_rq_list; | ||
392 | #endif | ||
393 | |||
394 | /* | ||
395 | * This is part of a global counter where only the total sum | ||
396 | * over all CPUs matters. A task can increase this counter on | ||
397 | * one CPU and if it got migrated afterwards it may decrease | ||
398 | * it on another CPU. Always updated under the runqueue lock: | ||
399 | */ | ||
400 | unsigned long nr_uninterruptible; | ||
401 | |||
402 | struct task_struct *curr, *idle, *stop; | ||
403 | unsigned long next_balance; | ||
404 | struct mm_struct *prev_mm; | ||
405 | |||
406 | u64 clock; | ||
407 | u64 clock_task; | ||
408 | |||
409 | atomic_t nr_iowait; | ||
410 | |||
411 | #ifdef CONFIG_SMP | ||
412 | struct root_domain *rd; | ||
413 | struct sched_domain *sd; | ||
414 | |||
415 | unsigned long cpu_power; | ||
416 | |||
417 | unsigned char idle_balance; | ||
418 | /* For active balancing */ | ||
419 | int post_schedule; | ||
420 | int active_balance; | ||
421 | int push_cpu; | ||
422 | struct cpu_stop_work active_balance_work; | ||
423 | /* cpu of this runqueue: */ | ||
424 | int cpu; | ||
425 | int online; | ||
426 | |||
427 | u64 rt_avg; | ||
428 | u64 age_stamp; | ||
429 | u64 idle_stamp; | ||
430 | u64 avg_idle; | ||
431 | #endif | ||
432 | |||
433 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
434 | u64 prev_irq_time; | ||
435 | #endif | ||
436 | #ifdef CONFIG_PARAVIRT | ||
437 | u64 prev_steal_time; | ||
438 | #endif | ||
439 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | ||
440 | u64 prev_steal_time_rq; | ||
441 | #endif | ||
442 | |||
443 | /* calc_load related fields */ | ||
444 | unsigned long calc_load_update; | ||
445 | long calc_load_active; | ||
446 | |||
447 | #ifdef CONFIG_SCHED_HRTICK | ||
448 | #ifdef CONFIG_SMP | ||
449 | int hrtick_csd_pending; | ||
450 | struct call_single_data hrtick_csd; | ||
451 | #endif | ||
452 | struct hrtimer hrtick_timer; | ||
453 | #endif | ||
454 | |||
455 | #ifdef CONFIG_SCHEDSTATS | ||
456 | /* latency stats */ | ||
457 | struct sched_info rq_sched_info; | ||
458 | unsigned long long rq_cpu_time; | ||
459 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | ||
460 | |||
461 | /* sys_sched_yield() stats */ | ||
462 | unsigned int yld_count; | ||
463 | |||
464 | /* schedule() stats */ | ||
465 | unsigned int sched_switch; | ||
466 | unsigned int sched_count; | ||
467 | unsigned int sched_goidle; | ||
468 | |||
469 | /* try_to_wake_up() stats */ | ||
470 | unsigned int ttwu_count; | ||
471 | unsigned int ttwu_local; | ||
472 | #endif | ||
473 | |||
474 | #ifdef CONFIG_SMP | ||
475 | struct llist_head wake_list; | ||
476 | #endif | ||
477 | }; | ||
478 | |||
479 | static inline int cpu_of(struct rq *rq) | ||
480 | { | ||
481 | #ifdef CONFIG_SMP | ||
482 | return rq->cpu; | ||
483 | #else | ||
484 | return 0; | ||
485 | #endif | ||
486 | } | ||
487 | |||
488 | DECLARE_PER_CPU(struct rq, runqueues); | ||
489 | |||
490 | #define rcu_dereference_check_sched_domain(p) \ | ||
491 | rcu_dereference_check((p), \ | ||
492 | lockdep_is_held(&sched_domains_mutex)) | ||
493 | |||
494 | /* | ||
495 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | ||
496 | * See detach_destroy_domains: synchronize_sched for details. | ||
497 | * | ||
498 | * The domain tree of any CPU may only be accessed from within | ||
499 | * preempt-disabled sections. | ||
500 | */ | ||
501 | #define for_each_domain(cpu, __sd) \ | ||
502 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | ||
503 | |||
504 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | ||
505 | #define this_rq() (&__get_cpu_var(runqueues)) | ||
506 | #define task_rq(p) cpu_rq(task_cpu(p)) | ||
507 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | ||
508 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
509 | |||
510 | #include "stats.h" | ||
511 | #include "auto_group.h" | ||
512 | |||
513 | #ifdef CONFIG_CGROUP_SCHED | ||
514 | |||
515 | /* | ||
516 | * Return the group to which this tasks belongs. | ||
517 | * | ||
518 | * We use task_subsys_state_check() and extend the RCU verification with | ||
519 | * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each | ||
520 | * task it moves into the cgroup. Therefore by holding either of those locks, | ||
521 | * we pin the task to the current cgroup. | ||
522 | */ | ||
523 | static inline struct task_group *task_group(struct task_struct *p) | ||
524 | { | ||
525 | struct task_group *tg; | ||
526 | struct cgroup_subsys_state *css; | ||
527 | |||
528 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | ||
529 | lockdep_is_held(&p->pi_lock) || | ||
530 | lockdep_is_held(&task_rq(p)->lock)); | ||
531 | tg = container_of(css, struct task_group, css); | ||
532 | |||
533 | return autogroup_task_group(p, tg); | ||
534 | } | ||
535 | |||
536 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | ||
537 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | ||
538 | { | ||
539 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | ||
540 | struct task_group *tg = task_group(p); | ||
541 | #endif | ||
542 | |||
543 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
544 | p->se.cfs_rq = tg->cfs_rq[cpu]; | ||
545 | p->se.parent = tg->se[cpu]; | ||
546 | #endif | ||
547 | |||
548 | #ifdef CONFIG_RT_GROUP_SCHED | ||
549 | p->rt.rt_rq = tg->rt_rq[cpu]; | ||
550 | p->rt.parent = tg->rt_se[cpu]; | ||
551 | #endif | ||
552 | } | ||
553 | |||
554 | #else /* CONFIG_CGROUP_SCHED */ | ||
555 | |||
556 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | ||
557 | static inline struct task_group *task_group(struct task_struct *p) | ||
558 | { | ||
559 | return NULL; | ||
560 | } | ||
561 | |||
562 | #endif /* CONFIG_CGROUP_SCHED */ | ||
563 | |||
564 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
565 | { | ||
566 | set_task_rq(p, cpu); | ||
567 | #ifdef CONFIG_SMP | ||
568 | /* | ||
569 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
570 | * successfuly executed on another CPU. We must ensure that updates of | ||
571 | * per-task data have been completed by this moment. | ||
572 | */ | ||
573 | smp_wmb(); | ||
574 | task_thread_info(p)->cpu = cpu; | ||
575 | #endif | ||
576 | } | ||
577 | |||
578 | /* | ||
579 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | ||
580 | */ | ||
581 | #ifdef CONFIG_SCHED_DEBUG | ||
582 | # define const_debug __read_mostly | ||
583 | #else | ||
584 | # define const_debug const | ||
585 | #endif | ||
586 | |||
587 | extern const_debug unsigned int sysctl_sched_features; | ||
588 | |||
589 | #define SCHED_FEAT(name, enabled) \ | ||
590 | __SCHED_FEAT_##name , | ||
591 | |||
592 | enum { | ||
593 | #include "features.h" | ||
594 | }; | ||
595 | |||
596 | #undef SCHED_FEAT | ||
597 | |||
598 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | ||
599 | |||
600 | static inline u64 global_rt_period(void) | ||
601 | { | ||
602 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | ||
603 | } | ||
604 | |||
605 | static inline u64 global_rt_runtime(void) | ||
606 | { | ||
607 | if (sysctl_sched_rt_runtime < 0) | ||
608 | return RUNTIME_INF; | ||
609 | |||
610 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | ||
611 | } | ||
612 | |||
613 | |||
614 | |||
615 | static inline int task_current(struct rq *rq, struct task_struct *p) | ||
616 | { | ||
617 | return rq->curr == p; | ||
618 | } | ||
619 | |||
620 | static inline int task_running(struct rq *rq, struct task_struct *p) | ||
621 | { | ||
622 | #ifdef CONFIG_SMP | ||
623 | return p->on_cpu; | ||
624 | #else | ||
625 | return task_current(rq, p); | ||
626 | #endif | ||
627 | } | ||
628 | |||
629 | |||
630 | #ifndef prepare_arch_switch | ||
631 | # define prepare_arch_switch(next) do { } while (0) | ||
632 | #endif | ||
633 | #ifndef finish_arch_switch | ||
634 | # define finish_arch_switch(prev) do { } while (0) | ||
635 | #endif | ||
636 | |||
637 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
638 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
639 | { | ||
640 | #ifdef CONFIG_SMP | ||
641 | /* | ||
642 | * We can optimise this out completely for !SMP, because the | ||
643 | * SMP rebalancing from interrupt is the only thing that cares | ||
644 | * here. | ||
645 | */ | ||
646 | next->on_cpu = 1; | ||
647 | #endif | ||
648 | } | ||
649 | |||
650 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
651 | { | ||
652 | #ifdef CONFIG_SMP | ||
653 | /* | ||
654 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
655 | * We must ensure this doesn't happen until the switch is completely | ||
656 | * finished. | ||
657 | */ | ||
658 | smp_wmb(); | ||
659 | prev->on_cpu = 0; | ||
660 | #endif | ||
661 | #ifdef CONFIG_DEBUG_SPINLOCK | ||
662 | /* this is a valid case when another task releases the spinlock */ | ||
663 | rq->lock.owner = current; | ||
664 | #endif | ||
665 | /* | ||
666 | * If we are tracking spinlock dependencies then we have to | ||
667 | * fix up the runqueue lock - which gets 'carried over' from | ||
668 | * prev into current: | ||
669 | */ | ||
670 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | ||
671 | |||
672 | raw_spin_unlock_irq(&rq->lock); | ||
673 | } | ||
674 | |||
675 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
676 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
677 | { | ||
678 | #ifdef CONFIG_SMP | ||
679 | /* | ||
680 | * We can optimise this out completely for !SMP, because the | ||
681 | * SMP rebalancing from interrupt is the only thing that cares | ||
682 | * here. | ||
683 | */ | ||
684 | next->on_cpu = 1; | ||
685 | #endif | ||
686 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
687 | raw_spin_unlock_irq(&rq->lock); | ||
688 | #else | ||
689 | raw_spin_unlock(&rq->lock); | ||
690 | #endif | ||
691 | } | ||
692 | |||
693 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
694 | { | ||
695 | #ifdef CONFIG_SMP | ||
696 | /* | ||
697 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
698 | * We must ensure this doesn't happen until the switch is completely | ||
699 | * finished. | ||
700 | */ | ||
701 | smp_wmb(); | ||
702 | prev->on_cpu = 0; | ||
703 | #endif | ||
704 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
705 | local_irq_enable(); | ||
706 | #endif | ||
707 | } | ||
708 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
709 | |||
710 | |||
711 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | ||
712 | { | ||
713 | lw->weight += inc; | ||
714 | lw->inv_weight = 0; | ||
715 | } | ||
716 | |||
717 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | ||
718 | { | ||
719 | lw->weight -= dec; | ||
720 | lw->inv_weight = 0; | ||
721 | } | ||
722 | |||
723 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | ||
724 | { | ||
725 | lw->weight = w; | ||
726 | lw->inv_weight = 0; | ||
727 | } | ||
728 | |||
729 | /* | ||
730 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | ||
731 | * of tasks with abnormal "nice" values across CPUs the contribution that | ||
732 | * each task makes to its run queue's load is weighted according to its | ||
733 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | ||
734 | * scaled version of the new time slice allocation that they receive on time | ||
735 | * slice expiry etc. | ||
736 | */ | ||
737 | |||
738 | #define WEIGHT_IDLEPRIO 3 | ||
739 | #define WMULT_IDLEPRIO 1431655765 | ||
740 | |||
741 | /* | ||
742 | * Nice levels are multiplicative, with a gentle 10% change for every | ||
743 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | ||
744 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | ||
745 | * that remained on nice 0. | ||
746 | * | ||
747 | * The "10% effect" is relative and cumulative: from _any_ nice level, | ||
748 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | ||
749 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | ||
750 | * If a task goes up by ~10% and another task goes down by ~10% then | ||
751 | * the relative distance between them is ~25%.) | ||
752 | */ | ||
753 | static const int prio_to_weight[40] = { | ||
754 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | ||
755 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | ||
756 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | ||
757 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | ||
758 | /* 0 */ 1024, 820, 655, 526, 423, | ||
759 | /* 5 */ 335, 272, 215, 172, 137, | ||
760 | /* 10 */ 110, 87, 70, 56, 45, | ||
761 | /* 15 */ 36, 29, 23, 18, 15, | ||
762 | }; | ||
763 | |||
764 | /* | ||
765 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | ||
766 | * | ||
767 | * In cases where the weight does not change often, we can use the | ||
768 | * precalculated inverse to speed up arithmetics by turning divisions | ||
769 | * into multiplications: | ||
770 | */ | ||
771 | static const u32 prio_to_wmult[40] = { | ||
772 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | ||
773 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | ||
774 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | ||
775 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | ||
776 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | ||
777 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | ||
778 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | ||
779 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | ||
780 | }; | ||
781 | |||
782 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | ||
783 | enum cpuacct_stat_index { | ||
784 | CPUACCT_STAT_USER, /* ... user mode */ | ||
785 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | ||
786 | |||
787 | CPUACCT_STAT_NSTATS, | ||
788 | }; | ||
789 | |||
790 | |||
791 | #define sched_class_highest (&stop_sched_class) | ||
792 | #define for_each_class(class) \ | ||
793 | for (class = sched_class_highest; class; class = class->next) | ||
794 | |||
795 | extern const struct sched_class stop_sched_class; | ||
796 | extern const struct sched_class rt_sched_class; | ||
797 | extern const struct sched_class fair_sched_class; | ||
798 | extern const struct sched_class idle_sched_class; | ||
799 | |||
800 | |||
801 | #ifdef CONFIG_SMP | ||
802 | |||
803 | extern void trigger_load_balance(struct rq *rq, int cpu); | ||
804 | extern void idle_balance(int this_cpu, struct rq *this_rq); | ||
805 | |||
806 | #else /* CONFIG_SMP */ | ||
807 | |||
808 | static inline void idle_balance(int cpu, struct rq *rq) | ||
809 | { | ||
810 | } | ||
811 | |||
812 | #endif | ||
813 | |||
814 | extern void sysrq_sched_debug_show(void); | ||
815 | extern void sched_init_granularity(void); | ||
816 | extern void update_max_interval(void); | ||
817 | extern void update_group_power(struct sched_domain *sd, int cpu); | ||
818 | extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); | ||
819 | extern void init_sched_rt_class(void); | ||
820 | extern void init_sched_fair_class(void); | ||
821 | |||
822 | extern void resched_task(struct task_struct *p); | ||
823 | extern void resched_cpu(int cpu); | ||
824 | |||
825 | extern struct rt_bandwidth def_rt_bandwidth; | ||
826 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | ||
827 | |||
828 | extern void update_cpu_load(struct rq *this_rq); | ||
829 | |||
830 | #ifdef CONFIG_CGROUP_CPUACCT | ||
831 | extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); | ||
832 | extern void cpuacct_update_stats(struct task_struct *tsk, | ||
833 | enum cpuacct_stat_index idx, cputime_t val); | ||
834 | #else | ||
835 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | ||
836 | static inline void cpuacct_update_stats(struct task_struct *tsk, | ||
837 | enum cpuacct_stat_index idx, cputime_t val) {} | ||
838 | #endif | ||
839 | |||
840 | static inline void inc_nr_running(struct rq *rq) | ||
841 | { | ||
842 | rq->nr_running++; | ||
843 | } | ||
844 | |||
845 | static inline void dec_nr_running(struct rq *rq) | ||
846 | { | ||
847 | rq->nr_running--; | ||
848 | } | ||
849 | |||
850 | extern void update_rq_clock(struct rq *rq); | ||
851 | |||
852 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | ||
853 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | ||
854 | |||
855 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | ||
856 | |||
857 | extern const_debug unsigned int sysctl_sched_time_avg; | ||
858 | extern const_debug unsigned int sysctl_sched_nr_migrate; | ||
859 | extern const_debug unsigned int sysctl_sched_migration_cost; | ||
860 | |||
861 | static inline u64 sched_avg_period(void) | ||
862 | { | ||
863 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
864 | } | ||
865 | |||
866 | void calc_load_account_idle(struct rq *this_rq); | ||
867 | |||
868 | #ifdef CONFIG_SCHED_HRTICK | ||
869 | |||
870 | /* | ||
871 | * Use hrtick when: | ||
872 | * - enabled by features | ||
873 | * - hrtimer is actually high res | ||
874 | */ | ||
875 | static inline int hrtick_enabled(struct rq *rq) | ||
876 | { | ||
877 | if (!sched_feat(HRTICK)) | ||
878 | return 0; | ||
879 | if (!cpu_active(cpu_of(rq))) | ||
880 | return 0; | ||
881 | return hrtimer_is_hres_active(&rq->hrtick_timer); | ||
882 | } | ||
883 | |||
884 | void hrtick_start(struct rq *rq, u64 delay); | ||
885 | |||
886 | #endif /* CONFIG_SCHED_HRTICK */ | ||
887 | |||
888 | #ifdef CONFIG_SMP | ||
889 | extern void sched_avg_update(struct rq *rq); | ||
890 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
891 | { | ||
892 | rq->rt_avg += rt_delta; | ||
893 | sched_avg_update(rq); | ||
894 | } | ||
895 | #else | ||
896 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | ||
897 | static inline void sched_avg_update(struct rq *rq) { } | ||
898 | #endif | ||
899 | |||
900 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | ||
901 | |||
902 | #ifdef CONFIG_SMP | ||
903 | #ifdef CONFIG_PREEMPT | ||
904 | |||
905 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
906 | |||
907 | /* | ||
908 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | ||
909 | * way at the expense of forcing extra atomic operations in all | ||
910 | * invocations. This assures that the double_lock is acquired using the | ||
911 | * same underlying policy as the spinlock_t on this architecture, which | ||
912 | * reduces latency compared to the unfair variant below. However, it | ||
913 | * also adds more overhead and therefore may reduce throughput. | ||
914 | */ | ||
915 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
916 | __releases(this_rq->lock) | ||
917 | __acquires(busiest->lock) | ||
918 | __acquires(this_rq->lock) | ||
919 | { | ||
920 | raw_spin_unlock(&this_rq->lock); | ||
921 | double_rq_lock(this_rq, busiest); | ||
922 | |||
923 | return 1; | ||
924 | } | ||
925 | |||
926 | #else | ||
927 | /* | ||
928 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
929 | * latency by eliminating extra atomic operations when the locks are | ||
930 | * already in proper order on entry. This favors lower cpu-ids and will | ||
931 | * grant the double lock to lower cpus over higher ids under contention, | ||
932 | * regardless of entry order into the function. | ||
933 | */ | ||
934 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
935 | __releases(this_rq->lock) | ||
936 | __acquires(busiest->lock) | ||
937 | __acquires(this_rq->lock) | ||
938 | { | ||
939 | int ret = 0; | ||
940 | |||
941 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | ||
942 | if (busiest < this_rq) { | ||
943 | raw_spin_unlock(&this_rq->lock); | ||
944 | raw_spin_lock(&busiest->lock); | ||
945 | raw_spin_lock_nested(&this_rq->lock, | ||
946 | SINGLE_DEPTH_NESTING); | ||
947 | ret = 1; | ||
948 | } else | ||
949 | raw_spin_lock_nested(&busiest->lock, | ||
950 | SINGLE_DEPTH_NESTING); | ||
951 | } | ||
952 | return ret; | ||
953 | } | ||
954 | |||
955 | #endif /* CONFIG_PREEMPT */ | ||
956 | |||
957 | /* | ||
958 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
959 | */ | ||
960 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
961 | { | ||
962 | if (unlikely(!irqs_disabled())) { | ||
963 | /* printk() doesn't work good under rq->lock */ | ||
964 | raw_spin_unlock(&this_rq->lock); | ||
965 | BUG_ON(1); | ||
966 | } | ||
967 | |||
968 | return _double_lock_balance(this_rq, busiest); | ||
969 | } | ||
970 | |||
971 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | ||
972 | __releases(busiest->lock) | ||
973 | { | ||
974 | raw_spin_unlock(&busiest->lock); | ||
975 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | ||
976 | } | ||
977 | |||
978 | /* | ||
979 | * double_rq_lock - safely lock two runqueues | ||
980 | * | ||
981 | * Note this does not disable interrupts like task_rq_lock, | ||
982 | * you need to do so manually before calling. | ||
983 | */ | ||
984 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
985 | __acquires(rq1->lock) | ||
986 | __acquires(rq2->lock) | ||
987 | { | ||
988 | BUG_ON(!irqs_disabled()); | ||
989 | if (rq1 == rq2) { | ||
990 | raw_spin_lock(&rq1->lock); | ||
991 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
992 | } else { | ||
993 | if (rq1 < rq2) { | ||
994 | raw_spin_lock(&rq1->lock); | ||
995 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
996 | } else { | ||
997 | raw_spin_lock(&rq2->lock); | ||
998 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
999 | } | ||
1000 | } | ||
1001 | } | ||
1002 | |||
1003 | /* | ||
1004 | * double_rq_unlock - safely unlock two runqueues | ||
1005 | * | ||
1006 | * Note this does not restore interrupts like task_rq_unlock, | ||
1007 | * you need to do so manually after calling. | ||
1008 | */ | ||
1009 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1010 | __releases(rq1->lock) | ||
1011 | __releases(rq2->lock) | ||
1012 | { | ||
1013 | raw_spin_unlock(&rq1->lock); | ||
1014 | if (rq1 != rq2) | ||
1015 | raw_spin_unlock(&rq2->lock); | ||
1016 | else | ||
1017 | __release(rq2->lock); | ||
1018 | } | ||
1019 | |||
1020 | #else /* CONFIG_SMP */ | ||
1021 | |||
1022 | /* | ||
1023 | * double_rq_lock - safely lock two runqueues | ||
1024 | * | ||
1025 | * Note this does not disable interrupts like task_rq_lock, | ||
1026 | * you need to do so manually before calling. | ||
1027 | */ | ||
1028 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1029 | __acquires(rq1->lock) | ||
1030 | __acquires(rq2->lock) | ||
1031 | { | ||
1032 | BUG_ON(!irqs_disabled()); | ||
1033 | BUG_ON(rq1 != rq2); | ||
1034 | raw_spin_lock(&rq1->lock); | ||
1035 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1036 | } | ||
1037 | |||
1038 | /* | ||
1039 | * double_rq_unlock - safely unlock two runqueues | ||
1040 | * | ||
1041 | * Note this does not restore interrupts like task_rq_unlock, | ||
1042 | * you need to do so manually after calling. | ||
1043 | */ | ||
1044 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1045 | __releases(rq1->lock) | ||
1046 | __releases(rq2->lock) | ||
1047 | { | ||
1048 | BUG_ON(rq1 != rq2); | ||
1049 | raw_spin_unlock(&rq1->lock); | ||
1050 | __release(rq2->lock); | ||
1051 | } | ||
1052 | |||
1053 | #endif | ||
1054 | |||
1055 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | ||
1056 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | ||
1057 | extern void print_cfs_stats(struct seq_file *m, int cpu); | ||
1058 | extern void print_rt_stats(struct seq_file *m, int cpu); | ||
1059 | |||
1060 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | ||
1061 | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); | ||
1062 | extern void unthrottle_offline_cfs_rqs(struct rq *rq); | ||
1063 | |||
1064 | extern void account_cfs_bandwidth_used(int enabled, int was_enabled); | ||
diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c new file mode 100644 index 000000000000..2a581ba8e190 --- /dev/null +++ b/kernel/sched/stats.c | |||
@@ -0,0 +1,111 @@ | |||
1 | |||
2 | #include <linux/slab.h> | ||
3 | #include <linux/fs.h> | ||
4 | #include <linux/seq_file.h> | ||
5 | #include <linux/proc_fs.h> | ||
6 | |||
7 | #include "sched.h" | ||
8 | |||
9 | /* | ||
10 | * bump this up when changing the output format or the meaning of an existing | ||
11 | * format, so that tools can adapt (or abort) | ||
12 | */ | ||
13 | #define SCHEDSTAT_VERSION 15 | ||
14 | |||
15 | static int show_schedstat(struct seq_file *seq, void *v) | ||
16 | { | ||
17 | int cpu; | ||
18 | int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9; | ||
19 | char *mask_str = kmalloc(mask_len, GFP_KERNEL); | ||
20 | |||
21 | if (mask_str == NULL) | ||
22 | return -ENOMEM; | ||
23 | |||
24 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | ||
25 | seq_printf(seq, "timestamp %lu\n", jiffies); | ||
26 | for_each_online_cpu(cpu) { | ||
27 | struct rq *rq = cpu_rq(cpu); | ||
28 | #ifdef CONFIG_SMP | ||
29 | struct sched_domain *sd; | ||
30 | int dcount = 0; | ||
31 | #endif | ||
32 | |||
33 | /* runqueue-specific stats */ | ||
34 | seq_printf(seq, | ||
35 | "cpu%d %u %u %u %u %u %u %llu %llu %lu", | ||
36 | cpu, rq->yld_count, | ||
37 | rq->sched_switch, rq->sched_count, rq->sched_goidle, | ||
38 | rq->ttwu_count, rq->ttwu_local, | ||
39 | rq->rq_cpu_time, | ||
40 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); | ||
41 | |||
42 | seq_printf(seq, "\n"); | ||
43 | |||
44 | #ifdef CONFIG_SMP | ||
45 | /* domain-specific stats */ | ||
46 | rcu_read_lock(); | ||
47 | for_each_domain(cpu, sd) { | ||
48 | enum cpu_idle_type itype; | ||
49 | |||
50 | cpumask_scnprintf(mask_str, mask_len, | ||
51 | sched_domain_span(sd)); | ||
52 | seq_printf(seq, "domain%d %s", dcount++, mask_str); | ||
53 | for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; | ||
54 | itype++) { | ||
55 | seq_printf(seq, " %u %u %u %u %u %u %u %u", | ||
56 | sd->lb_count[itype], | ||
57 | sd->lb_balanced[itype], | ||
58 | sd->lb_failed[itype], | ||
59 | sd->lb_imbalance[itype], | ||
60 | sd->lb_gained[itype], | ||
61 | sd->lb_hot_gained[itype], | ||
62 | sd->lb_nobusyq[itype], | ||
63 | sd->lb_nobusyg[itype]); | ||
64 | } | ||
65 | seq_printf(seq, | ||
66 | " %u %u %u %u %u %u %u %u %u %u %u %u\n", | ||
67 | sd->alb_count, sd->alb_failed, sd->alb_pushed, | ||
68 | sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed, | ||
69 | sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed, | ||
70 | sd->ttwu_wake_remote, sd->ttwu_move_affine, | ||
71 | sd->ttwu_move_balance); | ||
72 | } | ||
73 | rcu_read_unlock(); | ||
74 | #endif | ||
75 | } | ||
76 | kfree(mask_str); | ||
77 | return 0; | ||
78 | } | ||
79 | |||
80 | static int schedstat_open(struct inode *inode, struct file *file) | ||
81 | { | ||
82 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | ||
83 | char *buf = kmalloc(size, GFP_KERNEL); | ||
84 | struct seq_file *m; | ||
85 | int res; | ||
86 | |||
87 | if (!buf) | ||
88 | return -ENOMEM; | ||
89 | res = single_open(file, show_schedstat, NULL); | ||
90 | if (!res) { | ||
91 | m = file->private_data; | ||
92 | m->buf = buf; | ||
93 | m->size = size; | ||
94 | } else | ||
95 | kfree(buf); | ||
96 | return res; | ||
97 | } | ||
98 | |||
99 | static const struct file_operations proc_schedstat_operations = { | ||
100 | .open = schedstat_open, | ||
101 | .read = seq_read, | ||
102 | .llseek = seq_lseek, | ||
103 | .release = single_release, | ||
104 | }; | ||
105 | |||
106 | static int __init proc_schedstat_init(void) | ||
107 | { | ||
108 | proc_create("schedstat", 0, NULL, &proc_schedstat_operations); | ||
109 | return 0; | ||
110 | } | ||
111 | module_init(proc_schedstat_init); | ||
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h new file mode 100644 index 000000000000..ea2b6f0ec868 --- /dev/null +++ b/kernel/sched/stats.h | |||
@@ -0,0 +1,233 @@ | |||
1 | |||
2 | #ifdef CONFIG_SCHEDSTATS | ||
3 | |||
4 | /* | ||
5 | * Expects runqueue lock to be held for atomicity of update | ||
6 | */ | ||
7 | static inline void | ||
8 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) | ||
9 | { | ||
10 | if (rq) { | ||
11 | rq->rq_sched_info.run_delay += delta; | ||
12 | rq->rq_sched_info.pcount++; | ||
13 | } | ||
14 | } | ||
15 | |||
16 | /* | ||
17 | * Expects runqueue lock to be held for atomicity of update | ||
18 | */ | ||
19 | static inline void | ||
20 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) | ||
21 | { | ||
22 | if (rq) | ||
23 | rq->rq_cpu_time += delta; | ||
24 | } | ||
25 | |||
26 | static inline void | ||
27 | rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) | ||
28 | { | ||
29 | if (rq) | ||
30 | rq->rq_sched_info.run_delay += delta; | ||
31 | } | ||
32 | # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) | ||
33 | # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) | ||
34 | # define schedstat_set(var, val) do { var = (val); } while (0) | ||
35 | #else /* !CONFIG_SCHEDSTATS */ | ||
36 | static inline void | ||
37 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) | ||
38 | {} | ||
39 | static inline void | ||
40 | rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) | ||
41 | {} | ||
42 | static inline void | ||
43 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) | ||
44 | {} | ||
45 | # define schedstat_inc(rq, field) do { } while (0) | ||
46 | # define schedstat_add(rq, field, amt) do { } while (0) | ||
47 | # define schedstat_set(var, val) do { } while (0) | ||
48 | #endif | ||
49 | |||
50 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | ||
51 | static inline void sched_info_reset_dequeued(struct task_struct *t) | ||
52 | { | ||
53 | t->sched_info.last_queued = 0; | ||
54 | } | ||
55 | |||
56 | /* | ||
57 | * We are interested in knowing how long it was from the *first* time a | ||
58 | * task was queued to the time that it finally hit a cpu, we call this routine | ||
59 | * from dequeue_task() to account for possible rq->clock skew across cpus. The | ||
60 | * delta taken on each cpu would annul the skew. | ||
61 | */ | ||
62 | static inline void sched_info_dequeued(struct task_struct *t) | ||
63 | { | ||
64 | unsigned long long now = task_rq(t)->clock, delta = 0; | ||
65 | |||
66 | if (unlikely(sched_info_on())) | ||
67 | if (t->sched_info.last_queued) | ||
68 | delta = now - t->sched_info.last_queued; | ||
69 | sched_info_reset_dequeued(t); | ||
70 | t->sched_info.run_delay += delta; | ||
71 | |||
72 | rq_sched_info_dequeued(task_rq(t), delta); | ||
73 | } | ||
74 | |||
75 | /* | ||
76 | * Called when a task finally hits the cpu. We can now calculate how | ||
77 | * long it was waiting to run. We also note when it began so that we | ||
78 | * can keep stats on how long its timeslice is. | ||
79 | */ | ||
80 | static void sched_info_arrive(struct task_struct *t) | ||
81 | { | ||
82 | unsigned long long now = task_rq(t)->clock, delta = 0; | ||
83 | |||
84 | if (t->sched_info.last_queued) | ||
85 | delta = now - t->sched_info.last_queued; | ||
86 | sched_info_reset_dequeued(t); | ||
87 | t->sched_info.run_delay += delta; | ||
88 | t->sched_info.last_arrival = now; | ||
89 | t->sched_info.pcount++; | ||
90 | |||
91 | rq_sched_info_arrive(task_rq(t), delta); | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * This function is only called from enqueue_task(), but also only updates | ||
96 | * the timestamp if it is already not set. It's assumed that | ||
97 | * sched_info_dequeued() will clear that stamp when appropriate. | ||
98 | */ | ||
99 | static inline void sched_info_queued(struct task_struct *t) | ||
100 | { | ||
101 | if (unlikely(sched_info_on())) | ||
102 | if (!t->sched_info.last_queued) | ||
103 | t->sched_info.last_queued = task_rq(t)->clock; | ||
104 | } | ||
105 | |||
106 | /* | ||
107 | * Called when a process ceases being the active-running process, either | ||
108 | * voluntarily or involuntarily. Now we can calculate how long we ran. | ||
109 | * Also, if the process is still in the TASK_RUNNING state, call | ||
110 | * sched_info_queued() to mark that it has now again started waiting on | ||
111 | * the runqueue. | ||
112 | */ | ||
113 | static inline void sched_info_depart(struct task_struct *t) | ||
114 | { | ||
115 | unsigned long long delta = task_rq(t)->clock - | ||
116 | t->sched_info.last_arrival; | ||
117 | |||
118 | rq_sched_info_depart(task_rq(t), delta); | ||
119 | |||
120 | if (t->state == TASK_RUNNING) | ||
121 | sched_info_queued(t); | ||
122 | } | ||
123 | |||
124 | /* | ||
125 | * Called when tasks are switched involuntarily due, typically, to expiring | ||
126 | * their time slice. (This may also be called when switching to or from | ||
127 | * the idle task.) We are only called when prev != next. | ||
128 | */ | ||
129 | static inline void | ||
130 | __sched_info_switch(struct task_struct *prev, struct task_struct *next) | ||
131 | { | ||
132 | struct rq *rq = task_rq(prev); | ||
133 | |||
134 | /* | ||
135 | * prev now departs the cpu. It's not interesting to record | ||
136 | * stats about how efficient we were at scheduling the idle | ||
137 | * process, however. | ||
138 | */ | ||
139 | if (prev != rq->idle) | ||
140 | sched_info_depart(prev); | ||
141 | |||
142 | if (next != rq->idle) | ||
143 | sched_info_arrive(next); | ||
144 | } | ||
145 | static inline void | ||
146 | sched_info_switch(struct task_struct *prev, struct task_struct *next) | ||
147 | { | ||
148 | if (unlikely(sched_info_on())) | ||
149 | __sched_info_switch(prev, next); | ||
150 | } | ||
151 | #else | ||
152 | #define sched_info_queued(t) do { } while (0) | ||
153 | #define sched_info_reset_dequeued(t) do { } while (0) | ||
154 | #define sched_info_dequeued(t) do { } while (0) | ||
155 | #define sched_info_switch(t, next) do { } while (0) | ||
156 | #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ | ||
157 | |||
158 | /* | ||
159 | * The following are functions that support scheduler-internal time accounting. | ||
160 | * These functions are generally called at the timer tick. None of this depends | ||
161 | * on CONFIG_SCHEDSTATS. | ||
162 | */ | ||
163 | |||
164 | /** | ||
165 | * account_group_user_time - Maintain utime for a thread group. | ||
166 | * | ||
167 | * @tsk: Pointer to task structure. | ||
168 | * @cputime: Time value by which to increment the utime field of the | ||
169 | * thread_group_cputime structure. | ||
170 | * | ||
171 | * If thread group time is being maintained, get the structure for the | ||
172 | * running CPU and update the utime field there. | ||
173 | */ | ||
174 | static inline void account_group_user_time(struct task_struct *tsk, | ||
175 | cputime_t cputime) | ||
176 | { | ||
177 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | ||
178 | |||
179 | if (!cputimer->running) | ||
180 | return; | ||
181 | |||
182 | raw_spin_lock(&cputimer->lock); | ||
183 | cputimer->cputime.utime = | ||
184 | cputime_add(cputimer->cputime.utime, cputime); | ||
185 | raw_spin_unlock(&cputimer->lock); | ||
186 | } | ||
187 | |||
188 | /** | ||
189 | * account_group_system_time - Maintain stime for a thread group. | ||
190 | * | ||
191 | * @tsk: Pointer to task structure. | ||
192 | * @cputime: Time value by which to increment the stime field of the | ||
193 | * thread_group_cputime structure. | ||
194 | * | ||
195 | * If thread group time is being maintained, get the structure for the | ||
196 | * running CPU and update the stime field there. | ||
197 | */ | ||
198 | static inline void account_group_system_time(struct task_struct *tsk, | ||
199 | cputime_t cputime) | ||
200 | { | ||
201 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | ||
202 | |||
203 | if (!cputimer->running) | ||
204 | return; | ||
205 | |||
206 | raw_spin_lock(&cputimer->lock); | ||
207 | cputimer->cputime.stime = | ||
208 | cputime_add(cputimer->cputime.stime, cputime); | ||
209 | raw_spin_unlock(&cputimer->lock); | ||
210 | } | ||
211 | |||
212 | /** | ||
213 | * account_group_exec_runtime - Maintain exec runtime for a thread group. | ||
214 | * | ||
215 | * @tsk: Pointer to task structure. | ||
216 | * @ns: Time value by which to increment the sum_exec_runtime field | ||
217 | * of the thread_group_cputime structure. | ||
218 | * | ||
219 | * If thread group time is being maintained, get the structure for the | ||
220 | * running CPU and update the sum_exec_runtime field there. | ||
221 | */ | ||
222 | static inline void account_group_exec_runtime(struct task_struct *tsk, | ||
223 | unsigned long long ns) | ||
224 | { | ||
225 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | ||
226 | |||
227 | if (!cputimer->running) | ||
228 | return; | ||
229 | |||
230 | raw_spin_lock(&cputimer->lock); | ||
231 | cputimer->cputime.sum_exec_runtime += ns; | ||
232 | raw_spin_unlock(&cputimer->lock); | ||
233 | } | ||
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c new file mode 100644 index 000000000000..7b386e86fd23 --- /dev/null +++ b/kernel/sched/stop_task.c | |||
@@ -0,0 +1,108 @@ | |||
1 | #include "sched.h" | ||
2 | |||
3 | /* | ||
4 | * stop-task scheduling class. | ||
5 | * | ||
6 | * The stop task is the highest priority task in the system, it preempts | ||
7 | * everything and will be preempted by nothing. | ||
8 | * | ||
9 | * See kernel/stop_machine.c | ||
10 | */ | ||
11 | |||
12 | #ifdef CONFIG_SMP | ||
13 | static int | ||
14 | select_task_rq_stop(struct task_struct *p, int sd_flag, int flags) | ||
15 | { | ||
16 | return task_cpu(p); /* stop tasks as never migrate */ | ||
17 | } | ||
18 | #endif /* CONFIG_SMP */ | ||
19 | |||
20 | static void | ||
21 | check_preempt_curr_stop(struct rq *rq, struct task_struct *p, int flags) | ||
22 | { | ||
23 | /* we're never preempted */ | ||
24 | } | ||
25 | |||
26 | static struct task_struct *pick_next_task_stop(struct rq *rq) | ||
27 | { | ||
28 | struct task_struct *stop = rq->stop; | ||
29 | |||
30 | if (stop && stop->on_rq) | ||
31 | return stop; | ||
32 | |||
33 | return NULL; | ||
34 | } | ||
35 | |||
36 | static void | ||
37 | enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags) | ||
38 | { | ||
39 | inc_nr_running(rq); | ||
40 | } | ||
41 | |||
42 | static void | ||
43 | dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags) | ||
44 | { | ||
45 | dec_nr_running(rq); | ||
46 | } | ||
47 | |||
48 | static void yield_task_stop(struct rq *rq) | ||
49 | { | ||
50 | BUG(); /* the stop task should never yield, its pointless. */ | ||
51 | } | ||
52 | |||
53 | static void put_prev_task_stop(struct rq *rq, struct task_struct *prev) | ||
54 | { | ||
55 | } | ||
56 | |||
57 | static void task_tick_stop(struct rq *rq, struct task_struct *curr, int queued) | ||
58 | { | ||
59 | } | ||
60 | |||
61 | static void set_curr_task_stop(struct rq *rq) | ||
62 | { | ||
63 | } | ||
64 | |||
65 | static void switched_to_stop(struct rq *rq, struct task_struct *p) | ||
66 | { | ||
67 | BUG(); /* its impossible to change to this class */ | ||
68 | } | ||
69 | |||
70 | static void | ||
71 | prio_changed_stop(struct rq *rq, struct task_struct *p, int oldprio) | ||
72 | { | ||
73 | BUG(); /* how!?, what priority? */ | ||
74 | } | ||
75 | |||
76 | static unsigned int | ||
77 | get_rr_interval_stop(struct rq *rq, struct task_struct *task) | ||
78 | { | ||
79 | return 0; | ||
80 | } | ||
81 | |||
82 | /* | ||
83 | * Simple, special scheduling class for the per-CPU stop tasks: | ||
84 | */ | ||
85 | const struct sched_class stop_sched_class = { | ||
86 | .next = &rt_sched_class, | ||
87 | |||
88 | .enqueue_task = enqueue_task_stop, | ||
89 | .dequeue_task = dequeue_task_stop, | ||
90 | .yield_task = yield_task_stop, | ||
91 | |||
92 | .check_preempt_curr = check_preempt_curr_stop, | ||
93 | |||
94 | .pick_next_task = pick_next_task_stop, | ||
95 | .put_prev_task = put_prev_task_stop, | ||
96 | |||
97 | #ifdef CONFIG_SMP | ||
98 | .select_task_rq = select_task_rq_stop, | ||
99 | #endif | ||
100 | |||
101 | .set_curr_task = set_curr_task_stop, | ||
102 | .task_tick = task_tick_stop, | ||
103 | |||
104 | .get_rr_interval = get_rr_interval_stop, | ||
105 | |||
106 | .prio_changed = prio_changed_stop, | ||
107 | .switched_to = switched_to_stop, | ||
108 | }; | ||