diff options
author | David S. Miller <davem@davemloft.net> | 2010-12-27 01:37:05 -0500 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2010-12-27 01:37:05 -0500 |
commit | 17f7f4d9fcce8f1b75b5f735569309dee7665968 (patch) | |
tree | 14d7e49ca0053a0fcab3c33b5023bf3f90c5c08a /kernel/sched.c | |
parent | 041110a439e21cd40709ead4ffbfa8034619ad77 (diff) | |
parent | d7c1255a3a21e98bdc64df8ccf005a174d7e6289 (diff) |
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
Conflicts:
net/ipv4/fib_frontend.c
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 324 |
1 files changed, 263 insertions, 61 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index aa14a56f9d03..297d1a0eedb0 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -560,18 +560,8 @@ struct rq { | |||
560 | 560 | ||
561 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 561 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
562 | 562 | ||
563 | static inline | ||
564 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
565 | { | ||
566 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | ||
567 | 563 | ||
568 | /* | 564 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
569 | * A queue event has occurred, and we're going to schedule. In | ||
570 | * this case, we can save a useless back to back clock update. | ||
571 | */ | ||
572 | if (test_tsk_need_resched(p)) | ||
573 | rq->skip_clock_update = 1; | ||
574 | } | ||
575 | 565 | ||
576 | static inline int cpu_of(struct rq *rq) | 566 | static inline int cpu_of(struct rq *rq) |
577 | { | 567 | { |
@@ -646,22 +636,18 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
646 | 636 | ||
647 | #endif /* CONFIG_CGROUP_SCHED */ | 637 | #endif /* CONFIG_CGROUP_SCHED */ |
648 | 638 | ||
649 | static u64 irq_time_cpu(int cpu); | 639 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
650 | static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time); | ||
651 | 640 | ||
652 | inline void update_rq_clock(struct rq *rq) | 641 | static void update_rq_clock(struct rq *rq) |
653 | { | 642 | { |
654 | if (!rq->skip_clock_update) { | 643 | s64 delta; |
655 | int cpu = cpu_of(rq); | ||
656 | u64 irq_time; | ||
657 | 644 | ||
658 | rq->clock = sched_clock_cpu(cpu); | 645 | if (rq->skip_clock_update) |
659 | irq_time = irq_time_cpu(cpu); | 646 | return; |
660 | if (rq->clock - irq_time > rq->clock_task) | ||
661 | rq->clock_task = rq->clock - irq_time; | ||
662 | 647 | ||
663 | sched_irq_time_avg_update(rq, irq_time); | 648 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
664 | } | 649 | rq->clock += delta; |
650 | update_rq_clock_task(rq, delta); | ||
665 | } | 651 | } |
666 | 652 | ||
667 | /* | 653 | /* |
@@ -1934,10 +1920,9 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | |||
1934 | * They are read and saved off onto struct rq in update_rq_clock(). | 1920 | * They are read and saved off onto struct rq in update_rq_clock(). |
1935 | * This may result in other CPU reading this CPU's irq time and can | 1921 | * This may result in other CPU reading this CPU's irq time and can |
1936 | * race with irq/account_system_vtime on this CPU. We would either get old | 1922 | * race with irq/account_system_vtime on this CPU. We would either get old |
1937 | * or new value (or semi updated value on 32 bit) with a side effect of | 1923 | * or new value with a side effect of accounting a slice of irq time to wrong |
1938 | * accounting a slice of irq time to wrong task when irq is in progress | 1924 | * task when irq is in progress while we read rq->clock. That is a worthy |
1939 | * while we read rq->clock. That is a worthy compromise in place of having | 1925 | * compromise in place of having locks on each irq in account_system_time. |
1940 | * locks on each irq in account_system_time. | ||
1941 | */ | 1926 | */ |
1942 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); | 1927 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); |
1943 | static DEFINE_PER_CPU(u64, cpu_softirq_time); | 1928 | static DEFINE_PER_CPU(u64, cpu_softirq_time); |
@@ -1955,19 +1940,58 @@ void disable_sched_clock_irqtime(void) | |||
1955 | sched_clock_irqtime = 0; | 1940 | sched_clock_irqtime = 0; |
1956 | } | 1941 | } |
1957 | 1942 | ||
1958 | static u64 irq_time_cpu(int cpu) | 1943 | #ifndef CONFIG_64BIT |
1944 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); | ||
1945 | |||
1946 | static inline void irq_time_write_begin(void) | ||
1959 | { | 1947 | { |
1960 | if (!sched_clock_irqtime) | 1948 | __this_cpu_inc(irq_time_seq.sequence); |
1961 | return 0; | 1949 | smp_wmb(); |
1950 | } | ||
1962 | 1951 | ||
1952 | static inline void irq_time_write_end(void) | ||
1953 | { | ||
1954 | smp_wmb(); | ||
1955 | __this_cpu_inc(irq_time_seq.sequence); | ||
1956 | } | ||
1957 | |||
1958 | static inline u64 irq_time_read(int cpu) | ||
1959 | { | ||
1960 | u64 irq_time; | ||
1961 | unsigned seq; | ||
1962 | |||
1963 | do { | ||
1964 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | ||
1965 | irq_time = per_cpu(cpu_softirq_time, cpu) + | ||
1966 | per_cpu(cpu_hardirq_time, cpu); | ||
1967 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | ||
1968 | |||
1969 | return irq_time; | ||
1970 | } | ||
1971 | #else /* CONFIG_64BIT */ | ||
1972 | static inline void irq_time_write_begin(void) | ||
1973 | { | ||
1974 | } | ||
1975 | |||
1976 | static inline void irq_time_write_end(void) | ||
1977 | { | ||
1978 | } | ||
1979 | |||
1980 | static inline u64 irq_time_read(int cpu) | ||
1981 | { | ||
1963 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | 1982 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
1964 | } | 1983 | } |
1984 | #endif /* CONFIG_64BIT */ | ||
1965 | 1985 | ||
1986 | /* | ||
1987 | * Called before incrementing preempt_count on {soft,}irq_enter | ||
1988 | * and before decrementing preempt_count on {soft,}irq_exit. | ||
1989 | */ | ||
1966 | void account_system_vtime(struct task_struct *curr) | 1990 | void account_system_vtime(struct task_struct *curr) |
1967 | { | 1991 | { |
1968 | unsigned long flags; | 1992 | unsigned long flags; |
1993 | s64 delta; | ||
1969 | int cpu; | 1994 | int cpu; |
1970 | u64 now, delta; | ||
1971 | 1995 | ||
1972 | if (!sched_clock_irqtime) | 1996 | if (!sched_clock_irqtime) |
1973 | return; | 1997 | return; |
@@ -1975,9 +1999,10 @@ void account_system_vtime(struct task_struct *curr) | |||
1975 | local_irq_save(flags); | 1999 | local_irq_save(flags); |
1976 | 2000 | ||
1977 | cpu = smp_processor_id(); | 2001 | cpu = smp_processor_id(); |
1978 | now = sched_clock_cpu(cpu); | 2002 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
1979 | delta = now - per_cpu(irq_start_time, cpu); | 2003 | __this_cpu_add(irq_start_time, delta); |
1980 | per_cpu(irq_start_time, cpu) = now; | 2004 | |
2005 | irq_time_write_begin(); | ||
1981 | /* | 2006 | /* |
1982 | * We do not account for softirq time from ksoftirqd here. | 2007 | * We do not account for softirq time from ksoftirqd here. |
1983 | * We want to continue accounting softirq time to ksoftirqd thread | 2008 | * We want to continue accounting softirq time to ksoftirqd thread |
@@ -1985,33 +2010,55 @@ void account_system_vtime(struct task_struct *curr) | |||
1985 | * that do not consume any time, but still wants to run. | 2010 | * that do not consume any time, but still wants to run. |
1986 | */ | 2011 | */ |
1987 | if (hardirq_count()) | 2012 | if (hardirq_count()) |
1988 | per_cpu(cpu_hardirq_time, cpu) += delta; | 2013 | __this_cpu_add(cpu_hardirq_time, delta); |
1989 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) | 2014 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) |
1990 | per_cpu(cpu_softirq_time, cpu) += delta; | 2015 | __this_cpu_add(cpu_softirq_time, delta); |
1991 | 2016 | ||
2017 | irq_time_write_end(); | ||
1992 | local_irq_restore(flags); | 2018 | local_irq_restore(flags); |
1993 | } | 2019 | } |
1994 | EXPORT_SYMBOL_GPL(account_system_vtime); | 2020 | EXPORT_SYMBOL_GPL(account_system_vtime); |
1995 | 2021 | ||
1996 | static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) | 2022 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
1997 | { | 2023 | { |
1998 | if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) { | 2024 | s64 irq_delta; |
1999 | u64 delta_irq = curr_irq_time - rq->prev_irq_time; | 2025 | |
2000 | rq->prev_irq_time = curr_irq_time; | 2026 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
2001 | sched_rt_avg_update(rq, delta_irq); | 2027 | |
2002 | } | 2028 | /* |
2029 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | ||
2030 | * this case when a previous update_rq_clock() happened inside a | ||
2031 | * {soft,}irq region. | ||
2032 | * | ||
2033 | * When this happens, we stop ->clock_task and only update the | ||
2034 | * prev_irq_time stamp to account for the part that fit, so that a next | ||
2035 | * update will consume the rest. This ensures ->clock_task is | ||
2036 | * monotonic. | ||
2037 | * | ||
2038 | * It does however cause some slight miss-attribution of {soft,}irq | ||
2039 | * time, a more accurate solution would be to update the irq_time using | ||
2040 | * the current rq->clock timestamp, except that would require using | ||
2041 | * atomic ops. | ||
2042 | */ | ||
2043 | if (irq_delta > delta) | ||
2044 | irq_delta = delta; | ||
2045 | |||
2046 | rq->prev_irq_time += irq_delta; | ||
2047 | delta -= irq_delta; | ||
2048 | rq->clock_task += delta; | ||
2049 | |||
2050 | if (irq_delta && sched_feat(NONIRQ_POWER)) | ||
2051 | sched_rt_avg_update(rq, irq_delta); | ||
2003 | } | 2052 | } |
2004 | 2053 | ||
2005 | #else | 2054 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
2006 | 2055 | ||
2007 | static u64 irq_time_cpu(int cpu) | 2056 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
2008 | { | 2057 | { |
2009 | return 0; | 2058 | rq->clock_task += delta; |
2010 | } | 2059 | } |
2011 | 2060 | ||
2012 | static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { } | 2061 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
2013 | |||
2014 | #endif | ||
2015 | 2062 | ||
2016 | #include "sched_idletask.c" | 2063 | #include "sched_idletask.c" |
2017 | #include "sched_fair.c" | 2064 | #include "sched_fair.c" |
@@ -2118,6 +2165,31 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
2118 | p->sched_class->prio_changed(rq, p, oldprio, running); | 2165 | p->sched_class->prio_changed(rq, p, oldprio, running); |
2119 | } | 2166 | } |
2120 | 2167 | ||
2168 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
2169 | { | ||
2170 | const struct sched_class *class; | ||
2171 | |||
2172 | if (p->sched_class == rq->curr->sched_class) { | ||
2173 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | ||
2174 | } else { | ||
2175 | for_each_class(class) { | ||
2176 | if (class == rq->curr->sched_class) | ||
2177 | break; | ||
2178 | if (class == p->sched_class) { | ||
2179 | resched_task(rq->curr); | ||
2180 | break; | ||
2181 | } | ||
2182 | } | ||
2183 | } | ||
2184 | |||
2185 | /* | ||
2186 | * A queue event has occurred, and we're going to schedule. In | ||
2187 | * this case, we can save a useless back to back clock update. | ||
2188 | */ | ||
2189 | if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr)) | ||
2190 | rq->skip_clock_update = 1; | ||
2191 | } | ||
2192 | |||
2121 | #ifdef CONFIG_SMP | 2193 | #ifdef CONFIG_SMP |
2122 | /* | 2194 | /* |
2123 | * Is this task likely cache-hot: | 2195 | * Is this task likely cache-hot: |
@@ -3104,6 +3176,15 @@ static long calc_load_fold_active(struct rq *this_rq) | |||
3104 | return delta; | 3176 | return delta; |
3105 | } | 3177 | } |
3106 | 3178 | ||
3179 | static unsigned long | ||
3180 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
3181 | { | ||
3182 | load *= exp; | ||
3183 | load += active * (FIXED_1 - exp); | ||
3184 | load += 1UL << (FSHIFT - 1); | ||
3185 | return load >> FSHIFT; | ||
3186 | } | ||
3187 | |||
3107 | #ifdef CONFIG_NO_HZ | 3188 | #ifdef CONFIG_NO_HZ |
3108 | /* | 3189 | /* |
3109 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | 3190 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. |
@@ -3133,6 +3214,128 @@ static long calc_load_fold_idle(void) | |||
3133 | 3214 | ||
3134 | return delta; | 3215 | return delta; |
3135 | } | 3216 | } |
3217 | |||
3218 | /** | ||
3219 | * fixed_power_int - compute: x^n, in O(log n) time | ||
3220 | * | ||
3221 | * @x: base of the power | ||
3222 | * @frac_bits: fractional bits of @x | ||
3223 | * @n: power to raise @x to. | ||
3224 | * | ||
3225 | * By exploiting the relation between the definition of the natural power | ||
3226 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | ||
3227 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | ||
3228 | * (where: n_i \elem {0, 1}, the binary vector representing n), | ||
3229 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | ||
3230 | * of course trivially computable in O(log_2 n), the length of our binary | ||
3231 | * vector. | ||
3232 | */ | ||
3233 | static unsigned long | ||
3234 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | ||
3235 | { | ||
3236 | unsigned long result = 1UL << frac_bits; | ||
3237 | |||
3238 | if (n) for (;;) { | ||
3239 | if (n & 1) { | ||
3240 | result *= x; | ||
3241 | result += 1UL << (frac_bits - 1); | ||
3242 | result >>= frac_bits; | ||
3243 | } | ||
3244 | n >>= 1; | ||
3245 | if (!n) | ||
3246 | break; | ||
3247 | x *= x; | ||
3248 | x += 1UL << (frac_bits - 1); | ||
3249 | x >>= frac_bits; | ||
3250 | } | ||
3251 | |||
3252 | return result; | ||
3253 | } | ||
3254 | |||
3255 | /* | ||
3256 | * a1 = a0 * e + a * (1 - e) | ||
3257 | * | ||
3258 | * a2 = a1 * e + a * (1 - e) | ||
3259 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | ||
3260 | * = a0 * e^2 + a * (1 - e) * (1 + e) | ||
3261 | * | ||
3262 | * a3 = a2 * e + a * (1 - e) | ||
3263 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | ||
3264 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | ||
3265 | * | ||
3266 | * ... | ||
3267 | * | ||
3268 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | ||
3269 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | ||
3270 | * = a0 * e^n + a * (1 - e^n) | ||
3271 | * | ||
3272 | * [1] application of the geometric series: | ||
3273 | * | ||
3274 | * n 1 - x^(n+1) | ||
3275 | * S_n := \Sum x^i = ------------- | ||
3276 | * i=0 1 - x | ||
3277 | */ | ||
3278 | static unsigned long | ||
3279 | calc_load_n(unsigned long load, unsigned long exp, | ||
3280 | unsigned long active, unsigned int n) | ||
3281 | { | ||
3282 | |||
3283 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | ||
3284 | } | ||
3285 | |||
3286 | /* | ||
3287 | * NO_HZ can leave us missing all per-cpu ticks calling | ||
3288 | * calc_load_account_active(), but since an idle CPU folds its delta into | ||
3289 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | ||
3290 | * in the pending idle delta if our idle period crossed a load cycle boundary. | ||
3291 | * | ||
3292 | * Once we've updated the global active value, we need to apply the exponential | ||
3293 | * weights adjusted to the number of cycles missed. | ||
3294 | */ | ||
3295 | static void calc_global_nohz(unsigned long ticks) | ||
3296 | { | ||
3297 | long delta, active, n; | ||
3298 | |||
3299 | if (time_before(jiffies, calc_load_update)) | ||
3300 | return; | ||
3301 | |||
3302 | /* | ||
3303 | * If we crossed a calc_load_update boundary, make sure to fold | ||
3304 | * any pending idle changes, the respective CPUs might have | ||
3305 | * missed the tick driven calc_load_account_active() update | ||
3306 | * due to NO_HZ. | ||
3307 | */ | ||
3308 | delta = calc_load_fold_idle(); | ||
3309 | if (delta) | ||
3310 | atomic_long_add(delta, &calc_load_tasks); | ||
3311 | |||
3312 | /* | ||
3313 | * If we were idle for multiple load cycles, apply them. | ||
3314 | */ | ||
3315 | if (ticks >= LOAD_FREQ) { | ||
3316 | n = ticks / LOAD_FREQ; | ||
3317 | |||
3318 | active = atomic_long_read(&calc_load_tasks); | ||
3319 | active = active > 0 ? active * FIXED_1 : 0; | ||
3320 | |||
3321 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||
3322 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||
3323 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||
3324 | |||
3325 | calc_load_update += n * LOAD_FREQ; | ||
3326 | } | ||
3327 | |||
3328 | /* | ||
3329 | * Its possible the remainder of the above division also crosses | ||
3330 | * a LOAD_FREQ period, the regular check in calc_global_load() | ||
3331 | * which comes after this will take care of that. | ||
3332 | * | ||
3333 | * Consider us being 11 ticks before a cycle completion, and us | ||
3334 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will | ||
3335 | * age us 4 cycles, and the test in calc_global_load() will | ||
3336 | * pick up the final one. | ||
3337 | */ | ||
3338 | } | ||
3136 | #else | 3339 | #else |
3137 | static void calc_load_account_idle(struct rq *this_rq) | 3340 | static void calc_load_account_idle(struct rq *this_rq) |
3138 | { | 3341 | { |
@@ -3142,6 +3345,10 @@ static inline long calc_load_fold_idle(void) | |||
3142 | { | 3345 | { |
3143 | return 0; | 3346 | return 0; |
3144 | } | 3347 | } |
3348 | |||
3349 | static void calc_global_nohz(unsigned long ticks) | ||
3350 | { | ||
3351 | } | ||
3145 | #endif | 3352 | #endif |
3146 | 3353 | ||
3147 | /** | 3354 | /** |
@@ -3159,24 +3366,17 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |||
3159 | loads[2] = (avenrun[2] + offset) << shift; | 3366 | loads[2] = (avenrun[2] + offset) << shift; |
3160 | } | 3367 | } |
3161 | 3368 | ||
3162 | static unsigned long | ||
3163 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
3164 | { | ||
3165 | load *= exp; | ||
3166 | load += active * (FIXED_1 - exp); | ||
3167 | return load >> FSHIFT; | ||
3168 | } | ||
3169 | |||
3170 | /* | 3369 | /* |
3171 | * calc_load - update the avenrun load estimates 10 ticks after the | 3370 | * calc_load - update the avenrun load estimates 10 ticks after the |
3172 | * CPUs have updated calc_load_tasks. | 3371 | * CPUs have updated calc_load_tasks. |
3173 | */ | 3372 | */ |
3174 | void calc_global_load(void) | 3373 | void calc_global_load(unsigned long ticks) |
3175 | { | 3374 | { |
3176 | unsigned long upd = calc_load_update + 10; | ||
3177 | long active; | 3375 | long active; |
3178 | 3376 | ||
3179 | if (time_before(jiffies, upd)) | 3377 | calc_global_nohz(ticks); |
3378 | |||
3379 | if (time_before(jiffies, calc_load_update + 10)) | ||
3180 | return; | 3380 | return; |
3181 | 3381 | ||
3182 | active = atomic_long_read(&calc_load_tasks); | 3382 | active = atomic_long_read(&calc_load_tasks); |
@@ -3830,7 +4030,6 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
3830 | { | 4030 | { |
3831 | if (prev->se.on_rq) | 4031 | if (prev->se.on_rq) |
3832 | update_rq_clock(rq); | 4032 | update_rq_clock(rq); |
3833 | rq->skip_clock_update = 0; | ||
3834 | prev->sched_class->put_prev_task(rq, prev); | 4033 | prev->sched_class->put_prev_task(rq, prev); |
3835 | } | 4034 | } |
3836 | 4035 | ||
@@ -3888,7 +4087,6 @@ need_resched_nonpreemptible: | |||
3888 | hrtick_clear(rq); | 4087 | hrtick_clear(rq); |
3889 | 4088 | ||
3890 | raw_spin_lock_irq(&rq->lock); | 4089 | raw_spin_lock_irq(&rq->lock); |
3891 | clear_tsk_need_resched(prev); | ||
3892 | 4090 | ||
3893 | switch_count = &prev->nivcsw; | 4091 | switch_count = &prev->nivcsw; |
3894 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 4092 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
@@ -3920,6 +4118,8 @@ need_resched_nonpreemptible: | |||
3920 | 4118 | ||
3921 | put_prev_task(rq, prev); | 4119 | put_prev_task(rq, prev); |
3922 | next = pick_next_task(rq); | 4120 | next = pick_next_task(rq); |
4121 | clear_tsk_need_resched(prev); | ||
4122 | rq->skip_clock_update = 0; | ||
3923 | 4123 | ||
3924 | if (likely(prev != next)) { | 4124 | if (likely(prev != next)) { |
3925 | sched_info_switch(prev, next); | 4125 | sched_info_switch(prev, next); |
@@ -6960,6 +7160,8 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |||
6960 | if (cpu != group_first_cpu(sd->groups)) | 7160 | if (cpu != group_first_cpu(sd->groups)) |
6961 | return; | 7161 | return; |
6962 | 7162 | ||
7163 | sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups)); | ||
7164 | |||
6963 | child = sd->child; | 7165 | child = sd->child; |
6964 | 7166 | ||
6965 | sd->groups->cpu_power = 0; | 7167 | sd->groups->cpu_power = 0; |