aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorJames Bottomley <jejb@mulgrave.il.steeleye.com>2006-06-28 14:06:39 -0400
committerJames Bottomley <jejb@mulgrave.il.steeleye.com>2006-06-28 14:06:39 -0400
commitf28e71617ddaf2483e3e5c5237103484a303743f (patch)
tree67627d2d8ddbf6a4449371e9261d796c013b1fa1 /kernel/sched.c
parentdc6a78f1af10d28fb8c395034ae1e099b85c05b0 (diff)
parenta39727f212426b9d5f9267b3318a2afaf9922d3b (diff)
Merge ../linux-2.6/
Conflicts: drivers/scsi/aacraid/comminit.c Fixed up by removing the now renamed CONFIG_IOMMU option from aacraid Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c1210
1 files changed, 862 insertions, 348 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index f06d059edef5..2629c1711fd6 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -168,15 +168,21 @@
168 */ 168 */
169 169
170#define SCALE_PRIO(x, prio) \ 170#define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) 171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
172 172
173static unsigned int task_timeslice(task_t *p) 173static unsigned int static_prio_timeslice(int static_prio)
174{ 174{
175 if (p->static_prio < NICE_TO_PRIO(0)) 175 if (static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); 176 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
177 else 177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); 178 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
179} 179}
180
181static inline unsigned int task_timeslice(task_t *p)
182{
183 return static_prio_timeslice(p->static_prio);
184}
185
180#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \ 186#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time) 187 < (long long) (sd)->cache_hot_time)
182 188
@@ -184,13 +190,11 @@ static unsigned int task_timeslice(task_t *p)
184 * These are the runqueue data structures: 190 * These are the runqueue data structures:
185 */ 191 */
186 192
187#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189typedef struct runqueue runqueue_t; 193typedef struct runqueue runqueue_t;
190 194
191struct prio_array { 195struct prio_array {
192 unsigned int nr_active; 196 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE]; 197 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
194 struct list_head queue[MAX_PRIO]; 198 struct list_head queue[MAX_PRIO];
195}; 199};
196 200
@@ -209,6 +213,7 @@ struct runqueue {
209 * remote CPUs use both these fields when doing load calculation. 213 * remote CPUs use both these fields when doing load calculation.
210 */ 214 */
211 unsigned long nr_running; 215 unsigned long nr_running;
216 unsigned long raw_weighted_load;
212#ifdef CONFIG_SMP 217#ifdef CONFIG_SMP
213 unsigned long cpu_load[3]; 218 unsigned long cpu_load[3];
214#endif 219#endif
@@ -239,7 +244,6 @@ struct runqueue {
239 244
240 task_t *migration_thread; 245 task_t *migration_thread;
241 struct list_head migration_queue; 246 struct list_head migration_queue;
242 int cpu;
243#endif 247#endif
244 248
245#ifdef CONFIG_SCHEDSTATS 249#ifdef CONFIG_SCHEDSTATS
@@ -351,11 +355,30 @@ static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
351#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 355#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
352 356
353/* 357/*
358 * __task_rq_lock - lock the runqueue a given task resides on.
359 * Must be called interrupts disabled.
360 */
361static inline runqueue_t *__task_rq_lock(task_t *p)
362 __acquires(rq->lock)
363{
364 struct runqueue *rq;
365
366repeat_lock_task:
367 rq = task_rq(p);
368 spin_lock(&rq->lock);
369 if (unlikely(rq != task_rq(p))) {
370 spin_unlock(&rq->lock);
371 goto repeat_lock_task;
372 }
373 return rq;
374}
375
376/*
354 * task_rq_lock - lock the runqueue a given task resides on and disable 377 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without 378 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption. 379 * explicitly disabling preemption.
357 */ 380 */
358static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) 381static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock) 382 __acquires(rq->lock)
360{ 383{
361 struct runqueue *rq; 384 struct runqueue *rq;
@@ -371,6 +394,12 @@ repeat_lock_task:
371 return rq; 394 return rq;
372} 395}
373 396
397static inline void __task_rq_unlock(runqueue_t *rq)
398 __releases(rq->lock)
399{
400 spin_unlock(&rq->lock);
401}
402
374static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) 403static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock) 404 __releases(rq->lock)
376{ 405{
@@ -634,7 +663,7 @@ static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
634} 663}
635 664
636/* 665/*
637 * effective_prio - return the priority that is based on the static 666 * __normal_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties. 667 * priority but is modified by bonuses/penalties.
639 * 668 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] 669 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
@@ -647,13 +676,11 @@ static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
647 * 676 *
648 * Both properties are important to certain workloads. 677 * Both properties are important to certain workloads.
649 */ 678 */
650static int effective_prio(task_t *p) 679
680static inline int __normal_prio(task_t *p)
651{ 681{
652 int bonus, prio; 682 int bonus, prio;
653 683
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; 684 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658 685
659 prio = p->static_prio - bonus; 686 prio = p->static_prio - bonus;
@@ -665,6 +692,106 @@ static int effective_prio(task_t *p)
665} 692}
666 693
667/* 694/*
695 * To aid in avoiding the subversion of "niceness" due to uneven distribution
696 * of tasks with abnormal "nice" values across CPUs the contribution that
697 * each task makes to its run queue's load is weighted according to its
698 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
699 * scaled version of the new time slice allocation that they receive on time
700 * slice expiry etc.
701 */
702
703/*
704 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
705 * If static_prio_timeslice() is ever changed to break this assumption then
706 * this code will need modification
707 */
708#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
709#define LOAD_WEIGHT(lp) \
710 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
711#define PRIO_TO_LOAD_WEIGHT(prio) \
712 LOAD_WEIGHT(static_prio_timeslice(prio))
713#define RTPRIO_TO_LOAD_WEIGHT(rp) \
714 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
715
716static void set_load_weight(task_t *p)
717{
718 if (has_rt_policy(p)) {
719#ifdef CONFIG_SMP
720 if (p == task_rq(p)->migration_thread)
721 /*
722 * The migration thread does the actual balancing.
723 * Giving its load any weight will skew balancing
724 * adversely.
725 */
726 p->load_weight = 0;
727 else
728#endif
729 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
730 } else
731 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
732}
733
734static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
735{
736 rq->raw_weighted_load += p->load_weight;
737}
738
739static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
740{
741 rq->raw_weighted_load -= p->load_weight;
742}
743
744static inline void inc_nr_running(task_t *p, runqueue_t *rq)
745{
746 rq->nr_running++;
747 inc_raw_weighted_load(rq, p);
748}
749
750static inline void dec_nr_running(task_t *p, runqueue_t *rq)
751{
752 rq->nr_running--;
753 dec_raw_weighted_load(rq, p);
754}
755
756/*
757 * Calculate the expected normal priority: i.e. priority
758 * without taking RT-inheritance into account. Might be
759 * boosted by interactivity modifiers. Changes upon fork,
760 * setprio syscalls, and whenever the interactivity
761 * estimator recalculates.
762 */
763static inline int normal_prio(task_t *p)
764{
765 int prio;
766
767 if (has_rt_policy(p))
768 prio = MAX_RT_PRIO-1 - p->rt_priority;
769 else
770 prio = __normal_prio(p);
771 return prio;
772}
773
774/*
775 * Calculate the current priority, i.e. the priority
776 * taken into account by the scheduler. This value might
777 * be boosted by RT tasks, or might be boosted by
778 * interactivity modifiers. Will be RT if the task got
779 * RT-boosted. If not then it returns p->normal_prio.
780 */
781static int effective_prio(task_t *p)
782{
783 p->normal_prio = normal_prio(p);
784 /*
785 * If we are RT tasks or we were boosted to RT priority,
786 * keep the priority unchanged. Otherwise, update priority
787 * to the normal priority:
788 */
789 if (!rt_prio(p->prio))
790 return p->normal_prio;
791 return p->prio;
792}
793
794/*
668 * __activate_task - move a task to the runqueue. 795 * __activate_task - move a task to the runqueue.
669 */ 796 */
670static void __activate_task(task_t *p, runqueue_t *rq) 797static void __activate_task(task_t *p, runqueue_t *rq)
@@ -674,7 +801,7 @@ static void __activate_task(task_t *p, runqueue_t *rq)
674 if (batch_task(p)) 801 if (batch_task(p))
675 target = rq->expired; 802 target = rq->expired;
676 enqueue_task(p, target); 803 enqueue_task(p, target);
677 rq->nr_running++; 804 inc_nr_running(p, rq);
678} 805}
679 806
680/* 807/*
@@ -683,39 +810,45 @@ static void __activate_task(task_t *p, runqueue_t *rq)
683static inline void __activate_idle_task(task_t *p, runqueue_t *rq) 810static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
684{ 811{
685 enqueue_task_head(p, rq->active); 812 enqueue_task_head(p, rq->active);
686 rq->nr_running++; 813 inc_nr_running(p, rq);
687} 814}
688 815
816/*
817 * Recalculate p->normal_prio and p->prio after having slept,
818 * updating the sleep-average too:
819 */
689static int recalc_task_prio(task_t *p, unsigned long long now) 820static int recalc_task_prio(task_t *p, unsigned long long now)
690{ 821{
691 /* Caller must always ensure 'now >= p->timestamp' */ 822 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time = now - p->timestamp; 823 unsigned long sleep_time = now - p->timestamp;
693 unsigned long sleep_time;
694 824
695 if (batch_task(p)) 825 if (batch_task(p))
696 sleep_time = 0; 826 sleep_time = 0;
697 else {
698 if (__sleep_time > NS_MAX_SLEEP_AVG)
699 sleep_time = NS_MAX_SLEEP_AVG;
700 else
701 sleep_time = (unsigned long)__sleep_time;
702 }
703 827
704 if (likely(sleep_time > 0)) { 828 if (likely(sleep_time > 0)) {
705 /* 829 /*
706 * User tasks that sleep a long time are categorised as 830 * This ceiling is set to the lowest priority that would allow
707 * idle. They will only have their sleep_avg increased to a 831 * a task to be reinserted into the active array on timeslice
708 * level that makes them just interactive priority to stay 832 * completion.
709 * active yet prevent them suddenly becoming cpu hogs and
710 * starving other processes.
711 */ 833 */
712 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) { 834 unsigned long ceiling = INTERACTIVE_SLEEP(p);
713 unsigned long ceiling;
714 835
715 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG - 836 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
716 DEF_TIMESLICE); 837 /*
717 if (p->sleep_avg < ceiling) 838 * Prevents user tasks from achieving best priority
718 p->sleep_avg = ceiling; 839 * with one single large enough sleep.
840 */
841 p->sleep_avg = ceiling;
842 /*
843 * Using INTERACTIVE_SLEEP() as a ceiling places a
844 * nice(0) task 1ms sleep away from promotion, and
845 * gives it 700ms to round-robin with no chance of
846 * being demoted. This is more than generous, so
847 * mark this sleep as non-interactive to prevent the
848 * on-runqueue bonus logic from intervening should
849 * this task not receive cpu immediately.
850 */
851 p->sleep_type = SLEEP_NONINTERACTIVE;
719 } else { 852 } else {
720 /* 853 /*
721 * Tasks waking from uninterruptible sleep are 854 * Tasks waking from uninterruptible sleep are
@@ -723,12 +856,12 @@ static int recalc_task_prio(task_t *p, unsigned long long now)
723 * are likely to be waiting on I/O 856 * are likely to be waiting on I/O
724 */ 857 */
725 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) { 858 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
726 if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) 859 if (p->sleep_avg >= ceiling)
727 sleep_time = 0; 860 sleep_time = 0;
728 else if (p->sleep_avg + sleep_time >= 861 else if (p->sleep_avg + sleep_time >=
729 INTERACTIVE_SLEEP(p)) { 862 ceiling) {
730 p->sleep_avg = INTERACTIVE_SLEEP(p); 863 p->sleep_avg = ceiling;
731 sleep_time = 0; 864 sleep_time = 0;
732 } 865 }
733 } 866 }
734 867
@@ -742,9 +875,9 @@ static int recalc_task_prio(task_t *p, unsigned long long now)
742 */ 875 */
743 p->sleep_avg += sleep_time; 876 p->sleep_avg += sleep_time;
744 877
745 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
746 p->sleep_avg = NS_MAX_SLEEP_AVG;
747 } 878 }
879 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
880 p->sleep_avg = NS_MAX_SLEEP_AVG;
748 } 881 }
749 882
750 return effective_prio(p); 883 return effective_prio(p);
@@ -805,7 +938,7 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
805 */ 938 */
806static void deactivate_task(struct task_struct *p, runqueue_t *rq) 939static void deactivate_task(struct task_struct *p, runqueue_t *rq)
807{ 940{
808 rq->nr_running--; 941 dec_nr_running(p, rq);
809 dequeue_task(p, p->array); 942 dequeue_task(p, p->array);
810 p->array = NULL; 943 p->array = NULL;
811} 944}
@@ -818,6 +951,11 @@ static void deactivate_task(struct task_struct *p, runqueue_t *rq)
818 * the target CPU. 951 * the target CPU.
819 */ 952 */
820#ifdef CONFIG_SMP 953#ifdef CONFIG_SMP
954
955#ifndef tsk_is_polling
956#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
957#endif
958
821static void resched_task(task_t *p) 959static void resched_task(task_t *p)
822{ 960{
823 int cpu; 961 int cpu;
@@ -833,9 +971,9 @@ static void resched_task(task_t *p)
833 if (cpu == smp_processor_id()) 971 if (cpu == smp_processor_id())
834 return; 972 return;
835 973
836 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */ 974 /* NEED_RESCHED must be visible before we test polling */
837 smp_mb(); 975 smp_mb();
838 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG)) 976 if (!tsk_is_polling(p))
839 smp_send_reschedule(cpu); 977 smp_send_reschedule(cpu);
840} 978}
841#else 979#else
@@ -855,6 +993,12 @@ inline int task_curr(const task_t *p)
855 return cpu_curr(task_cpu(p)) == p; 993 return cpu_curr(task_cpu(p)) == p;
856} 994}
857 995
996/* Used instead of source_load when we know the type == 0 */
997unsigned long weighted_cpuload(const int cpu)
998{
999 return cpu_rq(cpu)->raw_weighted_load;
1000}
1001
858#ifdef CONFIG_SMP 1002#ifdef CONFIG_SMP
859typedef struct { 1003typedef struct {
860 struct list_head list; 1004 struct list_head list;
@@ -944,7 +1088,8 @@ void kick_process(task_t *p)
944} 1088}
945 1089
946/* 1090/*
947 * Return a low guess at the load of a migration-source cpu. 1091 * Return a low guess at the load of a migration-source cpu weighted
1092 * according to the scheduling class and "nice" value.
948 * 1093 *
949 * We want to under-estimate the load of migration sources, to 1094 * We want to under-estimate the load of migration sources, to
950 * balance conservatively. 1095 * balance conservatively.
@@ -952,24 +1097,36 @@ void kick_process(task_t *p)
952static inline unsigned long source_load(int cpu, int type) 1097static inline unsigned long source_load(int cpu, int type)
953{ 1098{
954 runqueue_t *rq = cpu_rq(cpu); 1099 runqueue_t *rq = cpu_rq(cpu);
955 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; 1100
956 if (type == 0) 1101 if (type == 0)
957 return load_now; 1102 return rq->raw_weighted_load;
958 1103
959 return min(rq->cpu_load[type-1], load_now); 1104 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
960} 1105}
961 1106
962/* 1107/*
963 * Return a high guess at the load of a migration-target cpu 1108 * Return a high guess at the load of a migration-target cpu weighted
1109 * according to the scheduling class and "nice" value.
964 */ 1110 */
965static inline unsigned long target_load(int cpu, int type) 1111static inline unsigned long target_load(int cpu, int type)
966{ 1112{
967 runqueue_t *rq = cpu_rq(cpu); 1113 runqueue_t *rq = cpu_rq(cpu);
968 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; 1114
969 if (type == 0) 1115 if (type == 0)
970 return load_now; 1116 return rq->raw_weighted_load;
1117
1118 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1119}
1120
1121/*
1122 * Return the average load per task on the cpu's run queue
1123 */
1124static inline unsigned long cpu_avg_load_per_task(int cpu)
1125{
1126 runqueue_t *rq = cpu_rq(cpu);
1127 unsigned long n = rq->nr_running;
971 1128
972 return max(rq->cpu_load[type-1], load_now); 1129 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
973} 1130}
974 1131
975/* 1132/*
@@ -1042,7 +1199,7 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1042 cpus_and(tmp, group->cpumask, p->cpus_allowed); 1199 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1043 1200
1044 for_each_cpu_mask(i, tmp) { 1201 for_each_cpu_mask(i, tmp) {
1045 load = source_load(i, 0); 1202 load = weighted_cpuload(i);
1046 1203
1047 if (load < min_load || (load == min_load && i == this_cpu)) { 1204 if (load < min_load || (load == min_load && i == this_cpu)) {
1048 min_load = load; 1205 min_load = load;
@@ -1069,9 +1226,15 @@ static int sched_balance_self(int cpu, int flag)
1069 struct task_struct *t = current; 1226 struct task_struct *t = current;
1070 struct sched_domain *tmp, *sd = NULL; 1227 struct sched_domain *tmp, *sd = NULL;
1071 1228
1072 for_each_domain(cpu, tmp) 1229 for_each_domain(cpu, tmp) {
1230 /*
1231 * If power savings logic is enabled for a domain, stop there.
1232 */
1233 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1234 break;
1073 if (tmp->flags & flag) 1235 if (tmp->flags & flag)
1074 sd = tmp; 1236 sd = tmp;
1237 }
1075 1238
1076 while (sd) { 1239 while (sd) {
1077 cpumask_t span; 1240 cpumask_t span;
@@ -1221,17 +1384,19 @@ static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1221 1384
1222 if (this_sd->flags & SD_WAKE_AFFINE) { 1385 if (this_sd->flags & SD_WAKE_AFFINE) {
1223 unsigned long tl = this_load; 1386 unsigned long tl = this_load;
1387 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1388
1224 /* 1389 /*
1225 * If sync wakeup then subtract the (maximum possible) 1390 * If sync wakeup then subtract the (maximum possible)
1226 * effect of the currently running task from the load 1391 * effect of the currently running task from the load
1227 * of the current CPU: 1392 * of the current CPU:
1228 */ 1393 */
1229 if (sync) 1394 if (sync)
1230 tl -= SCHED_LOAD_SCALE; 1395 tl -= current->load_weight;
1231 1396
1232 if ((tl <= load && 1397 if ((tl <= load &&
1233 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) || 1398 tl + target_load(cpu, idx) <= tl_per_task) ||
1234 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) { 1399 100*(tl + p->load_weight) <= imbalance*load) {
1235 /* 1400 /*
1236 * This domain has SD_WAKE_AFFINE and 1401 * This domain has SD_WAKE_AFFINE and
1237 * p is cache cold in this domain, and 1402 * p is cache cold in this domain, and
@@ -1348,6 +1513,12 @@ void fastcall sched_fork(task_t *p, int clone_flags)
1348 * event cannot wake it up and insert it on the runqueue either. 1513 * event cannot wake it up and insert it on the runqueue either.
1349 */ 1514 */
1350 p->state = TASK_RUNNING; 1515 p->state = TASK_RUNNING;
1516
1517 /*
1518 * Make sure we do not leak PI boosting priority to the child:
1519 */
1520 p->prio = current->normal_prio;
1521
1351 INIT_LIST_HEAD(&p->run_list); 1522 INIT_LIST_HEAD(&p->run_list);
1352 p->array = NULL; 1523 p->array = NULL;
1353#ifdef CONFIG_SCHEDSTATS 1524#ifdef CONFIG_SCHEDSTATS
@@ -1427,10 +1598,11 @@ void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1427 __activate_task(p, rq); 1598 __activate_task(p, rq);
1428 else { 1599 else {
1429 p->prio = current->prio; 1600 p->prio = current->prio;
1601 p->normal_prio = current->normal_prio;
1430 list_add_tail(&p->run_list, &current->run_list); 1602 list_add_tail(&p->run_list, &current->run_list);
1431 p->array = current->array; 1603 p->array = current->array;
1432 p->array->nr_active++; 1604 p->array->nr_active++;
1433 rq->nr_running++; 1605 inc_nr_running(p, rq);
1434 } 1606 }
1435 set_need_resched(); 1607 set_need_resched();
1436 } else 1608 } else
@@ -1648,7 +1820,8 @@ unsigned long nr_uninterruptible(void)
1648 1820
1649unsigned long long nr_context_switches(void) 1821unsigned long long nr_context_switches(void)
1650{ 1822{
1651 unsigned long long i, sum = 0; 1823 int i;
1824 unsigned long long sum = 0;
1652 1825
1653 for_each_possible_cpu(i) 1826 for_each_possible_cpu(i)
1654 sum += cpu_rq(i)->nr_switches; 1827 sum += cpu_rq(i)->nr_switches;
@@ -1686,9 +1859,6 @@ unsigned long nr_active(void)
1686/* 1859/*
1687 * double_rq_lock - safely lock two runqueues 1860 * double_rq_lock - safely lock two runqueues
1688 * 1861 *
1689 * We must take them in cpu order to match code in
1690 * dependent_sleeper and wake_dependent_sleeper.
1691 *
1692 * Note this does not disable interrupts like task_rq_lock, 1862 * Note this does not disable interrupts like task_rq_lock,
1693 * you need to do so manually before calling. 1863 * you need to do so manually before calling.
1694 */ 1864 */
@@ -1700,7 +1870,7 @@ static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1700 spin_lock(&rq1->lock); 1870 spin_lock(&rq1->lock);
1701 __acquire(rq2->lock); /* Fake it out ;) */ 1871 __acquire(rq2->lock); /* Fake it out ;) */
1702 } else { 1872 } else {
1703 if (rq1->cpu < rq2->cpu) { 1873 if (rq1 < rq2) {
1704 spin_lock(&rq1->lock); 1874 spin_lock(&rq1->lock);
1705 spin_lock(&rq2->lock); 1875 spin_lock(&rq2->lock);
1706 } else { 1876 } else {
@@ -1736,7 +1906,7 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1736 __acquires(this_rq->lock) 1906 __acquires(this_rq->lock)
1737{ 1907{
1738 if (unlikely(!spin_trylock(&busiest->lock))) { 1908 if (unlikely(!spin_trylock(&busiest->lock))) {
1739 if (busiest->cpu < this_rq->cpu) { 1909 if (busiest < this_rq) {
1740 spin_unlock(&this_rq->lock); 1910 spin_unlock(&this_rq->lock);
1741 spin_lock(&busiest->lock); 1911 spin_lock(&busiest->lock);
1742 spin_lock(&this_rq->lock); 1912 spin_lock(&this_rq->lock);
@@ -1799,9 +1969,9 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1799 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) 1969 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1800{ 1970{
1801 dequeue_task(p, src_array); 1971 dequeue_task(p, src_array);
1802 src_rq->nr_running--; 1972 dec_nr_running(p, src_rq);
1803 set_task_cpu(p, this_cpu); 1973 set_task_cpu(p, this_cpu);
1804 this_rq->nr_running++; 1974 inc_nr_running(p, this_rq);
1805 enqueue_task(p, this_array); 1975 enqueue_task(p, this_array);
1806 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) 1976 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1807 + this_rq->timestamp_last_tick; 1977 + this_rq->timestamp_last_tick;
@@ -1848,26 +2018,42 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1848 return 1; 2018 return 1;
1849} 2019}
1850 2020
2021#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
1851/* 2022/*
1852 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, 2023 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
1853 * as part of a balancing operation within "domain". Returns the number of 2024 * load from busiest to this_rq, as part of a balancing operation within
1854 * tasks moved. 2025 * "domain". Returns the number of tasks moved.
1855 * 2026 *
1856 * Called with both runqueues locked. 2027 * Called with both runqueues locked.
1857 */ 2028 */
1858static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, 2029static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1859 unsigned long max_nr_move, struct sched_domain *sd, 2030 unsigned long max_nr_move, unsigned long max_load_move,
1860 enum idle_type idle, int *all_pinned) 2031 struct sched_domain *sd, enum idle_type idle,
2032 int *all_pinned)
1861{ 2033{
1862 prio_array_t *array, *dst_array; 2034 prio_array_t *array, *dst_array;
1863 struct list_head *head, *curr; 2035 struct list_head *head, *curr;
1864 int idx, pulled = 0, pinned = 0; 2036 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2037 int busiest_best_prio_seen;
2038 int skip_for_load; /* skip the task based on weighted load issues */
2039 long rem_load_move;
1865 task_t *tmp; 2040 task_t *tmp;
1866 2041
1867 if (max_nr_move == 0) 2042 if (max_nr_move == 0 || max_load_move == 0)
1868 goto out; 2043 goto out;
1869 2044
2045 rem_load_move = max_load_move;
1870 pinned = 1; 2046 pinned = 1;
2047 this_best_prio = rq_best_prio(this_rq);
2048 busiest_best_prio = rq_best_prio(busiest);
2049 /*
2050 * Enable handling of the case where there is more than one task
2051 * with the best priority. If the current running task is one
2052 * of those with prio==busiest_best_prio we know it won't be moved
2053 * and therefore it's safe to override the skip (based on load) of
2054 * any task we find with that prio.
2055 */
2056 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
1871 2057
1872 /* 2058 /*
1873 * We first consider expired tasks. Those will likely not be 2059 * We first consider expired tasks. Those will likely not be
@@ -1907,7 +2093,17 @@ skip_queue:
1907 2093
1908 curr = curr->prev; 2094 curr = curr->prev;
1909 2095
1910 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { 2096 /*
2097 * To help distribute high priority tasks accross CPUs we don't
2098 * skip a task if it will be the highest priority task (i.e. smallest
2099 * prio value) on its new queue regardless of its load weight
2100 */
2101 skip_for_load = tmp->load_weight > rem_load_move;
2102 if (skip_for_load && idx < this_best_prio)
2103 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2104 if (skip_for_load ||
2105 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2106 busiest_best_prio_seen |= idx == busiest_best_prio;
1911 if (curr != head) 2107 if (curr != head)
1912 goto skip_queue; 2108 goto skip_queue;
1913 idx++; 2109 idx++;
@@ -1921,9 +2117,15 @@ skip_queue:
1921 2117
1922 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); 2118 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1923 pulled++; 2119 pulled++;
2120 rem_load_move -= tmp->load_weight;
1924 2121
1925 /* We only want to steal up to the prescribed number of tasks. */ 2122 /*
1926 if (pulled < max_nr_move) { 2123 * We only want to steal up to the prescribed number of tasks
2124 * and the prescribed amount of weighted load.
2125 */
2126 if (pulled < max_nr_move && rem_load_move > 0) {
2127 if (idx < this_best_prio)
2128 this_best_prio = idx;
1927 if (curr != head) 2129 if (curr != head)
1928 goto skip_queue; 2130 goto skip_queue;
1929 idx++; 2131 idx++;
@@ -1944,7 +2146,7 @@ out:
1944 2146
1945/* 2147/*
1946 * find_busiest_group finds and returns the busiest CPU group within the 2148 * find_busiest_group finds and returns the busiest CPU group within the
1947 * domain. It calculates and returns the number of tasks which should be 2149 * domain. It calculates and returns the amount of weighted load which should be
1948 * moved to restore balance via the imbalance parameter. 2150 * moved to restore balance via the imbalance parameter.
1949 */ 2151 */
1950static struct sched_group * 2152static struct sched_group *
@@ -1954,9 +2156,19 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
1954 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; 2156 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1955 unsigned long max_load, avg_load, total_load, this_load, total_pwr; 2157 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1956 unsigned long max_pull; 2158 unsigned long max_pull;
2159 unsigned long busiest_load_per_task, busiest_nr_running;
2160 unsigned long this_load_per_task, this_nr_running;
1957 int load_idx; 2161 int load_idx;
2162#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2163 int power_savings_balance = 1;
2164 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2165 unsigned long min_nr_running = ULONG_MAX;
2166 struct sched_group *group_min = NULL, *group_leader = NULL;
2167#endif
1958 2168
1959 max_load = this_load = total_load = total_pwr = 0; 2169 max_load = this_load = total_load = total_pwr = 0;
2170 busiest_load_per_task = busiest_nr_running = 0;
2171 this_load_per_task = this_nr_running = 0;
1960 if (idle == NOT_IDLE) 2172 if (idle == NOT_IDLE)
1961 load_idx = sd->busy_idx; 2173 load_idx = sd->busy_idx;
1962 else if (idle == NEWLY_IDLE) 2174 else if (idle == NEWLY_IDLE)
@@ -1965,16 +2177,19 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
1965 load_idx = sd->idle_idx; 2177 load_idx = sd->idle_idx;
1966 2178
1967 do { 2179 do {
1968 unsigned long load; 2180 unsigned long load, group_capacity;
1969 int local_group; 2181 int local_group;
1970 int i; 2182 int i;
2183 unsigned long sum_nr_running, sum_weighted_load;
1971 2184
1972 local_group = cpu_isset(this_cpu, group->cpumask); 2185 local_group = cpu_isset(this_cpu, group->cpumask);
1973 2186
1974 /* Tally up the load of all CPUs in the group */ 2187 /* Tally up the load of all CPUs in the group */
1975 avg_load = 0; 2188 sum_weighted_load = sum_nr_running = avg_load = 0;
1976 2189
1977 for_each_cpu_mask(i, group->cpumask) { 2190 for_each_cpu_mask(i, group->cpumask) {
2191 runqueue_t *rq = cpu_rq(i);
2192
1978 if (*sd_idle && !idle_cpu(i)) 2193 if (*sd_idle && !idle_cpu(i))
1979 *sd_idle = 0; 2194 *sd_idle = 0;
1980 2195
@@ -1985,6 +2200,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
1985 load = source_load(i, load_idx); 2200 load = source_load(i, load_idx);
1986 2201
1987 avg_load += load; 2202 avg_load += load;
2203 sum_nr_running += rq->nr_running;
2204 sum_weighted_load += rq->raw_weighted_load;
1988 } 2205 }
1989 2206
1990 total_load += avg_load; 2207 total_load += avg_load;
@@ -1993,17 +2210,80 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
1993 /* Adjust by relative CPU power of the group */ 2210 /* Adjust by relative CPU power of the group */
1994 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; 2211 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1995 2212
2213 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2214
1996 if (local_group) { 2215 if (local_group) {
1997 this_load = avg_load; 2216 this_load = avg_load;
1998 this = group; 2217 this = group;
1999 } else if (avg_load > max_load) { 2218 this_nr_running = sum_nr_running;
2219 this_load_per_task = sum_weighted_load;
2220 } else if (avg_load > max_load &&
2221 sum_nr_running > group_capacity) {
2000 max_load = avg_load; 2222 max_load = avg_load;
2001 busiest = group; 2223 busiest = group;
2224 busiest_nr_running = sum_nr_running;
2225 busiest_load_per_task = sum_weighted_load;
2002 } 2226 }
2227
2228#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2229 /*
2230 * Busy processors will not participate in power savings
2231 * balance.
2232 */
2233 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2234 goto group_next;
2235
2236 /*
2237 * If the local group is idle or completely loaded
2238 * no need to do power savings balance at this domain
2239 */
2240 if (local_group && (this_nr_running >= group_capacity ||
2241 !this_nr_running))
2242 power_savings_balance = 0;
2243
2244 /*
2245 * If a group is already running at full capacity or idle,
2246 * don't include that group in power savings calculations
2247 */
2248 if (!power_savings_balance || sum_nr_running >= group_capacity
2249 || !sum_nr_running)
2250 goto group_next;
2251
2252 /*
2253 * Calculate the group which has the least non-idle load.
2254 * This is the group from where we need to pick up the load
2255 * for saving power
2256 */
2257 if ((sum_nr_running < min_nr_running) ||
2258 (sum_nr_running == min_nr_running &&
2259 first_cpu(group->cpumask) <
2260 first_cpu(group_min->cpumask))) {
2261 group_min = group;
2262 min_nr_running = sum_nr_running;
2263 min_load_per_task = sum_weighted_load /
2264 sum_nr_running;
2265 }
2266
2267 /*
2268 * Calculate the group which is almost near its
2269 * capacity but still has some space to pick up some load
2270 * from other group and save more power
2271 */
2272 if (sum_nr_running <= group_capacity - 1)
2273 if (sum_nr_running > leader_nr_running ||
2274 (sum_nr_running == leader_nr_running &&
2275 first_cpu(group->cpumask) >
2276 first_cpu(group_leader->cpumask))) {
2277 group_leader = group;
2278 leader_nr_running = sum_nr_running;
2279 }
2280
2281group_next:
2282#endif
2003 group = group->next; 2283 group = group->next;
2004 } while (group != sd->groups); 2284 } while (group != sd->groups);
2005 2285
2006 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE) 2286 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2007 goto out_balanced; 2287 goto out_balanced;
2008 2288
2009 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; 2289 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
@@ -2012,6 +2292,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2012 100*max_load <= sd->imbalance_pct*this_load) 2292 100*max_load <= sd->imbalance_pct*this_load)
2013 goto out_balanced; 2293 goto out_balanced;
2014 2294
2295 busiest_load_per_task /= busiest_nr_running;
2015 /* 2296 /*
2016 * We're trying to get all the cpus to the average_load, so we don't 2297 * We're trying to get all the cpus to the average_load, so we don't
2017 * want to push ourselves above the average load, nor do we wish to 2298 * want to push ourselves above the average load, nor do we wish to
@@ -2023,21 +2304,50 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2023 * by pulling tasks to us. Be careful of negative numbers as they'll 2304 * by pulling tasks to us. Be careful of negative numbers as they'll
2024 * appear as very large values with unsigned longs. 2305 * appear as very large values with unsigned longs.
2025 */ 2306 */
2307 if (max_load <= busiest_load_per_task)
2308 goto out_balanced;
2309
2310 /*
2311 * In the presence of smp nice balancing, certain scenarios can have
2312 * max load less than avg load(as we skip the groups at or below
2313 * its cpu_power, while calculating max_load..)
2314 */
2315 if (max_load < avg_load) {
2316 *imbalance = 0;
2317 goto small_imbalance;
2318 }
2026 2319
2027 /* Don't want to pull so many tasks that a group would go idle */ 2320 /* Don't want to pull so many tasks that a group would go idle */
2028 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE); 2321 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2029 2322
2030 /* How much load to actually move to equalise the imbalance */ 2323 /* How much load to actually move to equalise the imbalance */
2031 *imbalance = min(max_pull * busiest->cpu_power, 2324 *imbalance = min(max_pull * busiest->cpu_power,
2032 (avg_load - this_load) * this->cpu_power) 2325 (avg_load - this_load) * this->cpu_power)
2033 / SCHED_LOAD_SCALE; 2326 / SCHED_LOAD_SCALE;
2034 2327
2035 if (*imbalance < SCHED_LOAD_SCALE) { 2328 /*
2036 unsigned long pwr_now = 0, pwr_move = 0; 2329 * if *imbalance is less than the average load per runnable task
2330 * there is no gaurantee that any tasks will be moved so we'll have
2331 * a think about bumping its value to force at least one task to be
2332 * moved
2333 */
2334 if (*imbalance < busiest_load_per_task) {
2335 unsigned long pwr_now, pwr_move;
2037 unsigned long tmp; 2336 unsigned long tmp;
2337 unsigned int imbn;
2338
2339small_imbalance:
2340 pwr_move = pwr_now = 0;
2341 imbn = 2;
2342 if (this_nr_running) {
2343 this_load_per_task /= this_nr_running;
2344 if (busiest_load_per_task > this_load_per_task)
2345 imbn = 1;
2346 } else
2347 this_load_per_task = SCHED_LOAD_SCALE;
2038 2348
2039 if (max_load - this_load >= SCHED_LOAD_SCALE*2) { 2349 if (max_load - this_load >= busiest_load_per_task * imbn) {
2040 *imbalance = 1; 2350 *imbalance = busiest_load_per_task;
2041 return busiest; 2351 return busiest;
2042 } 2352 }
2043 2353
@@ -2047,39 +2357,47 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
2047 * moving them. 2357 * moving them.
2048 */ 2358 */
2049 2359
2050 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); 2360 pwr_now += busiest->cpu_power *
2051 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); 2361 min(busiest_load_per_task, max_load);
2362 pwr_now += this->cpu_power *
2363 min(this_load_per_task, this_load);
2052 pwr_now /= SCHED_LOAD_SCALE; 2364 pwr_now /= SCHED_LOAD_SCALE;
2053 2365
2054 /* Amount of load we'd subtract */ 2366 /* Amount of load we'd subtract */
2055 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; 2367 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2056 if (max_load > tmp) 2368 if (max_load > tmp)
2057 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, 2369 pwr_move += busiest->cpu_power *
2058 max_load - tmp); 2370 min(busiest_load_per_task, max_load - tmp);
2059 2371
2060 /* Amount of load we'd add */ 2372 /* Amount of load we'd add */
2061 if (max_load*busiest->cpu_power < 2373 if (max_load*busiest->cpu_power <
2062 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) 2374 busiest_load_per_task*SCHED_LOAD_SCALE)
2063 tmp = max_load*busiest->cpu_power/this->cpu_power; 2375 tmp = max_load*busiest->cpu_power/this->cpu_power;
2064 else 2376 else
2065 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; 2377 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2066 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); 2378 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2067 pwr_move /= SCHED_LOAD_SCALE; 2379 pwr_move /= SCHED_LOAD_SCALE;
2068 2380
2069 /* Move if we gain throughput */ 2381 /* Move if we gain throughput */
2070 if (pwr_move <= pwr_now) 2382 if (pwr_move <= pwr_now)
2071 goto out_balanced; 2383 goto out_balanced;
2072 2384
2073 *imbalance = 1; 2385 *imbalance = busiest_load_per_task;
2074 return busiest;
2075 } 2386 }
2076 2387
2077 /* Get rid of the scaling factor, rounding down as we divide */
2078 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2079 return busiest; 2388 return busiest;
2080 2389
2081out_balanced: 2390out_balanced:
2391#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2392 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2393 goto ret;
2082 2394
2395 if (this == group_leader && group_leader != group_min) {
2396 *imbalance = min_load_per_task;
2397 return group_min;
2398 }
2399ret:
2400#endif
2083 *imbalance = 0; 2401 *imbalance = 0;
2084 return NULL; 2402 return NULL;
2085} 2403}
@@ -2088,18 +2406,21 @@ out_balanced:
2088 * find_busiest_queue - find the busiest runqueue among the cpus in group. 2406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2089 */ 2407 */
2090static runqueue_t *find_busiest_queue(struct sched_group *group, 2408static runqueue_t *find_busiest_queue(struct sched_group *group,
2091 enum idle_type idle) 2409 enum idle_type idle, unsigned long imbalance)
2092{ 2410{
2093 unsigned long load, max_load = 0; 2411 unsigned long max_load = 0;
2094 runqueue_t *busiest = NULL; 2412 runqueue_t *busiest = NULL, *rqi;
2095 int i; 2413 int i;
2096 2414
2097 for_each_cpu_mask(i, group->cpumask) { 2415 for_each_cpu_mask(i, group->cpumask) {
2098 load = source_load(i, 0); 2416 rqi = cpu_rq(i);
2099 2417
2100 if (load > max_load) { 2418 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2101 max_load = load; 2419 continue;
2102 busiest = cpu_rq(i); 2420
2421 if (rqi->raw_weighted_load > max_load) {
2422 max_load = rqi->raw_weighted_load;
2423 busiest = rqi;
2103 } 2424 }
2104 } 2425 }
2105 2426
@@ -2112,6 +2433,7 @@ static runqueue_t *find_busiest_queue(struct sched_group *group,
2112 */ 2433 */
2113#define MAX_PINNED_INTERVAL 512 2434#define MAX_PINNED_INTERVAL 512
2114 2435
2436#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
2115/* 2437/*
2116 * Check this_cpu to ensure it is balanced within domain. Attempt to move 2438 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2117 * tasks if there is an imbalance. 2439 * tasks if there is an imbalance.
@@ -2128,7 +2450,8 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
2128 int active_balance = 0; 2450 int active_balance = 0;
2129 int sd_idle = 0; 2451 int sd_idle = 0;
2130 2452
2131 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER) 2453 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2454 !sched_smt_power_savings)
2132 sd_idle = 1; 2455 sd_idle = 1;
2133 2456
2134 schedstat_inc(sd, lb_cnt[idle]); 2457 schedstat_inc(sd, lb_cnt[idle]);
@@ -2139,7 +2462,7 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
2139 goto out_balanced; 2462 goto out_balanced;
2140 } 2463 }
2141 2464
2142 busiest = find_busiest_queue(group, idle); 2465 busiest = find_busiest_queue(group, idle, imbalance);
2143 if (!busiest) { 2466 if (!busiest) {
2144 schedstat_inc(sd, lb_nobusyq[idle]); 2467 schedstat_inc(sd, lb_nobusyq[idle]);
2145 goto out_balanced; 2468 goto out_balanced;
@@ -2159,6 +2482,7 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
2159 */ 2482 */
2160 double_rq_lock(this_rq, busiest); 2483 double_rq_lock(this_rq, busiest);
2161 nr_moved = move_tasks(this_rq, this_cpu, busiest, 2484 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2485 minus_1_or_zero(busiest->nr_running),
2162 imbalance, sd, idle, &all_pinned); 2486 imbalance, sd, idle, &all_pinned);
2163 double_rq_unlock(this_rq, busiest); 2487 double_rq_unlock(this_rq, busiest);
2164 2488
@@ -2216,7 +2540,8 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
2216 sd->balance_interval *= 2; 2540 sd->balance_interval *= 2;
2217 } 2541 }
2218 2542
2219 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER) 2543 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2544 !sched_smt_power_savings)
2220 return -1; 2545 return -1;
2221 return nr_moved; 2546 return nr_moved;
2222 2547
@@ -2231,7 +2556,7 @@ out_one_pinned:
2231 (sd->balance_interval < sd->max_interval)) 2556 (sd->balance_interval < sd->max_interval))
2232 sd->balance_interval *= 2; 2557 sd->balance_interval *= 2;
2233 2558
2234 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) 2559 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2235 return -1; 2560 return -1;
2236 return 0; 2561 return 0;
2237} 2562}
@@ -2252,7 +2577,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2252 int nr_moved = 0; 2577 int nr_moved = 0;
2253 int sd_idle = 0; 2578 int sd_idle = 0;
2254 2579
2255 if (sd->flags & SD_SHARE_CPUPOWER) 2580 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2256 sd_idle = 1; 2581 sd_idle = 1;
2257 2582
2258 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); 2583 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
@@ -2262,7 +2587,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2262 goto out_balanced; 2587 goto out_balanced;
2263 } 2588 }
2264 2589
2265 busiest = find_busiest_queue(group, NEWLY_IDLE); 2590 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2266 if (!busiest) { 2591 if (!busiest) {
2267 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); 2592 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2268 goto out_balanced; 2593 goto out_balanced;
@@ -2277,6 +2602,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2277 /* Attempt to move tasks */ 2602 /* Attempt to move tasks */
2278 double_lock_balance(this_rq, busiest); 2603 double_lock_balance(this_rq, busiest);
2279 nr_moved = move_tasks(this_rq, this_cpu, busiest, 2604 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2605 minus_1_or_zero(busiest->nr_running),
2280 imbalance, sd, NEWLY_IDLE, NULL); 2606 imbalance, sd, NEWLY_IDLE, NULL);
2281 spin_unlock(&busiest->lock); 2607 spin_unlock(&busiest->lock);
2282 } 2608 }
@@ -2292,7 +2618,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2292 2618
2293out_balanced: 2619out_balanced:
2294 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); 2620 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2295 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) 2621 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2296 return -1; 2622 return -1;
2297 sd->nr_balance_failed = 0; 2623 sd->nr_balance_failed = 0;
2298 return 0; 2624 return 0;
@@ -2347,17 +2673,19 @@ static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2347 double_lock_balance(busiest_rq, target_rq); 2673 double_lock_balance(busiest_rq, target_rq);
2348 2674
2349 /* Search for an sd spanning us and the target CPU. */ 2675 /* Search for an sd spanning us and the target CPU. */
2350 for_each_domain(target_cpu, sd) 2676 for_each_domain(target_cpu, sd) {
2351 if ((sd->flags & SD_LOAD_BALANCE) && 2677 if ((sd->flags & SD_LOAD_BALANCE) &&
2352 cpu_isset(busiest_cpu, sd->span)) 2678 cpu_isset(busiest_cpu, sd->span))
2353 break; 2679 break;
2680 }
2354 2681
2355 if (unlikely(sd == NULL)) 2682 if (unlikely(sd == NULL))
2356 goto out; 2683 goto out;
2357 2684
2358 schedstat_inc(sd, alb_cnt); 2685 schedstat_inc(sd, alb_cnt);
2359 2686
2360 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL)) 2687 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2688 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
2361 schedstat_inc(sd, alb_pushed); 2689 schedstat_inc(sd, alb_pushed);
2362 else 2690 else
2363 schedstat_inc(sd, alb_failed); 2691 schedstat_inc(sd, alb_failed);
@@ -2385,7 +2713,7 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2385 struct sched_domain *sd; 2713 struct sched_domain *sd;
2386 int i; 2714 int i;
2387 2715
2388 this_load = this_rq->nr_running * SCHED_LOAD_SCALE; 2716 this_load = this_rq->raw_weighted_load;
2389 /* Update our load */ 2717 /* Update our load */
2390 for (i = 0; i < 3; i++) { 2718 for (i = 0; i < 3; i++) {
2391 unsigned long new_load = this_load; 2719 unsigned long new_load = this_load;
@@ -2686,48 +3014,35 @@ static inline void wakeup_busy_runqueue(runqueue_t *rq)
2686 resched_task(rq->idle); 3014 resched_task(rq->idle);
2687} 3015}
2688 3016
2689static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) 3017/*
3018 * Called with interrupt disabled and this_rq's runqueue locked.
3019 */
3020static void wake_sleeping_dependent(int this_cpu)
2690{ 3021{
2691 struct sched_domain *tmp, *sd = NULL; 3022 struct sched_domain *tmp, *sd = NULL;
2692 cpumask_t sibling_map;
2693 int i; 3023 int i;
2694 3024
2695 for_each_domain(this_cpu, tmp) 3025 for_each_domain(this_cpu, tmp) {
2696 if (tmp->flags & SD_SHARE_CPUPOWER) 3026 if (tmp->flags & SD_SHARE_CPUPOWER) {
2697 sd = tmp; 3027 sd = tmp;
3028 break;
3029 }
3030 }
2698 3031
2699 if (!sd) 3032 if (!sd)
2700 return; 3033 return;
2701 3034
2702 /* 3035 for_each_cpu_mask(i, sd->span) {
2703 * Unlock the current runqueue because we have to lock in
2704 * CPU order to avoid deadlocks. Caller knows that we might
2705 * unlock. We keep IRQs disabled.
2706 */
2707 spin_unlock(&this_rq->lock);
2708
2709 sibling_map = sd->span;
2710
2711 for_each_cpu_mask(i, sibling_map)
2712 spin_lock(&cpu_rq(i)->lock);
2713 /*
2714 * We clear this CPU from the mask. This both simplifies the
2715 * inner loop and keps this_rq locked when we exit:
2716 */
2717 cpu_clear(this_cpu, sibling_map);
2718
2719 for_each_cpu_mask(i, sibling_map) {
2720 runqueue_t *smt_rq = cpu_rq(i); 3036 runqueue_t *smt_rq = cpu_rq(i);
2721 3037
3038 if (i == this_cpu)
3039 continue;
3040 if (unlikely(!spin_trylock(&smt_rq->lock)))
3041 continue;
3042
2722 wakeup_busy_runqueue(smt_rq); 3043 wakeup_busy_runqueue(smt_rq);
3044 spin_unlock(&smt_rq->lock);
2723 } 3045 }
2724
2725 for_each_cpu_mask(i, sibling_map)
2726 spin_unlock(&cpu_rq(i)->lock);
2727 /*
2728 * We exit with this_cpu's rq still held and IRQs
2729 * still disabled:
2730 */
2731} 3046}
2732 3047
2733/* 3048/*
@@ -2740,52 +3055,46 @@ static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2740 return p->time_slice * (100 - sd->per_cpu_gain) / 100; 3055 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2741} 3056}
2742 3057
2743static int dependent_sleeper(int this_cpu, runqueue_t *this_rq) 3058/*
3059 * To minimise lock contention and not have to drop this_rq's runlock we only
3060 * trylock the sibling runqueues and bypass those runqueues if we fail to
3061 * acquire their lock. As we only trylock the normal locking order does not
3062 * need to be obeyed.
3063 */
3064static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
2744{ 3065{
2745 struct sched_domain *tmp, *sd = NULL; 3066 struct sched_domain *tmp, *sd = NULL;
2746 cpumask_t sibling_map;
2747 prio_array_t *array;
2748 int ret = 0, i; 3067 int ret = 0, i;
2749 task_t *p;
2750 3068
2751 for_each_domain(this_cpu, tmp) 3069 /* kernel/rt threads do not participate in dependent sleeping */
2752 if (tmp->flags & SD_SHARE_CPUPOWER) 3070 if (!p->mm || rt_task(p))
3071 return 0;
3072
3073 for_each_domain(this_cpu, tmp) {
3074 if (tmp->flags & SD_SHARE_CPUPOWER) {
2753 sd = tmp; 3075 sd = tmp;
3076 break;
3077 }
3078 }
2754 3079
2755 if (!sd) 3080 if (!sd)
2756 return 0; 3081 return 0;
2757 3082
2758 /* 3083 for_each_cpu_mask(i, sd->span) {
2759 * The same locking rules and details apply as for 3084 runqueue_t *smt_rq;
2760 * wake_sleeping_dependent(): 3085 task_t *smt_curr;
2761 */
2762 spin_unlock(&this_rq->lock);
2763 sibling_map = sd->span;
2764 for_each_cpu_mask(i, sibling_map)
2765 spin_lock(&cpu_rq(i)->lock);
2766 cpu_clear(this_cpu, sibling_map);
2767 3086
2768 /* 3087 if (i == this_cpu)
2769 * Establish next task to be run - it might have gone away because 3088 continue;
2770 * we released the runqueue lock above:
2771 */
2772 if (!this_rq->nr_running)
2773 goto out_unlock;
2774 array = this_rq->active;
2775 if (!array->nr_active)
2776 array = this_rq->expired;
2777 BUG_ON(!array->nr_active);
2778 3089
2779 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, 3090 smt_rq = cpu_rq(i);
2780 task_t, run_list); 3091 if (unlikely(!spin_trylock(&smt_rq->lock)))
3092 continue;
2781 3093
2782 for_each_cpu_mask(i, sibling_map) { 3094 smt_curr = smt_rq->curr;
2783 runqueue_t *smt_rq = cpu_rq(i);
2784 task_t *smt_curr = smt_rq->curr;
2785 3095
2786 /* Kernel threads do not participate in dependent sleeping */ 3096 if (!smt_curr->mm)
2787 if (!p->mm || !smt_curr->mm || rt_task(p)) 3097 goto unlock;
2788 goto check_smt_task;
2789 3098
2790 /* 3099 /*
2791 * If a user task with lower static priority than the 3100 * If a user task with lower static priority than the
@@ -2803,49 +3112,24 @@ static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2803 if ((jiffies % DEF_TIMESLICE) > 3112 if ((jiffies % DEF_TIMESLICE) >
2804 (sd->per_cpu_gain * DEF_TIMESLICE / 100)) 3113 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2805 ret = 1; 3114 ret = 1;
2806 } else 3115 } else {
2807 if (smt_curr->static_prio < p->static_prio && 3116 if (smt_curr->static_prio < p->static_prio &&
2808 !TASK_PREEMPTS_CURR(p, smt_rq) && 3117 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2809 smt_slice(smt_curr, sd) > task_timeslice(p)) 3118 smt_slice(smt_curr, sd) > task_timeslice(p))
2810 ret = 1; 3119 ret = 1;
2811
2812check_smt_task:
2813 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2814 rt_task(smt_curr))
2815 continue;
2816 if (!p->mm) {
2817 wakeup_busy_runqueue(smt_rq);
2818 continue;
2819 }
2820
2821 /*
2822 * Reschedule a lower priority task on the SMT sibling for
2823 * it to be put to sleep, or wake it up if it has been put to
2824 * sleep for priority reasons to see if it should run now.
2825 */
2826 if (rt_task(p)) {
2827 if ((jiffies % DEF_TIMESLICE) >
2828 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2829 resched_task(smt_curr);
2830 } else {
2831 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2832 smt_slice(p, sd) > task_timeslice(smt_curr))
2833 resched_task(smt_curr);
2834 else
2835 wakeup_busy_runqueue(smt_rq);
2836 } 3120 }
3121unlock:
3122 spin_unlock(&smt_rq->lock);
2837 } 3123 }
2838out_unlock:
2839 for_each_cpu_mask(i, sibling_map)
2840 spin_unlock(&cpu_rq(i)->lock);
2841 return ret; 3124 return ret;
2842} 3125}
2843#else 3126#else
2844static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) 3127static inline void wake_sleeping_dependent(int this_cpu)
2845{ 3128{
2846} 3129}
2847 3130
2848static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) 3131static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3132 task_t *p)
2849{ 3133{
2850 return 0; 3134 return 0;
2851} 3135}
@@ -2967,32 +3251,13 @@ need_resched_nonpreemptible:
2967 3251
2968 cpu = smp_processor_id(); 3252 cpu = smp_processor_id();
2969 if (unlikely(!rq->nr_running)) { 3253 if (unlikely(!rq->nr_running)) {
2970go_idle:
2971 idle_balance(cpu, rq); 3254 idle_balance(cpu, rq);
2972 if (!rq->nr_running) { 3255 if (!rq->nr_running) {
2973 next = rq->idle; 3256 next = rq->idle;
2974 rq->expired_timestamp = 0; 3257 rq->expired_timestamp = 0;
2975 wake_sleeping_dependent(cpu, rq); 3258 wake_sleeping_dependent(cpu);
2976 /*
2977 * wake_sleeping_dependent() might have released
2978 * the runqueue, so break out if we got new
2979 * tasks meanwhile:
2980 */
2981 if (!rq->nr_running)
2982 goto switch_tasks;
2983 }
2984 } else {
2985 if (dependent_sleeper(cpu, rq)) {
2986 next = rq->idle;
2987 goto switch_tasks; 3259 goto switch_tasks;
2988 } 3260 }
2989 /*
2990 * dependent_sleeper() releases and reacquires the runqueue
2991 * lock, hence go into the idle loop if the rq went
2992 * empty meanwhile:
2993 */
2994 if (unlikely(!rq->nr_running))
2995 goto go_idle;
2996 } 3261 }
2997 3262
2998 array = rq->active; 3263 array = rq->active;
@@ -3030,6 +3295,8 @@ go_idle:
3030 } 3295 }
3031 } 3296 }
3032 next->sleep_type = SLEEP_NORMAL; 3297 next->sleep_type = SLEEP_NORMAL;
3298 if (dependent_sleeper(cpu, rq, next))
3299 next = rq->idle;
3033switch_tasks: 3300switch_tasks:
3034 if (next == rq->idle) 3301 if (next == rq->idle)
3035 schedstat_inc(rq, sched_goidle); 3302 schedstat_inc(rq, sched_goidle);
@@ -3473,12 +3740,65 @@ long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3473 3740
3474EXPORT_SYMBOL(sleep_on_timeout); 3741EXPORT_SYMBOL(sleep_on_timeout);
3475 3742
3743#ifdef CONFIG_RT_MUTEXES
3744
3745/*
3746 * rt_mutex_setprio - set the current priority of a task
3747 * @p: task
3748 * @prio: prio value (kernel-internal form)
3749 *
3750 * This function changes the 'effective' priority of a task. It does
3751 * not touch ->normal_prio like __setscheduler().
3752 *
3753 * Used by the rt_mutex code to implement priority inheritance logic.
3754 */
3755void rt_mutex_setprio(task_t *p, int prio)
3756{
3757 unsigned long flags;
3758 prio_array_t *array;
3759 runqueue_t *rq;
3760 int oldprio;
3761
3762 BUG_ON(prio < 0 || prio > MAX_PRIO);
3763
3764 rq = task_rq_lock(p, &flags);
3765
3766 oldprio = p->prio;
3767 array = p->array;
3768 if (array)
3769 dequeue_task(p, array);
3770 p->prio = prio;
3771
3772 if (array) {
3773 /*
3774 * If changing to an RT priority then queue it
3775 * in the active array!
3776 */
3777 if (rt_task(p))
3778 array = rq->active;
3779 enqueue_task(p, array);
3780 /*
3781 * Reschedule if we are currently running on this runqueue and
3782 * our priority decreased, or if we are not currently running on
3783 * this runqueue and our priority is higher than the current's
3784 */
3785 if (task_running(rq, p)) {
3786 if (p->prio > oldprio)
3787 resched_task(rq->curr);
3788 } else if (TASK_PREEMPTS_CURR(p, rq))
3789 resched_task(rq->curr);
3790 }
3791 task_rq_unlock(rq, &flags);
3792}
3793
3794#endif
3795
3476void set_user_nice(task_t *p, long nice) 3796void set_user_nice(task_t *p, long nice)
3477{ 3797{
3478 unsigned long flags; 3798 unsigned long flags;
3479 prio_array_t *array; 3799 prio_array_t *array;
3480 runqueue_t *rq; 3800 runqueue_t *rq;
3481 int old_prio, new_prio, delta; 3801 int old_prio, delta;
3482 3802
3483 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3803 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3484 return; 3804 return;
@@ -3493,22 +3813,25 @@ void set_user_nice(task_t *p, long nice)
3493 * it wont have any effect on scheduling until the task is 3813 * it wont have any effect on scheduling until the task is
3494 * not SCHED_NORMAL/SCHED_BATCH: 3814 * not SCHED_NORMAL/SCHED_BATCH:
3495 */ 3815 */
3496 if (rt_task(p)) { 3816 if (has_rt_policy(p)) {
3497 p->static_prio = NICE_TO_PRIO(nice); 3817 p->static_prio = NICE_TO_PRIO(nice);
3498 goto out_unlock; 3818 goto out_unlock;
3499 } 3819 }
3500 array = p->array; 3820 array = p->array;
3501 if (array) 3821 if (array) {
3502 dequeue_task(p, array); 3822 dequeue_task(p, array);
3823 dec_raw_weighted_load(rq, p);
3824 }
3503 3825
3504 old_prio = p->prio;
3505 new_prio = NICE_TO_PRIO(nice);
3506 delta = new_prio - old_prio;
3507 p->static_prio = NICE_TO_PRIO(nice); 3826 p->static_prio = NICE_TO_PRIO(nice);
3508 p->prio += delta; 3827 set_load_weight(p);
3828 old_prio = p->prio;
3829 p->prio = effective_prio(p);
3830 delta = p->prio - old_prio;
3509 3831
3510 if (array) { 3832 if (array) {
3511 enqueue_task(p, array); 3833 enqueue_task(p, array);
3834 inc_raw_weighted_load(rq, p);
3512 /* 3835 /*
3513 * If the task increased its priority or is running and 3836 * If the task increased its priority or is running and
3514 * lowered its priority, then reschedule its CPU: 3837 * lowered its priority, then reschedule its CPU:
@@ -3519,7 +3842,6 @@ void set_user_nice(task_t *p, long nice)
3519out_unlock: 3842out_unlock:
3520 task_rq_unlock(rq, &flags); 3843 task_rq_unlock(rq, &flags);
3521} 3844}
3522
3523EXPORT_SYMBOL(set_user_nice); 3845EXPORT_SYMBOL(set_user_nice);
3524 3846
3525/* 3847/*
@@ -3634,16 +3956,15 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
3634 BUG_ON(p->array); 3956 BUG_ON(p->array);
3635 p->policy = policy; 3957 p->policy = policy;
3636 p->rt_priority = prio; 3958 p->rt_priority = prio;
3637 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) { 3959 p->normal_prio = normal_prio(p);
3638 p->prio = MAX_RT_PRIO-1 - p->rt_priority; 3960 /* we are holding p->pi_lock already */
3639 } else { 3961 p->prio = rt_mutex_getprio(p);
3640 p->prio = p->static_prio; 3962 /*
3641 /* 3963 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3642 * SCHED_BATCH tasks are treated as perpetual CPU hogs: 3964 */
3643 */ 3965 if (policy == SCHED_BATCH)
3644 if (policy == SCHED_BATCH) 3966 p->sleep_avg = 0;
3645 p->sleep_avg = 0; 3967 set_load_weight(p);
3646 }
3647} 3968}
3648 3969
3649/** 3970/**
@@ -3662,6 +3983,8 @@ int sched_setscheduler(struct task_struct *p, int policy,
3662 unsigned long flags; 3983 unsigned long flags;
3663 runqueue_t *rq; 3984 runqueue_t *rq;
3664 3985
3986 /* may grab non-irq protected spin_locks */
3987 BUG_ON(in_interrupt());
3665recheck: 3988recheck:
3666 /* double check policy once rq lock held */ 3989 /* double check policy once rq lock held */
3667 if (policy < 0) 3990 if (policy < 0)
@@ -3710,14 +4033,20 @@ recheck:
3710 if (retval) 4033 if (retval)
3711 return retval; 4034 return retval;
3712 /* 4035 /*
4036 * make sure no PI-waiters arrive (or leave) while we are
4037 * changing the priority of the task:
4038 */
4039 spin_lock_irqsave(&p->pi_lock, flags);
4040 /*
3713 * To be able to change p->policy safely, the apropriate 4041 * To be able to change p->policy safely, the apropriate
3714 * runqueue lock must be held. 4042 * runqueue lock must be held.
3715 */ 4043 */
3716 rq = task_rq_lock(p, &flags); 4044 rq = __task_rq_lock(p);
3717 /* recheck policy now with rq lock held */ 4045 /* recheck policy now with rq lock held */
3718 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4046 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3719 policy = oldpolicy = -1; 4047 policy = oldpolicy = -1;
3720 task_rq_unlock(rq, &flags); 4048 __task_rq_unlock(rq);
4049 spin_unlock_irqrestore(&p->pi_lock, flags);
3721 goto recheck; 4050 goto recheck;
3722 } 4051 }
3723 array = p->array; 4052 array = p->array;
@@ -3738,7 +4067,11 @@ recheck:
3738 } else if (TASK_PREEMPTS_CURR(p, rq)) 4067 } else if (TASK_PREEMPTS_CURR(p, rq))
3739 resched_task(rq->curr); 4068 resched_task(rq->curr);
3740 } 4069 }
3741 task_rq_unlock(rq, &flags); 4070 __task_rq_unlock(rq);
4071 spin_unlock_irqrestore(&p->pi_lock, flags);
4072
4073 rt_mutex_adjust_pi(p);
4074
3742 return 0; 4075 return 0;
3743} 4076}
3744EXPORT_SYMBOL_GPL(sched_setscheduler); 4077EXPORT_SYMBOL_GPL(sched_setscheduler);
@@ -3760,8 +4093,10 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3760 read_unlock_irq(&tasklist_lock); 4093 read_unlock_irq(&tasklist_lock);
3761 return -ESRCH; 4094 return -ESRCH;
3762 } 4095 }
3763 retval = sched_setscheduler(p, policy, &lparam); 4096 get_task_struct(p);
3764 read_unlock_irq(&tasklist_lock); 4097 read_unlock_irq(&tasklist_lock);
4098 retval = sched_setscheduler(p, policy, &lparam);
4099 put_task_struct(p);
3765 return retval; 4100 return retval;
3766} 4101}
3767 4102
@@ -4247,7 +4582,7 @@ long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4247 if (retval) 4582 if (retval)
4248 goto out_unlock; 4583 goto out_unlock;
4249 4584
4250 jiffies_to_timespec(p->policy & SCHED_FIFO ? 4585 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4251 0 : task_timeslice(p), &t); 4586 0 : task_timeslice(p), &t);
4252 read_unlock(&tasklist_lock); 4587 read_unlock(&tasklist_lock);
4253 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4588 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
@@ -4373,7 +4708,7 @@ void __devinit init_idle(task_t *idle, int cpu)
4373 idle->timestamp = sched_clock(); 4708 idle->timestamp = sched_clock();
4374 idle->sleep_avg = 0; 4709 idle->sleep_avg = 0;
4375 idle->array = NULL; 4710 idle->array = NULL;
4376 idle->prio = MAX_PRIO; 4711 idle->prio = idle->normal_prio = MAX_PRIO;
4377 idle->state = TASK_RUNNING; 4712 idle->state = TASK_RUNNING;
4378 idle->cpus_allowed = cpumask_of_cpu(cpu); 4713 idle->cpus_allowed = cpumask_of_cpu(cpu);
4379 set_task_cpu(idle, cpu); 4714 set_task_cpu(idle, cpu);
@@ -4469,13 +4804,16 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
4469 * 4804 *
4470 * So we race with normal scheduler movements, but that's OK, as long 4805 * So we race with normal scheduler movements, but that's OK, as long
4471 * as the task is no longer on this CPU. 4806 * as the task is no longer on this CPU.
4807 *
4808 * Returns non-zero if task was successfully migrated.
4472 */ 4809 */
4473static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4810static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4474{ 4811{
4475 runqueue_t *rq_dest, *rq_src; 4812 runqueue_t *rq_dest, *rq_src;
4813 int ret = 0;
4476 4814
4477 if (unlikely(cpu_is_offline(dest_cpu))) 4815 if (unlikely(cpu_is_offline(dest_cpu)))
4478 return; 4816 return ret;
4479 4817
4480 rq_src = cpu_rq(src_cpu); 4818 rq_src = cpu_rq(src_cpu);
4481 rq_dest = cpu_rq(dest_cpu); 4819 rq_dest = cpu_rq(dest_cpu);
@@ -4503,9 +4841,10 @@ static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4503 if (TASK_PREEMPTS_CURR(p, rq_dest)) 4841 if (TASK_PREEMPTS_CURR(p, rq_dest))
4504 resched_task(rq_dest->curr); 4842 resched_task(rq_dest->curr);
4505 } 4843 }
4506 4844 ret = 1;
4507out: 4845out:
4508 double_rq_unlock(rq_src, rq_dest); 4846 double_rq_unlock(rq_src, rq_dest);
4847 return ret;
4509} 4848}
4510 4849
4511/* 4850/*
@@ -4575,9 +4914,12 @@ wait_to_die:
4575/* Figure out where task on dead CPU should go, use force if neccessary. */ 4914/* Figure out where task on dead CPU should go, use force if neccessary. */
4576static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) 4915static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4577{ 4916{
4917 runqueue_t *rq;
4918 unsigned long flags;
4578 int dest_cpu; 4919 int dest_cpu;
4579 cpumask_t mask; 4920 cpumask_t mask;
4580 4921
4922restart:
4581 /* On same node? */ 4923 /* On same node? */
4582 mask = node_to_cpumask(cpu_to_node(dead_cpu)); 4924 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4583 cpus_and(mask, mask, tsk->cpus_allowed); 4925 cpus_and(mask, mask, tsk->cpus_allowed);
@@ -4589,8 +4931,10 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4589 4931
4590 /* No more Mr. Nice Guy. */ 4932 /* No more Mr. Nice Guy. */
4591 if (dest_cpu == NR_CPUS) { 4933 if (dest_cpu == NR_CPUS) {
4934 rq = task_rq_lock(tsk, &flags);
4592 cpus_setall(tsk->cpus_allowed); 4935 cpus_setall(tsk->cpus_allowed);
4593 dest_cpu = any_online_cpu(tsk->cpus_allowed); 4936 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4937 task_rq_unlock(rq, &flags);
4594 4938
4595 /* 4939 /*
4596 * Don't tell them about moving exiting tasks or 4940 * Don't tell them about moving exiting tasks or
@@ -4602,7 +4946,8 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4602 "longer affine to cpu%d\n", 4946 "longer affine to cpu%d\n",
4603 tsk->pid, tsk->comm, dead_cpu); 4947 tsk->pid, tsk->comm, dead_cpu);
4604 } 4948 }
4605 __migrate_task(tsk, dead_cpu, dest_cpu); 4949 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4950 goto restart;
4606} 4951}
4607 4952
4608/* 4953/*
@@ -4729,8 +5074,9 @@ static void migrate_dead_tasks(unsigned int dead_cpu)
4729 * migration_call - callback that gets triggered when a CPU is added. 5074 * migration_call - callback that gets triggered when a CPU is added.
4730 * Here we can start up the necessary migration thread for the new CPU. 5075 * Here we can start up the necessary migration thread for the new CPU.
4731 */ 5076 */
4732static int migration_call(struct notifier_block *nfb, unsigned long action, 5077static int __cpuinit migration_call(struct notifier_block *nfb,
4733 void *hcpu) 5078 unsigned long action,
5079 void *hcpu)
4734{ 5080{
4735 int cpu = (long)hcpu; 5081 int cpu = (long)hcpu;
4736 struct task_struct *p; 5082 struct task_struct *p;
@@ -4800,7 +5146,7 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
4800/* Register at highest priority so that task migration (migrate_all_tasks) 5146/* Register at highest priority so that task migration (migrate_all_tasks)
4801 * happens before everything else. 5147 * happens before everything else.
4802 */ 5148 */
4803static struct notifier_block migration_notifier = { 5149static struct notifier_block __cpuinitdata migration_notifier = {
4804 .notifier_call = migration_call, 5150 .notifier_call = migration_call,
4805 .priority = 10 5151 .priority = 10
4806}; 5152};
@@ -5601,6 +5947,7 @@ static cpumask_t sched_domain_node_span(int node)
5601} 5947}
5602#endif 5948#endif
5603 5949
5950int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5604/* 5951/*
5605 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we 5952 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5606 * can switch it on easily if needed. 5953 * can switch it on easily if needed.
@@ -5616,7 +5963,7 @@ static int cpu_to_cpu_group(int cpu)
5616 5963
5617#ifdef CONFIG_SCHED_MC 5964#ifdef CONFIG_SCHED_MC
5618static DEFINE_PER_CPU(struct sched_domain, core_domains); 5965static DEFINE_PER_CPU(struct sched_domain, core_domains);
5619static struct sched_group sched_group_core[NR_CPUS]; 5966static struct sched_group *sched_group_core_bycpu[NR_CPUS];
5620#endif 5967#endif
5621 5968
5622#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 5969#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
@@ -5632,7 +5979,7 @@ static int cpu_to_core_group(int cpu)
5632#endif 5979#endif
5633 5980
5634static DEFINE_PER_CPU(struct sched_domain, phys_domains); 5981static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5635static struct sched_group sched_group_phys[NR_CPUS]; 5982static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
5636static int cpu_to_phys_group(int cpu) 5983static int cpu_to_phys_group(int cpu)
5637{ 5984{
5638#if defined(CONFIG_SCHED_MC) 5985#if defined(CONFIG_SCHED_MC)
@@ -5689,13 +6036,74 @@ next_sg:
5689} 6036}
5690#endif 6037#endif
5691 6038
6039/* Free memory allocated for various sched_group structures */
6040static void free_sched_groups(const cpumask_t *cpu_map)
6041{
6042 int cpu;
6043#ifdef CONFIG_NUMA
6044 int i;
6045
6046 for_each_cpu_mask(cpu, *cpu_map) {
6047 struct sched_group *sched_group_allnodes
6048 = sched_group_allnodes_bycpu[cpu];
6049 struct sched_group **sched_group_nodes
6050 = sched_group_nodes_bycpu[cpu];
6051
6052 if (sched_group_allnodes) {
6053 kfree(sched_group_allnodes);
6054 sched_group_allnodes_bycpu[cpu] = NULL;
6055 }
6056
6057 if (!sched_group_nodes)
6058 continue;
6059
6060 for (i = 0; i < MAX_NUMNODES; i++) {
6061 cpumask_t nodemask = node_to_cpumask(i);
6062 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6063
6064 cpus_and(nodemask, nodemask, *cpu_map);
6065 if (cpus_empty(nodemask))
6066 continue;
6067
6068 if (sg == NULL)
6069 continue;
6070 sg = sg->next;
6071next_sg:
6072 oldsg = sg;
6073 sg = sg->next;
6074 kfree(oldsg);
6075 if (oldsg != sched_group_nodes[i])
6076 goto next_sg;
6077 }
6078 kfree(sched_group_nodes);
6079 sched_group_nodes_bycpu[cpu] = NULL;
6080 }
6081#endif
6082 for_each_cpu_mask(cpu, *cpu_map) {
6083 if (sched_group_phys_bycpu[cpu]) {
6084 kfree(sched_group_phys_bycpu[cpu]);
6085 sched_group_phys_bycpu[cpu] = NULL;
6086 }
6087#ifdef CONFIG_SCHED_MC
6088 if (sched_group_core_bycpu[cpu]) {
6089 kfree(sched_group_core_bycpu[cpu]);
6090 sched_group_core_bycpu[cpu] = NULL;
6091 }
6092#endif
6093 }
6094}
6095
5692/* 6096/*
5693 * Build sched domains for a given set of cpus and attach the sched domains 6097 * Build sched domains for a given set of cpus and attach the sched domains
5694 * to the individual cpus 6098 * to the individual cpus
5695 */ 6099 */
5696void build_sched_domains(const cpumask_t *cpu_map) 6100static int build_sched_domains(const cpumask_t *cpu_map)
5697{ 6101{
5698 int i; 6102 int i;
6103 struct sched_group *sched_group_phys = NULL;
6104#ifdef CONFIG_SCHED_MC
6105 struct sched_group *sched_group_core = NULL;
6106#endif
5699#ifdef CONFIG_NUMA 6107#ifdef CONFIG_NUMA
5700 struct sched_group **sched_group_nodes = NULL; 6108 struct sched_group **sched_group_nodes = NULL;
5701 struct sched_group *sched_group_allnodes = NULL; 6109 struct sched_group *sched_group_allnodes = NULL;
@@ -5703,11 +6111,11 @@ void build_sched_domains(const cpumask_t *cpu_map)
5703 /* 6111 /*
5704 * Allocate the per-node list of sched groups 6112 * Allocate the per-node list of sched groups
5705 */ 6113 */
5706 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES, 6114 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5707 GFP_ATOMIC); 6115 GFP_KERNEL);
5708 if (!sched_group_nodes) { 6116 if (!sched_group_nodes) {
5709 printk(KERN_WARNING "Can not alloc sched group node list\n"); 6117 printk(KERN_WARNING "Can not alloc sched group node list\n");
5710 return; 6118 return -ENOMEM;
5711 } 6119 }
5712 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; 6120 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5713#endif 6121#endif
@@ -5733,7 +6141,7 @@ void build_sched_domains(const cpumask_t *cpu_map)
5733 if (!sched_group_allnodes) { 6141 if (!sched_group_allnodes) {
5734 printk(KERN_WARNING 6142 printk(KERN_WARNING
5735 "Can not alloc allnodes sched group\n"); 6143 "Can not alloc allnodes sched group\n");
5736 break; 6144 goto error;
5737 } 6145 }
5738 sched_group_allnodes_bycpu[i] 6146 sched_group_allnodes_bycpu[i]
5739 = sched_group_allnodes; 6147 = sched_group_allnodes;
@@ -5754,6 +6162,18 @@ void build_sched_domains(const cpumask_t *cpu_map)
5754 cpus_and(sd->span, sd->span, *cpu_map); 6162 cpus_and(sd->span, sd->span, *cpu_map);
5755#endif 6163#endif
5756 6164
6165 if (!sched_group_phys) {
6166 sched_group_phys
6167 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6168 GFP_KERNEL);
6169 if (!sched_group_phys) {
6170 printk (KERN_WARNING "Can not alloc phys sched"
6171 "group\n");
6172 goto error;
6173 }
6174 sched_group_phys_bycpu[i] = sched_group_phys;
6175 }
6176
5757 p = sd; 6177 p = sd;
5758 sd = &per_cpu(phys_domains, i); 6178 sd = &per_cpu(phys_domains, i);
5759 group = cpu_to_phys_group(i); 6179 group = cpu_to_phys_group(i);
@@ -5763,6 +6183,18 @@ void build_sched_domains(const cpumask_t *cpu_map)
5763 sd->groups = &sched_group_phys[group]; 6183 sd->groups = &sched_group_phys[group];
5764 6184
5765#ifdef CONFIG_SCHED_MC 6185#ifdef CONFIG_SCHED_MC
6186 if (!sched_group_core) {
6187 sched_group_core
6188 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6189 GFP_KERNEL);
6190 if (!sched_group_core) {
6191 printk (KERN_WARNING "Can not alloc core sched"
6192 "group\n");
6193 goto error;
6194 }
6195 sched_group_core_bycpu[i] = sched_group_core;
6196 }
6197
5766 p = sd; 6198 p = sd;
5767 sd = &per_cpu(core_domains, i); 6199 sd = &per_cpu(core_domains, i);
5768 group = cpu_to_core_group(i); 6200 group = cpu_to_core_group(i);
@@ -5846,24 +6278,21 @@ void build_sched_domains(const cpumask_t *cpu_map)
5846 domainspan = sched_domain_node_span(i); 6278 domainspan = sched_domain_node_span(i);
5847 cpus_and(domainspan, domainspan, *cpu_map); 6279 cpus_and(domainspan, domainspan, *cpu_map);
5848 6280
5849 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); 6281 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6282 if (!sg) {
6283 printk(KERN_WARNING "Can not alloc domain group for "
6284 "node %d\n", i);
6285 goto error;
6286 }
5850 sched_group_nodes[i] = sg; 6287 sched_group_nodes[i] = sg;
5851 for_each_cpu_mask(j, nodemask) { 6288 for_each_cpu_mask(j, nodemask) {
5852 struct sched_domain *sd; 6289 struct sched_domain *sd;
5853 sd = &per_cpu(node_domains, j); 6290 sd = &per_cpu(node_domains, j);
5854 sd->groups = sg; 6291 sd->groups = sg;
5855 if (sd->groups == NULL) {
5856 /* Turn off balancing if we have no groups */
5857 sd->flags = 0;
5858 }
5859 }
5860 if (!sg) {
5861 printk(KERN_WARNING
5862 "Can not alloc domain group for node %d\n", i);
5863 continue;
5864 } 6292 }
5865 sg->cpu_power = 0; 6293 sg->cpu_power = 0;
5866 sg->cpumask = nodemask; 6294 sg->cpumask = nodemask;
6295 sg->next = sg;
5867 cpus_or(covered, covered, nodemask); 6296 cpus_or(covered, covered, nodemask);
5868 prev = sg; 6297 prev = sg;
5869 6298
@@ -5882,54 +6311,90 @@ void build_sched_domains(const cpumask_t *cpu_map)
5882 if (cpus_empty(tmp)) 6311 if (cpus_empty(tmp))
5883 continue; 6312 continue;
5884 6313
5885 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); 6314 sg = kmalloc_node(sizeof(struct sched_group),
6315 GFP_KERNEL, i);
5886 if (!sg) { 6316 if (!sg) {
5887 printk(KERN_WARNING 6317 printk(KERN_WARNING
5888 "Can not alloc domain group for node %d\n", j); 6318 "Can not alloc domain group for node %d\n", j);
5889 break; 6319 goto error;
5890 } 6320 }
5891 sg->cpu_power = 0; 6321 sg->cpu_power = 0;
5892 sg->cpumask = tmp; 6322 sg->cpumask = tmp;
6323 sg->next = prev->next;
5893 cpus_or(covered, covered, tmp); 6324 cpus_or(covered, covered, tmp);
5894 prev->next = sg; 6325 prev->next = sg;
5895 prev = sg; 6326 prev = sg;
5896 } 6327 }
5897 prev->next = sched_group_nodes[i];
5898 } 6328 }
5899#endif 6329#endif
5900 6330
5901 /* Calculate CPU power for physical packages and nodes */ 6331 /* Calculate CPU power for physical packages and nodes */
6332#ifdef CONFIG_SCHED_SMT
5902 for_each_cpu_mask(i, *cpu_map) { 6333 for_each_cpu_mask(i, *cpu_map) {
5903 int power;
5904 struct sched_domain *sd; 6334 struct sched_domain *sd;
5905#ifdef CONFIG_SCHED_SMT
5906 sd = &per_cpu(cpu_domains, i); 6335 sd = &per_cpu(cpu_domains, i);
5907 power = SCHED_LOAD_SCALE; 6336 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5908 sd->groups->cpu_power = power; 6337 }
5909#endif 6338#endif
5910#ifdef CONFIG_SCHED_MC 6339#ifdef CONFIG_SCHED_MC
6340 for_each_cpu_mask(i, *cpu_map) {
6341 int power;
6342 struct sched_domain *sd;
5911 sd = &per_cpu(core_domains, i); 6343 sd = &per_cpu(core_domains, i);
5912 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1) 6344 if (sched_smt_power_savings)
6345 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6346 else
6347 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5913 * SCHED_LOAD_SCALE / 10; 6348 * SCHED_LOAD_SCALE / 10;
5914 sd->groups->cpu_power = power; 6349 sd->groups->cpu_power = power;
6350 }
6351#endif
5915 6352
6353 for_each_cpu_mask(i, *cpu_map) {
6354 struct sched_domain *sd;
6355#ifdef CONFIG_SCHED_MC
5916 sd = &per_cpu(phys_domains, i); 6356 sd = &per_cpu(phys_domains, i);
6357 if (i != first_cpu(sd->groups->cpumask))
6358 continue;
5917 6359
5918 /* 6360 sd->groups->cpu_power = 0;
5919 * This has to be < 2 * SCHED_LOAD_SCALE 6361 if (sched_mc_power_savings || sched_smt_power_savings) {
5920 * Lets keep it SCHED_LOAD_SCALE, so that 6362 int j;
5921 * while calculating NUMA group's cpu_power 6363
5922 * we can simply do 6364 for_each_cpu_mask(j, sd->groups->cpumask) {
5923 * numa_group->cpu_power += phys_group->cpu_power; 6365 struct sched_domain *sd1;
5924 * 6366 sd1 = &per_cpu(core_domains, j);
5925 * See "only add power once for each physical pkg" 6367 /*
5926 * comment below 6368 * for each core we will add once
5927 */ 6369 * to the group in physical domain
5928 sd->groups->cpu_power = SCHED_LOAD_SCALE; 6370 */
6371 if (j != first_cpu(sd1->groups->cpumask))
6372 continue;
6373
6374 if (sched_smt_power_savings)
6375 sd->groups->cpu_power += sd1->groups->cpu_power;
6376 else
6377 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6378 }
6379 } else
6380 /*
6381 * This has to be < 2 * SCHED_LOAD_SCALE
6382 * Lets keep it SCHED_LOAD_SCALE, so that
6383 * while calculating NUMA group's cpu_power
6384 * we can simply do
6385 * numa_group->cpu_power += phys_group->cpu_power;
6386 *
6387 * See "only add power once for each physical pkg"
6388 * comment below
6389 */
6390 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5929#else 6391#else
6392 int power;
5930 sd = &per_cpu(phys_domains, i); 6393 sd = &per_cpu(phys_domains, i);
5931 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * 6394 if (sched_smt_power_savings)
5932 (cpus_weight(sd->groups->cpumask)-1) / 10; 6395 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6396 else
6397 power = SCHED_LOAD_SCALE;
5933 sd->groups->cpu_power = power; 6398 sd->groups->cpu_power = power;
5934#endif 6399#endif
5935 } 6400 }
@@ -5957,13 +6422,20 @@ void build_sched_domains(const cpumask_t *cpu_map)
5957 * Tune cache-hot values: 6422 * Tune cache-hot values:
5958 */ 6423 */
5959 calibrate_migration_costs(cpu_map); 6424 calibrate_migration_costs(cpu_map);
6425
6426 return 0;
6427
6428error:
6429 free_sched_groups(cpu_map);
6430 return -ENOMEM;
5960} 6431}
5961/* 6432/*
5962 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6433 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5963 */ 6434 */
5964static void arch_init_sched_domains(const cpumask_t *cpu_map) 6435static int arch_init_sched_domains(const cpumask_t *cpu_map)
5965{ 6436{
5966 cpumask_t cpu_default_map; 6437 cpumask_t cpu_default_map;
6438 int err;
5967 6439
5968 /* 6440 /*
5969 * Setup mask for cpus without special case scheduling requirements. 6441 * Setup mask for cpus without special case scheduling requirements.
@@ -5972,51 +6444,14 @@ static void arch_init_sched_domains(const cpumask_t *cpu_map)
5972 */ 6444 */
5973 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); 6445 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5974 6446
5975 build_sched_domains(&cpu_default_map); 6447 err = build_sched_domains(&cpu_default_map);
6448
6449 return err;
5976} 6450}
5977 6451
5978static void arch_destroy_sched_domains(const cpumask_t *cpu_map) 6452static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5979{ 6453{
5980#ifdef CONFIG_NUMA 6454 free_sched_groups(cpu_map);
5981 int i;
5982 int cpu;
5983
5984 for_each_cpu_mask(cpu, *cpu_map) {
5985 struct sched_group *sched_group_allnodes
5986 = sched_group_allnodes_bycpu[cpu];
5987 struct sched_group **sched_group_nodes
5988 = sched_group_nodes_bycpu[cpu];
5989
5990 if (sched_group_allnodes) {
5991 kfree(sched_group_allnodes);
5992 sched_group_allnodes_bycpu[cpu] = NULL;
5993 }
5994
5995 if (!sched_group_nodes)
5996 continue;
5997
5998 for (i = 0; i < MAX_NUMNODES; i++) {
5999 cpumask_t nodemask = node_to_cpumask(i);
6000 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6001
6002 cpus_and(nodemask, nodemask, *cpu_map);
6003 if (cpus_empty(nodemask))
6004 continue;
6005
6006 if (sg == NULL)
6007 continue;
6008 sg = sg->next;
6009next_sg:
6010 oldsg = sg;
6011 sg = sg->next;
6012 kfree(oldsg);
6013 if (oldsg != sched_group_nodes[i])
6014 goto next_sg;
6015 }
6016 kfree(sched_group_nodes);
6017 sched_group_nodes_bycpu[cpu] = NULL;
6018 }
6019#endif
6020} 6455}
6021 6456
6022/* 6457/*
@@ -6041,9 +6476,10 @@ static void detach_destroy_domains(const cpumask_t *cpu_map)
6041 * correct sched domains 6476 * correct sched domains
6042 * Call with hotplug lock held 6477 * Call with hotplug lock held
6043 */ 6478 */
6044void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) 6479int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6045{ 6480{
6046 cpumask_t change_map; 6481 cpumask_t change_map;
6482 int err = 0;
6047 6483
6048 cpus_and(*partition1, *partition1, cpu_online_map); 6484 cpus_and(*partition1, *partition1, cpu_online_map);
6049 cpus_and(*partition2, *partition2, cpu_online_map); 6485 cpus_and(*partition2, *partition2, cpu_online_map);
@@ -6052,10 +6488,86 @@ void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6052 /* Detach sched domains from all of the affected cpus */ 6488 /* Detach sched domains from all of the affected cpus */
6053 detach_destroy_domains(&change_map); 6489 detach_destroy_domains(&change_map);
6054 if (!cpus_empty(*partition1)) 6490 if (!cpus_empty(*partition1))
6055 build_sched_domains(partition1); 6491 err = build_sched_domains(partition1);
6056 if (!cpus_empty(*partition2)) 6492 if (!err && !cpus_empty(*partition2))
6057 build_sched_domains(partition2); 6493 err = build_sched_domains(partition2);
6494
6495 return err;
6496}
6497
6498#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6499int arch_reinit_sched_domains(void)
6500{
6501 int err;
6502
6503 lock_cpu_hotplug();
6504 detach_destroy_domains(&cpu_online_map);
6505 err = arch_init_sched_domains(&cpu_online_map);
6506 unlock_cpu_hotplug();
6507
6508 return err;
6509}
6510
6511static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6512{
6513 int ret;
6514
6515 if (buf[0] != '0' && buf[0] != '1')
6516 return -EINVAL;
6517
6518 if (smt)
6519 sched_smt_power_savings = (buf[0] == '1');
6520 else
6521 sched_mc_power_savings = (buf[0] == '1');
6522
6523 ret = arch_reinit_sched_domains();
6524
6525 return ret ? ret : count;
6526}
6527
6528int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6529{
6530 int err = 0;
6531#ifdef CONFIG_SCHED_SMT
6532 if (smt_capable())
6533 err = sysfs_create_file(&cls->kset.kobj,
6534 &attr_sched_smt_power_savings.attr);
6535#endif
6536#ifdef CONFIG_SCHED_MC
6537 if (!err && mc_capable())
6538 err = sysfs_create_file(&cls->kset.kobj,
6539 &attr_sched_mc_power_savings.attr);
6540#endif
6541 return err;
6542}
6543#endif
6544
6545#ifdef CONFIG_SCHED_MC
6546static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6547{
6548 return sprintf(page, "%u\n", sched_mc_power_savings);
6549}
6550static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6551{
6552 return sched_power_savings_store(buf, count, 0);
6553}
6554SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6555 sched_mc_power_savings_store);
6556#endif
6557
6558#ifdef CONFIG_SCHED_SMT
6559static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6560{
6561 return sprintf(page, "%u\n", sched_smt_power_savings);
6562}
6563static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6564{
6565 return sched_power_savings_store(buf, count, 1);
6058} 6566}
6567SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6568 sched_smt_power_savings_store);
6569#endif
6570
6059 6571
6060#ifdef CONFIG_HOTPLUG_CPU 6572#ifdef CONFIG_HOTPLUG_CPU
6061/* 6573/*
@@ -6138,7 +6650,6 @@ void __init sched_init(void)
6138 rq->push_cpu = 0; 6650 rq->push_cpu = 0;
6139 rq->migration_thread = NULL; 6651 rq->migration_thread = NULL;
6140 INIT_LIST_HEAD(&rq->migration_queue); 6652 INIT_LIST_HEAD(&rq->migration_queue);
6141 rq->cpu = i;
6142#endif 6653#endif
6143 atomic_set(&rq->nr_iowait, 0); 6654 atomic_set(&rq->nr_iowait, 0);
6144 6655
@@ -6153,6 +6664,7 @@ void __init sched_init(void)
6153 } 6664 }
6154 } 6665 }
6155 6666
6667 set_load_weight(&init_task);
6156 /* 6668 /*
6157 * The boot idle thread does lazy MMU switching as well: 6669 * The boot idle thread does lazy MMU switching as well:
6158 */ 6670 */
@@ -6199,11 +6711,12 @@ void normalize_rt_tasks(void)
6199 runqueue_t *rq; 6711 runqueue_t *rq;
6200 6712
6201 read_lock_irq(&tasklist_lock); 6713 read_lock_irq(&tasklist_lock);
6202 for_each_process (p) { 6714 for_each_process(p) {
6203 if (!rt_task(p)) 6715 if (!rt_task(p))
6204 continue; 6716 continue;
6205 6717
6206 rq = task_rq_lock(p, &flags); 6718 spin_lock_irqsave(&p->pi_lock, flags);
6719 rq = __task_rq_lock(p);
6207 6720
6208 array = p->array; 6721 array = p->array;
6209 if (array) 6722 if (array)
@@ -6214,7 +6727,8 @@ void normalize_rt_tasks(void)
6214 resched_task(rq->curr); 6727 resched_task(rq->curr);
6215 } 6728 }
6216 6729
6217 task_rq_unlock(rq, &flags); 6730 __task_rq_unlock(rq);
6731 spin_unlock_irqrestore(&p->pi_lock, flags);
6218 } 6732 }
6219 read_unlock_irq(&tasklist_lock); 6733 read_unlock_irq(&tasklist_lock);
6220} 6734}