aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-01-18 12:37:14 -0500
committerIngo Molnar <mingo@elte.hu>2009-01-18 12:37:14 -0500
commitb2b062b8163391c42b3219d466ca1ac9742b9c7b (patch)
treef3f920c09b8de694b1bc1d4b878cfd2b0b98c913 /kernel/sched.c
parenta9de18eb761f7c1c860964b2e5addc1a35c7e861 (diff)
parent99937d6455cea95405ac681c86a857d0fcd530bd (diff)
Merge branch 'core/percpu' into stackprotector
Conflicts: arch/x86/include/asm/pda.h arch/x86/include/asm/system.h Also, moved include/asm-x86/stackprotector.h to arch/x86/include/asm. Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c1118
1 files changed, 639 insertions, 479 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index c731dd820d1a..1d2909067040 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -125,6 +125,9 @@ DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task); 125DEFINE_TRACE(sched_migrate_task);
126 126
127#ifdef CONFIG_SMP 127#ifdef CONFIG_SMP
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
128/* 131/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) 132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide. 133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
@@ -498,18 +501,26 @@ struct rt_rq {
498 */ 501 */
499struct root_domain { 502struct root_domain {
500 atomic_t refcount; 503 atomic_t refcount;
501 cpumask_t span; 504 cpumask_var_t span;
502 cpumask_t online; 505 cpumask_var_t online;
503 506
504 /* 507 /*
505 * The "RT overload" flag: it gets set if a CPU has more than 508 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task. 509 * one runnable RT task.
507 */ 510 */
508 cpumask_t rto_mask; 511 cpumask_var_t rto_mask;
509 atomic_t rto_count; 512 atomic_t rto_count;
510#ifdef CONFIG_SMP 513#ifdef CONFIG_SMP
511 struct cpupri cpupri; 514 struct cpupri cpupri;
512#endif 515#endif
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
513}; 524};
514 525
515/* 526/*
@@ -1514,7 +1525,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1514 struct sched_domain *sd = data; 1525 struct sched_domain *sd = data;
1515 int i; 1526 int i;
1516 1527
1517 for_each_cpu_mask(i, sd->span) { 1528 for_each_cpu(i, sched_domain_span(sd)) {
1518 /* 1529 /*
1519 * If there are currently no tasks on the cpu pretend there 1530 * If there are currently no tasks on the cpu pretend there
1520 * is one of average load so that when a new task gets to 1531 * is one of average load so that when a new task gets to
@@ -1535,7 +1546,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1535 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) 1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1536 shares = tg->shares; 1547 shares = tg->shares;
1537 1548
1538 for_each_cpu_mask(i, sd->span) 1549 for_each_cpu(i, sched_domain_span(sd))
1539 update_group_shares_cpu(tg, i, shares, rq_weight); 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
1540 1551
1541 return 0; 1552 return 0;
@@ -2101,15 +2112,17 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2101 int i; 2112 int i;
2102 2113
2103 /* Skip over this group if it has no CPUs allowed */ 2114 /* Skip over this group if it has no CPUs allowed */
2104 if (!cpus_intersects(group->cpumask, p->cpus_allowed)) 2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
2105 continue; 2117 continue;
2106 2118
2107 local_group = cpu_isset(this_cpu, group->cpumask); 2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
2108 2121
2109 /* Tally up the load of all CPUs in the group */ 2122 /* Tally up the load of all CPUs in the group */
2110 avg_load = 0; 2123 avg_load = 0;
2111 2124
2112 for_each_cpu_mask_nr(i, group->cpumask) { 2125 for_each_cpu(i, sched_group_cpus(group)) {
2113 /* Bias balancing toward cpus of our domain */ 2126 /* Bias balancing toward cpus of our domain */
2114 if (local_group) 2127 if (local_group)
2115 load = source_load(i, load_idx); 2128 load = source_load(i, load_idx);
@@ -2141,17 +2154,14 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2141 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2142 */ 2155 */
2143static int 2156static int
2144find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2145 cpumask_t *tmp)
2146{ 2158{
2147 unsigned long load, min_load = ULONG_MAX; 2159 unsigned long load, min_load = ULONG_MAX;
2148 int idlest = -1; 2160 int idlest = -1;
2149 int i; 2161 int i;
2150 2162
2151 /* Traverse only the allowed CPUs */ 2163 /* Traverse only the allowed CPUs */
2152 cpus_and(*tmp, group->cpumask, p->cpus_allowed); 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2153
2154 for_each_cpu_mask_nr(i, *tmp) {
2155 load = weighted_cpuload(i); 2165 load = weighted_cpuload(i);
2156 2166
2157 if (load < min_load || (load == min_load && i == this_cpu)) { 2167 if (load < min_load || (load == min_load && i == this_cpu)) {
@@ -2193,7 +2203,6 @@ static int sched_balance_self(int cpu, int flag)
2193 update_shares(sd); 2203 update_shares(sd);
2194 2204
2195 while (sd) { 2205 while (sd) {
2196 cpumask_t span, tmpmask;
2197 struct sched_group *group; 2206 struct sched_group *group;
2198 int new_cpu, weight; 2207 int new_cpu, weight;
2199 2208
@@ -2202,14 +2211,13 @@ static int sched_balance_self(int cpu, int flag)
2202 continue; 2211 continue;
2203 } 2212 }
2204 2213
2205 span = sd->span;
2206 group = find_idlest_group(sd, t, cpu); 2214 group = find_idlest_group(sd, t, cpu);
2207 if (!group) { 2215 if (!group) {
2208 sd = sd->child; 2216 sd = sd->child;
2209 continue; 2217 continue;
2210 } 2218 }
2211 2219
2212 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); 2220 new_cpu = find_idlest_cpu(group, t, cpu);
2213 if (new_cpu == -1 || new_cpu == cpu) { 2221 if (new_cpu == -1 || new_cpu == cpu) {
2214 /* Now try balancing at a lower domain level of cpu */ 2222 /* Now try balancing at a lower domain level of cpu */
2215 sd = sd->child; 2223 sd = sd->child;
@@ -2218,10 +2226,10 @@ static int sched_balance_self(int cpu, int flag)
2218 2226
2219 /* Now try balancing at a lower domain level of new_cpu */ 2227 /* Now try balancing at a lower domain level of new_cpu */
2220 cpu = new_cpu; 2228 cpu = new_cpu;
2229 weight = cpumask_weight(sched_domain_span(sd));
2221 sd = NULL; 2230 sd = NULL;
2222 weight = cpus_weight(span);
2223 for_each_domain(cpu, tmp) { 2231 for_each_domain(cpu, tmp) {
2224 if (weight <= cpus_weight(tmp->span)) 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2225 break; 2233 break;
2226 if (tmp->flags & flag) 2234 if (tmp->flags & flag)
2227 sd = tmp; 2235 sd = tmp;
@@ -2266,7 +2274,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2266 cpu = task_cpu(p); 2274 cpu = task_cpu(p);
2267 2275
2268 for_each_domain(this_cpu, sd) { 2276 for_each_domain(this_cpu, sd) {
2269 if (cpu_isset(cpu, sd->span)) { 2277 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2270 update_shares(sd); 2278 update_shares(sd);
2271 break; 2279 break;
2272 } 2280 }
@@ -2315,7 +2323,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2315 else { 2323 else {
2316 struct sched_domain *sd; 2324 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) { 2325 for_each_domain(this_cpu, sd) {
2318 if (cpu_isset(cpu, sd->span)) { 2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2319 schedstat_inc(sd, ttwu_wake_remote); 2327 schedstat_inc(sd, ttwu_wake_remote);
2320 break; 2328 break;
2321 } 2329 }
@@ -2846,7 +2854,7 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2846 struct rq *rq; 2854 struct rq *rq;
2847 2855
2848 rq = task_rq_lock(p, &flags); 2856 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed) 2857 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2850 || unlikely(!cpu_active(dest_cpu))) 2858 || unlikely(!cpu_active(dest_cpu)))
2851 goto out; 2859 goto out;
2852 2860
@@ -2911,7 +2919,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or 2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU. 2920 * 3) are cache-hot on their current CPU.
2913 */ 2921 */
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) { 2922 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine); 2923 schedstat_inc(p, se.nr_failed_migrations_affine);
2916 return 0; 2924 return 0;
2917 } 2925 }
@@ -3086,7 +3094,7 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3086static struct sched_group * 3094static struct sched_group *
3087find_busiest_group(struct sched_domain *sd, int this_cpu, 3095find_busiest_group(struct sched_domain *sd, int this_cpu,
3088 unsigned long *imbalance, enum cpu_idle_type idle, 3096 unsigned long *imbalance, enum cpu_idle_type idle,
3089 int *sd_idle, const cpumask_t *cpus, int *balance) 3097 int *sd_idle, const struct cpumask *cpus, int *balance)
3090{ 3098{
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; 3099 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr; 3100 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
@@ -3122,10 +3130,11 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3122 unsigned long sum_avg_load_per_task; 3130 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task; 3131 unsigned long avg_load_per_task;
3124 3132
3125 local_group = cpu_isset(this_cpu, group->cpumask); 3133 local_group = cpumask_test_cpu(this_cpu,
3134 sched_group_cpus(group));
3126 3135
3127 if (local_group) 3136 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask); 3137 balance_cpu = cpumask_first(sched_group_cpus(group));
3129 3138
3130 /* Tally up the load of all CPUs in the group */ 3139 /* Tally up the load of all CPUs in the group */
3131 sum_weighted_load = sum_nr_running = avg_load = 0; 3140 sum_weighted_load = sum_nr_running = avg_load = 0;
@@ -3134,13 +3143,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3134 max_cpu_load = 0; 3143 max_cpu_load = 0;
3135 min_cpu_load = ~0UL; 3144 min_cpu_load = ~0UL;
3136 3145
3137 for_each_cpu_mask_nr(i, group->cpumask) { 3146 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3138 struct rq *rq; 3147 struct rq *rq = cpu_rq(i);
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
3144 3148
3145 if (*sd_idle && rq->nr_running) 3149 if (*sd_idle && rq->nr_running)
3146 *sd_idle = 0; 3150 *sd_idle = 0;
@@ -3251,8 +3255,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3251 */ 3255 */
3252 if ((sum_nr_running < min_nr_running) || 3256 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running && 3257 (sum_nr_running == min_nr_running &&
3254 first_cpu(group->cpumask) < 3258 cpumask_first(sched_group_cpus(group)) >
3255 first_cpu(group_min->cpumask))) { 3259 cpumask_first(sched_group_cpus(group_min)))) {
3256 group_min = group; 3260 group_min = group;
3257 min_nr_running = sum_nr_running; 3261 min_nr_running = sum_nr_running;
3258 min_load_per_task = sum_weighted_load / 3262 min_load_per_task = sum_weighted_load /
@@ -3267,8 +3271,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3267 if (sum_nr_running <= group_capacity - 1) { 3271 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running || 3272 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running && 3273 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) > 3274 cpumask_first(sched_group_cpus(group)) <
3271 first_cpu(group_leader->cpumask))) { 3275 cpumask_first(sched_group_cpus(group_leader)))) {
3272 group_leader = group; 3276 group_leader = group;
3273 leader_nr_running = sum_nr_running; 3277 leader_nr_running = sum_nr_running;
3274 } 3278 }
@@ -3394,6 +3398,10 @@ out_balanced:
3394 3398
3395 if (this == group_leader && group_leader != group_min) { 3399 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task; 3400 *imbalance = min_load_per_task;
3401 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3402 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3403 cpumask_first(sched_group_cpus(group_leader));
3404 }
3397 return group_min; 3405 return group_min;
3398 } 3406 }
3399#endif 3407#endif
@@ -3407,16 +3415,16 @@ ret:
3407 */ 3415 */
3408static struct rq * 3416static struct rq *
3409find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, 3417find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3410 unsigned long imbalance, const cpumask_t *cpus) 3418 unsigned long imbalance, const struct cpumask *cpus)
3411{ 3419{
3412 struct rq *busiest = NULL, *rq; 3420 struct rq *busiest = NULL, *rq;
3413 unsigned long max_load = 0; 3421 unsigned long max_load = 0;
3414 int i; 3422 int i;
3415 3423
3416 for_each_cpu_mask_nr(i, group->cpumask) { 3424 for_each_cpu(i, sched_group_cpus(group)) {
3417 unsigned long wl; 3425 unsigned long wl;
3418 3426
3419 if (!cpu_isset(i, *cpus)) 3427 if (!cpumask_test_cpu(i, cpus))
3420 continue; 3428 continue;
3421 3429
3422 rq = cpu_rq(i); 3430 rq = cpu_rq(i);
@@ -3446,7 +3454,7 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3446 */ 3454 */
3447static int load_balance(int this_cpu, struct rq *this_rq, 3455static int load_balance(int this_cpu, struct rq *this_rq,
3448 struct sched_domain *sd, enum cpu_idle_type idle, 3456 struct sched_domain *sd, enum cpu_idle_type idle,
3449 int *balance, cpumask_t *cpus) 3457 int *balance, struct cpumask *cpus)
3450{ 3458{
3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; 3459 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3452 struct sched_group *group; 3460 struct sched_group *group;
@@ -3454,7 +3462,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
3454 struct rq *busiest; 3462 struct rq *busiest;
3455 unsigned long flags; 3463 unsigned long flags;
3456 3464
3457 cpus_setall(*cpus); 3465 cpumask_setall(cpus);
3458 3466
3459 /* 3467 /*
3460 * When power savings policy is enabled for the parent domain, idle 3468 * When power savings policy is enabled for the parent domain, idle
@@ -3514,8 +3522,8 @@ redo:
3514 3522
3515 /* All tasks on this runqueue were pinned by CPU affinity */ 3523 /* All tasks on this runqueue were pinned by CPU affinity */
3516 if (unlikely(all_pinned)) { 3524 if (unlikely(all_pinned)) {
3517 cpu_clear(cpu_of(busiest), *cpus); 3525 cpumask_clear_cpu(cpu_of(busiest), cpus);
3518 if (!cpus_empty(*cpus)) 3526 if (!cpumask_empty(cpus))
3519 goto redo; 3527 goto redo;
3520 goto out_balanced; 3528 goto out_balanced;
3521 } 3529 }
@@ -3532,7 +3540,8 @@ redo:
3532 /* don't kick the migration_thread, if the curr 3540 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu 3541 * task on busiest cpu can't be moved to this_cpu
3534 */ 3542 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { 3543 if (!cpumask_test_cpu(this_cpu,
3544 &busiest->curr->cpus_allowed)) {
3536 spin_unlock_irqrestore(&busiest->lock, flags); 3545 spin_unlock_irqrestore(&busiest->lock, flags);
3537 all_pinned = 1; 3546 all_pinned = 1;
3538 goto out_one_pinned; 3547 goto out_one_pinned;
@@ -3607,7 +3616,7 @@ out:
3607 */ 3616 */
3608static int 3617static int
3609load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, 3618load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus) 3619 struct cpumask *cpus)
3611{ 3620{
3612 struct sched_group *group; 3621 struct sched_group *group;
3613 struct rq *busiest = NULL; 3622 struct rq *busiest = NULL;
@@ -3616,7 +3625,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 int sd_idle = 0; 3625 int sd_idle = 0;
3617 int all_pinned = 0; 3626 int all_pinned = 0;
3618 3627
3619 cpus_setall(*cpus); 3628 cpumask_setall(cpus);
3620 3629
3621 /* 3630 /*
3622 * When power savings policy is enabled for the parent domain, idle 3631 * When power savings policy is enabled for the parent domain, idle
@@ -3660,17 +3669,76 @@ redo:
3660 double_unlock_balance(this_rq, busiest); 3669 double_unlock_balance(this_rq, busiest);
3661 3670
3662 if (unlikely(all_pinned)) { 3671 if (unlikely(all_pinned)) {
3663 cpu_clear(cpu_of(busiest), *cpus); 3672 cpumask_clear_cpu(cpu_of(busiest), cpus);
3664 if (!cpus_empty(*cpus)) 3673 if (!cpumask_empty(cpus))
3665 goto redo; 3674 goto redo;
3666 } 3675 }
3667 } 3676 }
3668 3677
3669 if (!ld_moved) { 3678 if (!ld_moved) {
3679 int active_balance = 0;
3680
3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); 3681 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3673 return -1; 3684 return -1;
3685
3686 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3687 return -1;
3688
3689 if (sd->nr_balance_failed++ < 2)
3690 return -1;
3691
3692 /*
3693 * The only task running in a non-idle cpu can be moved to this
3694 * cpu in an attempt to completely freeup the other CPU
3695 * package. The same method used to move task in load_balance()
3696 * have been extended for load_balance_newidle() to speedup
3697 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3698 *
3699 * The package power saving logic comes from
3700 * find_busiest_group(). If there are no imbalance, then
3701 * f_b_g() will return NULL. However when sched_mc={1,2} then
3702 * f_b_g() will select a group from which a running task may be
3703 * pulled to this cpu in order to make the other package idle.
3704 * If there is no opportunity to make a package idle and if
3705 * there are no imbalance, then f_b_g() will return NULL and no
3706 * action will be taken in load_balance_newidle().
3707 *
3708 * Under normal task pull operation due to imbalance, there
3709 * will be more than one task in the source run queue and
3710 * move_tasks() will succeed. ld_moved will be true and this
3711 * active balance code will not be triggered.
3712 */
3713
3714 /* Lock busiest in correct order while this_rq is held */
3715 double_lock_balance(this_rq, busiest);
3716
3717 /*
3718 * don't kick the migration_thread, if the curr
3719 * task on busiest cpu can't be moved to this_cpu
3720 */
3721 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3722 double_unlock_balance(this_rq, busiest);
3723 all_pinned = 1;
3724 return ld_moved;
3725 }
3726
3727 if (!busiest->active_balance) {
3728 busiest->active_balance = 1;
3729 busiest->push_cpu = this_cpu;
3730 active_balance = 1;
3731 }
3732
3733 double_unlock_balance(this_rq, busiest);
3734 /*
3735 * Should not call ttwu while holding a rq->lock
3736 */
3737 spin_unlock(&this_rq->lock);
3738 if (active_balance)
3739 wake_up_process(busiest->migration_thread);
3740 spin_lock(&this_rq->lock);
3741
3674 } else 3742 } else
3675 sd->nr_balance_failed = 0; 3743 sd->nr_balance_failed = 0;
3676 3744
@@ -3696,7 +3764,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3696 struct sched_domain *sd; 3764 struct sched_domain *sd;
3697 int pulled_task = 0; 3765 int pulled_task = 0;
3698 unsigned long next_balance = jiffies + HZ; 3766 unsigned long next_balance = jiffies + HZ;
3699 cpumask_t tmpmask; 3767 cpumask_var_t tmpmask;
3768
3769 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3770 return;
3700 3771
3701 for_each_domain(this_cpu, sd) { 3772 for_each_domain(this_cpu, sd) {
3702 unsigned long interval; 3773 unsigned long interval;
@@ -3707,7 +3778,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3707 if (sd->flags & SD_BALANCE_NEWIDLE) 3778 if (sd->flags & SD_BALANCE_NEWIDLE)
3708 /* If we've pulled tasks over stop searching: */ 3779 /* If we've pulled tasks over stop searching: */
3709 pulled_task = load_balance_newidle(this_cpu, this_rq, 3780 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask); 3781 sd, tmpmask);
3711 3782
3712 interval = msecs_to_jiffies(sd->balance_interval); 3783 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval)) 3784 if (time_after(next_balance, sd->last_balance + interval))
@@ -3722,6 +3793,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3722 */ 3793 */
3723 this_rq->next_balance = next_balance; 3794 this_rq->next_balance = next_balance;
3724 } 3795 }
3796 free_cpumask_var(tmpmask);
3725} 3797}
3726 3798
3727/* 3799/*
@@ -3759,7 +3831,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3759 /* Search for an sd spanning us and the target CPU. */ 3831 /* Search for an sd spanning us and the target CPU. */
3760 for_each_domain(target_cpu, sd) { 3832 for_each_domain(target_cpu, sd) {
3761 if ((sd->flags & SD_LOAD_BALANCE) && 3833 if ((sd->flags & SD_LOAD_BALANCE) &&
3762 cpu_isset(busiest_cpu, sd->span)) 3834 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3763 break; 3835 break;
3764 } 3836 }
3765 3837
@@ -3778,10 +3850,9 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3778#ifdef CONFIG_NO_HZ 3850#ifdef CONFIG_NO_HZ
3779static struct { 3851static struct {
3780 atomic_t load_balancer; 3852 atomic_t load_balancer;
3781 cpumask_t cpu_mask; 3853 cpumask_var_t cpu_mask;
3782} nohz ____cacheline_aligned = { 3854} nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1), 3855 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785}; 3856};
3786 3857
3787/* 3858/*
@@ -3809,7 +3880,7 @@ int select_nohz_load_balancer(int stop_tick)
3809 int cpu = smp_processor_id(); 3880 int cpu = smp_processor_id();
3810 3881
3811 if (stop_tick) { 3882 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask); 3883 cpumask_set_cpu(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1; 3884 cpu_rq(cpu)->in_nohz_recently = 1;
3814 3885
3815 /* 3886 /*
@@ -3823,7 +3894,7 @@ int select_nohz_load_balancer(int stop_tick)
3823 } 3894 }
3824 3895
3825 /* time for ilb owner also to sleep */ 3896 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { 3897 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu) 3898 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1); 3899 atomic_set(&nohz.load_balancer, -1);
3829 return 0; 3900 return 0;
@@ -3836,10 +3907,10 @@ int select_nohz_load_balancer(int stop_tick)
3836 } else if (atomic_read(&nohz.load_balancer) == cpu) 3907 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1; 3908 return 1;
3838 } else { 3909 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask)) 3910 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3840 return 0; 3911 return 0;
3841 3912
3842 cpu_clear(cpu, nohz.cpu_mask); 3913 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3843 3914
3844 if (atomic_read(&nohz.load_balancer) == cpu) 3915 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) 3916 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
@@ -3867,7 +3938,11 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3867 unsigned long next_balance = jiffies + 60*HZ; 3938 unsigned long next_balance = jiffies + 60*HZ;
3868 int update_next_balance = 0; 3939 int update_next_balance = 0;
3869 int need_serialize; 3940 int need_serialize;
3870 cpumask_t tmp; 3941 cpumask_var_t tmp;
3942
3943 /* Fails alloc? Rebalancing probably not a priority right now. */
3944 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3945 return;
3871 3946
3872 for_each_domain(cpu, sd) { 3947 for_each_domain(cpu, sd) {
3873 if (!(sd->flags & SD_LOAD_BALANCE)) 3948 if (!(sd->flags & SD_LOAD_BALANCE))
@@ -3892,7 +3967,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3892 } 3967 }
3893 3968
3894 if (time_after_eq(jiffies, sd->last_balance + interval)) { 3969 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { 3970 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3896 /* 3971 /*
3897 * We've pulled tasks over so either we're no 3972 * We've pulled tasks over so either we're no
3898 * longer idle, or one of our SMT siblings is 3973 * longer idle, or one of our SMT siblings is
@@ -3926,6 +4001,8 @@ out:
3926 */ 4001 */
3927 if (likely(update_next_balance)) 4002 if (likely(update_next_balance))
3928 rq->next_balance = next_balance; 4003 rq->next_balance = next_balance;
4004
4005 free_cpumask_var(tmp);
3929} 4006}
3930 4007
3931/* 4008/*
@@ -3950,12 +4027,13 @@ static void run_rebalance_domains(struct softirq_action *h)
3950 */ 4027 */
3951 if (this_rq->idle_at_tick && 4028 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) { 4029 atomic_read(&nohz.load_balancer) == this_cpu) {
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq; 4030 struct rq *rq;
3955 int balance_cpu; 4031 int balance_cpu;
3956 4032
3957 cpu_clear(this_cpu, cpus); 4033 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3958 for_each_cpu_mask_nr(balance_cpu, cpus) { 4034 if (balance_cpu == this_cpu)
4035 continue;
4036
3959 /* 4037 /*
3960 * If this cpu gets work to do, stop the load balancing 4038 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load 4039 * work being done for other cpus. Next load
@@ -3993,7 +4071,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
3993 rq->in_nohz_recently = 0; 4071 rq->in_nohz_recently = 0;
3994 4072
3995 if (atomic_read(&nohz.load_balancer) == cpu) { 4073 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask); 4074 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1); 4075 atomic_set(&nohz.load_balancer, -1);
3998 } 4076 }
3999 4077
@@ -4006,7 +4084,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4006 * TBD: Traverse the sched domains and nominate 4084 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask. 4085 * the nearest cpu in the nohz.cpu_mask.
4008 */ 4086 */
4009 int ilb = first_cpu(nohz.cpu_mask); 4087 int ilb = cpumask_first(nohz.cpu_mask);
4010 4088
4011 if (ilb < nr_cpu_ids) 4089 if (ilb < nr_cpu_ids)
4012 resched_cpu(ilb); 4090 resched_cpu(ilb);
@@ -4018,7 +4096,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4018 * cpus with ticks stopped, is it time for that to stop? 4096 * cpus with ticks stopped, is it time for that to stop?
4019 */ 4097 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && 4098 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) { 4099 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu); 4100 resched_cpu(cpu);
4023 return; 4101 return;
4024 } 4102 }
@@ -4028,7 +4106,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4028 * someone else, then no need raise the SCHED_SOFTIRQ 4106 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */ 4107 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && 4108 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask)) 4109 cpumask_test_cpu(cpu, nohz.cpu_mask))
4032 return; 4110 return;
4033#endif 4111#endif
4034 if (time_after_eq(jiffies, rq->next_balance)) 4112 if (time_after_eq(jiffies, rq->next_balance))
@@ -4080,13 +4158,17 @@ unsigned long long task_delta_exec(struct task_struct *p)
4080 * Account user cpu time to a process. 4158 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to 4159 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in user space since the last update 4160 * @cputime: the cpu time spent in user space since the last update
4161 * @cputime_scaled: cputime scaled by cpu frequency
4083 */ 4162 */
4084void account_user_time(struct task_struct *p, cputime_t cputime) 4163void account_user_time(struct task_struct *p, cputime_t cputime,
4164 cputime_t cputime_scaled)
4085{ 4165{
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4166 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087 cputime64_t tmp; 4167 cputime64_t tmp;
4088 4168
4169 /* Add user time to process. */
4089 p->utime = cputime_add(p->utime, cputime); 4170 p->utime = cputime_add(p->utime, cputime);
4171 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4090 account_group_user_time(p, cputime); 4172 account_group_user_time(p, cputime);
4091 4173
4092 /* Add user time to cpustat. */ 4174 /* Add user time to cpustat. */
@@ -4103,51 +4185,48 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
4103 * Account guest cpu time to a process. 4185 * Account guest cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to 4186 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in virtual machine since the last update 4187 * @cputime: the cpu time spent in virtual machine since the last update
4188 * @cputime_scaled: cputime scaled by cpu frequency
4106 */ 4189 */
4107static void account_guest_time(struct task_struct *p, cputime_t cputime) 4190static void account_guest_time(struct task_struct *p, cputime_t cputime,
4191 cputime_t cputime_scaled)
4108{ 4192{
4109 cputime64_t tmp; 4193 cputime64_t tmp;
4110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4194 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4111 4195
4112 tmp = cputime_to_cputime64(cputime); 4196 tmp = cputime_to_cputime64(cputime);
4113 4197
4198 /* Add guest time to process. */
4114 p->utime = cputime_add(p->utime, cputime); 4199 p->utime = cputime_add(p->utime, cputime);
4200 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4115 account_group_user_time(p, cputime); 4201 account_group_user_time(p, cputime);
4116 p->gtime = cputime_add(p->gtime, cputime); 4202 p->gtime = cputime_add(p->gtime, cputime);
4117 4203
4204 /* Add guest time to cpustat. */
4118 cpustat->user = cputime64_add(cpustat->user, tmp); 4205 cpustat->user = cputime64_add(cpustat->user, tmp);
4119 cpustat->guest = cputime64_add(cpustat->guest, tmp); 4206 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4120} 4207}
4121 4208
4122/* 4209/*
4123 * Account scaled user cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in user space since the last update
4126 */
4127void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4128{
4129 p->utimescaled = cputime_add(p->utimescaled, cputime);
4130}
4131
4132/*
4133 * Account system cpu time to a process. 4210 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to 4211 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count() 4212 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update 4213 * @cputime: the cpu time spent in kernel space since the last update
4214 * @cputime_scaled: cputime scaled by cpu frequency
4137 */ 4215 */
4138void account_system_time(struct task_struct *p, int hardirq_offset, 4216void account_system_time(struct task_struct *p, int hardirq_offset,
4139 cputime_t cputime) 4217 cputime_t cputime, cputime_t cputime_scaled)
4140{ 4218{
4141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4219 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4142 struct rq *rq = this_rq();
4143 cputime64_t tmp; 4220 cputime64_t tmp;
4144 4221
4145 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 4222 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4146 account_guest_time(p, cputime); 4223 account_guest_time(p, cputime, cputime_scaled);
4147 return; 4224 return;
4148 } 4225 }
4149 4226
4227 /* Add system time to process. */
4150 p->stime = cputime_add(p->stime, cputime); 4228 p->stime = cputime_add(p->stime, cputime);
4229 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4151 account_group_system_time(p, cputime); 4230 account_group_system_time(p, cputime);
4152 4231
4153 /* Add system time to cpustat. */ 4232 /* Add system time to cpustat. */
@@ -4156,49 +4235,85 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
4156 cpustat->irq = cputime64_add(cpustat->irq, tmp); 4235 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4157 else if (softirq_count()) 4236 else if (softirq_count())
4158 cpustat->softirq = cputime64_add(cpustat->softirq, tmp); 4237 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4159 else if (p != rq->idle)
4160 cpustat->system = cputime64_add(cpustat->system, tmp);
4161 else if (atomic_read(&rq->nr_iowait) > 0)
4162 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4163 else 4238 else
4164 cpustat->idle = cputime64_add(cpustat->idle, tmp); 4239 cpustat->system = cputime64_add(cpustat->system, tmp);
4240
4165 /* Account for system time used */ 4241 /* Account for system time used */
4166 acct_update_integrals(p); 4242 acct_update_integrals(p);
4167} 4243}
4168 4244
4169/* 4245/*
4170 * Account scaled system cpu time to a process. 4246 * Account for involuntary wait time.
4171 * @p: the process that the cpu time gets accounted to 4247 * @steal: the cpu time spent in involuntary wait
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4174 */ 4248 */
4175void account_system_time_scaled(struct task_struct *p, cputime_t cputime) 4249void account_steal_time(cputime_t cputime)
4176{ 4250{
4177 p->stimescaled = cputime_add(p->stimescaled, cputime); 4251 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4252 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4253
4254 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4178} 4255}
4179 4256
4180/* 4257/*
4181 * Account for involuntary wait time. 4258 * Account for idle time.
4182 * @p: the process from which the cpu time has been stolen 4259 * @cputime: the cpu time spent in idle wait
4183 * @steal: the cpu time spent in involuntary wait
4184 */ 4260 */
4185void account_steal_time(struct task_struct *p, cputime_t steal) 4261void account_idle_time(cputime_t cputime)
4186{ 4262{
4187 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4188 cputime64_t tmp = cputime_to_cputime64(steal); 4264 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4189 struct rq *rq = this_rq(); 4265 struct rq *rq = this_rq();
4190 4266
4191 if (p == rq->idle) { 4267 if (atomic_read(&rq->nr_iowait) > 0)
4192 p->stime = cputime_add(p->stime, steal); 4268 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4193 if (atomic_read(&rq->nr_iowait) > 0) 4269 else
4194 cpustat->iowait = cputime64_add(cpustat->iowait, tmp); 4270 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4195 else 4271}
4196 cpustat->idle = cputime64_add(cpustat->idle, tmp); 4272
4197 } else 4273#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4198 cpustat->steal = cputime64_add(cpustat->steal, tmp); 4274
4275/*
4276 * Account a single tick of cpu time.
4277 * @p: the process that the cpu time gets accounted to
4278 * @user_tick: indicates if the tick is a user or a system tick
4279 */
4280void account_process_tick(struct task_struct *p, int user_tick)
4281{
4282 cputime_t one_jiffy = jiffies_to_cputime(1);
4283 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4284 struct rq *rq = this_rq();
4285
4286 if (user_tick)
4287 account_user_time(p, one_jiffy, one_jiffy_scaled);
4288 else if (p != rq->idle)
4289 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4290 one_jiffy_scaled);
4291 else
4292 account_idle_time(one_jiffy);
4199} 4293}
4200 4294
4201/* 4295/*
4296 * Account multiple ticks of steal time.
4297 * @p: the process from which the cpu time has been stolen
4298 * @ticks: number of stolen ticks
4299 */
4300void account_steal_ticks(unsigned long ticks)
4301{
4302 account_steal_time(jiffies_to_cputime(ticks));
4303}
4304
4305/*
4306 * Account multiple ticks of idle time.
4307 * @ticks: number of stolen ticks
4308 */
4309void account_idle_ticks(unsigned long ticks)
4310{
4311 account_idle_time(jiffies_to_cputime(ticks));
4312}
4313
4314#endif
4315
4316/*
4202 * Use precise platform statistics if available: 4317 * Use precise platform statistics if available:
4203 */ 4318 */
4204#ifdef CONFIG_VIRT_CPU_ACCOUNTING 4319#ifdef CONFIG_VIRT_CPU_ACCOUNTING
@@ -5401,10 +5516,9 @@ out_unlock:
5401 return retval; 5516 return retval;
5402} 5517}
5403 5518
5404long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) 5519long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5405{ 5520{
5406 cpumask_t cpus_allowed; 5521 cpumask_var_t cpus_allowed, new_mask;
5407 cpumask_t new_mask = *in_mask;
5408 struct task_struct *p; 5522 struct task_struct *p;
5409 int retval; 5523 int retval;
5410 5524
@@ -5426,6 +5540,14 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5426 get_task_struct(p); 5540 get_task_struct(p);
5427 read_unlock(&tasklist_lock); 5541 read_unlock(&tasklist_lock);
5428 5542
5543 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5544 retval = -ENOMEM;
5545 goto out_put_task;
5546 }
5547 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5548 retval = -ENOMEM;
5549 goto out_free_cpus_allowed;
5550 }
5429 retval = -EPERM; 5551 retval = -EPERM;
5430 if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) 5552 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5431 goto out_unlock; 5553 goto out_unlock;
@@ -5434,37 +5556,41 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5434 if (retval) 5556 if (retval)
5435 goto out_unlock; 5557 goto out_unlock;
5436 5558
5437 cpuset_cpus_allowed(p, &cpus_allowed); 5559 cpuset_cpus_allowed(p, cpus_allowed);
5438 cpus_and(new_mask, new_mask, cpus_allowed); 5560 cpumask_and(new_mask, in_mask, cpus_allowed);
5439 again: 5561 again:
5440 retval = set_cpus_allowed_ptr(p, &new_mask); 5562 retval = set_cpus_allowed_ptr(p, new_mask);
5441 5563
5442 if (!retval) { 5564 if (!retval) {
5443 cpuset_cpus_allowed(p, &cpus_allowed); 5565 cpuset_cpus_allowed(p, cpus_allowed);
5444 if (!cpus_subset(new_mask, cpus_allowed)) { 5566 if (!cpumask_subset(new_mask, cpus_allowed)) {
5445 /* 5567 /*
5446 * We must have raced with a concurrent cpuset 5568 * We must have raced with a concurrent cpuset
5447 * update. Just reset the cpus_allowed to the 5569 * update. Just reset the cpus_allowed to the
5448 * cpuset's cpus_allowed 5570 * cpuset's cpus_allowed
5449 */ 5571 */
5450 new_mask = cpus_allowed; 5572 cpumask_copy(new_mask, cpus_allowed);
5451 goto again; 5573 goto again;
5452 } 5574 }
5453 } 5575 }
5454out_unlock: 5576out_unlock:
5577 free_cpumask_var(new_mask);
5578out_free_cpus_allowed:
5579 free_cpumask_var(cpus_allowed);
5580out_put_task:
5455 put_task_struct(p); 5581 put_task_struct(p);
5456 put_online_cpus(); 5582 put_online_cpus();
5457 return retval; 5583 return retval;
5458} 5584}
5459 5585
5460static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5586static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5461 cpumask_t *new_mask) 5587 struct cpumask *new_mask)
5462{ 5588{
5463 if (len < sizeof(cpumask_t)) { 5589 if (len < cpumask_size())
5464 memset(new_mask, 0, sizeof(cpumask_t)); 5590 cpumask_clear(new_mask);
5465 } else if (len > sizeof(cpumask_t)) { 5591 else if (len > cpumask_size())
5466 len = sizeof(cpumask_t); 5592 len = cpumask_size();
5467 } 5593
5468 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5594 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5469} 5595}
5470 5596
@@ -5477,17 +5603,20 @@ static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5477asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, 5603asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5478 unsigned long __user *user_mask_ptr) 5604 unsigned long __user *user_mask_ptr)
5479{ 5605{
5480 cpumask_t new_mask; 5606 cpumask_var_t new_mask;
5481 int retval; 5607 int retval;
5482 5608
5483 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); 5609 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5484 if (retval) 5610 return -ENOMEM;
5485 return retval;
5486 5611
5487 return sched_setaffinity(pid, &new_mask); 5612 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5613 if (retval == 0)
5614 retval = sched_setaffinity(pid, new_mask);
5615 free_cpumask_var(new_mask);
5616 return retval;
5488} 5617}
5489 5618
5490long sched_getaffinity(pid_t pid, cpumask_t *mask) 5619long sched_getaffinity(pid_t pid, struct cpumask *mask)
5491{ 5620{
5492 struct task_struct *p; 5621 struct task_struct *p;
5493 int retval; 5622 int retval;
@@ -5504,7 +5633,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask)
5504 if (retval) 5633 if (retval)
5505 goto out_unlock; 5634 goto out_unlock;
5506 5635
5507 cpus_and(*mask, p->cpus_allowed, cpu_online_map); 5636 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5508 5637
5509out_unlock: 5638out_unlock:
5510 read_unlock(&tasklist_lock); 5639 read_unlock(&tasklist_lock);
@@ -5523,19 +5652,24 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5523 unsigned long __user *user_mask_ptr) 5652 unsigned long __user *user_mask_ptr)
5524{ 5653{
5525 int ret; 5654 int ret;
5526 cpumask_t mask; 5655 cpumask_var_t mask;
5527 5656
5528 if (len < sizeof(cpumask_t)) 5657 if (len < cpumask_size())
5529 return -EINVAL; 5658 return -EINVAL;
5530 5659
5531 ret = sched_getaffinity(pid, &mask); 5660 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5532 if (ret < 0) 5661 return -ENOMEM;
5533 return ret;
5534 5662
5535 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) 5663 ret = sched_getaffinity(pid, mask);
5536 return -EFAULT; 5664 if (ret == 0) {
5665 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5666 ret = -EFAULT;
5667 else
5668 ret = cpumask_size();
5669 }
5670 free_cpumask_var(mask);
5537 5671
5538 return sizeof(cpumask_t); 5672 return ret;
5539} 5673}
5540 5674
5541/** 5675/**
@@ -5872,7 +6006,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5872 idle->se.exec_start = sched_clock(); 6006 idle->se.exec_start = sched_clock();
5873 6007
5874 idle->prio = idle->normal_prio = MAX_PRIO; 6008 idle->prio = idle->normal_prio = MAX_PRIO;
5875 idle->cpus_allowed = cpumask_of_cpu(cpu); 6009 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5876 __set_task_cpu(idle, cpu); 6010 __set_task_cpu(idle, cpu);
5877 6011
5878 rq->curr = rq->idle = idle; 6012 rq->curr = rq->idle = idle;
@@ -5899,9 +6033,9 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5899 * indicates which cpus entered this state. This is used 6033 * indicates which cpus entered this state. This is used
5900 * in the rcu update to wait only for active cpus. For system 6034 * in the rcu update to wait only for active cpus. For system
5901 * which do not switch off the HZ timer nohz_cpu_mask should 6035 * which do not switch off the HZ timer nohz_cpu_mask should
5902 * always be CPU_MASK_NONE. 6036 * always be CPU_BITS_NONE.
5903 */ 6037 */
5904cpumask_t nohz_cpu_mask = CPU_MASK_NONE; 6038cpumask_var_t nohz_cpu_mask;
5905 6039
5906/* 6040/*
5907 * Increase the granularity value when there are more CPUs, 6041 * Increase the granularity value when there are more CPUs,
@@ -5956,7 +6090,7 @@ static inline void sched_init_granularity(void)
5956 * task must not exit() & deallocate itself prematurely. The 6090 * task must not exit() & deallocate itself prematurely. The
5957 * call is not atomic; no spinlocks may be held. 6091 * call is not atomic; no spinlocks may be held.
5958 */ 6092 */
5959int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) 6093int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5960{ 6094{
5961 struct migration_req req; 6095 struct migration_req req;
5962 unsigned long flags; 6096 unsigned long flags;
@@ -5964,13 +6098,13 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5964 int ret = 0; 6098 int ret = 0;
5965 6099
5966 rq = task_rq_lock(p, &flags); 6100 rq = task_rq_lock(p, &flags);
5967 if (!cpus_intersects(*new_mask, cpu_online_map)) { 6101 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
5968 ret = -EINVAL; 6102 ret = -EINVAL;
5969 goto out; 6103 goto out;
5970 } 6104 }
5971 6105
5972 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && 6106 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5973 !cpus_equal(p->cpus_allowed, *new_mask))) { 6107 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5974 ret = -EINVAL; 6108 ret = -EINVAL;
5975 goto out; 6109 goto out;
5976 } 6110 }
@@ -5978,15 +6112,15 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5978 if (p->sched_class->set_cpus_allowed) 6112 if (p->sched_class->set_cpus_allowed)
5979 p->sched_class->set_cpus_allowed(p, new_mask); 6113 p->sched_class->set_cpus_allowed(p, new_mask);
5980 else { 6114 else {
5981 p->cpus_allowed = *new_mask; 6115 cpumask_copy(&p->cpus_allowed, new_mask);
5982 p->rt.nr_cpus_allowed = cpus_weight(*new_mask); 6116 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5983 } 6117 }
5984 6118
5985 /* Can the task run on the task's current CPU? If so, we're done */ 6119 /* Can the task run on the task's current CPU? If so, we're done */
5986 if (cpu_isset(task_cpu(p), *new_mask)) 6120 if (cpumask_test_cpu(task_cpu(p), new_mask))
5987 goto out; 6121 goto out;
5988 6122
5989 if (migrate_task(p, any_online_cpu(*new_mask), &req)) { 6123 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
5990 /* Need help from migration thread: drop lock and wait. */ 6124 /* Need help from migration thread: drop lock and wait. */
5991 task_rq_unlock(rq, &flags); 6125 task_rq_unlock(rq, &flags);
5992 wake_up_process(rq->migration_thread); 6126 wake_up_process(rq->migration_thread);
@@ -6028,7 +6162,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6028 if (task_cpu(p) != src_cpu) 6162 if (task_cpu(p) != src_cpu)
6029 goto done; 6163 goto done;
6030 /* Affinity changed (again). */ 6164 /* Affinity changed (again). */
6031 if (!cpu_isset(dest_cpu, p->cpus_allowed)) 6165 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6032 goto fail; 6166 goto fail;
6033 6167
6034 on_rq = p->se.on_rq; 6168 on_rq = p->se.on_rq;
@@ -6125,50 +6259,41 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6125 */ 6259 */
6126static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 6260static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6127{ 6261{
6128 unsigned long flags;
6129 cpumask_t mask;
6130 struct rq *rq;
6131 int dest_cpu; 6262 int dest_cpu;
6263 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6132 6264
6133 do { 6265again:
6134 /* On same node? */ 6266 /* Look for allowed, online CPU in same node. */
6135 mask = node_to_cpumask(cpu_to_node(dead_cpu)); 6267 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6136 cpus_and(mask, mask, p->cpus_allowed); 6268 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6137 dest_cpu = any_online_cpu(mask); 6269 goto move;
6138 6270
6139 /* On any allowed CPU? */ 6271 /* Any allowed, online CPU? */
6140 if (dest_cpu >= nr_cpu_ids) 6272 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6141 dest_cpu = any_online_cpu(p->cpus_allowed); 6273 if (dest_cpu < nr_cpu_ids)
6274 goto move;
6142 6275
6143 /* No more Mr. Nice Guy. */ 6276 /* No more Mr. Nice Guy. */
6144 if (dest_cpu >= nr_cpu_ids) { 6277 if (dest_cpu >= nr_cpu_ids) {
6145 cpumask_t cpus_allowed; 6278 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6146 6279 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6147 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6148 /*
6149 * Try to stay on the same cpuset, where the
6150 * current cpuset may be a subset of all cpus.
6151 * The cpuset_cpus_allowed_locked() variant of
6152 * cpuset_cpus_allowed() will not block. It must be
6153 * called within calls to cpuset_lock/cpuset_unlock.
6154 */
6155 rq = task_rq_lock(p, &flags);
6156 p->cpus_allowed = cpus_allowed;
6157 dest_cpu = any_online_cpu(p->cpus_allowed);
6158 task_rq_unlock(rq, &flags);
6159 6280
6160 /* 6281 /*
6161 * Don't tell them about moving exiting tasks or 6282 * Don't tell them about moving exiting tasks or
6162 * kernel threads (both mm NULL), since they never 6283 * kernel threads (both mm NULL), since they never
6163 * leave kernel. 6284 * leave kernel.
6164 */ 6285 */
6165 if (p->mm && printk_ratelimit()) { 6286 if (p->mm && printk_ratelimit()) {
6166 printk(KERN_INFO "process %d (%s) no " 6287 printk(KERN_INFO "process %d (%s) no "
6167 "longer affine to cpu%d\n", 6288 "longer affine to cpu%d\n",
6168 task_pid_nr(p), p->comm, dead_cpu); 6289 task_pid_nr(p), p->comm, dead_cpu);
6169 }
6170 } 6290 }
6171 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); 6291 }
6292
6293move:
6294 /* It can have affinity changed while we were choosing. */
6295 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6296 goto again;
6172} 6297}
6173 6298
6174/* 6299/*
@@ -6180,7 +6305,7 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6180 */ 6305 */
6181static void migrate_nr_uninterruptible(struct rq *rq_src) 6306static void migrate_nr_uninterruptible(struct rq *rq_src)
6182{ 6307{
6183 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); 6308 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6184 unsigned long flags; 6309 unsigned long flags;
6185 6310
6186 local_irq_save(flags); 6311 local_irq_save(flags);
@@ -6470,7 +6595,7 @@ static void set_rq_online(struct rq *rq)
6470 if (!rq->online) { 6595 if (!rq->online) {
6471 const struct sched_class *class; 6596 const struct sched_class *class;
6472 6597
6473 cpu_set(rq->cpu, rq->rd->online); 6598 cpumask_set_cpu(rq->cpu, rq->rd->online);
6474 rq->online = 1; 6599 rq->online = 1;
6475 6600
6476 for_each_class(class) { 6601 for_each_class(class) {
@@ -6490,7 +6615,7 @@ static void set_rq_offline(struct rq *rq)
6490 class->rq_offline(rq); 6615 class->rq_offline(rq);
6491 } 6616 }
6492 6617
6493 cpu_clear(rq->cpu, rq->rd->online); 6618 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6494 rq->online = 0; 6619 rq->online = 0;
6495 } 6620 }
6496} 6621}
@@ -6531,7 +6656,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6531 rq = cpu_rq(cpu); 6656 rq = cpu_rq(cpu);
6532 spin_lock_irqsave(&rq->lock, flags); 6657 spin_lock_irqsave(&rq->lock, flags);
6533 if (rq->rd) { 6658 if (rq->rd) {
6534 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6659 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6535 6660
6536 set_rq_online(rq); 6661 set_rq_online(rq);
6537 } 6662 }
@@ -6545,7 +6670,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6545 break; 6670 break;
6546 /* Unbind it from offline cpu so it can run. Fall thru. */ 6671 /* Unbind it from offline cpu so it can run. Fall thru. */
6547 kthread_bind(cpu_rq(cpu)->migration_thread, 6672 kthread_bind(cpu_rq(cpu)->migration_thread,
6548 any_online_cpu(cpu_online_map)); 6673 cpumask_any(cpu_online_mask));
6549 kthread_stop(cpu_rq(cpu)->migration_thread); 6674 kthread_stop(cpu_rq(cpu)->migration_thread);
6550 cpu_rq(cpu)->migration_thread = NULL; 6675 cpu_rq(cpu)->migration_thread = NULL;
6551 break; 6676 break;
@@ -6595,7 +6720,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6595 rq = cpu_rq(cpu); 6720 rq = cpu_rq(cpu);
6596 spin_lock_irqsave(&rq->lock, flags); 6721 spin_lock_irqsave(&rq->lock, flags);
6597 if (rq->rd) { 6722 if (rq->rd) {
6598 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6723 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6599 set_rq_offline(rq); 6724 set_rq_offline(rq);
6600 } 6725 }
6601 spin_unlock_irqrestore(&rq->lock, flags); 6726 spin_unlock_irqrestore(&rq->lock, flags);
@@ -6634,13 +6759,13 @@ early_initcall(migration_init);
6634#ifdef CONFIG_SCHED_DEBUG 6759#ifdef CONFIG_SCHED_DEBUG
6635 6760
6636static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 6761static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6637 cpumask_t *groupmask) 6762 struct cpumask *groupmask)
6638{ 6763{
6639 struct sched_group *group = sd->groups; 6764 struct sched_group *group = sd->groups;
6640 char str[256]; 6765 char str[256];
6641 6766
6642 cpulist_scnprintf(str, sizeof(str), sd->span); 6767 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6643 cpus_clear(*groupmask); 6768 cpumask_clear(groupmask);
6644 6769
6645 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 6770 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6646 6771
@@ -6654,11 +6779,11 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6654 6779
6655 printk(KERN_CONT "span %s level %s\n", str, sd->name); 6780 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6656 6781
6657 if (!cpu_isset(cpu, sd->span)) { 6782 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6658 printk(KERN_ERR "ERROR: domain->span does not contain " 6783 printk(KERN_ERR "ERROR: domain->span does not contain "
6659 "CPU%d\n", cpu); 6784 "CPU%d\n", cpu);
6660 } 6785 }
6661 if (!cpu_isset(cpu, group->cpumask)) { 6786 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6662 printk(KERN_ERR "ERROR: domain->groups does not contain" 6787 printk(KERN_ERR "ERROR: domain->groups does not contain"
6663 " CPU%d\n", cpu); 6788 " CPU%d\n", cpu);
6664 } 6789 }
@@ -6678,31 +6803,32 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6678 break; 6803 break;
6679 } 6804 }
6680 6805
6681 if (!cpus_weight(group->cpumask)) { 6806 if (!cpumask_weight(sched_group_cpus(group))) {
6682 printk(KERN_CONT "\n"); 6807 printk(KERN_CONT "\n");
6683 printk(KERN_ERR "ERROR: empty group\n"); 6808 printk(KERN_ERR "ERROR: empty group\n");
6684 break; 6809 break;
6685 } 6810 }
6686 6811
6687 if (cpus_intersects(*groupmask, group->cpumask)) { 6812 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6688 printk(KERN_CONT "\n"); 6813 printk(KERN_CONT "\n");
6689 printk(KERN_ERR "ERROR: repeated CPUs\n"); 6814 printk(KERN_ERR "ERROR: repeated CPUs\n");
6690 break; 6815 break;
6691 } 6816 }
6692 6817
6693 cpus_or(*groupmask, *groupmask, group->cpumask); 6818 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6694 6819
6695 cpulist_scnprintf(str, sizeof(str), group->cpumask); 6820 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6696 printk(KERN_CONT " %s", str); 6821 printk(KERN_CONT " %s", str);
6697 6822
6698 group = group->next; 6823 group = group->next;
6699 } while (group != sd->groups); 6824 } while (group != sd->groups);
6700 printk(KERN_CONT "\n"); 6825 printk(KERN_CONT "\n");
6701 6826
6702 if (!cpus_equal(sd->span, *groupmask)) 6827 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6703 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 6828 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6704 6829
6705 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) 6830 if (sd->parent &&
6831 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6706 printk(KERN_ERR "ERROR: parent span is not a superset " 6832 printk(KERN_ERR "ERROR: parent span is not a superset "
6707 "of domain->span\n"); 6833 "of domain->span\n");
6708 return 0; 6834 return 0;
@@ -6710,7 +6836,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6710 6836
6711static void sched_domain_debug(struct sched_domain *sd, int cpu) 6837static void sched_domain_debug(struct sched_domain *sd, int cpu)
6712{ 6838{
6713 cpumask_t *groupmask; 6839 cpumask_var_t groupmask;
6714 int level = 0; 6840 int level = 0;
6715 6841
6716 if (!sd) { 6842 if (!sd) {
@@ -6720,8 +6846,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6720 6846
6721 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 6847 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6722 6848
6723 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 6849 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6724 if (!groupmask) {
6725 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); 6850 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6726 return; 6851 return;
6727 } 6852 }
@@ -6734,7 +6859,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6734 if (!sd) 6859 if (!sd)
6735 break; 6860 break;
6736 } 6861 }
6737 kfree(groupmask); 6862 free_cpumask_var(groupmask);
6738} 6863}
6739#else /* !CONFIG_SCHED_DEBUG */ 6864#else /* !CONFIG_SCHED_DEBUG */
6740# define sched_domain_debug(sd, cpu) do { } while (0) 6865# define sched_domain_debug(sd, cpu) do { } while (0)
@@ -6742,7 +6867,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6742 6867
6743static int sd_degenerate(struct sched_domain *sd) 6868static int sd_degenerate(struct sched_domain *sd)
6744{ 6869{
6745 if (cpus_weight(sd->span) == 1) 6870 if (cpumask_weight(sched_domain_span(sd)) == 1)
6746 return 1; 6871 return 1;
6747 6872
6748 /* Following flags need at least 2 groups */ 6873 /* Following flags need at least 2 groups */
@@ -6773,7 +6898,7 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6773 if (sd_degenerate(parent)) 6898 if (sd_degenerate(parent))
6774 return 1; 6899 return 1;
6775 6900
6776 if (!cpus_equal(sd->span, parent->span)) 6901 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6777 return 0; 6902 return 0;
6778 6903
6779 /* Does parent contain flags not in child? */ 6904 /* Does parent contain flags not in child? */
@@ -6797,6 +6922,16 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6797 return 1; 6922 return 1;
6798} 6923}
6799 6924
6925static void free_rootdomain(struct root_domain *rd)
6926{
6927 cpupri_cleanup(&rd->cpupri);
6928
6929 free_cpumask_var(rd->rto_mask);
6930 free_cpumask_var(rd->online);
6931 free_cpumask_var(rd->span);
6932 kfree(rd);
6933}
6934
6800static void rq_attach_root(struct rq *rq, struct root_domain *rd) 6935static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6801{ 6936{
6802 unsigned long flags; 6937 unsigned long flags;
@@ -6806,38 +6941,62 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6806 if (rq->rd) { 6941 if (rq->rd) {
6807 struct root_domain *old_rd = rq->rd; 6942 struct root_domain *old_rd = rq->rd;
6808 6943
6809 if (cpu_isset(rq->cpu, old_rd->online)) 6944 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6810 set_rq_offline(rq); 6945 set_rq_offline(rq);
6811 6946
6812 cpu_clear(rq->cpu, old_rd->span); 6947 cpumask_clear_cpu(rq->cpu, old_rd->span);
6813 6948
6814 if (atomic_dec_and_test(&old_rd->refcount)) 6949 if (atomic_dec_and_test(&old_rd->refcount))
6815 kfree(old_rd); 6950 free_rootdomain(old_rd);
6816 } 6951 }
6817 6952
6818 atomic_inc(&rd->refcount); 6953 atomic_inc(&rd->refcount);
6819 rq->rd = rd; 6954 rq->rd = rd;
6820 6955
6821 cpu_set(rq->cpu, rd->span); 6956 cpumask_set_cpu(rq->cpu, rd->span);
6822 if (cpu_isset(rq->cpu, cpu_online_map)) 6957 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6823 set_rq_online(rq); 6958 set_rq_online(rq);
6824 6959
6825 spin_unlock_irqrestore(&rq->lock, flags); 6960 spin_unlock_irqrestore(&rq->lock, flags);
6826} 6961}
6827 6962
6828static void init_rootdomain(struct root_domain *rd) 6963static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6829{ 6964{
6830 memset(rd, 0, sizeof(*rd)); 6965 memset(rd, 0, sizeof(*rd));
6831 6966
6832 cpus_clear(rd->span); 6967 if (bootmem) {
6833 cpus_clear(rd->online); 6968 alloc_bootmem_cpumask_var(&def_root_domain.span);
6969 alloc_bootmem_cpumask_var(&def_root_domain.online);
6970 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6971 cpupri_init(&rd->cpupri, true);
6972 return 0;
6973 }
6974
6975 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6976 goto out;
6977 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6978 goto free_span;
6979 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6980 goto free_online;
6834 6981
6835 cpupri_init(&rd->cpupri); 6982 if (cpupri_init(&rd->cpupri, false) != 0)
6983 goto free_rto_mask;
6984 return 0;
6985
6986free_rto_mask:
6987 free_cpumask_var(rd->rto_mask);
6988free_online:
6989 free_cpumask_var(rd->online);
6990free_span:
6991 free_cpumask_var(rd->span);
6992out:
6993 return -ENOMEM;
6836} 6994}
6837 6995
6838static void init_defrootdomain(void) 6996static void init_defrootdomain(void)
6839{ 6997{
6840 init_rootdomain(&def_root_domain); 6998 init_rootdomain(&def_root_domain, true);
6999
6841 atomic_set(&def_root_domain.refcount, 1); 7000 atomic_set(&def_root_domain.refcount, 1);
6842} 7001}
6843 7002
@@ -6849,7 +7008,10 @@ static struct root_domain *alloc_rootdomain(void)
6849 if (!rd) 7008 if (!rd)
6850 return NULL; 7009 return NULL;
6851 7010
6852 init_rootdomain(rd); 7011 if (init_rootdomain(rd, false) != 0) {
7012 kfree(rd);
7013 return NULL;
7014 }
6853 7015
6854 return rd; 7016 return rd;
6855} 7017}
@@ -6891,19 +7053,12 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6891} 7053}
6892 7054
6893/* cpus with isolated domains */ 7055/* cpus with isolated domains */
6894static cpumask_t cpu_isolated_map = CPU_MASK_NONE; 7056static cpumask_var_t cpu_isolated_map;
6895 7057
6896/* Setup the mask of cpus configured for isolated domains */ 7058/* Setup the mask of cpus configured for isolated domains */
6897static int __init isolated_cpu_setup(char *str) 7059static int __init isolated_cpu_setup(char *str)
6898{ 7060{
6899 static int __initdata ints[NR_CPUS]; 7061 cpulist_parse(str, cpu_isolated_map);
6900 int i;
6901
6902 str = get_options(str, ARRAY_SIZE(ints), ints);
6903 cpus_clear(cpu_isolated_map);
6904 for (i = 1; i <= ints[0]; i++)
6905 if (ints[i] < NR_CPUS)
6906 cpu_set(ints[i], cpu_isolated_map);
6907 return 1; 7062 return 1;
6908} 7063}
6909 7064
@@ -6912,42 +7067,43 @@ __setup("isolcpus=", isolated_cpu_setup);
6912/* 7067/*
6913 * init_sched_build_groups takes the cpumask we wish to span, and a pointer 7068 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6914 * to a function which identifies what group(along with sched group) a CPU 7069 * to a function which identifies what group(along with sched group) a CPU
6915 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS 7070 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6916 * (due to the fact that we keep track of groups covered with a cpumask_t). 7071 * (due to the fact that we keep track of groups covered with a struct cpumask).
6917 * 7072 *
6918 * init_sched_build_groups will build a circular linked list of the groups 7073 * init_sched_build_groups will build a circular linked list of the groups
6919 * covered by the given span, and will set each group's ->cpumask correctly, 7074 * covered by the given span, and will set each group's ->cpumask correctly,
6920 * and ->cpu_power to 0. 7075 * and ->cpu_power to 0.
6921 */ 7076 */
6922static void 7077static void
6923init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, 7078init_sched_build_groups(const struct cpumask *span,
6924 int (*group_fn)(int cpu, const cpumask_t *cpu_map, 7079 const struct cpumask *cpu_map,
7080 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6925 struct sched_group **sg, 7081 struct sched_group **sg,
6926 cpumask_t *tmpmask), 7082 struct cpumask *tmpmask),
6927 cpumask_t *covered, cpumask_t *tmpmask) 7083 struct cpumask *covered, struct cpumask *tmpmask)
6928{ 7084{
6929 struct sched_group *first = NULL, *last = NULL; 7085 struct sched_group *first = NULL, *last = NULL;
6930 int i; 7086 int i;
6931 7087
6932 cpus_clear(*covered); 7088 cpumask_clear(covered);
6933 7089
6934 for_each_cpu_mask_nr(i, *span) { 7090 for_each_cpu(i, span) {
6935 struct sched_group *sg; 7091 struct sched_group *sg;
6936 int group = group_fn(i, cpu_map, &sg, tmpmask); 7092 int group = group_fn(i, cpu_map, &sg, tmpmask);
6937 int j; 7093 int j;
6938 7094
6939 if (cpu_isset(i, *covered)) 7095 if (cpumask_test_cpu(i, covered))
6940 continue; 7096 continue;
6941 7097
6942 cpus_clear(sg->cpumask); 7098 cpumask_clear(sched_group_cpus(sg));
6943 sg->__cpu_power = 0; 7099 sg->__cpu_power = 0;
6944 7100
6945 for_each_cpu_mask_nr(j, *span) { 7101 for_each_cpu(j, span) {
6946 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 7102 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6947 continue; 7103 continue;
6948 7104
6949 cpu_set(j, *covered); 7105 cpumask_set_cpu(j, covered);
6950 cpu_set(j, sg->cpumask); 7106 cpumask_set_cpu(j, sched_group_cpus(sg));
6951 } 7107 }
6952 if (!first) 7108 if (!first)
6953 first = sg; 7109 first = sg;
@@ -7011,23 +7167,21 @@ static int find_next_best_node(int node, nodemask_t *used_nodes)
7011 * should be one that prevents unnecessary balancing, but also spreads tasks 7167 * should be one that prevents unnecessary balancing, but also spreads tasks
7012 * out optimally. 7168 * out optimally.
7013 */ 7169 */
7014static void sched_domain_node_span(int node, cpumask_t *span) 7170static void sched_domain_node_span(int node, struct cpumask *span)
7015{ 7171{
7016 nodemask_t used_nodes; 7172 nodemask_t used_nodes;
7017 node_to_cpumask_ptr(nodemask, node);
7018 int i; 7173 int i;
7019 7174
7020 cpus_clear(*span); 7175 cpumask_clear(span);
7021 nodes_clear(used_nodes); 7176 nodes_clear(used_nodes);
7022 7177
7023 cpus_or(*span, *span, *nodemask); 7178 cpumask_or(span, span, cpumask_of_node(node));
7024 node_set(node, used_nodes); 7179 node_set(node, used_nodes);
7025 7180
7026 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 7181 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7027 int next_node = find_next_best_node(node, &used_nodes); 7182 int next_node = find_next_best_node(node, &used_nodes);
7028 7183
7029 node_to_cpumask_ptr_next(nodemask, next_node); 7184 cpumask_or(span, span, cpumask_of_node(next_node));
7030 cpus_or(*span, *span, *nodemask);
7031 } 7185 }
7032} 7186}
7033#endif /* CONFIG_NUMA */ 7187#endif /* CONFIG_NUMA */
@@ -7035,18 +7189,33 @@ static void sched_domain_node_span(int node, cpumask_t *span)
7035int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 7189int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7036 7190
7037/* 7191/*
7192 * The cpus mask in sched_group and sched_domain hangs off the end.
7193 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7194 * for nr_cpu_ids < CONFIG_NR_CPUS.
7195 */
7196struct static_sched_group {
7197 struct sched_group sg;
7198 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7199};
7200
7201struct static_sched_domain {
7202 struct sched_domain sd;
7203 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7204};
7205
7206/*
7038 * SMT sched-domains: 7207 * SMT sched-domains:
7039 */ 7208 */
7040#ifdef CONFIG_SCHED_SMT 7209#ifdef CONFIG_SCHED_SMT
7041static DEFINE_PER_CPU(struct sched_domain, cpu_domains); 7210static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7042static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); 7211static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7043 7212
7044static int 7213static int
7045cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7214cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7046 cpumask_t *unused) 7215 struct sched_group **sg, struct cpumask *unused)
7047{ 7216{
7048 if (sg) 7217 if (sg)
7049 *sg = &per_cpu(sched_group_cpus, cpu); 7218 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7050 return cpu; 7219 return cpu;
7051} 7220}
7052#endif /* CONFIG_SCHED_SMT */ 7221#endif /* CONFIG_SCHED_SMT */
@@ -7055,56 +7224,53 @@ cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7055 * multi-core sched-domains: 7224 * multi-core sched-domains:
7056 */ 7225 */
7057#ifdef CONFIG_SCHED_MC 7226#ifdef CONFIG_SCHED_MC
7058static DEFINE_PER_CPU(struct sched_domain, core_domains); 7227static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7059static DEFINE_PER_CPU(struct sched_group, sched_group_core); 7228static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7060#endif /* CONFIG_SCHED_MC */ 7229#endif /* CONFIG_SCHED_MC */
7061 7230
7062#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 7231#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7063static int 7232static int
7064cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7233cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7065 cpumask_t *mask) 7234 struct sched_group **sg, struct cpumask *mask)
7066{ 7235{
7067 int group; 7236 int group;
7068 7237
7069 *mask = per_cpu(cpu_sibling_map, cpu); 7238 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7070 cpus_and(*mask, *mask, *cpu_map); 7239 group = cpumask_first(mask);
7071 group = first_cpu(*mask);
7072 if (sg) 7240 if (sg)
7073 *sg = &per_cpu(sched_group_core, group); 7241 *sg = &per_cpu(sched_group_core, group).sg;
7074 return group; 7242 return group;
7075} 7243}
7076#elif defined(CONFIG_SCHED_MC) 7244#elif defined(CONFIG_SCHED_MC)
7077static int 7245static int
7078cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7246cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7079 cpumask_t *unused) 7247 struct sched_group **sg, struct cpumask *unused)
7080{ 7248{
7081 if (sg) 7249 if (sg)
7082 *sg = &per_cpu(sched_group_core, cpu); 7250 *sg = &per_cpu(sched_group_core, cpu).sg;
7083 return cpu; 7251 return cpu;
7084} 7252}
7085#endif 7253#endif
7086 7254
7087static DEFINE_PER_CPU(struct sched_domain, phys_domains); 7255static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7088static DEFINE_PER_CPU(struct sched_group, sched_group_phys); 7256static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7089 7257
7090static int 7258static int
7091cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7259cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7092 cpumask_t *mask) 7260 struct sched_group **sg, struct cpumask *mask)
7093{ 7261{
7094 int group; 7262 int group;
7095#ifdef CONFIG_SCHED_MC 7263#ifdef CONFIG_SCHED_MC
7096 *mask = cpu_coregroup_map(cpu); 7264 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7097 cpus_and(*mask, *mask, *cpu_map); 7265 group = cpumask_first(mask);
7098 group = first_cpu(*mask);
7099#elif defined(CONFIG_SCHED_SMT) 7266#elif defined(CONFIG_SCHED_SMT)
7100 *mask = per_cpu(cpu_sibling_map, cpu); 7267 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7101 cpus_and(*mask, *mask, *cpu_map); 7268 group = cpumask_first(mask);
7102 group = first_cpu(*mask);
7103#else 7269#else
7104 group = cpu; 7270 group = cpu;
7105#endif 7271#endif
7106 if (sg) 7272 if (sg)
7107 *sg = &per_cpu(sched_group_phys, group); 7273 *sg = &per_cpu(sched_group_phys, group).sg;
7108 return group; 7274 return group;
7109} 7275}
7110 7276
@@ -7114,23 +7280,23 @@ cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7114 * groups, so roll our own. Now each node has its own list of groups which 7280 * groups, so roll our own. Now each node has its own list of groups which
7115 * gets dynamically allocated. 7281 * gets dynamically allocated.
7116 */ 7282 */
7117static DEFINE_PER_CPU(struct sched_domain, node_domains); 7283static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7118static struct sched_group ***sched_group_nodes_bycpu; 7284static struct sched_group ***sched_group_nodes_bycpu;
7119 7285
7120static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); 7286static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7121static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); 7287static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7122 7288
7123static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, 7289static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7124 struct sched_group **sg, cpumask_t *nodemask) 7290 struct sched_group **sg,
7291 struct cpumask *nodemask)
7125{ 7292{
7126 int group; 7293 int group;
7127 7294
7128 *nodemask = node_to_cpumask(cpu_to_node(cpu)); 7295 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7129 cpus_and(*nodemask, *nodemask, *cpu_map); 7296 group = cpumask_first(nodemask);
7130 group = first_cpu(*nodemask);
7131 7297
7132 if (sg) 7298 if (sg)
7133 *sg = &per_cpu(sched_group_allnodes, group); 7299 *sg = &per_cpu(sched_group_allnodes, group).sg;
7134 return group; 7300 return group;
7135} 7301}
7136 7302
@@ -7142,11 +7308,11 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
7142 if (!sg) 7308 if (!sg)
7143 return; 7309 return;
7144 do { 7310 do {
7145 for_each_cpu_mask_nr(j, sg->cpumask) { 7311 for_each_cpu(j, sched_group_cpus(sg)) {
7146 struct sched_domain *sd; 7312 struct sched_domain *sd;
7147 7313
7148 sd = &per_cpu(phys_domains, j); 7314 sd = &per_cpu(phys_domains, j).sd;
7149 if (j != first_cpu(sd->groups->cpumask)) { 7315 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7150 /* 7316 /*
7151 * Only add "power" once for each 7317 * Only add "power" once for each
7152 * physical package. 7318 * physical package.
@@ -7163,11 +7329,12 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
7163 7329
7164#ifdef CONFIG_NUMA 7330#ifdef CONFIG_NUMA
7165/* Free memory allocated for various sched_group structures */ 7331/* Free memory allocated for various sched_group structures */
7166static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 7332static void free_sched_groups(const struct cpumask *cpu_map,
7333 struct cpumask *nodemask)
7167{ 7334{
7168 int cpu, i; 7335 int cpu, i;
7169 7336
7170 for_each_cpu_mask_nr(cpu, *cpu_map) { 7337 for_each_cpu(cpu, cpu_map) {
7171 struct sched_group **sched_group_nodes 7338 struct sched_group **sched_group_nodes
7172 = sched_group_nodes_bycpu[cpu]; 7339 = sched_group_nodes_bycpu[cpu];
7173 7340
@@ -7177,9 +7344,8 @@ static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7177 for (i = 0; i < nr_node_ids; i++) { 7344 for (i = 0; i < nr_node_ids; i++) {
7178 struct sched_group *oldsg, *sg = sched_group_nodes[i]; 7345 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7179 7346
7180 *nodemask = node_to_cpumask(i); 7347 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7181 cpus_and(*nodemask, *nodemask, *cpu_map); 7348 if (cpumask_empty(nodemask))
7182 if (cpus_empty(*nodemask))
7183 continue; 7349 continue;
7184 7350
7185 if (sg == NULL) 7351 if (sg == NULL)
@@ -7197,7 +7363,8 @@ next_sg:
7197 } 7363 }
7198} 7364}
7199#else /* !CONFIG_NUMA */ 7365#else /* !CONFIG_NUMA */
7200static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 7366static void free_sched_groups(const struct cpumask *cpu_map,
7367 struct cpumask *nodemask)
7201{ 7368{
7202} 7369}
7203#endif /* CONFIG_NUMA */ 7370#endif /* CONFIG_NUMA */
@@ -7223,7 +7390,7 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7223 7390
7224 WARN_ON(!sd || !sd->groups); 7391 WARN_ON(!sd || !sd->groups);
7225 7392
7226 if (cpu != first_cpu(sd->groups->cpumask)) 7393 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7227 return; 7394 return;
7228 7395
7229 child = sd->child; 7396 child = sd->child;
@@ -7288,48 +7455,6 @@ SD_INIT_FUNC(CPU)
7288 SD_INIT_FUNC(MC) 7455 SD_INIT_FUNC(MC)
7289#endif 7456#endif
7290 7457
7291/*
7292 * To minimize stack usage kmalloc room for cpumasks and share the
7293 * space as the usage in build_sched_domains() dictates. Used only
7294 * if the amount of space is significant.
7295 */
7296struct allmasks {
7297 cpumask_t tmpmask; /* make this one first */
7298 union {
7299 cpumask_t nodemask;
7300 cpumask_t this_sibling_map;
7301 cpumask_t this_core_map;
7302 };
7303 cpumask_t send_covered;
7304
7305#ifdef CONFIG_NUMA
7306 cpumask_t domainspan;
7307 cpumask_t covered;
7308 cpumask_t notcovered;
7309#endif
7310};
7311
7312#if NR_CPUS > 128
7313#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7314static inline void sched_cpumask_alloc(struct allmasks **masks)
7315{
7316 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7317}
7318static inline void sched_cpumask_free(struct allmasks *masks)
7319{
7320 kfree(masks);
7321}
7322#else
7323#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7324static inline void sched_cpumask_alloc(struct allmasks **masks)
7325{ }
7326static inline void sched_cpumask_free(struct allmasks *masks)
7327{ }
7328#endif
7329
7330#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7331 ((unsigned long)(a) + offsetof(struct allmasks, v))
7332
7333static int default_relax_domain_level = -1; 7458static int default_relax_domain_level = -1;
7334 7459
7335static int __init setup_relax_domain_level(char *str) 7460static int __init setup_relax_domain_level(char *str)
@@ -7369,17 +7494,38 @@ static void set_domain_attribute(struct sched_domain *sd,
7369 * Build sched domains for a given set of cpus and attach the sched domains 7494 * Build sched domains for a given set of cpus and attach the sched domains
7370 * to the individual cpus 7495 * to the individual cpus
7371 */ 7496 */
7372static int __build_sched_domains(const cpumask_t *cpu_map, 7497static int __build_sched_domains(const struct cpumask *cpu_map,
7373 struct sched_domain_attr *attr) 7498 struct sched_domain_attr *attr)
7374{ 7499{
7375 int i; 7500 int i, err = -ENOMEM;
7376 struct root_domain *rd; 7501 struct root_domain *rd;
7377 SCHED_CPUMASK_DECLARE(allmasks); 7502 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7378 cpumask_t *tmpmask; 7503 tmpmask;
7379#ifdef CONFIG_NUMA 7504#ifdef CONFIG_NUMA
7505 cpumask_var_t domainspan, covered, notcovered;
7380 struct sched_group **sched_group_nodes = NULL; 7506 struct sched_group **sched_group_nodes = NULL;
7381 int sd_allnodes = 0; 7507 int sd_allnodes = 0;
7382 7508
7509 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7510 goto out;
7511 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7512 goto free_domainspan;
7513 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7514 goto free_covered;
7515#endif
7516
7517 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7518 goto free_notcovered;
7519 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7520 goto free_nodemask;
7521 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7522 goto free_this_sibling_map;
7523 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7524 goto free_this_core_map;
7525 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7526 goto free_send_covered;
7527
7528#ifdef CONFIG_NUMA
7383 /* 7529 /*
7384 * Allocate the per-node list of sched groups 7530 * Allocate the per-node list of sched groups
7385 */ 7531 */
@@ -7387,75 +7533,57 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7387 GFP_KERNEL); 7533 GFP_KERNEL);
7388 if (!sched_group_nodes) { 7534 if (!sched_group_nodes) {
7389 printk(KERN_WARNING "Can not alloc sched group node list\n"); 7535 printk(KERN_WARNING "Can not alloc sched group node list\n");
7390 return -ENOMEM; 7536 goto free_tmpmask;
7391 } 7537 }
7392#endif 7538#endif
7393 7539
7394 rd = alloc_rootdomain(); 7540 rd = alloc_rootdomain();
7395 if (!rd) { 7541 if (!rd) {
7396 printk(KERN_WARNING "Cannot alloc root domain\n"); 7542 printk(KERN_WARNING "Cannot alloc root domain\n");
7397#ifdef CONFIG_NUMA 7543 goto free_sched_groups;
7398 kfree(sched_group_nodes);
7399#endif
7400 return -ENOMEM;
7401 }
7402
7403 /* get space for all scratch cpumask variables */
7404 sched_cpumask_alloc(&allmasks);
7405 if (!allmasks) {
7406 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7407 kfree(rd);
7408#ifdef CONFIG_NUMA
7409 kfree(sched_group_nodes);
7410#endif
7411 return -ENOMEM;
7412 } 7544 }
7413 7545
7414 tmpmask = (cpumask_t *)allmasks;
7415
7416
7417#ifdef CONFIG_NUMA 7546#ifdef CONFIG_NUMA
7418 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; 7547 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7419#endif 7548#endif
7420 7549
7421 /* 7550 /*
7422 * Set up domains for cpus specified by the cpu_map. 7551 * Set up domains for cpus specified by the cpu_map.
7423 */ 7552 */
7424 for_each_cpu_mask_nr(i, *cpu_map) { 7553 for_each_cpu(i, cpu_map) {
7425 struct sched_domain *sd = NULL, *p; 7554 struct sched_domain *sd = NULL, *p;
7426 SCHED_CPUMASK_VAR(nodemask, allmasks);
7427 7555
7428 *nodemask = node_to_cpumask(cpu_to_node(i)); 7556 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7429 cpus_and(*nodemask, *nodemask, *cpu_map);
7430 7557
7431#ifdef CONFIG_NUMA 7558#ifdef CONFIG_NUMA
7432 if (cpus_weight(*cpu_map) > 7559 if (cpumask_weight(cpu_map) >
7433 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { 7560 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7434 sd = &per_cpu(allnodes_domains, i); 7561 sd = &per_cpu(allnodes_domains, i).sd;
7435 SD_INIT(sd, ALLNODES); 7562 SD_INIT(sd, ALLNODES);
7436 set_domain_attribute(sd, attr); 7563 set_domain_attribute(sd, attr);
7437 sd->span = *cpu_map; 7564 cpumask_copy(sched_domain_span(sd), cpu_map);
7438 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); 7565 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7439 p = sd; 7566 p = sd;
7440 sd_allnodes = 1; 7567 sd_allnodes = 1;
7441 } else 7568 } else
7442 p = NULL; 7569 p = NULL;
7443 7570
7444 sd = &per_cpu(node_domains, i); 7571 sd = &per_cpu(node_domains, i).sd;
7445 SD_INIT(sd, NODE); 7572 SD_INIT(sd, NODE);
7446 set_domain_attribute(sd, attr); 7573 set_domain_attribute(sd, attr);
7447 sched_domain_node_span(cpu_to_node(i), &sd->span); 7574 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7448 sd->parent = p; 7575 sd->parent = p;
7449 if (p) 7576 if (p)
7450 p->child = sd; 7577 p->child = sd;
7451 cpus_and(sd->span, sd->span, *cpu_map); 7578 cpumask_and(sched_domain_span(sd),
7579 sched_domain_span(sd), cpu_map);
7452#endif 7580#endif
7453 7581
7454 p = sd; 7582 p = sd;
7455 sd = &per_cpu(phys_domains, i); 7583 sd = &per_cpu(phys_domains, i).sd;
7456 SD_INIT(sd, CPU); 7584 SD_INIT(sd, CPU);
7457 set_domain_attribute(sd, attr); 7585 set_domain_attribute(sd, attr);
7458 sd->span = *nodemask; 7586 cpumask_copy(sched_domain_span(sd), nodemask);
7459 sd->parent = p; 7587 sd->parent = p;
7460 if (p) 7588 if (p)
7461 p->child = sd; 7589 p->child = sd;
@@ -7463,11 +7591,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7463 7591
7464#ifdef CONFIG_SCHED_MC 7592#ifdef CONFIG_SCHED_MC
7465 p = sd; 7593 p = sd;
7466 sd = &per_cpu(core_domains, i); 7594 sd = &per_cpu(core_domains, i).sd;
7467 SD_INIT(sd, MC); 7595 SD_INIT(sd, MC);
7468 set_domain_attribute(sd, attr); 7596 set_domain_attribute(sd, attr);
7469 sd->span = cpu_coregroup_map(i); 7597 cpumask_and(sched_domain_span(sd), cpu_map,
7470 cpus_and(sd->span, sd->span, *cpu_map); 7598 cpu_coregroup_mask(i));
7471 sd->parent = p; 7599 sd->parent = p;
7472 p->child = sd; 7600 p->child = sd;
7473 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); 7601 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
@@ -7475,11 +7603,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7475 7603
7476#ifdef CONFIG_SCHED_SMT 7604#ifdef CONFIG_SCHED_SMT
7477 p = sd; 7605 p = sd;
7478 sd = &per_cpu(cpu_domains, i); 7606 sd = &per_cpu(cpu_domains, i).sd;
7479 SD_INIT(sd, SIBLING); 7607 SD_INIT(sd, SIBLING);
7480 set_domain_attribute(sd, attr); 7608 set_domain_attribute(sd, attr);
7481 sd->span = per_cpu(cpu_sibling_map, i); 7609 cpumask_and(sched_domain_span(sd),
7482 cpus_and(sd->span, sd->span, *cpu_map); 7610 &per_cpu(cpu_sibling_map, i), cpu_map);
7483 sd->parent = p; 7611 sd->parent = p;
7484 p->child = sd; 7612 p->child = sd;
7485 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); 7613 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
@@ -7488,13 +7616,10 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7488 7616
7489#ifdef CONFIG_SCHED_SMT 7617#ifdef CONFIG_SCHED_SMT
7490 /* Set up CPU (sibling) groups */ 7618 /* Set up CPU (sibling) groups */
7491 for_each_cpu_mask_nr(i, *cpu_map) { 7619 for_each_cpu(i, cpu_map) {
7492 SCHED_CPUMASK_VAR(this_sibling_map, allmasks); 7620 cpumask_and(this_sibling_map,
7493 SCHED_CPUMASK_VAR(send_covered, allmasks); 7621 &per_cpu(cpu_sibling_map, i), cpu_map);
7494 7622 if (i != cpumask_first(this_sibling_map))
7495 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7496 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7497 if (i != first_cpu(*this_sibling_map))
7498 continue; 7623 continue;
7499 7624
7500 init_sched_build_groups(this_sibling_map, cpu_map, 7625 init_sched_build_groups(this_sibling_map, cpu_map,
@@ -7505,13 +7630,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7505 7630
7506#ifdef CONFIG_SCHED_MC 7631#ifdef CONFIG_SCHED_MC
7507 /* Set up multi-core groups */ 7632 /* Set up multi-core groups */
7508 for_each_cpu_mask_nr(i, *cpu_map) { 7633 for_each_cpu(i, cpu_map) {
7509 SCHED_CPUMASK_VAR(this_core_map, allmasks); 7634 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7510 SCHED_CPUMASK_VAR(send_covered, allmasks); 7635 if (i != cpumask_first(this_core_map))
7511
7512 *this_core_map = cpu_coregroup_map(i);
7513 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7514 if (i != first_cpu(*this_core_map))
7515 continue; 7636 continue;
7516 7637
7517 init_sched_build_groups(this_core_map, cpu_map, 7638 init_sched_build_groups(this_core_map, cpu_map,
@@ -7522,12 +7643,8 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7522 7643
7523 /* Set up physical groups */ 7644 /* Set up physical groups */
7524 for (i = 0; i < nr_node_ids; i++) { 7645 for (i = 0; i < nr_node_ids; i++) {
7525 SCHED_CPUMASK_VAR(nodemask, allmasks); 7646 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7526 SCHED_CPUMASK_VAR(send_covered, allmasks); 7647 if (cpumask_empty(nodemask))
7527
7528 *nodemask = node_to_cpumask(i);
7529 cpus_and(*nodemask, *nodemask, *cpu_map);
7530 if (cpus_empty(*nodemask))
7531 continue; 7648 continue;
7532 7649
7533 init_sched_build_groups(nodemask, cpu_map, 7650 init_sched_build_groups(nodemask, cpu_map,
@@ -7538,8 +7655,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7538#ifdef CONFIG_NUMA 7655#ifdef CONFIG_NUMA
7539 /* Set up node groups */ 7656 /* Set up node groups */
7540 if (sd_allnodes) { 7657 if (sd_allnodes) {
7541 SCHED_CPUMASK_VAR(send_covered, allmasks);
7542
7543 init_sched_build_groups(cpu_map, cpu_map, 7658 init_sched_build_groups(cpu_map, cpu_map,
7544 &cpu_to_allnodes_group, 7659 &cpu_to_allnodes_group,
7545 send_covered, tmpmask); 7660 send_covered, tmpmask);
@@ -7548,58 +7663,53 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7548 for (i = 0; i < nr_node_ids; i++) { 7663 for (i = 0; i < nr_node_ids; i++) {
7549 /* Set up node groups */ 7664 /* Set up node groups */
7550 struct sched_group *sg, *prev; 7665 struct sched_group *sg, *prev;
7551 SCHED_CPUMASK_VAR(nodemask, allmasks);
7552 SCHED_CPUMASK_VAR(domainspan, allmasks);
7553 SCHED_CPUMASK_VAR(covered, allmasks);
7554 int j; 7666 int j;
7555 7667
7556 *nodemask = node_to_cpumask(i); 7668 cpumask_clear(covered);
7557 cpus_clear(*covered); 7669 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7558 7670 if (cpumask_empty(nodemask)) {
7559 cpus_and(*nodemask, *nodemask, *cpu_map);
7560 if (cpus_empty(*nodemask)) {
7561 sched_group_nodes[i] = NULL; 7671 sched_group_nodes[i] = NULL;
7562 continue; 7672 continue;
7563 } 7673 }
7564 7674
7565 sched_domain_node_span(i, domainspan); 7675 sched_domain_node_span(i, domainspan);
7566 cpus_and(*domainspan, *domainspan, *cpu_map); 7676 cpumask_and(domainspan, domainspan, cpu_map);
7567 7677
7568 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); 7678 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7679 GFP_KERNEL, i);
7569 if (!sg) { 7680 if (!sg) {
7570 printk(KERN_WARNING "Can not alloc domain group for " 7681 printk(KERN_WARNING "Can not alloc domain group for "
7571 "node %d\n", i); 7682 "node %d\n", i);
7572 goto error; 7683 goto error;
7573 } 7684 }
7574 sched_group_nodes[i] = sg; 7685 sched_group_nodes[i] = sg;
7575 for_each_cpu_mask_nr(j, *nodemask) { 7686 for_each_cpu(j, nodemask) {
7576 struct sched_domain *sd; 7687 struct sched_domain *sd;
7577 7688
7578 sd = &per_cpu(node_domains, j); 7689 sd = &per_cpu(node_domains, j).sd;
7579 sd->groups = sg; 7690 sd->groups = sg;
7580 } 7691 }
7581 sg->__cpu_power = 0; 7692 sg->__cpu_power = 0;
7582 sg->cpumask = *nodemask; 7693 cpumask_copy(sched_group_cpus(sg), nodemask);
7583 sg->next = sg; 7694 sg->next = sg;
7584 cpus_or(*covered, *covered, *nodemask); 7695 cpumask_or(covered, covered, nodemask);
7585 prev = sg; 7696 prev = sg;
7586 7697
7587 for (j = 0; j < nr_node_ids; j++) { 7698 for (j = 0; j < nr_node_ids; j++) {
7588 SCHED_CPUMASK_VAR(notcovered, allmasks);
7589 int n = (i + j) % nr_node_ids; 7699 int n = (i + j) % nr_node_ids;
7590 node_to_cpumask_ptr(pnodemask, n);
7591 7700
7592 cpus_complement(*notcovered, *covered); 7701 cpumask_complement(notcovered, covered);
7593 cpus_and(*tmpmask, *notcovered, *cpu_map); 7702 cpumask_and(tmpmask, notcovered, cpu_map);
7594 cpus_and(*tmpmask, *tmpmask, *domainspan); 7703 cpumask_and(tmpmask, tmpmask, domainspan);
7595 if (cpus_empty(*tmpmask)) 7704 if (cpumask_empty(tmpmask))
7596 break; 7705 break;
7597 7706
7598 cpus_and(*tmpmask, *tmpmask, *pnodemask); 7707 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7599 if (cpus_empty(*tmpmask)) 7708 if (cpumask_empty(tmpmask))
7600 continue; 7709 continue;
7601 7710
7602 sg = kmalloc_node(sizeof(struct sched_group), 7711 sg = kmalloc_node(sizeof(struct sched_group) +
7712 cpumask_size(),
7603 GFP_KERNEL, i); 7713 GFP_KERNEL, i);
7604 if (!sg) { 7714 if (!sg) {
7605 printk(KERN_WARNING 7715 printk(KERN_WARNING
@@ -7607,9 +7717,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7607 goto error; 7717 goto error;
7608 } 7718 }
7609 sg->__cpu_power = 0; 7719 sg->__cpu_power = 0;
7610 sg->cpumask = *tmpmask; 7720 cpumask_copy(sched_group_cpus(sg), tmpmask);
7611 sg->next = prev->next; 7721 sg->next = prev->next;
7612 cpus_or(*covered, *covered, *tmpmask); 7722 cpumask_or(covered, covered, tmpmask);
7613 prev->next = sg; 7723 prev->next = sg;
7614 prev = sg; 7724 prev = sg;
7615 } 7725 }
@@ -7618,22 +7728,22 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7618 7728
7619 /* Calculate CPU power for physical packages and nodes */ 7729 /* Calculate CPU power for physical packages and nodes */
7620#ifdef CONFIG_SCHED_SMT 7730#ifdef CONFIG_SCHED_SMT
7621 for_each_cpu_mask_nr(i, *cpu_map) { 7731 for_each_cpu(i, cpu_map) {
7622 struct sched_domain *sd = &per_cpu(cpu_domains, i); 7732 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7623 7733
7624 init_sched_groups_power(i, sd); 7734 init_sched_groups_power(i, sd);
7625 } 7735 }
7626#endif 7736#endif
7627#ifdef CONFIG_SCHED_MC 7737#ifdef CONFIG_SCHED_MC
7628 for_each_cpu_mask_nr(i, *cpu_map) { 7738 for_each_cpu(i, cpu_map) {
7629 struct sched_domain *sd = &per_cpu(core_domains, i); 7739 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7630 7740
7631 init_sched_groups_power(i, sd); 7741 init_sched_groups_power(i, sd);
7632 } 7742 }
7633#endif 7743#endif
7634 7744
7635 for_each_cpu_mask_nr(i, *cpu_map) { 7745 for_each_cpu(i, cpu_map) {
7636 struct sched_domain *sd = &per_cpu(phys_domains, i); 7746 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7637 7747
7638 init_sched_groups_power(i, sd); 7748 init_sched_groups_power(i, sd);
7639 } 7749 }
@@ -7645,53 +7755,78 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7645 if (sd_allnodes) { 7755 if (sd_allnodes) {
7646 struct sched_group *sg; 7756 struct sched_group *sg;
7647 7757
7648 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, 7758 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7649 tmpmask); 7759 tmpmask);
7650 init_numa_sched_groups_power(sg); 7760 init_numa_sched_groups_power(sg);
7651 } 7761 }
7652#endif 7762#endif
7653 7763
7654 /* Attach the domains */ 7764 /* Attach the domains */
7655 for_each_cpu_mask_nr(i, *cpu_map) { 7765 for_each_cpu(i, cpu_map) {
7656 struct sched_domain *sd; 7766 struct sched_domain *sd;
7657#ifdef CONFIG_SCHED_SMT 7767#ifdef CONFIG_SCHED_SMT
7658 sd = &per_cpu(cpu_domains, i); 7768 sd = &per_cpu(cpu_domains, i).sd;
7659#elif defined(CONFIG_SCHED_MC) 7769#elif defined(CONFIG_SCHED_MC)
7660 sd = &per_cpu(core_domains, i); 7770 sd = &per_cpu(core_domains, i).sd;
7661#else 7771#else
7662 sd = &per_cpu(phys_domains, i); 7772 sd = &per_cpu(phys_domains, i).sd;
7663#endif 7773#endif
7664 cpu_attach_domain(sd, rd, i); 7774 cpu_attach_domain(sd, rd, i);
7665 } 7775 }
7666 7776
7667 sched_cpumask_free(allmasks); 7777 err = 0;
7668 return 0; 7778
7779free_tmpmask:
7780 free_cpumask_var(tmpmask);
7781free_send_covered:
7782 free_cpumask_var(send_covered);
7783free_this_core_map:
7784 free_cpumask_var(this_core_map);
7785free_this_sibling_map:
7786 free_cpumask_var(this_sibling_map);
7787free_nodemask:
7788 free_cpumask_var(nodemask);
7789free_notcovered:
7790#ifdef CONFIG_NUMA
7791 free_cpumask_var(notcovered);
7792free_covered:
7793 free_cpumask_var(covered);
7794free_domainspan:
7795 free_cpumask_var(domainspan);
7796out:
7797#endif
7798 return err;
7799
7800free_sched_groups:
7801#ifdef CONFIG_NUMA
7802 kfree(sched_group_nodes);
7803#endif
7804 goto free_tmpmask;
7669 7805
7670#ifdef CONFIG_NUMA 7806#ifdef CONFIG_NUMA
7671error: 7807error:
7672 free_sched_groups(cpu_map, tmpmask); 7808 free_sched_groups(cpu_map, tmpmask);
7673 sched_cpumask_free(allmasks); 7809 free_rootdomain(rd);
7674 kfree(rd); 7810 goto free_tmpmask;
7675 return -ENOMEM;
7676#endif 7811#endif
7677} 7812}
7678 7813
7679static int build_sched_domains(const cpumask_t *cpu_map) 7814static int build_sched_domains(const struct cpumask *cpu_map)
7680{ 7815{
7681 return __build_sched_domains(cpu_map, NULL); 7816 return __build_sched_domains(cpu_map, NULL);
7682} 7817}
7683 7818
7684static cpumask_t *doms_cur; /* current sched domains */ 7819static struct cpumask *doms_cur; /* current sched domains */
7685static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7820static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7686static struct sched_domain_attr *dattr_cur; 7821static struct sched_domain_attr *dattr_cur;
7687 /* attribues of custom domains in 'doms_cur' */ 7822 /* attribues of custom domains in 'doms_cur' */
7688 7823
7689/* 7824/*
7690 * Special case: If a kmalloc of a doms_cur partition (array of 7825 * Special case: If a kmalloc of a doms_cur partition (array of
7691 * cpumask_t) fails, then fallback to a single sched domain, 7826 * cpumask) fails, then fallback to a single sched domain,
7692 * as determined by the single cpumask_t fallback_doms. 7827 * as determined by the single cpumask fallback_doms.
7693 */ 7828 */
7694static cpumask_t fallback_doms; 7829static cpumask_var_t fallback_doms;
7695 7830
7696/* 7831/*
7697 * arch_update_cpu_topology lets virtualized architectures update the 7832 * arch_update_cpu_topology lets virtualized architectures update the
@@ -7708,16 +7843,16 @@ int __attribute__((weak)) arch_update_cpu_topology(void)
7708 * For now this just excludes isolated cpus, but could be used to 7843 * For now this just excludes isolated cpus, but could be used to
7709 * exclude other special cases in the future. 7844 * exclude other special cases in the future.
7710 */ 7845 */
7711static int arch_init_sched_domains(const cpumask_t *cpu_map) 7846static int arch_init_sched_domains(const struct cpumask *cpu_map)
7712{ 7847{
7713 int err; 7848 int err;
7714 7849
7715 arch_update_cpu_topology(); 7850 arch_update_cpu_topology();
7716 ndoms_cur = 1; 7851 ndoms_cur = 1;
7717 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 7852 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7718 if (!doms_cur) 7853 if (!doms_cur)
7719 doms_cur = &fallback_doms; 7854 doms_cur = fallback_doms;
7720 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); 7855 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7721 dattr_cur = NULL; 7856 dattr_cur = NULL;
7722 err = build_sched_domains(doms_cur); 7857 err = build_sched_domains(doms_cur);
7723 register_sched_domain_sysctl(); 7858 register_sched_domain_sysctl();
@@ -7725,8 +7860,8 @@ static int arch_init_sched_domains(const cpumask_t *cpu_map)
7725 return err; 7860 return err;
7726} 7861}
7727 7862
7728static void arch_destroy_sched_domains(const cpumask_t *cpu_map, 7863static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7729 cpumask_t *tmpmask) 7864 struct cpumask *tmpmask)
7730{ 7865{
7731 free_sched_groups(cpu_map, tmpmask); 7866 free_sched_groups(cpu_map, tmpmask);
7732} 7867}
@@ -7735,15 +7870,16 @@ static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7735 * Detach sched domains from a group of cpus specified in cpu_map 7870 * Detach sched domains from a group of cpus specified in cpu_map
7736 * These cpus will now be attached to the NULL domain 7871 * These cpus will now be attached to the NULL domain
7737 */ 7872 */
7738static void detach_destroy_domains(const cpumask_t *cpu_map) 7873static void detach_destroy_domains(const struct cpumask *cpu_map)
7739{ 7874{
7740 cpumask_t tmpmask; 7875 /* Save because hotplug lock held. */
7876 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7741 int i; 7877 int i;
7742 7878
7743 for_each_cpu_mask_nr(i, *cpu_map) 7879 for_each_cpu(i, cpu_map)
7744 cpu_attach_domain(NULL, &def_root_domain, i); 7880 cpu_attach_domain(NULL, &def_root_domain, i);
7745 synchronize_sched(); 7881 synchronize_sched();
7746 arch_destroy_sched_domains(cpu_map, &tmpmask); 7882 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7747} 7883}
7748 7884
7749/* handle null as "default" */ 7885/* handle null as "default" */
@@ -7768,7 +7904,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7768 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7904 * doms_new[] to the current sched domain partitioning, doms_cur[].
7769 * It destroys each deleted domain and builds each new domain. 7905 * It destroys each deleted domain and builds each new domain.
7770 * 7906 *
7771 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. 7907 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7772 * The masks don't intersect (don't overlap.) We should setup one 7908 * The masks don't intersect (don't overlap.) We should setup one
7773 * sched domain for each mask. CPUs not in any of the cpumasks will 7909 * sched domain for each mask. CPUs not in any of the cpumasks will
7774 * not be load balanced. If the same cpumask appears both in the 7910 * not be load balanced. If the same cpumask appears both in the
@@ -7782,13 +7918,14 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7782 * the single partition 'fallback_doms', it also forces the domains 7918 * the single partition 'fallback_doms', it also forces the domains
7783 * to be rebuilt. 7919 * to be rebuilt.
7784 * 7920 *
7785 * If doms_new == NULL it will be replaced with cpu_online_map. 7921 * If doms_new == NULL it will be replaced with cpu_online_mask.
7786 * ndoms_new == 0 is a special case for destroying existing domains, 7922 * ndoms_new == 0 is a special case for destroying existing domains,
7787 * and it will not create the default domain. 7923 * and it will not create the default domain.
7788 * 7924 *
7789 * Call with hotplug lock held 7925 * Call with hotplug lock held
7790 */ 7926 */
7791void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 7927/* FIXME: Change to struct cpumask *doms_new[] */
7928void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7792 struct sched_domain_attr *dattr_new) 7929 struct sched_domain_attr *dattr_new)
7793{ 7930{
7794 int i, j, n; 7931 int i, j, n;
@@ -7807,7 +7944,7 @@ void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7807 /* Destroy deleted domains */ 7944 /* Destroy deleted domains */
7808 for (i = 0; i < ndoms_cur; i++) { 7945 for (i = 0; i < ndoms_cur; i++) {
7809 for (j = 0; j < n && !new_topology; j++) { 7946 for (j = 0; j < n && !new_topology; j++) {
7810 if (cpus_equal(doms_cur[i], doms_new[j]) 7947 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7811 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7948 && dattrs_equal(dattr_cur, i, dattr_new, j))
7812 goto match1; 7949 goto match1;
7813 } 7950 }
@@ -7819,15 +7956,15 @@ match1:
7819 7956
7820 if (doms_new == NULL) { 7957 if (doms_new == NULL) {
7821 ndoms_cur = 0; 7958 ndoms_cur = 0;
7822 doms_new = &fallback_doms; 7959 doms_new = fallback_doms;
7823 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); 7960 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7824 WARN_ON_ONCE(dattr_new); 7961 WARN_ON_ONCE(dattr_new);
7825 } 7962 }
7826 7963
7827 /* Build new domains */ 7964 /* Build new domains */
7828 for (i = 0; i < ndoms_new; i++) { 7965 for (i = 0; i < ndoms_new; i++) {
7829 for (j = 0; j < ndoms_cur && !new_topology; j++) { 7966 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7830 if (cpus_equal(doms_new[i], doms_cur[j]) 7967 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7831 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7968 && dattrs_equal(dattr_new, i, dattr_cur, j))
7832 goto match2; 7969 goto match2;
7833 } 7970 }
@@ -7839,7 +7976,7 @@ match2:
7839 } 7976 }
7840 7977
7841 /* Remember the new sched domains */ 7978 /* Remember the new sched domains */
7842 if (doms_cur != &fallback_doms) 7979 if (doms_cur != fallback_doms)
7843 kfree(doms_cur); 7980 kfree(doms_cur);
7844 kfree(dattr_cur); /* kfree(NULL) is safe */ 7981 kfree(dattr_cur); /* kfree(NULL) is safe */
7845 doms_cur = doms_new; 7982 doms_cur = doms_new;
@@ -7852,7 +7989,7 @@ match2:
7852} 7989}
7853 7990
7854#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 7991#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7855int arch_reinit_sched_domains(void) 7992static void arch_reinit_sched_domains(void)
7856{ 7993{
7857 get_online_cpus(); 7994 get_online_cpus();
7858 7995
@@ -7861,25 +7998,33 @@ int arch_reinit_sched_domains(void)
7861 7998
7862 rebuild_sched_domains(); 7999 rebuild_sched_domains();
7863 put_online_cpus(); 8000 put_online_cpus();
7864
7865 return 0;
7866} 8001}
7867 8002
7868static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 8003static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7869{ 8004{
7870 int ret; 8005 unsigned int level = 0;
8006
8007 if (sscanf(buf, "%u", &level) != 1)
8008 return -EINVAL;
8009
8010 /*
8011 * level is always be positive so don't check for
8012 * level < POWERSAVINGS_BALANCE_NONE which is 0
8013 * What happens on 0 or 1 byte write,
8014 * need to check for count as well?
8015 */
7871 8016
7872 if (buf[0] != '0' && buf[0] != '1') 8017 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7873 return -EINVAL; 8018 return -EINVAL;
7874 8019
7875 if (smt) 8020 if (smt)
7876 sched_smt_power_savings = (buf[0] == '1'); 8021 sched_smt_power_savings = level;
7877 else 8022 else
7878 sched_mc_power_savings = (buf[0] == '1'); 8023 sched_mc_power_savings = level;
7879 8024
7880 ret = arch_reinit_sched_domains(); 8025 arch_reinit_sched_domains();
7881 8026
7882 return ret ? ret : count; 8027 return count;
7883} 8028}
7884 8029
7885#ifdef CONFIG_SCHED_MC 8030#ifdef CONFIG_SCHED_MC
@@ -7914,7 +8059,7 @@ static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7914 sched_smt_power_savings_store); 8059 sched_smt_power_savings_store);
7915#endif 8060#endif
7916 8061
7917int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) 8062int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7918{ 8063{
7919 int err = 0; 8064 int err = 0;
7920 8065
@@ -7979,7 +8124,9 @@ static int update_runtime(struct notifier_block *nfb,
7979 8124
7980void __init sched_init_smp(void) 8125void __init sched_init_smp(void)
7981{ 8126{
7982 cpumask_t non_isolated_cpus; 8127 cpumask_var_t non_isolated_cpus;
8128
8129 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7983 8130
7984#if defined(CONFIG_NUMA) 8131#if defined(CONFIG_NUMA)
7985 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), 8132 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
@@ -7988,10 +8135,10 @@ void __init sched_init_smp(void)
7988#endif 8135#endif
7989 get_online_cpus(); 8136 get_online_cpus();
7990 mutex_lock(&sched_domains_mutex); 8137 mutex_lock(&sched_domains_mutex);
7991 arch_init_sched_domains(&cpu_online_map); 8138 arch_init_sched_domains(cpu_online_mask);
7992 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); 8139 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7993 if (cpus_empty(non_isolated_cpus)) 8140 if (cpumask_empty(non_isolated_cpus))
7994 cpu_set(smp_processor_id(), non_isolated_cpus); 8141 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7995 mutex_unlock(&sched_domains_mutex); 8142 mutex_unlock(&sched_domains_mutex);
7996 put_online_cpus(); 8143 put_online_cpus();
7997 8144
@@ -8006,9 +8153,13 @@ void __init sched_init_smp(void)
8006 init_hrtick(); 8153 init_hrtick();
8007 8154
8008 /* Move init over to a non-isolated CPU */ 8155 /* Move init over to a non-isolated CPU */
8009 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) 8156 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8010 BUG(); 8157 BUG();
8011 sched_init_granularity(); 8158 sched_init_granularity();
8159 free_cpumask_var(non_isolated_cpus);
8160
8161 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8162 init_sched_rt_class();
8012} 8163}
8013#else 8164#else
8014void __init sched_init_smp(void) 8165void __init sched_init_smp(void)
@@ -8323,6 +8474,15 @@ void __init sched_init(void)
8323 */ 8474 */
8324 current->sched_class = &fair_sched_class; 8475 current->sched_class = &fair_sched_class;
8325 8476
8477 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8478 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8479#ifdef CONFIG_SMP
8480#ifdef CONFIG_NO_HZ
8481 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8482#endif
8483 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8484#endif /* SMP */
8485
8326 scheduler_running = 1; 8486 scheduler_running = 1;
8327} 8487}
8328 8488