aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-10-28 11:54:49 -0400
committerIngo Molnar <mingo@elte.hu>2008-10-28 11:54:49 -0400
commitd1a76187a5be4f89c6cb19d800cb5fb7aac735c5 (patch)
tree2fac3ffbfffc7560eeef8364b541d0d7a0057920 /kernel/sched.c
parentc7e78cff6b7518212247fb20b1dc6411540dc9af (diff)
parent0173a3265b228da319ceb9c1ec6a5682fd1b2d92 (diff)
Merge commit 'v2.6.28-rc2' into core/locking
Conflicts: arch/um/include/asm/system.h
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c476
1 files changed, 291 insertions, 185 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index ec3bd1f398b3..0a4dc3b1300b 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -55,6 +55,7 @@
55#include <linux/cpuset.h> 55#include <linux/cpuset.h>
56#include <linux/percpu.h> 56#include <linux/percpu.h>
57#include <linux/kthread.h> 57#include <linux/kthread.h>
58#include <linux/proc_fs.h>
58#include <linux/seq_file.h> 59#include <linux/seq_file.h>
59#include <linux/sysctl.h> 60#include <linux/sysctl.h>
60#include <linux/syscalls.h> 61#include <linux/syscalls.h>
@@ -71,6 +72,7 @@
71#include <linux/debugfs.h> 72#include <linux/debugfs.h>
72#include <linux/ctype.h> 73#include <linux/ctype.h>
73#include <linux/ftrace.h> 74#include <linux/ftrace.h>
75#include <trace/sched.h>
74 76
75#include <asm/tlb.h> 77#include <asm/tlb.h>
76#include <asm/irq_regs.h> 78#include <asm/irq_regs.h>
@@ -201,14 +203,19 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
201 hrtimer_init(&rt_b->rt_period_timer, 203 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer; 205 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207}
208
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
205} 212}
206 213
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{ 215{
209 ktime_t now; 216 ktime_t now;
210 217
211 if (rt_b->rt_runtime == RUNTIME_INF) 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
212 return; 219 return;
213 220
214 if (hrtimer_active(&rt_b->rt_period_timer)) 221 if (hrtimer_active(&rt_b->rt_period_timer))
@@ -221,9 +228,8 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 228
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer); 229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); 230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer, 231 hrtimer_start_expires(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires, 232 HRTIMER_MODE_ABS);
226 HRTIMER_MODE_ABS);
227 } 233 }
228 spin_unlock(&rt_b->rt_runtime_lock); 234 spin_unlock(&rt_b->rt_runtime_lock);
229} 235}
@@ -298,9 +304,9 @@ static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300#endif /* CONFIG_RT_GROUP_SCHED */ 306#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */ 307#else /* !CONFIG_USER_SCHED */
302#define root_task_group init_task_group 308#define root_task_group init_task_group
303#endif /* CONFIG_FAIR_GROUP_SCHED */ 309#endif /* CONFIG_USER_SCHED */
304 310
305/* task_group_lock serializes add/remove of task groups and also changes to 311/* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares. 312 * a task group's cpu shares.
@@ -604,9 +610,9 @@ struct rq {
604 610
605static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 611static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
606 612
607static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) 613static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
608{ 614{
609 rq->curr->sched_class->check_preempt_curr(rq, p); 615 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
610} 616}
611 617
612static inline int cpu_of(struct rq *rq) 618static inline int cpu_of(struct rq *rq)
@@ -813,6 +819,13 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32;
813unsigned int sysctl_sched_shares_ratelimit = 250000; 819unsigned int sysctl_sched_shares_ratelimit = 250000;
814 820
815/* 821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
828/*
816 * period over which we measure -rt task cpu usage in us. 829 * period over which we measure -rt task cpu usage in us.
817 * default: 1s 830 * default: 1s
818 */ 831 */
@@ -1058,7 +1071,7 @@ static void hrtick_start(struct rq *rq, u64 delay)
1058 struct hrtimer *timer = &rq->hrtick_timer; 1071 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060 1073
1061 timer->expires = time; 1074 hrtimer_set_expires(timer, time);
1062 1075
1063 if (rq == this_rq()) { 1076 if (rq == this_rq()) {
1064 hrtimer_restart(timer); 1077 hrtimer_restart(timer);
@@ -1087,7 +1100,7 @@ hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 return NOTIFY_DONE; 1100 return NOTIFY_DONE;
1088} 1101}
1089 1102
1090static void init_hrtick(void) 1103static __init void init_hrtick(void)
1091{ 1104{
1092 hotcpu_notifier(hotplug_hrtick, 0); 1105 hotcpu_notifier(hotplug_hrtick, 0);
1093} 1106}
@@ -1102,7 +1115,7 @@ static void hrtick_start(struct rq *rq, u64 delay)
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); 1115 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103} 1116}
1104 1117
1105static void init_hrtick(void) 1118static inline void init_hrtick(void)
1106{ 1119{
1107} 1120}
1108#endif /* CONFIG_SMP */ 1121#endif /* CONFIG_SMP */
@@ -1119,9 +1132,9 @@ static void init_rq_hrtick(struct rq *rq)
1119 1132
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick; 1134 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 1135 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1123} 1136}
1124#else 1137#else /* CONFIG_SCHED_HRTICK */
1125static inline void hrtick_clear(struct rq *rq) 1138static inline void hrtick_clear(struct rq *rq)
1126{ 1139{
1127} 1140}
@@ -1133,7 +1146,7 @@ static inline void init_rq_hrtick(struct rq *rq)
1133static inline void init_hrtick(void) 1146static inline void init_hrtick(void)
1134{ 1147{
1135} 1148}
1136#endif 1149#endif /* CONFIG_SCHED_HRTICK */
1137 1150
1138/* 1151/*
1139 * resched_task - mark a task 'to be rescheduled now'. 1152 * resched_task - mark a task 'to be rescheduled now'.
@@ -1380,38 +1393,24 @@ static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1380 update_load_sub(&rq->load, load); 1393 update_load_sub(&rq->load, load);
1381} 1394}
1382 1395
1383#ifdef CONFIG_SMP 1396#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1384static unsigned long source_load(int cpu, int type); 1397typedef int (*tg_visitor)(struct task_group *, void *);
1385static unsigned long target_load(int cpu, int type);
1386static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387
1388static unsigned long cpu_avg_load_per_task(int cpu)
1389{
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396}
1397
1398#ifdef CONFIG_FAIR_GROUP_SCHED
1399
1400typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1398
1402/* 1399/*
1403 * Iterate the full tree, calling @down when first entering a node and @up when 1400 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time. 1401 * leaving it for the final time.
1405 */ 1402 */
1406static void 1403static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1407walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408{ 1404{
1409 struct task_group *parent, *child; 1405 struct task_group *parent, *child;
1406 int ret;
1410 1407
1411 rcu_read_lock(); 1408 rcu_read_lock();
1412 parent = &root_task_group; 1409 parent = &root_task_group;
1413down: 1410down:
1414 (*down)(parent, cpu, sd); 1411 ret = (*down)(parent, data);
1412 if (ret)
1413 goto out_unlock;
1415 list_for_each_entry_rcu(child, &parent->children, siblings) { 1414 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child; 1415 parent = child;
1417 goto down; 1416 goto down;
@@ -1419,23 +1418,51 @@ down:
1419up: 1418up:
1420 continue; 1419 continue;
1421 } 1420 }
1422 (*up)(parent, cpu, sd); 1421 ret = (*up)(parent, data);
1422 if (ret)
1423 goto out_unlock;
1423 1424
1424 child = parent; 1425 child = parent;
1425 parent = parent->parent; 1426 parent = parent->parent;
1426 if (parent) 1427 if (parent)
1427 goto up; 1428 goto up;
1429out_unlock:
1428 rcu_read_unlock(); 1430 rcu_read_unlock();
1431
1432 return ret;
1429} 1433}
1430 1434
1435static int tg_nop(struct task_group *tg, void *data)
1436{
1437 return 0;
1438}
1439#endif
1440
1441#ifdef CONFIG_SMP
1442static unsigned long source_load(int cpu, int type);
1443static unsigned long target_load(int cpu, int type);
1444static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1445
1446static unsigned long cpu_avg_load_per_task(int cpu)
1447{
1448 struct rq *rq = cpu_rq(cpu);
1449
1450 if (rq->nr_running)
1451 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1452
1453 return rq->avg_load_per_task;
1454}
1455
1456#ifdef CONFIG_FAIR_GROUP_SCHED
1457
1431static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1458static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432 1459
1433/* 1460/*
1434 * Calculate and set the cpu's group shares. 1461 * Calculate and set the cpu's group shares.
1435 */ 1462 */
1436static void 1463static void
1437__update_group_shares_cpu(struct task_group *tg, int cpu, 1464update_group_shares_cpu(struct task_group *tg, int cpu,
1438 unsigned long sd_shares, unsigned long sd_rq_weight) 1465 unsigned long sd_shares, unsigned long sd_rq_weight)
1439{ 1466{
1440 int boost = 0; 1467 int boost = 0;
1441 unsigned long shares; 1468 unsigned long shares;
@@ -1466,19 +1493,23 @@ __update_group_shares_cpu(struct task_group *tg, int cpu,
1466 * 1493 *
1467 */ 1494 */
1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1); 1495 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1496 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1469 1497
1470 /* 1498 if (abs(shares - tg->se[cpu]->load.weight) >
1471 * record the actual number of shares, not the boosted amount. 1499 sysctl_sched_shares_thresh) {
1472 */ 1500 struct rq *rq = cpu_rq(cpu);
1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares; 1501 unsigned long flags;
1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475 1502
1476 if (shares < MIN_SHARES) 1503 spin_lock_irqsave(&rq->lock, flags);
1477 shares = MIN_SHARES; 1504 /*
1478 else if (shares > MAX_SHARES) 1505 * record the actual number of shares, not the boosted amount.
1479 shares = MAX_SHARES; 1506 */
1507 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1508 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1480 1509
1481 __set_se_shares(tg->se[cpu], shares); 1510 __set_se_shares(tg->se[cpu], shares);
1511 spin_unlock_irqrestore(&rq->lock, flags);
1512 }
1482} 1513}
1483 1514
1484/* 1515/*
@@ -1486,11 +1517,11 @@ __update_group_shares_cpu(struct task_group *tg, int cpu,
1486 * This needs to be done in a bottom-up fashion because the rq weight of a 1517 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups. 1518 * parent group depends on the shares of its child groups.
1488 */ 1519 */
1489static void 1520static int tg_shares_up(struct task_group *tg, void *data)
1490tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491{ 1521{
1492 unsigned long rq_weight = 0; 1522 unsigned long rq_weight = 0;
1493 unsigned long shares = 0; 1523 unsigned long shares = 0;
1524 struct sched_domain *sd = data;
1494 int i; 1525 int i;
1495 1526
1496 for_each_cpu_mask(i, sd->span) { 1527 for_each_cpu_mask(i, sd->span) {
@@ -1507,14 +1538,10 @@ tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1507 if (!rq_weight) 1538 if (!rq_weight)
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD; 1539 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509 1540
1510 for_each_cpu_mask(i, sd->span) { 1541 for_each_cpu_mask(i, sd->span)
1511 struct rq *rq = cpu_rq(i); 1542 update_group_shares_cpu(tg, i, shares, rq_weight);
1512 unsigned long flags;
1513 1543
1514 spin_lock_irqsave(&rq->lock, flags); 1544 return 0;
1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516 spin_unlock_irqrestore(&rq->lock, flags);
1517 }
1518} 1545}
1519 1546
1520/* 1547/*
@@ -1522,10 +1549,10 @@ tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1522 * This needs to be done in a top-down fashion because the load of a child 1549 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load. 1550 * group is a fraction of its parents load.
1524 */ 1551 */
1525static void 1552static int tg_load_down(struct task_group *tg, void *data)
1526tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527{ 1553{
1528 unsigned long load; 1554 unsigned long load;
1555 long cpu = (long)data;
1529 1556
1530 if (!tg->parent) { 1557 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight; 1558 load = cpu_rq(cpu)->load.weight;
@@ -1536,11 +1563,8 @@ tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1536 } 1563 }
1537 1564
1538 tg->cfs_rq[cpu]->h_load = load; 1565 tg->cfs_rq[cpu]->h_load = load;
1539}
1540 1566
1541static void 1567 return 0;
1542tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543{
1544} 1568}
1545 1569
1546static void update_shares(struct sched_domain *sd) 1570static void update_shares(struct sched_domain *sd)
@@ -1550,7 +1574,7 @@ static void update_shares(struct sched_domain *sd)
1550 1574
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1575 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now; 1576 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd); 1577 walk_tg_tree(tg_nop, tg_shares_up, sd);
1554 } 1578 }
1555} 1579}
1556 1580
@@ -1561,9 +1585,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1561 spin_lock(&rq->lock); 1585 spin_lock(&rq->lock);
1562} 1586}
1563 1587
1564static void update_h_load(int cpu) 1588static void update_h_load(long cpu)
1565{ 1589{
1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL); 1590 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1567} 1591}
1568 1592
1569#else 1593#else
@@ -1918,14 +1942,12 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1918 * just go back and repeat. 1942 * just go back and repeat.
1919 */ 1943 */
1920 rq = task_rq_lock(p, &flags); 1944 rq = task_rq_lock(p, &flags);
1945 trace_sched_wait_task(rq, p);
1921 running = task_running(rq, p); 1946 running = task_running(rq, p);
1922 on_rq = p->se.on_rq; 1947 on_rq = p->se.on_rq;
1923 ncsw = 0; 1948 ncsw = 0;
1924 if (!match_state || p->state == match_state) { 1949 if (!match_state || p->state == match_state)
1925 ncsw = p->nivcsw + p->nvcsw; 1950 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
1929 task_rq_unlock(rq, &flags); 1951 task_rq_unlock(rq, &flags);
1930 1952
1931 /* 1953 /*
@@ -2282,10 +2304,8 @@ out_activate:
2282 success = 1; 2304 success = 1;
2283 2305
2284out_running: 2306out_running:
2285 trace_mark(kernel_sched_wakeup, 2307 trace_sched_wakeup(rq, p);
2286 "pid %d state %ld ## rq %p task %p rq->curr %p", 2308 check_preempt_curr(rq, p, sync);
2287 p->pid, p->state, rq, p, rq->curr);
2288 check_preempt_curr(rq, p);
2289 2309
2290 p->state = TASK_RUNNING; 2310 p->state = TASK_RUNNING;
2291#ifdef CONFIG_SMP 2311#ifdef CONFIG_SMP
@@ -2417,10 +2437,8 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2417 p->sched_class->task_new(rq, p); 2437 p->sched_class->task_new(rq, p);
2418 inc_nr_running(rq); 2438 inc_nr_running(rq);
2419 } 2439 }
2420 trace_mark(kernel_sched_wakeup_new, 2440 trace_sched_wakeup_new(rq, p);
2421 "pid %d state %ld ## rq %p task %p rq->curr %p", 2441 check_preempt_curr(rq, p, 0);
2422 p->pid, p->state, rq, p, rq->curr);
2423 check_preempt_curr(rq, p);
2424#ifdef CONFIG_SMP 2442#ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up) 2443 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p); 2444 p->sched_class->task_wake_up(rq, p);
@@ -2592,11 +2610,7 @@ context_switch(struct rq *rq, struct task_struct *prev,
2592 struct mm_struct *mm, *oldmm; 2610 struct mm_struct *mm, *oldmm;
2593 2611
2594 prepare_task_switch(rq, prev, next); 2612 prepare_task_switch(rq, prev, next);
2595 trace_mark(kernel_sched_schedule, 2613 trace_sched_switch(rq, prev, next);
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev->pid, next->pid, prev->state,
2599 rq, prev, next);
2600 mm = next->mm; 2614 mm = next->mm;
2601 oldmm = prev->active_mm; 2615 oldmm = prev->active_mm;
2602 /* 2616 /*
@@ -2836,6 +2850,7 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2836 || unlikely(!cpu_active(dest_cpu))) 2850 || unlikely(!cpu_active(dest_cpu)))
2837 goto out; 2851 goto out;
2838 2852
2853 trace_sched_migrate_task(rq, p, dest_cpu);
2839 /* force the process onto the specified CPU */ 2854 /* force the process onto the specified CPU */
2840 if (migrate_task(p, dest_cpu, &req)) { 2855 if (migrate_task(p, dest_cpu, &req)) {
2841 /* Need to wait for migration thread (might exit: take ref). */ 2856 /* Need to wait for migration thread (might exit: take ref). */
@@ -2880,7 +2895,7 @@ static void pull_task(struct rq *src_rq, struct task_struct *p,
2880 * Note that idle threads have a prio of MAX_PRIO, for this test 2895 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them. 2896 * to be always true for them.
2882 */ 2897 */
2883 check_preempt_curr(this_rq, p); 2898 check_preempt_curr(this_rq, p, 0);
2884} 2899}
2885 2900
2886/* 2901/*
@@ -4037,23 +4052,26 @@ DEFINE_PER_CPU(struct kernel_stat, kstat);
4037EXPORT_PER_CPU_SYMBOL(kstat); 4052EXPORT_PER_CPU_SYMBOL(kstat);
4038 4053
4039/* 4054/*
4040 * Return p->sum_exec_runtime plus any more ns on the sched_clock 4055 * Return any ns on the sched_clock that have not yet been banked in
4041 * that have not yet been banked in case the task is currently running. 4056 * @p in case that task is currently running.
4042 */ 4057 */
4043unsigned long long task_sched_runtime(struct task_struct *p) 4058unsigned long long task_delta_exec(struct task_struct *p)
4044{ 4059{
4045 unsigned long flags; 4060 unsigned long flags;
4046 u64 ns, delta_exec;
4047 struct rq *rq; 4061 struct rq *rq;
4062 u64 ns = 0;
4048 4063
4049 rq = task_rq_lock(p, &flags); 4064 rq = task_rq_lock(p, &flags);
4050 ns = p->se.sum_exec_runtime; 4065
4051 if (task_current(rq, p)) { 4066 if (task_current(rq, p)) {
4067 u64 delta_exec;
4068
4052 update_rq_clock(rq); 4069 update_rq_clock(rq);
4053 delta_exec = rq->clock - p->se.exec_start; 4070 delta_exec = rq->clock - p->se.exec_start;
4054 if ((s64)delta_exec > 0) 4071 if ((s64)delta_exec > 0)
4055 ns += delta_exec; 4072 ns = delta_exec;
4056 } 4073 }
4074
4057 task_rq_unlock(rq, &flags); 4075 task_rq_unlock(rq, &flags);
4058 4076
4059 return ns; 4077 return ns;
@@ -4070,6 +4088,7 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
4070 cputime64_t tmp; 4088 cputime64_t tmp;
4071 4089
4072 p->utime = cputime_add(p->utime, cputime); 4090 p->utime = cputime_add(p->utime, cputime);
4091 account_group_user_time(p, cputime);
4073 4092
4074 /* Add user time to cpustat. */ 4093 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime); 4094 tmp = cputime_to_cputime64(cputime);
@@ -4094,6 +4113,7 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime)
4094 tmp = cputime_to_cputime64(cputime); 4113 tmp = cputime_to_cputime64(cputime);
4095 4114
4096 p->utime = cputime_add(p->utime, cputime); 4115 p->utime = cputime_add(p->utime, cputime);
4116 account_group_user_time(p, cputime);
4097 p->gtime = cputime_add(p->gtime, cputime); 4117 p->gtime = cputime_add(p->gtime, cputime);
4098 4118
4099 cpustat->user = cputime64_add(cpustat->user, tmp); 4119 cpustat->user = cputime64_add(cpustat->user, tmp);
@@ -4129,6 +4149,7 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
4129 } 4149 }
4130 4150
4131 p->stime = cputime_add(p->stime, cputime); 4151 p->stime = cputime_add(p->stime, cputime);
4152 account_group_system_time(p, cputime);
4132 4153
4133 /* Add system time to cpustat. */ 4154 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime); 4155 tmp = cputime_to_cputime64(cputime);
@@ -4170,6 +4191,7 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
4170 4191
4171 if (p == rq->idle) { 4192 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal); 4193 p->stime = cputime_add(p->stime, steal);
4194 account_group_system_time(p, steal);
4173 if (atomic_read(&rq->nr_iowait) > 0) 4195 if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp); 4196 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else 4197 else
@@ -4426,12 +4448,8 @@ need_resched_nonpreemptible:
4426 if (sched_feat(HRTICK)) 4448 if (sched_feat(HRTICK))
4427 hrtick_clear(rq); 4449 hrtick_clear(rq);
4428 4450
4429 /* 4451 spin_lock_irq(&rq->lock);
4430 * Do the rq-clock update outside the rq lock:
4431 */
4432 local_irq_disable();
4433 update_rq_clock(rq); 4452 update_rq_clock(rq);
4434 spin_lock(&rq->lock);
4435 clear_tsk_need_resched(prev); 4453 clear_tsk_need_resched(prev);
4436 4454
4437 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 4455 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
@@ -4627,6 +4645,15 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4627} 4645}
4628EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 4646EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4629 4647
4648/**
4649 * complete: - signals a single thread waiting on this completion
4650 * @x: holds the state of this particular completion
4651 *
4652 * This will wake up a single thread waiting on this completion. Threads will be
4653 * awakened in the same order in which they were queued.
4654 *
4655 * See also complete_all(), wait_for_completion() and related routines.
4656 */
4630void complete(struct completion *x) 4657void complete(struct completion *x)
4631{ 4658{
4632 unsigned long flags; 4659 unsigned long flags;
@@ -4638,6 +4665,12 @@ void complete(struct completion *x)
4638} 4665}
4639EXPORT_SYMBOL(complete); 4666EXPORT_SYMBOL(complete);
4640 4667
4668/**
4669 * complete_all: - signals all threads waiting on this completion
4670 * @x: holds the state of this particular completion
4671 *
4672 * This will wake up all threads waiting on this particular completion event.
4673 */
4641void complete_all(struct completion *x) 4674void complete_all(struct completion *x)
4642{ 4675{
4643 unsigned long flags; 4676 unsigned long flags;
@@ -4658,10 +4691,7 @@ do_wait_for_common(struct completion *x, long timeout, int state)
4658 wait.flags |= WQ_FLAG_EXCLUSIVE; 4691 wait.flags |= WQ_FLAG_EXCLUSIVE;
4659 __add_wait_queue_tail(&x->wait, &wait); 4692 __add_wait_queue_tail(&x->wait, &wait);
4660 do { 4693 do {
4661 if ((state == TASK_INTERRUPTIBLE && 4694 if (signal_pending_state(state, current)) {
4662 signal_pending(current)) ||
4663 (state == TASK_KILLABLE &&
4664 fatal_signal_pending(current))) {
4665 timeout = -ERESTARTSYS; 4695 timeout = -ERESTARTSYS;
4666 break; 4696 break;
4667 } 4697 }
@@ -4689,12 +4719,31 @@ wait_for_common(struct completion *x, long timeout, int state)
4689 return timeout; 4719 return timeout;
4690} 4720}
4691 4721
4722/**
4723 * wait_for_completion: - waits for completion of a task
4724 * @x: holds the state of this particular completion
4725 *
4726 * This waits to be signaled for completion of a specific task. It is NOT
4727 * interruptible and there is no timeout.
4728 *
4729 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4730 * and interrupt capability. Also see complete().
4731 */
4692void __sched wait_for_completion(struct completion *x) 4732void __sched wait_for_completion(struct completion *x)
4693{ 4733{
4694 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 4734 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4695} 4735}
4696EXPORT_SYMBOL(wait_for_completion); 4736EXPORT_SYMBOL(wait_for_completion);
4697 4737
4738/**
4739 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4740 * @x: holds the state of this particular completion
4741 * @timeout: timeout value in jiffies
4742 *
4743 * This waits for either a completion of a specific task to be signaled or for a
4744 * specified timeout to expire. The timeout is in jiffies. It is not
4745 * interruptible.
4746 */
4698unsigned long __sched 4747unsigned long __sched
4699wait_for_completion_timeout(struct completion *x, unsigned long timeout) 4748wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4700{ 4749{
@@ -4702,6 +4751,13 @@ wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4702} 4751}
4703EXPORT_SYMBOL(wait_for_completion_timeout); 4752EXPORT_SYMBOL(wait_for_completion_timeout);
4704 4753
4754/**
4755 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4756 * @x: holds the state of this particular completion
4757 *
4758 * This waits for completion of a specific task to be signaled. It is
4759 * interruptible.
4760 */
4705int __sched wait_for_completion_interruptible(struct completion *x) 4761int __sched wait_for_completion_interruptible(struct completion *x)
4706{ 4762{
4707 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 4763 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
@@ -4711,6 +4767,14 @@ int __sched wait_for_completion_interruptible(struct completion *x)
4711} 4767}
4712EXPORT_SYMBOL(wait_for_completion_interruptible); 4768EXPORT_SYMBOL(wait_for_completion_interruptible);
4713 4769
4770/**
4771 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4772 * @x: holds the state of this particular completion
4773 * @timeout: timeout value in jiffies
4774 *
4775 * This waits for either a completion of a specific task to be signaled or for a
4776 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4777 */
4714unsigned long __sched 4778unsigned long __sched
4715wait_for_completion_interruptible_timeout(struct completion *x, 4779wait_for_completion_interruptible_timeout(struct completion *x,
4716 unsigned long timeout) 4780 unsigned long timeout)
@@ -4719,6 +4783,13 @@ wait_for_completion_interruptible_timeout(struct completion *x,
4719} 4783}
4720EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 4784EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4721 4785
4786/**
4787 * wait_for_completion_killable: - waits for completion of a task (killable)
4788 * @x: holds the state of this particular completion
4789 *
4790 * This waits to be signaled for completion of a specific task. It can be
4791 * interrupted by a kill signal.
4792 */
4722int __sched wait_for_completion_killable(struct completion *x) 4793int __sched wait_for_completion_killable(struct completion *x)
4723{ 4794{
4724 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 4795 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
@@ -5121,7 +5192,8 @@ recheck:
5121 * Do not allow realtime tasks into groups that have no runtime 5192 * Do not allow realtime tasks into groups that have no runtime
5122 * assigned. 5193 * assigned.
5123 */ 5194 */
5124 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0) 5195 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5196 task_group(p)->rt_bandwidth.rt_runtime == 0)
5125 return -EPERM; 5197 return -EPERM;
5126#endif 5198#endif
5127 5199
@@ -5957,7 +6029,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5957 set_task_cpu(p, dest_cpu); 6029 set_task_cpu(p, dest_cpu);
5958 if (on_rq) { 6030 if (on_rq) {
5959 activate_task(rq_dest, p, 0); 6031 activate_task(rq_dest, p, 0);
5960 check_preempt_curr(rq_dest, p); 6032 check_preempt_curr(rq_dest, p, 0);
5961 } 6033 }
5962done: 6034done:
5963 ret = 1; 6035 ret = 1;
@@ -6282,7 +6354,7 @@ set_table_entry(struct ctl_table *entry,
6282static struct ctl_table * 6354static struct ctl_table *
6283sd_alloc_ctl_domain_table(struct sched_domain *sd) 6355sd_alloc_ctl_domain_table(struct sched_domain *sd)
6284{ 6356{
6285 struct ctl_table *table = sd_alloc_ctl_entry(12); 6357 struct ctl_table *table = sd_alloc_ctl_entry(13);
6286 6358
6287 if (table == NULL) 6359 if (table == NULL)
6288 return NULL; 6360 return NULL;
@@ -6310,7 +6382,9 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
6310 sizeof(int), 0644, proc_dointvec_minmax); 6382 sizeof(int), 0644, proc_dointvec_minmax);
6311 set_table_entry(&table[10], "flags", &sd->flags, 6383 set_table_entry(&table[10], "flags", &sd->flags,
6312 sizeof(int), 0644, proc_dointvec_minmax); 6384 sizeof(int), 0644, proc_dointvec_minmax);
6313 /* &table[11] is terminator */ 6385 set_table_entry(&table[11], "name", sd->name,
6386 CORENAME_MAX_SIZE, 0444, proc_dostring);
6387 /* &table[12] is terminator */
6314 6388
6315 return table; 6389 return table;
6316} 6390}
@@ -7194,13 +7268,21 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7194 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 7268 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7195 */ 7269 */
7196 7270
7271#ifdef CONFIG_SCHED_DEBUG
7272# define SD_INIT_NAME(sd, type) sd->name = #type
7273#else
7274# define SD_INIT_NAME(sd, type) do { } while (0)
7275#endif
7276
7197#define SD_INIT(sd, type) sd_init_##type(sd) 7277#define SD_INIT(sd, type) sd_init_##type(sd)
7278
7198#define SD_INIT_FUNC(type) \ 7279#define SD_INIT_FUNC(type) \
7199static noinline void sd_init_##type(struct sched_domain *sd) \ 7280static noinline void sd_init_##type(struct sched_domain *sd) \
7200{ \ 7281{ \
7201 memset(sd, 0, sizeof(*sd)); \ 7282 memset(sd, 0, sizeof(*sd)); \
7202 *sd = SD_##type##_INIT; \ 7283 *sd = SD_##type##_INIT; \
7203 sd->level = SD_LV_##type; \ 7284 sd->level = SD_LV_##type; \
7285 SD_INIT_NAME(sd, type); \
7204} 7286}
7205 7287
7206SD_INIT_FUNC(CPU) 7288SD_INIT_FUNC(CPU)
@@ -8242,20 +8324,25 @@ void __might_sleep(char *file, int line)
8242#ifdef in_atomic 8324#ifdef in_atomic
8243 static unsigned long prev_jiffy; /* ratelimiting */ 8325 static unsigned long prev_jiffy; /* ratelimiting */
8244 8326
8245 if ((in_atomic() || irqs_disabled()) && 8327 if ((!in_atomic() && !irqs_disabled()) ||
8246 system_state == SYSTEM_RUNNING && !oops_in_progress) { 8328 system_state != SYSTEM_RUNNING || oops_in_progress)
8247 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8329 return;
8248 return; 8330 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8249 prev_jiffy = jiffies; 8331 return;
8250 printk(KERN_ERR "BUG: sleeping function called from invalid" 8332 prev_jiffy = jiffies;
8251 " context at %s:%d\n", file, line); 8333
8252 printk("in_atomic():%d, irqs_disabled():%d\n", 8334 printk(KERN_ERR
8253 in_atomic(), irqs_disabled()); 8335 "BUG: sleeping function called from invalid context at %s:%d\n",
8254 debug_show_held_locks(current); 8336 file, line);
8255 if (irqs_disabled()) 8337 printk(KERN_ERR
8256 print_irqtrace_events(current); 8338 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8257 dump_stack(); 8339 in_atomic(), irqs_disabled(),
8258 } 8340 current->pid, current->comm);
8341
8342 debug_show_held_locks(current);
8343 if (irqs_disabled())
8344 print_irqtrace_events(current);
8345 dump_stack();
8259#endif 8346#endif
8260} 8347}
8261EXPORT_SYMBOL(__might_sleep); 8348EXPORT_SYMBOL(__might_sleep);
@@ -8753,73 +8840,95 @@ static DEFINE_MUTEX(rt_constraints_mutex);
8753static unsigned long to_ratio(u64 period, u64 runtime) 8840static unsigned long to_ratio(u64 period, u64 runtime)
8754{ 8841{
8755 if (runtime == RUNTIME_INF) 8842 if (runtime == RUNTIME_INF)
8756 return 1ULL << 16; 8843 return 1ULL << 20;
8757 8844
8758 return div64_u64(runtime << 16, period); 8845 return div64_u64(runtime << 20, period);
8759} 8846}
8760 8847
8761#ifdef CONFIG_CGROUP_SCHED 8848/* Must be called with tasklist_lock held */
8762static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8849static inline int tg_has_rt_tasks(struct task_group *tg)
8763{ 8850{
8764 struct task_group *tgi, *parent = tg->parent; 8851 struct task_struct *g, *p;
8765 unsigned long total = 0;
8766 8852
8767 if (!parent) { 8853 do_each_thread(g, p) {
8768 if (global_rt_period() < period) 8854 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8769 return 0; 8855 return 1;
8856 } while_each_thread(g, p);
8770 8857
8771 return to_ratio(period, runtime) < 8858 return 0;
8772 to_ratio(global_rt_period(), global_rt_runtime()); 8859}
8773 }
8774 8860
8775 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period) 8861struct rt_schedulable_data {
8776 return 0; 8862 struct task_group *tg;
8863 u64 rt_period;
8864 u64 rt_runtime;
8865};
8777 8866
8778 rcu_read_lock(); 8867static int tg_schedulable(struct task_group *tg, void *data)
8779 list_for_each_entry_rcu(tgi, &parent->children, siblings) { 8868{
8780 if (tgi == tg) 8869 struct rt_schedulable_data *d = data;
8781 continue; 8870 struct task_group *child;
8871 unsigned long total, sum = 0;
8872 u64 period, runtime;
8873
8874 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8875 runtime = tg->rt_bandwidth.rt_runtime;
8782 8876
8783 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), 8877 if (tg == d->tg) {
8784 tgi->rt_bandwidth.rt_runtime); 8878 period = d->rt_period;
8879 runtime = d->rt_runtime;
8785 } 8880 }
8786 rcu_read_unlock();
8787 8881
8788 return total + to_ratio(period, runtime) <= 8882 /*
8789 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period), 8883 * Cannot have more runtime than the period.
8790 parent->rt_bandwidth.rt_runtime); 8884 */
8791} 8885 if (runtime > period && runtime != RUNTIME_INF)
8792#elif defined CONFIG_USER_SCHED 8886 return -EINVAL;
8793static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8794{
8795 struct task_group *tgi;
8796 unsigned long total = 0;
8797 unsigned long global_ratio =
8798 to_ratio(global_rt_period(), global_rt_runtime());
8799 8887
8800 rcu_read_lock(); 8888 /*
8801 list_for_each_entry_rcu(tgi, &task_groups, list) { 8889 * Ensure we don't starve existing RT tasks.
8802 if (tgi == tg) 8890 */
8803 continue; 8891 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8892 return -EBUSY;
8893
8894 total = to_ratio(period, runtime);
8804 8895
8805 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), 8896 /*
8806 tgi->rt_bandwidth.rt_runtime); 8897 * Nobody can have more than the global setting allows.
8898 */
8899 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8900 return -EINVAL;
8901
8902 /*
8903 * The sum of our children's runtime should not exceed our own.
8904 */
8905 list_for_each_entry_rcu(child, &tg->children, siblings) {
8906 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8907 runtime = child->rt_bandwidth.rt_runtime;
8908
8909 if (child == d->tg) {
8910 period = d->rt_period;
8911 runtime = d->rt_runtime;
8912 }
8913
8914 sum += to_ratio(period, runtime);
8807 } 8915 }
8808 rcu_read_unlock();
8809 8916
8810 return total + to_ratio(period, runtime) < global_ratio; 8917 if (sum > total)
8918 return -EINVAL;
8919
8920 return 0;
8811} 8921}
8812#endif
8813 8922
8814/* Must be called with tasklist_lock held */ 8923static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8815static inline int tg_has_rt_tasks(struct task_group *tg)
8816{ 8924{
8817 struct task_struct *g, *p; 8925 struct rt_schedulable_data data = {
8818 do_each_thread(g, p) { 8926 .tg = tg,
8819 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) 8927 .rt_period = period,
8820 return 1; 8928 .rt_runtime = runtime,
8821 } while_each_thread(g, p); 8929 };
8822 return 0; 8930
8931 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8823} 8932}
8824 8933
8825static int tg_set_bandwidth(struct task_group *tg, 8934static int tg_set_bandwidth(struct task_group *tg,
@@ -8829,14 +8938,9 @@ static int tg_set_bandwidth(struct task_group *tg,
8829 8938
8830 mutex_lock(&rt_constraints_mutex); 8939 mutex_lock(&rt_constraints_mutex);
8831 read_lock(&tasklist_lock); 8940 read_lock(&tasklist_lock);
8832 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) { 8941 err = __rt_schedulable(tg, rt_period, rt_runtime);
8833 err = -EBUSY; 8942 if (err)
8834 goto unlock;
8835 }
8836 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8837 err = -EINVAL;
8838 goto unlock; 8943 goto unlock;
8839 }
8840 8944
8841 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8945 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8842 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8946 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
@@ -8905,19 +9009,25 @@ long sched_group_rt_period(struct task_group *tg)
8905 9009
8906static int sched_rt_global_constraints(void) 9010static int sched_rt_global_constraints(void)
8907{ 9011{
8908 struct task_group *tg = &root_task_group; 9012 u64 runtime, period;
8909 u64 rt_runtime, rt_period;
8910 int ret = 0; 9013 int ret = 0;
8911 9014
8912 if (sysctl_sched_rt_period <= 0) 9015 if (sysctl_sched_rt_period <= 0)
8913 return -EINVAL; 9016 return -EINVAL;
8914 9017
8915 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 9018 runtime = global_rt_runtime();
8916 rt_runtime = tg->rt_bandwidth.rt_runtime; 9019 period = global_rt_period();
9020
9021 /*
9022 * Sanity check on the sysctl variables.
9023 */
9024 if (runtime > period && runtime != RUNTIME_INF)
9025 return -EINVAL;
8917 9026
8918 mutex_lock(&rt_constraints_mutex); 9027 mutex_lock(&rt_constraints_mutex);
8919 if (!__rt_schedulable(tg, rt_period, rt_runtime)) 9028 read_lock(&tasklist_lock);
8920 ret = -EINVAL; 9029 ret = __rt_schedulable(NULL, 0, 0);
9030 read_unlock(&tasklist_lock);
8921 mutex_unlock(&rt_constraints_mutex); 9031 mutex_unlock(&rt_constraints_mutex);
8922 9032
8923 return ret; 9033 return ret;
@@ -8991,7 +9101,6 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8991 9101
8992 if (!cgrp->parent) { 9102 if (!cgrp->parent) {
8993 /* This is early initialization for the top cgroup */ 9103 /* This is early initialization for the top cgroup */
8994 init_task_group.css.cgroup = cgrp;
8995 return &init_task_group.css; 9104 return &init_task_group.css;
8996 } 9105 }
8997 9106
@@ -9000,9 +9109,6 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9000 if (IS_ERR(tg)) 9109 if (IS_ERR(tg))
9001 return ERR_PTR(-ENOMEM); 9110 return ERR_PTR(-ENOMEM);
9002 9111
9003 /* Bind the cgroup to task_group object we just created */
9004 tg->css.cgroup = cgrp;
9005
9006 return &tg->css; 9112 return &tg->css;
9007} 9113}
9008 9114