aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorPeter Zijlstra <a.p.zijlstra@chello.nl>2011-07-15 04:35:52 -0400
committerIngo Molnar <mingo@elte.hu>2011-07-20 12:32:41 -0400
commite3589f6c81e4764d32a25d2a2a0afe54fa344f5c (patch)
tree414bf6bdbad3f04f629fa2a72254ea85acf723f4 /kernel/sched.c
parent9c3f75cbd144014bea6af866a154cc2e73ab2287 (diff)
sched: Allow for overlapping sched_domain spans
Allow for sched_domain spans that overlap by giving such domains their own sched_group list instead of sharing the sched_groups amongst each-other. This is needed for machines with more than 16 nodes, because sched_domain_node_span() will generate a node mask from the 16 nearest nodes without regard if these masks have any overlap. Currently sched_domains have a sched_group that maps to their child sched_domain span, and since there is no overlap we share the sched_group between the sched_domains of the various CPUs. If however there is overlap, we would need to link the sched_group list in different ways for each cpu, and hence sharing isn't possible. In order to solve this, allocate private sched_groups for each CPU's sched_domain but have the sched_groups share a sched_group_power structure such that we can uniquely track the power. Reported-and-tested-by: Anton Blanchard <anton@samba.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-08bxqw9wis3qti9u5inifh3y@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c157
1 files changed, 128 insertions, 29 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 36c10d25d4cd..921adf6f6fad 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -6774,10 +6774,36 @@ static struct root_domain *alloc_rootdomain(void)
6774 return rd; 6774 return rd;
6775} 6775}
6776 6776
6777static void free_sched_groups(struct sched_group *sg, int free_sgp)
6778{
6779 struct sched_group *tmp, *first;
6780
6781 if (!sg)
6782 return;
6783
6784 first = sg;
6785 do {
6786 tmp = sg->next;
6787
6788 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6789 kfree(sg->sgp);
6790
6791 kfree(sg);
6792 sg = tmp;
6793 } while (sg != first);
6794}
6795
6777static void free_sched_domain(struct rcu_head *rcu) 6796static void free_sched_domain(struct rcu_head *rcu)
6778{ 6797{
6779 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 6798 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6780 if (atomic_dec_and_test(&sd->groups->ref)) { 6799
6800 /*
6801 * If its an overlapping domain it has private groups, iterate and
6802 * nuke them all.
6803 */
6804 if (sd->flags & SD_OVERLAP) {
6805 free_sched_groups(sd->groups, 1);
6806 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6781 kfree(sd->groups->sgp); 6807 kfree(sd->groups->sgp);
6782 kfree(sd->groups); 6808 kfree(sd->groups);
6783 } 6809 }
@@ -6967,15 +6993,73 @@ struct sched_domain_topology_level;
6967typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 6993typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6968typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 6994typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6969 6995
6996#define SDTL_OVERLAP 0x01
6997
6970struct sched_domain_topology_level { 6998struct sched_domain_topology_level {
6971 sched_domain_init_f init; 6999 sched_domain_init_f init;
6972 sched_domain_mask_f mask; 7000 sched_domain_mask_f mask;
7001 int flags;
6973 struct sd_data data; 7002 struct sd_data data;
6974}; 7003};
6975 7004
6976/* 7005static int
6977 * Assumes the sched_domain tree is fully constructed 7006build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6978 */ 7007{
7008 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7009 const struct cpumask *span = sched_domain_span(sd);
7010 struct cpumask *covered = sched_domains_tmpmask;
7011 struct sd_data *sdd = sd->private;
7012 struct sched_domain *child;
7013 int i;
7014
7015 cpumask_clear(covered);
7016
7017 for_each_cpu(i, span) {
7018 struct cpumask *sg_span;
7019
7020 if (cpumask_test_cpu(i, covered))
7021 continue;
7022
7023 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7024 GFP_KERNEL, cpu_to_node(i));
7025
7026 if (!sg)
7027 goto fail;
7028
7029 sg_span = sched_group_cpus(sg);
7030
7031 child = *per_cpu_ptr(sdd->sd, i);
7032 if (child->child) {
7033 child = child->child;
7034 cpumask_copy(sg_span, sched_domain_span(child));
7035 } else
7036 cpumask_set_cpu(i, sg_span);
7037
7038 cpumask_or(covered, covered, sg_span);
7039
7040 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7041 atomic_inc(&sg->sgp->ref);
7042
7043 if (cpumask_test_cpu(cpu, sg_span))
7044 groups = sg;
7045
7046 if (!first)
7047 first = sg;
7048 if (last)
7049 last->next = sg;
7050 last = sg;
7051 last->next = first;
7052 }
7053 sd->groups = groups;
7054
7055 return 0;
7056
7057fail:
7058 free_sched_groups(first, 0);
7059
7060 return -ENOMEM;
7061}
7062
6979static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 7063static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6980{ 7064{
6981 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 7065 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
@@ -6987,23 +7071,21 @@ static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6987 if (sg) { 7071 if (sg) {
6988 *sg = *per_cpu_ptr(sdd->sg, cpu); 7072 *sg = *per_cpu_ptr(sdd->sg, cpu);
6989 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 7073 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7074 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6990 } 7075 }
6991 7076
6992 return cpu; 7077 return cpu;
6993} 7078}
6994 7079
6995/* 7080/*
6996 * build_sched_groups takes the cpumask we wish to span, and a pointer
6997 * to a function which identifies what group(along with sched group) a CPU
6998 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6999 * (due to the fact that we keep track of groups covered with a struct cpumask).
7000 *
7001 * build_sched_groups will build a circular linked list of the groups 7081 * build_sched_groups will build a circular linked list of the groups
7002 * covered by the given span, and will set each group's ->cpumask correctly, 7082 * covered by the given span, and will set each group's ->cpumask correctly,
7003 * and ->cpu_power to 0. 7083 * and ->cpu_power to 0.
7084 *
7085 * Assumes the sched_domain tree is fully constructed
7004 */ 7086 */
7005static void 7087static int
7006build_sched_groups(struct sched_domain *sd) 7088build_sched_groups(struct sched_domain *sd, int cpu)
7007{ 7089{
7008 struct sched_group *first = NULL, *last = NULL; 7090 struct sched_group *first = NULL, *last = NULL;
7009 struct sd_data *sdd = sd->private; 7091 struct sd_data *sdd = sd->private;
@@ -7011,6 +7093,12 @@ build_sched_groups(struct sched_domain *sd)
7011 struct cpumask *covered; 7093 struct cpumask *covered;
7012 int i; 7094 int i;
7013 7095
7096 get_group(cpu, sdd, &sd->groups);
7097 atomic_inc(&sd->groups->ref);
7098
7099 if (cpu != cpumask_first(sched_domain_span(sd)))
7100 return 0;
7101
7014 lockdep_assert_held(&sched_domains_mutex); 7102 lockdep_assert_held(&sched_domains_mutex);
7015 covered = sched_domains_tmpmask; 7103 covered = sched_domains_tmpmask;
7016 7104
@@ -7042,6 +7130,8 @@ build_sched_groups(struct sched_domain *sd)
7042 last = sg; 7130 last = sg;
7043 } 7131 }
7044 last->next = first; 7132 last->next = first;
7133
7134 return 0;
7045} 7135}
7046 7136
7047/* 7137/*
@@ -7056,12 +7146,17 @@ build_sched_groups(struct sched_domain *sd)
7056 */ 7146 */
7057static void init_sched_groups_power(int cpu, struct sched_domain *sd) 7147static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7058{ 7148{
7059 WARN_ON(!sd || !sd->groups); 7149 struct sched_group *sg = sd->groups;
7060 7150
7061 if (cpu != group_first_cpu(sd->groups)) 7151 WARN_ON(!sd || !sg);
7062 return; 7152
7153 do {
7154 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7155 sg = sg->next;
7156 } while (sg != sd->groups);
7063 7157
7064 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups)); 7158 if (cpu != group_first_cpu(sg))
7159 return;
7065 7160
7066 update_group_power(sd, cpu); 7161 update_group_power(sd, cpu);
7067} 7162}
@@ -7182,16 +7277,15 @@ static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7182static void claim_allocations(int cpu, struct sched_domain *sd) 7277static void claim_allocations(int cpu, struct sched_domain *sd)
7183{ 7278{
7184 struct sd_data *sdd = sd->private; 7279 struct sd_data *sdd = sd->private;
7185 struct sched_group *sg = sd->groups;
7186 7280
7187 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 7281 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7188 *per_cpu_ptr(sdd->sd, cpu) = NULL; 7282 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7189 7283
7190 if (cpu == cpumask_first(sched_group_cpus(sg))) { 7284 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7191 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7192 *per_cpu_ptr(sdd->sg, cpu) = NULL; 7285 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7286
7287 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7193 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 7288 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7194 }
7195} 7289}
7196 7290
7197#ifdef CONFIG_SCHED_SMT 7291#ifdef CONFIG_SCHED_SMT
@@ -7216,7 +7310,7 @@ static struct sched_domain_topology_level default_topology[] = {
7216#endif 7310#endif
7217 { sd_init_CPU, cpu_cpu_mask, }, 7311 { sd_init_CPU, cpu_cpu_mask, },
7218#ifdef CONFIG_NUMA 7312#ifdef CONFIG_NUMA
7219 { sd_init_NODE, cpu_node_mask, }, 7313 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7220 { sd_init_ALLNODES, cpu_allnodes_mask, }, 7314 { sd_init_ALLNODES, cpu_allnodes_mask, },
7221#endif 7315#endif
7222 { NULL, }, 7316 { NULL, },
@@ -7284,7 +7378,9 @@ static void __sdt_free(const struct cpumask *cpu_map)
7284 struct sd_data *sdd = &tl->data; 7378 struct sd_data *sdd = &tl->data;
7285 7379
7286 for_each_cpu(j, cpu_map) { 7380 for_each_cpu(j, cpu_map) {
7287 kfree(*per_cpu_ptr(sdd->sd, j)); 7381 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7382 if (sd && (sd->flags & SD_OVERLAP))
7383 free_sched_groups(sd->groups, 0);
7288 kfree(*per_cpu_ptr(sdd->sg, j)); 7384 kfree(*per_cpu_ptr(sdd->sg, j));
7289 kfree(*per_cpu_ptr(sdd->sgp, j)); 7385 kfree(*per_cpu_ptr(sdd->sgp, j));
7290 } 7386 }
@@ -7336,8 +7432,11 @@ static int build_sched_domains(const struct cpumask *cpu_map,
7336 struct sched_domain_topology_level *tl; 7432 struct sched_domain_topology_level *tl;
7337 7433
7338 sd = NULL; 7434 sd = NULL;
7339 for (tl = sched_domain_topology; tl->init; tl++) 7435 for (tl = sched_domain_topology; tl->init; tl++) {
7340 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 7436 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7437 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7438 sd->flags |= SD_OVERLAP;
7439 }
7341 7440
7342 while (sd->child) 7441 while (sd->child)
7343 sd = sd->child; 7442 sd = sd->child;
@@ -7349,13 +7448,13 @@ static int build_sched_domains(const struct cpumask *cpu_map,
7349 for_each_cpu(i, cpu_map) { 7448 for_each_cpu(i, cpu_map) {
7350 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7449 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7351 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 7450 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7352 get_group(i, sd->private, &sd->groups); 7451 if (sd->flags & SD_OVERLAP) {
7353 atomic_inc(&sd->groups->ref); 7452 if (build_overlap_sched_groups(sd, i))
7354 7453 goto error;
7355 if (i != cpumask_first(sched_domain_span(sd))) 7454 } else {
7356 continue; 7455 if (build_sched_groups(sd, i))
7357 7456 goto error;
7358 build_sched_groups(sd); 7457 }
7359 } 7458 }
7360 } 7459 }
7361 7460