aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2011-01-05 08:14:42 -0500
committerIngo Molnar <mingo@elte.hu>2011-01-05 08:14:46 -0500
commit27066fd484a32c80630136aa2b91c980f3198f9d (patch)
tree78ddabdedbfd7525d13ecd62a745525843f1d0e8 /kernel/sched.c
parent101e5f77bf35679809586e250b6c62193d2ed179 (diff)
parent3c0eee3fe6a3a1c745379547c7e7c904aa64f6d5 (diff)
Merge commit 'v2.6.37' into sched/core
Merge reason: Merge the final .37 tree. Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c287
1 files changed, 236 insertions, 51 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 9f9dd8dda53c..f2f914e0c47c 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -642,22 +642,18 @@ static inline struct task_group *task_group(struct task_struct *p)
642 642
643#endif /* CONFIG_CGROUP_SCHED */ 643#endif /* CONFIG_CGROUP_SCHED */
644 644
645static u64 irq_time_cpu(int cpu); 645static void update_rq_clock_task(struct rq *rq, s64 delta);
646static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
647 646
648inline void update_rq_clock(struct rq *rq) 647static void update_rq_clock(struct rq *rq)
649{ 648{
650 if (!rq->skip_clock_update) { 649 s64 delta;
651 int cpu = cpu_of(rq);
652 u64 irq_time;
653 650
654 rq->clock = sched_clock_cpu(cpu); 651 if (rq->skip_clock_update)
655 irq_time = irq_time_cpu(cpu); 652 return;
656 if (rq->clock - irq_time > rq->clock_task)
657 rq->clock_task = rq->clock - irq_time;
658 653
659 sched_irq_time_avg_update(rq, irq_time); 654 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
660 } 655 rq->clock += delta;
656 update_rq_clock_task(rq, delta);
661} 657}
662 658
663/* 659/*
@@ -1795,10 +1791,9 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1795 * They are read and saved off onto struct rq in update_rq_clock(). 1791 * They are read and saved off onto struct rq in update_rq_clock().
1796 * This may result in other CPU reading this CPU's irq time and can 1792 * This may result in other CPU reading this CPU's irq time and can
1797 * race with irq/account_system_vtime on this CPU. We would either get old 1793 * race with irq/account_system_vtime on this CPU. We would either get old
1798 * or new value (or semi updated value on 32 bit) with a side effect of 1794 * or new value with a side effect of accounting a slice of irq time to wrong
1799 * accounting a slice of irq time to wrong task when irq is in progress 1795 * task when irq is in progress while we read rq->clock. That is a worthy
1800 * while we read rq->clock. That is a worthy compromise in place of having 1796 * compromise in place of having locks on each irq in account_system_time.
1801 * locks on each irq in account_system_time.
1802 */ 1797 */
1803static DEFINE_PER_CPU(u64, cpu_hardirq_time); 1798static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1804static DEFINE_PER_CPU(u64, cpu_softirq_time); 1799static DEFINE_PER_CPU(u64, cpu_softirq_time);
@@ -1816,19 +1811,58 @@ void disable_sched_clock_irqtime(void)
1816 sched_clock_irqtime = 0; 1811 sched_clock_irqtime = 0;
1817} 1812}
1818 1813
1819static u64 irq_time_cpu(int cpu) 1814#ifndef CONFIG_64BIT
1815static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1816
1817static inline void irq_time_write_begin(void)
1820{ 1818{
1821 if (!sched_clock_irqtime) 1819 __this_cpu_inc(irq_time_seq.sequence);
1822 return 0; 1820 smp_wmb();
1821}
1822
1823static inline void irq_time_write_end(void)
1824{
1825 smp_wmb();
1826 __this_cpu_inc(irq_time_seq.sequence);
1827}
1828
1829static inline u64 irq_time_read(int cpu)
1830{
1831 u64 irq_time;
1832 unsigned seq;
1823 1833
1834 do {
1835 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1836 irq_time = per_cpu(cpu_softirq_time, cpu) +
1837 per_cpu(cpu_hardirq_time, cpu);
1838 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1839
1840 return irq_time;
1841}
1842#else /* CONFIG_64BIT */
1843static inline void irq_time_write_begin(void)
1844{
1845}
1846
1847static inline void irq_time_write_end(void)
1848{
1849}
1850
1851static inline u64 irq_time_read(int cpu)
1852{
1824 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1853 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1825} 1854}
1855#endif /* CONFIG_64BIT */
1826 1856
1857/*
1858 * Called before incrementing preempt_count on {soft,}irq_enter
1859 * and before decrementing preempt_count on {soft,}irq_exit.
1860 */
1827void account_system_vtime(struct task_struct *curr) 1861void account_system_vtime(struct task_struct *curr)
1828{ 1862{
1829 unsigned long flags; 1863 unsigned long flags;
1864 s64 delta;
1830 int cpu; 1865 int cpu;
1831 u64 now, delta;
1832 1866
1833 if (!sched_clock_irqtime) 1867 if (!sched_clock_irqtime)
1834 return; 1868 return;
@@ -1836,9 +1870,10 @@ void account_system_vtime(struct task_struct *curr)
1836 local_irq_save(flags); 1870 local_irq_save(flags);
1837 1871
1838 cpu = smp_processor_id(); 1872 cpu = smp_processor_id();
1839 now = sched_clock_cpu(cpu); 1873 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1840 delta = now - per_cpu(irq_start_time, cpu); 1874 __this_cpu_add(irq_start_time, delta);
1841 per_cpu(irq_start_time, cpu) = now; 1875
1876 irq_time_write_begin();
1842 /* 1877 /*
1843 * We do not account for softirq time from ksoftirqd here. 1878 * We do not account for softirq time from ksoftirqd here.
1844 * We want to continue accounting softirq time to ksoftirqd thread 1879 * We want to continue accounting softirq time to ksoftirqd thread
@@ -1846,33 +1881,55 @@ void account_system_vtime(struct task_struct *curr)
1846 * that do not consume any time, but still wants to run. 1881 * that do not consume any time, but still wants to run.
1847 */ 1882 */
1848 if (hardirq_count()) 1883 if (hardirq_count())
1849 per_cpu(cpu_hardirq_time, cpu) += delta; 1884 __this_cpu_add(cpu_hardirq_time, delta);
1850 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) 1885 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1851 per_cpu(cpu_softirq_time, cpu) += delta; 1886 __this_cpu_add(cpu_softirq_time, delta);
1852 1887
1888 irq_time_write_end();
1853 local_irq_restore(flags); 1889 local_irq_restore(flags);
1854} 1890}
1855EXPORT_SYMBOL_GPL(account_system_vtime); 1891EXPORT_SYMBOL_GPL(account_system_vtime);
1856 1892
1857static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) 1893static void update_rq_clock_task(struct rq *rq, s64 delta)
1858{ 1894{
1859 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) { 1895 s64 irq_delta;
1860 u64 delta_irq = curr_irq_time - rq->prev_irq_time; 1896
1861 rq->prev_irq_time = curr_irq_time; 1897 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1862 sched_rt_avg_update(rq, delta_irq); 1898
1863 } 1899 /*
1900 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1901 * this case when a previous update_rq_clock() happened inside a
1902 * {soft,}irq region.
1903 *
1904 * When this happens, we stop ->clock_task and only update the
1905 * prev_irq_time stamp to account for the part that fit, so that a next
1906 * update will consume the rest. This ensures ->clock_task is
1907 * monotonic.
1908 *
1909 * It does however cause some slight miss-attribution of {soft,}irq
1910 * time, a more accurate solution would be to update the irq_time using
1911 * the current rq->clock timestamp, except that would require using
1912 * atomic ops.
1913 */
1914 if (irq_delta > delta)
1915 irq_delta = delta;
1916
1917 rq->prev_irq_time += irq_delta;
1918 delta -= irq_delta;
1919 rq->clock_task += delta;
1920
1921 if (irq_delta && sched_feat(NONIRQ_POWER))
1922 sched_rt_avg_update(rq, irq_delta);
1864} 1923}
1865 1924
1866#else 1925#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1867 1926
1868static u64 irq_time_cpu(int cpu) 1927static void update_rq_clock_task(struct rq *rq, s64 delta)
1869{ 1928{
1870 return 0; 1929 rq->clock_task += delta;
1871} 1930}
1872 1931
1873static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { } 1932#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1874
1875#endif
1876 1933
1877#include "sched_idletask.c" 1934#include "sched_idletask.c"
1878#include "sched_fair.c" 1935#include "sched_fair.c"
@@ -2001,7 +2058,7 @@ static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2001 * A queue event has occurred, and we're going to schedule. In 2058 * A queue event has occurred, and we're going to schedule. In
2002 * this case, we can save a useless back to back clock update. 2059 * this case, we can save a useless back to back clock update.
2003 */ 2060 */
2004 if (test_tsk_need_resched(rq->curr)) 2061 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2005 rq->skip_clock_update = 1; 2062 rq->skip_clock_update = 1;
2006} 2063}
2007 2064
@@ -2988,6 +3045,15 @@ static long calc_load_fold_active(struct rq *this_rq)
2988 return delta; 3045 return delta;
2989} 3046}
2990 3047
3048static unsigned long
3049calc_load(unsigned long load, unsigned long exp, unsigned long active)
3050{
3051 load *= exp;
3052 load += active * (FIXED_1 - exp);
3053 load += 1UL << (FSHIFT - 1);
3054 return load >> FSHIFT;
3055}
3056
2991#ifdef CONFIG_NO_HZ 3057#ifdef CONFIG_NO_HZ
2992/* 3058/*
2993 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 3059 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
@@ -3017,6 +3083,128 @@ static long calc_load_fold_idle(void)
3017 3083
3018 return delta; 3084 return delta;
3019} 3085}
3086
3087/**
3088 * fixed_power_int - compute: x^n, in O(log n) time
3089 *
3090 * @x: base of the power
3091 * @frac_bits: fractional bits of @x
3092 * @n: power to raise @x to.
3093 *
3094 * By exploiting the relation between the definition of the natural power
3095 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3096 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3097 * (where: n_i \elem {0, 1}, the binary vector representing n),
3098 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3099 * of course trivially computable in O(log_2 n), the length of our binary
3100 * vector.
3101 */
3102static unsigned long
3103fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3104{
3105 unsigned long result = 1UL << frac_bits;
3106
3107 if (n) for (;;) {
3108 if (n & 1) {
3109 result *= x;
3110 result += 1UL << (frac_bits - 1);
3111 result >>= frac_bits;
3112 }
3113 n >>= 1;
3114 if (!n)
3115 break;
3116 x *= x;
3117 x += 1UL << (frac_bits - 1);
3118 x >>= frac_bits;
3119 }
3120
3121 return result;
3122}
3123
3124/*
3125 * a1 = a0 * e + a * (1 - e)
3126 *
3127 * a2 = a1 * e + a * (1 - e)
3128 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3129 * = a0 * e^2 + a * (1 - e) * (1 + e)
3130 *
3131 * a3 = a2 * e + a * (1 - e)
3132 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3133 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3134 *
3135 * ...
3136 *
3137 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3138 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3139 * = a0 * e^n + a * (1 - e^n)
3140 *
3141 * [1] application of the geometric series:
3142 *
3143 * n 1 - x^(n+1)
3144 * S_n := \Sum x^i = -------------
3145 * i=0 1 - x
3146 */
3147static unsigned long
3148calc_load_n(unsigned long load, unsigned long exp,
3149 unsigned long active, unsigned int n)
3150{
3151
3152 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3153}
3154
3155/*
3156 * NO_HZ can leave us missing all per-cpu ticks calling
3157 * calc_load_account_active(), but since an idle CPU folds its delta into
3158 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3159 * in the pending idle delta if our idle period crossed a load cycle boundary.
3160 *
3161 * Once we've updated the global active value, we need to apply the exponential
3162 * weights adjusted to the number of cycles missed.
3163 */
3164static void calc_global_nohz(unsigned long ticks)
3165{
3166 long delta, active, n;
3167
3168 if (time_before(jiffies, calc_load_update))
3169 return;
3170
3171 /*
3172 * If we crossed a calc_load_update boundary, make sure to fold
3173 * any pending idle changes, the respective CPUs might have
3174 * missed the tick driven calc_load_account_active() update
3175 * due to NO_HZ.
3176 */
3177 delta = calc_load_fold_idle();
3178 if (delta)
3179 atomic_long_add(delta, &calc_load_tasks);
3180
3181 /*
3182 * If we were idle for multiple load cycles, apply them.
3183 */
3184 if (ticks >= LOAD_FREQ) {
3185 n = ticks / LOAD_FREQ;
3186
3187 active = atomic_long_read(&calc_load_tasks);
3188 active = active > 0 ? active * FIXED_1 : 0;
3189
3190 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3191 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3192 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3193
3194 calc_load_update += n * LOAD_FREQ;
3195 }
3196
3197 /*
3198 * Its possible the remainder of the above division also crosses
3199 * a LOAD_FREQ period, the regular check in calc_global_load()
3200 * which comes after this will take care of that.
3201 *
3202 * Consider us being 11 ticks before a cycle completion, and us
3203 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3204 * age us 4 cycles, and the test in calc_global_load() will
3205 * pick up the final one.
3206 */
3207}
3020#else 3208#else
3021static void calc_load_account_idle(struct rq *this_rq) 3209static void calc_load_account_idle(struct rq *this_rq)
3022{ 3210{
@@ -3026,6 +3214,10 @@ static inline long calc_load_fold_idle(void)
3026{ 3214{
3027 return 0; 3215 return 0;
3028} 3216}
3217
3218static void calc_global_nohz(unsigned long ticks)
3219{
3220}
3029#endif 3221#endif
3030 3222
3031/** 3223/**
@@ -3043,24 +3235,17 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3043 loads[2] = (avenrun[2] + offset) << shift; 3235 loads[2] = (avenrun[2] + offset) << shift;
3044} 3236}
3045 3237
3046static unsigned long
3047calc_load(unsigned long load, unsigned long exp, unsigned long active)
3048{
3049 load *= exp;
3050 load += active * (FIXED_1 - exp);
3051 return load >> FSHIFT;
3052}
3053
3054/* 3238/*
3055 * calc_load - update the avenrun load estimates 10 ticks after the 3239 * calc_load - update the avenrun load estimates 10 ticks after the
3056 * CPUs have updated calc_load_tasks. 3240 * CPUs have updated calc_load_tasks.
3057 */ 3241 */
3058void calc_global_load(void) 3242void calc_global_load(unsigned long ticks)
3059{ 3243{
3060 unsigned long upd = calc_load_update + 10;
3061 long active; 3244 long active;
3062 3245
3063 if (time_before(jiffies, upd)) 3246 calc_global_nohz(ticks);
3247
3248 if (time_before(jiffies, calc_load_update + 10))
3064 return; 3249 return;
3065 3250
3066 active = atomic_long_read(&calc_load_tasks); 3251 active = atomic_long_read(&calc_load_tasks);
@@ -3714,7 +3899,6 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev)
3714{ 3899{
3715 if (prev->se.on_rq) 3900 if (prev->se.on_rq)
3716 update_rq_clock(rq); 3901 update_rq_clock(rq);
3717 rq->skip_clock_update = 0;
3718 prev->sched_class->put_prev_task(rq, prev); 3902 prev->sched_class->put_prev_task(rq, prev);
3719} 3903}
3720 3904
@@ -3772,7 +3956,6 @@ need_resched_nonpreemptible:
3772 hrtick_clear(rq); 3956 hrtick_clear(rq);
3773 3957
3774 raw_spin_lock_irq(&rq->lock); 3958 raw_spin_lock_irq(&rq->lock);
3775 clear_tsk_need_resched(prev);
3776 3959
3777 switch_count = &prev->nivcsw; 3960 switch_count = &prev->nivcsw;
3778 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3961 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
@@ -3804,6 +3987,8 @@ need_resched_nonpreemptible:
3804 3987
3805 put_prev_task(rq, prev); 3988 put_prev_task(rq, prev);
3806 next = pick_next_task(rq); 3989 next = pick_next_task(rq);
3990 clear_tsk_need_resched(prev);
3991 rq->skip_clock_update = 0;
3807 3992
3808 if (likely(prev != next)) { 3993 if (likely(prev != next)) {
3809 sched_info_switch(prev, next); 3994 sched_info_switch(prev, next);