aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rcutree.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-01-12 05:32:03 -0500
committerIngo Molnar <mingo@elte.hu>2009-01-12 05:32:03 -0500
commite3ee1e123183ca9847e74b7b8e2694c9e3b817a6 (patch)
tree652a84674ed05eaa46a813de2223af0bd0168a5a /kernel/rcutree.c
parent5762ba1873b0bb9faa631aaa02f533c2b9837f82 (diff)
parentc59765042f53a79a7a65585042ff463b69cb248c (diff)
Merge commit 'v2.6.29-rc1' into timers/hrtimers
Conflicts: kernel/time/tick-common.c
Diffstat (limited to 'kernel/rcutree.c')
-rw-r--r--kernel/rcutree.c1532
1 files changed, 1532 insertions, 0 deletions
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
new file mode 100644
index 000000000000..f2d8638e6c60
--- /dev/null
+++ b/kernel/rcutree.c
@@ -0,0 +1,1532 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
49#ifdef CONFIG_DEBUG_LOCK_ALLOC
50static struct lock_class_key rcu_lock_key;
51struct lockdep_map rcu_lock_map =
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53EXPORT_SYMBOL_GPL(rcu_lock_map);
54#endif
55
56/* Data structures. */
57
58#define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
60 .levelcnt = { \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
62 NUM_RCU_LVL_1, \
63 NUM_RCU_LVL_2, \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_SIGNAL_INIT, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 .n_force_qs = 0, \
72 .n_force_qs_ngp = 0, \
73}
74
75struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state);
76DEFINE_PER_CPU(struct rcu_data, rcu_data);
77
78struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
80
81#ifdef CONFIG_NO_HZ
82DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
83 .dynticks_nesting = 1,
84 .dynticks = 1,
85};
86#endif /* #ifdef CONFIG_NO_HZ */
87
88static int blimit = 10; /* Maximum callbacks per softirq. */
89static int qhimark = 10000; /* If this many pending, ignore blimit. */
90static int qlowmark = 100; /* Once only this many pending, use blimit. */
91
92static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
93
94/*
95 * Return the number of RCU batches processed thus far for debug & stats.
96 */
97long rcu_batches_completed(void)
98{
99 return rcu_state.completed;
100}
101EXPORT_SYMBOL_GPL(rcu_batches_completed);
102
103/*
104 * Return the number of RCU BH batches processed thus far for debug & stats.
105 */
106long rcu_batches_completed_bh(void)
107{
108 return rcu_bh_state.completed;
109}
110EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
111
112/*
113 * Does the CPU have callbacks ready to be invoked?
114 */
115static int
116cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
117{
118 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
119}
120
121/*
122 * Does the current CPU require a yet-as-unscheduled grace period?
123 */
124static int
125cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
126{
127 /* ACCESS_ONCE() because we are accessing outside of lock. */
128 return *rdp->nxttail[RCU_DONE_TAIL] &&
129 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
130}
131
132/*
133 * Return the root node of the specified rcu_state structure.
134 */
135static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
136{
137 return &rsp->node[0];
138}
139
140#ifdef CONFIG_SMP
141
142/*
143 * If the specified CPU is offline, tell the caller that it is in
144 * a quiescent state. Otherwise, whack it with a reschedule IPI.
145 * Grace periods can end up waiting on an offline CPU when that
146 * CPU is in the process of coming online -- it will be added to the
147 * rcu_node bitmasks before it actually makes it online. The same thing
148 * can happen while a CPU is in the process of coming online. Because this
149 * race is quite rare, we check for it after detecting that the grace
150 * period has been delayed rather than checking each and every CPU
151 * each and every time we start a new grace period.
152 */
153static int rcu_implicit_offline_qs(struct rcu_data *rdp)
154{
155 /*
156 * If the CPU is offline, it is in a quiescent state. We can
157 * trust its state not to change because interrupts are disabled.
158 */
159 if (cpu_is_offline(rdp->cpu)) {
160 rdp->offline_fqs++;
161 return 1;
162 }
163
164 /* The CPU is online, so send it a reschedule IPI. */
165 if (rdp->cpu != smp_processor_id())
166 smp_send_reschedule(rdp->cpu);
167 else
168 set_need_resched();
169 rdp->resched_ipi++;
170 return 0;
171}
172
173#endif /* #ifdef CONFIG_SMP */
174
175#ifdef CONFIG_NO_HZ
176static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
177
178/**
179 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
180 *
181 * Enter nohz mode, in other words, -leave- the mode in which RCU
182 * read-side critical sections can occur. (Though RCU read-side
183 * critical sections can occur in irq handlers in nohz mode, a possibility
184 * handled by rcu_irq_enter() and rcu_irq_exit()).
185 */
186void rcu_enter_nohz(void)
187{
188 unsigned long flags;
189 struct rcu_dynticks *rdtp;
190
191 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
192 local_irq_save(flags);
193 rdtp = &__get_cpu_var(rcu_dynticks);
194 rdtp->dynticks++;
195 rdtp->dynticks_nesting--;
196 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
197 local_irq_restore(flags);
198}
199
200/*
201 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
202 *
203 * Exit nohz mode, in other words, -enter- the mode in which RCU
204 * read-side critical sections normally occur.
205 */
206void rcu_exit_nohz(void)
207{
208 unsigned long flags;
209 struct rcu_dynticks *rdtp;
210
211 local_irq_save(flags);
212 rdtp = &__get_cpu_var(rcu_dynticks);
213 rdtp->dynticks++;
214 rdtp->dynticks_nesting++;
215 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
216 local_irq_restore(flags);
217 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
218}
219
220/**
221 * rcu_nmi_enter - inform RCU of entry to NMI context
222 *
223 * If the CPU was idle with dynamic ticks active, and there is no
224 * irq handler running, this updates rdtp->dynticks_nmi to let the
225 * RCU grace-period handling know that the CPU is active.
226 */
227void rcu_nmi_enter(void)
228{
229 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
230
231 if (rdtp->dynticks & 0x1)
232 return;
233 rdtp->dynticks_nmi++;
234 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
235 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
236}
237
238/**
239 * rcu_nmi_exit - inform RCU of exit from NMI context
240 *
241 * If the CPU was idle with dynamic ticks active, and there is no
242 * irq handler running, this updates rdtp->dynticks_nmi to let the
243 * RCU grace-period handling know that the CPU is no longer active.
244 */
245void rcu_nmi_exit(void)
246{
247 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
248
249 if (rdtp->dynticks & 0x1)
250 return;
251 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
252 rdtp->dynticks_nmi++;
253 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
254}
255
256/**
257 * rcu_irq_enter - inform RCU of entry to hard irq context
258 *
259 * If the CPU was idle with dynamic ticks active, this updates the
260 * rdtp->dynticks to let the RCU handling know that the CPU is active.
261 */
262void rcu_irq_enter(void)
263{
264 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
265
266 if (rdtp->dynticks_nesting++)
267 return;
268 rdtp->dynticks++;
269 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
270 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
271}
272
273/**
274 * rcu_irq_exit - inform RCU of exit from hard irq context
275 *
276 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
277 * to put let the RCU handling be aware that the CPU is going back to idle
278 * with no ticks.
279 */
280void rcu_irq_exit(void)
281{
282 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
283
284 if (--rdtp->dynticks_nesting)
285 return;
286 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
287 rdtp->dynticks++;
288 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
289
290 /* If the interrupt queued a callback, get out of dyntick mode. */
291 if (__get_cpu_var(rcu_data).nxtlist ||
292 __get_cpu_var(rcu_bh_data).nxtlist)
293 set_need_resched();
294}
295
296/*
297 * Record the specified "completed" value, which is later used to validate
298 * dynticks counter manipulations. Specify "rsp->completed - 1" to
299 * unconditionally invalidate any future dynticks manipulations (which is
300 * useful at the beginning of a grace period).
301 */
302static void dyntick_record_completed(struct rcu_state *rsp, long comp)
303{
304 rsp->dynticks_completed = comp;
305}
306
307#ifdef CONFIG_SMP
308
309/*
310 * Recall the previously recorded value of the completion for dynticks.
311 */
312static long dyntick_recall_completed(struct rcu_state *rsp)
313{
314 return rsp->dynticks_completed;
315}
316
317/*
318 * Snapshot the specified CPU's dynticks counter so that we can later
319 * credit them with an implicit quiescent state. Return 1 if this CPU
320 * is already in a quiescent state courtesy of dynticks idle mode.
321 */
322static int dyntick_save_progress_counter(struct rcu_data *rdp)
323{
324 int ret;
325 int snap;
326 int snap_nmi;
327
328 snap = rdp->dynticks->dynticks;
329 snap_nmi = rdp->dynticks->dynticks_nmi;
330 smp_mb(); /* Order sampling of snap with end of grace period. */
331 rdp->dynticks_snap = snap;
332 rdp->dynticks_nmi_snap = snap_nmi;
333 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
334 if (ret)
335 rdp->dynticks_fqs++;
336 return ret;
337}
338
339/*
340 * Return true if the specified CPU has passed through a quiescent
341 * state by virtue of being in or having passed through an dynticks
342 * idle state since the last call to dyntick_save_progress_counter()
343 * for this same CPU.
344 */
345static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
346{
347 long curr;
348 long curr_nmi;
349 long snap;
350 long snap_nmi;
351
352 curr = rdp->dynticks->dynticks;
353 snap = rdp->dynticks_snap;
354 curr_nmi = rdp->dynticks->dynticks_nmi;
355 snap_nmi = rdp->dynticks_nmi_snap;
356 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
357
358 /*
359 * If the CPU passed through or entered a dynticks idle phase with
360 * no active irq/NMI handlers, then we can safely pretend that the CPU
361 * already acknowledged the request to pass through a quiescent
362 * state. Either way, that CPU cannot possibly be in an RCU
363 * read-side critical section that started before the beginning
364 * of the current RCU grace period.
365 */
366 if ((curr != snap || (curr & 0x1) == 0) &&
367 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
368 rdp->dynticks_fqs++;
369 return 1;
370 }
371
372 /* Go check for the CPU being offline. */
373 return rcu_implicit_offline_qs(rdp);
374}
375
376#endif /* #ifdef CONFIG_SMP */
377
378#else /* #ifdef CONFIG_NO_HZ */
379
380static void dyntick_record_completed(struct rcu_state *rsp, long comp)
381{
382}
383
384#ifdef CONFIG_SMP
385
386/*
387 * If there are no dynticks, then the only way that a CPU can passively
388 * be in a quiescent state is to be offline. Unlike dynticks idle, which
389 * is a point in time during the prior (already finished) grace period,
390 * an offline CPU is always in a quiescent state, and thus can be
391 * unconditionally applied. So just return the current value of completed.
392 */
393static long dyntick_recall_completed(struct rcu_state *rsp)
394{
395 return rsp->completed;
396}
397
398static int dyntick_save_progress_counter(struct rcu_data *rdp)
399{
400 return 0;
401}
402
403static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
404{
405 return rcu_implicit_offline_qs(rdp);
406}
407
408#endif /* #ifdef CONFIG_SMP */
409
410#endif /* #else #ifdef CONFIG_NO_HZ */
411
412#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
413
414static void record_gp_stall_check_time(struct rcu_state *rsp)
415{
416 rsp->gp_start = jiffies;
417 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
418}
419
420static void print_other_cpu_stall(struct rcu_state *rsp)
421{
422 int cpu;
423 long delta;
424 unsigned long flags;
425 struct rcu_node *rnp = rcu_get_root(rsp);
426 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
427 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
428
429 /* Only let one CPU complain about others per time interval. */
430
431 spin_lock_irqsave(&rnp->lock, flags);
432 delta = jiffies - rsp->jiffies_stall;
433 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
434 spin_unlock_irqrestore(&rnp->lock, flags);
435 return;
436 }
437 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
438 spin_unlock_irqrestore(&rnp->lock, flags);
439
440 /* OK, time to rat on our buddy... */
441
442 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
443 for (; rnp_cur < rnp_end; rnp_cur++) {
444 if (rnp_cur->qsmask == 0)
445 continue;
446 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
447 if (rnp_cur->qsmask & (1UL << cpu))
448 printk(" %d", rnp_cur->grplo + cpu);
449 }
450 printk(" (detected by %d, t=%ld jiffies)\n",
451 smp_processor_id(), (long)(jiffies - rsp->gp_start));
452 force_quiescent_state(rsp, 0); /* Kick them all. */
453}
454
455static void print_cpu_stall(struct rcu_state *rsp)
456{
457 unsigned long flags;
458 struct rcu_node *rnp = rcu_get_root(rsp);
459
460 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
461 smp_processor_id(), jiffies - rsp->gp_start);
462 dump_stack();
463 spin_lock_irqsave(&rnp->lock, flags);
464 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
465 rsp->jiffies_stall =
466 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
467 spin_unlock_irqrestore(&rnp->lock, flags);
468 set_need_resched(); /* kick ourselves to get things going. */
469}
470
471static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
472{
473 long delta;
474 struct rcu_node *rnp;
475
476 delta = jiffies - rsp->jiffies_stall;
477 rnp = rdp->mynode;
478 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
479
480 /* We haven't checked in, so go dump stack. */
481 print_cpu_stall(rsp);
482
483 } else if (rsp->gpnum != rsp->completed &&
484 delta >= RCU_STALL_RAT_DELAY) {
485
486 /* They had two time units to dump stack, so complain. */
487 print_other_cpu_stall(rsp);
488 }
489}
490
491#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
492
493static void record_gp_stall_check_time(struct rcu_state *rsp)
494{
495}
496
497static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
498{
499}
500
501#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
502
503/*
504 * Update CPU-local rcu_data state to record the newly noticed grace period.
505 * This is used both when we started the grace period and when we notice
506 * that someone else started the grace period.
507 */
508static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
509{
510 rdp->qs_pending = 1;
511 rdp->passed_quiesc = 0;
512 rdp->gpnum = rsp->gpnum;
513 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
514 RCU_JIFFIES_TILL_FORCE_QS;
515}
516
517/*
518 * Did someone else start a new RCU grace period start since we last
519 * checked? Update local state appropriately if so. Must be called
520 * on the CPU corresponding to rdp.
521 */
522static int
523check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
524{
525 unsigned long flags;
526 int ret = 0;
527
528 local_irq_save(flags);
529 if (rdp->gpnum != rsp->gpnum) {
530 note_new_gpnum(rsp, rdp);
531 ret = 1;
532 }
533 local_irq_restore(flags);
534 return ret;
535}
536
537/*
538 * Start a new RCU grace period if warranted, re-initializing the hierarchy
539 * in preparation for detecting the next grace period. The caller must hold
540 * the root node's ->lock, which is released before return. Hard irqs must
541 * be disabled.
542 */
543static void
544rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
545 __releases(rcu_get_root(rsp)->lock)
546{
547 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
548 struct rcu_node *rnp = rcu_get_root(rsp);
549 struct rcu_node *rnp_cur;
550 struct rcu_node *rnp_end;
551
552 if (!cpu_needs_another_gp(rsp, rdp)) {
553 spin_unlock_irqrestore(&rnp->lock, flags);
554 return;
555 }
556
557 /* Advance to a new grace period and initialize state. */
558 rsp->gpnum++;
559 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
560 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
561 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
562 RCU_JIFFIES_TILL_FORCE_QS;
563 record_gp_stall_check_time(rsp);
564 dyntick_record_completed(rsp, rsp->completed - 1);
565 note_new_gpnum(rsp, rdp);
566
567 /*
568 * Because we are first, we know that all our callbacks will
569 * be covered by this upcoming grace period, even the ones
570 * that were registered arbitrarily recently.
571 */
572 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
573 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
574
575 /* Special-case the common single-level case. */
576 if (NUM_RCU_NODES == 1) {
577 rnp->qsmask = rnp->qsmaskinit;
578 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
579 spin_unlock_irqrestore(&rnp->lock, flags);
580 return;
581 }
582
583 spin_unlock(&rnp->lock); /* leave irqs disabled. */
584
585
586 /* Exclude any concurrent CPU-hotplug operations. */
587 spin_lock(&rsp->onofflock); /* irqs already disabled. */
588
589 /*
590 * Set the quiescent-state-needed bits in all the non-leaf RCU
591 * nodes for all currently online CPUs. This operation relies
592 * on the layout of the hierarchy within the rsp->node[] array.
593 * Note that other CPUs will access only the leaves of the
594 * hierarchy, which still indicate that no grace period is in
595 * progress. In addition, we have excluded CPU-hotplug operations.
596 *
597 * We therefore do not need to hold any locks. Any required
598 * memory barriers will be supplied by the locks guarding the
599 * leaf rcu_nodes in the hierarchy.
600 */
601
602 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
603 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
604 rnp_cur->qsmask = rnp_cur->qsmaskinit;
605
606 /*
607 * Now set up the leaf nodes. Here we must be careful. First,
608 * we need to hold the lock in order to exclude other CPUs, which
609 * might be contending for the leaf nodes' locks. Second, as
610 * soon as we initialize a given leaf node, its CPUs might run
611 * up the rest of the hierarchy. We must therefore acquire locks
612 * for each node that we touch during this stage. (But we still
613 * are excluding CPU-hotplug operations.)
614 *
615 * Note that the grace period cannot complete until we finish
616 * the initialization process, as there will be at least one
617 * qsmask bit set in the root node until that time, namely the
618 * one corresponding to this CPU.
619 */
620 rnp_end = &rsp->node[NUM_RCU_NODES];
621 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
622 for (; rnp_cur < rnp_end; rnp_cur++) {
623 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
624 rnp_cur->qsmask = rnp_cur->qsmaskinit;
625 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
626 }
627
628 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
629 spin_unlock_irqrestore(&rsp->onofflock, flags);
630}
631
632/*
633 * Advance this CPU's callbacks, but only if the current grace period
634 * has ended. This may be called only from the CPU to whom the rdp
635 * belongs.
636 */
637static void
638rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
639{
640 long completed_snap;
641 unsigned long flags;
642
643 local_irq_save(flags);
644 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
645
646 /* Did another grace period end? */
647 if (rdp->completed != completed_snap) {
648
649 /* Advance callbacks. No harm if list empty. */
650 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
651 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
652 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
653
654 /* Remember that we saw this grace-period completion. */
655 rdp->completed = completed_snap;
656 }
657 local_irq_restore(flags);
658}
659
660/*
661 * Similar to cpu_quiet(), for which it is a helper function. Allows
662 * a group of CPUs to be quieted at one go, though all the CPUs in the
663 * group must be represented by the same leaf rcu_node structure.
664 * That structure's lock must be held upon entry, and it is released
665 * before return.
666 */
667static void
668cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
669 unsigned long flags)
670 __releases(rnp->lock)
671{
672 /* Walk up the rcu_node hierarchy. */
673 for (;;) {
674 if (!(rnp->qsmask & mask)) {
675
676 /* Our bit has already been cleared, so done. */
677 spin_unlock_irqrestore(&rnp->lock, flags);
678 return;
679 }
680 rnp->qsmask &= ~mask;
681 if (rnp->qsmask != 0) {
682
683 /* Other bits still set at this level, so done. */
684 spin_unlock_irqrestore(&rnp->lock, flags);
685 return;
686 }
687 mask = rnp->grpmask;
688 if (rnp->parent == NULL) {
689
690 /* No more levels. Exit loop holding root lock. */
691
692 break;
693 }
694 spin_unlock_irqrestore(&rnp->lock, flags);
695 rnp = rnp->parent;
696 spin_lock_irqsave(&rnp->lock, flags);
697 }
698
699 /*
700 * Get here if we are the last CPU to pass through a quiescent
701 * state for this grace period. Clean up and let rcu_start_gp()
702 * start up the next grace period if one is needed. Note that
703 * we still hold rnp->lock, as required by rcu_start_gp(), which
704 * will release it.
705 */
706 rsp->completed = rsp->gpnum;
707 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
708 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
709}
710
711/*
712 * Record a quiescent state for the specified CPU, which must either be
713 * the current CPU or an offline CPU. The lastcomp argument is used to
714 * make sure we are still in the grace period of interest. We don't want
715 * to end the current grace period based on quiescent states detected in
716 * an earlier grace period!
717 */
718static void
719cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
720{
721 unsigned long flags;
722 unsigned long mask;
723 struct rcu_node *rnp;
724
725 rnp = rdp->mynode;
726 spin_lock_irqsave(&rnp->lock, flags);
727 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
728
729 /*
730 * Someone beat us to it for this grace period, so leave.
731 * The race with GP start is resolved by the fact that we
732 * hold the leaf rcu_node lock, so that the per-CPU bits
733 * cannot yet be initialized -- so we would simply find our
734 * CPU's bit already cleared in cpu_quiet_msk() if this race
735 * occurred.
736 */
737 rdp->passed_quiesc = 0; /* try again later! */
738 spin_unlock_irqrestore(&rnp->lock, flags);
739 return;
740 }
741 mask = rdp->grpmask;
742 if ((rnp->qsmask & mask) == 0) {
743 spin_unlock_irqrestore(&rnp->lock, flags);
744 } else {
745 rdp->qs_pending = 0;
746
747 /*
748 * This GP can't end until cpu checks in, so all of our
749 * callbacks can be processed during the next GP.
750 */
751 rdp = rsp->rda[smp_processor_id()];
752 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
753
754 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
755 }
756}
757
758/*
759 * Check to see if there is a new grace period of which this CPU
760 * is not yet aware, and if so, set up local rcu_data state for it.
761 * Otherwise, see if this CPU has just passed through its first
762 * quiescent state for this grace period, and record that fact if so.
763 */
764static void
765rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
766{
767 /* If there is now a new grace period, record and return. */
768 if (check_for_new_grace_period(rsp, rdp))
769 return;
770
771 /*
772 * Does this CPU still need to do its part for current grace period?
773 * If no, return and let the other CPUs do their part as well.
774 */
775 if (!rdp->qs_pending)
776 return;
777
778 /*
779 * Was there a quiescent state since the beginning of the grace
780 * period? If no, then exit and wait for the next call.
781 */
782 if (!rdp->passed_quiesc)
783 return;
784
785 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
786 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
787}
788
789#ifdef CONFIG_HOTPLUG_CPU
790
791/*
792 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
793 * and move all callbacks from the outgoing CPU to the current one.
794 */
795static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
796{
797 int i;
798 unsigned long flags;
799 long lastcomp;
800 unsigned long mask;
801 struct rcu_data *rdp = rsp->rda[cpu];
802 struct rcu_data *rdp_me;
803 struct rcu_node *rnp;
804
805 /* Exclude any attempts to start a new grace period. */
806 spin_lock_irqsave(&rsp->onofflock, flags);
807
808 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
809 rnp = rdp->mynode;
810 mask = rdp->grpmask; /* rnp->grplo is constant. */
811 do {
812 spin_lock(&rnp->lock); /* irqs already disabled. */
813 rnp->qsmaskinit &= ~mask;
814 if (rnp->qsmaskinit != 0) {
815 spin_unlock(&rnp->lock); /* irqs already disabled. */
816 break;
817 }
818 mask = rnp->grpmask;
819 spin_unlock(&rnp->lock); /* irqs already disabled. */
820 rnp = rnp->parent;
821 } while (rnp != NULL);
822 lastcomp = rsp->completed;
823
824 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
825
826 /* Being offline is a quiescent state, so go record it. */
827 cpu_quiet(cpu, rsp, rdp, lastcomp);
828
829 /*
830 * Move callbacks from the outgoing CPU to the running CPU.
831 * Note that the outgoing CPU is now quiscent, so it is now
832 * (uncharacteristically) safe to access it rcu_data structure.
833 * Note also that we must carefully retain the order of the
834 * outgoing CPU's callbacks in order for rcu_barrier() to work
835 * correctly. Finally, note that we start all the callbacks
836 * afresh, even those that have passed through a grace period
837 * and are therefore ready to invoke. The theory is that hotplug
838 * events are rare, and that if they are frequent enough to
839 * indefinitely delay callbacks, you have far worse things to
840 * be worrying about.
841 */
842 rdp_me = rsp->rda[smp_processor_id()];
843 if (rdp->nxtlist != NULL) {
844 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
845 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
846 rdp->nxtlist = NULL;
847 for (i = 0; i < RCU_NEXT_SIZE; i++)
848 rdp->nxttail[i] = &rdp->nxtlist;
849 rdp_me->qlen += rdp->qlen;
850 rdp->qlen = 0;
851 }
852 local_irq_restore(flags);
853}
854
855/*
856 * Remove the specified CPU from the RCU hierarchy and move any pending
857 * callbacks that it might have to the current CPU. This code assumes
858 * that at least one CPU in the system will remain running at all times.
859 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
860 */
861static void rcu_offline_cpu(int cpu)
862{
863 __rcu_offline_cpu(cpu, &rcu_state);
864 __rcu_offline_cpu(cpu, &rcu_bh_state);
865}
866
867#else /* #ifdef CONFIG_HOTPLUG_CPU */
868
869static void rcu_offline_cpu(int cpu)
870{
871}
872
873#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
874
875/*
876 * Invoke any RCU callbacks that have made it to the end of their grace
877 * period. Thottle as specified by rdp->blimit.
878 */
879static void rcu_do_batch(struct rcu_data *rdp)
880{
881 unsigned long flags;
882 struct rcu_head *next, *list, **tail;
883 int count;
884
885 /* If no callbacks are ready, just return.*/
886 if (!cpu_has_callbacks_ready_to_invoke(rdp))
887 return;
888
889 /*
890 * Extract the list of ready callbacks, disabling to prevent
891 * races with call_rcu() from interrupt handlers.
892 */
893 local_irq_save(flags);
894 list = rdp->nxtlist;
895 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
896 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
897 tail = rdp->nxttail[RCU_DONE_TAIL];
898 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
899 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
900 rdp->nxttail[count] = &rdp->nxtlist;
901 local_irq_restore(flags);
902
903 /* Invoke callbacks. */
904 count = 0;
905 while (list) {
906 next = list->next;
907 prefetch(next);
908 list->func(list);
909 list = next;
910 if (++count >= rdp->blimit)
911 break;
912 }
913
914 local_irq_save(flags);
915
916 /* Update count, and requeue any remaining callbacks. */
917 rdp->qlen -= count;
918 if (list != NULL) {
919 *tail = rdp->nxtlist;
920 rdp->nxtlist = list;
921 for (count = 0; count < RCU_NEXT_SIZE; count++)
922 if (&rdp->nxtlist == rdp->nxttail[count])
923 rdp->nxttail[count] = tail;
924 else
925 break;
926 }
927
928 /* Reinstate batch limit if we have worked down the excess. */
929 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
930 rdp->blimit = blimit;
931
932 local_irq_restore(flags);
933
934 /* Re-raise the RCU softirq if there are callbacks remaining. */
935 if (cpu_has_callbacks_ready_to_invoke(rdp))
936 raise_softirq(RCU_SOFTIRQ);
937}
938
939/*
940 * Check to see if this CPU is in a non-context-switch quiescent state
941 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
942 * Also schedule the RCU softirq handler.
943 *
944 * This function must be called with hardirqs disabled. It is normally
945 * invoked from the scheduling-clock interrupt. If rcu_pending returns
946 * false, there is no point in invoking rcu_check_callbacks().
947 */
948void rcu_check_callbacks(int cpu, int user)
949{
950 if (user ||
951 (idle_cpu(cpu) && !in_softirq() &&
952 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
953
954 /*
955 * Get here if this CPU took its interrupt from user
956 * mode or from the idle loop, and if this is not a
957 * nested interrupt. In this case, the CPU is in
958 * a quiescent state, so count it.
959 *
960 * No memory barrier is required here because both
961 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
962 * only CPU-local variables that other CPUs neither
963 * access nor modify, at least not while the corresponding
964 * CPU is online.
965 */
966
967 rcu_qsctr_inc(cpu);
968 rcu_bh_qsctr_inc(cpu);
969
970 } else if (!in_softirq()) {
971
972 /*
973 * Get here if this CPU did not take its interrupt from
974 * softirq, in other words, if it is not interrupting
975 * a rcu_bh read-side critical section. This is an _bh
976 * critical section, so count it.
977 */
978
979 rcu_bh_qsctr_inc(cpu);
980 }
981 raise_softirq(RCU_SOFTIRQ);
982}
983
984#ifdef CONFIG_SMP
985
986/*
987 * Scan the leaf rcu_node structures, processing dyntick state for any that
988 * have not yet encountered a quiescent state, using the function specified.
989 * Returns 1 if the current grace period ends while scanning (possibly
990 * because we made it end).
991 */
992static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
993 int (*f)(struct rcu_data *))
994{
995 unsigned long bit;
996 int cpu;
997 unsigned long flags;
998 unsigned long mask;
999 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1000 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1001
1002 for (; rnp_cur < rnp_end; rnp_cur++) {
1003 mask = 0;
1004 spin_lock_irqsave(&rnp_cur->lock, flags);
1005 if (rsp->completed != lastcomp) {
1006 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1007 return 1;
1008 }
1009 if (rnp_cur->qsmask == 0) {
1010 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1011 continue;
1012 }
1013 cpu = rnp_cur->grplo;
1014 bit = 1;
1015 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1016 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1017 mask |= bit;
1018 }
1019 if (mask != 0 && rsp->completed == lastcomp) {
1020
1021 /* cpu_quiet_msk() releases rnp_cur->lock. */
1022 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1023 continue;
1024 }
1025 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1026 }
1027 return 0;
1028}
1029
1030/*
1031 * Force quiescent states on reluctant CPUs, and also detect which
1032 * CPUs are in dyntick-idle mode.
1033 */
1034static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1035{
1036 unsigned long flags;
1037 long lastcomp;
1038 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
1039 struct rcu_node *rnp = rcu_get_root(rsp);
1040 u8 signaled;
1041
1042 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1043 return; /* No grace period in progress, nothing to force. */
1044 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1045 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1046 return; /* Someone else is already on the job. */
1047 }
1048 if (relaxed &&
1049 (long)(rsp->jiffies_force_qs - jiffies) >= 0 &&
1050 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0)
1051 goto unlock_ret; /* no emergency and done recently. */
1052 rsp->n_force_qs++;
1053 spin_lock(&rnp->lock);
1054 lastcomp = rsp->completed;
1055 signaled = rsp->signaled;
1056 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1057 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
1058 RCU_JIFFIES_TILL_FORCE_QS;
1059 if (lastcomp == rsp->gpnum) {
1060 rsp->n_force_qs_ngp++;
1061 spin_unlock(&rnp->lock);
1062 goto unlock_ret; /* no GP in progress, time updated. */
1063 }
1064 spin_unlock(&rnp->lock);
1065 switch (signaled) {
1066 case RCU_GP_INIT:
1067
1068 break; /* grace period still initializing, ignore. */
1069
1070 case RCU_SAVE_DYNTICK:
1071
1072 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1073 break; /* So gcc recognizes the dead code. */
1074
1075 /* Record dyntick-idle state. */
1076 if (rcu_process_dyntick(rsp, lastcomp,
1077 dyntick_save_progress_counter))
1078 goto unlock_ret;
1079
1080 /* Update state, record completion counter. */
1081 spin_lock(&rnp->lock);
1082 if (lastcomp == rsp->completed) {
1083 rsp->signaled = RCU_FORCE_QS;
1084 dyntick_record_completed(rsp, lastcomp);
1085 }
1086 spin_unlock(&rnp->lock);
1087 break;
1088
1089 case RCU_FORCE_QS:
1090
1091 /* Check dyntick-idle state, send IPI to laggarts. */
1092 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1093 rcu_implicit_dynticks_qs))
1094 goto unlock_ret;
1095
1096 /* Leave state in case more forcing is required. */
1097
1098 break;
1099 }
1100unlock_ret:
1101 spin_unlock_irqrestore(&rsp->fqslock, flags);
1102}
1103
1104#else /* #ifdef CONFIG_SMP */
1105
1106static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1107{
1108 set_need_resched();
1109}
1110
1111#endif /* #else #ifdef CONFIG_SMP */
1112
1113/*
1114 * This does the RCU processing work from softirq context for the
1115 * specified rcu_state and rcu_data structures. This may be called
1116 * only from the CPU to whom the rdp belongs.
1117 */
1118static void
1119__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1120{
1121 unsigned long flags;
1122
1123 /*
1124 * If an RCU GP has gone long enough, go check for dyntick
1125 * idle CPUs and, if needed, send resched IPIs.
1126 */
1127 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1128 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1129 force_quiescent_state(rsp, 1);
1130
1131 /*
1132 * Advance callbacks in response to end of earlier grace
1133 * period that some other CPU ended.
1134 */
1135 rcu_process_gp_end(rsp, rdp);
1136
1137 /* Update RCU state based on any recent quiescent states. */
1138 rcu_check_quiescent_state(rsp, rdp);
1139
1140 /* Does this CPU require a not-yet-started grace period? */
1141 if (cpu_needs_another_gp(rsp, rdp)) {
1142 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1143 rcu_start_gp(rsp, flags); /* releases above lock */
1144 }
1145
1146 /* If there are callbacks ready, invoke them. */
1147 rcu_do_batch(rdp);
1148}
1149
1150/*
1151 * Do softirq processing for the current CPU.
1152 */
1153static void rcu_process_callbacks(struct softirq_action *unused)
1154{
1155 /*
1156 * Memory references from any prior RCU read-side critical sections
1157 * executed by the interrupted code must be seen before any RCU
1158 * grace-period manipulations below.
1159 */
1160 smp_mb(); /* See above block comment. */
1161
1162 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data));
1163 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1164
1165 /*
1166 * Memory references from any later RCU read-side critical sections
1167 * executed by the interrupted code must be seen after any RCU
1168 * grace-period manipulations above.
1169 */
1170 smp_mb(); /* See above block comment. */
1171}
1172
1173static void
1174__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1175 struct rcu_state *rsp)
1176{
1177 unsigned long flags;
1178 struct rcu_data *rdp;
1179
1180 head->func = func;
1181 head->next = NULL;
1182
1183 smp_mb(); /* Ensure RCU update seen before callback registry. */
1184
1185 /*
1186 * Opportunistically note grace-period endings and beginnings.
1187 * Note that we might see a beginning right after we see an
1188 * end, but never vice versa, since this CPU has to pass through
1189 * a quiescent state betweentimes.
1190 */
1191 local_irq_save(flags);
1192 rdp = rsp->rda[smp_processor_id()];
1193 rcu_process_gp_end(rsp, rdp);
1194 check_for_new_grace_period(rsp, rdp);
1195
1196 /* Add the callback to our list. */
1197 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1198 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1199
1200 /* Start a new grace period if one not already started. */
1201 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1202 unsigned long nestflag;
1203 struct rcu_node *rnp_root = rcu_get_root(rsp);
1204
1205 spin_lock_irqsave(&rnp_root->lock, nestflag);
1206 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1207 }
1208
1209 /* Force the grace period if too many callbacks or too long waiting. */
1210 if (unlikely(++rdp->qlen > qhimark)) {
1211 rdp->blimit = LONG_MAX;
1212 force_quiescent_state(rsp, 0);
1213 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1214 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1215 force_quiescent_state(rsp, 1);
1216 local_irq_restore(flags);
1217}
1218
1219/*
1220 * Queue an RCU callback for invocation after a grace period.
1221 */
1222void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1223{
1224 __call_rcu(head, func, &rcu_state);
1225}
1226EXPORT_SYMBOL_GPL(call_rcu);
1227
1228/*
1229 * Queue an RCU for invocation after a quicker grace period.
1230 */
1231void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1232{
1233 __call_rcu(head, func, &rcu_bh_state);
1234}
1235EXPORT_SYMBOL_GPL(call_rcu_bh);
1236
1237/*
1238 * Check to see if there is any immediate RCU-related work to be done
1239 * by the current CPU, for the specified type of RCU, returning 1 if so.
1240 * The checks are in order of increasing expense: checks that can be
1241 * carried out against CPU-local state are performed first. However,
1242 * we must check for CPU stalls first, else we might not get a chance.
1243 */
1244static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1245{
1246 rdp->n_rcu_pending++;
1247
1248 /* Check for CPU stalls, if enabled. */
1249 check_cpu_stall(rsp, rdp);
1250
1251 /* Is the RCU core waiting for a quiescent state from this CPU? */
1252 if (rdp->qs_pending)
1253 return 1;
1254
1255 /* Does this CPU have callbacks ready to invoke? */
1256 if (cpu_has_callbacks_ready_to_invoke(rdp))
1257 return 1;
1258
1259 /* Has RCU gone idle with this CPU needing another grace period? */
1260 if (cpu_needs_another_gp(rsp, rdp))
1261 return 1;
1262
1263 /* Has another RCU grace period completed? */
1264 if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */
1265 return 1;
1266
1267 /* Has a new RCU grace period started? */
1268 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */
1269 return 1;
1270
1271 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1272 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1273 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1274 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0))
1275 return 1;
1276
1277 /* nothing to do */
1278 return 0;
1279}
1280
1281/*
1282 * Check to see if there is any immediate RCU-related work to be done
1283 * by the current CPU, returning 1 if so. This function is part of the
1284 * RCU implementation; it is -not- an exported member of the RCU API.
1285 */
1286int rcu_pending(int cpu)
1287{
1288 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) ||
1289 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1290}
1291
1292/*
1293 * Check to see if any future RCU-related work will need to be done
1294 * by the current CPU, even if none need be done immediately, returning
1295 * 1 if so. This function is part of the RCU implementation; it is -not-
1296 * an exported member of the RCU API.
1297 */
1298int rcu_needs_cpu(int cpu)
1299{
1300 /* RCU callbacks either ready or pending? */
1301 return per_cpu(rcu_data, cpu).nxtlist ||
1302 per_cpu(rcu_bh_data, cpu).nxtlist;
1303}
1304
1305/*
1306 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1307 * approach so that we don't have to worry about how long the CPU has
1308 * been gone, or whether it ever was online previously. We do trust the
1309 * ->mynode field, as it is constant for a given struct rcu_data and
1310 * initialized during early boot.
1311 *
1312 * Note that only one online or offline event can be happening at a given
1313 * time. Note also that we can accept some slop in the rsp->completed
1314 * access due to the fact that this CPU cannot possibly have any RCU
1315 * callbacks in flight yet.
1316 */
1317static void
1318rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1319{
1320 unsigned long flags;
1321 int i;
1322 long lastcomp;
1323 unsigned long mask;
1324 struct rcu_data *rdp = rsp->rda[cpu];
1325 struct rcu_node *rnp = rcu_get_root(rsp);
1326
1327 /* Set up local state, ensuring consistent view of global state. */
1328 spin_lock_irqsave(&rnp->lock, flags);
1329 lastcomp = rsp->completed;
1330 rdp->completed = lastcomp;
1331 rdp->gpnum = lastcomp;
1332 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1333 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1334 rdp->beenonline = 1; /* We have now been online. */
1335 rdp->passed_quiesc_completed = lastcomp - 1;
1336 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1337 rdp->nxtlist = NULL;
1338 for (i = 0; i < RCU_NEXT_SIZE; i++)
1339 rdp->nxttail[i] = &rdp->nxtlist;
1340 rdp->qlen = 0;
1341 rdp->blimit = blimit;
1342#ifdef CONFIG_NO_HZ
1343 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1344#endif /* #ifdef CONFIG_NO_HZ */
1345 rdp->cpu = cpu;
1346 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1347
1348 /*
1349 * A new grace period might start here. If so, we won't be part
1350 * of it, but that is OK, as we are currently in a quiescent state.
1351 */
1352
1353 /* Exclude any attempts to start a new GP on large systems. */
1354 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1355
1356 /* Add CPU to rcu_node bitmasks. */
1357 rnp = rdp->mynode;
1358 mask = rdp->grpmask;
1359 do {
1360 /* Exclude any attempts to start a new GP on small systems. */
1361 spin_lock(&rnp->lock); /* irqs already disabled. */
1362 rnp->qsmaskinit |= mask;
1363 mask = rnp->grpmask;
1364 spin_unlock(&rnp->lock); /* irqs already disabled. */
1365 rnp = rnp->parent;
1366 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1367
1368 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1369
1370 /*
1371 * A new grace period might start here. If so, we will be part of
1372 * it, and its gpnum will be greater than ours, so we will
1373 * participate. It is also possible for the gpnum to have been
1374 * incremented before this function was called, and the bitmasks
1375 * to not be filled out until now, in which case we will also
1376 * participate due to our gpnum being behind.
1377 */
1378
1379 /* Since it is coming online, the CPU is in a quiescent state. */
1380 cpu_quiet(cpu, rsp, rdp, lastcomp);
1381 local_irq_restore(flags);
1382}
1383
1384static void __cpuinit rcu_online_cpu(int cpu)
1385{
1386 rcu_init_percpu_data(cpu, &rcu_state);
1387 rcu_init_percpu_data(cpu, &rcu_bh_state);
1388 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1389}
1390
1391/*
1392 * Handle CPU online/offline notifcation events.
1393 */
1394static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1395 unsigned long action, void *hcpu)
1396{
1397 long cpu = (long)hcpu;
1398
1399 switch (action) {
1400 case CPU_UP_PREPARE:
1401 case CPU_UP_PREPARE_FROZEN:
1402 rcu_online_cpu(cpu);
1403 break;
1404 case CPU_DEAD:
1405 case CPU_DEAD_FROZEN:
1406 case CPU_UP_CANCELED:
1407 case CPU_UP_CANCELED_FROZEN:
1408 rcu_offline_cpu(cpu);
1409 break;
1410 default:
1411 break;
1412 }
1413 return NOTIFY_OK;
1414}
1415
1416/*
1417 * Compute the per-level fanout, either using the exact fanout specified
1418 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1419 */
1420#ifdef CONFIG_RCU_FANOUT_EXACT
1421static void __init rcu_init_levelspread(struct rcu_state *rsp)
1422{
1423 int i;
1424
1425 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1426 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1427}
1428#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1429static void __init rcu_init_levelspread(struct rcu_state *rsp)
1430{
1431 int ccur;
1432 int cprv;
1433 int i;
1434
1435 cprv = NR_CPUS;
1436 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1437 ccur = rsp->levelcnt[i];
1438 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1439 cprv = ccur;
1440 }
1441}
1442#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1443
1444/*
1445 * Helper function for rcu_init() that initializes one rcu_state structure.
1446 */
1447static void __init rcu_init_one(struct rcu_state *rsp)
1448{
1449 int cpustride = 1;
1450 int i;
1451 int j;
1452 struct rcu_node *rnp;
1453
1454 /* Initialize the level-tracking arrays. */
1455
1456 for (i = 1; i < NUM_RCU_LVLS; i++)
1457 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1458 rcu_init_levelspread(rsp);
1459
1460 /* Initialize the elements themselves, starting from the leaves. */
1461
1462 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1463 cpustride *= rsp->levelspread[i];
1464 rnp = rsp->level[i];
1465 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1466 spin_lock_init(&rnp->lock);
1467 rnp->qsmask = 0;
1468 rnp->qsmaskinit = 0;
1469 rnp->grplo = j * cpustride;
1470 rnp->grphi = (j + 1) * cpustride - 1;
1471 if (rnp->grphi >= NR_CPUS)
1472 rnp->grphi = NR_CPUS - 1;
1473 if (i == 0) {
1474 rnp->grpnum = 0;
1475 rnp->grpmask = 0;
1476 rnp->parent = NULL;
1477 } else {
1478 rnp->grpnum = j % rsp->levelspread[i - 1];
1479 rnp->grpmask = 1UL << rnp->grpnum;
1480 rnp->parent = rsp->level[i - 1] +
1481 j / rsp->levelspread[i - 1];
1482 }
1483 rnp->level = i;
1484 }
1485 }
1486}
1487
1488/*
1489 * Helper macro for __rcu_init(). To be used nowhere else!
1490 * Assigns leaf node pointers into each CPU's rcu_data structure.
1491 */
1492#define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1493do { \
1494 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1495 j = 0; \
1496 for_each_possible_cpu(i) { \
1497 if (i > rnp[j].grphi) \
1498 j++; \
1499 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1500 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1501 } \
1502} while (0)
1503
1504static struct notifier_block __cpuinitdata rcu_nb = {
1505 .notifier_call = rcu_cpu_notify,
1506};
1507
1508void __init __rcu_init(void)
1509{
1510 int i; /* All used by RCU_DATA_PTR_INIT(). */
1511 int j;
1512 struct rcu_node *rnp;
1513
1514 printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n");
1515#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1516 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1517#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1518 rcu_init_one(&rcu_state);
1519 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
1520 rcu_init_one(&rcu_bh_state);
1521 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
1522
1523 for_each_online_cpu(i)
1524 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1525 /* Register notifier for non-boot CPUs */
1526 register_cpu_notifier(&rcu_nb);
1527 printk(KERN_WARNING "Experimental hierarchical RCU init done.\n");
1528}
1529
1530module_param(blimit, int, 0);
1531module_param(qhimark, int, 0);
1532module_param(qlowmark, int, 0);