diff options
author | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2013-10-08 23:23:47 -0400 |
---|---|---|
committer | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2013-10-15 15:53:31 -0400 |
commit | 4102adab9189c8ea2f0cdd2f88345fd25d2790f1 (patch) | |
tree | 235964cfd9c09a5c642a2d0d8745a651a0d4bcfa /kernel/rcu/tree.c | |
parent | 252997330908cb8ee3d5714539ed967b977c2eae (diff) |
rcu: Move RCU-related source code to kernel/rcu directory
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/rcu/tree.c')
-rw-r--r-- | kernel/rcu/tree.c | 3403 |
1 files changed, 3403 insertions, 0 deletions
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c new file mode 100644 index 000000000000..8a2c81e86dda --- /dev/null +++ b/kernel/rcu/tree.c | |||
@@ -0,0 +1,3403 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | * | ||
18 | * Copyright IBM Corporation, 2008 | ||
19 | * | ||
20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | ||
21 | * Manfred Spraul <manfred@colorfullife.com> | ||
22 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version | ||
23 | * | ||
24 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | ||
25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | ||
26 | * | ||
27 | * For detailed explanation of Read-Copy Update mechanism see - | ||
28 | * Documentation/RCU | ||
29 | */ | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/kernel.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/smp.h> | ||
35 | #include <linux/rcupdate.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | #include <linux/sched.h> | ||
38 | #include <linux/nmi.h> | ||
39 | #include <linux/atomic.h> | ||
40 | #include <linux/bitops.h> | ||
41 | #include <linux/export.h> | ||
42 | #include <linux/completion.h> | ||
43 | #include <linux/moduleparam.h> | ||
44 | #include <linux/module.h> | ||
45 | #include <linux/percpu.h> | ||
46 | #include <linux/notifier.h> | ||
47 | #include <linux/cpu.h> | ||
48 | #include <linux/mutex.h> | ||
49 | #include <linux/time.h> | ||
50 | #include <linux/kernel_stat.h> | ||
51 | #include <linux/wait.h> | ||
52 | #include <linux/kthread.h> | ||
53 | #include <linux/prefetch.h> | ||
54 | #include <linux/delay.h> | ||
55 | #include <linux/stop_machine.h> | ||
56 | #include <linux/random.h> | ||
57 | #include <linux/ftrace_event.h> | ||
58 | #include <linux/suspend.h> | ||
59 | |||
60 | #include "tree.h" | ||
61 | #include <trace/events/rcu.h> | ||
62 | |||
63 | #include "rcu.h" | ||
64 | |||
65 | MODULE_ALIAS("rcutree"); | ||
66 | #ifdef MODULE_PARAM_PREFIX | ||
67 | #undef MODULE_PARAM_PREFIX | ||
68 | #endif | ||
69 | #define MODULE_PARAM_PREFIX "rcutree." | ||
70 | |||
71 | /* Data structures. */ | ||
72 | |||
73 | static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; | ||
74 | static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; | ||
75 | |||
76 | /* | ||
77 | * In order to export the rcu_state name to the tracing tools, it | ||
78 | * needs to be added in the __tracepoint_string section. | ||
79 | * This requires defining a separate variable tp_<sname>_varname | ||
80 | * that points to the string being used, and this will allow | ||
81 | * the tracing userspace tools to be able to decipher the string | ||
82 | * address to the matching string. | ||
83 | */ | ||
84 | #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ | ||
85 | static char sname##_varname[] = #sname; \ | ||
86 | static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ | ||
87 | struct rcu_state sname##_state = { \ | ||
88 | .level = { &sname##_state.node[0] }, \ | ||
89 | .call = cr, \ | ||
90 | .fqs_state = RCU_GP_IDLE, \ | ||
91 | .gpnum = 0UL - 300UL, \ | ||
92 | .completed = 0UL - 300UL, \ | ||
93 | .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ | ||
94 | .orphan_nxttail = &sname##_state.orphan_nxtlist, \ | ||
95 | .orphan_donetail = &sname##_state.orphan_donelist, \ | ||
96 | .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ | ||
97 | .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ | ||
98 | .name = sname##_varname, \ | ||
99 | .abbr = sabbr, \ | ||
100 | }; \ | ||
101 | DEFINE_PER_CPU(struct rcu_data, sname##_data) | ||
102 | |||
103 | RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); | ||
104 | RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); | ||
105 | |||
106 | static struct rcu_state *rcu_state; | ||
107 | LIST_HEAD(rcu_struct_flavors); | ||
108 | |||
109 | /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ | ||
110 | static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; | ||
111 | module_param(rcu_fanout_leaf, int, 0444); | ||
112 | int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; | ||
113 | static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ | ||
114 | NUM_RCU_LVL_0, | ||
115 | NUM_RCU_LVL_1, | ||
116 | NUM_RCU_LVL_2, | ||
117 | NUM_RCU_LVL_3, | ||
118 | NUM_RCU_LVL_4, | ||
119 | }; | ||
120 | int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ | ||
121 | |||
122 | /* | ||
123 | * The rcu_scheduler_active variable transitions from zero to one just | ||
124 | * before the first task is spawned. So when this variable is zero, RCU | ||
125 | * can assume that there is but one task, allowing RCU to (for example) | ||
126 | * optimize synchronize_sched() to a simple barrier(). When this variable | ||
127 | * is one, RCU must actually do all the hard work required to detect real | ||
128 | * grace periods. This variable is also used to suppress boot-time false | ||
129 | * positives from lockdep-RCU error checking. | ||
130 | */ | ||
131 | int rcu_scheduler_active __read_mostly; | ||
132 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | ||
133 | |||
134 | /* | ||
135 | * The rcu_scheduler_fully_active variable transitions from zero to one | ||
136 | * during the early_initcall() processing, which is after the scheduler | ||
137 | * is capable of creating new tasks. So RCU processing (for example, | ||
138 | * creating tasks for RCU priority boosting) must be delayed until after | ||
139 | * rcu_scheduler_fully_active transitions from zero to one. We also | ||
140 | * currently delay invocation of any RCU callbacks until after this point. | ||
141 | * | ||
142 | * It might later prove better for people registering RCU callbacks during | ||
143 | * early boot to take responsibility for these callbacks, but one step at | ||
144 | * a time. | ||
145 | */ | ||
146 | static int rcu_scheduler_fully_active __read_mostly; | ||
147 | |||
148 | #ifdef CONFIG_RCU_BOOST | ||
149 | |||
150 | /* | ||
151 | * Control variables for per-CPU and per-rcu_node kthreads. These | ||
152 | * handle all flavors of RCU. | ||
153 | */ | ||
154 | static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); | ||
155 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); | ||
156 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); | ||
157 | DEFINE_PER_CPU(char, rcu_cpu_has_work); | ||
158 | |||
159 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
160 | |||
161 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); | ||
162 | static void invoke_rcu_core(void); | ||
163 | static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); | ||
164 | |||
165 | /* | ||
166 | * Track the rcutorture test sequence number and the update version | ||
167 | * number within a given test. The rcutorture_testseq is incremented | ||
168 | * on every rcutorture module load and unload, so has an odd value | ||
169 | * when a test is running. The rcutorture_vernum is set to zero | ||
170 | * when rcutorture starts and is incremented on each rcutorture update. | ||
171 | * These variables enable correlating rcutorture output with the | ||
172 | * RCU tracing information. | ||
173 | */ | ||
174 | unsigned long rcutorture_testseq; | ||
175 | unsigned long rcutorture_vernum; | ||
176 | |||
177 | /* | ||
178 | * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s | ||
179 | * permit this function to be invoked without holding the root rcu_node | ||
180 | * structure's ->lock, but of course results can be subject to change. | ||
181 | */ | ||
182 | static int rcu_gp_in_progress(struct rcu_state *rsp) | ||
183 | { | ||
184 | return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); | ||
185 | } | ||
186 | |||
187 | /* | ||
188 | * Note a quiescent state. Because we do not need to know | ||
189 | * how many quiescent states passed, just if there was at least | ||
190 | * one since the start of the grace period, this just sets a flag. | ||
191 | * The caller must have disabled preemption. | ||
192 | */ | ||
193 | void rcu_sched_qs(int cpu) | ||
194 | { | ||
195 | struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); | ||
196 | |||
197 | if (rdp->passed_quiesce == 0) | ||
198 | trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); | ||
199 | rdp->passed_quiesce = 1; | ||
200 | } | ||
201 | |||
202 | void rcu_bh_qs(int cpu) | ||
203 | { | ||
204 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); | ||
205 | |||
206 | if (rdp->passed_quiesce == 0) | ||
207 | trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); | ||
208 | rdp->passed_quiesce = 1; | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * Note a context switch. This is a quiescent state for RCU-sched, | ||
213 | * and requires special handling for preemptible RCU. | ||
214 | * The caller must have disabled preemption. | ||
215 | */ | ||
216 | void rcu_note_context_switch(int cpu) | ||
217 | { | ||
218 | trace_rcu_utilization(TPS("Start context switch")); | ||
219 | rcu_sched_qs(cpu); | ||
220 | rcu_preempt_note_context_switch(cpu); | ||
221 | trace_rcu_utilization(TPS("End context switch")); | ||
222 | } | ||
223 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | ||
224 | |||
225 | static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { | ||
226 | .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, | ||
227 | .dynticks = ATOMIC_INIT(1), | ||
228 | #ifdef CONFIG_NO_HZ_FULL_SYSIDLE | ||
229 | .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, | ||
230 | .dynticks_idle = ATOMIC_INIT(1), | ||
231 | #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ | ||
232 | }; | ||
233 | |||
234 | static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ | ||
235 | static long qhimark = 10000; /* If this many pending, ignore blimit. */ | ||
236 | static long qlowmark = 100; /* Once only this many pending, use blimit. */ | ||
237 | |||
238 | module_param(blimit, long, 0444); | ||
239 | module_param(qhimark, long, 0444); | ||
240 | module_param(qlowmark, long, 0444); | ||
241 | |||
242 | static ulong jiffies_till_first_fqs = ULONG_MAX; | ||
243 | static ulong jiffies_till_next_fqs = ULONG_MAX; | ||
244 | |||
245 | module_param(jiffies_till_first_fqs, ulong, 0644); | ||
246 | module_param(jiffies_till_next_fqs, ulong, 0644); | ||
247 | |||
248 | static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, | ||
249 | struct rcu_data *rdp); | ||
250 | static void force_qs_rnp(struct rcu_state *rsp, | ||
251 | int (*f)(struct rcu_data *rsp, bool *isidle, | ||
252 | unsigned long *maxj), | ||
253 | bool *isidle, unsigned long *maxj); | ||
254 | static void force_quiescent_state(struct rcu_state *rsp); | ||
255 | static int rcu_pending(int cpu); | ||
256 | |||
257 | /* | ||
258 | * Return the number of RCU-sched batches processed thus far for debug & stats. | ||
259 | */ | ||
260 | long rcu_batches_completed_sched(void) | ||
261 | { | ||
262 | return rcu_sched_state.completed; | ||
263 | } | ||
264 | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); | ||
265 | |||
266 | /* | ||
267 | * Return the number of RCU BH batches processed thus far for debug & stats. | ||
268 | */ | ||
269 | long rcu_batches_completed_bh(void) | ||
270 | { | ||
271 | return rcu_bh_state.completed; | ||
272 | } | ||
273 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | ||
274 | |||
275 | /* | ||
276 | * Force a quiescent state for RCU BH. | ||
277 | */ | ||
278 | void rcu_bh_force_quiescent_state(void) | ||
279 | { | ||
280 | force_quiescent_state(&rcu_bh_state); | ||
281 | } | ||
282 | EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); | ||
283 | |||
284 | /* | ||
285 | * Record the number of times rcutorture tests have been initiated and | ||
286 | * terminated. This information allows the debugfs tracing stats to be | ||
287 | * correlated to the rcutorture messages, even when the rcutorture module | ||
288 | * is being repeatedly loaded and unloaded. In other words, we cannot | ||
289 | * store this state in rcutorture itself. | ||
290 | */ | ||
291 | void rcutorture_record_test_transition(void) | ||
292 | { | ||
293 | rcutorture_testseq++; | ||
294 | rcutorture_vernum = 0; | ||
295 | } | ||
296 | EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); | ||
297 | |||
298 | /* | ||
299 | * Record the number of writer passes through the current rcutorture test. | ||
300 | * This is also used to correlate debugfs tracing stats with the rcutorture | ||
301 | * messages. | ||
302 | */ | ||
303 | void rcutorture_record_progress(unsigned long vernum) | ||
304 | { | ||
305 | rcutorture_vernum++; | ||
306 | } | ||
307 | EXPORT_SYMBOL_GPL(rcutorture_record_progress); | ||
308 | |||
309 | /* | ||
310 | * Force a quiescent state for RCU-sched. | ||
311 | */ | ||
312 | void rcu_sched_force_quiescent_state(void) | ||
313 | { | ||
314 | force_quiescent_state(&rcu_sched_state); | ||
315 | } | ||
316 | EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); | ||
317 | |||
318 | /* | ||
319 | * Does the CPU have callbacks ready to be invoked? | ||
320 | */ | ||
321 | static int | ||
322 | cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) | ||
323 | { | ||
324 | return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && | ||
325 | rdp->nxttail[RCU_DONE_TAIL] != NULL; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * Does the current CPU require a not-yet-started grace period? | ||
330 | * The caller must have disabled interrupts to prevent races with | ||
331 | * normal callback registry. | ||
332 | */ | ||
333 | static int | ||
334 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) | ||
335 | { | ||
336 | int i; | ||
337 | |||
338 | if (rcu_gp_in_progress(rsp)) | ||
339 | return 0; /* No, a grace period is already in progress. */ | ||
340 | if (rcu_nocb_needs_gp(rsp)) | ||
341 | return 1; /* Yes, a no-CBs CPU needs one. */ | ||
342 | if (!rdp->nxttail[RCU_NEXT_TAIL]) | ||
343 | return 0; /* No, this is a no-CBs (or offline) CPU. */ | ||
344 | if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) | ||
345 | return 1; /* Yes, this CPU has newly registered callbacks. */ | ||
346 | for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) | ||
347 | if (rdp->nxttail[i - 1] != rdp->nxttail[i] && | ||
348 | ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), | ||
349 | rdp->nxtcompleted[i])) | ||
350 | return 1; /* Yes, CBs for future grace period. */ | ||
351 | return 0; /* No grace period needed. */ | ||
352 | } | ||
353 | |||
354 | /* | ||
355 | * Return the root node of the specified rcu_state structure. | ||
356 | */ | ||
357 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) | ||
358 | { | ||
359 | return &rsp->node[0]; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state | ||
364 | * | ||
365 | * If the new value of the ->dynticks_nesting counter now is zero, | ||
366 | * we really have entered idle, and must do the appropriate accounting. | ||
367 | * The caller must have disabled interrupts. | ||
368 | */ | ||
369 | static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, | ||
370 | bool user) | ||
371 | { | ||
372 | trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); | ||
373 | if (!user && !is_idle_task(current)) { | ||
374 | struct task_struct *idle __maybe_unused = | ||
375 | idle_task(smp_processor_id()); | ||
376 | |||
377 | trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); | ||
378 | ftrace_dump(DUMP_ORIG); | ||
379 | WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", | ||
380 | current->pid, current->comm, | ||
381 | idle->pid, idle->comm); /* must be idle task! */ | ||
382 | } | ||
383 | rcu_prepare_for_idle(smp_processor_id()); | ||
384 | /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ | ||
385 | smp_mb__before_atomic_inc(); /* See above. */ | ||
386 | atomic_inc(&rdtp->dynticks); | ||
387 | smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ | ||
388 | WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); | ||
389 | |||
390 | /* | ||
391 | * It is illegal to enter an extended quiescent state while | ||
392 | * in an RCU read-side critical section. | ||
393 | */ | ||
394 | rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), | ||
395 | "Illegal idle entry in RCU read-side critical section."); | ||
396 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), | ||
397 | "Illegal idle entry in RCU-bh read-side critical section."); | ||
398 | rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), | ||
399 | "Illegal idle entry in RCU-sched read-side critical section."); | ||
400 | } | ||
401 | |||
402 | /* | ||
403 | * Enter an RCU extended quiescent state, which can be either the | ||
404 | * idle loop or adaptive-tickless usermode execution. | ||
405 | */ | ||
406 | static void rcu_eqs_enter(bool user) | ||
407 | { | ||
408 | long long oldval; | ||
409 | struct rcu_dynticks *rdtp; | ||
410 | |||
411 | rdtp = this_cpu_ptr(&rcu_dynticks); | ||
412 | oldval = rdtp->dynticks_nesting; | ||
413 | WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); | ||
414 | if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) | ||
415 | rdtp->dynticks_nesting = 0; | ||
416 | else | ||
417 | rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; | ||
418 | rcu_eqs_enter_common(rdtp, oldval, user); | ||
419 | } | ||
420 | |||
421 | /** | ||
422 | * rcu_idle_enter - inform RCU that current CPU is entering idle | ||
423 | * | ||
424 | * Enter idle mode, in other words, -leave- the mode in which RCU | ||
425 | * read-side critical sections can occur. (Though RCU read-side | ||
426 | * critical sections can occur in irq handlers in idle, a possibility | ||
427 | * handled by irq_enter() and irq_exit().) | ||
428 | * | ||
429 | * We crowbar the ->dynticks_nesting field to zero to allow for | ||
430 | * the possibility of usermode upcalls having messed up our count | ||
431 | * of interrupt nesting level during the prior busy period. | ||
432 | */ | ||
433 | void rcu_idle_enter(void) | ||
434 | { | ||
435 | unsigned long flags; | ||
436 | |||
437 | local_irq_save(flags); | ||
438 | rcu_eqs_enter(false); | ||
439 | rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); | ||
440 | local_irq_restore(flags); | ||
441 | } | ||
442 | EXPORT_SYMBOL_GPL(rcu_idle_enter); | ||
443 | |||
444 | #ifdef CONFIG_RCU_USER_QS | ||
445 | /** | ||
446 | * rcu_user_enter - inform RCU that we are resuming userspace. | ||
447 | * | ||
448 | * Enter RCU idle mode right before resuming userspace. No use of RCU | ||
449 | * is permitted between this call and rcu_user_exit(). This way the | ||
450 | * CPU doesn't need to maintain the tick for RCU maintenance purposes | ||
451 | * when the CPU runs in userspace. | ||
452 | */ | ||
453 | void rcu_user_enter(void) | ||
454 | { | ||
455 | rcu_eqs_enter(1); | ||
456 | } | ||
457 | #endif /* CONFIG_RCU_USER_QS */ | ||
458 | |||
459 | /** | ||
460 | * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle | ||
461 | * | ||
462 | * Exit from an interrupt handler, which might possibly result in entering | ||
463 | * idle mode, in other words, leaving the mode in which read-side critical | ||
464 | * sections can occur. | ||
465 | * | ||
466 | * This code assumes that the idle loop never does anything that might | ||
467 | * result in unbalanced calls to irq_enter() and irq_exit(). If your | ||
468 | * architecture violates this assumption, RCU will give you what you | ||
469 | * deserve, good and hard. But very infrequently and irreproducibly. | ||
470 | * | ||
471 | * Use things like work queues to work around this limitation. | ||
472 | * | ||
473 | * You have been warned. | ||
474 | */ | ||
475 | void rcu_irq_exit(void) | ||
476 | { | ||
477 | unsigned long flags; | ||
478 | long long oldval; | ||
479 | struct rcu_dynticks *rdtp; | ||
480 | |||
481 | local_irq_save(flags); | ||
482 | rdtp = this_cpu_ptr(&rcu_dynticks); | ||
483 | oldval = rdtp->dynticks_nesting; | ||
484 | rdtp->dynticks_nesting--; | ||
485 | WARN_ON_ONCE(rdtp->dynticks_nesting < 0); | ||
486 | if (rdtp->dynticks_nesting) | ||
487 | trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); | ||
488 | else | ||
489 | rcu_eqs_enter_common(rdtp, oldval, true); | ||
490 | rcu_sysidle_enter(rdtp, 1); | ||
491 | local_irq_restore(flags); | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * rcu_eqs_exit_common - current CPU moving away from extended quiescent state | ||
496 | * | ||
497 | * If the new value of the ->dynticks_nesting counter was previously zero, | ||
498 | * we really have exited idle, and must do the appropriate accounting. | ||
499 | * The caller must have disabled interrupts. | ||
500 | */ | ||
501 | static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, | ||
502 | int user) | ||
503 | { | ||
504 | smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ | ||
505 | atomic_inc(&rdtp->dynticks); | ||
506 | /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ | ||
507 | smp_mb__after_atomic_inc(); /* See above. */ | ||
508 | WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); | ||
509 | rcu_cleanup_after_idle(smp_processor_id()); | ||
510 | trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); | ||
511 | if (!user && !is_idle_task(current)) { | ||
512 | struct task_struct *idle __maybe_unused = | ||
513 | idle_task(smp_processor_id()); | ||
514 | |||
515 | trace_rcu_dyntick(TPS("Error on exit: not idle task"), | ||
516 | oldval, rdtp->dynticks_nesting); | ||
517 | ftrace_dump(DUMP_ORIG); | ||
518 | WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", | ||
519 | current->pid, current->comm, | ||
520 | idle->pid, idle->comm); /* must be idle task! */ | ||
521 | } | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * Exit an RCU extended quiescent state, which can be either the | ||
526 | * idle loop or adaptive-tickless usermode execution. | ||
527 | */ | ||
528 | static void rcu_eqs_exit(bool user) | ||
529 | { | ||
530 | struct rcu_dynticks *rdtp; | ||
531 | long long oldval; | ||
532 | |||
533 | rdtp = this_cpu_ptr(&rcu_dynticks); | ||
534 | oldval = rdtp->dynticks_nesting; | ||
535 | WARN_ON_ONCE(oldval < 0); | ||
536 | if (oldval & DYNTICK_TASK_NEST_MASK) | ||
537 | rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; | ||
538 | else | ||
539 | rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; | ||
540 | rcu_eqs_exit_common(rdtp, oldval, user); | ||
541 | } | ||
542 | |||
543 | /** | ||
544 | * rcu_idle_exit - inform RCU that current CPU is leaving idle | ||
545 | * | ||
546 | * Exit idle mode, in other words, -enter- the mode in which RCU | ||
547 | * read-side critical sections can occur. | ||
548 | * | ||
549 | * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to | ||
550 | * allow for the possibility of usermode upcalls messing up our count | ||
551 | * of interrupt nesting level during the busy period that is just | ||
552 | * now starting. | ||
553 | */ | ||
554 | void rcu_idle_exit(void) | ||
555 | { | ||
556 | unsigned long flags; | ||
557 | |||
558 | local_irq_save(flags); | ||
559 | rcu_eqs_exit(false); | ||
560 | rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); | ||
561 | local_irq_restore(flags); | ||
562 | } | ||
563 | EXPORT_SYMBOL_GPL(rcu_idle_exit); | ||
564 | |||
565 | #ifdef CONFIG_RCU_USER_QS | ||
566 | /** | ||
567 | * rcu_user_exit - inform RCU that we are exiting userspace. | ||
568 | * | ||
569 | * Exit RCU idle mode while entering the kernel because it can | ||
570 | * run a RCU read side critical section anytime. | ||
571 | */ | ||
572 | void rcu_user_exit(void) | ||
573 | { | ||
574 | rcu_eqs_exit(1); | ||
575 | } | ||
576 | #endif /* CONFIG_RCU_USER_QS */ | ||
577 | |||
578 | /** | ||
579 | * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle | ||
580 | * | ||
581 | * Enter an interrupt handler, which might possibly result in exiting | ||
582 | * idle mode, in other words, entering the mode in which read-side critical | ||
583 | * sections can occur. | ||
584 | * | ||
585 | * Note that the Linux kernel is fully capable of entering an interrupt | ||
586 | * handler that it never exits, for example when doing upcalls to | ||
587 | * user mode! This code assumes that the idle loop never does upcalls to | ||
588 | * user mode. If your architecture does do upcalls from the idle loop (or | ||
589 | * does anything else that results in unbalanced calls to the irq_enter() | ||
590 | * and irq_exit() functions), RCU will give you what you deserve, good | ||
591 | * and hard. But very infrequently and irreproducibly. | ||
592 | * | ||
593 | * Use things like work queues to work around this limitation. | ||
594 | * | ||
595 | * You have been warned. | ||
596 | */ | ||
597 | void rcu_irq_enter(void) | ||
598 | { | ||
599 | unsigned long flags; | ||
600 | struct rcu_dynticks *rdtp; | ||
601 | long long oldval; | ||
602 | |||
603 | local_irq_save(flags); | ||
604 | rdtp = this_cpu_ptr(&rcu_dynticks); | ||
605 | oldval = rdtp->dynticks_nesting; | ||
606 | rdtp->dynticks_nesting++; | ||
607 | WARN_ON_ONCE(rdtp->dynticks_nesting == 0); | ||
608 | if (oldval) | ||
609 | trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); | ||
610 | else | ||
611 | rcu_eqs_exit_common(rdtp, oldval, true); | ||
612 | rcu_sysidle_exit(rdtp, 1); | ||
613 | local_irq_restore(flags); | ||
614 | } | ||
615 | |||
616 | /** | ||
617 | * rcu_nmi_enter - inform RCU of entry to NMI context | ||
618 | * | ||
619 | * If the CPU was idle with dynamic ticks active, and there is no | ||
620 | * irq handler running, this updates rdtp->dynticks_nmi to let the | ||
621 | * RCU grace-period handling know that the CPU is active. | ||
622 | */ | ||
623 | void rcu_nmi_enter(void) | ||
624 | { | ||
625 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); | ||
626 | |||
627 | if (rdtp->dynticks_nmi_nesting == 0 && | ||
628 | (atomic_read(&rdtp->dynticks) & 0x1)) | ||
629 | return; | ||
630 | rdtp->dynticks_nmi_nesting++; | ||
631 | smp_mb__before_atomic_inc(); /* Force delay from prior write. */ | ||
632 | atomic_inc(&rdtp->dynticks); | ||
633 | /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ | ||
634 | smp_mb__after_atomic_inc(); /* See above. */ | ||
635 | WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); | ||
636 | } | ||
637 | |||
638 | /** | ||
639 | * rcu_nmi_exit - inform RCU of exit from NMI context | ||
640 | * | ||
641 | * If the CPU was idle with dynamic ticks active, and there is no | ||
642 | * irq handler running, this updates rdtp->dynticks_nmi to let the | ||
643 | * RCU grace-period handling know that the CPU is no longer active. | ||
644 | */ | ||
645 | void rcu_nmi_exit(void) | ||
646 | { | ||
647 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); | ||
648 | |||
649 | if (rdtp->dynticks_nmi_nesting == 0 || | ||
650 | --rdtp->dynticks_nmi_nesting != 0) | ||
651 | return; | ||
652 | /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ | ||
653 | smp_mb__before_atomic_inc(); /* See above. */ | ||
654 | atomic_inc(&rdtp->dynticks); | ||
655 | smp_mb__after_atomic_inc(); /* Force delay to next write. */ | ||
656 | WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); | ||
657 | } | ||
658 | |||
659 | /** | ||
660 | * __rcu_is_watching - are RCU read-side critical sections safe? | ||
661 | * | ||
662 | * Return true if RCU is watching the running CPU, which means that | ||
663 | * this CPU can safely enter RCU read-side critical sections. Unlike | ||
664 | * rcu_is_watching(), the caller of __rcu_is_watching() must have at | ||
665 | * least disabled preemption. | ||
666 | */ | ||
667 | bool __rcu_is_watching(void) | ||
668 | { | ||
669 | return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; | ||
670 | } | ||
671 | |||
672 | /** | ||
673 | * rcu_is_watching - see if RCU thinks that the current CPU is idle | ||
674 | * | ||
675 | * If the current CPU is in its idle loop and is neither in an interrupt | ||
676 | * or NMI handler, return true. | ||
677 | */ | ||
678 | bool rcu_is_watching(void) | ||
679 | { | ||
680 | int ret; | ||
681 | |||
682 | preempt_disable(); | ||
683 | ret = __rcu_is_watching(); | ||
684 | preempt_enable(); | ||
685 | return ret; | ||
686 | } | ||
687 | EXPORT_SYMBOL_GPL(rcu_is_watching); | ||
688 | |||
689 | #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) | ||
690 | |||
691 | /* | ||
692 | * Is the current CPU online? Disable preemption to avoid false positives | ||
693 | * that could otherwise happen due to the current CPU number being sampled, | ||
694 | * this task being preempted, its old CPU being taken offline, resuming | ||
695 | * on some other CPU, then determining that its old CPU is now offline. | ||
696 | * It is OK to use RCU on an offline processor during initial boot, hence | ||
697 | * the check for rcu_scheduler_fully_active. Note also that it is OK | ||
698 | * for a CPU coming online to use RCU for one jiffy prior to marking itself | ||
699 | * online in the cpu_online_mask. Similarly, it is OK for a CPU going | ||
700 | * offline to continue to use RCU for one jiffy after marking itself | ||
701 | * offline in the cpu_online_mask. This leniency is necessary given the | ||
702 | * non-atomic nature of the online and offline processing, for example, | ||
703 | * the fact that a CPU enters the scheduler after completing the CPU_DYING | ||
704 | * notifiers. | ||
705 | * | ||
706 | * This is also why RCU internally marks CPUs online during the | ||
707 | * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. | ||
708 | * | ||
709 | * Disable checking if in an NMI handler because we cannot safely report | ||
710 | * errors from NMI handlers anyway. | ||
711 | */ | ||
712 | bool rcu_lockdep_current_cpu_online(void) | ||
713 | { | ||
714 | struct rcu_data *rdp; | ||
715 | struct rcu_node *rnp; | ||
716 | bool ret; | ||
717 | |||
718 | if (in_nmi()) | ||
719 | return 1; | ||
720 | preempt_disable(); | ||
721 | rdp = this_cpu_ptr(&rcu_sched_data); | ||
722 | rnp = rdp->mynode; | ||
723 | ret = (rdp->grpmask & rnp->qsmaskinit) || | ||
724 | !rcu_scheduler_fully_active; | ||
725 | preempt_enable(); | ||
726 | return ret; | ||
727 | } | ||
728 | EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); | ||
729 | |||
730 | #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ | ||
731 | |||
732 | /** | ||
733 | * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle | ||
734 | * | ||
735 | * If the current CPU is idle or running at a first-level (not nested) | ||
736 | * interrupt from idle, return true. The caller must have at least | ||
737 | * disabled preemption. | ||
738 | */ | ||
739 | static int rcu_is_cpu_rrupt_from_idle(void) | ||
740 | { | ||
741 | return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; | ||
742 | } | ||
743 | |||
744 | /* | ||
745 | * Snapshot the specified CPU's dynticks counter so that we can later | ||
746 | * credit them with an implicit quiescent state. Return 1 if this CPU | ||
747 | * is in dynticks idle mode, which is an extended quiescent state. | ||
748 | */ | ||
749 | static int dyntick_save_progress_counter(struct rcu_data *rdp, | ||
750 | bool *isidle, unsigned long *maxj) | ||
751 | { | ||
752 | rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); | ||
753 | rcu_sysidle_check_cpu(rdp, isidle, maxj); | ||
754 | return (rdp->dynticks_snap & 0x1) == 0; | ||
755 | } | ||
756 | |||
757 | /* | ||
758 | * Return true if the specified CPU has passed through a quiescent | ||
759 | * state by virtue of being in or having passed through an dynticks | ||
760 | * idle state since the last call to dyntick_save_progress_counter() | ||
761 | * for this same CPU, or by virtue of having been offline. | ||
762 | */ | ||
763 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, | ||
764 | bool *isidle, unsigned long *maxj) | ||
765 | { | ||
766 | unsigned int curr; | ||
767 | unsigned int snap; | ||
768 | |||
769 | curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); | ||
770 | snap = (unsigned int)rdp->dynticks_snap; | ||
771 | |||
772 | /* | ||
773 | * If the CPU passed through or entered a dynticks idle phase with | ||
774 | * no active irq/NMI handlers, then we can safely pretend that the CPU | ||
775 | * already acknowledged the request to pass through a quiescent | ||
776 | * state. Either way, that CPU cannot possibly be in an RCU | ||
777 | * read-side critical section that started before the beginning | ||
778 | * of the current RCU grace period. | ||
779 | */ | ||
780 | if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { | ||
781 | trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); | ||
782 | rdp->dynticks_fqs++; | ||
783 | return 1; | ||
784 | } | ||
785 | |||
786 | /* | ||
787 | * Check for the CPU being offline, but only if the grace period | ||
788 | * is old enough. We don't need to worry about the CPU changing | ||
789 | * state: If we see it offline even once, it has been through a | ||
790 | * quiescent state. | ||
791 | * | ||
792 | * The reason for insisting that the grace period be at least | ||
793 | * one jiffy old is that CPUs that are not quite online and that | ||
794 | * have just gone offline can still execute RCU read-side critical | ||
795 | * sections. | ||
796 | */ | ||
797 | if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) | ||
798 | return 0; /* Grace period is not old enough. */ | ||
799 | barrier(); | ||
800 | if (cpu_is_offline(rdp->cpu)) { | ||
801 | trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); | ||
802 | rdp->offline_fqs++; | ||
803 | return 1; | ||
804 | } | ||
805 | |||
806 | /* | ||
807 | * There is a possibility that a CPU in adaptive-ticks state | ||
808 | * might run in the kernel with the scheduling-clock tick disabled | ||
809 | * for an extended time period. Invoke rcu_kick_nohz_cpu() to | ||
810 | * force the CPU to restart the scheduling-clock tick in this | ||
811 | * CPU is in this state. | ||
812 | */ | ||
813 | rcu_kick_nohz_cpu(rdp->cpu); | ||
814 | |||
815 | return 0; | ||
816 | } | ||
817 | |||
818 | static void record_gp_stall_check_time(struct rcu_state *rsp) | ||
819 | { | ||
820 | unsigned long j = ACCESS_ONCE(jiffies); | ||
821 | |||
822 | rsp->gp_start = j; | ||
823 | smp_wmb(); /* Record start time before stall time. */ | ||
824 | rsp->jiffies_stall = j + rcu_jiffies_till_stall_check(); | ||
825 | } | ||
826 | |||
827 | /* | ||
828 | * Dump stacks of all tasks running on stalled CPUs. This is a fallback | ||
829 | * for architectures that do not implement trigger_all_cpu_backtrace(). | ||
830 | * The NMI-triggered stack traces are more accurate because they are | ||
831 | * printed by the target CPU. | ||
832 | */ | ||
833 | static void rcu_dump_cpu_stacks(struct rcu_state *rsp) | ||
834 | { | ||
835 | int cpu; | ||
836 | unsigned long flags; | ||
837 | struct rcu_node *rnp; | ||
838 | |||
839 | rcu_for_each_leaf_node(rsp, rnp) { | ||
840 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
841 | if (rnp->qsmask != 0) { | ||
842 | for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) | ||
843 | if (rnp->qsmask & (1UL << cpu)) | ||
844 | dump_cpu_task(rnp->grplo + cpu); | ||
845 | } | ||
846 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
847 | } | ||
848 | } | ||
849 | |||
850 | static void print_other_cpu_stall(struct rcu_state *rsp) | ||
851 | { | ||
852 | int cpu; | ||
853 | long delta; | ||
854 | unsigned long flags; | ||
855 | int ndetected = 0; | ||
856 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
857 | long totqlen = 0; | ||
858 | |||
859 | /* Only let one CPU complain about others per time interval. */ | ||
860 | |||
861 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
862 | delta = jiffies - rsp->jiffies_stall; | ||
863 | if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { | ||
864 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
865 | return; | ||
866 | } | ||
867 | rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; | ||
868 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
869 | |||
870 | /* | ||
871 | * OK, time to rat on our buddy... | ||
872 | * See Documentation/RCU/stallwarn.txt for info on how to debug | ||
873 | * RCU CPU stall warnings. | ||
874 | */ | ||
875 | pr_err("INFO: %s detected stalls on CPUs/tasks:", | ||
876 | rsp->name); | ||
877 | print_cpu_stall_info_begin(); | ||
878 | rcu_for_each_leaf_node(rsp, rnp) { | ||
879 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
880 | ndetected += rcu_print_task_stall(rnp); | ||
881 | if (rnp->qsmask != 0) { | ||
882 | for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) | ||
883 | if (rnp->qsmask & (1UL << cpu)) { | ||
884 | print_cpu_stall_info(rsp, | ||
885 | rnp->grplo + cpu); | ||
886 | ndetected++; | ||
887 | } | ||
888 | } | ||
889 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
890 | } | ||
891 | |||
892 | /* | ||
893 | * Now rat on any tasks that got kicked up to the root rcu_node | ||
894 | * due to CPU offlining. | ||
895 | */ | ||
896 | rnp = rcu_get_root(rsp); | ||
897 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
898 | ndetected += rcu_print_task_stall(rnp); | ||
899 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
900 | |||
901 | print_cpu_stall_info_end(); | ||
902 | for_each_possible_cpu(cpu) | ||
903 | totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; | ||
904 | pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n", | ||
905 | smp_processor_id(), (long)(jiffies - rsp->gp_start), | ||
906 | rsp->gpnum, rsp->completed, totqlen); | ||
907 | if (ndetected == 0) | ||
908 | pr_err("INFO: Stall ended before state dump start\n"); | ||
909 | else if (!trigger_all_cpu_backtrace()) | ||
910 | rcu_dump_cpu_stacks(rsp); | ||
911 | |||
912 | /* Complain about tasks blocking the grace period. */ | ||
913 | |||
914 | rcu_print_detail_task_stall(rsp); | ||
915 | |||
916 | force_quiescent_state(rsp); /* Kick them all. */ | ||
917 | } | ||
918 | |||
919 | static void print_cpu_stall(struct rcu_state *rsp) | ||
920 | { | ||
921 | int cpu; | ||
922 | unsigned long flags; | ||
923 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
924 | long totqlen = 0; | ||
925 | |||
926 | /* | ||
927 | * OK, time to rat on ourselves... | ||
928 | * See Documentation/RCU/stallwarn.txt for info on how to debug | ||
929 | * RCU CPU stall warnings. | ||
930 | */ | ||
931 | pr_err("INFO: %s self-detected stall on CPU", rsp->name); | ||
932 | print_cpu_stall_info_begin(); | ||
933 | print_cpu_stall_info(rsp, smp_processor_id()); | ||
934 | print_cpu_stall_info_end(); | ||
935 | for_each_possible_cpu(cpu) | ||
936 | totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; | ||
937 | pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n", | ||
938 | jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen); | ||
939 | if (!trigger_all_cpu_backtrace()) | ||
940 | dump_stack(); | ||
941 | |||
942 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
943 | if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) | ||
944 | rsp->jiffies_stall = jiffies + | ||
945 | 3 * rcu_jiffies_till_stall_check() + 3; | ||
946 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
947 | |||
948 | set_need_resched(); /* kick ourselves to get things going. */ | ||
949 | } | ||
950 | |||
951 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | ||
952 | { | ||
953 | unsigned long completed; | ||
954 | unsigned long gpnum; | ||
955 | unsigned long gps; | ||
956 | unsigned long j; | ||
957 | unsigned long js; | ||
958 | struct rcu_node *rnp; | ||
959 | |||
960 | if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) | ||
961 | return; | ||
962 | j = ACCESS_ONCE(jiffies); | ||
963 | |||
964 | /* | ||
965 | * Lots of memory barriers to reject false positives. | ||
966 | * | ||
967 | * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, | ||
968 | * then rsp->gp_start, and finally rsp->completed. These values | ||
969 | * are updated in the opposite order with memory barriers (or | ||
970 | * equivalent) during grace-period initialization and cleanup. | ||
971 | * Now, a false positive can occur if we get an new value of | ||
972 | * rsp->gp_start and a old value of rsp->jiffies_stall. But given | ||
973 | * the memory barriers, the only way that this can happen is if one | ||
974 | * grace period ends and another starts between these two fetches. | ||
975 | * Detect this by comparing rsp->completed with the previous fetch | ||
976 | * from rsp->gpnum. | ||
977 | * | ||
978 | * Given this check, comparisons of jiffies, rsp->jiffies_stall, | ||
979 | * and rsp->gp_start suffice to forestall false positives. | ||
980 | */ | ||
981 | gpnum = ACCESS_ONCE(rsp->gpnum); | ||
982 | smp_rmb(); /* Pick up ->gpnum first... */ | ||
983 | js = ACCESS_ONCE(rsp->jiffies_stall); | ||
984 | smp_rmb(); /* ...then ->jiffies_stall before the rest... */ | ||
985 | gps = ACCESS_ONCE(rsp->gp_start); | ||
986 | smp_rmb(); /* ...and finally ->gp_start before ->completed. */ | ||
987 | completed = ACCESS_ONCE(rsp->completed); | ||
988 | if (ULONG_CMP_GE(completed, gpnum) || | ||
989 | ULONG_CMP_LT(j, js) || | ||
990 | ULONG_CMP_GE(gps, js)) | ||
991 | return; /* No stall or GP completed since entering function. */ | ||
992 | rnp = rdp->mynode; | ||
993 | if (rcu_gp_in_progress(rsp) && | ||
994 | (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { | ||
995 | |||
996 | /* We haven't checked in, so go dump stack. */ | ||
997 | print_cpu_stall(rsp); | ||
998 | |||
999 | } else if (rcu_gp_in_progress(rsp) && | ||
1000 | ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { | ||
1001 | |||
1002 | /* They had a few time units to dump stack, so complain. */ | ||
1003 | print_other_cpu_stall(rsp); | ||
1004 | } | ||
1005 | } | ||
1006 | |||
1007 | /** | ||
1008 | * rcu_cpu_stall_reset - prevent further stall warnings in current grace period | ||
1009 | * | ||
1010 | * Set the stall-warning timeout way off into the future, thus preventing | ||
1011 | * any RCU CPU stall-warning messages from appearing in the current set of | ||
1012 | * RCU grace periods. | ||
1013 | * | ||
1014 | * The caller must disable hard irqs. | ||
1015 | */ | ||
1016 | void rcu_cpu_stall_reset(void) | ||
1017 | { | ||
1018 | struct rcu_state *rsp; | ||
1019 | |||
1020 | for_each_rcu_flavor(rsp) | ||
1021 | rsp->jiffies_stall = jiffies + ULONG_MAX / 2; | ||
1022 | } | ||
1023 | |||
1024 | /* | ||
1025 | * Initialize the specified rcu_data structure's callback list to empty. | ||
1026 | */ | ||
1027 | static void init_callback_list(struct rcu_data *rdp) | ||
1028 | { | ||
1029 | int i; | ||
1030 | |||
1031 | if (init_nocb_callback_list(rdp)) | ||
1032 | return; | ||
1033 | rdp->nxtlist = NULL; | ||
1034 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
1035 | rdp->nxttail[i] = &rdp->nxtlist; | ||
1036 | } | ||
1037 | |||
1038 | /* | ||
1039 | * Determine the value that ->completed will have at the end of the | ||
1040 | * next subsequent grace period. This is used to tag callbacks so that | ||
1041 | * a CPU can invoke callbacks in a timely fashion even if that CPU has | ||
1042 | * been dyntick-idle for an extended period with callbacks under the | ||
1043 | * influence of RCU_FAST_NO_HZ. | ||
1044 | * | ||
1045 | * The caller must hold rnp->lock with interrupts disabled. | ||
1046 | */ | ||
1047 | static unsigned long rcu_cbs_completed(struct rcu_state *rsp, | ||
1048 | struct rcu_node *rnp) | ||
1049 | { | ||
1050 | /* | ||
1051 | * If RCU is idle, we just wait for the next grace period. | ||
1052 | * But we can only be sure that RCU is idle if we are looking | ||
1053 | * at the root rcu_node structure -- otherwise, a new grace | ||
1054 | * period might have started, but just not yet gotten around | ||
1055 | * to initializing the current non-root rcu_node structure. | ||
1056 | */ | ||
1057 | if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) | ||
1058 | return rnp->completed + 1; | ||
1059 | |||
1060 | /* | ||
1061 | * Otherwise, wait for a possible partial grace period and | ||
1062 | * then the subsequent full grace period. | ||
1063 | */ | ||
1064 | return rnp->completed + 2; | ||
1065 | } | ||
1066 | |||
1067 | /* | ||
1068 | * Trace-event helper function for rcu_start_future_gp() and | ||
1069 | * rcu_nocb_wait_gp(). | ||
1070 | */ | ||
1071 | static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, | ||
1072 | unsigned long c, const char *s) | ||
1073 | { | ||
1074 | trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, | ||
1075 | rnp->completed, c, rnp->level, | ||
1076 | rnp->grplo, rnp->grphi, s); | ||
1077 | } | ||
1078 | |||
1079 | /* | ||
1080 | * Start some future grace period, as needed to handle newly arrived | ||
1081 | * callbacks. The required future grace periods are recorded in each | ||
1082 | * rcu_node structure's ->need_future_gp field. | ||
1083 | * | ||
1084 | * The caller must hold the specified rcu_node structure's ->lock. | ||
1085 | */ | ||
1086 | static unsigned long __maybe_unused | ||
1087 | rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp) | ||
1088 | { | ||
1089 | unsigned long c; | ||
1090 | int i; | ||
1091 | struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); | ||
1092 | |||
1093 | /* | ||
1094 | * Pick up grace-period number for new callbacks. If this | ||
1095 | * grace period is already marked as needed, return to the caller. | ||
1096 | */ | ||
1097 | c = rcu_cbs_completed(rdp->rsp, rnp); | ||
1098 | trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); | ||
1099 | if (rnp->need_future_gp[c & 0x1]) { | ||
1100 | trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); | ||
1101 | return c; | ||
1102 | } | ||
1103 | |||
1104 | /* | ||
1105 | * If either this rcu_node structure or the root rcu_node structure | ||
1106 | * believe that a grace period is in progress, then we must wait | ||
1107 | * for the one following, which is in "c". Because our request | ||
1108 | * will be noticed at the end of the current grace period, we don't | ||
1109 | * need to explicitly start one. | ||
1110 | */ | ||
1111 | if (rnp->gpnum != rnp->completed || | ||
1112 | ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { | ||
1113 | rnp->need_future_gp[c & 0x1]++; | ||
1114 | trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); | ||
1115 | return c; | ||
1116 | } | ||
1117 | |||
1118 | /* | ||
1119 | * There might be no grace period in progress. If we don't already | ||
1120 | * hold it, acquire the root rcu_node structure's lock in order to | ||
1121 | * start one (if needed). | ||
1122 | */ | ||
1123 | if (rnp != rnp_root) | ||
1124 | raw_spin_lock(&rnp_root->lock); | ||
1125 | |||
1126 | /* | ||
1127 | * Get a new grace-period number. If there really is no grace | ||
1128 | * period in progress, it will be smaller than the one we obtained | ||
1129 | * earlier. Adjust callbacks as needed. Note that even no-CBs | ||
1130 | * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. | ||
1131 | */ | ||
1132 | c = rcu_cbs_completed(rdp->rsp, rnp_root); | ||
1133 | for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) | ||
1134 | if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) | ||
1135 | rdp->nxtcompleted[i] = c; | ||
1136 | |||
1137 | /* | ||
1138 | * If the needed for the required grace period is already | ||
1139 | * recorded, trace and leave. | ||
1140 | */ | ||
1141 | if (rnp_root->need_future_gp[c & 0x1]) { | ||
1142 | trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); | ||
1143 | goto unlock_out; | ||
1144 | } | ||
1145 | |||
1146 | /* Record the need for the future grace period. */ | ||
1147 | rnp_root->need_future_gp[c & 0x1]++; | ||
1148 | |||
1149 | /* If a grace period is not already in progress, start one. */ | ||
1150 | if (rnp_root->gpnum != rnp_root->completed) { | ||
1151 | trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); | ||
1152 | } else { | ||
1153 | trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); | ||
1154 | rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); | ||
1155 | } | ||
1156 | unlock_out: | ||
1157 | if (rnp != rnp_root) | ||
1158 | raw_spin_unlock(&rnp_root->lock); | ||
1159 | return c; | ||
1160 | } | ||
1161 | |||
1162 | /* | ||
1163 | * Clean up any old requests for the just-ended grace period. Also return | ||
1164 | * whether any additional grace periods have been requested. Also invoke | ||
1165 | * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads | ||
1166 | * waiting for this grace period to complete. | ||
1167 | */ | ||
1168 | static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) | ||
1169 | { | ||
1170 | int c = rnp->completed; | ||
1171 | int needmore; | ||
1172 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); | ||
1173 | |||
1174 | rcu_nocb_gp_cleanup(rsp, rnp); | ||
1175 | rnp->need_future_gp[c & 0x1] = 0; | ||
1176 | needmore = rnp->need_future_gp[(c + 1) & 0x1]; | ||
1177 | trace_rcu_future_gp(rnp, rdp, c, | ||
1178 | needmore ? TPS("CleanupMore") : TPS("Cleanup")); | ||
1179 | return needmore; | ||
1180 | } | ||
1181 | |||
1182 | /* | ||
1183 | * If there is room, assign a ->completed number to any callbacks on | ||
1184 | * this CPU that have not already been assigned. Also accelerate any | ||
1185 | * callbacks that were previously assigned a ->completed number that has | ||
1186 | * since proven to be too conservative, which can happen if callbacks get | ||
1187 | * assigned a ->completed number while RCU is idle, but with reference to | ||
1188 | * a non-root rcu_node structure. This function is idempotent, so it does | ||
1189 | * not hurt to call it repeatedly. | ||
1190 | * | ||
1191 | * The caller must hold rnp->lock with interrupts disabled. | ||
1192 | */ | ||
1193 | static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, | ||
1194 | struct rcu_data *rdp) | ||
1195 | { | ||
1196 | unsigned long c; | ||
1197 | int i; | ||
1198 | |||
1199 | /* If the CPU has no callbacks, nothing to do. */ | ||
1200 | if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) | ||
1201 | return; | ||
1202 | |||
1203 | /* | ||
1204 | * Starting from the sublist containing the callbacks most | ||
1205 | * recently assigned a ->completed number and working down, find the | ||
1206 | * first sublist that is not assignable to an upcoming grace period. | ||
1207 | * Such a sublist has something in it (first two tests) and has | ||
1208 | * a ->completed number assigned that will complete sooner than | ||
1209 | * the ->completed number for newly arrived callbacks (last test). | ||
1210 | * | ||
1211 | * The key point is that any later sublist can be assigned the | ||
1212 | * same ->completed number as the newly arrived callbacks, which | ||
1213 | * means that the callbacks in any of these later sublist can be | ||
1214 | * grouped into a single sublist, whether or not they have already | ||
1215 | * been assigned a ->completed number. | ||
1216 | */ | ||
1217 | c = rcu_cbs_completed(rsp, rnp); | ||
1218 | for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) | ||
1219 | if (rdp->nxttail[i] != rdp->nxttail[i - 1] && | ||
1220 | !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) | ||
1221 | break; | ||
1222 | |||
1223 | /* | ||
1224 | * If there are no sublist for unassigned callbacks, leave. | ||
1225 | * At the same time, advance "i" one sublist, so that "i" will | ||
1226 | * index into the sublist where all the remaining callbacks should | ||
1227 | * be grouped into. | ||
1228 | */ | ||
1229 | if (++i >= RCU_NEXT_TAIL) | ||
1230 | return; | ||
1231 | |||
1232 | /* | ||
1233 | * Assign all subsequent callbacks' ->completed number to the next | ||
1234 | * full grace period and group them all in the sublist initially | ||
1235 | * indexed by "i". | ||
1236 | */ | ||
1237 | for (; i <= RCU_NEXT_TAIL; i++) { | ||
1238 | rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
1239 | rdp->nxtcompleted[i] = c; | ||
1240 | } | ||
1241 | /* Record any needed additional grace periods. */ | ||
1242 | rcu_start_future_gp(rnp, rdp); | ||
1243 | |||
1244 | /* Trace depending on how much we were able to accelerate. */ | ||
1245 | if (!*rdp->nxttail[RCU_WAIT_TAIL]) | ||
1246 | trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); | ||
1247 | else | ||
1248 | trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); | ||
1249 | } | ||
1250 | |||
1251 | /* | ||
1252 | * Move any callbacks whose grace period has completed to the | ||
1253 | * RCU_DONE_TAIL sublist, then compact the remaining sublists and | ||
1254 | * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL | ||
1255 | * sublist. This function is idempotent, so it does not hurt to | ||
1256 | * invoke it repeatedly. As long as it is not invoked -too- often... | ||
1257 | * | ||
1258 | * The caller must hold rnp->lock with interrupts disabled. | ||
1259 | */ | ||
1260 | static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, | ||
1261 | struct rcu_data *rdp) | ||
1262 | { | ||
1263 | int i, j; | ||
1264 | |||
1265 | /* If the CPU has no callbacks, nothing to do. */ | ||
1266 | if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) | ||
1267 | return; | ||
1268 | |||
1269 | /* | ||
1270 | * Find all callbacks whose ->completed numbers indicate that they | ||
1271 | * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. | ||
1272 | */ | ||
1273 | for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { | ||
1274 | if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) | ||
1275 | break; | ||
1276 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; | ||
1277 | } | ||
1278 | /* Clean up any sublist tail pointers that were misordered above. */ | ||
1279 | for (j = RCU_WAIT_TAIL; j < i; j++) | ||
1280 | rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; | ||
1281 | |||
1282 | /* Copy down callbacks to fill in empty sublists. */ | ||
1283 | for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { | ||
1284 | if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) | ||
1285 | break; | ||
1286 | rdp->nxttail[j] = rdp->nxttail[i]; | ||
1287 | rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; | ||
1288 | } | ||
1289 | |||
1290 | /* Classify any remaining callbacks. */ | ||
1291 | rcu_accelerate_cbs(rsp, rnp, rdp); | ||
1292 | } | ||
1293 | |||
1294 | /* | ||
1295 | * Update CPU-local rcu_data state to record the beginnings and ends of | ||
1296 | * grace periods. The caller must hold the ->lock of the leaf rcu_node | ||
1297 | * structure corresponding to the current CPU, and must have irqs disabled. | ||
1298 | */ | ||
1299 | static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | ||
1300 | { | ||
1301 | /* Handle the ends of any preceding grace periods first. */ | ||
1302 | if (rdp->completed == rnp->completed) { | ||
1303 | |||
1304 | /* No grace period end, so just accelerate recent callbacks. */ | ||
1305 | rcu_accelerate_cbs(rsp, rnp, rdp); | ||
1306 | |||
1307 | } else { | ||
1308 | |||
1309 | /* Advance callbacks. */ | ||
1310 | rcu_advance_cbs(rsp, rnp, rdp); | ||
1311 | |||
1312 | /* Remember that we saw this grace-period completion. */ | ||
1313 | rdp->completed = rnp->completed; | ||
1314 | trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); | ||
1315 | } | ||
1316 | |||
1317 | if (rdp->gpnum != rnp->gpnum) { | ||
1318 | /* | ||
1319 | * If the current grace period is waiting for this CPU, | ||
1320 | * set up to detect a quiescent state, otherwise don't | ||
1321 | * go looking for one. | ||
1322 | */ | ||
1323 | rdp->gpnum = rnp->gpnum; | ||
1324 | trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); | ||
1325 | rdp->passed_quiesce = 0; | ||
1326 | rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); | ||
1327 | zero_cpu_stall_ticks(rdp); | ||
1328 | } | ||
1329 | } | ||
1330 | |||
1331 | static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) | ||
1332 | { | ||
1333 | unsigned long flags; | ||
1334 | struct rcu_node *rnp; | ||
1335 | |||
1336 | local_irq_save(flags); | ||
1337 | rnp = rdp->mynode; | ||
1338 | if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && | ||
1339 | rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ | ||
1340 | !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ | ||
1341 | local_irq_restore(flags); | ||
1342 | return; | ||
1343 | } | ||
1344 | __note_gp_changes(rsp, rnp, rdp); | ||
1345 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1346 | } | ||
1347 | |||
1348 | /* | ||
1349 | * Initialize a new grace period. Return 0 if no grace period required. | ||
1350 | */ | ||
1351 | static int rcu_gp_init(struct rcu_state *rsp) | ||
1352 | { | ||
1353 | struct rcu_data *rdp; | ||
1354 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1355 | |||
1356 | rcu_bind_gp_kthread(); | ||
1357 | raw_spin_lock_irq(&rnp->lock); | ||
1358 | if (rsp->gp_flags == 0) { | ||
1359 | /* Spurious wakeup, tell caller to go back to sleep. */ | ||
1360 | raw_spin_unlock_irq(&rnp->lock); | ||
1361 | return 0; | ||
1362 | } | ||
1363 | rsp->gp_flags = 0; /* Clear all flags: New grace period. */ | ||
1364 | |||
1365 | if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { | ||
1366 | /* | ||
1367 | * Grace period already in progress, don't start another. | ||
1368 | * Not supposed to be able to happen. | ||
1369 | */ | ||
1370 | raw_spin_unlock_irq(&rnp->lock); | ||
1371 | return 0; | ||
1372 | } | ||
1373 | |||
1374 | /* Advance to a new grace period and initialize state. */ | ||
1375 | record_gp_stall_check_time(rsp); | ||
1376 | smp_wmb(); /* Record GP times before starting GP. */ | ||
1377 | rsp->gpnum++; | ||
1378 | trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); | ||
1379 | raw_spin_unlock_irq(&rnp->lock); | ||
1380 | |||
1381 | /* Exclude any concurrent CPU-hotplug operations. */ | ||
1382 | mutex_lock(&rsp->onoff_mutex); | ||
1383 | |||
1384 | /* | ||
1385 | * Set the quiescent-state-needed bits in all the rcu_node | ||
1386 | * structures for all currently online CPUs in breadth-first order, | ||
1387 | * starting from the root rcu_node structure, relying on the layout | ||
1388 | * of the tree within the rsp->node[] array. Note that other CPUs | ||
1389 | * will access only the leaves of the hierarchy, thus seeing that no | ||
1390 | * grace period is in progress, at least until the corresponding | ||
1391 | * leaf node has been initialized. In addition, we have excluded | ||
1392 | * CPU-hotplug operations. | ||
1393 | * | ||
1394 | * The grace period cannot complete until the initialization | ||
1395 | * process finishes, because this kthread handles both. | ||
1396 | */ | ||
1397 | rcu_for_each_node_breadth_first(rsp, rnp) { | ||
1398 | raw_spin_lock_irq(&rnp->lock); | ||
1399 | rdp = this_cpu_ptr(rsp->rda); | ||
1400 | rcu_preempt_check_blocked_tasks(rnp); | ||
1401 | rnp->qsmask = rnp->qsmaskinit; | ||
1402 | ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; | ||
1403 | WARN_ON_ONCE(rnp->completed != rsp->completed); | ||
1404 | ACCESS_ONCE(rnp->completed) = rsp->completed; | ||
1405 | if (rnp == rdp->mynode) | ||
1406 | __note_gp_changes(rsp, rnp, rdp); | ||
1407 | rcu_preempt_boost_start_gp(rnp); | ||
1408 | trace_rcu_grace_period_init(rsp->name, rnp->gpnum, | ||
1409 | rnp->level, rnp->grplo, | ||
1410 | rnp->grphi, rnp->qsmask); | ||
1411 | raw_spin_unlock_irq(&rnp->lock); | ||
1412 | #ifdef CONFIG_PROVE_RCU_DELAY | ||
1413 | if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && | ||
1414 | system_state == SYSTEM_RUNNING) | ||
1415 | udelay(200); | ||
1416 | #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ | ||
1417 | cond_resched(); | ||
1418 | } | ||
1419 | |||
1420 | mutex_unlock(&rsp->onoff_mutex); | ||
1421 | return 1; | ||
1422 | } | ||
1423 | |||
1424 | /* | ||
1425 | * Do one round of quiescent-state forcing. | ||
1426 | */ | ||
1427 | static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) | ||
1428 | { | ||
1429 | int fqs_state = fqs_state_in; | ||
1430 | bool isidle = false; | ||
1431 | unsigned long maxj; | ||
1432 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1433 | |||
1434 | rsp->n_force_qs++; | ||
1435 | if (fqs_state == RCU_SAVE_DYNTICK) { | ||
1436 | /* Collect dyntick-idle snapshots. */ | ||
1437 | if (is_sysidle_rcu_state(rsp)) { | ||
1438 | isidle = 1; | ||
1439 | maxj = jiffies - ULONG_MAX / 4; | ||
1440 | } | ||
1441 | force_qs_rnp(rsp, dyntick_save_progress_counter, | ||
1442 | &isidle, &maxj); | ||
1443 | rcu_sysidle_report_gp(rsp, isidle, maxj); | ||
1444 | fqs_state = RCU_FORCE_QS; | ||
1445 | } else { | ||
1446 | /* Handle dyntick-idle and offline CPUs. */ | ||
1447 | isidle = 0; | ||
1448 | force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); | ||
1449 | } | ||
1450 | /* Clear flag to prevent immediate re-entry. */ | ||
1451 | if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { | ||
1452 | raw_spin_lock_irq(&rnp->lock); | ||
1453 | rsp->gp_flags &= ~RCU_GP_FLAG_FQS; | ||
1454 | raw_spin_unlock_irq(&rnp->lock); | ||
1455 | } | ||
1456 | return fqs_state; | ||
1457 | } | ||
1458 | |||
1459 | /* | ||
1460 | * Clean up after the old grace period. | ||
1461 | */ | ||
1462 | static void rcu_gp_cleanup(struct rcu_state *rsp) | ||
1463 | { | ||
1464 | unsigned long gp_duration; | ||
1465 | int nocb = 0; | ||
1466 | struct rcu_data *rdp; | ||
1467 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1468 | |||
1469 | raw_spin_lock_irq(&rnp->lock); | ||
1470 | gp_duration = jiffies - rsp->gp_start; | ||
1471 | if (gp_duration > rsp->gp_max) | ||
1472 | rsp->gp_max = gp_duration; | ||
1473 | |||
1474 | /* | ||
1475 | * We know the grace period is complete, but to everyone else | ||
1476 | * it appears to still be ongoing. But it is also the case | ||
1477 | * that to everyone else it looks like there is nothing that | ||
1478 | * they can do to advance the grace period. It is therefore | ||
1479 | * safe for us to drop the lock in order to mark the grace | ||
1480 | * period as completed in all of the rcu_node structures. | ||
1481 | */ | ||
1482 | raw_spin_unlock_irq(&rnp->lock); | ||
1483 | |||
1484 | /* | ||
1485 | * Propagate new ->completed value to rcu_node structures so | ||
1486 | * that other CPUs don't have to wait until the start of the next | ||
1487 | * grace period to process their callbacks. This also avoids | ||
1488 | * some nasty RCU grace-period initialization races by forcing | ||
1489 | * the end of the current grace period to be completely recorded in | ||
1490 | * all of the rcu_node structures before the beginning of the next | ||
1491 | * grace period is recorded in any of the rcu_node structures. | ||
1492 | */ | ||
1493 | rcu_for_each_node_breadth_first(rsp, rnp) { | ||
1494 | raw_spin_lock_irq(&rnp->lock); | ||
1495 | ACCESS_ONCE(rnp->completed) = rsp->gpnum; | ||
1496 | rdp = this_cpu_ptr(rsp->rda); | ||
1497 | if (rnp == rdp->mynode) | ||
1498 | __note_gp_changes(rsp, rnp, rdp); | ||
1499 | nocb += rcu_future_gp_cleanup(rsp, rnp); | ||
1500 | raw_spin_unlock_irq(&rnp->lock); | ||
1501 | cond_resched(); | ||
1502 | } | ||
1503 | rnp = rcu_get_root(rsp); | ||
1504 | raw_spin_lock_irq(&rnp->lock); | ||
1505 | rcu_nocb_gp_set(rnp, nocb); | ||
1506 | |||
1507 | rsp->completed = rsp->gpnum; /* Declare grace period done. */ | ||
1508 | trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); | ||
1509 | rsp->fqs_state = RCU_GP_IDLE; | ||
1510 | rdp = this_cpu_ptr(rsp->rda); | ||
1511 | rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */ | ||
1512 | if (cpu_needs_another_gp(rsp, rdp)) { | ||
1513 | rsp->gp_flags = RCU_GP_FLAG_INIT; | ||
1514 | trace_rcu_grace_period(rsp->name, | ||
1515 | ACCESS_ONCE(rsp->gpnum), | ||
1516 | TPS("newreq")); | ||
1517 | } | ||
1518 | raw_spin_unlock_irq(&rnp->lock); | ||
1519 | } | ||
1520 | |||
1521 | /* | ||
1522 | * Body of kthread that handles grace periods. | ||
1523 | */ | ||
1524 | static int __noreturn rcu_gp_kthread(void *arg) | ||
1525 | { | ||
1526 | int fqs_state; | ||
1527 | int gf; | ||
1528 | unsigned long j; | ||
1529 | int ret; | ||
1530 | struct rcu_state *rsp = arg; | ||
1531 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1532 | |||
1533 | for (;;) { | ||
1534 | |||
1535 | /* Handle grace-period start. */ | ||
1536 | for (;;) { | ||
1537 | trace_rcu_grace_period(rsp->name, | ||
1538 | ACCESS_ONCE(rsp->gpnum), | ||
1539 | TPS("reqwait")); | ||
1540 | wait_event_interruptible(rsp->gp_wq, | ||
1541 | ACCESS_ONCE(rsp->gp_flags) & | ||
1542 | RCU_GP_FLAG_INIT); | ||
1543 | if (rcu_gp_init(rsp)) | ||
1544 | break; | ||
1545 | cond_resched(); | ||
1546 | flush_signals(current); | ||
1547 | trace_rcu_grace_period(rsp->name, | ||
1548 | ACCESS_ONCE(rsp->gpnum), | ||
1549 | TPS("reqwaitsig")); | ||
1550 | } | ||
1551 | |||
1552 | /* Handle quiescent-state forcing. */ | ||
1553 | fqs_state = RCU_SAVE_DYNTICK; | ||
1554 | j = jiffies_till_first_fqs; | ||
1555 | if (j > HZ) { | ||
1556 | j = HZ; | ||
1557 | jiffies_till_first_fqs = HZ; | ||
1558 | } | ||
1559 | ret = 0; | ||
1560 | for (;;) { | ||
1561 | if (!ret) | ||
1562 | rsp->jiffies_force_qs = jiffies + j; | ||
1563 | trace_rcu_grace_period(rsp->name, | ||
1564 | ACCESS_ONCE(rsp->gpnum), | ||
1565 | TPS("fqswait")); | ||
1566 | ret = wait_event_interruptible_timeout(rsp->gp_wq, | ||
1567 | ((gf = ACCESS_ONCE(rsp->gp_flags)) & | ||
1568 | RCU_GP_FLAG_FQS) || | ||
1569 | (!ACCESS_ONCE(rnp->qsmask) && | ||
1570 | !rcu_preempt_blocked_readers_cgp(rnp)), | ||
1571 | j); | ||
1572 | /* If grace period done, leave loop. */ | ||
1573 | if (!ACCESS_ONCE(rnp->qsmask) && | ||
1574 | !rcu_preempt_blocked_readers_cgp(rnp)) | ||
1575 | break; | ||
1576 | /* If time for quiescent-state forcing, do it. */ | ||
1577 | if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || | ||
1578 | (gf & RCU_GP_FLAG_FQS)) { | ||
1579 | trace_rcu_grace_period(rsp->name, | ||
1580 | ACCESS_ONCE(rsp->gpnum), | ||
1581 | TPS("fqsstart")); | ||
1582 | fqs_state = rcu_gp_fqs(rsp, fqs_state); | ||
1583 | trace_rcu_grace_period(rsp->name, | ||
1584 | ACCESS_ONCE(rsp->gpnum), | ||
1585 | TPS("fqsend")); | ||
1586 | cond_resched(); | ||
1587 | } else { | ||
1588 | /* Deal with stray signal. */ | ||
1589 | cond_resched(); | ||
1590 | flush_signals(current); | ||
1591 | trace_rcu_grace_period(rsp->name, | ||
1592 | ACCESS_ONCE(rsp->gpnum), | ||
1593 | TPS("fqswaitsig")); | ||
1594 | } | ||
1595 | j = jiffies_till_next_fqs; | ||
1596 | if (j > HZ) { | ||
1597 | j = HZ; | ||
1598 | jiffies_till_next_fqs = HZ; | ||
1599 | } else if (j < 1) { | ||
1600 | j = 1; | ||
1601 | jiffies_till_next_fqs = 1; | ||
1602 | } | ||
1603 | } | ||
1604 | |||
1605 | /* Handle grace-period end. */ | ||
1606 | rcu_gp_cleanup(rsp); | ||
1607 | } | ||
1608 | } | ||
1609 | |||
1610 | static void rsp_wakeup(struct irq_work *work) | ||
1611 | { | ||
1612 | struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work); | ||
1613 | |||
1614 | /* Wake up rcu_gp_kthread() to start the grace period. */ | ||
1615 | wake_up(&rsp->gp_wq); | ||
1616 | } | ||
1617 | |||
1618 | /* | ||
1619 | * Start a new RCU grace period if warranted, re-initializing the hierarchy | ||
1620 | * in preparation for detecting the next grace period. The caller must hold | ||
1621 | * the root node's ->lock and hard irqs must be disabled. | ||
1622 | * | ||
1623 | * Note that it is legal for a dying CPU (which is marked as offline) to | ||
1624 | * invoke this function. This can happen when the dying CPU reports its | ||
1625 | * quiescent state. | ||
1626 | */ | ||
1627 | static void | ||
1628 | rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, | ||
1629 | struct rcu_data *rdp) | ||
1630 | { | ||
1631 | if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { | ||
1632 | /* | ||
1633 | * Either we have not yet spawned the grace-period | ||
1634 | * task, this CPU does not need another grace period, | ||
1635 | * or a grace period is already in progress. | ||
1636 | * Either way, don't start a new grace period. | ||
1637 | */ | ||
1638 | return; | ||
1639 | } | ||
1640 | rsp->gp_flags = RCU_GP_FLAG_INIT; | ||
1641 | trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), | ||
1642 | TPS("newreq")); | ||
1643 | |||
1644 | /* | ||
1645 | * We can't do wakeups while holding the rnp->lock, as that | ||
1646 | * could cause possible deadlocks with the rq->lock. Defer | ||
1647 | * the wakeup to interrupt context. And don't bother waking | ||
1648 | * up the running kthread. | ||
1649 | */ | ||
1650 | if (current != rsp->gp_kthread) | ||
1651 | irq_work_queue(&rsp->wakeup_work); | ||
1652 | } | ||
1653 | |||
1654 | /* | ||
1655 | * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's | ||
1656 | * callbacks. Note that rcu_start_gp_advanced() cannot do this because it | ||
1657 | * is invoked indirectly from rcu_advance_cbs(), which would result in | ||
1658 | * endless recursion -- or would do so if it wasn't for the self-deadlock | ||
1659 | * that is encountered beforehand. | ||
1660 | */ | ||
1661 | static void | ||
1662 | rcu_start_gp(struct rcu_state *rsp) | ||
1663 | { | ||
1664 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); | ||
1665 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1666 | |||
1667 | /* | ||
1668 | * If there is no grace period in progress right now, any | ||
1669 | * callbacks we have up to this point will be satisfied by the | ||
1670 | * next grace period. Also, advancing the callbacks reduces the | ||
1671 | * probability of false positives from cpu_needs_another_gp() | ||
1672 | * resulting in pointless grace periods. So, advance callbacks | ||
1673 | * then start the grace period! | ||
1674 | */ | ||
1675 | rcu_advance_cbs(rsp, rnp, rdp); | ||
1676 | rcu_start_gp_advanced(rsp, rnp, rdp); | ||
1677 | } | ||
1678 | |||
1679 | /* | ||
1680 | * Report a full set of quiescent states to the specified rcu_state | ||
1681 | * data structure. This involves cleaning up after the prior grace | ||
1682 | * period and letting rcu_start_gp() start up the next grace period | ||
1683 | * if one is needed. Note that the caller must hold rnp->lock, which | ||
1684 | * is released before return. | ||
1685 | */ | ||
1686 | static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) | ||
1687 | __releases(rcu_get_root(rsp)->lock) | ||
1688 | { | ||
1689 | WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); | ||
1690 | raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); | ||
1691 | wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ | ||
1692 | } | ||
1693 | |||
1694 | /* | ||
1695 | * Similar to rcu_report_qs_rdp(), for which it is a helper function. | ||
1696 | * Allows quiescent states for a group of CPUs to be reported at one go | ||
1697 | * to the specified rcu_node structure, though all the CPUs in the group | ||
1698 | * must be represented by the same rcu_node structure (which need not be | ||
1699 | * a leaf rcu_node structure, though it often will be). That structure's | ||
1700 | * lock must be held upon entry, and it is released before return. | ||
1701 | */ | ||
1702 | static void | ||
1703 | rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, | ||
1704 | struct rcu_node *rnp, unsigned long flags) | ||
1705 | __releases(rnp->lock) | ||
1706 | { | ||
1707 | struct rcu_node *rnp_c; | ||
1708 | |||
1709 | /* Walk up the rcu_node hierarchy. */ | ||
1710 | for (;;) { | ||
1711 | if (!(rnp->qsmask & mask)) { | ||
1712 | |||
1713 | /* Our bit has already been cleared, so done. */ | ||
1714 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1715 | return; | ||
1716 | } | ||
1717 | rnp->qsmask &= ~mask; | ||
1718 | trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, | ||
1719 | mask, rnp->qsmask, rnp->level, | ||
1720 | rnp->grplo, rnp->grphi, | ||
1721 | !!rnp->gp_tasks); | ||
1722 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { | ||
1723 | |||
1724 | /* Other bits still set at this level, so done. */ | ||
1725 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1726 | return; | ||
1727 | } | ||
1728 | mask = rnp->grpmask; | ||
1729 | if (rnp->parent == NULL) { | ||
1730 | |||
1731 | /* No more levels. Exit loop holding root lock. */ | ||
1732 | |||
1733 | break; | ||
1734 | } | ||
1735 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1736 | rnp_c = rnp; | ||
1737 | rnp = rnp->parent; | ||
1738 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
1739 | WARN_ON_ONCE(rnp_c->qsmask); | ||
1740 | } | ||
1741 | |||
1742 | /* | ||
1743 | * Get here if we are the last CPU to pass through a quiescent | ||
1744 | * state for this grace period. Invoke rcu_report_qs_rsp() | ||
1745 | * to clean up and start the next grace period if one is needed. | ||
1746 | */ | ||
1747 | rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ | ||
1748 | } | ||
1749 | |||
1750 | /* | ||
1751 | * Record a quiescent state for the specified CPU to that CPU's rcu_data | ||
1752 | * structure. This must be either called from the specified CPU, or | ||
1753 | * called when the specified CPU is known to be offline (and when it is | ||
1754 | * also known that no other CPU is concurrently trying to help the offline | ||
1755 | * CPU). The lastcomp argument is used to make sure we are still in the | ||
1756 | * grace period of interest. We don't want to end the current grace period | ||
1757 | * based on quiescent states detected in an earlier grace period! | ||
1758 | */ | ||
1759 | static void | ||
1760 | rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) | ||
1761 | { | ||
1762 | unsigned long flags; | ||
1763 | unsigned long mask; | ||
1764 | struct rcu_node *rnp; | ||
1765 | |||
1766 | rnp = rdp->mynode; | ||
1767 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
1768 | if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || | ||
1769 | rnp->completed == rnp->gpnum) { | ||
1770 | |||
1771 | /* | ||
1772 | * The grace period in which this quiescent state was | ||
1773 | * recorded has ended, so don't report it upwards. | ||
1774 | * We will instead need a new quiescent state that lies | ||
1775 | * within the current grace period. | ||
1776 | */ | ||
1777 | rdp->passed_quiesce = 0; /* need qs for new gp. */ | ||
1778 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1779 | return; | ||
1780 | } | ||
1781 | mask = rdp->grpmask; | ||
1782 | if ((rnp->qsmask & mask) == 0) { | ||
1783 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1784 | } else { | ||
1785 | rdp->qs_pending = 0; | ||
1786 | |||
1787 | /* | ||
1788 | * This GP can't end until cpu checks in, so all of our | ||
1789 | * callbacks can be processed during the next GP. | ||
1790 | */ | ||
1791 | rcu_accelerate_cbs(rsp, rnp, rdp); | ||
1792 | |||
1793 | rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ | ||
1794 | } | ||
1795 | } | ||
1796 | |||
1797 | /* | ||
1798 | * Check to see if there is a new grace period of which this CPU | ||
1799 | * is not yet aware, and if so, set up local rcu_data state for it. | ||
1800 | * Otherwise, see if this CPU has just passed through its first | ||
1801 | * quiescent state for this grace period, and record that fact if so. | ||
1802 | */ | ||
1803 | static void | ||
1804 | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) | ||
1805 | { | ||
1806 | /* Check for grace-period ends and beginnings. */ | ||
1807 | note_gp_changes(rsp, rdp); | ||
1808 | |||
1809 | /* | ||
1810 | * Does this CPU still need to do its part for current grace period? | ||
1811 | * If no, return and let the other CPUs do their part as well. | ||
1812 | */ | ||
1813 | if (!rdp->qs_pending) | ||
1814 | return; | ||
1815 | |||
1816 | /* | ||
1817 | * Was there a quiescent state since the beginning of the grace | ||
1818 | * period? If no, then exit and wait for the next call. | ||
1819 | */ | ||
1820 | if (!rdp->passed_quiesce) | ||
1821 | return; | ||
1822 | |||
1823 | /* | ||
1824 | * Tell RCU we are done (but rcu_report_qs_rdp() will be the | ||
1825 | * judge of that). | ||
1826 | */ | ||
1827 | rcu_report_qs_rdp(rdp->cpu, rsp, rdp); | ||
1828 | } | ||
1829 | |||
1830 | #ifdef CONFIG_HOTPLUG_CPU | ||
1831 | |||
1832 | /* | ||
1833 | * Send the specified CPU's RCU callbacks to the orphanage. The | ||
1834 | * specified CPU must be offline, and the caller must hold the | ||
1835 | * ->orphan_lock. | ||
1836 | */ | ||
1837 | static void | ||
1838 | rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, | ||
1839 | struct rcu_node *rnp, struct rcu_data *rdp) | ||
1840 | { | ||
1841 | /* No-CBs CPUs do not have orphanable callbacks. */ | ||
1842 | if (rcu_is_nocb_cpu(rdp->cpu)) | ||
1843 | return; | ||
1844 | |||
1845 | /* | ||
1846 | * Orphan the callbacks. First adjust the counts. This is safe | ||
1847 | * because _rcu_barrier() excludes CPU-hotplug operations, so it | ||
1848 | * cannot be running now. Thus no memory barrier is required. | ||
1849 | */ | ||
1850 | if (rdp->nxtlist != NULL) { | ||
1851 | rsp->qlen_lazy += rdp->qlen_lazy; | ||
1852 | rsp->qlen += rdp->qlen; | ||
1853 | rdp->n_cbs_orphaned += rdp->qlen; | ||
1854 | rdp->qlen_lazy = 0; | ||
1855 | ACCESS_ONCE(rdp->qlen) = 0; | ||
1856 | } | ||
1857 | |||
1858 | /* | ||
1859 | * Next, move those callbacks still needing a grace period to | ||
1860 | * the orphanage, where some other CPU will pick them up. | ||
1861 | * Some of the callbacks might have gone partway through a grace | ||
1862 | * period, but that is too bad. They get to start over because we | ||
1863 | * cannot assume that grace periods are synchronized across CPUs. | ||
1864 | * We don't bother updating the ->nxttail[] array yet, instead | ||
1865 | * we just reset the whole thing later on. | ||
1866 | */ | ||
1867 | if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { | ||
1868 | *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; | ||
1869 | rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; | ||
1870 | *rdp->nxttail[RCU_DONE_TAIL] = NULL; | ||
1871 | } | ||
1872 | |||
1873 | /* | ||
1874 | * Then move the ready-to-invoke callbacks to the orphanage, | ||
1875 | * where some other CPU will pick them up. These will not be | ||
1876 | * required to pass though another grace period: They are done. | ||
1877 | */ | ||
1878 | if (rdp->nxtlist != NULL) { | ||
1879 | *rsp->orphan_donetail = rdp->nxtlist; | ||
1880 | rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; | ||
1881 | } | ||
1882 | |||
1883 | /* Finally, initialize the rcu_data structure's list to empty. */ | ||
1884 | init_callback_list(rdp); | ||
1885 | } | ||
1886 | |||
1887 | /* | ||
1888 | * Adopt the RCU callbacks from the specified rcu_state structure's | ||
1889 | * orphanage. The caller must hold the ->orphan_lock. | ||
1890 | */ | ||
1891 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) | ||
1892 | { | ||
1893 | int i; | ||
1894 | struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); | ||
1895 | |||
1896 | /* No-CBs CPUs are handled specially. */ | ||
1897 | if (rcu_nocb_adopt_orphan_cbs(rsp, rdp)) | ||
1898 | return; | ||
1899 | |||
1900 | /* Do the accounting first. */ | ||
1901 | rdp->qlen_lazy += rsp->qlen_lazy; | ||
1902 | rdp->qlen += rsp->qlen; | ||
1903 | rdp->n_cbs_adopted += rsp->qlen; | ||
1904 | if (rsp->qlen_lazy != rsp->qlen) | ||
1905 | rcu_idle_count_callbacks_posted(); | ||
1906 | rsp->qlen_lazy = 0; | ||
1907 | rsp->qlen = 0; | ||
1908 | |||
1909 | /* | ||
1910 | * We do not need a memory barrier here because the only way we | ||
1911 | * can get here if there is an rcu_barrier() in flight is if | ||
1912 | * we are the task doing the rcu_barrier(). | ||
1913 | */ | ||
1914 | |||
1915 | /* First adopt the ready-to-invoke callbacks. */ | ||
1916 | if (rsp->orphan_donelist != NULL) { | ||
1917 | *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; | ||
1918 | *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; | ||
1919 | for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) | ||
1920 | if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) | ||
1921 | rdp->nxttail[i] = rsp->orphan_donetail; | ||
1922 | rsp->orphan_donelist = NULL; | ||
1923 | rsp->orphan_donetail = &rsp->orphan_donelist; | ||
1924 | } | ||
1925 | |||
1926 | /* And then adopt the callbacks that still need a grace period. */ | ||
1927 | if (rsp->orphan_nxtlist != NULL) { | ||
1928 | *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; | ||
1929 | rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; | ||
1930 | rsp->orphan_nxtlist = NULL; | ||
1931 | rsp->orphan_nxttail = &rsp->orphan_nxtlist; | ||
1932 | } | ||
1933 | } | ||
1934 | |||
1935 | /* | ||
1936 | * Trace the fact that this CPU is going offline. | ||
1937 | */ | ||
1938 | static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) | ||
1939 | { | ||
1940 | RCU_TRACE(unsigned long mask); | ||
1941 | RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); | ||
1942 | RCU_TRACE(struct rcu_node *rnp = rdp->mynode); | ||
1943 | |||
1944 | RCU_TRACE(mask = rdp->grpmask); | ||
1945 | trace_rcu_grace_period(rsp->name, | ||
1946 | rnp->gpnum + 1 - !!(rnp->qsmask & mask), | ||
1947 | TPS("cpuofl")); | ||
1948 | } | ||
1949 | |||
1950 | /* | ||
1951 | * The CPU has been completely removed, and some other CPU is reporting | ||
1952 | * this fact from process context. Do the remainder of the cleanup, | ||
1953 | * including orphaning the outgoing CPU's RCU callbacks, and also | ||
1954 | * adopting them. There can only be one CPU hotplug operation at a time, | ||
1955 | * so no other CPU can be attempting to update rcu_cpu_kthread_task. | ||
1956 | */ | ||
1957 | static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) | ||
1958 | { | ||
1959 | unsigned long flags; | ||
1960 | unsigned long mask; | ||
1961 | int need_report = 0; | ||
1962 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | ||
1963 | struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ | ||
1964 | |||
1965 | /* Adjust any no-longer-needed kthreads. */ | ||
1966 | rcu_boost_kthread_setaffinity(rnp, -1); | ||
1967 | |||
1968 | /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ | ||
1969 | |||
1970 | /* Exclude any attempts to start a new grace period. */ | ||
1971 | mutex_lock(&rsp->onoff_mutex); | ||
1972 | raw_spin_lock_irqsave(&rsp->orphan_lock, flags); | ||
1973 | |||
1974 | /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ | ||
1975 | rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); | ||
1976 | rcu_adopt_orphan_cbs(rsp); | ||
1977 | |||
1978 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | ||
1979 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | ||
1980 | do { | ||
1981 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
1982 | rnp->qsmaskinit &= ~mask; | ||
1983 | if (rnp->qsmaskinit != 0) { | ||
1984 | if (rnp != rdp->mynode) | ||
1985 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
1986 | break; | ||
1987 | } | ||
1988 | if (rnp == rdp->mynode) | ||
1989 | need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); | ||
1990 | else | ||
1991 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
1992 | mask = rnp->grpmask; | ||
1993 | rnp = rnp->parent; | ||
1994 | } while (rnp != NULL); | ||
1995 | |||
1996 | /* | ||
1997 | * We still hold the leaf rcu_node structure lock here, and | ||
1998 | * irqs are still disabled. The reason for this subterfuge is | ||
1999 | * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock | ||
2000 | * held leads to deadlock. | ||
2001 | */ | ||
2002 | raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ | ||
2003 | rnp = rdp->mynode; | ||
2004 | if (need_report & RCU_OFL_TASKS_NORM_GP) | ||
2005 | rcu_report_unblock_qs_rnp(rnp, flags); | ||
2006 | else | ||
2007 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
2008 | if (need_report & RCU_OFL_TASKS_EXP_GP) | ||
2009 | rcu_report_exp_rnp(rsp, rnp, true); | ||
2010 | WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, | ||
2011 | "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", | ||
2012 | cpu, rdp->qlen, rdp->nxtlist); | ||
2013 | init_callback_list(rdp); | ||
2014 | /* Disallow further callbacks on this CPU. */ | ||
2015 | rdp->nxttail[RCU_NEXT_TAIL] = NULL; | ||
2016 | mutex_unlock(&rsp->onoff_mutex); | ||
2017 | } | ||
2018 | |||
2019 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
2020 | |||
2021 | static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) | ||
2022 | { | ||
2023 | } | ||
2024 | |||
2025 | static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) | ||
2026 | { | ||
2027 | } | ||
2028 | |||
2029 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | ||
2030 | |||
2031 | /* | ||
2032 | * Invoke any RCU callbacks that have made it to the end of their grace | ||
2033 | * period. Thottle as specified by rdp->blimit. | ||
2034 | */ | ||
2035 | static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) | ||
2036 | { | ||
2037 | unsigned long flags; | ||
2038 | struct rcu_head *next, *list, **tail; | ||
2039 | long bl, count, count_lazy; | ||
2040 | int i; | ||
2041 | |||
2042 | /* If no callbacks are ready, just return. */ | ||
2043 | if (!cpu_has_callbacks_ready_to_invoke(rdp)) { | ||
2044 | trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); | ||
2045 | trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), | ||
2046 | need_resched(), is_idle_task(current), | ||
2047 | rcu_is_callbacks_kthread()); | ||
2048 | return; | ||
2049 | } | ||
2050 | |||
2051 | /* | ||
2052 | * Extract the list of ready callbacks, disabling to prevent | ||
2053 | * races with call_rcu() from interrupt handlers. | ||
2054 | */ | ||
2055 | local_irq_save(flags); | ||
2056 | WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); | ||
2057 | bl = rdp->blimit; | ||
2058 | trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); | ||
2059 | list = rdp->nxtlist; | ||
2060 | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; | ||
2061 | *rdp->nxttail[RCU_DONE_TAIL] = NULL; | ||
2062 | tail = rdp->nxttail[RCU_DONE_TAIL]; | ||
2063 | for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) | ||
2064 | if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) | ||
2065 | rdp->nxttail[i] = &rdp->nxtlist; | ||
2066 | local_irq_restore(flags); | ||
2067 | |||
2068 | /* Invoke callbacks. */ | ||
2069 | count = count_lazy = 0; | ||
2070 | while (list) { | ||
2071 | next = list->next; | ||
2072 | prefetch(next); | ||
2073 | debug_rcu_head_unqueue(list); | ||
2074 | if (__rcu_reclaim(rsp->name, list)) | ||
2075 | count_lazy++; | ||
2076 | list = next; | ||
2077 | /* Stop only if limit reached and CPU has something to do. */ | ||
2078 | if (++count >= bl && | ||
2079 | (need_resched() || | ||
2080 | (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) | ||
2081 | break; | ||
2082 | } | ||
2083 | |||
2084 | local_irq_save(flags); | ||
2085 | trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), | ||
2086 | is_idle_task(current), | ||
2087 | rcu_is_callbacks_kthread()); | ||
2088 | |||
2089 | /* Update count, and requeue any remaining callbacks. */ | ||
2090 | if (list != NULL) { | ||
2091 | *tail = rdp->nxtlist; | ||
2092 | rdp->nxtlist = list; | ||
2093 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
2094 | if (&rdp->nxtlist == rdp->nxttail[i]) | ||
2095 | rdp->nxttail[i] = tail; | ||
2096 | else | ||
2097 | break; | ||
2098 | } | ||
2099 | smp_mb(); /* List handling before counting for rcu_barrier(). */ | ||
2100 | rdp->qlen_lazy -= count_lazy; | ||
2101 | ACCESS_ONCE(rdp->qlen) -= count; | ||
2102 | rdp->n_cbs_invoked += count; | ||
2103 | |||
2104 | /* Reinstate batch limit if we have worked down the excess. */ | ||
2105 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) | ||
2106 | rdp->blimit = blimit; | ||
2107 | |||
2108 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ | ||
2109 | if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { | ||
2110 | rdp->qlen_last_fqs_check = 0; | ||
2111 | rdp->n_force_qs_snap = rsp->n_force_qs; | ||
2112 | } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) | ||
2113 | rdp->qlen_last_fqs_check = rdp->qlen; | ||
2114 | WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); | ||
2115 | |||
2116 | local_irq_restore(flags); | ||
2117 | |||
2118 | /* Re-invoke RCU core processing if there are callbacks remaining. */ | ||
2119 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | ||
2120 | invoke_rcu_core(); | ||
2121 | } | ||
2122 | |||
2123 | /* | ||
2124 | * Check to see if this CPU is in a non-context-switch quiescent state | ||
2125 | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). | ||
2126 | * Also schedule RCU core processing. | ||
2127 | * | ||
2128 | * This function must be called from hardirq context. It is normally | ||
2129 | * invoked from the scheduling-clock interrupt. If rcu_pending returns | ||
2130 | * false, there is no point in invoking rcu_check_callbacks(). | ||
2131 | */ | ||
2132 | void rcu_check_callbacks(int cpu, int user) | ||
2133 | { | ||
2134 | trace_rcu_utilization(TPS("Start scheduler-tick")); | ||
2135 | increment_cpu_stall_ticks(); | ||
2136 | if (user || rcu_is_cpu_rrupt_from_idle()) { | ||
2137 | |||
2138 | /* | ||
2139 | * Get here if this CPU took its interrupt from user | ||
2140 | * mode or from the idle loop, and if this is not a | ||
2141 | * nested interrupt. In this case, the CPU is in | ||
2142 | * a quiescent state, so note it. | ||
2143 | * | ||
2144 | * No memory barrier is required here because both | ||
2145 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local | ||
2146 | * variables that other CPUs neither access nor modify, | ||
2147 | * at least not while the corresponding CPU is online. | ||
2148 | */ | ||
2149 | |||
2150 | rcu_sched_qs(cpu); | ||
2151 | rcu_bh_qs(cpu); | ||
2152 | |||
2153 | } else if (!in_softirq()) { | ||
2154 | |||
2155 | /* | ||
2156 | * Get here if this CPU did not take its interrupt from | ||
2157 | * softirq, in other words, if it is not interrupting | ||
2158 | * a rcu_bh read-side critical section. This is an _bh | ||
2159 | * critical section, so note it. | ||
2160 | */ | ||
2161 | |||
2162 | rcu_bh_qs(cpu); | ||
2163 | } | ||
2164 | rcu_preempt_check_callbacks(cpu); | ||
2165 | if (rcu_pending(cpu)) | ||
2166 | invoke_rcu_core(); | ||
2167 | trace_rcu_utilization(TPS("End scheduler-tick")); | ||
2168 | } | ||
2169 | |||
2170 | /* | ||
2171 | * Scan the leaf rcu_node structures, processing dyntick state for any that | ||
2172 | * have not yet encountered a quiescent state, using the function specified. | ||
2173 | * Also initiate boosting for any threads blocked on the root rcu_node. | ||
2174 | * | ||
2175 | * The caller must have suppressed start of new grace periods. | ||
2176 | */ | ||
2177 | static void force_qs_rnp(struct rcu_state *rsp, | ||
2178 | int (*f)(struct rcu_data *rsp, bool *isidle, | ||
2179 | unsigned long *maxj), | ||
2180 | bool *isidle, unsigned long *maxj) | ||
2181 | { | ||
2182 | unsigned long bit; | ||
2183 | int cpu; | ||
2184 | unsigned long flags; | ||
2185 | unsigned long mask; | ||
2186 | struct rcu_node *rnp; | ||
2187 | |||
2188 | rcu_for_each_leaf_node(rsp, rnp) { | ||
2189 | cond_resched(); | ||
2190 | mask = 0; | ||
2191 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
2192 | if (!rcu_gp_in_progress(rsp)) { | ||
2193 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
2194 | return; | ||
2195 | } | ||
2196 | if (rnp->qsmask == 0) { | ||
2197 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ | ||
2198 | continue; | ||
2199 | } | ||
2200 | cpu = rnp->grplo; | ||
2201 | bit = 1; | ||
2202 | for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { | ||
2203 | if ((rnp->qsmask & bit) != 0) { | ||
2204 | if ((rnp->qsmaskinit & bit) != 0) | ||
2205 | *isidle = 0; | ||
2206 | if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) | ||
2207 | mask |= bit; | ||
2208 | } | ||
2209 | } | ||
2210 | if (mask != 0) { | ||
2211 | |||
2212 | /* rcu_report_qs_rnp() releases rnp->lock. */ | ||
2213 | rcu_report_qs_rnp(mask, rsp, rnp, flags); | ||
2214 | continue; | ||
2215 | } | ||
2216 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
2217 | } | ||
2218 | rnp = rcu_get_root(rsp); | ||
2219 | if (rnp->qsmask == 0) { | ||
2220 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
2221 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ | ||
2222 | } | ||
2223 | } | ||
2224 | |||
2225 | /* | ||
2226 | * Force quiescent states on reluctant CPUs, and also detect which | ||
2227 | * CPUs are in dyntick-idle mode. | ||
2228 | */ | ||
2229 | static void force_quiescent_state(struct rcu_state *rsp) | ||
2230 | { | ||
2231 | unsigned long flags; | ||
2232 | bool ret; | ||
2233 | struct rcu_node *rnp; | ||
2234 | struct rcu_node *rnp_old = NULL; | ||
2235 | |||
2236 | /* Funnel through hierarchy to reduce memory contention. */ | ||
2237 | rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; | ||
2238 | for (; rnp != NULL; rnp = rnp->parent) { | ||
2239 | ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || | ||
2240 | !raw_spin_trylock(&rnp->fqslock); | ||
2241 | if (rnp_old != NULL) | ||
2242 | raw_spin_unlock(&rnp_old->fqslock); | ||
2243 | if (ret) { | ||
2244 | rsp->n_force_qs_lh++; | ||
2245 | return; | ||
2246 | } | ||
2247 | rnp_old = rnp; | ||
2248 | } | ||
2249 | /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ | ||
2250 | |||
2251 | /* Reached the root of the rcu_node tree, acquire lock. */ | ||
2252 | raw_spin_lock_irqsave(&rnp_old->lock, flags); | ||
2253 | raw_spin_unlock(&rnp_old->fqslock); | ||
2254 | if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { | ||
2255 | rsp->n_force_qs_lh++; | ||
2256 | raw_spin_unlock_irqrestore(&rnp_old->lock, flags); | ||
2257 | return; /* Someone beat us to it. */ | ||
2258 | } | ||
2259 | rsp->gp_flags |= RCU_GP_FLAG_FQS; | ||
2260 | raw_spin_unlock_irqrestore(&rnp_old->lock, flags); | ||
2261 | wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ | ||
2262 | } | ||
2263 | |||
2264 | /* | ||
2265 | * This does the RCU core processing work for the specified rcu_state | ||
2266 | * and rcu_data structures. This may be called only from the CPU to | ||
2267 | * whom the rdp belongs. | ||
2268 | */ | ||
2269 | static void | ||
2270 | __rcu_process_callbacks(struct rcu_state *rsp) | ||
2271 | { | ||
2272 | unsigned long flags; | ||
2273 | struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); | ||
2274 | |||
2275 | WARN_ON_ONCE(rdp->beenonline == 0); | ||
2276 | |||
2277 | /* Update RCU state based on any recent quiescent states. */ | ||
2278 | rcu_check_quiescent_state(rsp, rdp); | ||
2279 | |||
2280 | /* Does this CPU require a not-yet-started grace period? */ | ||
2281 | local_irq_save(flags); | ||
2282 | if (cpu_needs_another_gp(rsp, rdp)) { | ||
2283 | raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ | ||
2284 | rcu_start_gp(rsp); | ||
2285 | raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); | ||
2286 | } else { | ||
2287 | local_irq_restore(flags); | ||
2288 | } | ||
2289 | |||
2290 | /* If there are callbacks ready, invoke them. */ | ||
2291 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | ||
2292 | invoke_rcu_callbacks(rsp, rdp); | ||
2293 | } | ||
2294 | |||
2295 | /* | ||
2296 | * Do RCU core processing for the current CPU. | ||
2297 | */ | ||
2298 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
2299 | { | ||
2300 | struct rcu_state *rsp; | ||
2301 | |||
2302 | if (cpu_is_offline(smp_processor_id())) | ||
2303 | return; | ||
2304 | trace_rcu_utilization(TPS("Start RCU core")); | ||
2305 | for_each_rcu_flavor(rsp) | ||
2306 | __rcu_process_callbacks(rsp); | ||
2307 | trace_rcu_utilization(TPS("End RCU core")); | ||
2308 | } | ||
2309 | |||
2310 | /* | ||
2311 | * Schedule RCU callback invocation. If the specified type of RCU | ||
2312 | * does not support RCU priority boosting, just do a direct call, | ||
2313 | * otherwise wake up the per-CPU kernel kthread. Note that because we | ||
2314 | * are running on the current CPU with interrupts disabled, the | ||
2315 | * rcu_cpu_kthread_task cannot disappear out from under us. | ||
2316 | */ | ||
2317 | static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | ||
2318 | { | ||
2319 | if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) | ||
2320 | return; | ||
2321 | if (likely(!rsp->boost)) { | ||
2322 | rcu_do_batch(rsp, rdp); | ||
2323 | return; | ||
2324 | } | ||
2325 | invoke_rcu_callbacks_kthread(); | ||
2326 | } | ||
2327 | |||
2328 | static void invoke_rcu_core(void) | ||
2329 | { | ||
2330 | if (cpu_online(smp_processor_id())) | ||
2331 | raise_softirq(RCU_SOFTIRQ); | ||
2332 | } | ||
2333 | |||
2334 | /* | ||
2335 | * Handle any core-RCU processing required by a call_rcu() invocation. | ||
2336 | */ | ||
2337 | static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, | ||
2338 | struct rcu_head *head, unsigned long flags) | ||
2339 | { | ||
2340 | /* | ||
2341 | * If called from an extended quiescent state, invoke the RCU | ||
2342 | * core in order to force a re-evaluation of RCU's idleness. | ||
2343 | */ | ||
2344 | if (!rcu_is_watching() && cpu_online(smp_processor_id())) | ||
2345 | invoke_rcu_core(); | ||
2346 | |||
2347 | /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ | ||
2348 | if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) | ||
2349 | return; | ||
2350 | |||
2351 | /* | ||
2352 | * Force the grace period if too many callbacks or too long waiting. | ||
2353 | * Enforce hysteresis, and don't invoke force_quiescent_state() | ||
2354 | * if some other CPU has recently done so. Also, don't bother | ||
2355 | * invoking force_quiescent_state() if the newly enqueued callback | ||
2356 | * is the only one waiting for a grace period to complete. | ||
2357 | */ | ||
2358 | if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { | ||
2359 | |||
2360 | /* Are we ignoring a completed grace period? */ | ||
2361 | note_gp_changes(rsp, rdp); | ||
2362 | |||
2363 | /* Start a new grace period if one not already started. */ | ||
2364 | if (!rcu_gp_in_progress(rsp)) { | ||
2365 | struct rcu_node *rnp_root = rcu_get_root(rsp); | ||
2366 | |||
2367 | raw_spin_lock(&rnp_root->lock); | ||
2368 | rcu_start_gp(rsp); | ||
2369 | raw_spin_unlock(&rnp_root->lock); | ||
2370 | } else { | ||
2371 | /* Give the grace period a kick. */ | ||
2372 | rdp->blimit = LONG_MAX; | ||
2373 | if (rsp->n_force_qs == rdp->n_force_qs_snap && | ||
2374 | *rdp->nxttail[RCU_DONE_TAIL] != head) | ||
2375 | force_quiescent_state(rsp); | ||
2376 | rdp->n_force_qs_snap = rsp->n_force_qs; | ||
2377 | rdp->qlen_last_fqs_check = rdp->qlen; | ||
2378 | } | ||
2379 | } | ||
2380 | } | ||
2381 | |||
2382 | /* | ||
2383 | * RCU callback function to leak a callback. | ||
2384 | */ | ||
2385 | static void rcu_leak_callback(struct rcu_head *rhp) | ||
2386 | { | ||
2387 | } | ||
2388 | |||
2389 | /* | ||
2390 | * Helper function for call_rcu() and friends. The cpu argument will | ||
2391 | * normally be -1, indicating "currently running CPU". It may specify | ||
2392 | * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() | ||
2393 | * is expected to specify a CPU. | ||
2394 | */ | ||
2395 | static void | ||
2396 | __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | ||
2397 | struct rcu_state *rsp, int cpu, bool lazy) | ||
2398 | { | ||
2399 | unsigned long flags; | ||
2400 | struct rcu_data *rdp; | ||
2401 | |||
2402 | WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ | ||
2403 | if (debug_rcu_head_queue(head)) { | ||
2404 | /* Probable double call_rcu(), so leak the callback. */ | ||
2405 | ACCESS_ONCE(head->func) = rcu_leak_callback; | ||
2406 | WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); | ||
2407 | return; | ||
2408 | } | ||
2409 | head->func = func; | ||
2410 | head->next = NULL; | ||
2411 | |||
2412 | /* | ||
2413 | * Opportunistically note grace-period endings and beginnings. | ||
2414 | * Note that we might see a beginning right after we see an | ||
2415 | * end, but never vice versa, since this CPU has to pass through | ||
2416 | * a quiescent state betweentimes. | ||
2417 | */ | ||
2418 | local_irq_save(flags); | ||
2419 | rdp = this_cpu_ptr(rsp->rda); | ||
2420 | |||
2421 | /* Add the callback to our list. */ | ||
2422 | if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { | ||
2423 | int offline; | ||
2424 | |||
2425 | if (cpu != -1) | ||
2426 | rdp = per_cpu_ptr(rsp->rda, cpu); | ||
2427 | offline = !__call_rcu_nocb(rdp, head, lazy); | ||
2428 | WARN_ON_ONCE(offline); | ||
2429 | /* _call_rcu() is illegal on offline CPU; leak the callback. */ | ||
2430 | local_irq_restore(flags); | ||
2431 | return; | ||
2432 | } | ||
2433 | ACCESS_ONCE(rdp->qlen)++; | ||
2434 | if (lazy) | ||
2435 | rdp->qlen_lazy++; | ||
2436 | else | ||
2437 | rcu_idle_count_callbacks_posted(); | ||
2438 | smp_mb(); /* Count before adding callback for rcu_barrier(). */ | ||
2439 | *rdp->nxttail[RCU_NEXT_TAIL] = head; | ||
2440 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; | ||
2441 | |||
2442 | if (__is_kfree_rcu_offset((unsigned long)func)) | ||
2443 | trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, | ||
2444 | rdp->qlen_lazy, rdp->qlen); | ||
2445 | else | ||
2446 | trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); | ||
2447 | |||
2448 | /* Go handle any RCU core processing required. */ | ||
2449 | __call_rcu_core(rsp, rdp, head, flags); | ||
2450 | local_irq_restore(flags); | ||
2451 | } | ||
2452 | |||
2453 | /* | ||
2454 | * Queue an RCU-sched callback for invocation after a grace period. | ||
2455 | */ | ||
2456 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
2457 | { | ||
2458 | __call_rcu(head, func, &rcu_sched_state, -1, 0); | ||
2459 | } | ||
2460 | EXPORT_SYMBOL_GPL(call_rcu_sched); | ||
2461 | |||
2462 | /* | ||
2463 | * Queue an RCU callback for invocation after a quicker grace period. | ||
2464 | */ | ||
2465 | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
2466 | { | ||
2467 | __call_rcu(head, func, &rcu_bh_state, -1, 0); | ||
2468 | } | ||
2469 | EXPORT_SYMBOL_GPL(call_rcu_bh); | ||
2470 | |||
2471 | /* | ||
2472 | * Because a context switch is a grace period for RCU-sched and RCU-bh, | ||
2473 | * any blocking grace-period wait automatically implies a grace period | ||
2474 | * if there is only one CPU online at any point time during execution | ||
2475 | * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to | ||
2476 | * occasionally incorrectly indicate that there are multiple CPUs online | ||
2477 | * when there was in fact only one the whole time, as this just adds | ||
2478 | * some overhead: RCU still operates correctly. | ||
2479 | */ | ||
2480 | static inline int rcu_blocking_is_gp(void) | ||
2481 | { | ||
2482 | int ret; | ||
2483 | |||
2484 | might_sleep(); /* Check for RCU read-side critical section. */ | ||
2485 | preempt_disable(); | ||
2486 | ret = num_online_cpus() <= 1; | ||
2487 | preempt_enable(); | ||
2488 | return ret; | ||
2489 | } | ||
2490 | |||
2491 | /** | ||
2492 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
2493 | * | ||
2494 | * Control will return to the caller some time after a full rcu-sched | ||
2495 | * grace period has elapsed, in other words after all currently executing | ||
2496 | * rcu-sched read-side critical sections have completed. These read-side | ||
2497 | * critical sections are delimited by rcu_read_lock_sched() and | ||
2498 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
2499 | * local_irq_disable(), and so on may be used in place of | ||
2500 | * rcu_read_lock_sched(). | ||
2501 | * | ||
2502 | * This means that all preempt_disable code sequences, including NMI and | ||
2503 | * non-threaded hardware-interrupt handlers, in progress on entry will | ||
2504 | * have completed before this primitive returns. However, this does not | ||
2505 | * guarantee that softirq handlers will have completed, since in some | ||
2506 | * kernels, these handlers can run in process context, and can block. | ||
2507 | * | ||
2508 | * Note that this guarantee implies further memory-ordering guarantees. | ||
2509 | * On systems with more than one CPU, when synchronize_sched() returns, | ||
2510 | * each CPU is guaranteed to have executed a full memory barrier since the | ||
2511 | * end of its last RCU-sched read-side critical section whose beginning | ||
2512 | * preceded the call to synchronize_sched(). In addition, each CPU having | ||
2513 | * an RCU read-side critical section that extends beyond the return from | ||
2514 | * synchronize_sched() is guaranteed to have executed a full memory barrier | ||
2515 | * after the beginning of synchronize_sched() and before the beginning of | ||
2516 | * that RCU read-side critical section. Note that these guarantees include | ||
2517 | * CPUs that are offline, idle, or executing in user mode, as well as CPUs | ||
2518 | * that are executing in the kernel. | ||
2519 | * | ||
2520 | * Furthermore, if CPU A invoked synchronize_sched(), which returned | ||
2521 | * to its caller on CPU B, then both CPU A and CPU B are guaranteed | ||
2522 | * to have executed a full memory barrier during the execution of | ||
2523 | * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but | ||
2524 | * again only if the system has more than one CPU). | ||
2525 | * | ||
2526 | * This primitive provides the guarantees made by the (now removed) | ||
2527 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
2528 | * guarantees that rcu_read_lock() sections will have completed. | ||
2529 | * In "classic RCU", these two guarantees happen to be one and | ||
2530 | * the same, but can differ in realtime RCU implementations. | ||
2531 | */ | ||
2532 | void synchronize_sched(void) | ||
2533 | { | ||
2534 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && | ||
2535 | !lock_is_held(&rcu_lock_map) && | ||
2536 | !lock_is_held(&rcu_sched_lock_map), | ||
2537 | "Illegal synchronize_sched() in RCU-sched read-side critical section"); | ||
2538 | if (rcu_blocking_is_gp()) | ||
2539 | return; | ||
2540 | if (rcu_expedited) | ||
2541 | synchronize_sched_expedited(); | ||
2542 | else | ||
2543 | wait_rcu_gp(call_rcu_sched); | ||
2544 | } | ||
2545 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
2546 | |||
2547 | /** | ||
2548 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | ||
2549 | * | ||
2550 | * Control will return to the caller some time after a full rcu_bh grace | ||
2551 | * period has elapsed, in other words after all currently executing rcu_bh | ||
2552 | * read-side critical sections have completed. RCU read-side critical | ||
2553 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), | ||
2554 | * and may be nested. | ||
2555 | * | ||
2556 | * See the description of synchronize_sched() for more detailed information | ||
2557 | * on memory ordering guarantees. | ||
2558 | */ | ||
2559 | void synchronize_rcu_bh(void) | ||
2560 | { | ||
2561 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && | ||
2562 | !lock_is_held(&rcu_lock_map) && | ||
2563 | !lock_is_held(&rcu_sched_lock_map), | ||
2564 | "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); | ||
2565 | if (rcu_blocking_is_gp()) | ||
2566 | return; | ||
2567 | if (rcu_expedited) | ||
2568 | synchronize_rcu_bh_expedited(); | ||
2569 | else | ||
2570 | wait_rcu_gp(call_rcu_bh); | ||
2571 | } | ||
2572 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
2573 | |||
2574 | static int synchronize_sched_expedited_cpu_stop(void *data) | ||
2575 | { | ||
2576 | /* | ||
2577 | * There must be a full memory barrier on each affected CPU | ||
2578 | * between the time that try_stop_cpus() is called and the | ||
2579 | * time that it returns. | ||
2580 | * | ||
2581 | * In the current initial implementation of cpu_stop, the | ||
2582 | * above condition is already met when the control reaches | ||
2583 | * this point and the following smp_mb() is not strictly | ||
2584 | * necessary. Do smp_mb() anyway for documentation and | ||
2585 | * robustness against future implementation changes. | ||
2586 | */ | ||
2587 | smp_mb(); /* See above comment block. */ | ||
2588 | return 0; | ||
2589 | } | ||
2590 | |||
2591 | /** | ||
2592 | * synchronize_sched_expedited - Brute-force RCU-sched grace period | ||
2593 | * | ||
2594 | * Wait for an RCU-sched grace period to elapse, but use a "big hammer" | ||
2595 | * approach to force the grace period to end quickly. This consumes | ||
2596 | * significant time on all CPUs and is unfriendly to real-time workloads, | ||
2597 | * so is thus not recommended for any sort of common-case code. In fact, | ||
2598 | * if you are using synchronize_sched_expedited() in a loop, please | ||
2599 | * restructure your code to batch your updates, and then use a single | ||
2600 | * synchronize_sched() instead. | ||
2601 | * | ||
2602 | * Note that it is illegal to call this function while holding any lock | ||
2603 | * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal | ||
2604 | * to call this function from a CPU-hotplug notifier. Failing to observe | ||
2605 | * these restriction will result in deadlock. | ||
2606 | * | ||
2607 | * This implementation can be thought of as an application of ticket | ||
2608 | * locking to RCU, with sync_sched_expedited_started and | ||
2609 | * sync_sched_expedited_done taking on the roles of the halves | ||
2610 | * of the ticket-lock word. Each task atomically increments | ||
2611 | * sync_sched_expedited_started upon entry, snapshotting the old value, | ||
2612 | * then attempts to stop all the CPUs. If this succeeds, then each | ||
2613 | * CPU will have executed a context switch, resulting in an RCU-sched | ||
2614 | * grace period. We are then done, so we use atomic_cmpxchg() to | ||
2615 | * update sync_sched_expedited_done to match our snapshot -- but | ||
2616 | * only if someone else has not already advanced past our snapshot. | ||
2617 | * | ||
2618 | * On the other hand, if try_stop_cpus() fails, we check the value | ||
2619 | * of sync_sched_expedited_done. If it has advanced past our | ||
2620 | * initial snapshot, then someone else must have forced a grace period | ||
2621 | * some time after we took our snapshot. In this case, our work is | ||
2622 | * done for us, and we can simply return. Otherwise, we try again, | ||
2623 | * but keep our initial snapshot for purposes of checking for someone | ||
2624 | * doing our work for us. | ||
2625 | * | ||
2626 | * If we fail too many times in a row, we fall back to synchronize_sched(). | ||
2627 | */ | ||
2628 | void synchronize_sched_expedited(void) | ||
2629 | { | ||
2630 | long firstsnap, s, snap; | ||
2631 | int trycount = 0; | ||
2632 | struct rcu_state *rsp = &rcu_sched_state; | ||
2633 | |||
2634 | /* | ||
2635 | * If we are in danger of counter wrap, just do synchronize_sched(). | ||
2636 | * By allowing sync_sched_expedited_started to advance no more than | ||
2637 | * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring | ||
2638 | * that more than 3.5 billion CPUs would be required to force a | ||
2639 | * counter wrap on a 32-bit system. Quite a few more CPUs would of | ||
2640 | * course be required on a 64-bit system. | ||
2641 | */ | ||
2642 | if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), | ||
2643 | (ulong)atomic_long_read(&rsp->expedited_done) + | ||
2644 | ULONG_MAX / 8)) { | ||
2645 | synchronize_sched(); | ||
2646 | atomic_long_inc(&rsp->expedited_wrap); | ||
2647 | return; | ||
2648 | } | ||
2649 | |||
2650 | /* | ||
2651 | * Take a ticket. Note that atomic_inc_return() implies a | ||
2652 | * full memory barrier. | ||
2653 | */ | ||
2654 | snap = atomic_long_inc_return(&rsp->expedited_start); | ||
2655 | firstsnap = snap; | ||
2656 | get_online_cpus(); | ||
2657 | WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); | ||
2658 | |||
2659 | /* | ||
2660 | * Each pass through the following loop attempts to force a | ||
2661 | * context switch on each CPU. | ||
2662 | */ | ||
2663 | while (try_stop_cpus(cpu_online_mask, | ||
2664 | synchronize_sched_expedited_cpu_stop, | ||
2665 | NULL) == -EAGAIN) { | ||
2666 | put_online_cpus(); | ||
2667 | atomic_long_inc(&rsp->expedited_tryfail); | ||
2668 | |||
2669 | /* Check to see if someone else did our work for us. */ | ||
2670 | s = atomic_long_read(&rsp->expedited_done); | ||
2671 | if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { | ||
2672 | /* ensure test happens before caller kfree */ | ||
2673 | smp_mb__before_atomic_inc(); /* ^^^ */ | ||
2674 | atomic_long_inc(&rsp->expedited_workdone1); | ||
2675 | return; | ||
2676 | } | ||
2677 | |||
2678 | /* No joy, try again later. Or just synchronize_sched(). */ | ||
2679 | if (trycount++ < 10) { | ||
2680 | udelay(trycount * num_online_cpus()); | ||
2681 | } else { | ||
2682 | wait_rcu_gp(call_rcu_sched); | ||
2683 | atomic_long_inc(&rsp->expedited_normal); | ||
2684 | return; | ||
2685 | } | ||
2686 | |||
2687 | /* Recheck to see if someone else did our work for us. */ | ||
2688 | s = atomic_long_read(&rsp->expedited_done); | ||
2689 | if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { | ||
2690 | /* ensure test happens before caller kfree */ | ||
2691 | smp_mb__before_atomic_inc(); /* ^^^ */ | ||
2692 | atomic_long_inc(&rsp->expedited_workdone2); | ||
2693 | return; | ||
2694 | } | ||
2695 | |||
2696 | /* | ||
2697 | * Refetching sync_sched_expedited_started allows later | ||
2698 | * callers to piggyback on our grace period. We retry | ||
2699 | * after they started, so our grace period works for them, | ||
2700 | * and they started after our first try, so their grace | ||
2701 | * period works for us. | ||
2702 | */ | ||
2703 | get_online_cpus(); | ||
2704 | snap = atomic_long_read(&rsp->expedited_start); | ||
2705 | smp_mb(); /* ensure read is before try_stop_cpus(). */ | ||
2706 | } | ||
2707 | atomic_long_inc(&rsp->expedited_stoppedcpus); | ||
2708 | |||
2709 | /* | ||
2710 | * Everyone up to our most recent fetch is covered by our grace | ||
2711 | * period. Update the counter, but only if our work is still | ||
2712 | * relevant -- which it won't be if someone who started later | ||
2713 | * than we did already did their update. | ||
2714 | */ | ||
2715 | do { | ||
2716 | atomic_long_inc(&rsp->expedited_done_tries); | ||
2717 | s = atomic_long_read(&rsp->expedited_done); | ||
2718 | if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { | ||
2719 | /* ensure test happens before caller kfree */ | ||
2720 | smp_mb__before_atomic_inc(); /* ^^^ */ | ||
2721 | atomic_long_inc(&rsp->expedited_done_lost); | ||
2722 | break; | ||
2723 | } | ||
2724 | } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); | ||
2725 | atomic_long_inc(&rsp->expedited_done_exit); | ||
2726 | |||
2727 | put_online_cpus(); | ||
2728 | } | ||
2729 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
2730 | |||
2731 | /* | ||
2732 | * Check to see if there is any immediate RCU-related work to be done | ||
2733 | * by the current CPU, for the specified type of RCU, returning 1 if so. | ||
2734 | * The checks are in order of increasing expense: checks that can be | ||
2735 | * carried out against CPU-local state are performed first. However, | ||
2736 | * we must check for CPU stalls first, else we might not get a chance. | ||
2737 | */ | ||
2738 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | ||
2739 | { | ||
2740 | struct rcu_node *rnp = rdp->mynode; | ||
2741 | |||
2742 | rdp->n_rcu_pending++; | ||
2743 | |||
2744 | /* Check for CPU stalls, if enabled. */ | ||
2745 | check_cpu_stall(rsp, rdp); | ||
2746 | |||
2747 | /* Is the RCU core waiting for a quiescent state from this CPU? */ | ||
2748 | if (rcu_scheduler_fully_active && | ||
2749 | rdp->qs_pending && !rdp->passed_quiesce) { | ||
2750 | rdp->n_rp_qs_pending++; | ||
2751 | } else if (rdp->qs_pending && rdp->passed_quiesce) { | ||
2752 | rdp->n_rp_report_qs++; | ||
2753 | return 1; | ||
2754 | } | ||
2755 | |||
2756 | /* Does this CPU have callbacks ready to invoke? */ | ||
2757 | if (cpu_has_callbacks_ready_to_invoke(rdp)) { | ||
2758 | rdp->n_rp_cb_ready++; | ||
2759 | return 1; | ||
2760 | } | ||
2761 | |||
2762 | /* Has RCU gone idle with this CPU needing another grace period? */ | ||
2763 | if (cpu_needs_another_gp(rsp, rdp)) { | ||
2764 | rdp->n_rp_cpu_needs_gp++; | ||
2765 | return 1; | ||
2766 | } | ||
2767 | |||
2768 | /* Has another RCU grace period completed? */ | ||
2769 | if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ | ||
2770 | rdp->n_rp_gp_completed++; | ||
2771 | return 1; | ||
2772 | } | ||
2773 | |||
2774 | /* Has a new RCU grace period started? */ | ||
2775 | if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ | ||
2776 | rdp->n_rp_gp_started++; | ||
2777 | return 1; | ||
2778 | } | ||
2779 | |||
2780 | /* nothing to do */ | ||
2781 | rdp->n_rp_need_nothing++; | ||
2782 | return 0; | ||
2783 | } | ||
2784 | |||
2785 | /* | ||
2786 | * Check to see if there is any immediate RCU-related work to be done | ||
2787 | * by the current CPU, returning 1 if so. This function is part of the | ||
2788 | * RCU implementation; it is -not- an exported member of the RCU API. | ||
2789 | */ | ||
2790 | static int rcu_pending(int cpu) | ||
2791 | { | ||
2792 | struct rcu_state *rsp; | ||
2793 | |||
2794 | for_each_rcu_flavor(rsp) | ||
2795 | if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) | ||
2796 | return 1; | ||
2797 | return 0; | ||
2798 | } | ||
2799 | |||
2800 | /* | ||
2801 | * Return true if the specified CPU has any callback. If all_lazy is | ||
2802 | * non-NULL, store an indication of whether all callbacks are lazy. | ||
2803 | * (If there are no callbacks, all of them are deemed to be lazy.) | ||
2804 | */ | ||
2805 | static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy) | ||
2806 | { | ||
2807 | bool al = true; | ||
2808 | bool hc = false; | ||
2809 | struct rcu_data *rdp; | ||
2810 | struct rcu_state *rsp; | ||
2811 | |||
2812 | for_each_rcu_flavor(rsp) { | ||
2813 | rdp = per_cpu_ptr(rsp->rda, cpu); | ||
2814 | if (!rdp->nxtlist) | ||
2815 | continue; | ||
2816 | hc = true; | ||
2817 | if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { | ||
2818 | al = false; | ||
2819 | break; | ||
2820 | } | ||
2821 | } | ||
2822 | if (all_lazy) | ||
2823 | *all_lazy = al; | ||
2824 | return hc; | ||
2825 | } | ||
2826 | |||
2827 | /* | ||
2828 | * Helper function for _rcu_barrier() tracing. If tracing is disabled, | ||
2829 | * the compiler is expected to optimize this away. | ||
2830 | */ | ||
2831 | static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, | ||
2832 | int cpu, unsigned long done) | ||
2833 | { | ||
2834 | trace_rcu_barrier(rsp->name, s, cpu, | ||
2835 | atomic_read(&rsp->barrier_cpu_count), done); | ||
2836 | } | ||
2837 | |||
2838 | /* | ||
2839 | * RCU callback function for _rcu_barrier(). If we are last, wake | ||
2840 | * up the task executing _rcu_barrier(). | ||
2841 | */ | ||
2842 | static void rcu_barrier_callback(struct rcu_head *rhp) | ||
2843 | { | ||
2844 | struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); | ||
2845 | struct rcu_state *rsp = rdp->rsp; | ||
2846 | |||
2847 | if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { | ||
2848 | _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); | ||
2849 | complete(&rsp->barrier_completion); | ||
2850 | } else { | ||
2851 | _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); | ||
2852 | } | ||
2853 | } | ||
2854 | |||
2855 | /* | ||
2856 | * Called with preemption disabled, and from cross-cpu IRQ context. | ||
2857 | */ | ||
2858 | static void rcu_barrier_func(void *type) | ||
2859 | { | ||
2860 | struct rcu_state *rsp = type; | ||
2861 | struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); | ||
2862 | |||
2863 | _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); | ||
2864 | atomic_inc(&rsp->barrier_cpu_count); | ||
2865 | rsp->call(&rdp->barrier_head, rcu_barrier_callback); | ||
2866 | } | ||
2867 | |||
2868 | /* | ||
2869 | * Orchestrate the specified type of RCU barrier, waiting for all | ||
2870 | * RCU callbacks of the specified type to complete. | ||
2871 | */ | ||
2872 | static void _rcu_barrier(struct rcu_state *rsp) | ||
2873 | { | ||
2874 | int cpu; | ||
2875 | struct rcu_data *rdp; | ||
2876 | unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); | ||
2877 | unsigned long snap_done; | ||
2878 | |||
2879 | _rcu_barrier_trace(rsp, "Begin", -1, snap); | ||
2880 | |||
2881 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ | ||
2882 | mutex_lock(&rsp->barrier_mutex); | ||
2883 | |||
2884 | /* | ||
2885 | * Ensure that all prior references, including to ->n_barrier_done, | ||
2886 | * are ordered before the _rcu_barrier() machinery. | ||
2887 | */ | ||
2888 | smp_mb(); /* See above block comment. */ | ||
2889 | |||
2890 | /* | ||
2891 | * Recheck ->n_barrier_done to see if others did our work for us. | ||
2892 | * This means checking ->n_barrier_done for an even-to-odd-to-even | ||
2893 | * transition. The "if" expression below therefore rounds the old | ||
2894 | * value up to the next even number and adds two before comparing. | ||
2895 | */ | ||
2896 | snap_done = rsp->n_barrier_done; | ||
2897 | _rcu_barrier_trace(rsp, "Check", -1, snap_done); | ||
2898 | |||
2899 | /* | ||
2900 | * If the value in snap is odd, we needed to wait for the current | ||
2901 | * rcu_barrier() to complete, then wait for the next one, in other | ||
2902 | * words, we need the value of snap_done to be three larger than | ||
2903 | * the value of snap. On the other hand, if the value in snap is | ||
2904 | * even, we only had to wait for the next rcu_barrier() to complete, | ||
2905 | * in other words, we need the value of snap_done to be only two | ||
2906 | * greater than the value of snap. The "(snap + 3) & ~0x1" computes | ||
2907 | * this for us (thank you, Linus!). | ||
2908 | */ | ||
2909 | if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { | ||
2910 | _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); | ||
2911 | smp_mb(); /* caller's subsequent code after above check. */ | ||
2912 | mutex_unlock(&rsp->barrier_mutex); | ||
2913 | return; | ||
2914 | } | ||
2915 | |||
2916 | /* | ||
2917 | * Increment ->n_barrier_done to avoid duplicate work. Use | ||
2918 | * ACCESS_ONCE() to prevent the compiler from speculating | ||
2919 | * the increment to precede the early-exit check. | ||
2920 | */ | ||
2921 | ACCESS_ONCE(rsp->n_barrier_done)++; | ||
2922 | WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); | ||
2923 | _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); | ||
2924 | smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ | ||
2925 | |||
2926 | /* | ||
2927 | * Initialize the count to one rather than to zero in order to | ||
2928 | * avoid a too-soon return to zero in case of a short grace period | ||
2929 | * (or preemption of this task). Exclude CPU-hotplug operations | ||
2930 | * to ensure that no offline CPU has callbacks queued. | ||
2931 | */ | ||
2932 | init_completion(&rsp->barrier_completion); | ||
2933 | atomic_set(&rsp->barrier_cpu_count, 1); | ||
2934 | get_online_cpus(); | ||
2935 | |||
2936 | /* | ||
2937 | * Force each CPU with callbacks to register a new callback. | ||
2938 | * When that callback is invoked, we will know that all of the | ||
2939 | * corresponding CPU's preceding callbacks have been invoked. | ||
2940 | */ | ||
2941 | for_each_possible_cpu(cpu) { | ||
2942 | if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) | ||
2943 | continue; | ||
2944 | rdp = per_cpu_ptr(rsp->rda, cpu); | ||
2945 | if (rcu_is_nocb_cpu(cpu)) { | ||
2946 | _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, | ||
2947 | rsp->n_barrier_done); | ||
2948 | atomic_inc(&rsp->barrier_cpu_count); | ||
2949 | __call_rcu(&rdp->barrier_head, rcu_barrier_callback, | ||
2950 | rsp, cpu, 0); | ||
2951 | } else if (ACCESS_ONCE(rdp->qlen)) { | ||
2952 | _rcu_barrier_trace(rsp, "OnlineQ", cpu, | ||
2953 | rsp->n_barrier_done); | ||
2954 | smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); | ||
2955 | } else { | ||
2956 | _rcu_barrier_trace(rsp, "OnlineNQ", cpu, | ||
2957 | rsp->n_barrier_done); | ||
2958 | } | ||
2959 | } | ||
2960 | put_online_cpus(); | ||
2961 | |||
2962 | /* | ||
2963 | * Now that we have an rcu_barrier_callback() callback on each | ||
2964 | * CPU, and thus each counted, remove the initial count. | ||
2965 | */ | ||
2966 | if (atomic_dec_and_test(&rsp->barrier_cpu_count)) | ||
2967 | complete(&rsp->barrier_completion); | ||
2968 | |||
2969 | /* Increment ->n_barrier_done to prevent duplicate work. */ | ||
2970 | smp_mb(); /* Keep increment after above mechanism. */ | ||
2971 | ACCESS_ONCE(rsp->n_barrier_done)++; | ||
2972 | WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); | ||
2973 | _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); | ||
2974 | smp_mb(); /* Keep increment before caller's subsequent code. */ | ||
2975 | |||
2976 | /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ | ||
2977 | wait_for_completion(&rsp->barrier_completion); | ||
2978 | |||
2979 | /* Other rcu_barrier() invocations can now safely proceed. */ | ||
2980 | mutex_unlock(&rsp->barrier_mutex); | ||
2981 | } | ||
2982 | |||
2983 | /** | ||
2984 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. | ||
2985 | */ | ||
2986 | void rcu_barrier_bh(void) | ||
2987 | { | ||
2988 | _rcu_barrier(&rcu_bh_state); | ||
2989 | } | ||
2990 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | ||
2991 | |||
2992 | /** | ||
2993 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. | ||
2994 | */ | ||
2995 | void rcu_barrier_sched(void) | ||
2996 | { | ||
2997 | _rcu_barrier(&rcu_sched_state); | ||
2998 | } | ||
2999 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | ||
3000 | |||
3001 | /* | ||
3002 | * Do boot-time initialization of a CPU's per-CPU RCU data. | ||
3003 | */ | ||
3004 | static void __init | ||
3005 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) | ||
3006 | { | ||
3007 | unsigned long flags; | ||
3008 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | ||
3009 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
3010 | |||
3011 | /* Set up local state, ensuring consistent view of global state. */ | ||
3012 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
3013 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | ||
3014 | init_callback_list(rdp); | ||
3015 | rdp->qlen_lazy = 0; | ||
3016 | ACCESS_ONCE(rdp->qlen) = 0; | ||
3017 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | ||
3018 | WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); | ||
3019 | WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); | ||
3020 | rdp->cpu = cpu; | ||
3021 | rdp->rsp = rsp; | ||
3022 | rcu_boot_init_nocb_percpu_data(rdp); | ||
3023 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
3024 | } | ||
3025 | |||
3026 | /* | ||
3027 | * Initialize a CPU's per-CPU RCU data. Note that only one online or | ||
3028 | * offline event can be happening at a given time. Note also that we | ||
3029 | * can accept some slop in the rsp->completed access due to the fact | ||
3030 | * that this CPU cannot possibly have any RCU callbacks in flight yet. | ||
3031 | */ | ||
3032 | static void | ||
3033 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) | ||
3034 | { | ||
3035 | unsigned long flags; | ||
3036 | unsigned long mask; | ||
3037 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | ||
3038 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
3039 | |||
3040 | /* Exclude new grace periods. */ | ||
3041 | mutex_lock(&rsp->onoff_mutex); | ||
3042 | |||
3043 | /* Set up local state, ensuring consistent view of global state. */ | ||
3044 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
3045 | rdp->beenonline = 1; /* We have now been online. */ | ||
3046 | rdp->preemptible = preemptible; | ||
3047 | rdp->qlen_last_fqs_check = 0; | ||
3048 | rdp->n_force_qs_snap = rsp->n_force_qs; | ||
3049 | rdp->blimit = blimit; | ||
3050 | init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ | ||
3051 | rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; | ||
3052 | rcu_sysidle_init_percpu_data(rdp->dynticks); | ||
3053 | atomic_set(&rdp->dynticks->dynticks, | ||
3054 | (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); | ||
3055 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
3056 | |||
3057 | /* Add CPU to rcu_node bitmasks. */ | ||
3058 | rnp = rdp->mynode; | ||
3059 | mask = rdp->grpmask; | ||
3060 | do { | ||
3061 | /* Exclude any attempts to start a new GP on small systems. */ | ||
3062 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
3063 | rnp->qsmaskinit |= mask; | ||
3064 | mask = rnp->grpmask; | ||
3065 | if (rnp == rdp->mynode) { | ||
3066 | /* | ||
3067 | * If there is a grace period in progress, we will | ||
3068 | * set up to wait for it next time we run the | ||
3069 | * RCU core code. | ||
3070 | */ | ||
3071 | rdp->gpnum = rnp->completed; | ||
3072 | rdp->completed = rnp->completed; | ||
3073 | rdp->passed_quiesce = 0; | ||
3074 | rdp->qs_pending = 0; | ||
3075 | trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); | ||
3076 | } | ||
3077 | raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ | ||
3078 | rnp = rnp->parent; | ||
3079 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | ||
3080 | local_irq_restore(flags); | ||
3081 | |||
3082 | mutex_unlock(&rsp->onoff_mutex); | ||
3083 | } | ||
3084 | |||
3085 | static void rcu_prepare_cpu(int cpu) | ||
3086 | { | ||
3087 | struct rcu_state *rsp; | ||
3088 | |||
3089 | for_each_rcu_flavor(rsp) | ||
3090 | rcu_init_percpu_data(cpu, rsp, | ||
3091 | strcmp(rsp->name, "rcu_preempt") == 0); | ||
3092 | } | ||
3093 | |||
3094 | /* | ||
3095 | * Handle CPU online/offline notification events. | ||
3096 | */ | ||
3097 | static int rcu_cpu_notify(struct notifier_block *self, | ||
3098 | unsigned long action, void *hcpu) | ||
3099 | { | ||
3100 | long cpu = (long)hcpu; | ||
3101 | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); | ||
3102 | struct rcu_node *rnp = rdp->mynode; | ||
3103 | struct rcu_state *rsp; | ||
3104 | |||
3105 | trace_rcu_utilization(TPS("Start CPU hotplug")); | ||
3106 | switch (action) { | ||
3107 | case CPU_UP_PREPARE: | ||
3108 | case CPU_UP_PREPARE_FROZEN: | ||
3109 | rcu_prepare_cpu(cpu); | ||
3110 | rcu_prepare_kthreads(cpu); | ||
3111 | break; | ||
3112 | case CPU_ONLINE: | ||
3113 | case CPU_DOWN_FAILED: | ||
3114 | rcu_boost_kthread_setaffinity(rnp, -1); | ||
3115 | break; | ||
3116 | case CPU_DOWN_PREPARE: | ||
3117 | rcu_boost_kthread_setaffinity(rnp, cpu); | ||
3118 | break; | ||
3119 | case CPU_DYING: | ||
3120 | case CPU_DYING_FROZEN: | ||
3121 | for_each_rcu_flavor(rsp) | ||
3122 | rcu_cleanup_dying_cpu(rsp); | ||
3123 | break; | ||
3124 | case CPU_DEAD: | ||
3125 | case CPU_DEAD_FROZEN: | ||
3126 | case CPU_UP_CANCELED: | ||
3127 | case CPU_UP_CANCELED_FROZEN: | ||
3128 | for_each_rcu_flavor(rsp) | ||
3129 | rcu_cleanup_dead_cpu(cpu, rsp); | ||
3130 | break; | ||
3131 | default: | ||
3132 | break; | ||
3133 | } | ||
3134 | trace_rcu_utilization(TPS("End CPU hotplug")); | ||
3135 | return NOTIFY_OK; | ||
3136 | } | ||
3137 | |||
3138 | static int rcu_pm_notify(struct notifier_block *self, | ||
3139 | unsigned long action, void *hcpu) | ||
3140 | { | ||
3141 | switch (action) { | ||
3142 | case PM_HIBERNATION_PREPARE: | ||
3143 | case PM_SUSPEND_PREPARE: | ||
3144 | if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ | ||
3145 | rcu_expedited = 1; | ||
3146 | break; | ||
3147 | case PM_POST_HIBERNATION: | ||
3148 | case PM_POST_SUSPEND: | ||
3149 | rcu_expedited = 0; | ||
3150 | break; | ||
3151 | default: | ||
3152 | break; | ||
3153 | } | ||
3154 | return NOTIFY_OK; | ||
3155 | } | ||
3156 | |||
3157 | /* | ||
3158 | * Spawn the kthread that handles this RCU flavor's grace periods. | ||
3159 | */ | ||
3160 | static int __init rcu_spawn_gp_kthread(void) | ||
3161 | { | ||
3162 | unsigned long flags; | ||
3163 | struct rcu_node *rnp; | ||
3164 | struct rcu_state *rsp; | ||
3165 | struct task_struct *t; | ||
3166 | |||
3167 | for_each_rcu_flavor(rsp) { | ||
3168 | t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); | ||
3169 | BUG_ON(IS_ERR(t)); | ||
3170 | rnp = rcu_get_root(rsp); | ||
3171 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
3172 | rsp->gp_kthread = t; | ||
3173 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
3174 | rcu_spawn_nocb_kthreads(rsp); | ||
3175 | } | ||
3176 | return 0; | ||
3177 | } | ||
3178 | early_initcall(rcu_spawn_gp_kthread); | ||
3179 | |||
3180 | /* | ||
3181 | * This function is invoked towards the end of the scheduler's initialization | ||
3182 | * process. Before this is called, the idle task might contain | ||
3183 | * RCU read-side critical sections (during which time, this idle | ||
3184 | * task is booting the system). After this function is called, the | ||
3185 | * idle tasks are prohibited from containing RCU read-side critical | ||
3186 | * sections. This function also enables RCU lockdep checking. | ||
3187 | */ | ||
3188 | void rcu_scheduler_starting(void) | ||
3189 | { | ||
3190 | WARN_ON(num_online_cpus() != 1); | ||
3191 | WARN_ON(nr_context_switches() > 0); | ||
3192 | rcu_scheduler_active = 1; | ||
3193 | } | ||
3194 | |||
3195 | /* | ||
3196 | * Compute the per-level fanout, either using the exact fanout specified | ||
3197 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. | ||
3198 | */ | ||
3199 | #ifdef CONFIG_RCU_FANOUT_EXACT | ||
3200 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | ||
3201 | { | ||
3202 | int i; | ||
3203 | |||
3204 | for (i = rcu_num_lvls - 1; i > 0; i--) | ||
3205 | rsp->levelspread[i] = CONFIG_RCU_FANOUT; | ||
3206 | rsp->levelspread[0] = rcu_fanout_leaf; | ||
3207 | } | ||
3208 | #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ | ||
3209 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | ||
3210 | { | ||
3211 | int ccur; | ||
3212 | int cprv; | ||
3213 | int i; | ||
3214 | |||
3215 | cprv = nr_cpu_ids; | ||
3216 | for (i = rcu_num_lvls - 1; i >= 0; i--) { | ||
3217 | ccur = rsp->levelcnt[i]; | ||
3218 | rsp->levelspread[i] = (cprv + ccur - 1) / ccur; | ||
3219 | cprv = ccur; | ||
3220 | } | ||
3221 | } | ||
3222 | #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ | ||
3223 | |||
3224 | /* | ||
3225 | * Helper function for rcu_init() that initializes one rcu_state structure. | ||
3226 | */ | ||
3227 | static void __init rcu_init_one(struct rcu_state *rsp, | ||
3228 | struct rcu_data __percpu *rda) | ||
3229 | { | ||
3230 | static char *buf[] = { "rcu_node_0", | ||
3231 | "rcu_node_1", | ||
3232 | "rcu_node_2", | ||
3233 | "rcu_node_3" }; /* Match MAX_RCU_LVLS */ | ||
3234 | static char *fqs[] = { "rcu_node_fqs_0", | ||
3235 | "rcu_node_fqs_1", | ||
3236 | "rcu_node_fqs_2", | ||
3237 | "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ | ||
3238 | int cpustride = 1; | ||
3239 | int i; | ||
3240 | int j; | ||
3241 | struct rcu_node *rnp; | ||
3242 | |||
3243 | BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ | ||
3244 | |||
3245 | /* Silence gcc 4.8 warning about array index out of range. */ | ||
3246 | if (rcu_num_lvls > RCU_NUM_LVLS) | ||
3247 | panic("rcu_init_one: rcu_num_lvls overflow"); | ||
3248 | |||
3249 | /* Initialize the level-tracking arrays. */ | ||
3250 | |||
3251 | for (i = 0; i < rcu_num_lvls; i++) | ||
3252 | rsp->levelcnt[i] = num_rcu_lvl[i]; | ||
3253 | for (i = 1; i < rcu_num_lvls; i++) | ||
3254 | rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; | ||
3255 | rcu_init_levelspread(rsp); | ||
3256 | |||
3257 | /* Initialize the elements themselves, starting from the leaves. */ | ||
3258 | |||
3259 | for (i = rcu_num_lvls - 1; i >= 0; i--) { | ||
3260 | cpustride *= rsp->levelspread[i]; | ||
3261 | rnp = rsp->level[i]; | ||
3262 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | ||
3263 | raw_spin_lock_init(&rnp->lock); | ||
3264 | lockdep_set_class_and_name(&rnp->lock, | ||
3265 | &rcu_node_class[i], buf[i]); | ||
3266 | raw_spin_lock_init(&rnp->fqslock); | ||
3267 | lockdep_set_class_and_name(&rnp->fqslock, | ||
3268 | &rcu_fqs_class[i], fqs[i]); | ||
3269 | rnp->gpnum = rsp->gpnum; | ||
3270 | rnp->completed = rsp->completed; | ||
3271 | rnp->qsmask = 0; | ||
3272 | rnp->qsmaskinit = 0; | ||
3273 | rnp->grplo = j * cpustride; | ||
3274 | rnp->grphi = (j + 1) * cpustride - 1; | ||
3275 | if (rnp->grphi >= NR_CPUS) | ||
3276 | rnp->grphi = NR_CPUS - 1; | ||
3277 | if (i == 0) { | ||
3278 | rnp->grpnum = 0; | ||
3279 | rnp->grpmask = 0; | ||
3280 | rnp->parent = NULL; | ||
3281 | } else { | ||
3282 | rnp->grpnum = j % rsp->levelspread[i - 1]; | ||
3283 | rnp->grpmask = 1UL << rnp->grpnum; | ||
3284 | rnp->parent = rsp->level[i - 1] + | ||
3285 | j / rsp->levelspread[i - 1]; | ||
3286 | } | ||
3287 | rnp->level = i; | ||
3288 | INIT_LIST_HEAD(&rnp->blkd_tasks); | ||
3289 | rcu_init_one_nocb(rnp); | ||
3290 | } | ||
3291 | } | ||
3292 | |||
3293 | rsp->rda = rda; | ||
3294 | init_waitqueue_head(&rsp->gp_wq); | ||
3295 | init_irq_work(&rsp->wakeup_work, rsp_wakeup); | ||
3296 | rnp = rsp->level[rcu_num_lvls - 1]; | ||
3297 | for_each_possible_cpu(i) { | ||
3298 | while (i > rnp->grphi) | ||
3299 | rnp++; | ||
3300 | per_cpu_ptr(rsp->rda, i)->mynode = rnp; | ||
3301 | rcu_boot_init_percpu_data(i, rsp); | ||
3302 | } | ||
3303 | list_add(&rsp->flavors, &rcu_struct_flavors); | ||
3304 | } | ||
3305 | |||
3306 | /* | ||
3307 | * Compute the rcu_node tree geometry from kernel parameters. This cannot | ||
3308 | * replace the definitions in tree.h because those are needed to size | ||
3309 | * the ->node array in the rcu_state structure. | ||
3310 | */ | ||
3311 | static void __init rcu_init_geometry(void) | ||
3312 | { | ||
3313 | ulong d; | ||
3314 | int i; | ||
3315 | int j; | ||
3316 | int n = nr_cpu_ids; | ||
3317 | int rcu_capacity[MAX_RCU_LVLS + 1]; | ||
3318 | |||
3319 | /* | ||
3320 | * Initialize any unspecified boot parameters. | ||
3321 | * The default values of jiffies_till_first_fqs and | ||
3322 | * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS | ||
3323 | * value, which is a function of HZ, then adding one for each | ||
3324 | * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. | ||
3325 | */ | ||
3326 | d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; | ||
3327 | if (jiffies_till_first_fqs == ULONG_MAX) | ||
3328 | jiffies_till_first_fqs = d; | ||
3329 | if (jiffies_till_next_fqs == ULONG_MAX) | ||
3330 | jiffies_till_next_fqs = d; | ||
3331 | |||
3332 | /* If the compile-time values are accurate, just leave. */ | ||
3333 | if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && | ||
3334 | nr_cpu_ids == NR_CPUS) | ||
3335 | return; | ||
3336 | |||
3337 | /* | ||
3338 | * Compute number of nodes that can be handled an rcu_node tree | ||
3339 | * with the given number of levels. Setting rcu_capacity[0] makes | ||
3340 | * some of the arithmetic easier. | ||
3341 | */ | ||
3342 | rcu_capacity[0] = 1; | ||
3343 | rcu_capacity[1] = rcu_fanout_leaf; | ||
3344 | for (i = 2; i <= MAX_RCU_LVLS; i++) | ||
3345 | rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; | ||
3346 | |||
3347 | /* | ||
3348 | * The boot-time rcu_fanout_leaf parameter is only permitted | ||
3349 | * to increase the leaf-level fanout, not decrease it. Of course, | ||
3350 | * the leaf-level fanout cannot exceed the number of bits in | ||
3351 | * the rcu_node masks. Finally, the tree must be able to accommodate | ||
3352 | * the configured number of CPUs. Complain and fall back to the | ||
3353 | * compile-time values if these limits are exceeded. | ||
3354 | */ | ||
3355 | if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || | ||
3356 | rcu_fanout_leaf > sizeof(unsigned long) * 8 || | ||
3357 | n > rcu_capacity[MAX_RCU_LVLS]) { | ||
3358 | WARN_ON(1); | ||
3359 | return; | ||
3360 | } | ||
3361 | |||
3362 | /* Calculate the number of rcu_nodes at each level of the tree. */ | ||
3363 | for (i = 1; i <= MAX_RCU_LVLS; i++) | ||
3364 | if (n <= rcu_capacity[i]) { | ||
3365 | for (j = 0; j <= i; j++) | ||
3366 | num_rcu_lvl[j] = | ||
3367 | DIV_ROUND_UP(n, rcu_capacity[i - j]); | ||
3368 | rcu_num_lvls = i; | ||
3369 | for (j = i + 1; j <= MAX_RCU_LVLS; j++) | ||
3370 | num_rcu_lvl[j] = 0; | ||
3371 | break; | ||
3372 | } | ||
3373 | |||
3374 | /* Calculate the total number of rcu_node structures. */ | ||
3375 | rcu_num_nodes = 0; | ||
3376 | for (i = 0; i <= MAX_RCU_LVLS; i++) | ||
3377 | rcu_num_nodes += num_rcu_lvl[i]; | ||
3378 | rcu_num_nodes -= n; | ||
3379 | } | ||
3380 | |||
3381 | void __init rcu_init(void) | ||
3382 | { | ||
3383 | int cpu; | ||
3384 | |||
3385 | rcu_bootup_announce(); | ||
3386 | rcu_init_geometry(); | ||
3387 | rcu_init_one(&rcu_bh_state, &rcu_bh_data); | ||
3388 | rcu_init_one(&rcu_sched_state, &rcu_sched_data); | ||
3389 | __rcu_init_preempt(); | ||
3390 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
3391 | |||
3392 | /* | ||
3393 | * We don't need protection against CPU-hotplug here because | ||
3394 | * this is called early in boot, before either interrupts | ||
3395 | * or the scheduler are operational. | ||
3396 | */ | ||
3397 | cpu_notifier(rcu_cpu_notify, 0); | ||
3398 | pm_notifier(rcu_pm_notify, 0); | ||
3399 | for_each_online_cpu(cpu) | ||
3400 | rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); | ||
3401 | } | ||
3402 | |||
3403 | #include "tree_plugin.h" | ||