aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/power/snapshot.c
diff options
context:
space:
mode:
authorRafael J. Wysocki <rjw@sisk.pl>2011-05-15 05:38:48 -0400
committerRafael J. Wysocki <rjw@sisk.pl>2011-05-17 17:19:19 -0400
commitddeb648708108091a641adad0a438ec4fd8bf190 (patch)
tree722367ce903d362af29898db7c2bc2c1058d80c5 /kernel/power/snapshot.c
parent13e381365614855bf14c8ad68f9b65e3afd3dd2c (diff)
PM / Hibernate: Add sysfs knob to control size of memory for drivers
Martin reports that on his system hibernation occasionally fails due to the lack of memory, because the radeon driver apparently allocates too much of it during the device freeze stage. It turns out that the amount of memory allocated by radeon during hibernation (and presumably during system suspend too) depends on the utilization of the GPU (e.g. hibernating while there are two KDE 4 sessions with compositing enabled causes radeon to allocate more memory than for one KDE 4 session). In principle it should be possible to use image_size to make the memory preallocation mechanism free enough memory for the radeon driver, but in practice it is not easy to guess the right value because of the way the preallocation code uses image_size. For this reason, it seems reasonable to allow users to control the amount of memory reserved for driver allocations made after the hibernate preallocation, which currently is constant and amounts to 1 MB. Introduce a new sysfs file, /sys/power/reserved_size, whose value will be used as the amount of memory to reserve for the post-preallocation reservations made by device drivers, in bytes. For backwards compatibility, set its default (and initial) value to the currently used number (1 MB). References: https://bugzilla.kernel.org/show_bug.cgi?id=34102 Reported-and-tested-by: Martin Steigerwald <Martin@Lichtvoll.de> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Diffstat (limited to 'kernel/power/snapshot.c')
-rw-r--r--kernel/power/snapshot.c25
1 files changed, 20 insertions, 5 deletions
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index ca0aacc24874..d69e3323a85d 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -41,6 +41,18 @@ static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *); 41static void swsusp_unset_page_forbidden(struct page *);
42 42
43/* 43/*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48unsigned long reserved_size;
49
50void __init hibernate_reserved_size_init(void)
51{
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53}
54
55/*
44 * Preferred image size in bytes (tunable via /sys/power/image_size). 56 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, the image creating code will do its best to 57 * When it is set to N, the image creating code will do its best to
46 * ensure the image size will not exceed N bytes, but if that is 58 * ensure the image size will not exceed N bytes, but if that is
@@ -1263,11 +1275,13 @@ static unsigned long minimum_image_size(unsigned long saveable)
1263 * frame in use. We also need a number of page frames to be free during 1275 * frame in use. We also need a number of page frames to be free during
1264 * hibernation for allocations made while saving the image and for device 1276 * hibernation for allocations made while saving the image and for device
1265 * drivers, in case they need to allocate memory from their hibernation 1277 * drivers, in case they need to allocate memory from their hibernation
1266 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, 1278 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1267 * respectively, both of which are rough estimates). To make this happen, we 1279 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1268 * compute the total number of available page frames and allocate at least 1280 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1281 * total number of available page frames and allocate at least
1269 * 1282 *
1270 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES 1283 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1284 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1271 * 1285 *
1272 * of them, which corresponds to the maximum size of a hibernation image. 1286 * of them, which corresponds to the maximum size of a hibernation image.
1273 * 1287 *
@@ -1322,7 +1336,8 @@ int hibernate_preallocate_memory(void)
1322 count -= totalreserve_pages; 1336 count -= totalreserve_pages;
1323 1337
1324 /* Compute the maximum number of saveable pages to leave in memory. */ 1338 /* Compute the maximum number of saveable pages to leave in memory. */
1325 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; 1339 max_size = (count - (size + PAGES_FOR_IO)) / 2
1340 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1326 /* Compute the desired number of image pages specified by image_size. */ 1341 /* Compute the desired number of image pages specified by image_size. */
1327 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1342 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1328 if (size > max_size) 1343 if (size > max_size)