diff options
| author | Steve French <sfrench@us.ibm.com> | 2006-01-12 17:47:08 -0500 |
|---|---|---|
| committer | Steve French <sfrench@us.ibm.com> | 2006-01-12 17:47:08 -0500 |
| commit | 94bc2be31a01a3055ec94176e595dfe208e92d3b (patch) | |
| tree | ebfbe81c6718a6390bfa1b99c6d228237d818576 /kernel/posix-timers.c | |
| parent | c32a0b689cb9cc160cfcd19735bbf50bb70c6ef4 (diff) | |
| parent | 58cba4650a7a414eabd2b40cc9d8e45fcdf192d9 (diff) | |
Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
Signed-off-by: Steve French <sfrench@us.ibm.com>
Diffstat (limited to 'kernel/posix-timers.c')
| -rw-r--r-- | kernel/posix-timers.c | 887 |
1 files changed, 169 insertions, 718 deletions
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index 5870efb3e200..9e66e614862a 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
| @@ -48,21 +48,6 @@ | |||
| 48 | #include <linux/workqueue.h> | 48 | #include <linux/workqueue.h> |
| 49 | #include <linux/module.h> | 49 | #include <linux/module.h> |
| 50 | 50 | ||
| 51 | #ifndef div_long_long_rem | ||
| 52 | #include <asm/div64.h> | ||
| 53 | |||
| 54 | #define div_long_long_rem(dividend,divisor,remainder) ({ \ | ||
| 55 | u64 result = dividend; \ | ||
| 56 | *remainder = do_div(result,divisor); \ | ||
| 57 | result; }) | ||
| 58 | |||
| 59 | #endif | ||
| 60 | #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */ | ||
| 61 | |||
| 62 | static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) | ||
| 63 | { | ||
| 64 | return (u64)mpy1 * mpy2; | ||
| 65 | } | ||
| 66 | /* | 51 | /* |
| 67 | * Management arrays for POSIX timers. Timers are kept in slab memory | 52 | * Management arrays for POSIX timers. Timers are kept in slab memory |
| 68 | * Timer ids are allocated by an external routine that keeps track of the | 53 | * Timer ids are allocated by an external routine that keeps track of the |
| @@ -148,18 +133,18 @@ static DEFINE_SPINLOCK(idr_lock); | |||
| 148 | */ | 133 | */ |
| 149 | 134 | ||
| 150 | static struct k_clock posix_clocks[MAX_CLOCKS]; | 135 | static struct k_clock posix_clocks[MAX_CLOCKS]; |
| 136 | |||
| 151 | /* | 137 | /* |
| 152 | * We only have one real clock that can be set so we need only one abs list, | 138 | * These ones are defined below. |
| 153 | * even if we should want to have several clocks with differing resolutions. | ||
| 154 | */ | 139 | */ |
| 155 | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), | 140 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, |
| 156 | .lock = SPIN_LOCK_UNLOCKED}; | 141 | struct timespec __user *rmtp); |
| 142 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | ||
| 143 | static int common_timer_set(struct k_itimer *, int, | ||
| 144 | struct itimerspec *, struct itimerspec *); | ||
| 145 | static int common_timer_del(struct k_itimer *timer); | ||
| 157 | 146 | ||
| 158 | static void posix_timer_fn(unsigned long); | 147 | static int posix_timer_fn(void *data); |
| 159 | static u64 do_posix_clock_monotonic_gettime_parts( | ||
| 160 | struct timespec *tp, struct timespec *mo); | ||
| 161 | int do_posix_clock_monotonic_gettime(struct timespec *tp); | ||
| 162 | static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp); | ||
| 163 | 148 | ||
| 164 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 149 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); |
| 165 | 150 | ||
| @@ -184,7 +169,7 @@ static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | |||
| 184 | * the function pointer CALL in struct k_clock. | 169 | * the function pointer CALL in struct k_clock. |
| 185 | */ | 170 | */ |
| 186 | 171 | ||
| 187 | static inline int common_clock_getres(clockid_t which_clock, | 172 | static inline int common_clock_getres(const clockid_t which_clock, |
| 188 | struct timespec *tp) | 173 | struct timespec *tp) |
| 189 | { | 174 | { |
| 190 | tp->tv_sec = 0; | 175 | tp->tv_sec = 0; |
| @@ -192,39 +177,33 @@ static inline int common_clock_getres(clockid_t which_clock, | |||
| 192 | return 0; | 177 | return 0; |
| 193 | } | 178 | } |
| 194 | 179 | ||
| 195 | static inline int common_clock_get(clockid_t which_clock, struct timespec *tp) | 180 | /* |
| 181 | * Get real time for posix timers | ||
| 182 | */ | ||
| 183 | static int common_clock_get(clockid_t which_clock, struct timespec *tp) | ||
| 196 | { | 184 | { |
| 197 | getnstimeofday(tp); | 185 | ktime_get_real_ts(tp); |
| 198 | return 0; | 186 | return 0; |
| 199 | } | 187 | } |
| 200 | 188 | ||
| 201 | static inline int common_clock_set(clockid_t which_clock, struct timespec *tp) | 189 | static inline int common_clock_set(const clockid_t which_clock, |
| 190 | struct timespec *tp) | ||
| 202 | { | 191 | { |
| 203 | return do_sys_settimeofday(tp, NULL); | 192 | return do_sys_settimeofday(tp, NULL); |
| 204 | } | 193 | } |
| 205 | 194 | ||
| 206 | static inline int common_timer_create(struct k_itimer *new_timer) | 195 | static inline int common_timer_create(struct k_itimer *new_timer) |
| 207 | { | 196 | { |
| 208 | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); | 197 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock); |
| 209 | init_timer(&new_timer->it.real.timer); | 198 | new_timer->it.real.timer.data = new_timer; |
| 210 | new_timer->it.real.timer.data = (unsigned long) new_timer; | ||
| 211 | new_timer->it.real.timer.function = posix_timer_fn; | 199 | new_timer->it.real.timer.function = posix_timer_fn; |
| 212 | return 0; | 200 | return 0; |
| 213 | } | 201 | } |
| 214 | 202 | ||
| 215 | /* | 203 | /* |
| 216 | * These ones are defined below. | 204 | * Return nonzero if we know a priori this clockid_t value is bogus. |
| 217 | */ | ||
| 218 | static int common_nsleep(clockid_t, int flags, struct timespec *t); | ||
| 219 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | ||
| 220 | static int common_timer_set(struct k_itimer *, int, | ||
| 221 | struct itimerspec *, struct itimerspec *); | ||
| 222 | static int common_timer_del(struct k_itimer *timer); | ||
| 223 | |||
| 224 | /* | ||
| 225 | * Return nonzero iff we know a priori this clockid_t value is bogus. | ||
| 226 | */ | 205 | */ |
| 227 | static inline int invalid_clockid(clockid_t which_clock) | 206 | static inline int invalid_clockid(const clockid_t which_clock) |
| 228 | { | 207 | { |
| 229 | if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ | 208 | if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ |
| 230 | return 0; | 209 | return 0; |
| @@ -232,26 +211,32 @@ static inline int invalid_clockid(clockid_t which_clock) | |||
| 232 | return 1; | 211 | return 1; |
| 233 | if (posix_clocks[which_clock].clock_getres != NULL) | 212 | if (posix_clocks[which_clock].clock_getres != NULL) |
| 234 | return 0; | 213 | return 0; |
| 235 | #ifndef CLOCK_DISPATCH_DIRECT | ||
| 236 | if (posix_clocks[which_clock].res != 0) | 214 | if (posix_clocks[which_clock].res != 0) |
| 237 | return 0; | 215 | return 0; |
| 238 | #endif | ||
| 239 | return 1; | 216 | return 1; |
| 240 | } | 217 | } |
| 241 | 218 | ||
| 219 | /* | ||
| 220 | * Get monotonic time for posix timers | ||
| 221 | */ | ||
| 222 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | ||
| 223 | { | ||
| 224 | ktime_get_ts(tp); | ||
| 225 | return 0; | ||
| 226 | } | ||
| 242 | 227 | ||
| 243 | /* | 228 | /* |
| 244 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 229 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 245 | */ | 230 | */ |
| 246 | static __init int init_posix_timers(void) | 231 | static __init int init_posix_timers(void) |
| 247 | { | 232 | { |
| 248 | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, | 233 | struct k_clock clock_realtime = { |
| 249 | .abs_struct = &abs_list | 234 | .clock_getres = hrtimer_get_res, |
| 250 | }; | 235 | }; |
| 251 | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, | 236 | struct k_clock clock_monotonic = { |
| 252 | .abs_struct = NULL, | 237 | .clock_getres = hrtimer_get_res, |
| 253 | .clock_get = do_posix_clock_monotonic_get, | 238 | .clock_get = posix_ktime_get_ts, |
| 254 | .clock_set = do_posix_clock_nosettime | 239 | .clock_set = do_posix_clock_nosettime, |
| 255 | }; | 240 | }; |
| 256 | 241 | ||
| 257 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 242 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
| @@ -265,117 +250,17 @@ static __init int init_posix_timers(void) | |||
| 265 | 250 | ||
| 266 | __initcall(init_posix_timers); | 251 | __initcall(init_posix_timers); |
| 267 | 252 | ||
| 268 | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) | ||
| 269 | { | ||
| 270 | long sec = tp->tv_sec; | ||
| 271 | long nsec = tp->tv_nsec + res - 1; | ||
| 272 | |||
| 273 | if (nsec >= NSEC_PER_SEC) { | ||
| 274 | sec++; | ||
| 275 | nsec -= NSEC_PER_SEC; | ||
| 276 | } | ||
| 277 | |||
| 278 | /* | ||
| 279 | * The scaling constants are defined in <linux/time.h> | ||
| 280 | * The difference between there and here is that we do the | ||
| 281 | * res rounding and compute a 64-bit result (well so does that | ||
| 282 | * but it then throws away the high bits). | ||
| 283 | */ | ||
| 284 | *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) + | ||
| 285 | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> | ||
| 286 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
| 287 | } | ||
| 288 | |||
| 289 | /* | ||
| 290 | * This function adjusts the timer as needed as a result of the clock | ||
| 291 | * being set. It should only be called for absolute timers, and then | ||
| 292 | * under the abs_list lock. It computes the time difference and sets | ||
| 293 | * the new jiffies value in the timer. It also updates the timers | ||
| 294 | * reference wall_to_monotonic value. It is complicated by the fact | ||
| 295 | * that tstojiffies() only handles positive times and it needs to work | ||
| 296 | * with both positive and negative times. Also, for negative offsets, | ||
| 297 | * we need to defeat the res round up. | ||
| 298 | * | ||
| 299 | * Return is true if there is a new time, else false. | ||
| 300 | */ | ||
| 301 | static long add_clockset_delta(struct k_itimer *timr, | ||
| 302 | struct timespec *new_wall_to) | ||
| 303 | { | ||
| 304 | struct timespec delta; | ||
| 305 | int sign = 0; | ||
| 306 | u64 exp; | ||
| 307 | |||
| 308 | set_normalized_timespec(&delta, | ||
| 309 | new_wall_to->tv_sec - | ||
| 310 | timr->it.real.wall_to_prev.tv_sec, | ||
| 311 | new_wall_to->tv_nsec - | ||
| 312 | timr->it.real.wall_to_prev.tv_nsec); | ||
| 313 | if (likely(!(delta.tv_sec | delta.tv_nsec))) | ||
| 314 | return 0; | ||
| 315 | if (delta.tv_sec < 0) { | ||
| 316 | set_normalized_timespec(&delta, | ||
| 317 | -delta.tv_sec, | ||
| 318 | 1 - delta.tv_nsec - | ||
| 319 | posix_clocks[timr->it_clock].res); | ||
| 320 | sign++; | ||
| 321 | } | ||
| 322 | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); | ||
| 323 | timr->it.real.wall_to_prev = *new_wall_to; | ||
| 324 | timr->it.real.timer.expires += (sign ? -exp : exp); | ||
| 325 | return 1; | ||
| 326 | } | ||
| 327 | |||
| 328 | static void remove_from_abslist(struct k_itimer *timr) | ||
| 329 | { | ||
| 330 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
| 331 | spin_lock(&abs_list.lock); | ||
| 332 | list_del_init(&timr->it.real.abs_timer_entry); | ||
| 333 | spin_unlock(&abs_list.lock); | ||
| 334 | } | ||
| 335 | } | ||
| 336 | |||
| 337 | static void schedule_next_timer(struct k_itimer *timr) | 253 | static void schedule_next_timer(struct k_itimer *timr) |
| 338 | { | 254 | { |
| 339 | struct timespec new_wall_to; | 255 | if (timr->it.real.interval.tv64 == 0) |
| 340 | struct now_struct now; | ||
| 341 | unsigned long seq; | ||
| 342 | |||
| 343 | /* | ||
| 344 | * Set up the timer for the next interval (if there is one). | ||
| 345 | * Note: this code uses the abs_timer_lock to protect | ||
| 346 | * it.real.wall_to_prev and must hold it until exp is set, not exactly | ||
| 347 | * obvious... | ||
| 348 | |||
| 349 | * This function is used for CLOCK_REALTIME* and | ||
| 350 | * CLOCK_MONOTONIC* timers. If we ever want to handle other | ||
| 351 | * CLOCKs, the calling code (do_schedule_next_timer) would need | ||
| 352 | * to pull the "clock" info from the timer and dispatch the | ||
| 353 | * "other" CLOCKs "next timer" code (which, I suppose should | ||
| 354 | * also be added to the k_clock structure). | ||
| 355 | */ | ||
| 356 | if (!timr->it.real.incr) | ||
| 357 | return; | 256 | return; |
| 358 | 257 | ||
| 359 | do { | 258 | timr->it_overrun += hrtimer_forward(&timr->it.real.timer, |
| 360 | seq = read_seqbegin(&xtime_lock); | 259 | timr->it.real.interval); |
| 361 | new_wall_to = wall_to_monotonic; | ||
| 362 | posix_get_now(&now); | ||
| 363 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 364 | |||
| 365 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
| 366 | spin_lock(&abs_list.lock); | ||
| 367 | add_clockset_delta(timr, &new_wall_to); | ||
| 368 | |||
| 369 | posix_bump_timer(timr, now); | ||
| 370 | |||
| 371 | spin_unlock(&abs_list.lock); | ||
| 372 | } else { | ||
| 373 | posix_bump_timer(timr, now); | ||
| 374 | } | ||
| 375 | timr->it_overrun_last = timr->it_overrun; | 260 | timr->it_overrun_last = timr->it_overrun; |
| 376 | timr->it_overrun = -1; | 261 | timr->it_overrun = -1; |
| 377 | ++timr->it_requeue_pending; | 262 | ++timr->it_requeue_pending; |
| 378 | add_timer(&timr->it.real.timer); | 263 | hrtimer_restart(&timr->it.real.timer); |
| 379 | } | 264 | } |
| 380 | 265 | ||
| 381 | /* | 266 | /* |
| @@ -396,31 +281,23 @@ void do_schedule_next_timer(struct siginfo *info) | |||
| 396 | 281 | ||
| 397 | timr = lock_timer(info->si_tid, &flags); | 282 | timr = lock_timer(info->si_tid, &flags); |
| 398 | 283 | ||
| 399 | if (!timr || timr->it_requeue_pending != info->si_sys_private) | 284 | if (timr && timr->it_requeue_pending == info->si_sys_private) { |
| 400 | goto exit; | 285 | if (timr->it_clock < 0) |
| 286 | posix_cpu_timer_schedule(timr); | ||
| 287 | else | ||
| 288 | schedule_next_timer(timr); | ||
| 401 | 289 | ||
| 402 | if (timr->it_clock < 0) /* CPU clock */ | 290 | info->si_overrun = timr->it_overrun_last; |
| 403 | posix_cpu_timer_schedule(timr); | 291 | } |
| 404 | else | 292 | |
| 405 | schedule_next_timer(timr); | 293 | unlock_timer(timr, flags); |
| 406 | info->si_overrun = timr->it_overrun_last; | ||
| 407 | exit: | ||
| 408 | if (timr) | ||
| 409 | unlock_timer(timr, flags); | ||
| 410 | } | 294 | } |
| 411 | 295 | ||
| 412 | int posix_timer_event(struct k_itimer *timr,int si_private) | 296 | int posix_timer_event(struct k_itimer *timr,int si_private) |
| 413 | { | 297 | { |
| 414 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); | 298 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); |
| 415 | timr->sigq->info.si_sys_private = si_private; | 299 | timr->sigq->info.si_sys_private = si_private; |
| 416 | /* | 300 | /* Send signal to the process that owns this timer.*/ |
| 417 | * Send signal to the process that owns this timer. | ||
| 418 | |||
| 419 | * This code assumes that all the possible abs_lists share the | ||
| 420 | * same lock (there is only one list at this time). If this is | ||
| 421 | * not the case, the CLOCK info would need to be used to find | ||
| 422 | * the proper abs list lock. | ||
| 423 | */ | ||
| 424 | 301 | ||
| 425 | timr->sigq->info.si_signo = timr->it_sigev_signo; | 302 | timr->sigq->info.si_signo = timr->it_sigev_signo; |
| 426 | timr->sigq->info.si_errno = 0; | 303 | timr->sigq->info.si_errno = 0; |
| @@ -454,64 +331,35 @@ EXPORT_SYMBOL_GPL(posix_timer_event); | |||
| 454 | 331 | ||
| 455 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 332 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
| 456 | */ | 333 | */ |
| 457 | static void posix_timer_fn(unsigned long __data) | 334 | static int posix_timer_fn(void *data) |
| 458 | { | 335 | { |
| 459 | struct k_itimer *timr = (struct k_itimer *) __data; | 336 | struct k_itimer *timr = data; |
| 460 | unsigned long flags; | 337 | unsigned long flags; |
| 461 | unsigned long seq; | 338 | int si_private = 0; |
| 462 | struct timespec delta, new_wall_to; | 339 | int ret = HRTIMER_NORESTART; |
| 463 | u64 exp = 0; | ||
| 464 | int do_notify = 1; | ||
| 465 | 340 | ||
| 466 | spin_lock_irqsave(&timr->it_lock, flags); | 341 | spin_lock_irqsave(&timr->it_lock, flags); |
| 467 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
| 468 | spin_lock(&abs_list.lock); | ||
| 469 | do { | ||
| 470 | seq = read_seqbegin(&xtime_lock); | ||
| 471 | new_wall_to = wall_to_monotonic; | ||
| 472 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 473 | set_normalized_timespec(&delta, | ||
| 474 | new_wall_to.tv_sec - | ||
| 475 | timr->it.real.wall_to_prev.tv_sec, | ||
| 476 | new_wall_to.tv_nsec - | ||
| 477 | timr->it.real.wall_to_prev.tv_nsec); | ||
| 478 | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { | ||
| 479 | /* do nothing, timer is on time */ | ||
| 480 | } else if (delta.tv_sec < 0) { | ||
| 481 | /* do nothing, timer is already late */ | ||
| 482 | } else { | ||
| 483 | /* timer is early due to a clock set */ | ||
| 484 | tstojiffie(&delta, | ||
| 485 | posix_clocks[timr->it_clock].res, | ||
| 486 | &exp); | ||
| 487 | timr->it.real.wall_to_prev = new_wall_to; | ||
| 488 | timr->it.real.timer.expires += exp; | ||
| 489 | add_timer(&timr->it.real.timer); | ||
| 490 | do_notify = 0; | ||
| 491 | } | ||
| 492 | spin_unlock(&abs_list.lock); | ||
| 493 | 342 | ||
| 494 | } | 343 | if (timr->it.real.interval.tv64 != 0) |
| 495 | if (do_notify) { | 344 | si_private = ++timr->it_requeue_pending; |
| 496 | int si_private=0; | ||
| 497 | 345 | ||
| 498 | if (timr->it.real.incr) | 346 | if (posix_timer_event(timr, si_private)) { |
| 499 | si_private = ++timr->it_requeue_pending; | 347 | /* |
| 500 | else { | 348 | * signal was not sent because of sig_ignor |
| 501 | remove_from_abslist(timr); | 349 | * we will not get a call back to restart it AND |
| 350 | * it should be restarted. | ||
| 351 | */ | ||
| 352 | if (timr->it.real.interval.tv64 != 0) { | ||
| 353 | timr->it_overrun += | ||
| 354 | hrtimer_forward(&timr->it.real.timer, | ||
| 355 | timr->it.real.interval); | ||
| 356 | ret = HRTIMER_RESTART; | ||
| 502 | } | 357 | } |
| 503 | |||
| 504 | if (posix_timer_event(timr, si_private)) | ||
| 505 | /* | ||
| 506 | * signal was not sent because of sig_ignor | ||
| 507 | * we will not get a call back to restart it AND | ||
| 508 | * it should be restarted. | ||
| 509 | */ | ||
| 510 | schedule_next_timer(timr); | ||
| 511 | } | 358 | } |
| 512 | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ | ||
| 513 | } | ||
| 514 | 359 | ||
| 360 | unlock_timer(timr, flags); | ||
| 361 | return ret; | ||
| 362 | } | ||
| 515 | 363 | ||
| 516 | static inline struct task_struct * good_sigevent(sigevent_t * event) | 364 | static inline struct task_struct * good_sigevent(sigevent_t * event) |
| 517 | { | 365 | { |
| @@ -530,7 +378,7 @@ static inline struct task_struct * good_sigevent(sigevent_t * event) | |||
| 530 | return rtn; | 378 | return rtn; |
| 531 | } | 379 | } |
| 532 | 380 | ||
| 533 | void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock) | 381 | void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock) |
| 534 | { | 382 | { |
| 535 | if ((unsigned) clock_id >= MAX_CLOCKS) { | 383 | if ((unsigned) clock_id >= MAX_CLOCKS) { |
| 536 | printk("POSIX clock register failed for clock_id %d\n", | 384 | printk("POSIX clock register failed for clock_id %d\n", |
| @@ -576,7 +424,7 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |||
| 576 | /* Create a POSIX.1b interval timer. */ | 424 | /* Create a POSIX.1b interval timer. */ |
| 577 | 425 | ||
| 578 | asmlinkage long | 426 | asmlinkage long |
| 579 | sys_timer_create(clockid_t which_clock, | 427 | sys_timer_create(const clockid_t which_clock, |
| 580 | struct sigevent __user *timer_event_spec, | 428 | struct sigevent __user *timer_event_spec, |
| 581 | timer_t __user * created_timer_id) | 429 | timer_t __user * created_timer_id) |
| 582 | { | 430 | { |
| @@ -602,8 +450,7 @@ sys_timer_create(clockid_t which_clock, | |||
| 602 | goto out; | 450 | goto out; |
| 603 | } | 451 | } |
| 604 | spin_lock_irq(&idr_lock); | 452 | spin_lock_irq(&idr_lock); |
| 605 | error = idr_get_new(&posix_timers_id, | 453 | error = idr_get_new(&posix_timers_id, (void *) new_timer, |
| 606 | (void *) new_timer, | ||
| 607 | &new_timer_id); | 454 | &new_timer_id); |
| 608 | spin_unlock_irq(&idr_lock); | 455 | spin_unlock_irq(&idr_lock); |
| 609 | if (error == -EAGAIN) | 456 | if (error == -EAGAIN) |
| @@ -704,27 +551,6 @@ out: | |||
| 704 | } | 551 | } |
| 705 | 552 | ||
| 706 | /* | 553 | /* |
| 707 | * good_timespec | ||
| 708 | * | ||
| 709 | * This function checks the elements of a timespec structure. | ||
| 710 | * | ||
| 711 | * Arguments: | ||
| 712 | * ts : Pointer to the timespec structure to check | ||
| 713 | * | ||
| 714 | * Return value: | ||
| 715 | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 | ||
| 716 | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, | ||
| 717 | * this function returns 0. Otherwise it returns 1. | ||
| 718 | */ | ||
| 719 | static int good_timespec(const struct timespec *ts) | ||
| 720 | { | ||
| 721 | if ((!ts) || (ts->tv_sec < 0) || | ||
| 722 | ((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) | ||
| 723 | return 0; | ||
| 724 | return 1; | ||
| 725 | } | ||
| 726 | |||
| 727 | /* | ||
| 728 | * Locking issues: We need to protect the result of the id look up until | 554 | * Locking issues: We need to protect the result of the id look up until |
| 729 | * we get the timer locked down so it is not deleted under us. The | 555 | * we get the timer locked down so it is not deleted under us. The |
| 730 | * removal is done under the idr spinlock so we use that here to bridge | 556 | * removal is done under the idr spinlock so we use that here to bridge |
| @@ -776,39 +602,39 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | |||
| 776 | static void | 602 | static void |
| 777 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 603 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
| 778 | { | 604 | { |
| 779 | unsigned long expires; | 605 | ktime_t remaining; |
| 780 | struct now_struct now; | 606 | struct hrtimer *timer = &timr->it.real.timer; |
| 781 | 607 | ||
| 782 | do | 608 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
| 783 | expires = timr->it.real.timer.expires; | 609 | remaining = hrtimer_get_remaining(timer); |
| 784 | while ((volatile long) (timr->it.real.timer.expires) != expires); | ||
| 785 | |||
| 786 | posix_get_now(&now); | ||
| 787 | |||
| 788 | if (expires && | ||
| 789 | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && | ||
| 790 | !timr->it.real.incr && | ||
| 791 | posix_time_before(&timr->it.real.timer, &now)) | ||
| 792 | timr->it.real.timer.expires = expires = 0; | ||
| 793 | if (expires) { | ||
| 794 | if (timr->it_requeue_pending & REQUEUE_PENDING || | ||
| 795 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
| 796 | posix_bump_timer(timr, now); | ||
| 797 | expires = timr->it.real.timer.expires; | ||
| 798 | } | ||
| 799 | else | ||
| 800 | if (!timer_pending(&timr->it.real.timer)) | ||
| 801 | expires = 0; | ||
| 802 | if (expires) | ||
| 803 | expires -= now.jiffies; | ||
| 804 | } | ||
| 805 | jiffies_to_timespec(expires, &cur_setting->it_value); | ||
| 806 | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); | ||
| 807 | 610 | ||
| 808 | if (cur_setting->it_value.tv_sec < 0) { | 611 | /* Time left ? or timer pending */ |
| 612 | if (remaining.tv64 > 0 || hrtimer_active(timer)) | ||
| 613 | goto calci; | ||
| 614 | /* interval timer ? */ | ||
| 615 | if (timr->it.real.interval.tv64 == 0) | ||
| 616 | return; | ||
| 617 | /* | ||
| 618 | * When a requeue is pending or this is a SIGEV_NONE timer | ||
| 619 | * move the expiry time forward by intervals, so expiry is > | ||
| 620 | * now. | ||
| 621 | */ | ||
| 622 | if (timr->it_requeue_pending & REQUEUE_PENDING || | ||
| 623 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
| 624 | timr->it_overrun += | ||
| 625 | hrtimer_forward(timer, timr->it.real.interval); | ||
| 626 | remaining = hrtimer_get_remaining(timer); | ||
| 627 | } | ||
| 628 | calci: | ||
| 629 | /* interval timer ? */ | ||
| 630 | if (timr->it.real.interval.tv64 != 0) | ||
| 631 | cur_setting->it_interval = | ||
| 632 | ktime_to_timespec(timr->it.real.interval); | ||
| 633 | /* Return 0 only, when the timer is expired and not pending */ | ||
| 634 | if (remaining.tv64 <= 0) | ||
| 809 | cur_setting->it_value.tv_nsec = 1; | 635 | cur_setting->it_value.tv_nsec = 1; |
| 810 | cur_setting->it_value.tv_sec = 0; | 636 | else |
| 811 | } | 637 | cur_setting->it_value = ktime_to_timespec(remaining); |
| 812 | } | 638 | } |
| 813 | 639 | ||
| 814 | /* Get the time remaining on a POSIX.1b interval timer. */ | 640 | /* Get the time remaining on a POSIX.1b interval timer. */ |
| @@ -832,6 +658,7 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |||
| 832 | 658 | ||
| 833 | return 0; | 659 | return 0; |
| 834 | } | 660 | } |
| 661 | |||
| 835 | /* | 662 | /* |
| 836 | * Get the number of overruns of a POSIX.1b interval timer. This is to | 663 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
| 837 | * be the overrun of the timer last delivered. At the same time we are | 664 | * be the overrun of the timer last delivered. At the same time we are |
| @@ -841,7 +668,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |||
| 841 | * the call back to do_schedule_next_timer(). So all we need to do is | 668 | * the call back to do_schedule_next_timer(). So all we need to do is |
| 842 | * to pick up the frozen overrun. | 669 | * to pick up the frozen overrun. |
| 843 | */ | 670 | */ |
| 844 | |||
| 845 | asmlinkage long | 671 | asmlinkage long |
| 846 | sys_timer_getoverrun(timer_t timer_id) | 672 | sys_timer_getoverrun(timer_t timer_id) |
| 847 | { | 673 | { |
| @@ -858,84 +684,6 @@ sys_timer_getoverrun(timer_t timer_id) | |||
| 858 | 684 | ||
| 859 | return overrun; | 685 | return overrun; |
| 860 | } | 686 | } |
| 861 | /* | ||
| 862 | * Adjust for absolute time | ||
| 863 | * | ||
| 864 | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to | ||
| 865 | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and | ||
| 866 | * what ever clock he is using. | ||
| 867 | * | ||
| 868 | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) | ||
| 869 | * time to it to get the proper time for the timer. | ||
| 870 | */ | ||
| 871 | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, | ||
| 872 | int abs, u64 *exp, struct timespec *wall_to) | ||
| 873 | { | ||
| 874 | struct timespec now; | ||
| 875 | struct timespec oc = *tp; | ||
| 876 | u64 jiffies_64_f; | ||
| 877 | int rtn =0; | ||
| 878 | |||
| 879 | if (abs) { | ||
| 880 | /* | ||
| 881 | * The mask pick up the 4 basic clocks | ||
| 882 | */ | ||
| 883 | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { | ||
| 884 | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( | ||
| 885 | &now, wall_to); | ||
| 886 | /* | ||
| 887 | * If we are doing a MONOTONIC clock | ||
| 888 | */ | ||
| 889 | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ | ||
| 890 | now.tv_sec += wall_to->tv_sec; | ||
| 891 | now.tv_nsec += wall_to->tv_nsec; | ||
| 892 | } | ||
| 893 | } else { | ||
| 894 | /* | ||
| 895 | * Not one of the basic clocks | ||
| 896 | */ | ||
| 897 | clock->clock_get(clock - posix_clocks, &now); | ||
| 898 | jiffies_64_f = get_jiffies_64(); | ||
| 899 | } | ||
| 900 | /* | ||
| 901 | * Take away now to get delta and normalize | ||
| 902 | */ | ||
| 903 | set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec, | ||
| 904 | oc.tv_nsec - now.tv_nsec); | ||
| 905 | }else{ | ||
| 906 | jiffies_64_f = get_jiffies_64(); | ||
| 907 | } | ||
| 908 | /* | ||
| 909 | * Check if the requested time is prior to now (if so set now) | ||
| 910 | */ | ||
| 911 | if (oc.tv_sec < 0) | ||
| 912 | oc.tv_sec = oc.tv_nsec = 0; | ||
| 913 | |||
| 914 | if (oc.tv_sec | oc.tv_nsec) | ||
| 915 | set_normalized_timespec(&oc, oc.tv_sec, | ||
| 916 | oc.tv_nsec + clock->res); | ||
| 917 | tstojiffie(&oc, clock->res, exp); | ||
| 918 | |||
| 919 | /* | ||
| 920 | * Check if the requested time is more than the timer code | ||
| 921 | * can handle (if so we error out but return the value too). | ||
| 922 | */ | ||
| 923 | if (*exp > ((u64)MAX_JIFFY_OFFSET)) | ||
| 924 | /* | ||
| 925 | * This is a considered response, not exactly in | ||
| 926 | * line with the standard (in fact it is silent on | ||
| 927 | * possible overflows). We assume such a large | ||
| 928 | * value is ALMOST always a programming error and | ||
| 929 | * try not to compound it by setting a really dumb | ||
| 930 | * value. | ||
| 931 | */ | ||
| 932 | rtn = -EINVAL; | ||
| 933 | /* | ||
| 934 | * return the actual jiffies expire time, full 64 bits | ||
| 935 | */ | ||
| 936 | *exp += jiffies_64_f; | ||
| 937 | return rtn; | ||
| 938 | } | ||
| 939 | 687 | ||
| 940 | /* Set a POSIX.1b interval timer. */ | 688 | /* Set a POSIX.1b interval timer. */ |
| 941 | /* timr->it_lock is taken. */ | 689 | /* timr->it_lock is taken. */ |
| @@ -943,68 +691,48 @@ static inline int | |||
| 943 | common_timer_set(struct k_itimer *timr, int flags, | 691 | common_timer_set(struct k_itimer *timr, int flags, |
| 944 | struct itimerspec *new_setting, struct itimerspec *old_setting) | 692 | struct itimerspec *new_setting, struct itimerspec *old_setting) |
| 945 | { | 693 | { |
| 946 | struct k_clock *clock = &posix_clocks[timr->it_clock]; | 694 | struct hrtimer *timer = &timr->it.real.timer; |
| 947 | u64 expire_64; | ||
| 948 | 695 | ||
| 949 | if (old_setting) | 696 | if (old_setting) |
| 950 | common_timer_get(timr, old_setting); | 697 | common_timer_get(timr, old_setting); |
| 951 | 698 | ||
| 952 | /* disable the timer */ | 699 | /* disable the timer */ |
| 953 | timr->it.real.incr = 0; | 700 | timr->it.real.interval.tv64 = 0; |
| 954 | /* | 701 | /* |
| 955 | * careful here. If smp we could be in the "fire" routine which will | 702 | * careful here. If smp we could be in the "fire" routine which will |
| 956 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | 703 | * be spinning as we hold the lock. But this is ONLY an SMP issue. |
| 957 | */ | 704 | */ |
| 958 | if (try_to_del_timer_sync(&timr->it.real.timer) < 0) { | 705 | if (hrtimer_try_to_cancel(timer) < 0) |
| 959 | #ifdef CONFIG_SMP | ||
| 960 | /* | ||
| 961 | * It can only be active if on an other cpu. Since | ||
| 962 | * we have cleared the interval stuff above, it should | ||
| 963 | * clear once we release the spin lock. Of course once | ||
| 964 | * we do that anything could happen, including the | ||
| 965 | * complete melt down of the timer. So return with | ||
| 966 | * a "retry" exit status. | ||
| 967 | */ | ||
| 968 | return TIMER_RETRY; | 706 | return TIMER_RETRY; |
| 969 | #endif | ||
| 970 | } | ||
| 971 | |||
| 972 | remove_from_abslist(timr); | ||
| 973 | 707 | ||
| 974 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 708 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
| 975 | ~REQUEUE_PENDING; | 709 | ~REQUEUE_PENDING; |
| 976 | timr->it_overrun_last = 0; | 710 | timr->it_overrun_last = 0; |
| 977 | timr->it_overrun = -1; | ||
| 978 | /* | ||
| 979 | *switch off the timer when it_value is zero | ||
| 980 | */ | ||
| 981 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { | ||
| 982 | timr->it.real.timer.expires = 0; | ||
| 983 | return 0; | ||
| 984 | } | ||
| 985 | 711 | ||
| 986 | if (adjust_abs_time(clock, | 712 | /* switch off the timer when it_value is zero */ |
| 987 | &new_setting->it_value, flags & TIMER_ABSTIME, | 713 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
| 988 | &expire_64, &(timr->it.real.wall_to_prev))) { | 714 | return 0; |
| 989 | return -EINVAL; | ||
| 990 | } | ||
| 991 | timr->it.real.timer.expires = (unsigned long)expire_64; | ||
| 992 | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); | ||
| 993 | timr->it.real.incr = (unsigned long)expire_64; | ||
| 994 | 715 | ||
| 995 | /* | 716 | /* Posix madness. Only absolute CLOCK_REALTIME timers |
| 996 | * We do not even queue SIGEV_NONE timers! But we do put them | 717 | * are affected by clock sets. So we must reiniatilize |
| 997 | * in the abs list so we can do that right. | 718 | * the timer. |
| 998 | */ | 719 | */ |
| 999 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) | 720 | if (timr->it_clock == CLOCK_REALTIME && (flags & TIMER_ABSTIME)) |
| 1000 | add_timer(&timr->it.real.timer); | 721 | hrtimer_rebase(timer, CLOCK_REALTIME); |
| 1001 | 722 | else | |
| 1002 | if (flags & TIMER_ABSTIME && clock->abs_struct) { | 723 | hrtimer_rebase(timer, CLOCK_MONOTONIC); |
| 1003 | spin_lock(&clock->abs_struct->lock); | 724 | |
| 1004 | list_add_tail(&(timr->it.real.abs_timer_entry), | 725 | timer->expires = timespec_to_ktime(new_setting->it_value); |
| 1005 | &(clock->abs_struct->list)); | 726 | |
| 1006 | spin_unlock(&clock->abs_struct->lock); | 727 | /* Convert interval */ |
| 1007 | } | 728 | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); |
| 729 | |||
| 730 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | ||
| 731 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | ||
| 732 | return 0; | ||
| 733 | |||
| 734 | hrtimer_start(timer, timer->expires, (flags & TIMER_ABSTIME) ? | ||
| 735 | HRTIMER_ABS : HRTIMER_REL); | ||
| 1008 | return 0; | 736 | return 0; |
| 1009 | } | 737 | } |
| 1010 | 738 | ||
| @@ -1026,8 +754,8 @@ sys_timer_settime(timer_t timer_id, int flags, | |||
| 1026 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 754 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) |
| 1027 | return -EFAULT; | 755 | return -EFAULT; |
| 1028 | 756 | ||
| 1029 | if ((!good_timespec(&new_spec.it_interval)) || | 757 | if (!timespec_valid(&new_spec.it_interval) || |
| 1030 | (!good_timespec(&new_spec.it_value))) | 758 | !timespec_valid(&new_spec.it_value)) |
| 1031 | return -EINVAL; | 759 | return -EINVAL; |
| 1032 | retry: | 760 | retry: |
| 1033 | timr = lock_timer(timer_id, &flag); | 761 | timr = lock_timer(timer_id, &flag); |
| @@ -1043,8 +771,8 @@ retry: | |||
| 1043 | goto retry; | 771 | goto retry; |
| 1044 | } | 772 | } |
| 1045 | 773 | ||
| 1046 | if (old_setting && !error && copy_to_user(old_setting, | 774 | if (old_setting && !error && |
| 1047 | &old_spec, sizeof (old_spec))) | 775 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) |
| 1048 | error = -EFAULT; | 776 | error = -EFAULT; |
| 1049 | 777 | ||
| 1050 | return error; | 778 | return error; |
| @@ -1052,24 +780,10 @@ retry: | |||
| 1052 | 780 | ||
| 1053 | static inline int common_timer_del(struct k_itimer *timer) | 781 | static inline int common_timer_del(struct k_itimer *timer) |
| 1054 | { | 782 | { |
| 1055 | timer->it.real.incr = 0; | 783 | timer->it.real.interval.tv64 = 0; |
| 1056 | 784 | ||
| 1057 | if (try_to_del_timer_sync(&timer->it.real.timer) < 0) { | 785 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
| 1058 | #ifdef CONFIG_SMP | ||
| 1059 | /* | ||
| 1060 | * It can only be active if on an other cpu. Since | ||
| 1061 | * we have cleared the interval stuff above, it should | ||
| 1062 | * clear once we release the spin lock. Of course once | ||
| 1063 | * we do that anything could happen, including the | ||
| 1064 | * complete melt down of the timer. So return with | ||
| 1065 | * a "retry" exit status. | ||
| 1066 | */ | ||
| 1067 | return TIMER_RETRY; | 786 | return TIMER_RETRY; |
| 1068 | #endif | ||
| 1069 | } | ||
| 1070 | |||
| 1071 | remove_from_abslist(timer); | ||
| 1072 | |||
| 1073 | return 0; | 787 | return 0; |
| 1074 | } | 788 | } |
| 1075 | 789 | ||
| @@ -1085,24 +799,16 @@ sys_timer_delete(timer_t timer_id) | |||
| 1085 | struct k_itimer *timer; | 799 | struct k_itimer *timer; |
| 1086 | long flags; | 800 | long flags; |
| 1087 | 801 | ||
| 1088 | #ifdef CONFIG_SMP | ||
| 1089 | int error; | ||
| 1090 | retry_delete: | 802 | retry_delete: |
| 1091 | #endif | ||
| 1092 | timer = lock_timer(timer_id, &flags); | 803 | timer = lock_timer(timer_id, &flags); |
| 1093 | if (!timer) | 804 | if (!timer) |
| 1094 | return -EINVAL; | 805 | return -EINVAL; |
| 1095 | 806 | ||
| 1096 | #ifdef CONFIG_SMP | 807 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
| 1097 | error = timer_delete_hook(timer); | ||
| 1098 | |||
| 1099 | if (error == TIMER_RETRY) { | ||
| 1100 | unlock_timer(timer, flags); | 808 | unlock_timer(timer, flags); |
| 1101 | goto retry_delete; | 809 | goto retry_delete; |
| 1102 | } | 810 | } |
| 1103 | #else | 811 | |
| 1104 | timer_delete_hook(timer); | ||
| 1105 | #endif | ||
| 1106 | spin_lock(¤t->sighand->siglock); | 812 | spin_lock(¤t->sighand->siglock); |
| 1107 | list_del(&timer->list); | 813 | list_del(&timer->list); |
| 1108 | spin_unlock(¤t->sighand->siglock); | 814 | spin_unlock(¤t->sighand->siglock); |
| @@ -1119,6 +825,7 @@ retry_delete: | |||
| 1119 | release_posix_timer(timer, IT_ID_SET); | 825 | release_posix_timer(timer, IT_ID_SET); |
| 1120 | return 0; | 826 | return 0; |
| 1121 | } | 827 | } |
| 828 | |||
| 1122 | /* | 829 | /* |
| 1123 | * return timer owned by the process, used by exit_itimers | 830 | * return timer owned by the process, used by exit_itimers |
| 1124 | */ | 831 | */ |
| @@ -1126,22 +833,13 @@ static inline void itimer_delete(struct k_itimer *timer) | |||
| 1126 | { | 833 | { |
| 1127 | unsigned long flags; | 834 | unsigned long flags; |
| 1128 | 835 | ||
| 1129 | #ifdef CONFIG_SMP | ||
| 1130 | int error; | ||
| 1131 | retry_delete: | 836 | retry_delete: |
| 1132 | #endif | ||
| 1133 | spin_lock_irqsave(&timer->it_lock, flags); | 837 | spin_lock_irqsave(&timer->it_lock, flags); |
| 1134 | 838 | ||
| 1135 | #ifdef CONFIG_SMP | 839 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
| 1136 | error = timer_delete_hook(timer); | ||
| 1137 | |||
| 1138 | if (error == TIMER_RETRY) { | ||
| 1139 | unlock_timer(timer, flags); | 840 | unlock_timer(timer, flags); |
| 1140 | goto retry_delete; | 841 | goto retry_delete; |
| 1141 | } | 842 | } |
| 1142 | #else | ||
| 1143 | timer_delete_hook(timer); | ||
| 1144 | #endif | ||
| 1145 | list_del(&timer->list); | 843 | list_del(&timer->list); |
| 1146 | /* | 844 | /* |
| 1147 | * This keeps any tasks waiting on the spin lock from thinking | 845 | * This keeps any tasks waiting on the spin lock from thinking |
| @@ -1170,57 +868,8 @@ void exit_itimers(struct signal_struct *sig) | |||
| 1170 | } | 868 | } |
| 1171 | } | 869 | } |
| 1172 | 870 | ||
| 1173 | /* | 871 | /* Not available / possible... functions */ |
| 1174 | * And now for the "clock" calls | 872 | int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp) |
| 1175 | * | ||
| 1176 | * These functions are called both from timer functions (with the timer | ||
| 1177 | * spin_lock_irq() held and from clock calls with no locking. They must | ||
| 1178 | * use the save flags versions of locks. | ||
| 1179 | */ | ||
| 1180 | |||
| 1181 | /* | ||
| 1182 | * We do ticks here to avoid the irq lock ( they take sooo long). | ||
| 1183 | * The seqlock is great here. Since we a reader, we don't really care | ||
| 1184 | * if we are interrupted since we don't take lock that will stall us or | ||
| 1185 | * any other cpu. Voila, no irq lock is needed. | ||
| 1186 | * | ||
| 1187 | */ | ||
| 1188 | |||
| 1189 | static u64 do_posix_clock_monotonic_gettime_parts( | ||
| 1190 | struct timespec *tp, struct timespec *mo) | ||
| 1191 | { | ||
| 1192 | u64 jiff; | ||
| 1193 | unsigned int seq; | ||
| 1194 | |||
| 1195 | do { | ||
| 1196 | seq = read_seqbegin(&xtime_lock); | ||
| 1197 | getnstimeofday(tp); | ||
| 1198 | *mo = wall_to_monotonic; | ||
| 1199 | jiff = jiffies_64; | ||
| 1200 | |||
| 1201 | } while(read_seqretry(&xtime_lock, seq)); | ||
| 1202 | |||
| 1203 | return jiff; | ||
| 1204 | } | ||
| 1205 | |||
| 1206 | static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp) | ||
| 1207 | { | ||
| 1208 | struct timespec wall_to_mono; | ||
| 1209 | |||
| 1210 | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); | ||
| 1211 | |||
| 1212 | set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec, | ||
| 1213 | tp->tv_nsec + wall_to_mono.tv_nsec); | ||
| 1214 | |||
| 1215 | return 0; | ||
| 1216 | } | ||
| 1217 | |||
| 1218 | int do_posix_clock_monotonic_gettime(struct timespec *tp) | ||
| 1219 | { | ||
| 1220 | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); | ||
| 1221 | } | ||
| 1222 | |||
| 1223 | int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp) | ||
| 1224 | { | 873 | { |
| 1225 | return -EINVAL; | 874 | return -EINVAL; |
| 1226 | } | 875 | } |
| @@ -1232,7 +881,8 @@ int do_posix_clock_notimer_create(struct k_itimer *timer) | |||
| 1232 | } | 881 | } |
| 1233 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); | 882 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); |
| 1234 | 883 | ||
| 1235 | int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | 884 | int do_posix_clock_nonanosleep(const clockid_t clock, int flags, |
| 885 | struct timespec *t, struct timespec __user *r) | ||
| 1236 | { | 886 | { |
| 1237 | #ifndef ENOTSUP | 887 | #ifndef ENOTSUP |
| 1238 | return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ | 888 | return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ |
| @@ -1242,8 +892,8 @@ int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | |||
| 1242 | } | 892 | } |
| 1243 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); | 893 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); |
| 1244 | 894 | ||
| 1245 | asmlinkage long | 895 | asmlinkage long sys_clock_settime(const clockid_t which_clock, |
| 1246 | sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | 896 | const struct timespec __user *tp) |
| 1247 | { | 897 | { |
| 1248 | struct timespec new_tp; | 898 | struct timespec new_tp; |
| 1249 | 899 | ||
| @@ -1256,7 +906,7 @@ sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | |||
| 1256 | } | 906 | } |
| 1257 | 907 | ||
| 1258 | asmlinkage long | 908 | asmlinkage long |
| 1259 | sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | 909 | sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp) |
| 1260 | { | 910 | { |
| 1261 | struct timespec kernel_tp; | 911 | struct timespec kernel_tp; |
| 1262 | int error; | 912 | int error; |
| @@ -1273,7 +923,7 @@ sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | |||
| 1273 | } | 923 | } |
| 1274 | 924 | ||
| 1275 | asmlinkage long | 925 | asmlinkage long |
| 1276 | sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | 926 | sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp) |
| 1277 | { | 927 | { |
| 1278 | struct timespec rtn_tp; | 928 | struct timespec rtn_tp; |
| 1279 | int error; | 929 | int error; |
| @@ -1292,117 +942,34 @@ sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | |||
| 1292 | } | 942 | } |
| 1293 | 943 | ||
| 1294 | /* | 944 | /* |
| 1295 | * The standard says that an absolute nanosleep call MUST wake up at | 945 | * nanosleep for monotonic and realtime clocks |
| 1296 | * the requested time in spite of clock settings. Here is what we do: | ||
| 1297 | * For each nanosleep call that needs it (only absolute and not on | ||
| 1298 | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure | ||
| 1299 | * into the "nanosleep_abs_list". All we need is the task_struct pointer. | ||
| 1300 | * When ever the clock is set we just wake up all those tasks. The rest | ||
| 1301 | * is done by the while loop in clock_nanosleep(). | ||
| 1302 | * | ||
| 1303 | * On locking, clock_was_set() is called from update_wall_clock which | ||
| 1304 | * holds (or has held for it) a write_lock_irq( xtime_lock) and is | ||
| 1305 | * called from the timer bh code. Thus we need the irq save locks. | ||
| 1306 | * | ||
| 1307 | * Also, on the call from update_wall_clock, that is done as part of a | ||
| 1308 | * softirq thing. We don't want to delay the system that much (possibly | ||
| 1309 | * long list of timers to fix), so we defer that work to keventd. | ||
| 1310 | */ | 946 | */ |
| 1311 | 947 | static int common_nsleep(const clockid_t which_clock, int flags, | |
| 1312 | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); | 948 | struct timespec *tsave, struct timespec __user *rmtp) |
| 1313 | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); | 949 | { |
| 1314 | 950 | int mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL; | |
| 1315 | static DECLARE_MUTEX(clock_was_set_lock); | 951 | int clockid = which_clock; |
| 1316 | 952 | ||
| 1317 | void clock_was_set(void) | 953 | switch (which_clock) { |
| 1318 | { | 954 | case CLOCK_REALTIME: |
| 1319 | struct k_itimer *timr; | 955 | /* Posix madness. Only absolute timers on clock realtime |
| 1320 | struct timespec new_wall_to; | 956 | are affected by clock set. */ |
| 1321 | LIST_HEAD(cws_list); | 957 | if (mode != HRTIMER_ABS) |
| 1322 | unsigned long seq; | 958 | clockid = CLOCK_MONOTONIC; |
| 1323 | 959 | case CLOCK_MONOTONIC: | |
| 1324 | 960 | break; | |
| 1325 | if (unlikely(in_interrupt())) { | 961 | default: |
| 1326 | schedule_work(&clock_was_set_work); | 962 | return -EINVAL; |
| 1327 | return; | ||
| 1328 | } | 963 | } |
| 1329 | wake_up_all(&nanosleep_abs_wqueue); | 964 | return hrtimer_nanosleep(tsave, rmtp, mode, clockid); |
| 1330 | |||
| 1331 | /* | ||
| 1332 | * Check if there exist TIMER_ABSTIME timers to correct. | ||
| 1333 | * | ||
| 1334 | * Notes on locking: This code is run in task context with irq | ||
| 1335 | * on. We CAN be interrupted! All other usage of the abs list | ||
| 1336 | * lock is under the timer lock which holds the irq lock as | ||
| 1337 | * well. We REALLY don't want to scan the whole list with the | ||
| 1338 | * interrupt system off, AND we would like a sequence lock on | ||
| 1339 | * this code as well. Since we assume that the clock will not | ||
| 1340 | * be set often, it seems ok to take and release the irq lock | ||
| 1341 | * for each timer. In fact add_timer will do this, so this is | ||
| 1342 | * not an issue. So we know when we are done, we will move the | ||
| 1343 | * whole list to a new location. Then as we process each entry, | ||
| 1344 | * we will move it to the actual list again. This way, when our | ||
| 1345 | * copy is empty, we are done. We are not all that concerned | ||
| 1346 | * about preemption so we will use a semaphore lock to protect | ||
| 1347 | * aginst reentry. This way we will not stall another | ||
| 1348 | * processor. It is possible that this may delay some timers | ||
| 1349 | * that should have expired, given the new clock, but even this | ||
| 1350 | * will be minimal as we will always update to the current time, | ||
| 1351 | * even if it was set by a task that is waiting for entry to | ||
| 1352 | * this code. Timers that expire too early will be caught by | ||
| 1353 | * the expire code and restarted. | ||
| 1354 | |||
| 1355 | * Absolute timers that repeat are left in the abs list while | ||
| 1356 | * waiting for the task to pick up the signal. This means we | ||
| 1357 | * may find timers that are not in the "add_timer" list, but are | ||
| 1358 | * in the abs list. We do the same thing for these, save | ||
| 1359 | * putting them back in the "add_timer" list. (Note, these are | ||
| 1360 | * left in the abs list mainly to indicate that they are | ||
| 1361 | * ABSOLUTE timers, a fact that is used by the re-arm code, and | ||
| 1362 | * for which we have no other flag.) | ||
| 1363 | |||
| 1364 | */ | ||
| 1365 | |||
| 1366 | down(&clock_was_set_lock); | ||
| 1367 | spin_lock_irq(&abs_list.lock); | ||
| 1368 | list_splice_init(&abs_list.list, &cws_list); | ||
| 1369 | spin_unlock_irq(&abs_list.lock); | ||
| 1370 | do { | ||
| 1371 | do { | ||
| 1372 | seq = read_seqbegin(&xtime_lock); | ||
| 1373 | new_wall_to = wall_to_monotonic; | ||
| 1374 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 1375 | |||
| 1376 | spin_lock_irq(&abs_list.lock); | ||
| 1377 | if (list_empty(&cws_list)) { | ||
| 1378 | spin_unlock_irq(&abs_list.lock); | ||
| 1379 | break; | ||
| 1380 | } | ||
| 1381 | timr = list_entry(cws_list.next, struct k_itimer, | ||
| 1382 | it.real.abs_timer_entry); | ||
| 1383 | |||
| 1384 | list_del_init(&timr->it.real.abs_timer_entry); | ||
| 1385 | if (add_clockset_delta(timr, &new_wall_to) && | ||
| 1386 | del_timer(&timr->it.real.timer)) /* timer run yet? */ | ||
| 1387 | add_timer(&timr->it.real.timer); | ||
| 1388 | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); | ||
| 1389 | spin_unlock_irq(&abs_list.lock); | ||
| 1390 | } while (1); | ||
| 1391 | |||
| 1392 | up(&clock_was_set_lock); | ||
| 1393 | } | 965 | } |
| 1394 | 966 | ||
| 1395 | long clock_nanosleep_restart(struct restart_block *restart_block); | ||
| 1396 | |||
| 1397 | asmlinkage long | 967 | asmlinkage long |
| 1398 | sys_clock_nanosleep(clockid_t which_clock, int flags, | 968 | sys_clock_nanosleep(const clockid_t which_clock, int flags, |
| 1399 | const struct timespec __user *rqtp, | 969 | const struct timespec __user *rqtp, |
| 1400 | struct timespec __user *rmtp) | 970 | struct timespec __user *rmtp) |
| 1401 | { | 971 | { |
| 1402 | struct timespec t; | 972 | struct timespec t; |
| 1403 | struct restart_block *restart_block = | ||
| 1404 | &(current_thread_info()->restart_block); | ||
| 1405 | int ret; | ||
| 1406 | 973 | ||
| 1407 | if (invalid_clockid(which_clock)) | 974 | if (invalid_clockid(which_clock)) |
| 1408 | return -EINVAL; | 975 | return -EINVAL; |
| @@ -1410,125 +977,9 @@ sys_clock_nanosleep(clockid_t which_clock, int flags, | |||
| 1410 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | 977 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) |
| 1411 | return -EFAULT; | 978 | return -EFAULT; |
| 1412 | 979 | ||
| 1413 | if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0) | 980 | if (!timespec_valid(&t)) |
| 1414 | return -EINVAL; | 981 | return -EINVAL; |
| 1415 | 982 | ||
| 1416 | /* | 983 | return CLOCK_DISPATCH(which_clock, nsleep, |
| 1417 | * Do this here as nsleep function does not have the real address. | 984 | (which_clock, flags, &t, rmtp)); |
| 1418 | */ | ||
| 1419 | restart_block->arg1 = (unsigned long)rmtp; | ||
| 1420 | |||
| 1421 | ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t)); | ||
| 1422 | |||
| 1423 | if ((ret == -ERESTART_RESTARTBLOCK) && rmtp && | ||
| 1424 | copy_to_user(rmtp, &t, sizeof (t))) | ||
| 1425 | return -EFAULT; | ||
| 1426 | return ret; | ||
| 1427 | } | ||
| 1428 | |||
| 1429 | |||
| 1430 | static int common_nsleep(clockid_t which_clock, | ||
| 1431 | int flags, struct timespec *tsave) | ||
| 1432 | { | ||
| 1433 | struct timespec t, dum; | ||
| 1434 | DECLARE_WAITQUEUE(abs_wqueue, current); | ||
| 1435 | u64 rq_time = (u64)0; | ||
| 1436 | s64 left; | ||
| 1437 | int abs; | ||
| 1438 | struct restart_block *restart_block = | ||
| 1439 | ¤t_thread_info()->restart_block; | ||
| 1440 | |||
| 1441 | abs_wqueue.flags = 0; | ||
| 1442 | abs = flags & TIMER_ABSTIME; | ||
| 1443 | |||
| 1444 | if (restart_block->fn == clock_nanosleep_restart) { | ||
| 1445 | /* | ||
| 1446 | * Interrupted by a non-delivered signal, pick up remaining | ||
| 1447 | * time and continue. Remaining time is in arg2 & 3. | ||
| 1448 | */ | ||
| 1449 | restart_block->fn = do_no_restart_syscall; | ||
| 1450 | |||
| 1451 | rq_time = restart_block->arg3; | ||
| 1452 | rq_time = (rq_time << 32) + restart_block->arg2; | ||
| 1453 | if (!rq_time) | ||
| 1454 | return -EINTR; | ||
| 1455 | left = rq_time - get_jiffies_64(); | ||
| 1456 | if (left <= (s64)0) | ||
| 1457 | return 0; /* Already passed */ | ||
| 1458 | } | ||
| 1459 | |||
| 1460 | if (abs && (posix_clocks[which_clock].clock_get != | ||
| 1461 | posix_clocks[CLOCK_MONOTONIC].clock_get)) | ||
| 1462 | add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue); | ||
| 1463 | |||
| 1464 | do { | ||
| 1465 | t = *tsave; | ||
| 1466 | if (abs || !rq_time) { | ||
| 1467 | adjust_abs_time(&posix_clocks[which_clock], &t, abs, | ||
| 1468 | &rq_time, &dum); | ||
| 1469 | } | ||
| 1470 | |||
| 1471 | left = rq_time - get_jiffies_64(); | ||
| 1472 | if (left >= (s64)MAX_JIFFY_OFFSET) | ||
| 1473 | left = (s64)MAX_JIFFY_OFFSET; | ||
| 1474 | if (left < (s64)0) | ||
| 1475 | break; | ||
| 1476 | |||
| 1477 | schedule_timeout_interruptible(left); | ||
| 1478 | |||
| 1479 | left = rq_time - get_jiffies_64(); | ||
| 1480 | } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING)); | ||
| 1481 | |||
| 1482 | if (abs_wqueue.task_list.next) | ||
| 1483 | finish_wait(&nanosleep_abs_wqueue, &abs_wqueue); | ||
| 1484 | |||
| 1485 | if (left > (s64)0) { | ||
| 1486 | |||
| 1487 | /* | ||
| 1488 | * Always restart abs calls from scratch to pick up any | ||
| 1489 | * clock shifting that happened while we are away. | ||
| 1490 | */ | ||
| 1491 | if (abs) | ||
| 1492 | return -ERESTARTNOHAND; | ||
| 1493 | |||
| 1494 | left *= TICK_NSEC; | ||
| 1495 | tsave->tv_sec = div_long_long_rem(left, | ||
| 1496 | NSEC_PER_SEC, | ||
| 1497 | &tsave->tv_nsec); | ||
| 1498 | /* | ||
| 1499 | * Restart works by saving the time remaing in | ||
| 1500 | * arg2 & 3 (it is 64-bits of jiffies). The other | ||
| 1501 | * info we need is the clock_id (saved in arg0). | ||
| 1502 | * The sys_call interface needs the users | ||
| 1503 | * timespec return address which _it_ saves in arg1. | ||
| 1504 | * Since we have cast the nanosleep call to a clock_nanosleep | ||
| 1505 | * both can be restarted with the same code. | ||
| 1506 | */ | ||
| 1507 | restart_block->fn = clock_nanosleep_restart; | ||
| 1508 | restart_block->arg0 = which_clock; | ||
| 1509 | /* | ||
| 1510 | * Caller sets arg1 | ||
| 1511 | */ | ||
| 1512 | restart_block->arg2 = rq_time & 0xffffffffLL; | ||
| 1513 | restart_block->arg3 = rq_time >> 32; | ||
| 1514 | |||
| 1515 | return -ERESTART_RESTARTBLOCK; | ||
| 1516 | } | ||
| 1517 | |||
| 1518 | return 0; | ||
| 1519 | } | ||
| 1520 | /* | ||
| 1521 | * This will restart clock_nanosleep. | ||
| 1522 | */ | ||
| 1523 | long | ||
| 1524 | clock_nanosleep_restart(struct restart_block *restart_block) | ||
| 1525 | { | ||
| 1526 | struct timespec t; | ||
| 1527 | int ret = common_nsleep(restart_block->arg0, 0, &t); | ||
| 1528 | |||
| 1529 | if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 && | ||
| 1530 | copy_to_user((struct timespec __user *)(restart_block->arg1), &t, | ||
| 1531 | sizeof (t))) | ||
| 1532 | return -EFAULT; | ||
| 1533 | return ret; | ||
| 1534 | } | 985 | } |
