aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/posix-timers.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /kernel/posix-timers.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'kernel/posix-timers.c')
-rw-r--r--kernel/posix-timers.c1584
1 files changed, 1584 insertions, 0 deletions
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
new file mode 100644
index 000000000000..fd316c272260
--- /dev/null
+++ b/kernel/posix-timers.c
@@ -0,0 +1,1584 @@
1/*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/smp_lock.h>
35#include <linux/interrupt.h>
36#include <linux/slab.h>
37#include <linux/time.h>
38
39#include <asm/uaccess.h>
40#include <asm/semaphore.h>
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
44#include <linux/idr.h>
45#include <linux/posix-timers.h>
46#include <linux/syscalls.h>
47#include <linux/wait.h>
48#include <linux/workqueue.h>
49#include <linux/module.h>
50
51#ifndef div_long_long_rem
52#include <asm/div64.h>
53
54#define div_long_long_rem(dividend,divisor,remainder) ({ \
55 u64 result = dividend; \
56 *remainder = do_div(result,divisor); \
57 result; })
58
59#endif
60#define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
61
62static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
63{
64 return (u64)mpy1 * mpy2;
65}
66/*
67 * Management arrays for POSIX timers. Timers are kept in slab memory
68 * Timer ids are allocated by an external routine that keeps track of the
69 * id and the timer. The external interface is:
70 *
71 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
72 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
73 * related it to <ptr>
74 * void idr_remove(struct idr *idp, int id); to release <id>
75 * void idr_init(struct idr *idp); to initialize <idp>
76 * which we supply.
77 * The idr_get_new *may* call slab for more memory so it must not be
78 * called under a spin lock. Likewise idr_remore may release memory
79 * (but it may be ok to do this under a lock...).
80 * idr_find is just a memory look up and is quite fast. A -1 return
81 * indicates that the requested id does not exist.
82 */
83
84/*
85 * Lets keep our timers in a slab cache :-)
86 */
87static kmem_cache_t *posix_timers_cache;
88static struct idr posix_timers_id;
89static DEFINE_SPINLOCK(idr_lock);
90
91/*
92 * Just because the timer is not in the timer list does NOT mean it is
93 * inactive. It could be in the "fire" routine getting a new expire time.
94 */
95#define TIMER_INACTIVE 1
96
97#ifdef CONFIG_SMP
98# define timer_active(tmr) \
99 ((tmr)->it.real.timer.entry.prev != (void *)TIMER_INACTIVE)
100# define set_timer_inactive(tmr) \
101 do { \
102 (tmr)->it.real.timer.entry.prev = (void *)TIMER_INACTIVE; \
103 } while (0)
104#else
105# define timer_active(tmr) BARFY // error to use outside of SMP
106# define set_timer_inactive(tmr) do { } while (0)
107#endif
108/*
109 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
110 * SIGEV values. Here we put out an error if this assumption fails.
111 */
112#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
113 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
114#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
115#endif
116
117
118/*
119 * The timer ID is turned into a timer address by idr_find().
120 * Verifying a valid ID consists of:
121 *
122 * a) checking that idr_find() returns other than -1.
123 * b) checking that the timer id matches the one in the timer itself.
124 * c) that the timer owner is in the callers thread group.
125 */
126
127/*
128 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
129 * to implement others. This structure defines the various
130 * clocks and allows the possibility of adding others. We
131 * provide an interface to add clocks to the table and expect
132 * the "arch" code to add at least one clock that is high
133 * resolution. Here we define the standard CLOCK_REALTIME as a
134 * 1/HZ resolution clock.
135 *
136 * RESOLUTION: Clock resolution is used to round up timer and interval
137 * times, NOT to report clock times, which are reported with as
138 * much resolution as the system can muster. In some cases this
139 * resolution may depend on the underlying clock hardware and
140 * may not be quantifiable until run time, and only then is the
141 * necessary code is written. The standard says we should say
142 * something about this issue in the documentation...
143 *
144 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
145 * various clock functions. For clocks that use the standard
146 * system timer code these entries should be NULL. This will
147 * allow dispatch without the overhead of indirect function
148 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
149 * must supply functions here, even if the function just returns
150 * ENOSYS. The standard POSIX timer management code assumes the
151 * following: 1.) The k_itimer struct (sched.h) is used for the
152 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
153 * fields are not modified by timer code.
154 *
155 * At this time all functions EXCEPT clock_nanosleep can be
156 * redirected by the CLOCKS structure. Clock_nanosleep is in
157 * there, but the code ignores it.
158 *
159 * Permissions: It is assumed that the clock_settime() function defined
160 * for each clock will take care of permission checks. Some
161 * clocks may be set able by any user (i.e. local process
162 * clocks) others not. Currently the only set able clock we
163 * have is CLOCK_REALTIME and its high res counter part, both of
164 * which we beg off on and pass to do_sys_settimeofday().
165 */
166
167static struct k_clock posix_clocks[MAX_CLOCKS];
168/*
169 * We only have one real clock that can be set so we need only one abs list,
170 * even if we should want to have several clocks with differing resolutions.
171 */
172static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
173 .lock = SPIN_LOCK_UNLOCKED};
174
175static void posix_timer_fn(unsigned long);
176static u64 do_posix_clock_monotonic_gettime_parts(
177 struct timespec *tp, struct timespec *mo);
178int do_posix_clock_monotonic_gettime(struct timespec *tp);
179static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp);
180
181static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
182
183static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184{
185 spin_unlock_irqrestore(&timr->it_lock, flags);
186}
187
188/*
189 * Call the k_clock hook function if non-null, or the default function.
190 */
191#define CLOCK_DISPATCH(clock, call, arglist) \
192 ((clock) < 0 ? posix_cpu_##call arglist : \
193 (posix_clocks[clock].call != NULL \
194 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
195
196/*
197 * Default clock hook functions when the struct k_clock passed
198 * to register_posix_clock leaves a function pointer null.
199 *
200 * The function common_CALL is the default implementation for
201 * the function pointer CALL in struct k_clock.
202 */
203
204static inline int common_clock_getres(clockid_t which_clock,
205 struct timespec *tp)
206{
207 tp->tv_sec = 0;
208 tp->tv_nsec = posix_clocks[which_clock].res;
209 return 0;
210}
211
212static inline int common_clock_get(clockid_t which_clock, struct timespec *tp)
213{
214 getnstimeofday(tp);
215 return 0;
216}
217
218static inline int common_clock_set(clockid_t which_clock, struct timespec *tp)
219{
220 return do_sys_settimeofday(tp, NULL);
221}
222
223static inline int common_timer_create(struct k_itimer *new_timer)
224{
225 INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
226 init_timer(&new_timer->it.real.timer);
227 new_timer->it.real.timer.data = (unsigned long) new_timer;
228 new_timer->it.real.timer.function = posix_timer_fn;
229 set_timer_inactive(new_timer);
230 return 0;
231}
232
233/*
234 * These ones are defined below.
235 */
236static int common_nsleep(clockid_t, int flags, struct timespec *t);
237static void common_timer_get(struct k_itimer *, struct itimerspec *);
238static int common_timer_set(struct k_itimer *, int,
239 struct itimerspec *, struct itimerspec *);
240static int common_timer_del(struct k_itimer *timer);
241
242/*
243 * Return nonzero iff we know a priori this clockid_t value is bogus.
244 */
245static inline int invalid_clockid(clockid_t which_clock)
246{
247 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
248 return 0;
249 if ((unsigned) which_clock >= MAX_CLOCKS)
250 return 1;
251 if (posix_clocks[which_clock].clock_getres != NULL)
252 return 0;
253#ifndef CLOCK_DISPATCH_DIRECT
254 if (posix_clocks[which_clock].res != 0)
255 return 0;
256#endif
257 return 1;
258}
259
260
261/*
262 * Initialize everything, well, just everything in Posix clocks/timers ;)
263 */
264static __init int init_posix_timers(void)
265{
266 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
267 .abs_struct = &abs_list
268 };
269 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
270 .abs_struct = NULL,
271 .clock_get = do_posix_clock_monotonic_get,
272 .clock_set = do_posix_clock_nosettime
273 };
274
275 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
276 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
277
278 posix_timers_cache = kmem_cache_create("posix_timers_cache",
279 sizeof (struct k_itimer), 0, 0, NULL, NULL);
280 idr_init(&posix_timers_id);
281 return 0;
282}
283
284__initcall(init_posix_timers);
285
286static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
287{
288 long sec = tp->tv_sec;
289 long nsec = tp->tv_nsec + res - 1;
290
291 if (nsec > NSEC_PER_SEC) {
292 sec++;
293 nsec -= NSEC_PER_SEC;
294 }
295
296 /*
297 * The scaling constants are defined in <linux/time.h>
298 * The difference between there and here is that we do the
299 * res rounding and compute a 64-bit result (well so does that
300 * but it then throws away the high bits).
301 */
302 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
303 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
304 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
305}
306
307/*
308 * This function adjusts the timer as needed as a result of the clock
309 * being set. It should only be called for absolute timers, and then
310 * under the abs_list lock. It computes the time difference and sets
311 * the new jiffies value in the timer. It also updates the timers
312 * reference wall_to_monotonic value. It is complicated by the fact
313 * that tstojiffies() only handles positive times and it needs to work
314 * with both positive and negative times. Also, for negative offsets,
315 * we need to defeat the res round up.
316 *
317 * Return is true if there is a new time, else false.
318 */
319static long add_clockset_delta(struct k_itimer *timr,
320 struct timespec *new_wall_to)
321{
322 struct timespec delta;
323 int sign = 0;
324 u64 exp;
325
326 set_normalized_timespec(&delta,
327 new_wall_to->tv_sec -
328 timr->it.real.wall_to_prev.tv_sec,
329 new_wall_to->tv_nsec -
330 timr->it.real.wall_to_prev.tv_nsec);
331 if (likely(!(delta.tv_sec | delta.tv_nsec)))
332 return 0;
333 if (delta.tv_sec < 0) {
334 set_normalized_timespec(&delta,
335 -delta.tv_sec,
336 1 - delta.tv_nsec -
337 posix_clocks[timr->it_clock].res);
338 sign++;
339 }
340 tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
341 timr->it.real.wall_to_prev = *new_wall_to;
342 timr->it.real.timer.expires += (sign ? -exp : exp);
343 return 1;
344}
345
346static void remove_from_abslist(struct k_itimer *timr)
347{
348 if (!list_empty(&timr->it.real.abs_timer_entry)) {
349 spin_lock(&abs_list.lock);
350 list_del_init(&timr->it.real.abs_timer_entry);
351 spin_unlock(&abs_list.lock);
352 }
353}
354
355static void schedule_next_timer(struct k_itimer *timr)
356{
357 struct timespec new_wall_to;
358 struct now_struct now;
359 unsigned long seq;
360
361 /*
362 * Set up the timer for the next interval (if there is one).
363 * Note: this code uses the abs_timer_lock to protect
364 * it.real.wall_to_prev and must hold it until exp is set, not exactly
365 * obvious...
366
367 * This function is used for CLOCK_REALTIME* and
368 * CLOCK_MONOTONIC* timers. If we ever want to handle other
369 * CLOCKs, the calling code (do_schedule_next_timer) would need
370 * to pull the "clock" info from the timer and dispatch the
371 * "other" CLOCKs "next timer" code (which, I suppose should
372 * also be added to the k_clock structure).
373 */
374 if (!timr->it.real.incr)
375 return;
376
377 do {
378 seq = read_seqbegin(&xtime_lock);
379 new_wall_to = wall_to_monotonic;
380 posix_get_now(&now);
381 } while (read_seqretry(&xtime_lock, seq));
382
383 if (!list_empty(&timr->it.real.abs_timer_entry)) {
384 spin_lock(&abs_list.lock);
385 add_clockset_delta(timr, &new_wall_to);
386
387 posix_bump_timer(timr, now);
388
389 spin_unlock(&abs_list.lock);
390 } else {
391 posix_bump_timer(timr, now);
392 }
393 timr->it_overrun_last = timr->it_overrun;
394 timr->it_overrun = -1;
395 ++timr->it_requeue_pending;
396 add_timer(&timr->it.real.timer);
397}
398
399/*
400 * This function is exported for use by the signal deliver code. It is
401 * called just prior to the info block being released and passes that
402 * block to us. It's function is to update the overrun entry AND to
403 * restart the timer. It should only be called if the timer is to be
404 * restarted (i.e. we have flagged this in the sys_private entry of the
405 * info block).
406 *
407 * To protect aginst the timer going away while the interrupt is queued,
408 * we require that the it_requeue_pending flag be set.
409 */
410void do_schedule_next_timer(struct siginfo *info)
411{
412 struct k_itimer *timr;
413 unsigned long flags;
414
415 timr = lock_timer(info->si_tid, &flags);
416
417 if (!timr || timr->it_requeue_pending != info->si_sys_private)
418 goto exit;
419
420 if (timr->it_clock < 0) /* CPU clock */
421 posix_cpu_timer_schedule(timr);
422 else
423 schedule_next_timer(timr);
424 info->si_overrun = timr->it_overrun_last;
425exit:
426 if (timr)
427 unlock_timer(timr, flags);
428}
429
430int posix_timer_event(struct k_itimer *timr,int si_private)
431{
432 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
433 timr->sigq->info.si_sys_private = si_private;
434 /*
435 * Send signal to the process that owns this timer.
436
437 * This code assumes that all the possible abs_lists share the
438 * same lock (there is only one list at this time). If this is
439 * not the case, the CLOCK info would need to be used to find
440 * the proper abs list lock.
441 */
442
443 timr->sigq->info.si_signo = timr->it_sigev_signo;
444 timr->sigq->info.si_errno = 0;
445 timr->sigq->info.si_code = SI_TIMER;
446 timr->sigq->info.si_tid = timr->it_id;
447 timr->sigq->info.si_value = timr->it_sigev_value;
448 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
449 if (unlikely(timr->it_process->flags & PF_EXITING)) {
450 timr->it_sigev_notify = SIGEV_SIGNAL;
451 put_task_struct(timr->it_process);
452 timr->it_process = timr->it_process->group_leader;
453 goto group;
454 }
455 return send_sigqueue(timr->it_sigev_signo, timr->sigq,
456 timr->it_process);
457 }
458 else {
459 group:
460 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
461 timr->it_process);
462 }
463}
464EXPORT_SYMBOL_GPL(posix_timer_event);
465
466/*
467 * This function gets called when a POSIX.1b interval timer expires. It
468 * is used as a callback from the kernel internal timer. The
469 * run_timer_list code ALWAYS calls with interrupts on.
470
471 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
472 */
473static void posix_timer_fn(unsigned long __data)
474{
475 struct k_itimer *timr = (struct k_itimer *) __data;
476 unsigned long flags;
477 unsigned long seq;
478 struct timespec delta, new_wall_to;
479 u64 exp = 0;
480 int do_notify = 1;
481
482 spin_lock_irqsave(&timr->it_lock, flags);
483 set_timer_inactive(timr);
484 if (!list_empty(&timr->it.real.abs_timer_entry)) {
485 spin_lock(&abs_list.lock);
486 do {
487 seq = read_seqbegin(&xtime_lock);
488 new_wall_to = wall_to_monotonic;
489 } while (read_seqretry(&xtime_lock, seq));
490 set_normalized_timespec(&delta,
491 new_wall_to.tv_sec -
492 timr->it.real.wall_to_prev.tv_sec,
493 new_wall_to.tv_nsec -
494 timr->it.real.wall_to_prev.tv_nsec);
495 if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
496 /* do nothing, timer is on time */
497 } else if (delta.tv_sec < 0) {
498 /* do nothing, timer is already late */
499 } else {
500 /* timer is early due to a clock set */
501 tstojiffie(&delta,
502 posix_clocks[timr->it_clock].res,
503 &exp);
504 timr->it.real.wall_to_prev = new_wall_to;
505 timr->it.real.timer.expires += exp;
506 add_timer(&timr->it.real.timer);
507 do_notify = 0;
508 }
509 spin_unlock(&abs_list.lock);
510
511 }
512 if (do_notify) {
513 int si_private=0;
514
515 if (timr->it.real.incr)
516 si_private = ++timr->it_requeue_pending;
517 else {
518 remove_from_abslist(timr);
519 }
520
521 if (posix_timer_event(timr, si_private))
522 /*
523 * signal was not sent because of sig_ignor
524 * we will not get a call back to restart it AND
525 * it should be restarted.
526 */
527 schedule_next_timer(timr);
528 }
529 unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
530}
531
532
533static inline struct task_struct * good_sigevent(sigevent_t * event)
534{
535 struct task_struct *rtn = current->group_leader;
536
537 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
538 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
539 rtn->tgid != current->tgid ||
540 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
541 return NULL;
542
543 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
544 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
545 return NULL;
546
547 return rtn;
548}
549
550void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock)
551{
552 if ((unsigned) clock_id >= MAX_CLOCKS) {
553 printk("POSIX clock register failed for clock_id %d\n",
554 clock_id);
555 return;
556 }
557
558 posix_clocks[clock_id] = *new_clock;
559}
560EXPORT_SYMBOL_GPL(register_posix_clock);
561
562static struct k_itimer * alloc_posix_timer(void)
563{
564 struct k_itimer *tmr;
565 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
566 if (!tmr)
567 return tmr;
568 memset(tmr, 0, sizeof (struct k_itimer));
569 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
570 kmem_cache_free(posix_timers_cache, tmr);
571 tmr = NULL;
572 }
573 return tmr;
574}
575
576#define IT_ID_SET 1
577#define IT_ID_NOT_SET 0
578static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
579{
580 if (it_id_set) {
581 unsigned long flags;
582 spin_lock_irqsave(&idr_lock, flags);
583 idr_remove(&posix_timers_id, tmr->it_id);
584 spin_unlock_irqrestore(&idr_lock, flags);
585 }
586 sigqueue_free(tmr->sigq);
587 if (unlikely(tmr->it_process) &&
588 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
589 put_task_struct(tmr->it_process);
590 kmem_cache_free(posix_timers_cache, tmr);
591}
592
593/* Create a POSIX.1b interval timer. */
594
595asmlinkage long
596sys_timer_create(clockid_t which_clock,
597 struct sigevent __user *timer_event_spec,
598 timer_t __user * created_timer_id)
599{
600 int error = 0;
601 struct k_itimer *new_timer = NULL;
602 int new_timer_id;
603 struct task_struct *process = NULL;
604 unsigned long flags;
605 sigevent_t event;
606 int it_id_set = IT_ID_NOT_SET;
607
608 if (invalid_clockid(which_clock))
609 return -EINVAL;
610
611 new_timer = alloc_posix_timer();
612 if (unlikely(!new_timer))
613 return -EAGAIN;
614
615 spin_lock_init(&new_timer->it_lock);
616 retry:
617 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
618 error = -EAGAIN;
619 goto out;
620 }
621 spin_lock_irq(&idr_lock);
622 error = idr_get_new(&posix_timers_id,
623 (void *) new_timer,
624 &new_timer_id);
625 spin_unlock_irq(&idr_lock);
626 if (error == -EAGAIN)
627 goto retry;
628 else if (error) {
629 /*
630 * Wierd looking, but we return EAGAIN if the IDR is
631 * full (proper POSIX return value for this)
632 */
633 error = -EAGAIN;
634 goto out;
635 }
636
637 it_id_set = IT_ID_SET;
638 new_timer->it_id = (timer_t) new_timer_id;
639 new_timer->it_clock = which_clock;
640 new_timer->it_overrun = -1;
641 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
642 if (error)
643 goto out;
644
645 /*
646 * return the timer_id now. The next step is hard to
647 * back out if there is an error.
648 */
649 if (copy_to_user(created_timer_id,
650 &new_timer_id, sizeof (new_timer_id))) {
651 error = -EFAULT;
652 goto out;
653 }
654 if (timer_event_spec) {
655 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
656 error = -EFAULT;
657 goto out;
658 }
659 new_timer->it_sigev_notify = event.sigev_notify;
660 new_timer->it_sigev_signo = event.sigev_signo;
661 new_timer->it_sigev_value = event.sigev_value;
662
663 read_lock(&tasklist_lock);
664 if ((process = good_sigevent(&event))) {
665 /*
666 * We may be setting up this process for another
667 * thread. It may be exiting. To catch this
668 * case the we check the PF_EXITING flag. If
669 * the flag is not set, the siglock will catch
670 * him before it is too late (in exit_itimers).
671 *
672 * The exec case is a bit more invloved but easy
673 * to code. If the process is in our thread
674 * group (and it must be or we would not allow
675 * it here) and is doing an exec, it will cause
676 * us to be killed. In this case it will wait
677 * for us to die which means we can finish this
678 * linkage with our last gasp. I.e. no code :)
679 */
680 spin_lock_irqsave(&process->sighand->siglock, flags);
681 if (!(process->flags & PF_EXITING)) {
682 new_timer->it_process = process;
683 list_add(&new_timer->list,
684 &process->signal->posix_timers);
685 spin_unlock_irqrestore(&process->sighand->siglock, flags);
686 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
687 get_task_struct(process);
688 } else {
689 spin_unlock_irqrestore(&process->sighand->siglock, flags);
690 process = NULL;
691 }
692 }
693 read_unlock(&tasklist_lock);
694 if (!process) {
695 error = -EINVAL;
696 goto out;
697 }
698 } else {
699 new_timer->it_sigev_notify = SIGEV_SIGNAL;
700 new_timer->it_sigev_signo = SIGALRM;
701 new_timer->it_sigev_value.sival_int = new_timer->it_id;
702 process = current->group_leader;
703 spin_lock_irqsave(&process->sighand->siglock, flags);
704 new_timer->it_process = process;
705 list_add(&new_timer->list, &process->signal->posix_timers);
706 spin_unlock_irqrestore(&process->sighand->siglock, flags);
707 }
708
709 /*
710 * In the case of the timer belonging to another task, after
711 * the task is unlocked, the timer is owned by the other task
712 * and may cease to exist at any time. Don't use or modify
713 * new_timer after the unlock call.
714 */
715
716out:
717 if (error)
718 release_posix_timer(new_timer, it_id_set);
719
720 return error;
721}
722
723/*
724 * good_timespec
725 *
726 * This function checks the elements of a timespec structure.
727 *
728 * Arguments:
729 * ts : Pointer to the timespec structure to check
730 *
731 * Return value:
732 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
733 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
734 * this function returns 0. Otherwise it returns 1.
735 */
736static int good_timespec(const struct timespec *ts)
737{
738 if ((!ts) || (ts->tv_sec < 0) ||
739 ((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
740 return 0;
741 return 1;
742}
743
744/*
745 * Locking issues: We need to protect the result of the id look up until
746 * we get the timer locked down so it is not deleted under us. The
747 * removal is done under the idr spinlock so we use that here to bridge
748 * the find to the timer lock. To avoid a dead lock, the timer id MUST
749 * be release with out holding the timer lock.
750 */
751static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
752{
753 struct k_itimer *timr;
754 /*
755 * Watch out here. We do a irqsave on the idr_lock and pass the
756 * flags part over to the timer lock. Must not let interrupts in
757 * while we are moving the lock.
758 */
759
760 spin_lock_irqsave(&idr_lock, *flags);
761 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
762 if (timr) {
763 spin_lock(&timr->it_lock);
764 spin_unlock(&idr_lock);
765
766 if ((timr->it_id != timer_id) || !(timr->it_process) ||
767 timr->it_process->tgid != current->tgid) {
768 unlock_timer(timr, *flags);
769 timr = NULL;
770 }
771 } else
772 spin_unlock_irqrestore(&idr_lock, *flags);
773
774 return timr;
775}
776
777/*
778 * Get the time remaining on a POSIX.1b interval timer. This function
779 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
780 * mess with irq.
781 *
782 * We have a couple of messes to clean up here. First there is the case
783 * of a timer that has a requeue pending. These timers should appear to
784 * be in the timer list with an expiry as if we were to requeue them
785 * now.
786 *
787 * The second issue is the SIGEV_NONE timer which may be active but is
788 * not really ever put in the timer list (to save system resources).
789 * This timer may be expired, and if so, we will do it here. Otherwise
790 * it is the same as a requeue pending timer WRT to what we should
791 * report.
792 */
793static void
794common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
795{
796 unsigned long expires;
797 struct now_struct now;
798
799 do
800 expires = timr->it.real.timer.expires;
801 while ((volatile long) (timr->it.real.timer.expires) != expires);
802
803 posix_get_now(&now);
804
805 if (expires &&
806 ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
807 !timr->it.real.incr &&
808 posix_time_before(&timr->it.real.timer, &now))
809 timr->it.real.timer.expires = expires = 0;
810 if (expires) {
811 if (timr->it_requeue_pending & REQUEUE_PENDING ||
812 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
813 posix_bump_timer(timr, now);
814 expires = timr->it.real.timer.expires;
815 }
816 else
817 if (!timer_pending(&timr->it.real.timer))
818 expires = 0;
819 if (expires)
820 expires -= now.jiffies;
821 }
822 jiffies_to_timespec(expires, &cur_setting->it_value);
823 jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
824
825 if (cur_setting->it_value.tv_sec < 0) {
826 cur_setting->it_value.tv_nsec = 1;
827 cur_setting->it_value.tv_sec = 0;
828 }
829}
830
831/* Get the time remaining on a POSIX.1b interval timer. */
832asmlinkage long
833sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
834{
835 struct k_itimer *timr;
836 struct itimerspec cur_setting;
837 unsigned long flags;
838
839 timr = lock_timer(timer_id, &flags);
840 if (!timr)
841 return -EINVAL;
842
843 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
844
845 unlock_timer(timr, flags);
846
847 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
848 return -EFAULT;
849
850 return 0;
851}
852/*
853 * Get the number of overruns of a POSIX.1b interval timer. This is to
854 * be the overrun of the timer last delivered. At the same time we are
855 * accumulating overruns on the next timer. The overrun is frozen when
856 * the signal is delivered, either at the notify time (if the info block
857 * is not queued) or at the actual delivery time (as we are informed by
858 * the call back to do_schedule_next_timer(). So all we need to do is
859 * to pick up the frozen overrun.
860 */
861
862asmlinkage long
863sys_timer_getoverrun(timer_t timer_id)
864{
865 struct k_itimer *timr;
866 int overrun;
867 long flags;
868
869 timr = lock_timer(timer_id, &flags);
870 if (!timr)
871 return -EINVAL;
872
873 overrun = timr->it_overrun_last;
874 unlock_timer(timr, flags);
875
876 return overrun;
877}
878/*
879 * Adjust for absolute time
880 *
881 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
882 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
883 * what ever clock he is using.
884 *
885 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
886 * time to it to get the proper time for the timer.
887 */
888static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
889 int abs, u64 *exp, struct timespec *wall_to)
890{
891 struct timespec now;
892 struct timespec oc = *tp;
893 u64 jiffies_64_f;
894 int rtn =0;
895
896 if (abs) {
897 /*
898 * The mask pick up the 4 basic clocks
899 */
900 if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
901 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
902 &now, wall_to);
903 /*
904 * If we are doing a MONOTONIC clock
905 */
906 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
907 now.tv_sec += wall_to->tv_sec;
908 now.tv_nsec += wall_to->tv_nsec;
909 }
910 } else {
911 /*
912 * Not one of the basic clocks
913 */
914 clock->clock_get(clock - posix_clocks, &now);
915 jiffies_64_f = get_jiffies_64();
916 }
917 /*
918 * Take away now to get delta
919 */
920 oc.tv_sec -= now.tv_sec;
921 oc.tv_nsec -= now.tv_nsec;
922 /*
923 * Normalize...
924 */
925 while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) {
926 oc.tv_nsec -= NSEC_PER_SEC;
927 oc.tv_sec++;
928 }
929 while ((oc.tv_nsec) < 0) {
930 oc.tv_nsec += NSEC_PER_SEC;
931 oc.tv_sec--;
932 }
933 }else{
934 jiffies_64_f = get_jiffies_64();
935 }
936 /*
937 * Check if the requested time is prior to now (if so set now)
938 */
939 if (oc.tv_sec < 0)
940 oc.tv_sec = oc.tv_nsec = 0;
941
942 if (oc.tv_sec | oc.tv_nsec)
943 set_normalized_timespec(&oc, oc.tv_sec,
944 oc.tv_nsec + clock->res);
945 tstojiffie(&oc, clock->res, exp);
946
947 /*
948 * Check if the requested time is more than the timer code
949 * can handle (if so we error out but return the value too).
950 */
951 if (*exp > ((u64)MAX_JIFFY_OFFSET))
952 /*
953 * This is a considered response, not exactly in
954 * line with the standard (in fact it is silent on
955 * possible overflows). We assume such a large
956 * value is ALMOST always a programming error and
957 * try not to compound it by setting a really dumb
958 * value.
959 */
960 rtn = -EINVAL;
961 /*
962 * return the actual jiffies expire time, full 64 bits
963 */
964 *exp += jiffies_64_f;
965 return rtn;
966}
967
968/* Set a POSIX.1b interval timer. */
969/* timr->it_lock is taken. */
970static inline int
971common_timer_set(struct k_itimer *timr, int flags,
972 struct itimerspec *new_setting, struct itimerspec *old_setting)
973{
974 struct k_clock *clock = &posix_clocks[timr->it_clock];
975 u64 expire_64;
976
977 if (old_setting)
978 common_timer_get(timr, old_setting);
979
980 /* disable the timer */
981 timr->it.real.incr = 0;
982 /*
983 * careful here. If smp we could be in the "fire" routine which will
984 * be spinning as we hold the lock. But this is ONLY an SMP issue.
985 */
986#ifdef CONFIG_SMP
987 if (timer_active(timr) && !del_timer(&timr->it.real.timer))
988 /*
989 * It can only be active if on an other cpu. Since
990 * we have cleared the interval stuff above, it should
991 * clear once we release the spin lock. Of course once
992 * we do that anything could happen, including the
993 * complete melt down of the timer. So return with
994 * a "retry" exit status.
995 */
996 return TIMER_RETRY;
997
998 set_timer_inactive(timr);
999#else
1000 del_timer(&timr->it.real.timer);
1001#endif
1002 remove_from_abslist(timr);
1003
1004 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1005 ~REQUEUE_PENDING;
1006 timr->it_overrun_last = 0;
1007 timr->it_overrun = -1;
1008 /*
1009 *switch off the timer when it_value is zero
1010 */
1011 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
1012 timr->it.real.timer.expires = 0;
1013 return 0;
1014 }
1015
1016 if (adjust_abs_time(clock,
1017 &new_setting->it_value, flags & TIMER_ABSTIME,
1018 &expire_64, &(timr->it.real.wall_to_prev))) {
1019 return -EINVAL;
1020 }
1021 timr->it.real.timer.expires = (unsigned long)expire_64;
1022 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
1023 timr->it.real.incr = (unsigned long)expire_64;
1024
1025 /*
1026 * We do not even queue SIGEV_NONE timers! But we do put them
1027 * in the abs list so we can do that right.
1028 */
1029 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
1030 add_timer(&timr->it.real.timer);
1031
1032 if (flags & TIMER_ABSTIME && clock->abs_struct) {
1033 spin_lock(&clock->abs_struct->lock);
1034 list_add_tail(&(timr->it.real.abs_timer_entry),
1035 &(clock->abs_struct->list));
1036 spin_unlock(&clock->abs_struct->lock);
1037 }
1038 return 0;
1039}
1040
1041/* Set a POSIX.1b interval timer */
1042asmlinkage long
1043sys_timer_settime(timer_t timer_id, int flags,
1044 const struct itimerspec __user *new_setting,
1045 struct itimerspec __user *old_setting)
1046{
1047 struct k_itimer *timr;
1048 struct itimerspec new_spec, old_spec;
1049 int error = 0;
1050 long flag;
1051 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
1052
1053 if (!new_setting)
1054 return -EINVAL;
1055
1056 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
1057 return -EFAULT;
1058
1059 if ((!good_timespec(&new_spec.it_interval)) ||
1060 (!good_timespec(&new_spec.it_value)))
1061 return -EINVAL;
1062retry:
1063 timr = lock_timer(timer_id, &flag);
1064 if (!timr)
1065 return -EINVAL;
1066
1067 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
1068 (timr, flags, &new_spec, rtn));
1069
1070 unlock_timer(timr, flag);
1071 if (error == TIMER_RETRY) {
1072 rtn = NULL; // We already got the old time...
1073 goto retry;
1074 }
1075
1076 if (old_setting && !error && copy_to_user(old_setting,
1077 &old_spec, sizeof (old_spec)))
1078 error = -EFAULT;
1079
1080 return error;
1081}
1082
1083static inline int common_timer_del(struct k_itimer *timer)
1084{
1085 timer->it.real.incr = 0;
1086#ifdef CONFIG_SMP
1087 if (timer_active(timer) && !del_timer(&timer->it.real.timer))
1088 /*
1089 * It can only be active if on an other cpu. Since
1090 * we have cleared the interval stuff above, it should
1091 * clear once we release the spin lock. Of course once
1092 * we do that anything could happen, including the
1093 * complete melt down of the timer. So return with
1094 * a "retry" exit status.
1095 */
1096 return TIMER_RETRY;
1097#else
1098 del_timer(&timer->it.real.timer);
1099#endif
1100 remove_from_abslist(timer);
1101
1102 return 0;
1103}
1104
1105static inline int timer_delete_hook(struct k_itimer *timer)
1106{
1107 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
1108}
1109
1110/* Delete a POSIX.1b interval timer. */
1111asmlinkage long
1112sys_timer_delete(timer_t timer_id)
1113{
1114 struct k_itimer *timer;
1115 long flags;
1116
1117#ifdef CONFIG_SMP
1118 int error;
1119retry_delete:
1120#endif
1121 timer = lock_timer(timer_id, &flags);
1122 if (!timer)
1123 return -EINVAL;
1124
1125#ifdef CONFIG_SMP
1126 error = timer_delete_hook(timer);
1127
1128 if (error == TIMER_RETRY) {
1129 unlock_timer(timer, flags);
1130 goto retry_delete;
1131 }
1132#else
1133 timer_delete_hook(timer);
1134#endif
1135 spin_lock(&current->sighand->siglock);
1136 list_del(&timer->list);
1137 spin_unlock(&current->sighand->siglock);
1138 /*
1139 * This keeps any tasks waiting on the spin lock from thinking
1140 * they got something (see the lock code above).
1141 */
1142 if (timer->it_process) {
1143 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1144 put_task_struct(timer->it_process);
1145 timer->it_process = NULL;
1146 }
1147 unlock_timer(timer, flags);
1148 release_posix_timer(timer, IT_ID_SET);
1149 return 0;
1150}
1151/*
1152 * return timer owned by the process, used by exit_itimers
1153 */
1154static inline void itimer_delete(struct k_itimer *timer)
1155{
1156 unsigned long flags;
1157
1158#ifdef CONFIG_SMP
1159 int error;
1160retry_delete:
1161#endif
1162 spin_lock_irqsave(&timer->it_lock, flags);
1163
1164#ifdef CONFIG_SMP
1165 error = timer_delete_hook(timer);
1166
1167 if (error == TIMER_RETRY) {
1168 unlock_timer(timer, flags);
1169 goto retry_delete;
1170 }
1171#else
1172 timer_delete_hook(timer);
1173#endif
1174 list_del(&timer->list);
1175 /*
1176 * This keeps any tasks waiting on the spin lock from thinking
1177 * they got something (see the lock code above).
1178 */
1179 if (timer->it_process) {
1180 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1181 put_task_struct(timer->it_process);
1182 timer->it_process = NULL;
1183 }
1184 unlock_timer(timer, flags);
1185 release_posix_timer(timer, IT_ID_SET);
1186}
1187
1188/*
1189 * This is called by __exit_signal, only when there are no more
1190 * references to the shared signal_struct.
1191 */
1192void exit_itimers(struct signal_struct *sig)
1193{
1194 struct k_itimer *tmr;
1195
1196 while (!list_empty(&sig->posix_timers)) {
1197 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1198 itimer_delete(tmr);
1199 }
1200}
1201
1202/*
1203 * And now for the "clock" calls
1204 *
1205 * These functions are called both from timer functions (with the timer
1206 * spin_lock_irq() held and from clock calls with no locking. They must
1207 * use the save flags versions of locks.
1208 */
1209
1210/*
1211 * We do ticks here to avoid the irq lock ( they take sooo long).
1212 * The seqlock is great here. Since we a reader, we don't really care
1213 * if we are interrupted since we don't take lock that will stall us or
1214 * any other cpu. Voila, no irq lock is needed.
1215 *
1216 */
1217
1218static u64 do_posix_clock_monotonic_gettime_parts(
1219 struct timespec *tp, struct timespec *mo)
1220{
1221 u64 jiff;
1222 unsigned int seq;
1223
1224 do {
1225 seq = read_seqbegin(&xtime_lock);
1226 getnstimeofday(tp);
1227 *mo = wall_to_monotonic;
1228 jiff = jiffies_64;
1229
1230 } while(read_seqretry(&xtime_lock, seq));
1231
1232 return jiff;
1233}
1234
1235static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp)
1236{
1237 struct timespec wall_to_mono;
1238
1239 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1240
1241 tp->tv_sec += wall_to_mono.tv_sec;
1242 tp->tv_nsec += wall_to_mono.tv_nsec;
1243
1244 if ((tp->tv_nsec - NSEC_PER_SEC) > 0) {
1245 tp->tv_nsec -= NSEC_PER_SEC;
1246 tp->tv_sec++;
1247 }
1248 return 0;
1249}
1250
1251int do_posix_clock_monotonic_gettime(struct timespec *tp)
1252{
1253 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
1254}
1255
1256int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp)
1257{
1258 return -EINVAL;
1259}
1260EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
1261
1262int do_posix_clock_notimer_create(struct k_itimer *timer)
1263{
1264 return -EINVAL;
1265}
1266EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
1267
1268int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t)
1269{
1270#ifndef ENOTSUP
1271 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
1272#else /* parisc does define it separately. */
1273 return -ENOTSUP;
1274#endif
1275}
1276EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
1277
1278asmlinkage long
1279sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp)
1280{
1281 struct timespec new_tp;
1282
1283 if (invalid_clockid(which_clock))
1284 return -EINVAL;
1285 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1286 return -EFAULT;
1287
1288 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
1289}
1290
1291asmlinkage long
1292sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp)
1293{
1294 struct timespec kernel_tp;
1295 int error;
1296
1297 if (invalid_clockid(which_clock))
1298 return -EINVAL;
1299 error = CLOCK_DISPATCH(which_clock, clock_get,
1300 (which_clock, &kernel_tp));
1301 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1302 error = -EFAULT;
1303
1304 return error;
1305
1306}
1307
1308asmlinkage long
1309sys_clock_getres(clockid_t which_clock, struct timespec __user *tp)
1310{
1311 struct timespec rtn_tp;
1312 int error;
1313
1314 if (invalid_clockid(which_clock))
1315 return -EINVAL;
1316
1317 error = CLOCK_DISPATCH(which_clock, clock_getres,
1318 (which_clock, &rtn_tp));
1319
1320 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
1321 error = -EFAULT;
1322 }
1323
1324 return error;
1325}
1326
1327static void nanosleep_wake_up(unsigned long __data)
1328{
1329 struct task_struct *p = (struct task_struct *) __data;
1330
1331 wake_up_process(p);
1332}
1333
1334/*
1335 * The standard says that an absolute nanosleep call MUST wake up at
1336 * the requested time in spite of clock settings. Here is what we do:
1337 * For each nanosleep call that needs it (only absolute and not on
1338 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1339 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1340 * When ever the clock is set we just wake up all those tasks. The rest
1341 * is done by the while loop in clock_nanosleep().
1342 *
1343 * On locking, clock_was_set() is called from update_wall_clock which
1344 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1345 * called from the timer bh code. Thus we need the irq save locks.
1346 *
1347 * Also, on the call from update_wall_clock, that is done as part of a
1348 * softirq thing. We don't want to delay the system that much (possibly
1349 * long list of timers to fix), so we defer that work to keventd.
1350 */
1351
1352static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1353static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
1354
1355static DECLARE_MUTEX(clock_was_set_lock);
1356
1357void clock_was_set(void)
1358{
1359 struct k_itimer *timr;
1360 struct timespec new_wall_to;
1361 LIST_HEAD(cws_list);
1362 unsigned long seq;
1363
1364
1365 if (unlikely(in_interrupt())) {
1366 schedule_work(&clock_was_set_work);
1367 return;
1368 }
1369 wake_up_all(&nanosleep_abs_wqueue);
1370
1371 /*
1372 * Check if there exist TIMER_ABSTIME timers to correct.
1373 *
1374 * Notes on locking: This code is run in task context with irq
1375 * on. We CAN be interrupted! All other usage of the abs list
1376 * lock is under the timer lock which holds the irq lock as
1377 * well. We REALLY don't want to scan the whole list with the
1378 * interrupt system off, AND we would like a sequence lock on
1379 * this code as well. Since we assume that the clock will not
1380 * be set often, it seems ok to take and release the irq lock
1381 * for each timer. In fact add_timer will do this, so this is
1382 * not an issue. So we know when we are done, we will move the
1383 * whole list to a new location. Then as we process each entry,
1384 * we will move it to the actual list again. This way, when our
1385 * copy is empty, we are done. We are not all that concerned
1386 * about preemption so we will use a semaphore lock to protect
1387 * aginst reentry. This way we will not stall another
1388 * processor. It is possible that this may delay some timers
1389 * that should have expired, given the new clock, but even this
1390 * will be minimal as we will always update to the current time,
1391 * even if it was set by a task that is waiting for entry to
1392 * this code. Timers that expire too early will be caught by
1393 * the expire code and restarted.
1394
1395 * Absolute timers that repeat are left in the abs list while
1396 * waiting for the task to pick up the signal. This means we
1397 * may find timers that are not in the "add_timer" list, but are
1398 * in the abs list. We do the same thing for these, save
1399 * putting them back in the "add_timer" list. (Note, these are
1400 * left in the abs list mainly to indicate that they are
1401 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1402 * for which we have no other flag.)
1403
1404 */
1405
1406 down(&clock_was_set_lock);
1407 spin_lock_irq(&abs_list.lock);
1408 list_splice_init(&abs_list.list, &cws_list);
1409 spin_unlock_irq(&abs_list.lock);
1410 do {
1411 do {
1412 seq = read_seqbegin(&xtime_lock);
1413 new_wall_to = wall_to_monotonic;
1414 } while (read_seqretry(&xtime_lock, seq));
1415
1416 spin_lock_irq(&abs_list.lock);
1417 if (list_empty(&cws_list)) {
1418 spin_unlock_irq(&abs_list.lock);
1419 break;
1420 }
1421 timr = list_entry(cws_list.next, struct k_itimer,
1422 it.real.abs_timer_entry);
1423
1424 list_del_init(&timr->it.real.abs_timer_entry);
1425 if (add_clockset_delta(timr, &new_wall_to) &&
1426 del_timer(&timr->it.real.timer)) /* timer run yet? */
1427 add_timer(&timr->it.real.timer);
1428 list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
1429 spin_unlock_irq(&abs_list.lock);
1430 } while (1);
1431
1432 up(&clock_was_set_lock);
1433}
1434
1435long clock_nanosleep_restart(struct restart_block *restart_block);
1436
1437asmlinkage long
1438sys_clock_nanosleep(clockid_t which_clock, int flags,
1439 const struct timespec __user *rqtp,
1440 struct timespec __user *rmtp)
1441{
1442 struct timespec t;
1443 struct restart_block *restart_block =
1444 &(current_thread_info()->restart_block);
1445 int ret;
1446
1447 if (invalid_clockid(which_clock))
1448 return -EINVAL;
1449
1450 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1451 return -EFAULT;
1452
1453 if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
1454 return -EINVAL;
1455
1456 /*
1457 * Do this here as nsleep function does not have the real address.
1458 */
1459 restart_block->arg1 = (unsigned long)rmtp;
1460
1461 ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t));
1462
1463 if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
1464 copy_to_user(rmtp, &t, sizeof (t)))
1465 return -EFAULT;
1466 return ret;
1467}
1468
1469
1470static int common_nsleep(clockid_t which_clock,
1471 int flags, struct timespec *tsave)
1472{
1473 struct timespec t, dum;
1474 struct timer_list new_timer;
1475 DECLARE_WAITQUEUE(abs_wqueue, current);
1476 u64 rq_time = (u64)0;
1477 s64 left;
1478 int abs;
1479 struct restart_block *restart_block =
1480 &current_thread_info()->restart_block;
1481
1482 abs_wqueue.flags = 0;
1483 init_timer(&new_timer);
1484 new_timer.expires = 0;
1485 new_timer.data = (unsigned long) current;
1486 new_timer.function = nanosleep_wake_up;
1487 abs = flags & TIMER_ABSTIME;
1488
1489 if (restart_block->fn == clock_nanosleep_restart) {
1490 /*
1491 * Interrupted by a non-delivered signal, pick up remaining
1492 * time and continue. Remaining time is in arg2 & 3.
1493 */
1494 restart_block->fn = do_no_restart_syscall;
1495
1496 rq_time = restart_block->arg3;
1497 rq_time = (rq_time << 32) + restart_block->arg2;
1498 if (!rq_time)
1499 return -EINTR;
1500 left = rq_time - get_jiffies_64();
1501 if (left <= (s64)0)
1502 return 0; /* Already passed */
1503 }
1504
1505 if (abs && (posix_clocks[which_clock].clock_get !=
1506 posix_clocks[CLOCK_MONOTONIC].clock_get))
1507 add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
1508
1509 do {
1510 t = *tsave;
1511 if (abs || !rq_time) {
1512 adjust_abs_time(&posix_clocks[which_clock], &t, abs,
1513 &rq_time, &dum);
1514 }
1515
1516 left = rq_time - get_jiffies_64();
1517 if (left >= (s64)MAX_JIFFY_OFFSET)
1518 left = (s64)MAX_JIFFY_OFFSET;
1519 if (left < (s64)0)
1520 break;
1521
1522 new_timer.expires = jiffies + left;
1523 __set_current_state(TASK_INTERRUPTIBLE);
1524 add_timer(&new_timer);
1525
1526 schedule();
1527
1528 del_timer_sync(&new_timer);
1529 left = rq_time - get_jiffies_64();
1530 } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
1531
1532 if (abs_wqueue.task_list.next)
1533 finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
1534
1535 if (left > (s64)0) {
1536
1537 /*
1538 * Always restart abs calls from scratch to pick up any
1539 * clock shifting that happened while we are away.
1540 */
1541 if (abs)
1542 return -ERESTARTNOHAND;
1543
1544 left *= TICK_NSEC;
1545 tsave->tv_sec = div_long_long_rem(left,
1546 NSEC_PER_SEC,
1547 &tsave->tv_nsec);
1548 /*
1549 * Restart works by saving the time remaing in
1550 * arg2 & 3 (it is 64-bits of jiffies). The other
1551 * info we need is the clock_id (saved in arg0).
1552 * The sys_call interface needs the users
1553 * timespec return address which _it_ saves in arg1.
1554 * Since we have cast the nanosleep call to a clock_nanosleep
1555 * both can be restarted with the same code.
1556 */
1557 restart_block->fn = clock_nanosleep_restart;
1558 restart_block->arg0 = which_clock;
1559 /*
1560 * Caller sets arg1
1561 */
1562 restart_block->arg2 = rq_time & 0xffffffffLL;
1563 restart_block->arg3 = rq_time >> 32;
1564
1565 return -ERESTART_RESTARTBLOCK;
1566 }
1567
1568 return 0;
1569}
1570/*
1571 * This will restart clock_nanosleep.
1572 */
1573long
1574clock_nanosleep_restart(struct restart_block *restart_block)
1575{
1576 struct timespec t;
1577 int ret = common_nsleep(restart_block->arg0, 0, &t);
1578
1579 if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
1580 copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
1581 sizeof (t)))
1582 return -EFAULT;
1583 return ret;
1584}