diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /kernel/posix-cpu-timers.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'kernel/posix-cpu-timers.c')
-rw-r--r-- | kernel/posix-cpu-timers.c | 1559 |
1 files changed, 1559 insertions, 0 deletions
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c new file mode 100644 index 000000000000..ad85d3f0dcc4 --- /dev/null +++ b/kernel/posix-cpu-timers.c | |||
@@ -0,0 +1,1559 @@ | |||
1 | /* | ||
2 | * Implement CPU time clocks for the POSIX clock interface. | ||
3 | */ | ||
4 | |||
5 | #include <linux/sched.h> | ||
6 | #include <linux/posix-timers.h> | ||
7 | #include <asm/uaccess.h> | ||
8 | #include <linux/errno.h> | ||
9 | |||
10 | static int check_clock(clockid_t which_clock) | ||
11 | { | ||
12 | int error = 0; | ||
13 | struct task_struct *p; | ||
14 | const pid_t pid = CPUCLOCK_PID(which_clock); | ||
15 | |||
16 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | ||
17 | return -EINVAL; | ||
18 | |||
19 | if (pid == 0) | ||
20 | return 0; | ||
21 | |||
22 | read_lock(&tasklist_lock); | ||
23 | p = find_task_by_pid(pid); | ||
24 | if (!p || (CPUCLOCK_PERTHREAD(which_clock) ? | ||
25 | p->tgid != current->tgid : p->tgid != pid)) { | ||
26 | error = -EINVAL; | ||
27 | } | ||
28 | read_unlock(&tasklist_lock); | ||
29 | |||
30 | return error; | ||
31 | } | ||
32 | |||
33 | static inline union cpu_time_count | ||
34 | timespec_to_sample(clockid_t which_clock, const struct timespec *tp) | ||
35 | { | ||
36 | union cpu_time_count ret; | ||
37 | ret.sched = 0; /* high half always zero when .cpu used */ | ||
38 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
39 | ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; | ||
40 | } else { | ||
41 | ret.cpu = timespec_to_cputime(tp); | ||
42 | } | ||
43 | return ret; | ||
44 | } | ||
45 | |||
46 | static void sample_to_timespec(clockid_t which_clock, | ||
47 | union cpu_time_count cpu, | ||
48 | struct timespec *tp) | ||
49 | { | ||
50 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
51 | tp->tv_sec = div_long_long_rem(cpu.sched, | ||
52 | NSEC_PER_SEC, &tp->tv_nsec); | ||
53 | } else { | ||
54 | cputime_to_timespec(cpu.cpu, tp); | ||
55 | } | ||
56 | } | ||
57 | |||
58 | static inline int cpu_time_before(clockid_t which_clock, | ||
59 | union cpu_time_count now, | ||
60 | union cpu_time_count then) | ||
61 | { | ||
62 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
63 | return now.sched < then.sched; | ||
64 | } else { | ||
65 | return cputime_lt(now.cpu, then.cpu); | ||
66 | } | ||
67 | } | ||
68 | static inline void cpu_time_add(clockid_t which_clock, | ||
69 | union cpu_time_count *acc, | ||
70 | union cpu_time_count val) | ||
71 | { | ||
72 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
73 | acc->sched += val.sched; | ||
74 | } else { | ||
75 | acc->cpu = cputime_add(acc->cpu, val.cpu); | ||
76 | } | ||
77 | } | ||
78 | static inline union cpu_time_count cpu_time_sub(clockid_t which_clock, | ||
79 | union cpu_time_count a, | ||
80 | union cpu_time_count b) | ||
81 | { | ||
82 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
83 | a.sched -= b.sched; | ||
84 | } else { | ||
85 | a.cpu = cputime_sub(a.cpu, b.cpu); | ||
86 | } | ||
87 | return a; | ||
88 | } | ||
89 | |||
90 | /* | ||
91 | * Update expiry time from increment, and increase overrun count, | ||
92 | * given the current clock sample. | ||
93 | */ | ||
94 | static inline void bump_cpu_timer(struct k_itimer *timer, | ||
95 | union cpu_time_count now) | ||
96 | { | ||
97 | int i; | ||
98 | |||
99 | if (timer->it.cpu.incr.sched == 0) | ||
100 | return; | ||
101 | |||
102 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | ||
103 | unsigned long long delta, incr; | ||
104 | |||
105 | if (now.sched < timer->it.cpu.expires.sched) | ||
106 | return; | ||
107 | incr = timer->it.cpu.incr.sched; | ||
108 | delta = now.sched + incr - timer->it.cpu.expires.sched; | ||
109 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | ||
110 | for (i = 0; incr < delta - incr; i++) | ||
111 | incr = incr << 1; | ||
112 | for (; i >= 0; incr >>= 1, i--) { | ||
113 | if (delta <= incr) | ||
114 | continue; | ||
115 | timer->it.cpu.expires.sched += incr; | ||
116 | timer->it_overrun += 1 << i; | ||
117 | delta -= incr; | ||
118 | } | ||
119 | } else { | ||
120 | cputime_t delta, incr; | ||
121 | |||
122 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | ||
123 | return; | ||
124 | incr = timer->it.cpu.incr.cpu; | ||
125 | delta = cputime_sub(cputime_add(now.cpu, incr), | ||
126 | timer->it.cpu.expires.cpu); | ||
127 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | ||
128 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | ||
129 | incr = cputime_add(incr, incr); | ||
130 | for (; i >= 0; incr = cputime_halve(incr), i--) { | ||
131 | if (cputime_le(delta, incr)) | ||
132 | continue; | ||
133 | timer->it.cpu.expires.cpu = | ||
134 | cputime_add(timer->it.cpu.expires.cpu, incr); | ||
135 | timer->it_overrun += 1 << i; | ||
136 | delta = cputime_sub(delta, incr); | ||
137 | } | ||
138 | } | ||
139 | } | ||
140 | |||
141 | static inline cputime_t prof_ticks(struct task_struct *p) | ||
142 | { | ||
143 | return cputime_add(p->utime, p->stime); | ||
144 | } | ||
145 | static inline cputime_t virt_ticks(struct task_struct *p) | ||
146 | { | ||
147 | return p->utime; | ||
148 | } | ||
149 | static inline unsigned long long sched_ns(struct task_struct *p) | ||
150 | { | ||
151 | return (p == current) ? current_sched_time(p) : p->sched_time; | ||
152 | } | ||
153 | |||
154 | int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) | ||
155 | { | ||
156 | int error = check_clock(which_clock); | ||
157 | if (!error) { | ||
158 | tp->tv_sec = 0; | ||
159 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | ||
160 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
161 | /* | ||
162 | * If sched_clock is using a cycle counter, we | ||
163 | * don't have any idea of its true resolution | ||
164 | * exported, but it is much more than 1s/HZ. | ||
165 | */ | ||
166 | tp->tv_nsec = 1; | ||
167 | } | ||
168 | } | ||
169 | return error; | ||
170 | } | ||
171 | |||
172 | int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp) | ||
173 | { | ||
174 | /* | ||
175 | * You can never reset a CPU clock, but we check for other errors | ||
176 | * in the call before failing with EPERM. | ||
177 | */ | ||
178 | int error = check_clock(which_clock); | ||
179 | if (error == 0) { | ||
180 | error = -EPERM; | ||
181 | } | ||
182 | return error; | ||
183 | } | ||
184 | |||
185 | |||
186 | /* | ||
187 | * Sample a per-thread clock for the given task. | ||
188 | */ | ||
189 | static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p, | ||
190 | union cpu_time_count *cpu) | ||
191 | { | ||
192 | switch (CPUCLOCK_WHICH(which_clock)) { | ||
193 | default: | ||
194 | return -EINVAL; | ||
195 | case CPUCLOCK_PROF: | ||
196 | cpu->cpu = prof_ticks(p); | ||
197 | break; | ||
198 | case CPUCLOCK_VIRT: | ||
199 | cpu->cpu = virt_ticks(p); | ||
200 | break; | ||
201 | case CPUCLOCK_SCHED: | ||
202 | cpu->sched = sched_ns(p); | ||
203 | break; | ||
204 | } | ||
205 | return 0; | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * Sample a process (thread group) clock for the given group_leader task. | ||
210 | * Must be called with tasklist_lock held for reading. | ||
211 | * Must be called with tasklist_lock held for reading, and p->sighand->siglock. | ||
212 | */ | ||
213 | static int cpu_clock_sample_group_locked(unsigned int clock_idx, | ||
214 | struct task_struct *p, | ||
215 | union cpu_time_count *cpu) | ||
216 | { | ||
217 | struct task_struct *t = p; | ||
218 | switch (clock_idx) { | ||
219 | default: | ||
220 | return -EINVAL; | ||
221 | case CPUCLOCK_PROF: | ||
222 | cpu->cpu = cputime_add(p->signal->utime, p->signal->stime); | ||
223 | do { | ||
224 | cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t)); | ||
225 | t = next_thread(t); | ||
226 | } while (t != p); | ||
227 | break; | ||
228 | case CPUCLOCK_VIRT: | ||
229 | cpu->cpu = p->signal->utime; | ||
230 | do { | ||
231 | cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t)); | ||
232 | t = next_thread(t); | ||
233 | } while (t != p); | ||
234 | break; | ||
235 | case CPUCLOCK_SCHED: | ||
236 | cpu->sched = p->signal->sched_time; | ||
237 | /* Add in each other live thread. */ | ||
238 | while ((t = next_thread(t)) != p) { | ||
239 | cpu->sched += t->sched_time; | ||
240 | } | ||
241 | if (p->tgid == current->tgid) { | ||
242 | /* | ||
243 | * We're sampling ourselves, so include the | ||
244 | * cycles not yet banked. We still omit | ||
245 | * other threads running on other CPUs, | ||
246 | * so the total can always be behind as | ||
247 | * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ). | ||
248 | */ | ||
249 | cpu->sched += current_sched_time(current); | ||
250 | } else { | ||
251 | cpu->sched += p->sched_time; | ||
252 | } | ||
253 | break; | ||
254 | } | ||
255 | return 0; | ||
256 | } | ||
257 | |||
258 | /* | ||
259 | * Sample a process (thread group) clock for the given group_leader task. | ||
260 | * Must be called with tasklist_lock held for reading. | ||
261 | */ | ||
262 | static int cpu_clock_sample_group(clockid_t which_clock, | ||
263 | struct task_struct *p, | ||
264 | union cpu_time_count *cpu) | ||
265 | { | ||
266 | int ret; | ||
267 | unsigned long flags; | ||
268 | spin_lock_irqsave(&p->sighand->siglock, flags); | ||
269 | ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p, | ||
270 | cpu); | ||
271 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
272 | return ret; | ||
273 | } | ||
274 | |||
275 | |||
276 | int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp) | ||
277 | { | ||
278 | const pid_t pid = CPUCLOCK_PID(which_clock); | ||
279 | int error = -EINVAL; | ||
280 | union cpu_time_count rtn; | ||
281 | |||
282 | if (pid == 0) { | ||
283 | /* | ||
284 | * Special case constant value for our own clocks. | ||
285 | * We don't have to do any lookup to find ourselves. | ||
286 | */ | ||
287 | if (CPUCLOCK_PERTHREAD(which_clock)) { | ||
288 | /* | ||
289 | * Sampling just ourselves we can do with no locking. | ||
290 | */ | ||
291 | error = cpu_clock_sample(which_clock, | ||
292 | current, &rtn); | ||
293 | } else { | ||
294 | read_lock(&tasklist_lock); | ||
295 | error = cpu_clock_sample_group(which_clock, | ||
296 | current, &rtn); | ||
297 | read_unlock(&tasklist_lock); | ||
298 | } | ||
299 | } else { | ||
300 | /* | ||
301 | * Find the given PID, and validate that the caller | ||
302 | * should be able to see it. | ||
303 | */ | ||
304 | struct task_struct *p; | ||
305 | read_lock(&tasklist_lock); | ||
306 | p = find_task_by_pid(pid); | ||
307 | if (p) { | ||
308 | if (CPUCLOCK_PERTHREAD(which_clock)) { | ||
309 | if (p->tgid == current->tgid) { | ||
310 | error = cpu_clock_sample(which_clock, | ||
311 | p, &rtn); | ||
312 | } | ||
313 | } else if (p->tgid == pid && p->signal) { | ||
314 | error = cpu_clock_sample_group(which_clock, | ||
315 | p, &rtn); | ||
316 | } | ||
317 | } | ||
318 | read_unlock(&tasklist_lock); | ||
319 | } | ||
320 | |||
321 | if (error) | ||
322 | return error; | ||
323 | sample_to_timespec(which_clock, rtn, tp); | ||
324 | return 0; | ||
325 | } | ||
326 | |||
327 | |||
328 | /* | ||
329 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | ||
330 | * This is called from sys_timer_create with the new timer already locked. | ||
331 | */ | ||
332 | int posix_cpu_timer_create(struct k_itimer *new_timer) | ||
333 | { | ||
334 | int ret = 0; | ||
335 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | ||
336 | struct task_struct *p; | ||
337 | |||
338 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | ||
339 | return -EINVAL; | ||
340 | |||
341 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | ||
342 | new_timer->it.cpu.incr.sched = 0; | ||
343 | new_timer->it.cpu.expires.sched = 0; | ||
344 | |||
345 | read_lock(&tasklist_lock); | ||
346 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | ||
347 | if (pid == 0) { | ||
348 | p = current; | ||
349 | } else { | ||
350 | p = find_task_by_pid(pid); | ||
351 | if (p && p->tgid != current->tgid) | ||
352 | p = NULL; | ||
353 | } | ||
354 | } else { | ||
355 | if (pid == 0) { | ||
356 | p = current->group_leader; | ||
357 | } else { | ||
358 | p = find_task_by_pid(pid); | ||
359 | if (p && p->tgid != pid) | ||
360 | p = NULL; | ||
361 | } | ||
362 | } | ||
363 | new_timer->it.cpu.task = p; | ||
364 | if (p) { | ||
365 | get_task_struct(p); | ||
366 | } else { | ||
367 | ret = -EINVAL; | ||
368 | } | ||
369 | read_unlock(&tasklist_lock); | ||
370 | |||
371 | return ret; | ||
372 | } | ||
373 | |||
374 | /* | ||
375 | * Clean up a CPU-clock timer that is about to be destroyed. | ||
376 | * This is called from timer deletion with the timer already locked. | ||
377 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | ||
378 | * and try again. (This happens when the timer is in the middle of firing.) | ||
379 | */ | ||
380 | int posix_cpu_timer_del(struct k_itimer *timer) | ||
381 | { | ||
382 | struct task_struct *p = timer->it.cpu.task; | ||
383 | |||
384 | if (timer->it.cpu.firing) | ||
385 | return TIMER_RETRY; | ||
386 | |||
387 | if (unlikely(p == NULL)) | ||
388 | return 0; | ||
389 | |||
390 | if (!list_empty(&timer->it.cpu.entry)) { | ||
391 | read_lock(&tasklist_lock); | ||
392 | if (unlikely(p->signal == NULL)) { | ||
393 | /* | ||
394 | * We raced with the reaping of the task. | ||
395 | * The deletion should have cleared us off the list. | ||
396 | */ | ||
397 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | ||
398 | } else { | ||
399 | /* | ||
400 | * Take us off the task's timer list. | ||
401 | */ | ||
402 | spin_lock(&p->sighand->siglock); | ||
403 | list_del(&timer->it.cpu.entry); | ||
404 | spin_unlock(&p->sighand->siglock); | ||
405 | } | ||
406 | read_unlock(&tasklist_lock); | ||
407 | } | ||
408 | put_task_struct(p); | ||
409 | |||
410 | return 0; | ||
411 | } | ||
412 | |||
413 | /* | ||
414 | * Clean out CPU timers still ticking when a thread exited. The task | ||
415 | * pointer is cleared, and the expiry time is replaced with the residual | ||
416 | * time for later timer_gettime calls to return. | ||
417 | * This must be called with the siglock held. | ||
418 | */ | ||
419 | static void cleanup_timers(struct list_head *head, | ||
420 | cputime_t utime, cputime_t stime, | ||
421 | unsigned long long sched_time) | ||
422 | { | ||
423 | struct cpu_timer_list *timer, *next; | ||
424 | cputime_t ptime = cputime_add(utime, stime); | ||
425 | |||
426 | list_for_each_entry_safe(timer, next, head, entry) { | ||
427 | timer->task = NULL; | ||
428 | list_del_init(&timer->entry); | ||
429 | if (cputime_lt(timer->expires.cpu, ptime)) { | ||
430 | timer->expires.cpu = cputime_zero; | ||
431 | } else { | ||
432 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | ||
433 | ptime); | ||
434 | } | ||
435 | } | ||
436 | |||
437 | ++head; | ||
438 | list_for_each_entry_safe(timer, next, head, entry) { | ||
439 | timer->task = NULL; | ||
440 | list_del_init(&timer->entry); | ||
441 | if (cputime_lt(timer->expires.cpu, utime)) { | ||
442 | timer->expires.cpu = cputime_zero; | ||
443 | } else { | ||
444 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | ||
445 | utime); | ||
446 | } | ||
447 | } | ||
448 | |||
449 | ++head; | ||
450 | list_for_each_entry_safe(timer, next, head, entry) { | ||
451 | timer->task = NULL; | ||
452 | list_del_init(&timer->entry); | ||
453 | if (timer->expires.sched < sched_time) { | ||
454 | timer->expires.sched = 0; | ||
455 | } else { | ||
456 | timer->expires.sched -= sched_time; | ||
457 | } | ||
458 | } | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * These are both called with the siglock held, when the current thread | ||
463 | * is being reaped. When the final (leader) thread in the group is reaped, | ||
464 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | ||
465 | */ | ||
466 | void posix_cpu_timers_exit(struct task_struct *tsk) | ||
467 | { | ||
468 | cleanup_timers(tsk->cpu_timers, | ||
469 | tsk->utime, tsk->stime, tsk->sched_time); | ||
470 | |||
471 | } | ||
472 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | ||
473 | { | ||
474 | cleanup_timers(tsk->signal->cpu_timers, | ||
475 | cputime_add(tsk->utime, tsk->signal->utime), | ||
476 | cputime_add(tsk->stime, tsk->signal->stime), | ||
477 | tsk->sched_time + tsk->signal->sched_time); | ||
478 | } | ||
479 | |||
480 | |||
481 | /* | ||
482 | * Set the expiry times of all the threads in the process so one of them | ||
483 | * will go off before the process cumulative expiry total is reached. | ||
484 | */ | ||
485 | static void process_timer_rebalance(struct task_struct *p, | ||
486 | unsigned int clock_idx, | ||
487 | union cpu_time_count expires, | ||
488 | union cpu_time_count val) | ||
489 | { | ||
490 | cputime_t ticks, left; | ||
491 | unsigned long long ns, nsleft; | ||
492 | struct task_struct *t = p; | ||
493 | unsigned int nthreads = atomic_read(&p->signal->live); | ||
494 | |||
495 | switch (clock_idx) { | ||
496 | default: | ||
497 | BUG(); | ||
498 | break; | ||
499 | case CPUCLOCK_PROF: | ||
500 | left = cputime_div(cputime_sub(expires.cpu, val.cpu), | ||
501 | nthreads); | ||
502 | do { | ||
503 | if (!unlikely(t->exit_state)) { | ||
504 | ticks = cputime_add(prof_ticks(t), left); | ||
505 | if (cputime_eq(t->it_prof_expires, | ||
506 | cputime_zero) || | ||
507 | cputime_gt(t->it_prof_expires, ticks)) { | ||
508 | t->it_prof_expires = ticks; | ||
509 | } | ||
510 | } | ||
511 | t = next_thread(t); | ||
512 | } while (t != p); | ||
513 | break; | ||
514 | case CPUCLOCK_VIRT: | ||
515 | left = cputime_div(cputime_sub(expires.cpu, val.cpu), | ||
516 | nthreads); | ||
517 | do { | ||
518 | if (!unlikely(t->exit_state)) { | ||
519 | ticks = cputime_add(virt_ticks(t), left); | ||
520 | if (cputime_eq(t->it_virt_expires, | ||
521 | cputime_zero) || | ||
522 | cputime_gt(t->it_virt_expires, ticks)) { | ||
523 | t->it_virt_expires = ticks; | ||
524 | } | ||
525 | } | ||
526 | t = next_thread(t); | ||
527 | } while (t != p); | ||
528 | break; | ||
529 | case CPUCLOCK_SCHED: | ||
530 | nsleft = expires.sched - val.sched; | ||
531 | do_div(nsleft, nthreads); | ||
532 | do { | ||
533 | if (!unlikely(t->exit_state)) { | ||
534 | ns = t->sched_time + nsleft; | ||
535 | if (t->it_sched_expires == 0 || | ||
536 | t->it_sched_expires > ns) { | ||
537 | t->it_sched_expires = ns; | ||
538 | } | ||
539 | } | ||
540 | t = next_thread(t); | ||
541 | } while (t != p); | ||
542 | break; | ||
543 | } | ||
544 | } | ||
545 | |||
546 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | ||
547 | { | ||
548 | /* | ||
549 | * That's all for this thread or process. | ||
550 | * We leave our residual in expires to be reported. | ||
551 | */ | ||
552 | put_task_struct(timer->it.cpu.task); | ||
553 | timer->it.cpu.task = NULL; | ||
554 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | ||
555 | timer->it.cpu.expires, | ||
556 | now); | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * Insert the timer on the appropriate list before any timers that | ||
561 | * expire later. This must be called with the tasklist_lock held | ||
562 | * for reading, and interrupts disabled. | ||
563 | */ | ||
564 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | ||
565 | { | ||
566 | struct task_struct *p = timer->it.cpu.task; | ||
567 | struct list_head *head, *listpos; | ||
568 | struct cpu_timer_list *const nt = &timer->it.cpu; | ||
569 | struct cpu_timer_list *next; | ||
570 | unsigned long i; | ||
571 | |||
572 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | ||
573 | p->cpu_timers : p->signal->cpu_timers); | ||
574 | head += CPUCLOCK_WHICH(timer->it_clock); | ||
575 | |||
576 | BUG_ON(!irqs_disabled()); | ||
577 | spin_lock(&p->sighand->siglock); | ||
578 | |||
579 | listpos = head; | ||
580 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | ||
581 | list_for_each_entry(next, head, entry) { | ||
582 | if (next->expires.sched > nt->expires.sched) { | ||
583 | listpos = &next->entry; | ||
584 | break; | ||
585 | } | ||
586 | } | ||
587 | } else { | ||
588 | list_for_each_entry(next, head, entry) { | ||
589 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) { | ||
590 | listpos = &next->entry; | ||
591 | break; | ||
592 | } | ||
593 | } | ||
594 | } | ||
595 | list_add(&nt->entry, listpos); | ||
596 | |||
597 | if (listpos == head) { | ||
598 | /* | ||
599 | * We are the new earliest-expiring timer. | ||
600 | * If we are a thread timer, there can always | ||
601 | * be a process timer telling us to stop earlier. | ||
602 | */ | ||
603 | |||
604 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
605 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | ||
606 | default: | ||
607 | BUG(); | ||
608 | case CPUCLOCK_PROF: | ||
609 | if (cputime_eq(p->it_prof_expires, | ||
610 | cputime_zero) || | ||
611 | cputime_gt(p->it_prof_expires, | ||
612 | nt->expires.cpu)) | ||
613 | p->it_prof_expires = nt->expires.cpu; | ||
614 | break; | ||
615 | case CPUCLOCK_VIRT: | ||
616 | if (cputime_eq(p->it_virt_expires, | ||
617 | cputime_zero) || | ||
618 | cputime_gt(p->it_virt_expires, | ||
619 | nt->expires.cpu)) | ||
620 | p->it_virt_expires = nt->expires.cpu; | ||
621 | break; | ||
622 | case CPUCLOCK_SCHED: | ||
623 | if (p->it_sched_expires == 0 || | ||
624 | p->it_sched_expires > nt->expires.sched) | ||
625 | p->it_sched_expires = nt->expires.sched; | ||
626 | break; | ||
627 | } | ||
628 | } else { | ||
629 | /* | ||
630 | * For a process timer, we must balance | ||
631 | * all the live threads' expirations. | ||
632 | */ | ||
633 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | ||
634 | default: | ||
635 | BUG(); | ||
636 | case CPUCLOCK_VIRT: | ||
637 | if (!cputime_eq(p->signal->it_virt_expires, | ||
638 | cputime_zero) && | ||
639 | cputime_lt(p->signal->it_virt_expires, | ||
640 | timer->it.cpu.expires.cpu)) | ||
641 | break; | ||
642 | goto rebalance; | ||
643 | case CPUCLOCK_PROF: | ||
644 | if (!cputime_eq(p->signal->it_prof_expires, | ||
645 | cputime_zero) && | ||
646 | cputime_lt(p->signal->it_prof_expires, | ||
647 | timer->it.cpu.expires.cpu)) | ||
648 | break; | ||
649 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | ||
650 | if (i != RLIM_INFINITY && | ||
651 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | ||
652 | break; | ||
653 | goto rebalance; | ||
654 | case CPUCLOCK_SCHED: | ||
655 | rebalance: | ||
656 | process_timer_rebalance( | ||
657 | timer->it.cpu.task, | ||
658 | CPUCLOCK_WHICH(timer->it_clock), | ||
659 | timer->it.cpu.expires, now); | ||
660 | break; | ||
661 | } | ||
662 | } | ||
663 | } | ||
664 | |||
665 | spin_unlock(&p->sighand->siglock); | ||
666 | } | ||
667 | |||
668 | /* | ||
669 | * The timer is locked, fire it and arrange for its reload. | ||
670 | */ | ||
671 | static void cpu_timer_fire(struct k_itimer *timer) | ||
672 | { | ||
673 | if (unlikely(timer->sigq == NULL)) { | ||
674 | /* | ||
675 | * This a special case for clock_nanosleep, | ||
676 | * not a normal timer from sys_timer_create. | ||
677 | */ | ||
678 | wake_up_process(timer->it_process); | ||
679 | timer->it.cpu.expires.sched = 0; | ||
680 | } else if (timer->it.cpu.incr.sched == 0) { | ||
681 | /* | ||
682 | * One-shot timer. Clear it as soon as it's fired. | ||
683 | */ | ||
684 | posix_timer_event(timer, 0); | ||
685 | timer->it.cpu.expires.sched = 0; | ||
686 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | ||
687 | /* | ||
688 | * The signal did not get queued because the signal | ||
689 | * was ignored, so we won't get any callback to | ||
690 | * reload the timer. But we need to keep it | ||
691 | * ticking in case the signal is deliverable next time. | ||
692 | */ | ||
693 | posix_cpu_timer_schedule(timer); | ||
694 | } | ||
695 | } | ||
696 | |||
697 | /* | ||
698 | * Guts of sys_timer_settime for CPU timers. | ||
699 | * This is called with the timer locked and interrupts disabled. | ||
700 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | ||
701 | * and try again. (This happens when the timer is in the middle of firing.) | ||
702 | */ | ||
703 | int posix_cpu_timer_set(struct k_itimer *timer, int flags, | ||
704 | struct itimerspec *new, struct itimerspec *old) | ||
705 | { | ||
706 | struct task_struct *p = timer->it.cpu.task; | ||
707 | union cpu_time_count old_expires, new_expires, val; | ||
708 | int ret; | ||
709 | |||
710 | if (unlikely(p == NULL)) { | ||
711 | /* | ||
712 | * Timer refers to a dead task's clock. | ||
713 | */ | ||
714 | return -ESRCH; | ||
715 | } | ||
716 | |||
717 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | ||
718 | |||
719 | read_lock(&tasklist_lock); | ||
720 | /* | ||
721 | * We need the tasklist_lock to protect against reaping that | ||
722 | * clears p->signal. If p has just been reaped, we can no | ||
723 | * longer get any information about it at all. | ||
724 | */ | ||
725 | if (unlikely(p->signal == NULL)) { | ||
726 | read_unlock(&tasklist_lock); | ||
727 | put_task_struct(p); | ||
728 | timer->it.cpu.task = NULL; | ||
729 | return -ESRCH; | ||
730 | } | ||
731 | |||
732 | /* | ||
733 | * Disarm any old timer after extracting its expiry time. | ||
734 | */ | ||
735 | BUG_ON(!irqs_disabled()); | ||
736 | spin_lock(&p->sighand->siglock); | ||
737 | old_expires = timer->it.cpu.expires; | ||
738 | list_del_init(&timer->it.cpu.entry); | ||
739 | spin_unlock(&p->sighand->siglock); | ||
740 | |||
741 | /* | ||
742 | * We need to sample the current value to convert the new | ||
743 | * value from to relative and absolute, and to convert the | ||
744 | * old value from absolute to relative. To set a process | ||
745 | * timer, we need a sample to balance the thread expiry | ||
746 | * times (in arm_timer). With an absolute time, we must | ||
747 | * check if it's already passed. In short, we need a sample. | ||
748 | */ | ||
749 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
750 | cpu_clock_sample(timer->it_clock, p, &val); | ||
751 | } else { | ||
752 | cpu_clock_sample_group(timer->it_clock, p, &val); | ||
753 | } | ||
754 | |||
755 | if (old) { | ||
756 | if (old_expires.sched == 0) { | ||
757 | old->it_value.tv_sec = 0; | ||
758 | old->it_value.tv_nsec = 0; | ||
759 | } else { | ||
760 | /* | ||
761 | * Update the timer in case it has | ||
762 | * overrun already. If it has, | ||
763 | * we'll report it as having overrun | ||
764 | * and with the next reloaded timer | ||
765 | * already ticking, though we are | ||
766 | * swallowing that pending | ||
767 | * notification here to install the | ||
768 | * new setting. | ||
769 | */ | ||
770 | bump_cpu_timer(timer, val); | ||
771 | if (cpu_time_before(timer->it_clock, val, | ||
772 | timer->it.cpu.expires)) { | ||
773 | old_expires = cpu_time_sub( | ||
774 | timer->it_clock, | ||
775 | timer->it.cpu.expires, val); | ||
776 | sample_to_timespec(timer->it_clock, | ||
777 | old_expires, | ||
778 | &old->it_value); | ||
779 | } else { | ||
780 | old->it_value.tv_nsec = 1; | ||
781 | old->it_value.tv_sec = 0; | ||
782 | } | ||
783 | } | ||
784 | } | ||
785 | |||
786 | if (unlikely(timer->it.cpu.firing)) { | ||
787 | /* | ||
788 | * We are colliding with the timer actually firing. | ||
789 | * Punt after filling in the timer's old value, and | ||
790 | * disable this firing since we are already reporting | ||
791 | * it as an overrun (thanks to bump_cpu_timer above). | ||
792 | */ | ||
793 | read_unlock(&tasklist_lock); | ||
794 | timer->it.cpu.firing = -1; | ||
795 | ret = TIMER_RETRY; | ||
796 | goto out; | ||
797 | } | ||
798 | |||
799 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | ||
800 | cpu_time_add(timer->it_clock, &new_expires, val); | ||
801 | } | ||
802 | |||
803 | /* | ||
804 | * Install the new expiry time (or zero). | ||
805 | * For a timer with no notification action, we don't actually | ||
806 | * arm the timer (we'll just fake it for timer_gettime). | ||
807 | */ | ||
808 | timer->it.cpu.expires = new_expires; | ||
809 | if (new_expires.sched != 0 && | ||
810 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
811 | cpu_time_before(timer->it_clock, val, new_expires)) { | ||
812 | arm_timer(timer, val); | ||
813 | } | ||
814 | |||
815 | read_unlock(&tasklist_lock); | ||
816 | |||
817 | /* | ||
818 | * Install the new reload setting, and | ||
819 | * set up the signal and overrun bookkeeping. | ||
820 | */ | ||
821 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | ||
822 | &new->it_interval); | ||
823 | |||
824 | /* | ||
825 | * This acts as a modification timestamp for the timer, | ||
826 | * so any automatic reload attempt will punt on seeing | ||
827 | * that we have reset the timer manually. | ||
828 | */ | ||
829 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | ||
830 | ~REQUEUE_PENDING; | ||
831 | timer->it_overrun_last = 0; | ||
832 | timer->it_overrun = -1; | ||
833 | |||
834 | if (new_expires.sched != 0 && | ||
835 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
836 | !cpu_time_before(timer->it_clock, val, new_expires)) { | ||
837 | /* | ||
838 | * The designated time already passed, so we notify | ||
839 | * immediately, even if the thread never runs to | ||
840 | * accumulate more time on this clock. | ||
841 | */ | ||
842 | cpu_timer_fire(timer); | ||
843 | } | ||
844 | |||
845 | ret = 0; | ||
846 | out: | ||
847 | if (old) { | ||
848 | sample_to_timespec(timer->it_clock, | ||
849 | timer->it.cpu.incr, &old->it_interval); | ||
850 | } | ||
851 | return ret; | ||
852 | } | ||
853 | |||
854 | void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | ||
855 | { | ||
856 | union cpu_time_count now; | ||
857 | struct task_struct *p = timer->it.cpu.task; | ||
858 | int clear_dead; | ||
859 | |||
860 | /* | ||
861 | * Easy part: convert the reload time. | ||
862 | */ | ||
863 | sample_to_timespec(timer->it_clock, | ||
864 | timer->it.cpu.incr, &itp->it_interval); | ||
865 | |||
866 | if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ | ||
867 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | ||
868 | return; | ||
869 | } | ||
870 | |||
871 | if (unlikely(p == NULL)) { | ||
872 | /* | ||
873 | * This task already died and the timer will never fire. | ||
874 | * In this case, expires is actually the dead value. | ||
875 | */ | ||
876 | dead: | ||
877 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | ||
878 | &itp->it_value); | ||
879 | return; | ||
880 | } | ||
881 | |||
882 | /* | ||
883 | * Sample the clock to take the difference with the expiry time. | ||
884 | */ | ||
885 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
886 | cpu_clock_sample(timer->it_clock, p, &now); | ||
887 | clear_dead = p->exit_state; | ||
888 | } else { | ||
889 | read_lock(&tasklist_lock); | ||
890 | if (unlikely(p->signal == NULL)) { | ||
891 | /* | ||
892 | * The process has been reaped. | ||
893 | * We can't even collect a sample any more. | ||
894 | * Call the timer disarmed, nothing else to do. | ||
895 | */ | ||
896 | put_task_struct(p); | ||
897 | timer->it.cpu.task = NULL; | ||
898 | timer->it.cpu.expires.sched = 0; | ||
899 | read_unlock(&tasklist_lock); | ||
900 | goto dead; | ||
901 | } else { | ||
902 | cpu_clock_sample_group(timer->it_clock, p, &now); | ||
903 | clear_dead = (unlikely(p->exit_state) && | ||
904 | thread_group_empty(p)); | ||
905 | } | ||
906 | read_unlock(&tasklist_lock); | ||
907 | } | ||
908 | |||
909 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
910 | if (timer->it.cpu.incr.sched == 0 && | ||
911 | cpu_time_before(timer->it_clock, | ||
912 | timer->it.cpu.expires, now)) { | ||
913 | /* | ||
914 | * Do-nothing timer expired and has no reload, | ||
915 | * so it's as if it was never set. | ||
916 | */ | ||
917 | timer->it.cpu.expires.sched = 0; | ||
918 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | ||
919 | return; | ||
920 | } | ||
921 | /* | ||
922 | * Account for any expirations and reloads that should | ||
923 | * have happened. | ||
924 | */ | ||
925 | bump_cpu_timer(timer, now); | ||
926 | } | ||
927 | |||
928 | if (unlikely(clear_dead)) { | ||
929 | /* | ||
930 | * We've noticed that the thread is dead, but | ||
931 | * not yet reaped. Take this opportunity to | ||
932 | * drop our task ref. | ||
933 | */ | ||
934 | clear_dead_task(timer, now); | ||
935 | goto dead; | ||
936 | } | ||
937 | |||
938 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | ||
939 | sample_to_timespec(timer->it_clock, | ||
940 | cpu_time_sub(timer->it_clock, | ||
941 | timer->it.cpu.expires, now), | ||
942 | &itp->it_value); | ||
943 | } else { | ||
944 | /* | ||
945 | * The timer should have expired already, but the firing | ||
946 | * hasn't taken place yet. Say it's just about to expire. | ||
947 | */ | ||
948 | itp->it_value.tv_nsec = 1; | ||
949 | itp->it_value.tv_sec = 0; | ||
950 | } | ||
951 | } | ||
952 | |||
953 | /* | ||
954 | * Check for any per-thread CPU timers that have fired and move them off | ||
955 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | ||
956 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | ||
957 | */ | ||
958 | static void check_thread_timers(struct task_struct *tsk, | ||
959 | struct list_head *firing) | ||
960 | { | ||
961 | struct list_head *timers = tsk->cpu_timers; | ||
962 | |||
963 | tsk->it_prof_expires = cputime_zero; | ||
964 | while (!list_empty(timers)) { | ||
965 | struct cpu_timer_list *t = list_entry(timers->next, | ||
966 | struct cpu_timer_list, | ||
967 | entry); | ||
968 | if (cputime_lt(prof_ticks(tsk), t->expires.cpu)) { | ||
969 | tsk->it_prof_expires = t->expires.cpu; | ||
970 | break; | ||
971 | } | ||
972 | t->firing = 1; | ||
973 | list_move_tail(&t->entry, firing); | ||
974 | } | ||
975 | |||
976 | ++timers; | ||
977 | tsk->it_virt_expires = cputime_zero; | ||
978 | while (!list_empty(timers)) { | ||
979 | struct cpu_timer_list *t = list_entry(timers->next, | ||
980 | struct cpu_timer_list, | ||
981 | entry); | ||
982 | if (cputime_lt(virt_ticks(tsk), t->expires.cpu)) { | ||
983 | tsk->it_virt_expires = t->expires.cpu; | ||
984 | break; | ||
985 | } | ||
986 | t->firing = 1; | ||
987 | list_move_tail(&t->entry, firing); | ||
988 | } | ||
989 | |||
990 | ++timers; | ||
991 | tsk->it_sched_expires = 0; | ||
992 | while (!list_empty(timers)) { | ||
993 | struct cpu_timer_list *t = list_entry(timers->next, | ||
994 | struct cpu_timer_list, | ||
995 | entry); | ||
996 | if (tsk->sched_time < t->expires.sched) { | ||
997 | tsk->it_sched_expires = t->expires.sched; | ||
998 | break; | ||
999 | } | ||
1000 | t->firing = 1; | ||
1001 | list_move_tail(&t->entry, firing); | ||
1002 | } | ||
1003 | } | ||
1004 | |||
1005 | /* | ||
1006 | * Check for any per-thread CPU timers that have fired and move them | ||
1007 | * off the tsk->*_timers list onto the firing list. Per-thread timers | ||
1008 | * have already been taken off. | ||
1009 | */ | ||
1010 | static void check_process_timers(struct task_struct *tsk, | ||
1011 | struct list_head *firing) | ||
1012 | { | ||
1013 | struct signal_struct *const sig = tsk->signal; | ||
1014 | cputime_t utime, stime, ptime, virt_expires, prof_expires; | ||
1015 | unsigned long long sched_time, sched_expires; | ||
1016 | struct task_struct *t; | ||
1017 | struct list_head *timers = sig->cpu_timers; | ||
1018 | |||
1019 | /* | ||
1020 | * Don't sample the current process CPU clocks if there are no timers. | ||
1021 | */ | ||
1022 | if (list_empty(&timers[CPUCLOCK_PROF]) && | ||
1023 | cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
1024 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | ||
1025 | list_empty(&timers[CPUCLOCK_VIRT]) && | ||
1026 | cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
1027 | list_empty(&timers[CPUCLOCK_SCHED])) | ||
1028 | return; | ||
1029 | |||
1030 | /* | ||
1031 | * Collect the current process totals. | ||
1032 | */ | ||
1033 | utime = sig->utime; | ||
1034 | stime = sig->stime; | ||
1035 | sched_time = sig->sched_time; | ||
1036 | t = tsk; | ||
1037 | do { | ||
1038 | utime = cputime_add(utime, t->utime); | ||
1039 | stime = cputime_add(stime, t->stime); | ||
1040 | sched_time += t->sched_time; | ||
1041 | t = next_thread(t); | ||
1042 | } while (t != tsk); | ||
1043 | ptime = cputime_add(utime, stime); | ||
1044 | |||
1045 | prof_expires = cputime_zero; | ||
1046 | while (!list_empty(timers)) { | ||
1047 | struct cpu_timer_list *t = list_entry(timers->next, | ||
1048 | struct cpu_timer_list, | ||
1049 | entry); | ||
1050 | if (cputime_lt(ptime, t->expires.cpu)) { | ||
1051 | prof_expires = t->expires.cpu; | ||
1052 | break; | ||
1053 | } | ||
1054 | t->firing = 1; | ||
1055 | list_move_tail(&t->entry, firing); | ||
1056 | } | ||
1057 | |||
1058 | ++timers; | ||
1059 | virt_expires = cputime_zero; | ||
1060 | while (!list_empty(timers)) { | ||
1061 | struct cpu_timer_list *t = list_entry(timers->next, | ||
1062 | struct cpu_timer_list, | ||
1063 | entry); | ||
1064 | if (cputime_lt(utime, t->expires.cpu)) { | ||
1065 | virt_expires = t->expires.cpu; | ||
1066 | break; | ||
1067 | } | ||
1068 | t->firing = 1; | ||
1069 | list_move_tail(&t->entry, firing); | ||
1070 | } | ||
1071 | |||
1072 | ++timers; | ||
1073 | sched_expires = 0; | ||
1074 | while (!list_empty(timers)) { | ||
1075 | struct cpu_timer_list *t = list_entry(timers->next, | ||
1076 | struct cpu_timer_list, | ||
1077 | entry); | ||
1078 | if (sched_time < t->expires.sched) { | ||
1079 | sched_expires = t->expires.sched; | ||
1080 | break; | ||
1081 | } | ||
1082 | t->firing = 1; | ||
1083 | list_move_tail(&t->entry, firing); | ||
1084 | } | ||
1085 | |||
1086 | /* | ||
1087 | * Check for the special case process timers. | ||
1088 | */ | ||
1089 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | ||
1090 | if (cputime_ge(ptime, sig->it_prof_expires)) { | ||
1091 | /* ITIMER_PROF fires and reloads. */ | ||
1092 | sig->it_prof_expires = sig->it_prof_incr; | ||
1093 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | ||
1094 | sig->it_prof_expires = cputime_add( | ||
1095 | sig->it_prof_expires, ptime); | ||
1096 | } | ||
1097 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
1098 | } | ||
1099 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
1100 | (cputime_eq(prof_expires, cputime_zero) || | ||
1101 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
1102 | prof_expires = sig->it_prof_expires; | ||
1103 | } | ||
1104 | } | ||
1105 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1106 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
1107 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
1108 | sig->it_virt_expires = sig->it_virt_incr; | ||
1109 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1110 | sig->it_virt_expires = cputime_add( | ||
1111 | sig->it_virt_expires, utime); | ||
1112 | } | ||
1113 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
1114 | } | ||
1115 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
1116 | (cputime_eq(virt_expires, cputime_zero) || | ||
1117 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
1118 | virt_expires = sig->it_virt_expires; | ||
1119 | } | ||
1120 | } | ||
1121 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | ||
1122 | unsigned long psecs = cputime_to_secs(ptime); | ||
1123 | cputime_t x; | ||
1124 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { | ||
1125 | /* | ||
1126 | * At the hard limit, we just die. | ||
1127 | * No need to calculate anything else now. | ||
1128 | */ | ||
1129 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | ||
1130 | return; | ||
1131 | } | ||
1132 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { | ||
1133 | /* | ||
1134 | * At the soft limit, send a SIGXCPU every second. | ||
1135 | */ | ||
1136 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | ||
1137 | if (sig->rlim[RLIMIT_CPU].rlim_cur | ||
1138 | < sig->rlim[RLIMIT_CPU].rlim_max) { | ||
1139 | sig->rlim[RLIMIT_CPU].rlim_cur++; | ||
1140 | } | ||
1141 | } | ||
1142 | x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | ||
1143 | if (cputime_eq(prof_expires, cputime_zero) || | ||
1144 | cputime_lt(x, prof_expires)) { | ||
1145 | prof_expires = x; | ||
1146 | } | ||
1147 | } | ||
1148 | |||
1149 | if (!cputime_eq(prof_expires, cputime_zero) || | ||
1150 | !cputime_eq(virt_expires, cputime_zero) || | ||
1151 | sched_expires != 0) { | ||
1152 | /* | ||
1153 | * Rebalance the threads' expiry times for the remaining | ||
1154 | * process CPU timers. | ||
1155 | */ | ||
1156 | |||
1157 | cputime_t prof_left, virt_left, ticks; | ||
1158 | unsigned long long sched_left, sched; | ||
1159 | const unsigned int nthreads = atomic_read(&sig->live); | ||
1160 | |||
1161 | prof_left = cputime_sub(prof_expires, utime); | ||
1162 | prof_left = cputime_sub(prof_left, stime); | ||
1163 | prof_left = cputime_div(prof_left, nthreads); | ||
1164 | virt_left = cputime_sub(virt_expires, utime); | ||
1165 | virt_left = cputime_div(virt_left, nthreads); | ||
1166 | if (sched_expires) { | ||
1167 | sched_left = sched_expires - sched_time; | ||
1168 | do_div(sched_left, nthreads); | ||
1169 | } else { | ||
1170 | sched_left = 0; | ||
1171 | } | ||
1172 | t = tsk; | ||
1173 | do { | ||
1174 | ticks = cputime_add(cputime_add(t->utime, t->stime), | ||
1175 | prof_left); | ||
1176 | if (!cputime_eq(prof_expires, cputime_zero) && | ||
1177 | (cputime_eq(t->it_prof_expires, cputime_zero) || | ||
1178 | cputime_gt(t->it_prof_expires, ticks))) { | ||
1179 | t->it_prof_expires = ticks; | ||
1180 | } | ||
1181 | |||
1182 | ticks = cputime_add(t->utime, virt_left); | ||
1183 | if (!cputime_eq(virt_expires, cputime_zero) && | ||
1184 | (cputime_eq(t->it_virt_expires, cputime_zero) || | ||
1185 | cputime_gt(t->it_virt_expires, ticks))) { | ||
1186 | t->it_virt_expires = ticks; | ||
1187 | } | ||
1188 | |||
1189 | sched = t->sched_time + sched_left; | ||
1190 | if (sched_expires && (t->it_sched_expires == 0 || | ||
1191 | t->it_sched_expires > sched)) { | ||
1192 | t->it_sched_expires = sched; | ||
1193 | } | ||
1194 | |||
1195 | do { | ||
1196 | t = next_thread(t); | ||
1197 | } while (unlikely(t->exit_state)); | ||
1198 | } while (t != tsk); | ||
1199 | } | ||
1200 | } | ||
1201 | |||
1202 | /* | ||
1203 | * This is called from the signal code (via do_schedule_next_timer) | ||
1204 | * when the last timer signal was delivered and we have to reload the timer. | ||
1205 | */ | ||
1206 | void posix_cpu_timer_schedule(struct k_itimer *timer) | ||
1207 | { | ||
1208 | struct task_struct *p = timer->it.cpu.task; | ||
1209 | union cpu_time_count now; | ||
1210 | |||
1211 | if (unlikely(p == NULL)) | ||
1212 | /* | ||
1213 | * The task was cleaned up already, no future firings. | ||
1214 | */ | ||
1215 | return; | ||
1216 | |||
1217 | /* | ||
1218 | * Fetch the current sample and update the timer's expiry time. | ||
1219 | */ | ||
1220 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
1221 | cpu_clock_sample(timer->it_clock, p, &now); | ||
1222 | bump_cpu_timer(timer, now); | ||
1223 | if (unlikely(p->exit_state)) { | ||
1224 | clear_dead_task(timer, now); | ||
1225 | return; | ||
1226 | } | ||
1227 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | ||
1228 | } else { | ||
1229 | read_lock(&tasklist_lock); | ||
1230 | if (unlikely(p->signal == NULL)) { | ||
1231 | /* | ||
1232 | * The process has been reaped. | ||
1233 | * We can't even collect a sample any more. | ||
1234 | */ | ||
1235 | put_task_struct(p); | ||
1236 | timer->it.cpu.task = p = NULL; | ||
1237 | timer->it.cpu.expires.sched = 0; | ||
1238 | read_unlock(&tasklist_lock); | ||
1239 | return; | ||
1240 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { | ||
1241 | /* | ||
1242 | * We've noticed that the thread is dead, but | ||
1243 | * not yet reaped. Take this opportunity to | ||
1244 | * drop our task ref. | ||
1245 | */ | ||
1246 | clear_dead_task(timer, now); | ||
1247 | read_unlock(&tasklist_lock); | ||
1248 | return; | ||
1249 | } | ||
1250 | cpu_clock_sample_group(timer->it_clock, p, &now); | ||
1251 | bump_cpu_timer(timer, now); | ||
1252 | /* Leave the tasklist_lock locked for the call below. */ | ||
1253 | } | ||
1254 | |||
1255 | /* | ||
1256 | * Now re-arm for the new expiry time. | ||
1257 | */ | ||
1258 | arm_timer(timer, now); | ||
1259 | |||
1260 | read_unlock(&tasklist_lock); | ||
1261 | } | ||
1262 | |||
1263 | /* | ||
1264 | * This is called from the timer interrupt handler. The irq handler has | ||
1265 | * already updated our counts. We need to check if any timers fire now. | ||
1266 | * Interrupts are disabled. | ||
1267 | */ | ||
1268 | void run_posix_cpu_timers(struct task_struct *tsk) | ||
1269 | { | ||
1270 | LIST_HEAD(firing); | ||
1271 | struct k_itimer *timer, *next; | ||
1272 | |||
1273 | BUG_ON(!irqs_disabled()); | ||
1274 | |||
1275 | #define UNEXPIRED(clock) \ | ||
1276 | (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \ | ||
1277 | cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires)) | ||
1278 | |||
1279 | if (UNEXPIRED(prof) && UNEXPIRED(virt) && | ||
1280 | (tsk->it_sched_expires == 0 || | ||
1281 | tsk->sched_time < tsk->it_sched_expires)) | ||
1282 | return; | ||
1283 | |||
1284 | #undef UNEXPIRED | ||
1285 | |||
1286 | BUG_ON(tsk->exit_state); | ||
1287 | |||
1288 | /* | ||
1289 | * Double-check with locks held. | ||
1290 | */ | ||
1291 | read_lock(&tasklist_lock); | ||
1292 | spin_lock(&tsk->sighand->siglock); | ||
1293 | |||
1294 | /* | ||
1295 | * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N] | ||
1296 | * all the timers that are firing, and put them on the firing list. | ||
1297 | */ | ||
1298 | check_thread_timers(tsk, &firing); | ||
1299 | check_process_timers(tsk, &firing); | ||
1300 | |||
1301 | /* | ||
1302 | * We must release these locks before taking any timer's lock. | ||
1303 | * There is a potential race with timer deletion here, as the | ||
1304 | * siglock now protects our private firing list. We have set | ||
1305 | * the firing flag in each timer, so that a deletion attempt | ||
1306 | * that gets the timer lock before we do will give it up and | ||
1307 | * spin until we've taken care of that timer below. | ||
1308 | */ | ||
1309 | spin_unlock(&tsk->sighand->siglock); | ||
1310 | read_unlock(&tasklist_lock); | ||
1311 | |||
1312 | /* | ||
1313 | * Now that all the timers on our list have the firing flag, | ||
1314 | * noone will touch their list entries but us. We'll take | ||
1315 | * each timer's lock before clearing its firing flag, so no | ||
1316 | * timer call will interfere. | ||
1317 | */ | ||
1318 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | ||
1319 | int firing; | ||
1320 | spin_lock(&timer->it_lock); | ||
1321 | list_del_init(&timer->it.cpu.entry); | ||
1322 | firing = timer->it.cpu.firing; | ||
1323 | timer->it.cpu.firing = 0; | ||
1324 | /* | ||
1325 | * The firing flag is -1 if we collided with a reset | ||
1326 | * of the timer, which already reported this | ||
1327 | * almost-firing as an overrun. So don't generate an event. | ||
1328 | */ | ||
1329 | if (likely(firing >= 0)) { | ||
1330 | cpu_timer_fire(timer); | ||
1331 | } | ||
1332 | spin_unlock(&timer->it_lock); | ||
1333 | } | ||
1334 | } | ||
1335 | |||
1336 | /* | ||
1337 | * Set one of the process-wide special case CPU timers. | ||
1338 | * The tasklist_lock and tsk->sighand->siglock must be held by the caller. | ||
1339 | * The oldval argument is null for the RLIMIT_CPU timer, where *newval is | ||
1340 | * absolute; non-null for ITIMER_*, where *newval is relative and we update | ||
1341 | * it to be absolute, *oldval is absolute and we update it to be relative. | ||
1342 | */ | ||
1343 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | ||
1344 | cputime_t *newval, cputime_t *oldval) | ||
1345 | { | ||
1346 | union cpu_time_count now; | ||
1347 | struct list_head *head; | ||
1348 | |||
1349 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | ||
1350 | cpu_clock_sample_group_locked(clock_idx, tsk, &now); | ||
1351 | |||
1352 | if (oldval) { | ||
1353 | if (!cputime_eq(*oldval, cputime_zero)) { | ||
1354 | if (cputime_le(*oldval, now.cpu)) { | ||
1355 | /* Just about to fire. */ | ||
1356 | *oldval = jiffies_to_cputime(1); | ||
1357 | } else { | ||
1358 | *oldval = cputime_sub(*oldval, now.cpu); | ||
1359 | } | ||
1360 | } | ||
1361 | |||
1362 | if (cputime_eq(*newval, cputime_zero)) | ||
1363 | return; | ||
1364 | *newval = cputime_add(*newval, now.cpu); | ||
1365 | |||
1366 | /* | ||
1367 | * If the RLIMIT_CPU timer will expire before the | ||
1368 | * ITIMER_PROF timer, we have nothing else to do. | ||
1369 | */ | ||
1370 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | ||
1371 | < cputime_to_secs(*newval)) | ||
1372 | return; | ||
1373 | } | ||
1374 | |||
1375 | /* | ||
1376 | * Check whether there are any process timers already set to fire | ||
1377 | * before this one. If so, we don't have anything more to do. | ||
1378 | */ | ||
1379 | head = &tsk->signal->cpu_timers[clock_idx]; | ||
1380 | if (list_empty(head) || | ||
1381 | cputime_ge(list_entry(head->next, | ||
1382 | struct cpu_timer_list, entry)->expires.cpu, | ||
1383 | *newval)) { | ||
1384 | /* | ||
1385 | * Rejigger each thread's expiry time so that one will | ||
1386 | * notice before we hit the process-cumulative expiry time. | ||
1387 | */ | ||
1388 | union cpu_time_count expires = { .sched = 0 }; | ||
1389 | expires.cpu = *newval; | ||
1390 | process_timer_rebalance(tsk, clock_idx, expires, now); | ||
1391 | } | ||
1392 | } | ||
1393 | |||
1394 | static long posix_cpu_clock_nanosleep_restart(struct restart_block *); | ||
1395 | |||
1396 | int posix_cpu_nsleep(clockid_t which_clock, int flags, | ||
1397 | struct timespec *rqtp) | ||
1398 | { | ||
1399 | struct restart_block *restart_block = | ||
1400 | ¤t_thread_info()->restart_block; | ||
1401 | struct k_itimer timer; | ||
1402 | int error; | ||
1403 | |||
1404 | /* | ||
1405 | * Diagnose required errors first. | ||
1406 | */ | ||
1407 | if (CPUCLOCK_PERTHREAD(which_clock) && | ||
1408 | (CPUCLOCK_PID(which_clock) == 0 || | ||
1409 | CPUCLOCK_PID(which_clock) == current->pid)) | ||
1410 | return -EINVAL; | ||
1411 | |||
1412 | /* | ||
1413 | * Set up a temporary timer and then wait for it to go off. | ||
1414 | */ | ||
1415 | memset(&timer, 0, sizeof timer); | ||
1416 | spin_lock_init(&timer.it_lock); | ||
1417 | timer.it_clock = which_clock; | ||
1418 | timer.it_overrun = -1; | ||
1419 | error = posix_cpu_timer_create(&timer); | ||
1420 | timer.it_process = current; | ||
1421 | if (!error) { | ||
1422 | struct timespec __user *rmtp; | ||
1423 | static struct itimerspec zero_it; | ||
1424 | struct itimerspec it = { .it_value = *rqtp, | ||
1425 | .it_interval = {} }; | ||
1426 | |||
1427 | spin_lock_irq(&timer.it_lock); | ||
1428 | error = posix_cpu_timer_set(&timer, flags, &it, NULL); | ||
1429 | if (error) { | ||
1430 | spin_unlock_irq(&timer.it_lock); | ||
1431 | return error; | ||
1432 | } | ||
1433 | |||
1434 | while (!signal_pending(current)) { | ||
1435 | if (timer.it.cpu.expires.sched == 0) { | ||
1436 | /* | ||
1437 | * Our timer fired and was reset. | ||
1438 | */ | ||
1439 | spin_unlock_irq(&timer.it_lock); | ||
1440 | return 0; | ||
1441 | } | ||
1442 | |||
1443 | /* | ||
1444 | * Block until cpu_timer_fire (or a signal) wakes us. | ||
1445 | */ | ||
1446 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1447 | spin_unlock_irq(&timer.it_lock); | ||
1448 | schedule(); | ||
1449 | spin_lock_irq(&timer.it_lock); | ||
1450 | } | ||
1451 | |||
1452 | /* | ||
1453 | * We were interrupted by a signal. | ||
1454 | */ | ||
1455 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | ||
1456 | posix_cpu_timer_set(&timer, 0, &zero_it, &it); | ||
1457 | spin_unlock_irq(&timer.it_lock); | ||
1458 | |||
1459 | if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { | ||
1460 | /* | ||
1461 | * It actually did fire already. | ||
1462 | */ | ||
1463 | return 0; | ||
1464 | } | ||
1465 | |||
1466 | /* | ||
1467 | * Report back to the user the time still remaining. | ||
1468 | */ | ||
1469 | rmtp = (struct timespec __user *) restart_block->arg1; | ||
1470 | if (rmtp != NULL && !(flags & TIMER_ABSTIME) && | ||
1471 | copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | ||
1472 | return -EFAULT; | ||
1473 | |||
1474 | restart_block->fn = posix_cpu_clock_nanosleep_restart; | ||
1475 | /* Caller already set restart_block->arg1 */ | ||
1476 | restart_block->arg0 = which_clock; | ||
1477 | restart_block->arg2 = rqtp->tv_sec; | ||
1478 | restart_block->arg3 = rqtp->tv_nsec; | ||
1479 | |||
1480 | error = -ERESTART_RESTARTBLOCK; | ||
1481 | } | ||
1482 | |||
1483 | return error; | ||
1484 | } | ||
1485 | |||
1486 | static long | ||
1487 | posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block) | ||
1488 | { | ||
1489 | clockid_t which_clock = restart_block->arg0; | ||
1490 | struct timespec t = { .tv_sec = restart_block->arg2, | ||
1491 | .tv_nsec = restart_block->arg3 }; | ||
1492 | restart_block->fn = do_no_restart_syscall; | ||
1493 | return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t); | ||
1494 | } | ||
1495 | |||
1496 | |||
1497 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | ||
1498 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | ||
1499 | |||
1500 | static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) | ||
1501 | { | ||
1502 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | ||
1503 | } | ||
1504 | static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp) | ||
1505 | { | ||
1506 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | ||
1507 | } | ||
1508 | static int process_cpu_timer_create(struct k_itimer *timer) | ||
1509 | { | ||
1510 | timer->it_clock = PROCESS_CLOCK; | ||
1511 | return posix_cpu_timer_create(timer); | ||
1512 | } | ||
1513 | static int process_cpu_nsleep(clockid_t which_clock, int flags, | ||
1514 | struct timespec *rqtp) | ||
1515 | { | ||
1516 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); | ||
1517 | } | ||
1518 | static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) | ||
1519 | { | ||
1520 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | ||
1521 | } | ||
1522 | static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp) | ||
1523 | { | ||
1524 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | ||
1525 | } | ||
1526 | static int thread_cpu_timer_create(struct k_itimer *timer) | ||
1527 | { | ||
1528 | timer->it_clock = THREAD_CLOCK; | ||
1529 | return posix_cpu_timer_create(timer); | ||
1530 | } | ||
1531 | static int thread_cpu_nsleep(clockid_t which_clock, int flags, | ||
1532 | struct timespec *rqtp) | ||
1533 | { | ||
1534 | return -EINVAL; | ||
1535 | } | ||
1536 | |||
1537 | static __init int init_posix_cpu_timers(void) | ||
1538 | { | ||
1539 | struct k_clock process = { | ||
1540 | .clock_getres = process_cpu_clock_getres, | ||
1541 | .clock_get = process_cpu_clock_get, | ||
1542 | .clock_set = do_posix_clock_nosettime, | ||
1543 | .timer_create = process_cpu_timer_create, | ||
1544 | .nsleep = process_cpu_nsleep, | ||
1545 | }; | ||
1546 | struct k_clock thread = { | ||
1547 | .clock_getres = thread_cpu_clock_getres, | ||
1548 | .clock_get = thread_cpu_clock_get, | ||
1549 | .clock_set = do_posix_clock_nosettime, | ||
1550 | .timer_create = thread_cpu_timer_create, | ||
1551 | .nsleep = thread_cpu_nsleep, | ||
1552 | }; | ||
1553 | |||
1554 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | ||
1555 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | ||
1556 | |||
1557 | return 0; | ||
1558 | } | ||
1559 | __initcall(init_posix_cpu_timers); | ||