diff options
| author | Haavard Skinnemoen <haavard.skinnemoen@atmel.com> | 2009-10-06 11:36:55 -0400 |
|---|---|---|
| committer | Haavard Skinnemoen <haavard.skinnemoen@atmel.com> | 2009-10-06 11:36:55 -0400 |
| commit | d94e5fcbf1420366dcb4102bafe04dbcfc0d0d4b (patch) | |
| tree | a9b7de7df6da5c3132cc68169b9c47ba288ccd42 /kernel/perf_event.c | |
| parent | d55651168a20078a94597a297d5cdfd807bf07b6 (diff) | |
| parent | 374576a8b6f865022c0fd1ca62396889b23d66dd (diff) | |
Merge commit 'v2.6.32-rc3'
Diffstat (limited to 'kernel/perf_event.c')
| -rw-r--r-- | kernel/perf_event.c | 5000 |
1 files changed, 5000 insertions, 0 deletions
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..0f86feb6db0c --- /dev/null +++ b/kernel/perf_event.c | |||
| @@ -0,0 +1,5000 @@ | |||
| 1 | /* | ||
| 2 | * Performance events core code: | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_event.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU events: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_events __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_events __read_mostly; | ||
| 43 | static atomic_t nr_mmap_events __read_mostly; | ||
| 44 | static atomic_t nr_comm_events __read_mostly; | ||
| 45 | static atomic_t nr_task_events __read_mostly; | ||
| 46 | |||
| 47 | /* | ||
| 48 | * perf event paranoia level: | ||
| 49 | * -1 - not paranoid at all | ||
| 50 | * 0 - disallow raw tracepoint access for unpriv | ||
| 51 | * 1 - disallow cpu events for unpriv | ||
| 52 | * 2 - disallow kernel profiling for unpriv | ||
| 53 | */ | ||
| 54 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
| 55 | |||
| 56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
| 57 | { | ||
| 58 | return sysctl_perf_event_paranoid > -1; | ||
| 59 | } | ||
| 60 | |||
| 61 | static inline bool perf_paranoid_cpu(void) | ||
| 62 | { | ||
| 63 | return sysctl_perf_event_paranoid > 0; | ||
| 64 | } | ||
| 65 | |||
| 66 | static inline bool perf_paranoid_kernel(void) | ||
| 67 | { | ||
| 68 | return sysctl_perf_event_paranoid > 1; | ||
| 69 | } | ||
| 70 | |||
| 71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 72 | |||
| 73 | /* | ||
| 74 | * max perf event sample rate | ||
| 75 | */ | ||
| 76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
| 77 | |||
| 78 | static atomic64_t perf_event_id; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Lock for (sysadmin-configurable) event reservations: | ||
| 82 | */ | ||
| 83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 84 | |||
| 85 | /* | ||
| 86 | * Architecture provided APIs - weak aliases: | ||
| 87 | */ | ||
| 88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
| 89 | { | ||
| 90 | return NULL; | ||
| 91 | } | ||
| 92 | |||
| 93 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 94 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 95 | |||
| 96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
| 97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
| 98 | |||
| 99 | int __weak | ||
| 100 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
| 101 | struct perf_cpu_context *cpuctx, | ||
| 102 | struct perf_event_context *ctx, int cpu) | ||
| 103 | { | ||
| 104 | return 0; | ||
| 105 | } | ||
| 106 | |||
| 107 | void __weak perf_event_print_debug(void) { } | ||
| 108 | |||
| 109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
| 110 | |||
| 111 | void __perf_disable(void) | ||
| 112 | { | ||
| 113 | __get_cpu_var(perf_disable_count)++; | ||
| 114 | } | ||
| 115 | |||
| 116 | bool __perf_enable(void) | ||
| 117 | { | ||
| 118 | return !--__get_cpu_var(perf_disable_count); | ||
| 119 | } | ||
| 120 | |||
| 121 | void perf_disable(void) | ||
| 122 | { | ||
| 123 | __perf_disable(); | ||
| 124 | hw_perf_disable(); | ||
| 125 | } | ||
| 126 | |||
| 127 | void perf_enable(void) | ||
| 128 | { | ||
| 129 | if (__perf_enable()) | ||
| 130 | hw_perf_enable(); | ||
| 131 | } | ||
| 132 | |||
| 133 | static void get_ctx(struct perf_event_context *ctx) | ||
| 134 | { | ||
| 135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void free_ctx(struct rcu_head *head) | ||
| 139 | { | ||
| 140 | struct perf_event_context *ctx; | ||
| 141 | |||
| 142 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
| 143 | kfree(ctx); | ||
| 144 | } | ||
| 145 | |||
| 146 | static void put_ctx(struct perf_event_context *ctx) | ||
| 147 | { | ||
| 148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 149 | if (ctx->parent_ctx) | ||
| 150 | put_ctx(ctx->parent_ctx); | ||
| 151 | if (ctx->task) | ||
| 152 | put_task_struct(ctx->task); | ||
| 153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 154 | } | ||
| 155 | } | ||
| 156 | |||
| 157 | static void unclone_ctx(struct perf_event_context *ctx) | ||
| 158 | { | ||
| 159 | if (ctx->parent_ctx) { | ||
| 160 | put_ctx(ctx->parent_ctx); | ||
| 161 | ctx->parent_ctx = NULL; | ||
| 162 | } | ||
| 163 | } | ||
| 164 | |||
| 165 | /* | ||
| 166 | * If we inherit events we want to return the parent event id | ||
| 167 | * to userspace. | ||
| 168 | */ | ||
| 169 | static u64 primary_event_id(struct perf_event *event) | ||
| 170 | { | ||
| 171 | u64 id = event->id; | ||
| 172 | |||
| 173 | if (event->parent) | ||
| 174 | id = event->parent->id; | ||
| 175 | |||
| 176 | return id; | ||
| 177 | } | ||
| 178 | |||
| 179 | /* | ||
| 180 | * Get the perf_event_context for a task and lock it. | ||
| 181 | * This has to cope with with the fact that until it is locked, | ||
| 182 | * the context could get moved to another task. | ||
| 183 | */ | ||
| 184 | static struct perf_event_context * | ||
| 185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 186 | { | ||
| 187 | struct perf_event_context *ctx; | ||
| 188 | |||
| 189 | rcu_read_lock(); | ||
| 190 | retry: | ||
| 191 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
| 192 | if (ctx) { | ||
| 193 | /* | ||
| 194 | * If this context is a clone of another, it might | ||
| 195 | * get swapped for another underneath us by | ||
| 196 | * perf_event_task_sched_out, though the | ||
| 197 | * rcu_read_lock() protects us from any context | ||
| 198 | * getting freed. Lock the context and check if it | ||
| 199 | * got swapped before we could get the lock, and retry | ||
| 200 | * if so. If we locked the right context, then it | ||
| 201 | * can't get swapped on us any more. | ||
| 202 | */ | ||
| 203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
| 205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 206 | goto retry; | ||
| 207 | } | ||
| 208 | |||
| 209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 211 | ctx = NULL; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | rcu_read_unlock(); | ||
| 215 | return ctx; | ||
| 216 | } | ||
| 217 | |||
| 218 | /* | ||
| 219 | * Get the context for a task and increment its pin_count so it | ||
| 220 | * can't get swapped to another task. This also increments its | ||
| 221 | * reference count so that the context can't get freed. | ||
| 222 | */ | ||
| 223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
| 224 | { | ||
| 225 | struct perf_event_context *ctx; | ||
| 226 | unsigned long flags; | ||
| 227 | |||
| 228 | ctx = perf_lock_task_context(task, &flags); | ||
| 229 | if (ctx) { | ||
| 230 | ++ctx->pin_count; | ||
| 231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 232 | } | ||
| 233 | return ctx; | ||
| 234 | } | ||
| 235 | |||
| 236 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
| 237 | { | ||
| 238 | unsigned long flags; | ||
| 239 | |||
| 240 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 241 | --ctx->pin_count; | ||
| 242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 243 | put_ctx(ctx); | ||
| 244 | } | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Add a event from the lists for its context. | ||
| 248 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 249 | */ | ||
| 250 | static void | ||
| 251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 252 | { | ||
| 253 | struct perf_event *group_leader = event->group_leader; | ||
| 254 | |||
| 255 | /* | ||
| 256 | * Depending on whether it is a standalone or sibling event, | ||
| 257 | * add it straight to the context's event list, or to the group | ||
| 258 | * leader's sibling list: | ||
| 259 | */ | ||
| 260 | if (group_leader == event) | ||
| 261 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
| 262 | else { | ||
| 263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
| 264 | group_leader->nr_siblings++; | ||
| 265 | } | ||
| 266 | |||
| 267 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
| 268 | ctx->nr_events++; | ||
| 269 | if (event->attr.inherit_stat) | ||
| 270 | ctx->nr_stat++; | ||
| 271 | } | ||
| 272 | |||
| 273 | /* | ||
| 274 | * Remove a event from the lists for its context. | ||
| 275 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 276 | */ | ||
| 277 | static void | ||
| 278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 279 | { | ||
| 280 | struct perf_event *sibling, *tmp; | ||
| 281 | |||
| 282 | if (list_empty(&event->group_entry)) | ||
| 283 | return; | ||
| 284 | ctx->nr_events--; | ||
| 285 | if (event->attr.inherit_stat) | ||
| 286 | ctx->nr_stat--; | ||
| 287 | |||
| 288 | list_del_init(&event->group_entry); | ||
| 289 | list_del_rcu(&event->event_entry); | ||
| 290 | |||
| 291 | if (event->group_leader != event) | ||
| 292 | event->group_leader->nr_siblings--; | ||
| 293 | |||
| 294 | /* | ||
| 295 | * If this was a group event with sibling events then | ||
| 296 | * upgrade the siblings to singleton events by adding them | ||
| 297 | * to the context list directly: | ||
| 298 | */ | ||
| 299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
| 300 | |||
| 301 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
| 302 | sibling->group_leader = sibling; | ||
| 303 | } | ||
| 304 | } | ||
| 305 | |||
| 306 | static void | ||
| 307 | event_sched_out(struct perf_event *event, | ||
| 308 | struct perf_cpu_context *cpuctx, | ||
| 309 | struct perf_event_context *ctx) | ||
| 310 | { | ||
| 311 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 312 | return; | ||
| 313 | |||
| 314 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 315 | if (event->pending_disable) { | ||
| 316 | event->pending_disable = 0; | ||
| 317 | event->state = PERF_EVENT_STATE_OFF; | ||
| 318 | } | ||
| 319 | event->tstamp_stopped = ctx->time; | ||
| 320 | event->pmu->disable(event); | ||
| 321 | event->oncpu = -1; | ||
| 322 | |||
| 323 | if (!is_software_event(event)) | ||
| 324 | cpuctx->active_oncpu--; | ||
| 325 | ctx->nr_active--; | ||
| 326 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
| 327 | cpuctx->exclusive = 0; | ||
| 328 | } | ||
| 329 | |||
| 330 | static void | ||
| 331 | group_sched_out(struct perf_event *group_event, | ||
| 332 | struct perf_cpu_context *cpuctx, | ||
| 333 | struct perf_event_context *ctx) | ||
| 334 | { | ||
| 335 | struct perf_event *event; | ||
| 336 | |||
| 337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 338 | return; | ||
| 339 | |||
| 340 | event_sched_out(group_event, cpuctx, ctx); | ||
| 341 | |||
| 342 | /* | ||
| 343 | * Schedule out siblings (if any): | ||
| 344 | */ | ||
| 345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
| 346 | event_sched_out(event, cpuctx, ctx); | ||
| 347 | |||
| 348 | if (group_event->attr.exclusive) | ||
| 349 | cpuctx->exclusive = 0; | ||
| 350 | } | ||
| 351 | |||
| 352 | /* | ||
| 353 | * Cross CPU call to remove a performance event | ||
| 354 | * | ||
| 355 | * We disable the event on the hardware level first. After that we | ||
| 356 | * remove it from the context list. | ||
| 357 | */ | ||
| 358 | static void __perf_event_remove_from_context(void *info) | ||
| 359 | { | ||
| 360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 361 | struct perf_event *event = info; | ||
| 362 | struct perf_event_context *ctx = event->ctx; | ||
| 363 | |||
| 364 | /* | ||
| 365 | * If this is a task context, we need to check whether it is | ||
| 366 | * the current task context of this cpu. If not it has been | ||
| 367 | * scheduled out before the smp call arrived. | ||
| 368 | */ | ||
| 369 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 370 | return; | ||
| 371 | |||
| 372 | spin_lock(&ctx->lock); | ||
| 373 | /* | ||
| 374 | * Protect the list operation against NMI by disabling the | ||
| 375 | * events on a global level. | ||
| 376 | */ | ||
| 377 | perf_disable(); | ||
| 378 | |||
| 379 | event_sched_out(event, cpuctx, ctx); | ||
| 380 | |||
| 381 | list_del_event(event, ctx); | ||
| 382 | |||
| 383 | if (!ctx->task) { | ||
| 384 | /* | ||
| 385 | * Allow more per task events with respect to the | ||
| 386 | * reservation: | ||
| 387 | */ | ||
| 388 | cpuctx->max_pertask = | ||
| 389 | min(perf_max_events - ctx->nr_events, | ||
| 390 | perf_max_events - perf_reserved_percpu); | ||
| 391 | } | ||
| 392 | |||
| 393 | perf_enable(); | ||
| 394 | spin_unlock(&ctx->lock); | ||
| 395 | } | ||
| 396 | |||
| 397 | |||
| 398 | /* | ||
| 399 | * Remove the event from a task's (or a CPU's) list of events. | ||
| 400 | * | ||
| 401 | * Must be called with ctx->mutex held. | ||
| 402 | * | ||
| 403 | * CPU events are removed with a smp call. For task events we only | ||
| 404 | * call when the task is on a CPU. | ||
| 405 | * | ||
| 406 | * If event->ctx is a cloned context, callers must make sure that | ||
| 407 | * every task struct that event->ctx->task could possibly point to | ||
| 408 | * remains valid. This is OK when called from perf_release since | ||
| 409 | * that only calls us on the top-level context, which can't be a clone. | ||
| 410 | * When called from perf_event_exit_task, it's OK because the | ||
| 411 | * context has been detached from its task. | ||
| 412 | */ | ||
| 413 | static void perf_event_remove_from_context(struct perf_event *event) | ||
| 414 | { | ||
| 415 | struct perf_event_context *ctx = event->ctx; | ||
| 416 | struct task_struct *task = ctx->task; | ||
| 417 | |||
| 418 | if (!task) { | ||
| 419 | /* | ||
| 420 | * Per cpu events are removed via an smp call and | ||
| 421 | * the removal is always sucessful. | ||
| 422 | */ | ||
| 423 | smp_call_function_single(event->cpu, | ||
| 424 | __perf_event_remove_from_context, | ||
| 425 | event, 1); | ||
| 426 | return; | ||
| 427 | } | ||
| 428 | |||
| 429 | retry: | ||
| 430 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
| 431 | event); | ||
| 432 | |||
| 433 | spin_lock_irq(&ctx->lock); | ||
| 434 | /* | ||
| 435 | * If the context is active we need to retry the smp call. | ||
| 436 | */ | ||
| 437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
| 438 | spin_unlock_irq(&ctx->lock); | ||
| 439 | goto retry; | ||
| 440 | } | ||
| 441 | |||
| 442 | /* | ||
| 443 | * The lock prevents that this context is scheduled in so we | ||
| 444 | * can remove the event safely, if the call above did not | ||
| 445 | * succeed. | ||
| 446 | */ | ||
| 447 | if (!list_empty(&event->group_entry)) { | ||
| 448 | list_del_event(event, ctx); | ||
| 449 | } | ||
| 450 | spin_unlock_irq(&ctx->lock); | ||
| 451 | } | ||
| 452 | |||
| 453 | static inline u64 perf_clock(void) | ||
| 454 | { | ||
| 455 | return cpu_clock(smp_processor_id()); | ||
| 456 | } | ||
| 457 | |||
| 458 | /* | ||
| 459 | * Update the record of the current time in a context. | ||
| 460 | */ | ||
| 461 | static void update_context_time(struct perf_event_context *ctx) | ||
| 462 | { | ||
| 463 | u64 now = perf_clock(); | ||
| 464 | |||
| 465 | ctx->time += now - ctx->timestamp; | ||
| 466 | ctx->timestamp = now; | ||
| 467 | } | ||
| 468 | |||
| 469 | /* | ||
| 470 | * Update the total_time_enabled and total_time_running fields for a event. | ||
| 471 | */ | ||
| 472 | static void update_event_times(struct perf_event *event) | ||
| 473 | { | ||
| 474 | struct perf_event_context *ctx = event->ctx; | ||
| 475 | u64 run_end; | ||
| 476 | |||
| 477 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
| 478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
| 479 | return; | ||
| 480 | |||
| 481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
| 482 | |||
| 483 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
| 484 | run_end = event->tstamp_stopped; | ||
| 485 | else | ||
| 486 | run_end = ctx->time; | ||
| 487 | |||
| 488 | event->total_time_running = run_end - event->tstamp_running; | ||
| 489 | } | ||
| 490 | |||
| 491 | /* | ||
| 492 | * Update total_time_enabled and total_time_running for all events in a group. | ||
| 493 | */ | ||
| 494 | static void update_group_times(struct perf_event *leader) | ||
| 495 | { | ||
| 496 | struct perf_event *event; | ||
| 497 | |||
| 498 | update_event_times(leader); | ||
| 499 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 500 | update_event_times(event); | ||
| 501 | } | ||
| 502 | |||
| 503 | /* | ||
| 504 | * Cross CPU call to disable a performance event | ||
| 505 | */ | ||
| 506 | static void __perf_event_disable(void *info) | ||
| 507 | { | ||
| 508 | struct perf_event *event = info; | ||
| 509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 510 | struct perf_event_context *ctx = event->ctx; | ||
| 511 | |||
| 512 | /* | ||
| 513 | * If this is a per-task event, need to check whether this | ||
| 514 | * event's task is the current task on this cpu. | ||
| 515 | */ | ||
| 516 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 517 | return; | ||
| 518 | |||
| 519 | spin_lock(&ctx->lock); | ||
| 520 | |||
| 521 | /* | ||
| 522 | * If the event is on, turn it off. | ||
| 523 | * If it is in error state, leave it in error state. | ||
| 524 | */ | ||
| 525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
| 526 | update_context_time(ctx); | ||
| 527 | update_group_times(event); | ||
| 528 | if (event == event->group_leader) | ||
| 529 | group_sched_out(event, cpuctx, ctx); | ||
| 530 | else | ||
| 531 | event_sched_out(event, cpuctx, ctx); | ||
| 532 | event->state = PERF_EVENT_STATE_OFF; | ||
| 533 | } | ||
| 534 | |||
| 535 | spin_unlock(&ctx->lock); | ||
| 536 | } | ||
| 537 | |||
| 538 | /* | ||
| 539 | * Disable a event. | ||
| 540 | * | ||
| 541 | * If event->ctx is a cloned context, callers must make sure that | ||
| 542 | * every task struct that event->ctx->task could possibly point to | ||
| 543 | * remains valid. This condition is satisifed when called through | ||
| 544 | * perf_event_for_each_child or perf_event_for_each because they | ||
| 545 | * hold the top-level event's child_mutex, so any descendant that | ||
| 546 | * goes to exit will block in sync_child_event. | ||
| 547 | * When called from perf_pending_event it's OK because event->ctx | ||
| 548 | * is the current context on this CPU and preemption is disabled, | ||
| 549 | * hence we can't get into perf_event_task_sched_out for this context. | ||
| 550 | */ | ||
| 551 | static void perf_event_disable(struct perf_event *event) | ||
| 552 | { | ||
| 553 | struct perf_event_context *ctx = event->ctx; | ||
| 554 | struct task_struct *task = ctx->task; | ||
| 555 | |||
| 556 | if (!task) { | ||
| 557 | /* | ||
| 558 | * Disable the event on the cpu that it's on | ||
| 559 | */ | ||
| 560 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
| 561 | event, 1); | ||
| 562 | return; | ||
| 563 | } | ||
| 564 | |||
| 565 | retry: | ||
| 566 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
| 567 | |||
| 568 | spin_lock_irq(&ctx->lock); | ||
| 569 | /* | ||
| 570 | * If the event is still active, we need to retry the cross-call. | ||
| 571 | */ | ||
| 572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 573 | spin_unlock_irq(&ctx->lock); | ||
| 574 | goto retry; | ||
| 575 | } | ||
| 576 | |||
| 577 | /* | ||
| 578 | * Since we have the lock this context can't be scheduled | ||
| 579 | * in, so we can change the state safely. | ||
| 580 | */ | ||
| 581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 582 | update_group_times(event); | ||
| 583 | event->state = PERF_EVENT_STATE_OFF; | ||
| 584 | } | ||
| 585 | |||
| 586 | spin_unlock_irq(&ctx->lock); | ||
| 587 | } | ||
| 588 | |||
| 589 | static int | ||
| 590 | event_sched_in(struct perf_event *event, | ||
| 591 | struct perf_cpu_context *cpuctx, | ||
| 592 | struct perf_event_context *ctx, | ||
| 593 | int cpu) | ||
| 594 | { | ||
| 595 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
| 596 | return 0; | ||
| 597 | |||
| 598 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
| 599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 600 | /* | ||
| 601 | * The new state must be visible before we turn it on in the hardware: | ||
| 602 | */ | ||
| 603 | smp_wmb(); | ||
| 604 | |||
| 605 | if (event->pmu->enable(event)) { | ||
| 606 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 607 | event->oncpu = -1; | ||
| 608 | return -EAGAIN; | ||
| 609 | } | ||
| 610 | |||
| 611 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
| 612 | |||
| 613 | if (!is_software_event(event)) | ||
| 614 | cpuctx->active_oncpu++; | ||
| 615 | ctx->nr_active++; | ||
| 616 | |||
| 617 | if (event->attr.exclusive) | ||
| 618 | cpuctx->exclusive = 1; | ||
| 619 | |||
| 620 | return 0; | ||
| 621 | } | ||
| 622 | |||
| 623 | static int | ||
| 624 | group_sched_in(struct perf_event *group_event, | ||
| 625 | struct perf_cpu_context *cpuctx, | ||
| 626 | struct perf_event_context *ctx, | ||
| 627 | int cpu) | ||
| 628 | { | ||
| 629 | struct perf_event *event, *partial_group; | ||
| 630 | int ret; | ||
| 631 | |||
| 632 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
| 633 | return 0; | ||
| 634 | |||
| 635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
| 636 | if (ret) | ||
| 637 | return ret < 0 ? ret : 0; | ||
| 638 | |||
| 639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
| 640 | return -EAGAIN; | ||
| 641 | |||
| 642 | /* | ||
| 643 | * Schedule in siblings as one group (if any): | ||
| 644 | */ | ||
| 645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
| 647 | partial_group = event; | ||
| 648 | goto group_error; | ||
| 649 | } | ||
| 650 | } | ||
| 651 | |||
| 652 | return 0; | ||
| 653 | |||
| 654 | group_error: | ||
| 655 | /* | ||
| 656 | * Groups can be scheduled in as one unit only, so undo any | ||
| 657 | * partial group before returning: | ||
| 658 | */ | ||
| 659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 660 | if (event == partial_group) | ||
| 661 | break; | ||
| 662 | event_sched_out(event, cpuctx, ctx); | ||
| 663 | } | ||
| 664 | event_sched_out(group_event, cpuctx, ctx); | ||
| 665 | |||
| 666 | return -EAGAIN; | ||
| 667 | } | ||
| 668 | |||
| 669 | /* | ||
| 670 | * Return 1 for a group consisting entirely of software events, | ||
| 671 | * 0 if the group contains any hardware events. | ||
| 672 | */ | ||
| 673 | static int is_software_only_group(struct perf_event *leader) | ||
| 674 | { | ||
| 675 | struct perf_event *event; | ||
| 676 | |||
| 677 | if (!is_software_event(leader)) | ||
| 678 | return 0; | ||
| 679 | |||
| 680 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 681 | if (!is_software_event(event)) | ||
| 682 | return 0; | ||
| 683 | |||
| 684 | return 1; | ||
| 685 | } | ||
| 686 | |||
| 687 | /* | ||
| 688 | * Work out whether we can put this event group on the CPU now. | ||
| 689 | */ | ||
| 690 | static int group_can_go_on(struct perf_event *event, | ||
| 691 | struct perf_cpu_context *cpuctx, | ||
| 692 | int can_add_hw) | ||
| 693 | { | ||
| 694 | /* | ||
| 695 | * Groups consisting entirely of software events can always go on. | ||
| 696 | */ | ||
| 697 | if (is_software_only_group(event)) | ||
| 698 | return 1; | ||
| 699 | /* | ||
| 700 | * If an exclusive group is already on, no other hardware | ||
| 701 | * events can go on. | ||
| 702 | */ | ||
| 703 | if (cpuctx->exclusive) | ||
| 704 | return 0; | ||
| 705 | /* | ||
| 706 | * If this group is exclusive and there are already | ||
| 707 | * events on the CPU, it can't go on. | ||
| 708 | */ | ||
| 709 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
| 710 | return 0; | ||
| 711 | /* | ||
| 712 | * Otherwise, try to add it if all previous groups were able | ||
| 713 | * to go on. | ||
| 714 | */ | ||
| 715 | return can_add_hw; | ||
| 716 | } | ||
| 717 | |||
| 718 | static void add_event_to_ctx(struct perf_event *event, | ||
| 719 | struct perf_event_context *ctx) | ||
| 720 | { | ||
| 721 | list_add_event(event, ctx); | ||
| 722 | event->tstamp_enabled = ctx->time; | ||
| 723 | event->tstamp_running = ctx->time; | ||
| 724 | event->tstamp_stopped = ctx->time; | ||
| 725 | } | ||
| 726 | |||
| 727 | /* | ||
| 728 | * Cross CPU call to install and enable a performance event | ||
| 729 | * | ||
| 730 | * Must be called with ctx->mutex held | ||
| 731 | */ | ||
| 732 | static void __perf_install_in_context(void *info) | ||
| 733 | { | ||
| 734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 735 | struct perf_event *event = info; | ||
| 736 | struct perf_event_context *ctx = event->ctx; | ||
| 737 | struct perf_event *leader = event->group_leader; | ||
| 738 | int cpu = smp_processor_id(); | ||
| 739 | int err; | ||
| 740 | |||
| 741 | /* | ||
| 742 | * If this is a task context, we need to check whether it is | ||
| 743 | * the current task context of this cpu. If not it has been | ||
| 744 | * scheduled out before the smp call arrived. | ||
| 745 | * Or possibly this is the right context but it isn't | ||
| 746 | * on this cpu because it had no events. | ||
| 747 | */ | ||
| 748 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 749 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 750 | return; | ||
| 751 | cpuctx->task_ctx = ctx; | ||
| 752 | } | ||
| 753 | |||
| 754 | spin_lock(&ctx->lock); | ||
| 755 | ctx->is_active = 1; | ||
| 756 | update_context_time(ctx); | ||
| 757 | |||
| 758 | /* | ||
| 759 | * Protect the list operation against NMI by disabling the | ||
| 760 | * events on a global level. NOP for non NMI based events. | ||
| 761 | */ | ||
| 762 | perf_disable(); | ||
| 763 | |||
| 764 | add_event_to_ctx(event, ctx); | ||
| 765 | |||
| 766 | /* | ||
| 767 | * Don't put the event on if it is disabled or if | ||
| 768 | * it is in a group and the group isn't on. | ||
| 769 | */ | ||
| 770 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
| 771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
| 772 | goto unlock; | ||
| 773 | |||
| 774 | /* | ||
| 775 | * An exclusive event can't go on if there are already active | ||
| 776 | * hardware events, and no hardware event can go on if there | ||
| 777 | * is already an exclusive event on. | ||
| 778 | */ | ||
| 779 | if (!group_can_go_on(event, cpuctx, 1)) | ||
| 780 | err = -EEXIST; | ||
| 781 | else | ||
| 782 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
| 783 | |||
| 784 | if (err) { | ||
| 785 | /* | ||
| 786 | * This event couldn't go on. If it is in a group | ||
| 787 | * then we have to pull the whole group off. | ||
| 788 | * If the event group is pinned then put it in error state. | ||
| 789 | */ | ||
| 790 | if (leader != event) | ||
| 791 | group_sched_out(leader, cpuctx, ctx); | ||
| 792 | if (leader->attr.pinned) { | ||
| 793 | update_group_times(leader); | ||
| 794 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 795 | } | ||
| 796 | } | ||
| 797 | |||
| 798 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 799 | cpuctx->max_pertask--; | ||
| 800 | |||
| 801 | unlock: | ||
| 802 | perf_enable(); | ||
| 803 | |||
| 804 | spin_unlock(&ctx->lock); | ||
| 805 | } | ||
| 806 | |||
| 807 | /* | ||
| 808 | * Attach a performance event to a context | ||
| 809 | * | ||
| 810 | * First we add the event to the list with the hardware enable bit | ||
| 811 | * in event->hw_config cleared. | ||
| 812 | * | ||
| 813 | * If the event is attached to a task which is on a CPU we use a smp | ||
| 814 | * call to enable it in the task context. The task might have been | ||
| 815 | * scheduled away, but we check this in the smp call again. | ||
| 816 | * | ||
| 817 | * Must be called with ctx->mutex held. | ||
| 818 | */ | ||
| 819 | static void | ||
| 820 | perf_install_in_context(struct perf_event_context *ctx, | ||
| 821 | struct perf_event *event, | ||
| 822 | int cpu) | ||
| 823 | { | ||
| 824 | struct task_struct *task = ctx->task; | ||
| 825 | |||
| 826 | if (!task) { | ||
| 827 | /* | ||
| 828 | * Per cpu events are installed via an smp call and | ||
| 829 | * the install is always sucessful. | ||
| 830 | */ | ||
| 831 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 832 | event, 1); | ||
| 833 | return; | ||
| 834 | } | ||
| 835 | |||
| 836 | retry: | ||
| 837 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 838 | event); | ||
| 839 | |||
| 840 | spin_lock_irq(&ctx->lock); | ||
| 841 | /* | ||
| 842 | * we need to retry the smp call. | ||
| 843 | */ | ||
| 844 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
| 845 | spin_unlock_irq(&ctx->lock); | ||
| 846 | goto retry; | ||
| 847 | } | ||
| 848 | |||
| 849 | /* | ||
| 850 | * The lock prevents that this context is scheduled in so we | ||
| 851 | * can add the event safely, if it the call above did not | ||
| 852 | * succeed. | ||
| 853 | */ | ||
| 854 | if (list_empty(&event->group_entry)) | ||
| 855 | add_event_to_ctx(event, ctx); | ||
| 856 | spin_unlock_irq(&ctx->lock); | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * Put a event into inactive state and update time fields. | ||
| 861 | * Enabling the leader of a group effectively enables all | ||
| 862 | * the group members that aren't explicitly disabled, so we | ||
| 863 | * have to update their ->tstamp_enabled also. | ||
| 864 | * Note: this works for group members as well as group leaders | ||
| 865 | * since the non-leader members' sibling_lists will be empty. | ||
| 866 | */ | ||
| 867 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
| 868 | struct perf_event_context *ctx) | ||
| 869 | { | ||
| 870 | struct perf_event *sub; | ||
| 871 | |||
| 872 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
| 874 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
| 875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 876 | sub->tstamp_enabled = | ||
| 877 | ctx->time - sub->total_time_enabled; | ||
| 878 | } | ||
| 879 | |||
| 880 | /* | ||
| 881 | * Cross CPU call to enable a performance event | ||
| 882 | */ | ||
| 883 | static void __perf_event_enable(void *info) | ||
| 884 | { | ||
| 885 | struct perf_event *event = info; | ||
| 886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 887 | struct perf_event_context *ctx = event->ctx; | ||
| 888 | struct perf_event *leader = event->group_leader; | ||
| 889 | int err; | ||
| 890 | |||
| 891 | /* | ||
| 892 | * If this is a per-task event, need to check whether this | ||
| 893 | * event's task is the current task on this cpu. | ||
| 894 | */ | ||
| 895 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 896 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 897 | return; | ||
| 898 | cpuctx->task_ctx = ctx; | ||
| 899 | } | ||
| 900 | |||
| 901 | spin_lock(&ctx->lock); | ||
| 902 | ctx->is_active = 1; | ||
| 903 | update_context_time(ctx); | ||
| 904 | |||
| 905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 906 | goto unlock; | ||
| 907 | __perf_event_mark_enabled(event, ctx); | ||
| 908 | |||
| 909 | /* | ||
| 910 | * If the event is in a group and isn't the group leader, | ||
| 911 | * then don't put it on unless the group is on. | ||
| 912 | */ | ||
| 913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
| 914 | goto unlock; | ||
| 915 | |||
| 916 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
| 917 | err = -EEXIST; | ||
| 918 | } else { | ||
| 919 | perf_disable(); | ||
| 920 | if (event == leader) | ||
| 921 | err = group_sched_in(event, cpuctx, ctx, | ||
| 922 | smp_processor_id()); | ||
| 923 | else | ||
| 924 | err = event_sched_in(event, cpuctx, ctx, | ||
| 925 | smp_processor_id()); | ||
| 926 | perf_enable(); | ||
| 927 | } | ||
| 928 | |||
| 929 | if (err) { | ||
| 930 | /* | ||
| 931 | * If this event can't go on and it's part of a | ||
| 932 | * group, then the whole group has to come off. | ||
| 933 | */ | ||
| 934 | if (leader != event) | ||
| 935 | group_sched_out(leader, cpuctx, ctx); | ||
| 936 | if (leader->attr.pinned) { | ||
| 937 | update_group_times(leader); | ||
| 938 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 939 | } | ||
| 940 | } | ||
| 941 | |||
| 942 | unlock: | ||
| 943 | spin_unlock(&ctx->lock); | ||
| 944 | } | ||
| 945 | |||
| 946 | /* | ||
| 947 | * Enable a event. | ||
| 948 | * | ||
| 949 | * If event->ctx is a cloned context, callers must make sure that | ||
| 950 | * every task struct that event->ctx->task could possibly point to | ||
| 951 | * remains valid. This condition is satisfied when called through | ||
| 952 | * perf_event_for_each_child or perf_event_for_each as described | ||
| 953 | * for perf_event_disable. | ||
| 954 | */ | ||
| 955 | static void perf_event_enable(struct perf_event *event) | ||
| 956 | { | ||
| 957 | struct perf_event_context *ctx = event->ctx; | ||
| 958 | struct task_struct *task = ctx->task; | ||
| 959 | |||
| 960 | if (!task) { | ||
| 961 | /* | ||
| 962 | * Enable the event on the cpu that it's on | ||
| 963 | */ | ||
| 964 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
| 965 | event, 1); | ||
| 966 | return; | ||
| 967 | } | ||
| 968 | |||
| 969 | spin_lock_irq(&ctx->lock); | ||
| 970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 971 | goto out; | ||
| 972 | |||
| 973 | /* | ||
| 974 | * If the event is in error state, clear that first. | ||
| 975 | * That way, if we see the event in error state below, we | ||
| 976 | * know that it has gone back into error state, as distinct | ||
| 977 | * from the task having been scheduled away before the | ||
| 978 | * cross-call arrived. | ||
| 979 | */ | ||
| 980 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 981 | event->state = PERF_EVENT_STATE_OFF; | ||
| 982 | |||
| 983 | retry: | ||
| 984 | spin_unlock_irq(&ctx->lock); | ||
| 985 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
| 986 | |||
| 987 | spin_lock_irq(&ctx->lock); | ||
| 988 | |||
| 989 | /* | ||
| 990 | * If the context is active and the event is still off, | ||
| 991 | * we need to retry the cross-call. | ||
| 992 | */ | ||
| 993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
| 994 | goto retry; | ||
| 995 | |||
| 996 | /* | ||
| 997 | * Since we have the lock this context can't be scheduled | ||
| 998 | * in, so we can change the state safely. | ||
| 999 | */ | ||
| 1000 | if (event->state == PERF_EVENT_STATE_OFF) | ||
| 1001 | __perf_event_mark_enabled(event, ctx); | ||
| 1002 | |||
| 1003 | out: | ||
| 1004 | spin_unlock_irq(&ctx->lock); | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
| 1008 | { | ||
| 1009 | /* | ||
| 1010 | * not supported on inherited events | ||
| 1011 | */ | ||
| 1012 | if (event->attr.inherit) | ||
| 1013 | return -EINVAL; | ||
| 1014 | |||
| 1015 | atomic_add(refresh, &event->event_limit); | ||
| 1016 | perf_event_enable(event); | ||
| 1017 | |||
| 1018 | return 0; | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
| 1022 | struct perf_cpu_context *cpuctx) | ||
| 1023 | { | ||
| 1024 | struct perf_event *event; | ||
| 1025 | |||
| 1026 | spin_lock(&ctx->lock); | ||
| 1027 | ctx->is_active = 0; | ||
| 1028 | if (likely(!ctx->nr_events)) | ||
| 1029 | goto out; | ||
| 1030 | update_context_time(ctx); | ||
| 1031 | |||
| 1032 | perf_disable(); | ||
| 1033 | if (ctx->nr_active) { | ||
| 1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1035 | if (event != event->group_leader) | ||
| 1036 | event_sched_out(event, cpuctx, ctx); | ||
| 1037 | else | ||
| 1038 | group_sched_out(event, cpuctx, ctx); | ||
| 1039 | } | ||
| 1040 | } | ||
| 1041 | perf_enable(); | ||
| 1042 | out: | ||
| 1043 | spin_unlock(&ctx->lock); | ||
| 1044 | } | ||
| 1045 | |||
| 1046 | /* | ||
| 1047 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 1048 | * have both been cloned from the same version of the same context | ||
| 1049 | * and they both have the same number of enabled events. | ||
| 1050 | * If the number of enabled events is the same, then the set | ||
| 1051 | * of enabled events should be the same, because these are both | ||
| 1052 | * inherited contexts, therefore we can't access individual events | ||
| 1053 | * in them directly with an fd; we can only enable/disable all | ||
| 1054 | * events via prctl, or enable/disable all events in a family | ||
| 1055 | * via ioctl, which will have the same effect on both contexts. | ||
| 1056 | */ | ||
| 1057 | static int context_equiv(struct perf_event_context *ctx1, | ||
| 1058 | struct perf_event_context *ctx2) | ||
| 1059 | { | ||
| 1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1061 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1062 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1063 | } | ||
| 1064 | |||
| 1065 | static void __perf_event_read(void *event); | ||
| 1066 | |||
| 1067 | static void __perf_event_sync_stat(struct perf_event *event, | ||
| 1068 | struct perf_event *next_event) | ||
| 1069 | { | ||
| 1070 | u64 value; | ||
| 1071 | |||
| 1072 | if (!event->attr.inherit_stat) | ||
| 1073 | return; | ||
| 1074 | |||
| 1075 | /* | ||
| 1076 | * Update the event value, we cannot use perf_event_read() | ||
| 1077 | * because we're in the middle of a context switch and have IRQs | ||
| 1078 | * disabled, which upsets smp_call_function_single(), however | ||
| 1079 | * we know the event must be on the current CPU, therefore we | ||
| 1080 | * don't need to use it. | ||
| 1081 | */ | ||
| 1082 | switch (event->state) { | ||
| 1083 | case PERF_EVENT_STATE_ACTIVE: | ||
| 1084 | __perf_event_read(event); | ||
| 1085 | break; | ||
| 1086 | |||
| 1087 | case PERF_EVENT_STATE_INACTIVE: | ||
| 1088 | update_event_times(event); | ||
| 1089 | break; | ||
| 1090 | |||
| 1091 | default: | ||
| 1092 | break; | ||
| 1093 | } | ||
| 1094 | |||
| 1095 | /* | ||
| 1096 | * In order to keep per-task stats reliable we need to flip the event | ||
| 1097 | * values when we flip the contexts. | ||
| 1098 | */ | ||
| 1099 | value = atomic64_read(&next_event->count); | ||
| 1100 | value = atomic64_xchg(&event->count, value); | ||
| 1101 | atomic64_set(&next_event->count, value); | ||
| 1102 | |||
| 1103 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
| 1104 | swap(event->total_time_running, next_event->total_time_running); | ||
| 1105 | |||
| 1106 | /* | ||
| 1107 | * Since we swizzled the values, update the user visible data too. | ||
| 1108 | */ | ||
| 1109 | perf_event_update_userpage(event); | ||
| 1110 | perf_event_update_userpage(next_event); | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | #define list_next_entry(pos, member) \ | ||
| 1114 | list_entry(pos->member.next, typeof(*pos), member) | ||
| 1115 | |||
| 1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
| 1117 | struct perf_event_context *next_ctx) | ||
| 1118 | { | ||
| 1119 | struct perf_event *event, *next_event; | ||
| 1120 | |||
| 1121 | if (!ctx->nr_stat) | ||
| 1122 | return; | ||
| 1123 | |||
| 1124 | event = list_first_entry(&ctx->event_list, | ||
| 1125 | struct perf_event, event_entry); | ||
| 1126 | |||
| 1127 | next_event = list_first_entry(&next_ctx->event_list, | ||
| 1128 | struct perf_event, event_entry); | ||
| 1129 | |||
| 1130 | while (&event->event_entry != &ctx->event_list && | ||
| 1131 | &next_event->event_entry != &next_ctx->event_list) { | ||
| 1132 | |||
| 1133 | __perf_event_sync_stat(event, next_event); | ||
| 1134 | |||
| 1135 | event = list_next_entry(event, event_entry); | ||
| 1136 | next_event = list_next_entry(next_event, event_entry); | ||
| 1137 | } | ||
| 1138 | } | ||
| 1139 | |||
| 1140 | /* | ||
| 1141 | * Called from scheduler to remove the events of the current task, | ||
| 1142 | * with interrupts disabled. | ||
| 1143 | * | ||
| 1144 | * We stop each event and update the event value in event->count. | ||
| 1145 | * | ||
| 1146 | * This does not protect us against NMI, but disable() | ||
| 1147 | * sets the disabled bit in the control field of event _before_ | ||
| 1148 | * accessing the event control register. If a NMI hits, then it will | ||
| 1149 | * not restart the event. | ||
| 1150 | */ | ||
| 1151 | void perf_event_task_sched_out(struct task_struct *task, | ||
| 1152 | struct task_struct *next, int cpu) | ||
| 1153 | { | ||
| 1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1155 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1156 | struct perf_event_context *next_ctx; | ||
| 1157 | struct perf_event_context *parent; | ||
| 1158 | struct pt_regs *regs; | ||
| 1159 | int do_switch = 1; | ||
| 1160 | |||
| 1161 | regs = task_pt_regs(task); | ||
| 1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1163 | |||
| 1164 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1165 | return; | ||
| 1166 | |||
| 1167 | update_context_time(ctx); | ||
| 1168 | |||
| 1169 | rcu_read_lock(); | ||
| 1170 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1171 | next_ctx = next->perf_event_ctxp; | ||
| 1172 | if (parent && next_ctx && | ||
| 1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1174 | /* | ||
| 1175 | * Looks like the two contexts are clones, so we might be | ||
| 1176 | * able to optimize the context switch. We lock both | ||
| 1177 | * contexts and check that they are clones under the | ||
| 1178 | * lock (including re-checking that neither has been | ||
| 1179 | * uncloned in the meantime). It doesn't matter which | ||
| 1180 | * order we take the locks because no other cpu could | ||
| 1181 | * be trying to lock both of these tasks. | ||
| 1182 | */ | ||
| 1183 | spin_lock(&ctx->lock); | ||
| 1184 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1185 | if (context_equiv(ctx, next_ctx)) { | ||
| 1186 | /* | ||
| 1187 | * XXX do we need a memory barrier of sorts | ||
| 1188 | * wrt to rcu_dereference() of perf_event_ctxp | ||
| 1189 | */ | ||
| 1190 | task->perf_event_ctxp = next_ctx; | ||
| 1191 | next->perf_event_ctxp = ctx; | ||
| 1192 | ctx->task = next; | ||
| 1193 | next_ctx->task = task; | ||
| 1194 | do_switch = 0; | ||
| 1195 | |||
| 1196 | perf_event_sync_stat(ctx, next_ctx); | ||
| 1197 | } | ||
| 1198 | spin_unlock(&next_ctx->lock); | ||
| 1199 | spin_unlock(&ctx->lock); | ||
| 1200 | } | ||
| 1201 | rcu_read_unlock(); | ||
| 1202 | |||
| 1203 | if (do_switch) { | ||
| 1204 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1205 | cpuctx->task_ctx = NULL; | ||
| 1206 | } | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | /* | ||
| 1210 | * Called with IRQs disabled | ||
| 1211 | */ | ||
| 1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
| 1213 | { | ||
| 1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1215 | |||
| 1216 | if (!cpuctx->task_ctx) | ||
| 1217 | return; | ||
| 1218 | |||
| 1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1220 | return; | ||
| 1221 | |||
| 1222 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1223 | cpuctx->task_ctx = NULL; | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | /* | ||
| 1227 | * Called with IRQs disabled | ||
| 1228 | */ | ||
| 1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1230 | { | ||
| 1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | static void | ||
| 1235 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
| 1236 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1237 | { | ||
| 1238 | struct perf_event *event; | ||
| 1239 | int can_add_hw = 1; | ||
| 1240 | |||
| 1241 | spin_lock(&ctx->lock); | ||
| 1242 | ctx->is_active = 1; | ||
| 1243 | if (likely(!ctx->nr_events)) | ||
| 1244 | goto out; | ||
| 1245 | |||
| 1246 | ctx->timestamp = perf_clock(); | ||
| 1247 | |||
| 1248 | perf_disable(); | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * First go through the list and put on any pinned groups | ||
| 1252 | * in order to give them the best chance of going on. | ||
| 1253 | */ | ||
| 1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1255 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1256 | !event->attr.pinned) | ||
| 1257 | continue; | ||
| 1258 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1259 | continue; | ||
| 1260 | |||
| 1261 | if (event != event->group_leader) | ||
| 1262 | event_sched_in(event, cpuctx, ctx, cpu); | ||
| 1263 | else { | ||
| 1264 | if (group_can_go_on(event, cpuctx, 1)) | ||
| 1265 | group_sched_in(event, cpuctx, ctx, cpu); | ||
| 1266 | } | ||
| 1267 | |||
| 1268 | /* | ||
| 1269 | * If this pinned group hasn't been scheduled, | ||
| 1270 | * put it in error state. | ||
| 1271 | */ | ||
| 1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1273 | update_group_times(event); | ||
| 1274 | event->state = PERF_EVENT_STATE_ERROR; | ||
| 1275 | } | ||
| 1276 | } | ||
| 1277 | |||
| 1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1279 | /* | ||
| 1280 | * Ignore events in OFF or ERROR state, and | ||
| 1281 | * ignore pinned events since we did them already. | ||
| 1282 | */ | ||
| 1283 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1284 | event->attr.pinned) | ||
| 1285 | continue; | ||
| 1286 | |||
| 1287 | /* | ||
| 1288 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1289 | * of events: | ||
| 1290 | */ | ||
| 1291 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1292 | continue; | ||
| 1293 | |||
| 1294 | if (event != event->group_leader) { | ||
| 1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1296 | can_add_hw = 0; | ||
| 1297 | } else { | ||
| 1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
| 1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1300 | can_add_hw = 0; | ||
| 1301 | } | ||
| 1302 | } | ||
| 1303 | } | ||
| 1304 | perf_enable(); | ||
| 1305 | out: | ||
| 1306 | spin_unlock(&ctx->lock); | ||
| 1307 | } | ||
| 1308 | |||
| 1309 | /* | ||
| 1310 | * Called from scheduler to add the events of the current task | ||
| 1311 | * with interrupts disabled. | ||
| 1312 | * | ||
| 1313 | * We restore the event value and then enable it. | ||
| 1314 | * | ||
| 1315 | * This does not protect us against NMI, but enable() | ||
| 1316 | * sets the enabled bit in the control field of event _before_ | ||
| 1317 | * accessing the event control register. If a NMI hits, then it will | ||
| 1318 | * keep the event running. | ||
| 1319 | */ | ||
| 1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
| 1321 | { | ||
| 1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1323 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1324 | |||
| 1325 | if (likely(!ctx)) | ||
| 1326 | return; | ||
| 1327 | if (cpuctx->task_ctx == ctx) | ||
| 1328 | return; | ||
| 1329 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1330 | cpuctx->task_ctx = ctx; | ||
| 1331 | } | ||
| 1332 | |||
| 1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1334 | { | ||
| 1335 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 1336 | |||
| 1337 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1338 | } | ||
| 1339 | |||
| 1340 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1341 | |||
| 1342 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
| 1343 | |||
| 1344 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
| 1345 | { | ||
| 1346 | struct hw_perf_event *hwc = &event->hw; | ||
| 1347 | u64 period, sample_period; | ||
| 1348 | s64 delta; | ||
| 1349 | |||
| 1350 | events *= hwc->sample_period; | ||
| 1351 | period = div64_u64(events, event->attr.sample_freq); | ||
| 1352 | |||
| 1353 | delta = (s64)(period - hwc->sample_period); | ||
| 1354 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1355 | |||
| 1356 | sample_period = hwc->sample_period + delta; | ||
| 1357 | |||
| 1358 | if (!sample_period) | ||
| 1359 | sample_period = 1; | ||
| 1360 | |||
| 1361 | hwc->sample_period = sample_period; | ||
| 1362 | } | ||
| 1363 | |||
| 1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
| 1365 | { | ||
| 1366 | struct perf_event *event; | ||
| 1367 | struct hw_perf_event *hwc; | ||
| 1368 | u64 interrupts, freq; | ||
| 1369 | |||
| 1370 | spin_lock(&ctx->lock); | ||
| 1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 1373 | continue; | ||
| 1374 | |||
| 1375 | hwc = &event->hw; | ||
| 1376 | |||
| 1377 | interrupts = hwc->interrupts; | ||
| 1378 | hwc->interrupts = 0; | ||
| 1379 | |||
| 1380 | /* | ||
| 1381 | * unthrottle events on the tick | ||
| 1382 | */ | ||
| 1383 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1384 | perf_log_throttle(event, 1); | ||
| 1385 | event->pmu->unthrottle(event); | ||
| 1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
| 1387 | } | ||
| 1388 | |||
| 1389 | if (!event->attr.freq || !event->attr.sample_freq) | ||
| 1390 | continue; | ||
| 1391 | |||
| 1392 | /* | ||
| 1393 | * if the specified freq < HZ then we need to skip ticks | ||
| 1394 | */ | ||
| 1395 | if (event->attr.sample_freq < HZ) { | ||
| 1396 | freq = event->attr.sample_freq; | ||
| 1397 | |||
| 1398 | hwc->freq_count += freq; | ||
| 1399 | hwc->freq_interrupts += interrupts; | ||
| 1400 | |||
| 1401 | if (hwc->freq_count < HZ) | ||
| 1402 | continue; | ||
| 1403 | |||
| 1404 | interrupts = hwc->freq_interrupts; | ||
| 1405 | hwc->freq_interrupts = 0; | ||
| 1406 | hwc->freq_count -= HZ; | ||
| 1407 | } else | ||
| 1408 | freq = HZ; | ||
| 1409 | |||
| 1410 | perf_adjust_period(event, freq * interrupts); | ||
| 1411 | |||
| 1412 | /* | ||
| 1413 | * In order to avoid being stalled by an (accidental) huge | ||
| 1414 | * sample period, force reset the sample period if we didn't | ||
| 1415 | * get any events in this freq period. | ||
| 1416 | */ | ||
| 1417 | if (!interrupts) { | ||
| 1418 | perf_disable(); | ||
| 1419 | event->pmu->disable(event); | ||
| 1420 | atomic64_set(&hwc->period_left, 0); | ||
| 1421 | event->pmu->enable(event); | ||
| 1422 | perf_enable(); | ||
| 1423 | } | ||
| 1424 | } | ||
| 1425 | spin_unlock(&ctx->lock); | ||
| 1426 | } | ||
| 1427 | |||
| 1428 | /* | ||
| 1429 | * Round-robin a context's events: | ||
| 1430 | */ | ||
| 1431 | static void rotate_ctx(struct perf_event_context *ctx) | ||
| 1432 | { | ||
| 1433 | struct perf_event *event; | ||
| 1434 | |||
| 1435 | if (!ctx->nr_events) | ||
| 1436 | return; | ||
| 1437 | |||
| 1438 | spin_lock(&ctx->lock); | ||
| 1439 | /* | ||
| 1440 | * Rotate the first entry last (works just fine for group events too): | ||
| 1441 | */ | ||
| 1442 | perf_disable(); | ||
| 1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1444 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
| 1445 | break; | ||
| 1446 | } | ||
| 1447 | perf_enable(); | ||
| 1448 | |||
| 1449 | spin_unlock(&ctx->lock); | ||
| 1450 | } | ||
| 1451 | |||
| 1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
| 1453 | { | ||
| 1454 | struct perf_cpu_context *cpuctx; | ||
| 1455 | struct perf_event_context *ctx; | ||
| 1456 | |||
| 1457 | if (!atomic_read(&nr_events)) | ||
| 1458 | return; | ||
| 1459 | |||
| 1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1461 | ctx = curr->perf_event_ctxp; | ||
| 1462 | |||
| 1463 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1464 | if (ctx) | ||
| 1465 | perf_ctx_adjust_freq(ctx); | ||
| 1466 | |||
| 1467 | perf_event_cpu_sched_out(cpuctx); | ||
| 1468 | if (ctx) | ||
| 1469 | __perf_event_task_sched_out(ctx); | ||
| 1470 | |||
| 1471 | rotate_ctx(&cpuctx->ctx); | ||
| 1472 | if (ctx) | ||
| 1473 | rotate_ctx(ctx); | ||
| 1474 | |||
| 1475 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
| 1476 | if (ctx) | ||
| 1477 | perf_event_task_sched_in(curr, cpu); | ||
| 1478 | } | ||
| 1479 | |||
| 1480 | /* | ||
| 1481 | * Enable all of a task's events that have been marked enable-on-exec. | ||
| 1482 | * This expects task == current. | ||
| 1483 | */ | ||
| 1484 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
| 1485 | { | ||
| 1486 | struct perf_event_context *ctx; | ||
| 1487 | struct perf_event *event; | ||
| 1488 | unsigned long flags; | ||
| 1489 | int enabled = 0; | ||
| 1490 | |||
| 1491 | local_irq_save(flags); | ||
| 1492 | ctx = task->perf_event_ctxp; | ||
| 1493 | if (!ctx || !ctx->nr_events) | ||
| 1494 | goto out; | ||
| 1495 | |||
| 1496 | __perf_event_task_sched_out(ctx); | ||
| 1497 | |||
| 1498 | spin_lock(&ctx->lock); | ||
| 1499 | |||
| 1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1501 | if (!event->attr.enable_on_exec) | ||
| 1502 | continue; | ||
| 1503 | event->attr.enable_on_exec = 0; | ||
| 1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 1505 | continue; | ||
| 1506 | __perf_event_mark_enabled(event, ctx); | ||
| 1507 | enabled = 1; | ||
| 1508 | } | ||
| 1509 | |||
| 1510 | /* | ||
| 1511 | * Unclone this context if we enabled any event. | ||
| 1512 | */ | ||
| 1513 | if (enabled) | ||
| 1514 | unclone_ctx(ctx); | ||
| 1515 | |||
| 1516 | spin_unlock(&ctx->lock); | ||
| 1517 | |||
| 1518 | perf_event_task_sched_in(task, smp_processor_id()); | ||
| 1519 | out: | ||
| 1520 | local_irq_restore(flags); | ||
| 1521 | } | ||
| 1522 | |||
| 1523 | /* | ||
| 1524 | * Cross CPU call to read the hardware event | ||
| 1525 | */ | ||
| 1526 | static void __perf_event_read(void *info) | ||
| 1527 | { | ||
| 1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1529 | struct perf_event *event = info; | ||
| 1530 | struct perf_event_context *ctx = event->ctx; | ||
| 1531 | unsigned long flags; | ||
| 1532 | |||
| 1533 | /* | ||
| 1534 | * If this is a task context, we need to check whether it is | ||
| 1535 | * the current task context of this cpu. If not it has been | ||
| 1536 | * scheduled out before the smp call arrived. In that case | ||
| 1537 | * event->count would have been updated to a recent sample | ||
| 1538 | * when the event was scheduled out. | ||
| 1539 | */ | ||
| 1540 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 1541 | return; | ||
| 1542 | |||
| 1543 | local_irq_save(flags); | ||
| 1544 | if (ctx->is_active) | ||
| 1545 | update_context_time(ctx); | ||
| 1546 | event->pmu->read(event); | ||
| 1547 | update_event_times(event); | ||
| 1548 | local_irq_restore(flags); | ||
| 1549 | } | ||
| 1550 | |||
| 1551 | static u64 perf_event_read(struct perf_event *event) | ||
| 1552 | { | ||
| 1553 | /* | ||
| 1554 | * If event is enabled and currently active on a CPU, update the | ||
| 1555 | * value in the event structure: | ||
| 1556 | */ | ||
| 1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 1558 | smp_call_function_single(event->oncpu, | ||
| 1559 | __perf_event_read, event, 1); | ||
| 1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1561 | update_event_times(event); | ||
| 1562 | } | ||
| 1563 | |||
| 1564 | return atomic64_read(&event->count); | ||
| 1565 | } | ||
| 1566 | |||
| 1567 | /* | ||
| 1568 | * Initialize the perf_event context in a task_struct: | ||
| 1569 | */ | ||
| 1570 | static void | ||
| 1571 | __perf_event_init_context(struct perf_event_context *ctx, | ||
| 1572 | struct task_struct *task) | ||
| 1573 | { | ||
| 1574 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1575 | spin_lock_init(&ctx->lock); | ||
| 1576 | mutex_init(&ctx->mutex); | ||
| 1577 | INIT_LIST_HEAD(&ctx->group_list); | ||
| 1578 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1579 | atomic_set(&ctx->refcount, 1); | ||
| 1580 | ctx->task = task; | ||
| 1581 | } | ||
| 1582 | |||
| 1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
| 1584 | { | ||
| 1585 | struct perf_event_context *ctx; | ||
| 1586 | struct perf_cpu_context *cpuctx; | ||
| 1587 | struct task_struct *task; | ||
| 1588 | unsigned long flags; | ||
| 1589 | int err; | ||
| 1590 | |||
| 1591 | /* | ||
| 1592 | * If cpu is not a wildcard then this is a percpu event: | ||
| 1593 | */ | ||
| 1594 | if (cpu != -1) { | ||
| 1595 | /* Must be root to operate on a CPU event: */ | ||
| 1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1597 | return ERR_PTR(-EACCES); | ||
| 1598 | |||
| 1599 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1600 | return ERR_PTR(-EINVAL); | ||
| 1601 | |||
| 1602 | /* | ||
| 1603 | * We could be clever and allow to attach a event to an | ||
| 1604 | * offline CPU and activate it when the CPU comes up, but | ||
| 1605 | * that's for later. | ||
| 1606 | */ | ||
| 1607 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1608 | return ERR_PTR(-ENODEV); | ||
| 1609 | |||
| 1610 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1611 | ctx = &cpuctx->ctx; | ||
| 1612 | get_ctx(ctx); | ||
| 1613 | |||
| 1614 | return ctx; | ||
| 1615 | } | ||
| 1616 | |||
| 1617 | rcu_read_lock(); | ||
| 1618 | if (!pid) | ||
| 1619 | task = current; | ||
| 1620 | else | ||
| 1621 | task = find_task_by_vpid(pid); | ||
| 1622 | if (task) | ||
| 1623 | get_task_struct(task); | ||
| 1624 | rcu_read_unlock(); | ||
| 1625 | |||
| 1626 | if (!task) | ||
| 1627 | return ERR_PTR(-ESRCH); | ||
| 1628 | |||
| 1629 | /* | ||
| 1630 | * Can't attach events to a dying task. | ||
| 1631 | */ | ||
| 1632 | err = -ESRCH; | ||
| 1633 | if (task->flags & PF_EXITING) | ||
| 1634 | goto errout; | ||
| 1635 | |||
| 1636 | /* Reuse ptrace permission checks for now. */ | ||
| 1637 | err = -EACCES; | ||
| 1638 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1639 | goto errout; | ||
| 1640 | |||
| 1641 | retry: | ||
| 1642 | ctx = perf_lock_task_context(task, &flags); | ||
| 1643 | if (ctx) { | ||
| 1644 | unclone_ctx(ctx); | ||
| 1645 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1646 | } | ||
| 1647 | |||
| 1648 | if (!ctx) { | ||
| 1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 1650 | err = -ENOMEM; | ||
| 1651 | if (!ctx) | ||
| 1652 | goto errout; | ||
| 1653 | __perf_event_init_context(ctx, task); | ||
| 1654 | get_ctx(ctx); | ||
| 1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
| 1656 | /* | ||
| 1657 | * We raced with some other task; use | ||
| 1658 | * the context they set. | ||
| 1659 | */ | ||
| 1660 | kfree(ctx); | ||
| 1661 | goto retry; | ||
| 1662 | } | ||
| 1663 | get_task_struct(task); | ||
| 1664 | } | ||
| 1665 | |||
| 1666 | put_task_struct(task); | ||
| 1667 | return ctx; | ||
| 1668 | |||
| 1669 | errout: | ||
| 1670 | put_task_struct(task); | ||
| 1671 | return ERR_PTR(err); | ||
| 1672 | } | ||
| 1673 | |||
| 1674 | static void free_event_rcu(struct rcu_head *head) | ||
| 1675 | { | ||
| 1676 | struct perf_event *event; | ||
| 1677 | |||
| 1678 | event = container_of(head, struct perf_event, rcu_head); | ||
| 1679 | if (event->ns) | ||
| 1680 | put_pid_ns(event->ns); | ||
| 1681 | kfree(event); | ||
| 1682 | } | ||
| 1683 | |||
| 1684 | static void perf_pending_sync(struct perf_event *event); | ||
| 1685 | |||
| 1686 | static void free_event(struct perf_event *event) | ||
| 1687 | { | ||
| 1688 | perf_pending_sync(event); | ||
| 1689 | |||
| 1690 | if (!event->parent) { | ||
| 1691 | atomic_dec(&nr_events); | ||
| 1692 | if (event->attr.mmap) | ||
| 1693 | atomic_dec(&nr_mmap_events); | ||
| 1694 | if (event->attr.comm) | ||
| 1695 | atomic_dec(&nr_comm_events); | ||
| 1696 | if (event->attr.task) | ||
| 1697 | atomic_dec(&nr_task_events); | ||
| 1698 | } | ||
| 1699 | |||
| 1700 | if (event->output) { | ||
| 1701 | fput(event->output->filp); | ||
| 1702 | event->output = NULL; | ||
| 1703 | } | ||
| 1704 | |||
| 1705 | if (event->destroy) | ||
| 1706 | event->destroy(event); | ||
| 1707 | |||
| 1708 | put_ctx(event->ctx); | ||
| 1709 | call_rcu(&event->rcu_head, free_event_rcu); | ||
| 1710 | } | ||
| 1711 | |||
| 1712 | /* | ||
| 1713 | * Called when the last reference to the file is gone. | ||
| 1714 | */ | ||
| 1715 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1716 | { | ||
| 1717 | struct perf_event *event = file->private_data; | ||
| 1718 | struct perf_event_context *ctx = event->ctx; | ||
| 1719 | |||
| 1720 | file->private_data = NULL; | ||
| 1721 | |||
| 1722 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1723 | mutex_lock(&ctx->mutex); | ||
| 1724 | perf_event_remove_from_context(event); | ||
| 1725 | mutex_unlock(&ctx->mutex); | ||
| 1726 | |||
| 1727 | mutex_lock(&event->owner->perf_event_mutex); | ||
| 1728 | list_del_init(&event->owner_entry); | ||
| 1729 | mutex_unlock(&event->owner->perf_event_mutex); | ||
| 1730 | put_task_struct(event->owner); | ||
| 1731 | |||
| 1732 | free_event(event); | ||
| 1733 | |||
| 1734 | return 0; | ||
| 1735 | } | ||
| 1736 | |||
| 1737 | static int perf_event_read_size(struct perf_event *event) | ||
| 1738 | { | ||
| 1739 | int entry = sizeof(u64); /* value */ | ||
| 1740 | int size = 0; | ||
| 1741 | int nr = 1; | ||
| 1742 | |||
| 1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1744 | size += sizeof(u64); | ||
| 1745 | |||
| 1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1747 | size += sizeof(u64); | ||
| 1748 | |||
| 1749 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
| 1750 | entry += sizeof(u64); | ||
| 1751 | |||
| 1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
| 1753 | nr += event->group_leader->nr_siblings; | ||
| 1754 | size += sizeof(u64); | ||
| 1755 | } | ||
| 1756 | |||
| 1757 | size += entry * nr; | ||
| 1758 | |||
| 1759 | return size; | ||
| 1760 | } | ||
| 1761 | |||
| 1762 | static u64 perf_event_read_value(struct perf_event *event) | ||
| 1763 | { | ||
| 1764 | struct perf_event *child; | ||
| 1765 | u64 total = 0; | ||
| 1766 | |||
| 1767 | total += perf_event_read(event); | ||
| 1768 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1769 | total += perf_event_read(child); | ||
| 1770 | |||
| 1771 | return total; | ||
| 1772 | } | ||
| 1773 | |||
| 1774 | static int perf_event_read_entry(struct perf_event *event, | ||
| 1775 | u64 read_format, char __user *buf) | ||
| 1776 | { | ||
| 1777 | int n = 0, count = 0; | ||
| 1778 | u64 values[2]; | ||
| 1779 | |||
| 1780 | values[n++] = perf_event_read_value(event); | ||
| 1781 | if (read_format & PERF_FORMAT_ID) | ||
| 1782 | values[n++] = primary_event_id(event); | ||
| 1783 | |||
| 1784 | count = n * sizeof(u64); | ||
| 1785 | |||
| 1786 | if (copy_to_user(buf, values, count)) | ||
| 1787 | return -EFAULT; | ||
| 1788 | |||
| 1789 | return count; | ||
| 1790 | } | ||
| 1791 | |||
| 1792 | static int perf_event_read_group(struct perf_event *event, | ||
| 1793 | u64 read_format, char __user *buf) | ||
| 1794 | { | ||
| 1795 | struct perf_event *leader = event->group_leader, *sub; | ||
| 1796 | int n = 0, size = 0, err = -EFAULT; | ||
| 1797 | u64 values[3]; | ||
| 1798 | |||
| 1799 | values[n++] = 1 + leader->nr_siblings; | ||
| 1800 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1801 | values[n++] = leader->total_time_enabled + | ||
| 1802 | atomic64_read(&leader->child_total_time_enabled); | ||
| 1803 | } | ||
| 1804 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1805 | values[n++] = leader->total_time_running + | ||
| 1806 | atomic64_read(&leader->child_total_time_running); | ||
| 1807 | } | ||
| 1808 | |||
| 1809 | size = n * sizeof(u64); | ||
| 1810 | |||
| 1811 | if (copy_to_user(buf, values, size)) | ||
| 1812 | return -EFAULT; | ||
| 1813 | |||
| 1814 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
| 1815 | if (err < 0) | ||
| 1816 | return err; | ||
| 1817 | |||
| 1818 | size += err; | ||
| 1819 | |||
| 1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 1821 | err = perf_event_read_entry(sub, read_format, | ||
| 1822 | buf + size); | ||
| 1823 | if (err < 0) | ||
| 1824 | return err; | ||
| 1825 | |||
| 1826 | size += err; | ||
| 1827 | } | ||
| 1828 | |||
| 1829 | return size; | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static int perf_event_read_one(struct perf_event *event, | ||
| 1833 | u64 read_format, char __user *buf) | ||
| 1834 | { | ||
| 1835 | u64 values[4]; | ||
| 1836 | int n = 0; | ||
| 1837 | |||
| 1838 | values[n++] = perf_event_read_value(event); | ||
| 1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1840 | values[n++] = event->total_time_enabled + | ||
| 1841 | atomic64_read(&event->child_total_time_enabled); | ||
| 1842 | } | ||
| 1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1844 | values[n++] = event->total_time_running + | ||
| 1845 | atomic64_read(&event->child_total_time_running); | ||
| 1846 | } | ||
| 1847 | if (read_format & PERF_FORMAT_ID) | ||
| 1848 | values[n++] = primary_event_id(event); | ||
| 1849 | |||
| 1850 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
| 1851 | return -EFAULT; | ||
| 1852 | |||
| 1853 | return n * sizeof(u64); | ||
| 1854 | } | ||
| 1855 | |||
| 1856 | /* | ||
| 1857 | * Read the performance event - simple non blocking version for now | ||
| 1858 | */ | ||
| 1859 | static ssize_t | ||
| 1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
| 1861 | { | ||
| 1862 | u64 read_format = event->attr.read_format; | ||
| 1863 | int ret; | ||
| 1864 | |||
| 1865 | /* | ||
| 1866 | * Return end-of-file for a read on a event that is in | ||
| 1867 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1868 | * scheduled on to the CPU at some point). | ||
| 1869 | */ | ||
| 1870 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 1871 | return 0; | ||
| 1872 | |||
| 1873 | if (count < perf_event_read_size(event)) | ||
| 1874 | return -ENOSPC; | ||
| 1875 | |||
| 1876 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1877 | mutex_lock(&event->child_mutex); | ||
| 1878 | if (read_format & PERF_FORMAT_GROUP) | ||
| 1879 | ret = perf_event_read_group(event, read_format, buf); | ||
| 1880 | else | ||
| 1881 | ret = perf_event_read_one(event, read_format, buf); | ||
| 1882 | mutex_unlock(&event->child_mutex); | ||
| 1883 | |||
| 1884 | return ret; | ||
| 1885 | } | ||
| 1886 | |||
| 1887 | static ssize_t | ||
| 1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1889 | { | ||
| 1890 | struct perf_event *event = file->private_data; | ||
| 1891 | |||
| 1892 | return perf_read_hw(event, buf, count); | ||
| 1893 | } | ||
| 1894 | |||
| 1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1896 | { | ||
| 1897 | struct perf_event *event = file->private_data; | ||
| 1898 | struct perf_mmap_data *data; | ||
| 1899 | unsigned int events = POLL_HUP; | ||
| 1900 | |||
| 1901 | rcu_read_lock(); | ||
| 1902 | data = rcu_dereference(event->data); | ||
| 1903 | if (data) | ||
| 1904 | events = atomic_xchg(&data->poll, 0); | ||
| 1905 | rcu_read_unlock(); | ||
| 1906 | |||
| 1907 | poll_wait(file, &event->waitq, wait); | ||
| 1908 | |||
| 1909 | return events; | ||
| 1910 | } | ||
| 1911 | |||
| 1912 | static void perf_event_reset(struct perf_event *event) | ||
| 1913 | { | ||
| 1914 | (void)perf_event_read(event); | ||
| 1915 | atomic64_set(&event->count, 0); | ||
| 1916 | perf_event_update_userpage(event); | ||
| 1917 | } | ||
| 1918 | |||
| 1919 | /* | ||
| 1920 | * Holding the top-level event's child_mutex means that any | ||
| 1921 | * descendant process that has inherited this event will block | ||
| 1922 | * in sync_child_event if it goes to exit, thus satisfying the | ||
| 1923 | * task existence requirements of perf_event_enable/disable. | ||
| 1924 | */ | ||
| 1925 | static void perf_event_for_each_child(struct perf_event *event, | ||
| 1926 | void (*func)(struct perf_event *)) | ||
| 1927 | { | ||
| 1928 | struct perf_event *child; | ||
| 1929 | |||
| 1930 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1931 | mutex_lock(&event->child_mutex); | ||
| 1932 | func(event); | ||
| 1933 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1934 | func(child); | ||
| 1935 | mutex_unlock(&event->child_mutex); | ||
| 1936 | } | ||
| 1937 | |||
| 1938 | static void perf_event_for_each(struct perf_event *event, | ||
| 1939 | void (*func)(struct perf_event *)) | ||
| 1940 | { | ||
| 1941 | struct perf_event_context *ctx = event->ctx; | ||
| 1942 | struct perf_event *sibling; | ||
| 1943 | |||
| 1944 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1945 | mutex_lock(&ctx->mutex); | ||
| 1946 | event = event->group_leader; | ||
| 1947 | |||
| 1948 | perf_event_for_each_child(event, func); | ||
| 1949 | func(event); | ||
| 1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
| 1951 | perf_event_for_each_child(event, func); | ||
| 1952 | mutex_unlock(&ctx->mutex); | ||
| 1953 | } | ||
| 1954 | |||
| 1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
| 1956 | { | ||
| 1957 | struct perf_event_context *ctx = event->ctx; | ||
| 1958 | unsigned long size; | ||
| 1959 | int ret = 0; | ||
| 1960 | u64 value; | ||
| 1961 | |||
| 1962 | if (!event->attr.sample_period) | ||
| 1963 | return -EINVAL; | ||
| 1964 | |||
| 1965 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1966 | if (size != sizeof(value)) | ||
| 1967 | return -EFAULT; | ||
| 1968 | |||
| 1969 | if (!value) | ||
| 1970 | return -EINVAL; | ||
| 1971 | |||
| 1972 | spin_lock_irq(&ctx->lock); | ||
| 1973 | if (event->attr.freq) { | ||
| 1974 | if (value > sysctl_perf_event_sample_rate) { | ||
| 1975 | ret = -EINVAL; | ||
| 1976 | goto unlock; | ||
| 1977 | } | ||
| 1978 | |||
| 1979 | event->attr.sample_freq = value; | ||
| 1980 | } else { | ||
| 1981 | event->attr.sample_period = value; | ||
| 1982 | event->hw.sample_period = value; | ||
| 1983 | } | ||
| 1984 | unlock: | ||
| 1985 | spin_unlock_irq(&ctx->lock); | ||
| 1986 | |||
| 1987 | return ret; | ||
| 1988 | } | ||
| 1989 | |||
| 1990 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
| 1991 | |||
| 1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1993 | { | ||
| 1994 | struct perf_event *event = file->private_data; | ||
| 1995 | void (*func)(struct perf_event *); | ||
| 1996 | u32 flags = arg; | ||
| 1997 | |||
| 1998 | switch (cmd) { | ||
| 1999 | case PERF_EVENT_IOC_ENABLE: | ||
| 2000 | func = perf_event_enable; | ||
| 2001 | break; | ||
| 2002 | case PERF_EVENT_IOC_DISABLE: | ||
| 2003 | func = perf_event_disable; | ||
| 2004 | break; | ||
| 2005 | case PERF_EVENT_IOC_RESET: | ||
| 2006 | func = perf_event_reset; | ||
| 2007 | break; | ||
| 2008 | |||
| 2009 | case PERF_EVENT_IOC_REFRESH: | ||
| 2010 | return perf_event_refresh(event, arg); | ||
| 2011 | |||
| 2012 | case PERF_EVENT_IOC_PERIOD: | ||
| 2013 | return perf_event_period(event, (u64 __user *)arg); | ||
| 2014 | |||
| 2015 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
| 2016 | return perf_event_set_output(event, arg); | ||
| 2017 | |||
| 2018 | default: | ||
| 2019 | return -ENOTTY; | ||
| 2020 | } | ||
| 2021 | |||
| 2022 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 2023 | perf_event_for_each(event, func); | ||
| 2024 | else | ||
| 2025 | perf_event_for_each_child(event, func); | ||
| 2026 | |||
| 2027 | return 0; | ||
| 2028 | } | ||
| 2029 | |||
| 2030 | int perf_event_task_enable(void) | ||
| 2031 | { | ||
| 2032 | struct perf_event *event; | ||
| 2033 | |||
| 2034 | mutex_lock(¤t->perf_event_mutex); | ||
| 2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2036 | perf_event_for_each_child(event, perf_event_enable); | ||
| 2037 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2038 | |||
| 2039 | return 0; | ||
| 2040 | } | ||
| 2041 | |||
| 2042 | int perf_event_task_disable(void) | ||
| 2043 | { | ||
| 2044 | struct perf_event *event; | ||
| 2045 | |||
| 2046 | mutex_lock(¤t->perf_event_mutex); | ||
| 2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2048 | perf_event_for_each_child(event, perf_event_disable); | ||
| 2049 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2050 | |||
| 2051 | return 0; | ||
| 2052 | } | ||
| 2053 | |||
| 2054 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
| 2055 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
| 2056 | #endif | ||
| 2057 | |||
| 2058 | static int perf_event_index(struct perf_event *event) | ||
| 2059 | { | ||
| 2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 2061 | return 0; | ||
| 2062 | |||
| 2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
| 2064 | } | ||
| 2065 | |||
| 2066 | /* | ||
| 2067 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 2068 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 2069 | * code calls this from NMI context. | ||
| 2070 | */ | ||
| 2071 | void perf_event_update_userpage(struct perf_event *event) | ||
| 2072 | { | ||
| 2073 | struct perf_event_mmap_page *userpg; | ||
| 2074 | struct perf_mmap_data *data; | ||
| 2075 | |||
| 2076 | rcu_read_lock(); | ||
| 2077 | data = rcu_dereference(event->data); | ||
| 2078 | if (!data) | ||
| 2079 | goto unlock; | ||
| 2080 | |||
| 2081 | userpg = data->user_page; | ||
| 2082 | |||
| 2083 | /* | ||
| 2084 | * Disable preemption so as to not let the corresponding user-space | ||
| 2085 | * spin too long if we get preempted. | ||
| 2086 | */ | ||
| 2087 | preempt_disable(); | ||
| 2088 | ++userpg->lock; | ||
| 2089 | barrier(); | ||
| 2090 | userpg->index = perf_event_index(event); | ||
| 2091 | userpg->offset = atomic64_read(&event->count); | ||
| 2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
| 2094 | |||
| 2095 | userpg->time_enabled = event->total_time_enabled + | ||
| 2096 | atomic64_read(&event->child_total_time_enabled); | ||
| 2097 | |||
| 2098 | userpg->time_running = event->total_time_running + | ||
| 2099 | atomic64_read(&event->child_total_time_running); | ||
| 2100 | |||
| 2101 | barrier(); | ||
| 2102 | ++userpg->lock; | ||
| 2103 | preempt_enable(); | ||
| 2104 | unlock: | ||
| 2105 | rcu_read_unlock(); | ||
| 2106 | } | ||
| 2107 | |||
| 2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 2109 | { | ||
| 2110 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2111 | struct perf_mmap_data *data; | ||
| 2112 | int ret = VM_FAULT_SIGBUS; | ||
| 2113 | |||
| 2114 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 2115 | if (vmf->pgoff == 0) | ||
| 2116 | ret = 0; | ||
| 2117 | return ret; | ||
| 2118 | } | ||
| 2119 | |||
| 2120 | rcu_read_lock(); | ||
| 2121 | data = rcu_dereference(event->data); | ||
| 2122 | if (!data) | ||
| 2123 | goto unlock; | ||
| 2124 | |||
| 2125 | if (vmf->pgoff == 0) { | ||
| 2126 | vmf->page = virt_to_page(data->user_page); | ||
| 2127 | } else { | ||
| 2128 | int nr = vmf->pgoff - 1; | ||
| 2129 | |||
| 2130 | if ((unsigned)nr > data->nr_pages) | ||
| 2131 | goto unlock; | ||
| 2132 | |||
| 2133 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
| 2134 | goto unlock; | ||
| 2135 | |||
| 2136 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 2137 | } | ||
| 2138 | |||
| 2139 | get_page(vmf->page); | ||
| 2140 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 2141 | vmf->page->index = vmf->pgoff; | ||
| 2142 | |||
| 2143 | ret = 0; | ||
| 2144 | unlock: | ||
| 2145 | rcu_read_unlock(); | ||
| 2146 | |||
| 2147 | return ret; | ||
| 2148 | } | ||
| 2149 | |||
| 2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
| 2151 | { | ||
| 2152 | struct perf_mmap_data *data; | ||
| 2153 | unsigned long size; | ||
| 2154 | int i; | ||
| 2155 | |||
| 2156 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2157 | |||
| 2158 | size = sizeof(struct perf_mmap_data); | ||
| 2159 | size += nr_pages * sizeof(void *); | ||
| 2160 | |||
| 2161 | data = kzalloc(size, GFP_KERNEL); | ||
| 2162 | if (!data) | ||
| 2163 | goto fail; | ||
| 2164 | |||
| 2165 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2166 | if (!data->user_page) | ||
| 2167 | goto fail_user_page; | ||
| 2168 | |||
| 2169 | for (i = 0; i < nr_pages; i++) { | ||
| 2170 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2171 | if (!data->data_pages[i]) | ||
| 2172 | goto fail_data_pages; | ||
| 2173 | } | ||
| 2174 | |||
| 2175 | data->nr_pages = nr_pages; | ||
| 2176 | atomic_set(&data->lock, -1); | ||
| 2177 | |||
| 2178 | if (event->attr.watermark) { | ||
| 2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
| 2180 | event->attr.wakeup_watermark); | ||
| 2181 | } | ||
| 2182 | if (!data->watermark) | ||
| 2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
| 2184 | |||
| 2185 | rcu_assign_pointer(event->data, data); | ||
| 2186 | |||
| 2187 | return 0; | ||
| 2188 | |||
| 2189 | fail_data_pages: | ||
| 2190 | for (i--; i >= 0; i--) | ||
| 2191 | free_page((unsigned long)data->data_pages[i]); | ||
| 2192 | |||
| 2193 | free_page((unsigned long)data->user_page); | ||
| 2194 | |||
| 2195 | fail_user_page: | ||
| 2196 | kfree(data); | ||
| 2197 | |||
| 2198 | fail: | ||
| 2199 | return -ENOMEM; | ||
| 2200 | } | ||
| 2201 | |||
| 2202 | static void perf_mmap_free_page(unsigned long addr) | ||
| 2203 | { | ||
| 2204 | struct page *page = virt_to_page((void *)addr); | ||
| 2205 | |||
| 2206 | page->mapping = NULL; | ||
| 2207 | __free_page(page); | ||
| 2208 | } | ||
| 2209 | |||
| 2210 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 2211 | { | ||
| 2212 | struct perf_mmap_data *data; | ||
| 2213 | int i; | ||
| 2214 | |||
| 2215 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 2216 | |||
| 2217 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 2218 | for (i = 0; i < data->nr_pages; i++) | ||
| 2219 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 2220 | |||
| 2221 | kfree(data); | ||
| 2222 | } | ||
| 2223 | |||
| 2224 | static void perf_mmap_data_free(struct perf_event *event) | ||
| 2225 | { | ||
| 2226 | struct perf_mmap_data *data = event->data; | ||
| 2227 | |||
| 2228 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2229 | |||
| 2230 | rcu_assign_pointer(event->data, NULL); | ||
| 2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 2232 | } | ||
| 2233 | |||
| 2234 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 2235 | { | ||
| 2236 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2237 | |||
| 2238 | atomic_inc(&event->mmap_count); | ||
| 2239 | } | ||
| 2240 | |||
| 2241 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 2242 | { | ||
| 2243 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2244 | |||
| 2245 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
| 2247 | struct user_struct *user = current_user(); | ||
| 2248 | |||
| 2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); | ||
| 2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
| 2251 | perf_mmap_data_free(event); | ||
| 2252 | mutex_unlock(&event->mmap_mutex); | ||
| 2253 | } | ||
| 2254 | } | ||
| 2255 | |||
| 2256 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
| 2257 | .open = perf_mmap_open, | ||
| 2258 | .close = perf_mmap_close, | ||
| 2259 | .fault = perf_mmap_fault, | ||
| 2260 | .page_mkwrite = perf_mmap_fault, | ||
| 2261 | }; | ||
| 2262 | |||
| 2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 2264 | { | ||
| 2265 | struct perf_event *event = file->private_data; | ||
| 2266 | unsigned long user_locked, user_lock_limit; | ||
| 2267 | struct user_struct *user = current_user(); | ||
| 2268 | unsigned long locked, lock_limit; | ||
| 2269 | unsigned long vma_size; | ||
| 2270 | unsigned long nr_pages; | ||
| 2271 | long user_extra, extra; | ||
| 2272 | int ret = 0; | ||
| 2273 | |||
| 2274 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 2275 | return -EINVAL; | ||
| 2276 | |||
| 2277 | vma_size = vma->vm_end - vma->vm_start; | ||
| 2278 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 2279 | |||
| 2280 | /* | ||
| 2281 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 2282 | * can do bitmasks instead of modulo. | ||
| 2283 | */ | ||
| 2284 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 2285 | return -EINVAL; | ||
| 2286 | |||
| 2287 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 2288 | return -EINVAL; | ||
| 2289 | |||
| 2290 | if (vma->vm_pgoff != 0) | ||
| 2291 | return -EINVAL; | ||
| 2292 | |||
| 2293 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2294 | mutex_lock(&event->mmap_mutex); | ||
| 2295 | if (event->output) { | ||
| 2296 | ret = -EINVAL; | ||
| 2297 | goto unlock; | ||
| 2298 | } | ||
| 2299 | |||
| 2300 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
| 2301 | if (nr_pages != event->data->nr_pages) | ||
| 2302 | ret = -EINVAL; | ||
| 2303 | goto unlock; | ||
| 2304 | } | ||
| 2305 | |||
| 2306 | user_extra = nr_pages + 1; | ||
| 2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
| 2308 | |||
| 2309 | /* | ||
| 2310 | * Increase the limit linearly with more CPUs: | ||
| 2311 | */ | ||
| 2312 | user_lock_limit *= num_online_cpus(); | ||
| 2313 | |||
| 2314 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 2315 | |||
| 2316 | extra = 0; | ||
| 2317 | if (user_locked > user_lock_limit) | ||
| 2318 | extra = user_locked - user_lock_limit; | ||
| 2319 | |||
| 2320 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 2321 | lock_limit >>= PAGE_SHIFT; | ||
| 2322 | locked = vma->vm_mm->locked_vm + extra; | ||
| 2323 | |||
| 2324 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
| 2325 | !capable(CAP_IPC_LOCK)) { | ||
| 2326 | ret = -EPERM; | ||
| 2327 | goto unlock; | ||
| 2328 | } | ||
| 2329 | |||
| 2330 | WARN_ON(event->data); | ||
| 2331 | ret = perf_mmap_data_alloc(event, nr_pages); | ||
| 2332 | if (ret) | ||
| 2333 | goto unlock; | ||
| 2334 | |||
| 2335 | atomic_set(&event->mmap_count, 1); | ||
| 2336 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2337 | vma->vm_mm->locked_vm += extra; | ||
| 2338 | event->data->nr_locked = extra; | ||
| 2339 | if (vma->vm_flags & VM_WRITE) | ||
| 2340 | event->data->writable = 1; | ||
| 2341 | |||
| 2342 | unlock: | ||
| 2343 | mutex_unlock(&event->mmap_mutex); | ||
| 2344 | |||
| 2345 | vma->vm_flags |= VM_RESERVED; | ||
| 2346 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2347 | |||
| 2348 | return ret; | ||
| 2349 | } | ||
| 2350 | |||
| 2351 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2352 | { | ||
| 2353 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2354 | struct perf_event *event = filp->private_data; | ||
| 2355 | int retval; | ||
| 2356 | |||
| 2357 | mutex_lock(&inode->i_mutex); | ||
| 2358 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
| 2359 | mutex_unlock(&inode->i_mutex); | ||
| 2360 | |||
| 2361 | if (retval < 0) | ||
| 2362 | return retval; | ||
| 2363 | |||
| 2364 | return 0; | ||
| 2365 | } | ||
| 2366 | |||
| 2367 | static const struct file_operations perf_fops = { | ||
| 2368 | .release = perf_release, | ||
| 2369 | .read = perf_read, | ||
| 2370 | .poll = perf_poll, | ||
| 2371 | .unlocked_ioctl = perf_ioctl, | ||
| 2372 | .compat_ioctl = perf_ioctl, | ||
| 2373 | .mmap = perf_mmap, | ||
| 2374 | .fasync = perf_fasync, | ||
| 2375 | }; | ||
| 2376 | |||
| 2377 | /* | ||
| 2378 | * Perf event wakeup | ||
| 2379 | * | ||
| 2380 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2381 | * to user-space before waking everybody up. | ||
| 2382 | */ | ||
| 2383 | |||
| 2384 | void perf_event_wakeup(struct perf_event *event) | ||
| 2385 | { | ||
| 2386 | wake_up_all(&event->waitq); | ||
| 2387 | |||
| 2388 | if (event->pending_kill) { | ||
| 2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
| 2390 | event->pending_kill = 0; | ||
| 2391 | } | ||
| 2392 | } | ||
| 2393 | |||
| 2394 | /* | ||
| 2395 | * Pending wakeups | ||
| 2396 | * | ||
| 2397 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2398 | * | ||
| 2399 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2400 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2401 | */ | ||
| 2402 | |||
| 2403 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
| 2404 | { | ||
| 2405 | struct perf_event *event = container_of(entry, | ||
| 2406 | struct perf_event, pending); | ||
| 2407 | |||
| 2408 | if (event->pending_disable) { | ||
| 2409 | event->pending_disable = 0; | ||
| 2410 | __perf_event_disable(event); | ||
| 2411 | } | ||
| 2412 | |||
| 2413 | if (event->pending_wakeup) { | ||
| 2414 | event->pending_wakeup = 0; | ||
| 2415 | perf_event_wakeup(event); | ||
| 2416 | } | ||
| 2417 | } | ||
| 2418 | |||
| 2419 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2420 | |||
| 2421 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2422 | PENDING_TAIL, | ||
| 2423 | }; | ||
| 2424 | |||
| 2425 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2426 | void (*func)(struct perf_pending_entry *)) | ||
| 2427 | { | ||
| 2428 | struct perf_pending_entry **head; | ||
| 2429 | |||
| 2430 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2431 | return; | ||
| 2432 | |||
| 2433 | entry->func = func; | ||
| 2434 | |||
| 2435 | head = &get_cpu_var(perf_pending_head); | ||
| 2436 | |||
| 2437 | do { | ||
| 2438 | entry->next = *head; | ||
| 2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2440 | |||
| 2441 | set_perf_event_pending(); | ||
| 2442 | |||
| 2443 | put_cpu_var(perf_pending_head); | ||
| 2444 | } | ||
| 2445 | |||
| 2446 | static int __perf_pending_run(void) | ||
| 2447 | { | ||
| 2448 | struct perf_pending_entry *list; | ||
| 2449 | int nr = 0; | ||
| 2450 | |||
| 2451 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2452 | while (list != PENDING_TAIL) { | ||
| 2453 | void (*func)(struct perf_pending_entry *); | ||
| 2454 | struct perf_pending_entry *entry = list; | ||
| 2455 | |||
| 2456 | list = list->next; | ||
| 2457 | |||
| 2458 | func = entry->func; | ||
| 2459 | entry->next = NULL; | ||
| 2460 | /* | ||
| 2461 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2462 | * so that we won't be waiting forever. | ||
| 2463 | * -- see perf_not_pending(). | ||
| 2464 | */ | ||
| 2465 | smp_wmb(); | ||
| 2466 | |||
| 2467 | func(entry); | ||
| 2468 | nr++; | ||
| 2469 | } | ||
| 2470 | |||
| 2471 | return nr; | ||
| 2472 | } | ||
| 2473 | |||
| 2474 | static inline int perf_not_pending(struct perf_event *event) | ||
| 2475 | { | ||
| 2476 | /* | ||
| 2477 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2478 | * need to wait. | ||
| 2479 | */ | ||
| 2480 | get_cpu(); | ||
| 2481 | __perf_pending_run(); | ||
| 2482 | put_cpu(); | ||
| 2483 | |||
| 2484 | /* | ||
| 2485 | * Ensure we see the proper queue state before going to sleep | ||
| 2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2487 | */ | ||
| 2488 | smp_rmb(); | ||
| 2489 | return event->pending.next == NULL; | ||
| 2490 | } | ||
| 2491 | |||
| 2492 | static void perf_pending_sync(struct perf_event *event) | ||
| 2493 | { | ||
| 2494 | wait_event(event->waitq, perf_not_pending(event)); | ||
| 2495 | } | ||
| 2496 | |||
| 2497 | void perf_event_do_pending(void) | ||
| 2498 | { | ||
| 2499 | __perf_pending_run(); | ||
| 2500 | } | ||
| 2501 | |||
| 2502 | /* | ||
| 2503 | * Callchain support -- arch specific | ||
| 2504 | */ | ||
| 2505 | |||
| 2506 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2507 | { | ||
| 2508 | return NULL; | ||
| 2509 | } | ||
| 2510 | |||
| 2511 | /* | ||
| 2512 | * Output | ||
| 2513 | */ | ||
| 2514 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
| 2515 | unsigned long offset, unsigned long head) | ||
| 2516 | { | ||
| 2517 | unsigned long mask; | ||
| 2518 | |||
| 2519 | if (!data->writable) | ||
| 2520 | return true; | ||
| 2521 | |||
| 2522 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
| 2523 | |||
| 2524 | offset = (offset - tail) & mask; | ||
| 2525 | head = (head - tail) & mask; | ||
| 2526 | |||
| 2527 | if ((int)(head - offset) < 0) | ||
| 2528 | return false; | ||
| 2529 | |||
| 2530 | return true; | ||
| 2531 | } | ||
| 2532 | |||
| 2533 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2534 | { | ||
| 2535 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2536 | |||
| 2537 | if (handle->nmi) { | ||
| 2538 | handle->event->pending_wakeup = 1; | ||
| 2539 | perf_pending_queue(&handle->event->pending, | ||
| 2540 | perf_pending_event); | ||
| 2541 | } else | ||
| 2542 | perf_event_wakeup(handle->event); | ||
| 2543 | } | ||
| 2544 | |||
| 2545 | /* | ||
| 2546 | * Curious locking construct. | ||
| 2547 | * | ||
| 2548 | * We need to ensure a later event_id doesn't publish a head when a former | ||
| 2549 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
| 2550 | * cannot fully serialize things. | ||
| 2551 | * | ||
| 2552 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2553 | * nesting on a single CPU. | ||
| 2554 | * | ||
| 2555 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2556 | * event_id completes. | ||
| 2557 | */ | ||
| 2558 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2559 | { | ||
| 2560 | struct perf_mmap_data *data = handle->data; | ||
| 2561 | int cpu; | ||
| 2562 | |||
| 2563 | handle->locked = 0; | ||
| 2564 | |||
| 2565 | local_irq_save(handle->flags); | ||
| 2566 | cpu = smp_processor_id(); | ||
| 2567 | |||
| 2568 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2569 | return; | ||
| 2570 | |||
| 2571 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2572 | cpu_relax(); | ||
| 2573 | |||
| 2574 | handle->locked = 1; | ||
| 2575 | } | ||
| 2576 | |||
| 2577 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2578 | { | ||
| 2579 | struct perf_mmap_data *data = handle->data; | ||
| 2580 | unsigned long head; | ||
| 2581 | int cpu; | ||
| 2582 | |||
| 2583 | data->done_head = data->head; | ||
| 2584 | |||
| 2585 | if (!handle->locked) | ||
| 2586 | goto out; | ||
| 2587 | |||
| 2588 | again: | ||
| 2589 | /* | ||
| 2590 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2591 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2592 | * reading this position. | ||
| 2593 | */ | ||
| 2594 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2595 | data->user_page->data_head = head; | ||
| 2596 | |||
| 2597 | /* | ||
| 2598 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2599 | */ | ||
| 2600 | |||
| 2601 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2602 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2603 | |||
| 2604 | /* | ||
| 2605 | * Therefore we have to validate we did not indeed do so. | ||
| 2606 | */ | ||
| 2607 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2608 | /* | ||
| 2609 | * Since we had it locked, we can lock it again. | ||
| 2610 | */ | ||
| 2611 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2612 | cpu_relax(); | ||
| 2613 | |||
| 2614 | goto again; | ||
| 2615 | } | ||
| 2616 | |||
| 2617 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2618 | perf_output_wakeup(handle); | ||
| 2619 | out: | ||
| 2620 | local_irq_restore(handle->flags); | ||
| 2621 | } | ||
| 2622 | |||
| 2623 | void perf_output_copy(struct perf_output_handle *handle, | ||
| 2624 | const void *buf, unsigned int len) | ||
| 2625 | { | ||
| 2626 | unsigned int pages_mask; | ||
| 2627 | unsigned int offset; | ||
| 2628 | unsigned int size; | ||
| 2629 | void **pages; | ||
| 2630 | |||
| 2631 | offset = handle->offset; | ||
| 2632 | pages_mask = handle->data->nr_pages - 1; | ||
| 2633 | pages = handle->data->data_pages; | ||
| 2634 | |||
| 2635 | do { | ||
| 2636 | unsigned int page_offset; | ||
| 2637 | int nr; | ||
| 2638 | |||
| 2639 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2640 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2641 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2642 | |||
| 2643 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2644 | |||
| 2645 | len -= size; | ||
| 2646 | buf += size; | ||
| 2647 | offset += size; | ||
| 2648 | } while (len); | ||
| 2649 | |||
| 2650 | handle->offset = offset; | ||
| 2651 | |||
| 2652 | /* | ||
| 2653 | * Check we didn't copy past our reservation window, taking the | ||
| 2654 | * possible unsigned int wrap into account. | ||
| 2655 | */ | ||
| 2656 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2657 | } | ||
| 2658 | |||
| 2659 | int perf_output_begin(struct perf_output_handle *handle, | ||
| 2660 | struct perf_event *event, unsigned int size, | ||
| 2661 | int nmi, int sample) | ||
| 2662 | { | ||
| 2663 | struct perf_event *output_event; | ||
| 2664 | struct perf_mmap_data *data; | ||
| 2665 | unsigned long tail, offset, head; | ||
| 2666 | int have_lost; | ||
| 2667 | struct { | ||
| 2668 | struct perf_event_header header; | ||
| 2669 | u64 id; | ||
| 2670 | u64 lost; | ||
| 2671 | } lost_event; | ||
| 2672 | |||
| 2673 | rcu_read_lock(); | ||
| 2674 | /* | ||
| 2675 | * For inherited events we send all the output towards the parent. | ||
| 2676 | */ | ||
| 2677 | if (event->parent) | ||
| 2678 | event = event->parent; | ||
| 2679 | |||
| 2680 | output_event = rcu_dereference(event->output); | ||
| 2681 | if (output_event) | ||
| 2682 | event = output_event; | ||
| 2683 | |||
| 2684 | data = rcu_dereference(event->data); | ||
| 2685 | if (!data) | ||
| 2686 | goto out; | ||
| 2687 | |||
| 2688 | handle->data = data; | ||
| 2689 | handle->event = event; | ||
| 2690 | handle->nmi = nmi; | ||
| 2691 | handle->sample = sample; | ||
| 2692 | |||
| 2693 | if (!data->nr_pages) | ||
| 2694 | goto fail; | ||
| 2695 | |||
| 2696 | have_lost = atomic_read(&data->lost); | ||
| 2697 | if (have_lost) | ||
| 2698 | size += sizeof(lost_event); | ||
| 2699 | |||
| 2700 | perf_output_lock(handle); | ||
| 2701 | |||
| 2702 | do { | ||
| 2703 | /* | ||
| 2704 | * Userspace could choose to issue a mb() before updating the | ||
| 2705 | * tail pointer. So that all reads will be completed before the | ||
| 2706 | * write is issued. | ||
| 2707 | */ | ||
| 2708 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2709 | smp_rmb(); | ||
| 2710 | offset = head = atomic_long_read(&data->head); | ||
| 2711 | head += size; | ||
| 2712 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
| 2713 | goto fail; | ||
| 2714 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2715 | |||
| 2716 | handle->offset = offset; | ||
| 2717 | handle->head = head; | ||
| 2718 | |||
| 2719 | if (head - tail > data->watermark) | ||
| 2720 | atomic_set(&data->wakeup, 1); | ||
| 2721 | |||
| 2722 | if (have_lost) { | ||
| 2723 | lost_event.header.type = PERF_RECORD_LOST; | ||
| 2724 | lost_event.header.misc = 0; | ||
| 2725 | lost_event.header.size = sizeof(lost_event); | ||
| 2726 | lost_event.id = event->id; | ||
| 2727 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2728 | |||
| 2729 | perf_output_put(handle, lost_event); | ||
| 2730 | } | ||
| 2731 | |||
| 2732 | return 0; | ||
| 2733 | |||
| 2734 | fail: | ||
| 2735 | atomic_inc(&data->lost); | ||
| 2736 | perf_output_unlock(handle); | ||
| 2737 | out: | ||
| 2738 | rcu_read_unlock(); | ||
| 2739 | |||
| 2740 | return -ENOSPC; | ||
| 2741 | } | ||
| 2742 | |||
| 2743 | void perf_output_end(struct perf_output_handle *handle) | ||
| 2744 | { | ||
| 2745 | struct perf_event *event = handle->event; | ||
| 2746 | struct perf_mmap_data *data = handle->data; | ||
| 2747 | |||
| 2748 | int wakeup_events = event->attr.wakeup_events; | ||
| 2749 | |||
| 2750 | if (handle->sample && wakeup_events) { | ||
| 2751 | int events = atomic_inc_return(&data->events); | ||
| 2752 | if (events >= wakeup_events) { | ||
| 2753 | atomic_sub(wakeup_events, &data->events); | ||
| 2754 | atomic_set(&data->wakeup, 1); | ||
| 2755 | } | ||
| 2756 | } | ||
| 2757 | |||
| 2758 | perf_output_unlock(handle); | ||
| 2759 | rcu_read_unlock(); | ||
| 2760 | } | ||
| 2761 | |||
| 2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
| 2763 | { | ||
| 2764 | /* | ||
| 2765 | * only top level events have the pid namespace they were created in | ||
| 2766 | */ | ||
| 2767 | if (event->parent) | ||
| 2768 | event = event->parent; | ||
| 2769 | |||
| 2770 | return task_tgid_nr_ns(p, event->ns); | ||
| 2771 | } | ||
| 2772 | |||
| 2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
| 2774 | { | ||
| 2775 | /* | ||
| 2776 | * only top level events have the pid namespace they were created in | ||
| 2777 | */ | ||
| 2778 | if (event->parent) | ||
| 2779 | event = event->parent; | ||
| 2780 | |||
| 2781 | return task_pid_nr_ns(p, event->ns); | ||
| 2782 | } | ||
| 2783 | |||
| 2784 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
| 2785 | struct perf_event *event) | ||
| 2786 | { | ||
| 2787 | u64 read_format = event->attr.read_format; | ||
| 2788 | u64 values[4]; | ||
| 2789 | int n = 0; | ||
| 2790 | |||
| 2791 | values[n++] = atomic64_read(&event->count); | ||
| 2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 2793 | values[n++] = event->total_time_enabled + | ||
| 2794 | atomic64_read(&event->child_total_time_enabled); | ||
| 2795 | } | ||
| 2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 2797 | values[n++] = event->total_time_running + | ||
| 2798 | atomic64_read(&event->child_total_time_running); | ||
| 2799 | } | ||
| 2800 | if (read_format & PERF_FORMAT_ID) | ||
| 2801 | values[n++] = primary_event_id(event); | ||
| 2802 | |||
| 2803 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2804 | } | ||
| 2805 | |||
| 2806 | /* | ||
| 2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
| 2808 | */ | ||
| 2809 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
| 2810 | struct perf_event *event) | ||
| 2811 | { | ||
| 2812 | struct perf_event *leader = event->group_leader, *sub; | ||
| 2813 | u64 read_format = event->attr.read_format; | ||
| 2814 | u64 values[5]; | ||
| 2815 | int n = 0; | ||
| 2816 | |||
| 2817 | values[n++] = 1 + leader->nr_siblings; | ||
| 2818 | |||
| 2819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 2820 | values[n++] = leader->total_time_enabled; | ||
| 2821 | |||
| 2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 2823 | values[n++] = leader->total_time_running; | ||
| 2824 | |||
| 2825 | if (leader != event) | ||
| 2826 | leader->pmu->read(leader); | ||
| 2827 | |||
| 2828 | values[n++] = atomic64_read(&leader->count); | ||
| 2829 | if (read_format & PERF_FORMAT_ID) | ||
| 2830 | values[n++] = primary_event_id(leader); | ||
| 2831 | |||
| 2832 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2833 | |||
| 2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 2835 | n = 0; | ||
| 2836 | |||
| 2837 | if (sub != event) | ||
| 2838 | sub->pmu->read(sub); | ||
| 2839 | |||
| 2840 | values[n++] = atomic64_read(&sub->count); | ||
| 2841 | if (read_format & PERF_FORMAT_ID) | ||
| 2842 | values[n++] = primary_event_id(sub); | ||
| 2843 | |||
| 2844 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2845 | } | ||
| 2846 | } | ||
| 2847 | |||
| 2848 | static void perf_output_read(struct perf_output_handle *handle, | ||
| 2849 | struct perf_event *event) | ||
| 2850 | { | ||
| 2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
| 2852 | perf_output_read_group(handle, event); | ||
| 2853 | else | ||
| 2854 | perf_output_read_one(handle, event); | ||
| 2855 | } | ||
| 2856 | |||
| 2857 | void perf_output_sample(struct perf_output_handle *handle, | ||
| 2858 | struct perf_event_header *header, | ||
| 2859 | struct perf_sample_data *data, | ||
| 2860 | struct perf_event *event) | ||
| 2861 | { | ||
| 2862 | u64 sample_type = data->type; | ||
| 2863 | |||
| 2864 | perf_output_put(handle, *header); | ||
| 2865 | |||
| 2866 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2867 | perf_output_put(handle, data->ip); | ||
| 2868 | |||
| 2869 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2870 | perf_output_put(handle, data->tid_entry); | ||
| 2871 | |||
| 2872 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2873 | perf_output_put(handle, data->time); | ||
| 2874 | |||
| 2875 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2876 | perf_output_put(handle, data->addr); | ||
| 2877 | |||
| 2878 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2879 | perf_output_put(handle, data->id); | ||
| 2880 | |||
| 2881 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2882 | perf_output_put(handle, data->stream_id); | ||
| 2883 | |||
| 2884 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2885 | perf_output_put(handle, data->cpu_entry); | ||
| 2886 | |||
| 2887 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2888 | perf_output_put(handle, data->period); | ||
| 2889 | |||
| 2890 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2891 | perf_output_read(handle, event); | ||
| 2892 | |||
| 2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2894 | if (data->callchain) { | ||
| 2895 | int size = 1; | ||
| 2896 | |||
| 2897 | if (data->callchain) | ||
| 2898 | size += data->callchain->nr; | ||
| 2899 | |||
| 2900 | size *= sizeof(u64); | ||
| 2901 | |||
| 2902 | perf_output_copy(handle, data->callchain, size); | ||
| 2903 | } else { | ||
| 2904 | u64 nr = 0; | ||
| 2905 | perf_output_put(handle, nr); | ||
| 2906 | } | ||
| 2907 | } | ||
| 2908 | |||
| 2909 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 2910 | if (data->raw) { | ||
| 2911 | perf_output_put(handle, data->raw->size); | ||
| 2912 | perf_output_copy(handle, data->raw->data, | ||
| 2913 | data->raw->size); | ||
| 2914 | } else { | ||
| 2915 | struct { | ||
| 2916 | u32 size; | ||
| 2917 | u32 data; | ||
| 2918 | } raw = { | ||
| 2919 | .size = sizeof(u32), | ||
| 2920 | .data = 0, | ||
| 2921 | }; | ||
| 2922 | perf_output_put(handle, raw); | ||
| 2923 | } | ||
| 2924 | } | ||
| 2925 | } | ||
| 2926 | |||
| 2927 | void perf_prepare_sample(struct perf_event_header *header, | ||
| 2928 | struct perf_sample_data *data, | ||
| 2929 | struct perf_event *event, | ||
| 2930 | struct pt_regs *regs) | ||
| 2931 | { | ||
| 2932 | u64 sample_type = event->attr.sample_type; | ||
| 2933 | |||
| 2934 | data->type = sample_type; | ||
| 2935 | |||
| 2936 | header->type = PERF_RECORD_SAMPLE; | ||
| 2937 | header->size = sizeof(*header); | ||
| 2938 | |||
| 2939 | header->misc = 0; | ||
| 2940 | header->misc |= perf_misc_flags(regs); | ||
| 2941 | |||
| 2942 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2943 | data->ip = perf_instruction_pointer(regs); | ||
| 2944 | |||
| 2945 | header->size += sizeof(data->ip); | ||
| 2946 | } | ||
| 2947 | |||
| 2948 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2949 | /* namespace issues */ | ||
| 2950 | data->tid_entry.pid = perf_event_pid(event, current); | ||
| 2951 | data->tid_entry.tid = perf_event_tid(event, current); | ||
| 2952 | |||
| 2953 | header->size += sizeof(data->tid_entry); | ||
| 2954 | } | ||
| 2955 | |||
| 2956 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2957 | data->time = perf_clock(); | ||
| 2958 | |||
| 2959 | header->size += sizeof(data->time); | ||
| 2960 | } | ||
| 2961 | |||
| 2962 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2963 | header->size += sizeof(data->addr); | ||
| 2964 | |||
| 2965 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2966 | data->id = primary_event_id(event); | ||
| 2967 | |||
| 2968 | header->size += sizeof(data->id); | ||
| 2969 | } | ||
| 2970 | |||
| 2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
| 2972 | data->stream_id = event->id; | ||
| 2973 | |||
| 2974 | header->size += sizeof(data->stream_id); | ||
| 2975 | } | ||
| 2976 | |||
| 2977 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2978 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2979 | data->cpu_entry.reserved = 0; | ||
| 2980 | |||
| 2981 | header->size += sizeof(data->cpu_entry); | ||
| 2982 | } | ||
| 2983 | |||
| 2984 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2985 | header->size += sizeof(data->period); | ||
| 2986 | |||
| 2987 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2988 | header->size += perf_event_read_size(event); | ||
| 2989 | |||
| 2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2991 | int size = 1; | ||
| 2992 | |||
| 2993 | data->callchain = perf_callchain(regs); | ||
| 2994 | |||
| 2995 | if (data->callchain) | ||
| 2996 | size += data->callchain->nr; | ||
| 2997 | |||
| 2998 | header->size += size * sizeof(u64); | ||
| 2999 | } | ||
| 3000 | |||
| 3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3002 | int size = sizeof(u32); | ||
| 3003 | |||
| 3004 | if (data->raw) | ||
| 3005 | size += data->raw->size; | ||
| 3006 | else | ||
| 3007 | size += sizeof(u32); | ||
| 3008 | |||
| 3009 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
| 3010 | header->size += size; | ||
| 3011 | } | ||
| 3012 | } | ||
| 3013 | |||
| 3014 | static void perf_event_output(struct perf_event *event, int nmi, | ||
| 3015 | struct perf_sample_data *data, | ||
| 3016 | struct pt_regs *regs) | ||
| 3017 | { | ||
| 3018 | struct perf_output_handle handle; | ||
| 3019 | struct perf_event_header header; | ||
| 3020 | |||
| 3021 | perf_prepare_sample(&header, data, event, regs); | ||
| 3022 | |||
| 3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
| 3024 | return; | ||
| 3025 | |||
| 3026 | perf_output_sample(&handle, &header, data, event); | ||
| 3027 | |||
| 3028 | perf_output_end(&handle); | ||
| 3029 | } | ||
| 3030 | |||
| 3031 | /* | ||
| 3032 | * read event_id | ||
| 3033 | */ | ||
| 3034 | |||
| 3035 | struct perf_read_event { | ||
| 3036 | struct perf_event_header header; | ||
| 3037 | |||
| 3038 | u32 pid; | ||
| 3039 | u32 tid; | ||
| 3040 | }; | ||
| 3041 | |||
| 3042 | static void | ||
| 3043 | perf_event_read_event(struct perf_event *event, | ||
| 3044 | struct task_struct *task) | ||
| 3045 | { | ||
| 3046 | struct perf_output_handle handle; | ||
| 3047 | struct perf_read_event read_event = { | ||
| 3048 | .header = { | ||
| 3049 | .type = PERF_RECORD_READ, | ||
| 3050 | .misc = 0, | ||
| 3051 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
| 3052 | }, | ||
| 3053 | .pid = perf_event_pid(event, task), | ||
| 3054 | .tid = perf_event_tid(event, task), | ||
| 3055 | }; | ||
| 3056 | int ret; | ||
| 3057 | |||
| 3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
| 3059 | if (ret) | ||
| 3060 | return; | ||
| 3061 | |||
| 3062 | perf_output_put(&handle, read_event); | ||
| 3063 | perf_output_read(&handle, event); | ||
| 3064 | |||
| 3065 | perf_output_end(&handle); | ||
| 3066 | } | ||
| 3067 | |||
| 3068 | /* | ||
| 3069 | * task tracking -- fork/exit | ||
| 3070 | * | ||
| 3071 | * enabled by: attr.comm | attr.mmap | attr.task | ||
| 3072 | */ | ||
| 3073 | |||
| 3074 | struct perf_task_event { | ||
| 3075 | struct task_struct *task; | ||
| 3076 | struct perf_event_context *task_ctx; | ||
| 3077 | |||
| 3078 | struct { | ||
| 3079 | struct perf_event_header header; | ||
| 3080 | |||
| 3081 | u32 pid; | ||
| 3082 | u32 ppid; | ||
| 3083 | u32 tid; | ||
| 3084 | u32 ptid; | ||
| 3085 | u64 time; | ||
| 3086 | } event_id; | ||
| 3087 | }; | ||
| 3088 | |||
| 3089 | static void perf_event_task_output(struct perf_event *event, | ||
| 3090 | struct perf_task_event *task_event) | ||
| 3091 | { | ||
| 3092 | struct perf_output_handle handle; | ||
| 3093 | int size; | ||
| 3094 | struct task_struct *task = task_event->task; | ||
| 3095 | int ret; | ||
| 3096 | |||
| 3097 | size = task_event->event_id.header.size; | ||
| 3098 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3099 | |||
| 3100 | if (ret) | ||
| 3101 | return; | ||
| 3102 | |||
| 3103 | task_event->event_id.pid = perf_event_pid(event, task); | ||
| 3104 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
| 3105 | |||
| 3106 | task_event->event_id.tid = perf_event_tid(event, task); | ||
| 3107 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
| 3108 | |||
| 3109 | task_event->event_id.time = perf_clock(); | ||
| 3110 | |||
| 3111 | perf_output_put(&handle, task_event->event_id); | ||
| 3112 | |||
| 3113 | perf_output_end(&handle); | ||
| 3114 | } | ||
| 3115 | |||
| 3116 | static int perf_event_task_match(struct perf_event *event) | ||
| 3117 | { | ||
| 3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
| 3119 | return 1; | ||
| 3120 | |||
| 3121 | return 0; | ||
| 3122 | } | ||
| 3123 | |||
| 3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
| 3125 | struct perf_task_event *task_event) | ||
| 3126 | { | ||
| 3127 | struct perf_event *event; | ||
| 3128 | |||
| 3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3130 | return; | ||
| 3131 | |||
| 3132 | rcu_read_lock(); | ||
| 3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3134 | if (perf_event_task_match(event)) | ||
| 3135 | perf_event_task_output(event, task_event); | ||
| 3136 | } | ||
| 3137 | rcu_read_unlock(); | ||
| 3138 | } | ||
| 3139 | |||
| 3140 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
| 3141 | { | ||
| 3142 | struct perf_cpu_context *cpuctx; | ||
| 3143 | struct perf_event_context *ctx = task_event->task_ctx; | ||
| 3144 | |||
| 3145 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
| 3147 | put_cpu_var(perf_cpu_context); | ||
| 3148 | |||
| 3149 | rcu_read_lock(); | ||
| 3150 | if (!ctx) | ||
| 3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
| 3152 | if (ctx) | ||
| 3153 | perf_event_task_ctx(ctx, task_event); | ||
| 3154 | rcu_read_unlock(); | ||
| 3155 | } | ||
| 3156 | |||
| 3157 | static void perf_event_task(struct task_struct *task, | ||
| 3158 | struct perf_event_context *task_ctx, | ||
| 3159 | int new) | ||
| 3160 | { | ||
| 3161 | struct perf_task_event task_event; | ||
| 3162 | |||
| 3163 | if (!atomic_read(&nr_comm_events) && | ||
| 3164 | !atomic_read(&nr_mmap_events) && | ||
| 3165 | !atomic_read(&nr_task_events)) | ||
| 3166 | return; | ||
| 3167 | |||
| 3168 | task_event = (struct perf_task_event){ | ||
| 3169 | .task = task, | ||
| 3170 | .task_ctx = task_ctx, | ||
| 3171 | .event_id = { | ||
| 3172 | .header = { | ||
| 3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
| 3174 | .misc = 0, | ||
| 3175 | .size = sizeof(task_event.event_id), | ||
| 3176 | }, | ||
| 3177 | /* .pid */ | ||
| 3178 | /* .ppid */ | ||
| 3179 | /* .tid */ | ||
| 3180 | /* .ptid */ | ||
| 3181 | }, | ||
| 3182 | }; | ||
| 3183 | |||
| 3184 | perf_event_task_event(&task_event); | ||
| 3185 | } | ||
| 3186 | |||
| 3187 | void perf_event_fork(struct task_struct *task) | ||
| 3188 | { | ||
| 3189 | perf_event_task(task, NULL, 1); | ||
| 3190 | } | ||
| 3191 | |||
| 3192 | /* | ||
| 3193 | * comm tracking | ||
| 3194 | */ | ||
| 3195 | |||
| 3196 | struct perf_comm_event { | ||
| 3197 | struct task_struct *task; | ||
| 3198 | char *comm; | ||
| 3199 | int comm_size; | ||
| 3200 | |||
| 3201 | struct { | ||
| 3202 | struct perf_event_header header; | ||
| 3203 | |||
| 3204 | u32 pid; | ||
| 3205 | u32 tid; | ||
| 3206 | } event_id; | ||
| 3207 | }; | ||
| 3208 | |||
| 3209 | static void perf_event_comm_output(struct perf_event *event, | ||
| 3210 | struct perf_comm_event *comm_event) | ||
| 3211 | { | ||
| 3212 | struct perf_output_handle handle; | ||
| 3213 | int size = comm_event->event_id.header.size; | ||
| 3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3215 | |||
| 3216 | if (ret) | ||
| 3217 | return; | ||
| 3218 | |||
| 3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
| 3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
| 3221 | |||
| 3222 | perf_output_put(&handle, comm_event->event_id); | ||
| 3223 | perf_output_copy(&handle, comm_event->comm, | ||
| 3224 | comm_event->comm_size); | ||
| 3225 | perf_output_end(&handle); | ||
| 3226 | } | ||
| 3227 | |||
| 3228 | static int perf_event_comm_match(struct perf_event *event) | ||
| 3229 | { | ||
| 3230 | if (event->attr.comm) | ||
| 3231 | return 1; | ||
| 3232 | |||
| 3233 | return 0; | ||
| 3234 | } | ||
| 3235 | |||
| 3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
| 3237 | struct perf_comm_event *comm_event) | ||
| 3238 | { | ||
| 3239 | struct perf_event *event; | ||
| 3240 | |||
| 3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3242 | return; | ||
| 3243 | |||
| 3244 | rcu_read_lock(); | ||
| 3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3246 | if (perf_event_comm_match(event)) | ||
| 3247 | perf_event_comm_output(event, comm_event); | ||
| 3248 | } | ||
| 3249 | rcu_read_unlock(); | ||
| 3250 | } | ||
| 3251 | |||
| 3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
| 3253 | { | ||
| 3254 | struct perf_cpu_context *cpuctx; | ||
| 3255 | struct perf_event_context *ctx; | ||
| 3256 | unsigned int size; | ||
| 3257 | char comm[TASK_COMM_LEN]; | ||
| 3258 | |||
| 3259 | memset(comm, 0, sizeof(comm)); | ||
| 3260 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
| 3261 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 3262 | |||
| 3263 | comm_event->comm = comm; | ||
| 3264 | comm_event->comm_size = size; | ||
| 3265 | |||
| 3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
| 3267 | |||
| 3268 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 3270 | put_cpu_var(perf_cpu_context); | ||
| 3271 | |||
| 3272 | rcu_read_lock(); | ||
| 3273 | /* | ||
| 3274 | * doesn't really matter which of the child contexts the | ||
| 3275 | * events ends up in. | ||
| 3276 | */ | ||
| 3277 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3278 | if (ctx) | ||
| 3279 | perf_event_comm_ctx(ctx, comm_event); | ||
| 3280 | rcu_read_unlock(); | ||
| 3281 | } | ||
| 3282 | |||
| 3283 | void perf_event_comm(struct task_struct *task) | ||
| 3284 | { | ||
| 3285 | struct perf_comm_event comm_event; | ||
| 3286 | |||
| 3287 | if (task->perf_event_ctxp) | ||
| 3288 | perf_event_enable_on_exec(task); | ||
| 3289 | |||
| 3290 | if (!atomic_read(&nr_comm_events)) | ||
| 3291 | return; | ||
| 3292 | |||
| 3293 | comm_event = (struct perf_comm_event){ | ||
| 3294 | .task = task, | ||
| 3295 | /* .comm */ | ||
| 3296 | /* .comm_size */ | ||
| 3297 | .event_id = { | ||
| 3298 | .header = { | ||
| 3299 | .type = PERF_RECORD_COMM, | ||
| 3300 | .misc = 0, | ||
| 3301 | /* .size */ | ||
| 3302 | }, | ||
| 3303 | /* .pid */ | ||
| 3304 | /* .tid */ | ||
| 3305 | }, | ||
| 3306 | }; | ||
| 3307 | |||
| 3308 | perf_event_comm_event(&comm_event); | ||
| 3309 | } | ||
| 3310 | |||
| 3311 | /* | ||
| 3312 | * mmap tracking | ||
| 3313 | */ | ||
| 3314 | |||
| 3315 | struct perf_mmap_event { | ||
| 3316 | struct vm_area_struct *vma; | ||
| 3317 | |||
| 3318 | const char *file_name; | ||
| 3319 | int file_size; | ||
| 3320 | |||
| 3321 | struct { | ||
| 3322 | struct perf_event_header header; | ||
| 3323 | |||
| 3324 | u32 pid; | ||
| 3325 | u32 tid; | ||
| 3326 | u64 start; | ||
| 3327 | u64 len; | ||
| 3328 | u64 pgoff; | ||
| 3329 | } event_id; | ||
| 3330 | }; | ||
| 3331 | |||
| 3332 | static void perf_event_mmap_output(struct perf_event *event, | ||
| 3333 | struct perf_mmap_event *mmap_event) | ||
| 3334 | { | ||
| 3335 | struct perf_output_handle handle; | ||
| 3336 | int size = mmap_event->event_id.header.size; | ||
| 3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3338 | |||
| 3339 | if (ret) | ||
| 3340 | return; | ||
| 3341 | |||
| 3342 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
| 3343 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
| 3344 | |||
| 3345 | perf_output_put(&handle, mmap_event->event_id); | ||
| 3346 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 3347 | mmap_event->file_size); | ||
| 3348 | perf_output_end(&handle); | ||
| 3349 | } | ||
| 3350 | |||
| 3351 | static int perf_event_mmap_match(struct perf_event *event, | ||
| 3352 | struct perf_mmap_event *mmap_event) | ||
| 3353 | { | ||
| 3354 | if (event->attr.mmap) | ||
| 3355 | return 1; | ||
| 3356 | |||
| 3357 | return 0; | ||
| 3358 | } | ||
| 3359 | |||
| 3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
| 3361 | struct perf_mmap_event *mmap_event) | ||
| 3362 | { | ||
| 3363 | struct perf_event *event; | ||
| 3364 | |||
| 3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3366 | return; | ||
| 3367 | |||
| 3368 | rcu_read_lock(); | ||
| 3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3370 | if (perf_event_mmap_match(event, mmap_event)) | ||
| 3371 | perf_event_mmap_output(event, mmap_event); | ||
| 3372 | } | ||
| 3373 | rcu_read_unlock(); | ||
| 3374 | } | ||
| 3375 | |||
| 3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 3377 | { | ||
| 3378 | struct perf_cpu_context *cpuctx; | ||
| 3379 | struct perf_event_context *ctx; | ||
| 3380 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 3381 | struct file *file = vma->vm_file; | ||
| 3382 | unsigned int size; | ||
| 3383 | char tmp[16]; | ||
| 3384 | char *buf = NULL; | ||
| 3385 | const char *name; | ||
| 3386 | |||
| 3387 | memset(tmp, 0, sizeof(tmp)); | ||
| 3388 | |||
| 3389 | if (file) { | ||
| 3390 | /* | ||
| 3391 | * d_path works from the end of the buffer backwards, so we | ||
| 3392 | * need to add enough zero bytes after the string to handle | ||
| 3393 | * the 64bit alignment we do later. | ||
| 3394 | */ | ||
| 3395 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
| 3396 | if (!buf) { | ||
| 3397 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 3398 | goto got_name; | ||
| 3399 | } | ||
| 3400 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 3401 | if (IS_ERR(name)) { | ||
| 3402 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 3403 | goto got_name; | ||
| 3404 | } | ||
| 3405 | } else { | ||
| 3406 | if (arch_vma_name(mmap_event->vma)) { | ||
| 3407 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
| 3408 | sizeof(tmp)); | ||
| 3409 | goto got_name; | ||
| 3410 | } | ||
| 3411 | |||
| 3412 | if (!vma->vm_mm) { | ||
| 3413 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 3414 | goto got_name; | ||
| 3415 | } | ||
| 3416 | |||
| 3417 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 3418 | goto got_name; | ||
| 3419 | } | ||
| 3420 | |||
| 3421 | got_name: | ||
| 3422 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 3423 | |||
| 3424 | mmap_event->file_name = name; | ||
| 3425 | mmap_event->file_size = size; | ||
| 3426 | |||
| 3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
| 3428 | |||
| 3429 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 3431 | put_cpu_var(perf_cpu_context); | ||
| 3432 | |||
| 3433 | rcu_read_lock(); | ||
| 3434 | /* | ||
| 3435 | * doesn't really matter which of the child contexts the | ||
| 3436 | * events ends up in. | ||
| 3437 | */ | ||
| 3438 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3439 | if (ctx) | ||
| 3440 | perf_event_mmap_ctx(ctx, mmap_event); | ||
| 3441 | rcu_read_unlock(); | ||
| 3442 | |||
| 3443 | kfree(buf); | ||
| 3444 | } | ||
| 3445 | |||
| 3446 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
| 3447 | { | ||
| 3448 | struct perf_mmap_event mmap_event; | ||
| 3449 | |||
| 3450 | if (!atomic_read(&nr_mmap_events)) | ||
| 3451 | return; | ||
| 3452 | |||
| 3453 | mmap_event = (struct perf_mmap_event){ | ||
| 3454 | .vma = vma, | ||
| 3455 | /* .file_name */ | ||
| 3456 | /* .file_size */ | ||
| 3457 | .event_id = { | ||
| 3458 | .header = { | ||
| 3459 | .type = PERF_RECORD_MMAP, | ||
| 3460 | .misc = 0, | ||
| 3461 | /* .size */ | ||
| 3462 | }, | ||
| 3463 | /* .pid */ | ||
| 3464 | /* .tid */ | ||
| 3465 | .start = vma->vm_start, | ||
| 3466 | .len = vma->vm_end - vma->vm_start, | ||
| 3467 | .pgoff = vma->vm_pgoff, | ||
| 3468 | }, | ||
| 3469 | }; | ||
| 3470 | |||
| 3471 | perf_event_mmap_event(&mmap_event); | ||
| 3472 | } | ||
| 3473 | |||
| 3474 | /* | ||
| 3475 | * IRQ throttle logging | ||
| 3476 | */ | ||
| 3477 | |||
| 3478 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
| 3479 | { | ||
| 3480 | struct perf_output_handle handle; | ||
| 3481 | int ret; | ||
| 3482 | |||
| 3483 | struct { | ||
| 3484 | struct perf_event_header header; | ||
| 3485 | u64 time; | ||
| 3486 | u64 id; | ||
| 3487 | u64 stream_id; | ||
| 3488 | } throttle_event = { | ||
| 3489 | .header = { | ||
| 3490 | .type = PERF_RECORD_THROTTLE, | ||
| 3491 | .misc = 0, | ||
| 3492 | .size = sizeof(throttle_event), | ||
| 3493 | }, | ||
| 3494 | .time = perf_clock(), | ||
| 3495 | .id = primary_event_id(event), | ||
| 3496 | .stream_id = event->id, | ||
| 3497 | }; | ||
| 3498 | |||
| 3499 | if (enable) | ||
| 3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
| 3501 | |||
| 3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
| 3503 | if (ret) | ||
| 3504 | return; | ||
| 3505 | |||
| 3506 | perf_output_put(&handle, throttle_event); | ||
| 3507 | perf_output_end(&handle); | ||
| 3508 | } | ||
| 3509 | |||
| 3510 | /* | ||
| 3511 | * Generic event overflow handling, sampling. | ||
| 3512 | */ | ||
| 3513 | |||
| 3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3515 | int throttle, struct perf_sample_data *data, | ||
| 3516 | struct pt_regs *regs) | ||
| 3517 | { | ||
| 3518 | int events = atomic_read(&event->event_limit); | ||
| 3519 | struct hw_perf_event *hwc = &event->hw; | ||
| 3520 | int ret = 0; | ||
| 3521 | |||
| 3522 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
| 3523 | |||
| 3524 | if (!throttle) { | ||
| 3525 | hwc->interrupts++; | ||
| 3526 | } else { | ||
| 3527 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3528 | hwc->interrupts++; | ||
| 3529 | if (HZ * hwc->interrupts > | ||
| 3530 | (u64)sysctl_perf_event_sample_rate) { | ||
| 3531 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3532 | perf_log_throttle(event, 0); | ||
| 3533 | ret = 1; | ||
| 3534 | } | ||
| 3535 | } else { | ||
| 3536 | /* | ||
| 3537 | * Keep re-disabling events even though on the previous | ||
| 3538 | * pass we disabled it - just in case we raced with a | ||
| 3539 | * sched-in and the event got enabled again: | ||
| 3540 | */ | ||
| 3541 | ret = 1; | ||
| 3542 | } | ||
| 3543 | } | ||
| 3544 | |||
| 3545 | if (event->attr.freq) { | ||
| 3546 | u64 now = perf_clock(); | ||
| 3547 | s64 delta = now - hwc->freq_stamp; | ||
| 3548 | |||
| 3549 | hwc->freq_stamp = now; | ||
| 3550 | |||
| 3551 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
| 3553 | } | ||
| 3554 | |||
| 3555 | /* | ||
| 3556 | * XXX event_limit might not quite work as expected on inherited | ||
| 3557 | * events | ||
| 3558 | */ | ||
| 3559 | |||
| 3560 | event->pending_kill = POLL_IN; | ||
| 3561 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
| 3562 | ret = 1; | ||
| 3563 | event->pending_kill = POLL_HUP; | ||
| 3564 | if (nmi) { | ||
| 3565 | event->pending_disable = 1; | ||
| 3566 | perf_pending_queue(&event->pending, | ||
| 3567 | perf_pending_event); | ||
| 3568 | } else | ||
| 3569 | perf_event_disable(event); | ||
| 3570 | } | ||
| 3571 | |||
| 3572 | perf_event_output(event, nmi, data, regs); | ||
| 3573 | return ret; | ||
| 3574 | } | ||
| 3575 | |||
| 3576 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3577 | struct perf_sample_data *data, | ||
| 3578 | struct pt_regs *regs) | ||
| 3579 | { | ||
| 3580 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
| 3581 | } | ||
| 3582 | |||
| 3583 | /* | ||
| 3584 | * Generic software event infrastructure | ||
| 3585 | */ | ||
| 3586 | |||
| 3587 | /* | ||
| 3588 | * We directly increment event->count and keep a second value in | ||
| 3589 | * event->hw.period_left to count intervals. This period event | ||
| 3590 | * is kept in the range [-sample_period, 0] so that we can use the | ||
| 3591 | * sign as trigger. | ||
| 3592 | */ | ||
| 3593 | |||
| 3594 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
| 3595 | { | ||
| 3596 | struct hw_perf_event *hwc = &event->hw; | ||
| 3597 | u64 period = hwc->last_period; | ||
| 3598 | u64 nr, offset; | ||
| 3599 | s64 old, val; | ||
| 3600 | |||
| 3601 | hwc->last_period = hwc->sample_period; | ||
| 3602 | |||
| 3603 | again: | ||
| 3604 | old = val = atomic64_read(&hwc->period_left); | ||
| 3605 | if (val < 0) | ||
| 3606 | return 0; | ||
| 3607 | |||
| 3608 | nr = div64_u64(period + val, period); | ||
| 3609 | offset = nr * period; | ||
| 3610 | val -= offset; | ||
| 3611 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
| 3612 | goto again; | ||
| 3613 | |||
| 3614 | return nr; | ||
| 3615 | } | ||
| 3616 | |||
| 3617 | static void perf_swevent_overflow(struct perf_event *event, | ||
| 3618 | int nmi, struct perf_sample_data *data, | ||
| 3619 | struct pt_regs *regs) | ||
| 3620 | { | ||
| 3621 | struct hw_perf_event *hwc = &event->hw; | ||
| 3622 | int throttle = 0; | ||
| 3623 | u64 overflow; | ||
| 3624 | |||
| 3625 | data->period = event->hw.last_period; | ||
| 3626 | overflow = perf_swevent_set_period(event); | ||
| 3627 | |||
| 3628 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
| 3629 | return; | ||
| 3630 | |||
| 3631 | for (; overflow; overflow--) { | ||
| 3632 | if (__perf_event_overflow(event, nmi, throttle, | ||
| 3633 | data, regs)) { | ||
| 3634 | /* | ||
| 3635 | * We inhibit the overflow from happening when | ||
| 3636 | * hwc->interrupts == MAX_INTERRUPTS. | ||
| 3637 | */ | ||
| 3638 | break; | ||
| 3639 | } | ||
| 3640 | throttle = 1; | ||
| 3641 | } | ||
| 3642 | } | ||
| 3643 | |||
| 3644 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
| 3645 | { | ||
| 3646 | /* | ||
| 3647 | * Nothing to do, we already reset hwc->interrupts. | ||
| 3648 | */ | ||
| 3649 | } | ||
| 3650 | |||
| 3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
| 3652 | int nmi, struct perf_sample_data *data, | ||
| 3653 | struct pt_regs *regs) | ||
| 3654 | { | ||
| 3655 | struct hw_perf_event *hwc = &event->hw; | ||
| 3656 | |||
| 3657 | atomic64_add(nr, &event->count); | ||
| 3658 | |||
| 3659 | if (!hwc->sample_period) | ||
| 3660 | return; | ||
| 3661 | |||
| 3662 | if (!regs) | ||
| 3663 | return; | ||
| 3664 | |||
| 3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
| 3666 | perf_swevent_overflow(event, nmi, data, regs); | ||
| 3667 | } | ||
| 3668 | |||
| 3669 | static int perf_swevent_is_counting(struct perf_event *event) | ||
| 3670 | { | ||
| 3671 | /* | ||
| 3672 | * The event is active, we're good! | ||
| 3673 | */ | ||
| 3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 3675 | return 1; | ||
| 3676 | |||
| 3677 | /* | ||
| 3678 | * The event is off/error, not counting. | ||
| 3679 | */ | ||
| 3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
| 3681 | return 0; | ||
| 3682 | |||
| 3683 | /* | ||
| 3684 | * The event is inactive, if the context is active | ||
| 3685 | * we're part of a group that didn't make it on the 'pmu', | ||
| 3686 | * not counting. | ||
| 3687 | */ | ||
| 3688 | if (event->ctx->is_active) | ||
| 3689 | return 0; | ||
| 3690 | |||
| 3691 | /* | ||
| 3692 | * We're inactive and the context is too, this means the | ||
| 3693 | * task is scheduled out, we're counting events that happen | ||
| 3694 | * to us, like migration events. | ||
| 3695 | */ | ||
| 3696 | return 1; | ||
| 3697 | } | ||
| 3698 | |||
| 3699 | static int perf_swevent_match(struct perf_event *event, | ||
| 3700 | enum perf_type_id type, | ||
| 3701 | u32 event_id, struct pt_regs *regs) | ||
| 3702 | { | ||
| 3703 | if (!perf_swevent_is_counting(event)) | ||
| 3704 | return 0; | ||
| 3705 | |||
| 3706 | if (event->attr.type != type) | ||
| 3707 | return 0; | ||
| 3708 | if (event->attr.config != event_id) | ||
| 3709 | return 0; | ||
| 3710 | |||
| 3711 | if (regs) { | ||
| 3712 | if (event->attr.exclude_user && user_mode(regs)) | ||
| 3713 | return 0; | ||
| 3714 | |||
| 3715 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
| 3716 | return 0; | ||
| 3717 | } | ||
| 3718 | |||
| 3719 | return 1; | ||
| 3720 | } | ||
| 3721 | |||
| 3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
| 3723 | enum perf_type_id type, | ||
| 3724 | u32 event_id, u64 nr, int nmi, | ||
| 3725 | struct perf_sample_data *data, | ||
| 3726 | struct pt_regs *regs) | ||
| 3727 | { | ||
| 3728 | struct perf_event *event; | ||
| 3729 | |||
| 3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3731 | return; | ||
| 3732 | |||
| 3733 | rcu_read_lock(); | ||
| 3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3735 | if (perf_swevent_match(event, type, event_id, regs)) | ||
| 3736 | perf_swevent_add(event, nr, nmi, data, regs); | ||
| 3737 | } | ||
| 3738 | rcu_read_unlock(); | ||
| 3739 | } | ||
| 3740 | |||
| 3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3742 | { | ||
| 3743 | if (in_nmi()) | ||
| 3744 | return &cpuctx->recursion[3]; | ||
| 3745 | |||
| 3746 | if (in_irq()) | ||
| 3747 | return &cpuctx->recursion[2]; | ||
| 3748 | |||
| 3749 | if (in_softirq()) | ||
| 3750 | return &cpuctx->recursion[1]; | ||
| 3751 | |||
| 3752 | return &cpuctx->recursion[0]; | ||
| 3753 | } | ||
| 3754 | |||
| 3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
| 3756 | u64 nr, int nmi, | ||
| 3757 | struct perf_sample_data *data, | ||
| 3758 | struct pt_regs *regs) | ||
| 3759 | { | ||
| 3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3761 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
| 3762 | struct perf_event_context *ctx; | ||
| 3763 | |||
| 3764 | if (*recursion) | ||
| 3765 | goto out; | ||
| 3766 | |||
| 3767 | (*recursion)++; | ||
| 3768 | barrier(); | ||
| 3769 | |||
| 3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
| 3771 | nr, nmi, data, regs); | ||
| 3772 | rcu_read_lock(); | ||
| 3773 | /* | ||
| 3774 | * doesn't really matter which of the child contexts the | ||
| 3775 | * events ends up in. | ||
| 3776 | */ | ||
| 3777 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3778 | if (ctx) | ||
| 3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
| 3780 | rcu_read_unlock(); | ||
| 3781 | |||
| 3782 | barrier(); | ||
| 3783 | (*recursion)--; | ||
| 3784 | |||
| 3785 | out: | ||
| 3786 | put_cpu_var(perf_cpu_context); | ||
| 3787 | } | ||
| 3788 | |||
| 3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
| 3790 | struct pt_regs *regs, u64 addr) | ||
| 3791 | { | ||
| 3792 | struct perf_sample_data data = { | ||
| 3793 | .addr = addr, | ||
| 3794 | }; | ||
| 3795 | |||
| 3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
| 3797 | &data, regs); | ||
| 3798 | } | ||
| 3799 | |||
| 3800 | static void perf_swevent_read(struct perf_event *event) | ||
| 3801 | { | ||
| 3802 | } | ||
| 3803 | |||
| 3804 | static int perf_swevent_enable(struct perf_event *event) | ||
| 3805 | { | ||
| 3806 | struct hw_perf_event *hwc = &event->hw; | ||
| 3807 | |||
| 3808 | if (hwc->sample_period) { | ||
| 3809 | hwc->last_period = hwc->sample_period; | ||
| 3810 | perf_swevent_set_period(event); | ||
| 3811 | } | ||
| 3812 | return 0; | ||
| 3813 | } | ||
| 3814 | |||
| 3815 | static void perf_swevent_disable(struct perf_event *event) | ||
| 3816 | { | ||
| 3817 | } | ||
| 3818 | |||
| 3819 | static const struct pmu perf_ops_generic = { | ||
| 3820 | .enable = perf_swevent_enable, | ||
| 3821 | .disable = perf_swevent_disable, | ||
| 3822 | .read = perf_swevent_read, | ||
| 3823 | .unthrottle = perf_swevent_unthrottle, | ||
| 3824 | }; | ||
| 3825 | |||
| 3826 | /* | ||
| 3827 | * hrtimer based swevent callback | ||
| 3828 | */ | ||
| 3829 | |||
| 3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
| 3831 | { | ||
| 3832 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3833 | struct perf_sample_data data; | ||
| 3834 | struct pt_regs *regs; | ||
| 3835 | struct perf_event *event; | ||
| 3836 | u64 period; | ||
| 3837 | |||
| 3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
| 3839 | event->pmu->read(event); | ||
| 3840 | |||
| 3841 | data.addr = 0; | ||
| 3842 | regs = get_irq_regs(); | ||
| 3843 | /* | ||
| 3844 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3845 | * context, provide the next best thing, the user IP. | ||
| 3846 | */ | ||
| 3847 | if ((event->attr.exclude_kernel || !regs) && | ||
| 3848 | !event->attr.exclude_user) | ||
| 3849 | regs = task_pt_regs(current); | ||
| 3850 | |||
| 3851 | if (regs) { | ||
| 3852 | if (perf_event_overflow(event, 0, &data, regs)) | ||
| 3853 | ret = HRTIMER_NORESTART; | ||
| 3854 | } | ||
| 3855 | |||
| 3856 | period = max_t(u64, 10000, event->hw.sample_period); | ||
| 3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3858 | |||
| 3859 | return ret; | ||
| 3860 | } | ||
| 3861 | |||
| 3862 | /* | ||
| 3863 | * Software event: cpu wall time clock | ||
| 3864 | */ | ||
| 3865 | |||
| 3866 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
| 3867 | { | ||
| 3868 | int cpu = raw_smp_processor_id(); | ||
| 3869 | s64 prev; | ||
| 3870 | u64 now; | ||
| 3871 | |||
| 3872 | now = cpu_clock(cpu); | ||
| 3873 | prev = atomic64_read(&event->hw.prev_count); | ||
| 3874 | atomic64_set(&event->hw.prev_count, now); | ||
| 3875 | atomic64_add(now - prev, &event->count); | ||
| 3876 | } | ||
| 3877 | |||
| 3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
| 3879 | { | ||
| 3880 | struct hw_perf_event *hwc = &event->hw; | ||
| 3881 | int cpu = raw_smp_processor_id(); | ||
| 3882 | |||
| 3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3885 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 3886 | if (hwc->sample_period) { | ||
| 3887 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3888 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3889 | ns_to_ktime(period), 0, | ||
| 3890 | HRTIMER_MODE_REL, 0); | ||
| 3891 | } | ||
| 3892 | |||
| 3893 | return 0; | ||
| 3894 | } | ||
| 3895 | |||
| 3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
| 3897 | { | ||
| 3898 | if (event->hw.sample_period) | ||
| 3899 | hrtimer_cancel(&event->hw.hrtimer); | ||
| 3900 | cpu_clock_perf_event_update(event); | ||
| 3901 | } | ||
| 3902 | |||
| 3903 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
| 3904 | { | ||
| 3905 | cpu_clock_perf_event_update(event); | ||
| 3906 | } | ||
| 3907 | |||
| 3908 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3909 | .enable = cpu_clock_perf_event_enable, | ||
| 3910 | .disable = cpu_clock_perf_event_disable, | ||
| 3911 | .read = cpu_clock_perf_event_read, | ||
| 3912 | }; | ||
| 3913 | |||
| 3914 | /* | ||
| 3915 | * Software event: task time clock | ||
| 3916 | */ | ||
| 3917 | |||
| 3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
| 3919 | { | ||
| 3920 | u64 prev; | ||
| 3921 | s64 delta; | ||
| 3922 | |||
| 3923 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
| 3924 | delta = now - prev; | ||
| 3925 | atomic64_add(delta, &event->count); | ||
| 3926 | } | ||
| 3927 | |||
| 3928 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
| 3929 | { | ||
| 3930 | struct hw_perf_event *hwc = &event->hw; | ||
| 3931 | u64 now; | ||
| 3932 | |||
| 3933 | now = event->ctx->time; | ||
| 3934 | |||
| 3935 | atomic64_set(&hwc->prev_count, now); | ||
| 3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3937 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 3938 | if (hwc->sample_period) { | ||
| 3939 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3940 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3941 | ns_to_ktime(period), 0, | ||
| 3942 | HRTIMER_MODE_REL, 0); | ||
| 3943 | } | ||
| 3944 | |||
| 3945 | return 0; | ||
| 3946 | } | ||
| 3947 | |||
| 3948 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
| 3949 | { | ||
| 3950 | if (event->hw.sample_period) | ||
| 3951 | hrtimer_cancel(&event->hw.hrtimer); | ||
| 3952 | task_clock_perf_event_update(event, event->ctx->time); | ||
| 3953 | |||
| 3954 | } | ||
| 3955 | |||
| 3956 | static void task_clock_perf_event_read(struct perf_event *event) | ||
| 3957 | { | ||
| 3958 | u64 time; | ||
| 3959 | |||
| 3960 | if (!in_nmi()) { | ||
| 3961 | update_context_time(event->ctx); | ||
| 3962 | time = event->ctx->time; | ||
| 3963 | } else { | ||
| 3964 | u64 now = perf_clock(); | ||
| 3965 | u64 delta = now - event->ctx->timestamp; | ||
| 3966 | time = event->ctx->time + delta; | ||
| 3967 | } | ||
| 3968 | |||
| 3969 | task_clock_perf_event_update(event, time); | ||
| 3970 | } | ||
| 3971 | |||
| 3972 | static const struct pmu perf_ops_task_clock = { | ||
| 3973 | .enable = task_clock_perf_event_enable, | ||
| 3974 | .disable = task_clock_perf_event_disable, | ||
| 3975 | .read = task_clock_perf_event_read, | ||
| 3976 | }; | ||
| 3977 | |||
| 3978 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
| 3980 | int entry_size) | ||
| 3981 | { | ||
| 3982 | struct perf_raw_record raw = { | ||
| 3983 | .size = entry_size, | ||
| 3984 | .data = record, | ||
| 3985 | }; | ||
| 3986 | |||
| 3987 | struct perf_sample_data data = { | ||
| 3988 | .addr = addr, | ||
| 3989 | .raw = &raw, | ||
| 3990 | }; | ||
| 3991 | |||
| 3992 | struct pt_regs *regs = get_irq_regs(); | ||
| 3993 | |||
| 3994 | if (!regs) | ||
| 3995 | regs = task_pt_regs(current); | ||
| 3996 | |||
| 3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
| 3998 | &data, regs); | ||
| 3999 | } | ||
| 4000 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
| 4001 | |||
| 4002 | extern int ftrace_profile_enable(int); | ||
| 4003 | extern void ftrace_profile_disable(int); | ||
| 4004 | |||
| 4005 | static void tp_perf_event_destroy(struct perf_event *event) | ||
| 4006 | { | ||
| 4007 | ftrace_profile_disable(event->attr.config); | ||
| 4008 | } | ||
| 4009 | |||
| 4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4011 | { | ||
| 4012 | /* | ||
| 4013 | * Raw tracepoint data is a severe data leak, only allow root to | ||
| 4014 | * have these. | ||
| 4015 | */ | ||
| 4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
| 4017 | perf_paranoid_tracepoint_raw() && | ||
| 4018 | !capable(CAP_SYS_ADMIN)) | ||
| 4019 | return ERR_PTR(-EPERM); | ||
| 4020 | |||
| 4021 | if (ftrace_profile_enable(event->attr.config)) | ||
| 4022 | return NULL; | ||
| 4023 | |||
| 4024 | event->destroy = tp_perf_event_destroy; | ||
| 4025 | |||
| 4026 | return &perf_ops_generic; | ||
| 4027 | } | ||
| 4028 | #else | ||
| 4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4030 | { | ||
| 4031 | return NULL; | ||
| 4032 | } | ||
| 4033 | #endif | ||
| 4034 | |||
| 4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
| 4036 | |||
| 4037 | static void sw_perf_event_destroy(struct perf_event *event) | ||
| 4038 | { | ||
| 4039 | u64 event_id = event->attr.config; | ||
| 4040 | |||
| 4041 | WARN_ON(event->parent); | ||
| 4042 | |||
| 4043 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
| 4044 | } | ||
| 4045 | |||
| 4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
| 4047 | { | ||
| 4048 | const struct pmu *pmu = NULL; | ||
| 4049 | u64 event_id = event->attr.config; | ||
| 4050 | |||
| 4051 | /* | ||
| 4052 | * Software events (currently) can't in general distinguish | ||
| 4053 | * between user, kernel and hypervisor events. | ||
| 4054 | * However, context switches and cpu migrations are considered | ||
| 4055 | * to be kernel events, and page faults are never hypervisor | ||
| 4056 | * events. | ||
| 4057 | */ | ||
| 4058 | switch (event_id) { | ||
| 4059 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 4060 | pmu = &perf_ops_cpu_clock; | ||
| 4061 | |||
| 4062 | break; | ||
| 4063 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 4064 | /* | ||
| 4065 | * If the user instantiates this as a per-cpu event, | ||
| 4066 | * use the cpu_clock event instead. | ||
| 4067 | */ | ||
| 4068 | if (event->ctx->task) | ||
| 4069 | pmu = &perf_ops_task_clock; | ||
| 4070 | else | ||
| 4071 | pmu = &perf_ops_cpu_clock; | ||
| 4072 | |||
| 4073 | break; | ||
| 4074 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 4075 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 4079 | if (!event->parent) { | ||
| 4080 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
| 4081 | event->destroy = sw_perf_event_destroy; | ||
| 4082 | } | ||
| 4083 | pmu = &perf_ops_generic; | ||
| 4084 | break; | ||
| 4085 | } | ||
| 4086 | |||
| 4087 | return pmu; | ||
| 4088 | } | ||
| 4089 | |||
| 4090 | /* | ||
| 4091 | * Allocate and initialize a event structure | ||
| 4092 | */ | ||
| 4093 | static struct perf_event * | ||
| 4094 | perf_event_alloc(struct perf_event_attr *attr, | ||
| 4095 | int cpu, | ||
| 4096 | struct perf_event_context *ctx, | ||
| 4097 | struct perf_event *group_leader, | ||
| 4098 | struct perf_event *parent_event, | ||
| 4099 | gfp_t gfpflags) | ||
| 4100 | { | ||
| 4101 | const struct pmu *pmu; | ||
| 4102 | struct perf_event *event; | ||
| 4103 | struct hw_perf_event *hwc; | ||
| 4104 | long err; | ||
| 4105 | |||
| 4106 | event = kzalloc(sizeof(*event), gfpflags); | ||
| 4107 | if (!event) | ||
| 4108 | return ERR_PTR(-ENOMEM); | ||
| 4109 | |||
| 4110 | /* | ||
| 4111 | * Single events are their own group leaders, with an | ||
| 4112 | * empty sibling list: | ||
| 4113 | */ | ||
| 4114 | if (!group_leader) | ||
| 4115 | group_leader = event; | ||
| 4116 | |||
| 4117 | mutex_init(&event->child_mutex); | ||
| 4118 | INIT_LIST_HEAD(&event->child_list); | ||
| 4119 | |||
| 4120 | INIT_LIST_HEAD(&event->group_entry); | ||
| 4121 | INIT_LIST_HEAD(&event->event_entry); | ||
| 4122 | INIT_LIST_HEAD(&event->sibling_list); | ||
| 4123 | init_waitqueue_head(&event->waitq); | ||
| 4124 | |||
| 4125 | mutex_init(&event->mmap_mutex); | ||
| 4126 | |||
| 4127 | event->cpu = cpu; | ||
| 4128 | event->attr = *attr; | ||
| 4129 | event->group_leader = group_leader; | ||
| 4130 | event->pmu = NULL; | ||
| 4131 | event->ctx = ctx; | ||
| 4132 | event->oncpu = -1; | ||
| 4133 | |||
| 4134 | event->parent = parent_event; | ||
| 4135 | |||
| 4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 4137 | event->id = atomic64_inc_return(&perf_event_id); | ||
| 4138 | |||
| 4139 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4140 | |||
| 4141 | if (attr->disabled) | ||
| 4142 | event->state = PERF_EVENT_STATE_OFF; | ||
| 4143 | |||
| 4144 | pmu = NULL; | ||
| 4145 | |||
| 4146 | hwc = &event->hw; | ||
| 4147 | hwc->sample_period = attr->sample_period; | ||
| 4148 | if (attr->freq && attr->sample_freq) | ||
| 4149 | hwc->sample_period = 1; | ||
| 4150 | hwc->last_period = hwc->sample_period; | ||
| 4151 | |||
| 4152 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 4153 | |||
| 4154 | /* | ||
| 4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
| 4156 | */ | ||
| 4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
| 4158 | goto done; | ||
| 4159 | |||
| 4160 | switch (attr->type) { | ||
| 4161 | case PERF_TYPE_RAW: | ||
| 4162 | case PERF_TYPE_HARDWARE: | ||
| 4163 | case PERF_TYPE_HW_CACHE: | ||
| 4164 | pmu = hw_perf_event_init(event); | ||
| 4165 | break; | ||
| 4166 | |||
| 4167 | case PERF_TYPE_SOFTWARE: | ||
| 4168 | pmu = sw_perf_event_init(event); | ||
| 4169 | break; | ||
| 4170 | |||
| 4171 | case PERF_TYPE_TRACEPOINT: | ||
| 4172 | pmu = tp_perf_event_init(event); | ||
| 4173 | break; | ||
| 4174 | |||
| 4175 | default: | ||
| 4176 | break; | ||
| 4177 | } | ||
| 4178 | done: | ||
| 4179 | err = 0; | ||
| 4180 | if (!pmu) | ||
| 4181 | err = -EINVAL; | ||
| 4182 | else if (IS_ERR(pmu)) | ||
| 4183 | err = PTR_ERR(pmu); | ||
| 4184 | |||
| 4185 | if (err) { | ||
| 4186 | if (event->ns) | ||
| 4187 | put_pid_ns(event->ns); | ||
| 4188 | kfree(event); | ||
| 4189 | return ERR_PTR(err); | ||
| 4190 | } | ||
| 4191 | |||
| 4192 | event->pmu = pmu; | ||
| 4193 | |||
| 4194 | if (!event->parent) { | ||
| 4195 | atomic_inc(&nr_events); | ||
| 4196 | if (event->attr.mmap) | ||
| 4197 | atomic_inc(&nr_mmap_events); | ||
| 4198 | if (event->attr.comm) | ||
| 4199 | atomic_inc(&nr_comm_events); | ||
| 4200 | if (event->attr.task) | ||
| 4201 | atomic_inc(&nr_task_events); | ||
| 4202 | } | ||
| 4203 | |||
| 4204 | return event; | ||
| 4205 | } | ||
| 4206 | |||
| 4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
| 4208 | struct perf_event_attr *attr) | ||
| 4209 | { | ||
| 4210 | u32 size; | ||
| 4211 | int ret; | ||
| 4212 | |||
| 4213 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 4214 | return -EFAULT; | ||
| 4215 | |||
| 4216 | /* | ||
| 4217 | * zero the full structure, so that a short copy will be nice. | ||
| 4218 | */ | ||
| 4219 | memset(attr, 0, sizeof(*attr)); | ||
| 4220 | |||
| 4221 | ret = get_user(size, &uattr->size); | ||
| 4222 | if (ret) | ||
| 4223 | return ret; | ||
| 4224 | |||
| 4225 | if (size > PAGE_SIZE) /* silly large */ | ||
| 4226 | goto err_size; | ||
| 4227 | |||
| 4228 | if (!size) /* abi compat */ | ||
| 4229 | size = PERF_ATTR_SIZE_VER0; | ||
| 4230 | |||
| 4231 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 4232 | goto err_size; | ||
| 4233 | |||
| 4234 | /* | ||
| 4235 | * If we're handed a bigger struct than we know of, | ||
| 4236 | * ensure all the unknown bits are 0 - i.e. new | ||
| 4237 | * user-space does not rely on any kernel feature | ||
| 4238 | * extensions we dont know about yet. | ||
| 4239 | */ | ||
| 4240 | if (size > sizeof(*attr)) { | ||
| 4241 | unsigned char __user *addr; | ||
| 4242 | unsigned char __user *end; | ||
| 4243 | unsigned char val; | ||
| 4244 | |||
| 4245 | addr = (void __user *)uattr + sizeof(*attr); | ||
| 4246 | end = (void __user *)uattr + size; | ||
| 4247 | |||
| 4248 | for (; addr < end; addr++) { | ||
| 4249 | ret = get_user(val, addr); | ||
| 4250 | if (ret) | ||
| 4251 | return ret; | ||
| 4252 | if (val) | ||
| 4253 | goto err_size; | ||
| 4254 | } | ||
| 4255 | size = sizeof(*attr); | ||
| 4256 | } | ||
| 4257 | |||
| 4258 | ret = copy_from_user(attr, uattr, size); | ||
| 4259 | if (ret) | ||
| 4260 | return -EFAULT; | ||
| 4261 | |||
| 4262 | /* | ||
| 4263 | * If the type exists, the corresponding creation will verify | ||
| 4264 | * the attr->config. | ||
| 4265 | */ | ||
| 4266 | if (attr->type >= PERF_TYPE_MAX) | ||
| 4267 | return -EINVAL; | ||
| 4268 | |||
| 4269 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 4270 | return -EINVAL; | ||
| 4271 | |||
| 4272 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 4273 | return -EINVAL; | ||
| 4274 | |||
| 4275 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 4276 | return -EINVAL; | ||
| 4277 | |||
| 4278 | out: | ||
| 4279 | return ret; | ||
| 4280 | |||
| 4281 | err_size: | ||
| 4282 | put_user(sizeof(*attr), &uattr->size); | ||
| 4283 | ret = -E2BIG; | ||
| 4284 | goto out; | ||
| 4285 | } | ||
| 4286 | |||
| 4287 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
| 4288 | { | ||
| 4289 | struct perf_event *output_event = NULL; | ||
| 4290 | struct file *output_file = NULL; | ||
| 4291 | struct perf_event *old_output; | ||
| 4292 | int fput_needed = 0; | ||
| 4293 | int ret = -EINVAL; | ||
| 4294 | |||
| 4295 | if (!output_fd) | ||
| 4296 | goto set; | ||
| 4297 | |||
| 4298 | output_file = fget_light(output_fd, &fput_needed); | ||
| 4299 | if (!output_file) | ||
| 4300 | return -EBADF; | ||
| 4301 | |||
| 4302 | if (output_file->f_op != &perf_fops) | ||
| 4303 | goto out; | ||
| 4304 | |||
| 4305 | output_event = output_file->private_data; | ||
| 4306 | |||
| 4307 | /* Don't chain output fds */ | ||
| 4308 | if (output_event->output) | ||
| 4309 | goto out; | ||
| 4310 | |||
| 4311 | /* Don't set an output fd when we already have an output channel */ | ||
| 4312 | if (event->data) | ||
| 4313 | goto out; | ||
| 4314 | |||
| 4315 | atomic_long_inc(&output_file->f_count); | ||
| 4316 | |||
| 4317 | set: | ||
| 4318 | mutex_lock(&event->mmap_mutex); | ||
| 4319 | old_output = event->output; | ||
| 4320 | rcu_assign_pointer(event->output, output_event); | ||
| 4321 | mutex_unlock(&event->mmap_mutex); | ||
| 4322 | |||
| 4323 | if (old_output) { | ||
| 4324 | /* | ||
| 4325 | * we need to make sure no existing perf_output_*() | ||
| 4326 | * is still referencing this event. | ||
| 4327 | */ | ||
| 4328 | synchronize_rcu(); | ||
| 4329 | fput(old_output->filp); | ||
| 4330 | } | ||
| 4331 | |||
| 4332 | ret = 0; | ||
| 4333 | out: | ||
| 4334 | fput_light(output_file, fput_needed); | ||
| 4335 | return ret; | ||
| 4336 | } | ||
| 4337 | |||
| 4338 | /** | ||
| 4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
| 4340 | * | ||
| 4341 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
| 4342 | * @pid: target pid | ||
| 4343 | * @cpu: target cpu | ||
| 4344 | * @group_fd: group leader event fd | ||
| 4345 | */ | ||
| 4346 | SYSCALL_DEFINE5(perf_event_open, | ||
| 4347 | struct perf_event_attr __user *, attr_uptr, | ||
| 4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 4349 | { | ||
| 4350 | struct perf_event *event, *group_leader; | ||
| 4351 | struct perf_event_attr attr; | ||
| 4352 | struct perf_event_context *ctx; | ||
| 4353 | struct file *event_file = NULL; | ||
| 4354 | struct file *group_file = NULL; | ||
| 4355 | int fput_needed = 0; | ||
| 4356 | int fput_needed2 = 0; | ||
| 4357 | int err; | ||
| 4358 | |||
| 4359 | /* for future expandability... */ | ||
| 4360 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
| 4361 | return -EINVAL; | ||
| 4362 | |||
| 4363 | err = perf_copy_attr(attr_uptr, &attr); | ||
| 4364 | if (err) | ||
| 4365 | return err; | ||
| 4366 | |||
| 4367 | if (!attr.exclude_kernel) { | ||
| 4368 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 4369 | return -EACCES; | ||
| 4370 | } | ||
| 4371 | |||
| 4372 | if (attr.freq) { | ||
| 4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
| 4374 | return -EINVAL; | ||
| 4375 | } | ||
| 4376 | |||
| 4377 | /* | ||
| 4378 | * Get the target context (task or percpu): | ||
| 4379 | */ | ||
| 4380 | ctx = find_get_context(pid, cpu); | ||
| 4381 | if (IS_ERR(ctx)) | ||
| 4382 | return PTR_ERR(ctx); | ||
| 4383 | |||
| 4384 | /* | ||
| 4385 | * Look up the group leader (we will attach this event to it): | ||
| 4386 | */ | ||
| 4387 | group_leader = NULL; | ||
| 4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
| 4389 | err = -EINVAL; | ||
| 4390 | group_file = fget_light(group_fd, &fput_needed); | ||
| 4391 | if (!group_file) | ||
| 4392 | goto err_put_context; | ||
| 4393 | if (group_file->f_op != &perf_fops) | ||
| 4394 | goto err_put_context; | ||
| 4395 | |||
| 4396 | group_leader = group_file->private_data; | ||
| 4397 | /* | ||
| 4398 | * Do not allow a recursive hierarchy (this new sibling | ||
| 4399 | * becoming part of another group-sibling): | ||
| 4400 | */ | ||
| 4401 | if (group_leader->group_leader != group_leader) | ||
| 4402 | goto err_put_context; | ||
| 4403 | /* | ||
| 4404 | * Do not allow to attach to a group in a different | ||
| 4405 | * task or CPU context: | ||
| 4406 | */ | ||
| 4407 | if (group_leader->ctx != ctx) | ||
| 4408 | goto err_put_context; | ||
| 4409 | /* | ||
| 4410 | * Only a group leader can be exclusive or pinned | ||
| 4411 | */ | ||
| 4412 | if (attr.exclusive || attr.pinned) | ||
| 4413 | goto err_put_context; | ||
| 4414 | } | ||
| 4415 | |||
| 4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
| 4417 | NULL, GFP_KERNEL); | ||
| 4418 | err = PTR_ERR(event); | ||
| 4419 | if (IS_ERR(event)) | ||
| 4420 | goto err_put_context; | ||
| 4421 | |||
| 4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
| 4423 | if (err < 0) | ||
| 4424 | goto err_free_put_context; | ||
| 4425 | |||
| 4426 | event_file = fget_light(err, &fput_needed2); | ||
| 4427 | if (!event_file) | ||
| 4428 | goto err_free_put_context; | ||
| 4429 | |||
| 4430 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
| 4431 | err = perf_event_set_output(event, group_fd); | ||
| 4432 | if (err) | ||
| 4433 | goto err_fput_free_put_context; | ||
| 4434 | } | ||
| 4435 | |||
| 4436 | event->filp = event_file; | ||
| 4437 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4438 | mutex_lock(&ctx->mutex); | ||
| 4439 | perf_install_in_context(ctx, event, cpu); | ||
| 4440 | ++ctx->generation; | ||
| 4441 | mutex_unlock(&ctx->mutex); | ||
| 4442 | |||
| 4443 | event->owner = current; | ||
| 4444 | get_task_struct(current); | ||
| 4445 | mutex_lock(¤t->perf_event_mutex); | ||
| 4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
| 4447 | mutex_unlock(¤t->perf_event_mutex); | ||
| 4448 | |||
| 4449 | err_fput_free_put_context: | ||
| 4450 | fput_light(event_file, fput_needed2); | ||
| 4451 | |||
| 4452 | err_free_put_context: | ||
| 4453 | if (err < 0) | ||
| 4454 | kfree(event); | ||
| 4455 | |||
| 4456 | err_put_context: | ||
| 4457 | if (err < 0) | ||
| 4458 | put_ctx(ctx); | ||
| 4459 | |||
| 4460 | fput_light(group_file, fput_needed); | ||
| 4461 | |||
| 4462 | return err; | ||
| 4463 | } | ||
| 4464 | |||
| 4465 | /* | ||
| 4466 | * inherit a event from parent task to child task: | ||
| 4467 | */ | ||
| 4468 | static struct perf_event * | ||
| 4469 | inherit_event(struct perf_event *parent_event, | ||
| 4470 | struct task_struct *parent, | ||
| 4471 | struct perf_event_context *parent_ctx, | ||
| 4472 | struct task_struct *child, | ||
| 4473 | struct perf_event *group_leader, | ||
| 4474 | struct perf_event_context *child_ctx) | ||
| 4475 | { | ||
| 4476 | struct perf_event *child_event; | ||
| 4477 | |||
| 4478 | /* | ||
| 4479 | * Instead of creating recursive hierarchies of events, | ||
| 4480 | * we link inherited events back to the original parent, | ||
| 4481 | * which has a filp for sure, which we use as the reference | ||
| 4482 | * count: | ||
| 4483 | */ | ||
| 4484 | if (parent_event->parent) | ||
| 4485 | parent_event = parent_event->parent; | ||
| 4486 | |||
| 4487 | child_event = perf_event_alloc(&parent_event->attr, | ||
| 4488 | parent_event->cpu, child_ctx, | ||
| 4489 | group_leader, parent_event, | ||
| 4490 | GFP_KERNEL); | ||
| 4491 | if (IS_ERR(child_event)) | ||
| 4492 | return child_event; | ||
| 4493 | get_ctx(child_ctx); | ||
| 4494 | |||
| 4495 | /* | ||
| 4496 | * Make the child state follow the state of the parent event, | ||
| 4497 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 4498 | * so we won't race with perf_event_{en, dis}able_family. | ||
| 4499 | */ | ||
| 4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4502 | else | ||
| 4503 | child_event->state = PERF_EVENT_STATE_OFF; | ||
| 4504 | |||
| 4505 | if (parent_event->attr.freq) | ||
| 4506 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
| 4507 | |||
| 4508 | /* | ||
| 4509 | * Link it up in the child's context: | ||
| 4510 | */ | ||
| 4511 | add_event_to_ctx(child_event, child_ctx); | ||
| 4512 | |||
| 4513 | /* | ||
| 4514 | * Get a reference to the parent filp - we will fput it | ||
| 4515 | * when the child event exits. This is safe to do because | ||
| 4516 | * we are in the parent and we know that the filp still | ||
| 4517 | * exists and has a nonzero count: | ||
| 4518 | */ | ||
| 4519 | atomic_long_inc(&parent_event->filp->f_count); | ||
| 4520 | |||
| 4521 | /* | ||
| 4522 | * Link this into the parent event's child list | ||
| 4523 | */ | ||
| 4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4525 | mutex_lock(&parent_event->child_mutex); | ||
| 4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
| 4527 | mutex_unlock(&parent_event->child_mutex); | ||
| 4528 | |||
| 4529 | return child_event; | ||
| 4530 | } | ||
| 4531 | |||
| 4532 | static int inherit_group(struct perf_event *parent_event, | ||
| 4533 | struct task_struct *parent, | ||
| 4534 | struct perf_event_context *parent_ctx, | ||
| 4535 | struct task_struct *child, | ||
| 4536 | struct perf_event_context *child_ctx) | ||
| 4537 | { | ||
| 4538 | struct perf_event *leader; | ||
| 4539 | struct perf_event *sub; | ||
| 4540 | struct perf_event *child_ctr; | ||
| 4541 | |||
| 4542 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
| 4543 | child, NULL, child_ctx); | ||
| 4544 | if (IS_ERR(leader)) | ||
| 4545 | return PTR_ERR(leader); | ||
| 4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
| 4547 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
| 4548 | child, leader, child_ctx); | ||
| 4549 | if (IS_ERR(child_ctr)) | ||
| 4550 | return PTR_ERR(child_ctr); | ||
| 4551 | } | ||
| 4552 | return 0; | ||
| 4553 | } | ||
| 4554 | |||
| 4555 | static void sync_child_event(struct perf_event *child_event, | ||
| 4556 | struct task_struct *child) | ||
| 4557 | { | ||
| 4558 | struct perf_event *parent_event = child_event->parent; | ||
| 4559 | u64 child_val; | ||
| 4560 | |||
| 4561 | if (child_event->attr.inherit_stat) | ||
| 4562 | perf_event_read_event(child_event, child); | ||
| 4563 | |||
| 4564 | child_val = atomic64_read(&child_event->count); | ||
| 4565 | |||
| 4566 | /* | ||
| 4567 | * Add back the child's count to the parent's count: | ||
| 4568 | */ | ||
| 4569 | atomic64_add(child_val, &parent_event->count); | ||
| 4570 | atomic64_add(child_event->total_time_enabled, | ||
| 4571 | &parent_event->child_total_time_enabled); | ||
| 4572 | atomic64_add(child_event->total_time_running, | ||
| 4573 | &parent_event->child_total_time_running); | ||
| 4574 | |||
| 4575 | /* | ||
| 4576 | * Remove this event from the parent's list | ||
| 4577 | */ | ||
| 4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4579 | mutex_lock(&parent_event->child_mutex); | ||
| 4580 | list_del_init(&child_event->child_list); | ||
| 4581 | mutex_unlock(&parent_event->child_mutex); | ||
| 4582 | |||
| 4583 | /* | ||
| 4584 | * Release the parent event, if this was the last | ||
| 4585 | * reference to it. | ||
| 4586 | */ | ||
| 4587 | fput(parent_event->filp); | ||
| 4588 | } | ||
| 4589 | |||
| 4590 | static void | ||
| 4591 | __perf_event_exit_task(struct perf_event *child_event, | ||
| 4592 | struct perf_event_context *child_ctx, | ||
| 4593 | struct task_struct *child) | ||
| 4594 | { | ||
| 4595 | struct perf_event *parent_event; | ||
| 4596 | |||
| 4597 | update_event_times(child_event); | ||
| 4598 | perf_event_remove_from_context(child_event); | ||
| 4599 | |||
| 4600 | parent_event = child_event->parent; | ||
| 4601 | /* | ||
| 4602 | * It can happen that parent exits first, and has events | ||
| 4603 | * that are still around due to the child reference. These | ||
| 4604 | * events need to be zapped - but otherwise linger. | ||
| 4605 | */ | ||
| 4606 | if (parent_event) { | ||
| 4607 | sync_child_event(child_event, child); | ||
| 4608 | free_event(child_event); | ||
| 4609 | } | ||
| 4610 | } | ||
| 4611 | |||
| 4612 | /* | ||
| 4613 | * When a child task exits, feed back event values to parent events. | ||
| 4614 | */ | ||
| 4615 | void perf_event_exit_task(struct task_struct *child) | ||
| 4616 | { | ||
| 4617 | struct perf_event *child_event, *tmp; | ||
| 4618 | struct perf_event_context *child_ctx; | ||
| 4619 | unsigned long flags; | ||
| 4620 | |||
| 4621 | if (likely(!child->perf_event_ctxp)) { | ||
| 4622 | perf_event_task(child, NULL, 0); | ||
| 4623 | return; | ||
| 4624 | } | ||
| 4625 | |||
| 4626 | local_irq_save(flags); | ||
| 4627 | /* | ||
| 4628 | * We can't reschedule here because interrupts are disabled, | ||
| 4629 | * and either child is current or it is a task that can't be | ||
| 4630 | * scheduled, so we are now safe from rescheduling changing | ||
| 4631 | * our context. | ||
| 4632 | */ | ||
| 4633 | child_ctx = child->perf_event_ctxp; | ||
| 4634 | __perf_event_task_sched_out(child_ctx); | ||
| 4635 | |||
| 4636 | /* | ||
| 4637 | * Take the context lock here so that if find_get_context is | ||
| 4638 | * reading child->perf_event_ctxp, we wait until it has | ||
| 4639 | * incremented the context's refcount before we do put_ctx below. | ||
| 4640 | */ | ||
| 4641 | spin_lock(&child_ctx->lock); | ||
| 4642 | child->perf_event_ctxp = NULL; | ||
| 4643 | /* | ||
| 4644 | * If this context is a clone; unclone it so it can't get | ||
| 4645 | * swapped to another process while we're removing all | ||
| 4646 | * the events from it. | ||
| 4647 | */ | ||
| 4648 | unclone_ctx(child_ctx); | ||
| 4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
| 4650 | |||
| 4651 | /* | ||
| 4652 | * Report the task dead after unscheduling the events so that we | ||
| 4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
| 4654 | * get a few PERF_RECORD_READ events. | ||
| 4655 | */ | ||
| 4656 | perf_event_task(child, child_ctx, 0); | ||
| 4657 | |||
| 4658 | /* | ||
| 4659 | * We can recurse on the same lock type through: | ||
| 4660 | * | ||
| 4661 | * __perf_event_exit_task() | ||
| 4662 | * sync_child_event() | ||
| 4663 | * fput(parent_event->filp) | ||
| 4664 | * perf_release() | ||
| 4665 | * mutex_lock(&ctx->mutex) | ||
| 4666 | * | ||
| 4667 | * But since its the parent context it won't be the same instance. | ||
| 4668 | */ | ||
| 4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 4670 | |||
| 4671 | again: | ||
| 4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
| 4673 | group_entry) | ||
| 4674 | __perf_event_exit_task(child_event, child_ctx, child); | ||
| 4675 | |||
| 4676 | /* | ||
| 4677 | * If the last event was a group event, it will have appended all | ||
| 4678 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 4679 | * will still point to the list head terminating the iteration. | ||
| 4680 | */ | ||
| 4681 | if (!list_empty(&child_ctx->group_list)) | ||
| 4682 | goto again; | ||
| 4683 | |||
| 4684 | mutex_unlock(&child_ctx->mutex); | ||
| 4685 | |||
| 4686 | put_ctx(child_ctx); | ||
| 4687 | } | ||
| 4688 | |||
| 4689 | /* | ||
| 4690 | * free an unexposed, unused context as created by inheritance by | ||
| 4691 | * init_task below, used by fork() in case of fail. | ||
| 4692 | */ | ||
| 4693 | void perf_event_free_task(struct task_struct *task) | ||
| 4694 | { | ||
| 4695 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 4696 | struct perf_event *event, *tmp; | ||
| 4697 | |||
| 4698 | if (!ctx) | ||
| 4699 | return; | ||
| 4700 | |||
| 4701 | mutex_lock(&ctx->mutex); | ||
| 4702 | again: | ||
| 4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
| 4704 | struct perf_event *parent = event->parent; | ||
| 4705 | |||
| 4706 | if (WARN_ON_ONCE(!parent)) | ||
| 4707 | continue; | ||
| 4708 | |||
| 4709 | mutex_lock(&parent->child_mutex); | ||
| 4710 | list_del_init(&event->child_list); | ||
| 4711 | mutex_unlock(&parent->child_mutex); | ||
| 4712 | |||
| 4713 | fput(parent->filp); | ||
| 4714 | |||
| 4715 | list_del_event(event, ctx); | ||
| 4716 | free_event(event); | ||
| 4717 | } | ||
| 4718 | |||
| 4719 | if (!list_empty(&ctx->group_list)) | ||
| 4720 | goto again; | ||
| 4721 | |||
| 4722 | mutex_unlock(&ctx->mutex); | ||
| 4723 | |||
| 4724 | put_ctx(ctx); | ||
| 4725 | } | ||
| 4726 | |||
| 4727 | /* | ||
| 4728 | * Initialize the perf_event context in task_struct | ||
| 4729 | */ | ||
| 4730 | int perf_event_init_task(struct task_struct *child) | ||
| 4731 | { | ||
| 4732 | struct perf_event_context *child_ctx, *parent_ctx; | ||
| 4733 | struct perf_event_context *cloned_ctx; | ||
| 4734 | struct perf_event *event; | ||
| 4735 | struct task_struct *parent = current; | ||
| 4736 | int inherited_all = 1; | ||
| 4737 | int ret = 0; | ||
| 4738 | |||
| 4739 | child->perf_event_ctxp = NULL; | ||
| 4740 | |||
| 4741 | mutex_init(&child->perf_event_mutex); | ||
| 4742 | INIT_LIST_HEAD(&child->perf_event_list); | ||
| 4743 | |||
| 4744 | if (likely(!parent->perf_event_ctxp)) | ||
| 4745 | return 0; | ||
| 4746 | |||
| 4747 | /* | ||
| 4748 | * This is executed from the parent task context, so inherit | ||
| 4749 | * events that have been marked for cloning. | ||
| 4750 | * First allocate and initialize a context for the child. | ||
| 4751 | */ | ||
| 4752 | |||
| 4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 4754 | if (!child_ctx) | ||
| 4755 | return -ENOMEM; | ||
| 4756 | |||
| 4757 | __perf_event_init_context(child_ctx, child); | ||
| 4758 | child->perf_event_ctxp = child_ctx; | ||
| 4759 | get_task_struct(child); | ||
| 4760 | |||
| 4761 | /* | ||
| 4762 | * If the parent's context is a clone, pin it so it won't get | ||
| 4763 | * swapped under us. | ||
| 4764 | */ | ||
| 4765 | parent_ctx = perf_pin_task_context(parent); | ||
| 4766 | |||
| 4767 | /* | ||
| 4768 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4769 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4770 | * is if we exit, and since we're currently in the middle of | ||
| 4771 | * a fork we can't be exiting at the same time. | ||
| 4772 | */ | ||
| 4773 | |||
| 4774 | /* | ||
| 4775 | * Lock the parent list. No need to lock the child - not PID | ||
| 4776 | * hashed yet and not running, so nobody can access it. | ||
| 4777 | */ | ||
| 4778 | mutex_lock(&parent_ctx->mutex); | ||
| 4779 | |||
| 4780 | /* | ||
| 4781 | * We dont have to disable NMIs - we are only looking at | ||
| 4782 | * the list, not manipulating it: | ||
| 4783 | */ | ||
| 4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { | ||
| 4785 | if (event != event->group_leader) | ||
| 4786 | continue; | ||
| 4787 | |||
| 4788 | if (!event->attr.inherit) { | ||
| 4789 | inherited_all = 0; | ||
| 4790 | continue; | ||
| 4791 | } | ||
| 4792 | |||
| 4793 | ret = inherit_group(event, parent, parent_ctx, | ||
| 4794 | child, child_ctx); | ||
| 4795 | if (ret) { | ||
| 4796 | inherited_all = 0; | ||
| 4797 | break; | ||
| 4798 | } | ||
| 4799 | } | ||
| 4800 | |||
| 4801 | if (inherited_all) { | ||
| 4802 | /* | ||
| 4803 | * Mark the child context as a clone of the parent | ||
| 4804 | * context, or of whatever the parent is a clone of. | ||
| 4805 | * Note that if the parent is a clone, it could get | ||
| 4806 | * uncloned at any point, but that doesn't matter | ||
| 4807 | * because the list of events and the generation | ||
| 4808 | * count can't have changed since we took the mutex. | ||
| 4809 | */ | ||
| 4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4811 | if (cloned_ctx) { | ||
| 4812 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4813 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4814 | } else { | ||
| 4815 | child_ctx->parent_ctx = parent_ctx; | ||
| 4816 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4817 | } | ||
| 4818 | get_ctx(child_ctx->parent_ctx); | ||
| 4819 | } | ||
| 4820 | |||
| 4821 | mutex_unlock(&parent_ctx->mutex); | ||
| 4822 | |||
| 4823 | perf_unpin_context(parent_ctx); | ||
| 4824 | |||
| 4825 | return ret; | ||
| 4826 | } | ||
| 4827 | |||
| 4828 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
| 4829 | { | ||
| 4830 | struct perf_cpu_context *cpuctx; | ||
| 4831 | |||
| 4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4833 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
| 4834 | |||
| 4835 | spin_lock(&perf_resource_lock); | ||
| 4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
| 4837 | spin_unlock(&perf_resource_lock); | ||
| 4838 | |||
| 4839 | hw_perf_event_setup(cpu); | ||
| 4840 | } | ||
| 4841 | |||
| 4842 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4843 | static void __perf_event_exit_cpu(void *info) | ||
| 4844 | { | ||
| 4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4846 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 4847 | struct perf_event *event, *tmp; | ||
| 4848 | |||
| 4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
| 4850 | __perf_event_remove_from_context(event); | ||
| 4851 | } | ||
| 4852 | static void perf_event_exit_cpu(int cpu) | ||
| 4853 | { | ||
| 4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4855 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 4856 | |||
| 4857 | mutex_lock(&ctx->mutex); | ||
| 4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
| 4859 | mutex_unlock(&ctx->mutex); | ||
| 4860 | } | ||
| 4861 | #else | ||
| 4862 | static inline void perf_event_exit_cpu(int cpu) { } | ||
| 4863 | #endif | ||
| 4864 | |||
| 4865 | static int __cpuinit | ||
| 4866 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4867 | { | ||
| 4868 | unsigned int cpu = (long)hcpu; | ||
| 4869 | |||
| 4870 | switch (action) { | ||
| 4871 | |||
| 4872 | case CPU_UP_PREPARE: | ||
| 4873 | case CPU_UP_PREPARE_FROZEN: | ||
| 4874 | perf_event_init_cpu(cpu); | ||
| 4875 | break; | ||
| 4876 | |||
| 4877 | case CPU_ONLINE: | ||
| 4878 | case CPU_ONLINE_FROZEN: | ||
| 4879 | hw_perf_event_setup_online(cpu); | ||
| 4880 | break; | ||
| 4881 | |||
| 4882 | case CPU_DOWN_PREPARE: | ||
| 4883 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4884 | perf_event_exit_cpu(cpu); | ||
| 4885 | break; | ||
| 4886 | |||
| 4887 | default: | ||
| 4888 | break; | ||
| 4889 | } | ||
| 4890 | |||
| 4891 | return NOTIFY_OK; | ||
| 4892 | } | ||
| 4893 | |||
| 4894 | /* | ||
| 4895 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4896 | */ | ||
| 4897 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4898 | .notifier_call = perf_cpu_notify, | ||
| 4899 | .priority = 20, | ||
| 4900 | }; | ||
| 4901 | |||
| 4902 | void __init perf_event_init(void) | ||
| 4903 | { | ||
| 4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4905 | (void *)(long)smp_processor_id()); | ||
| 4906 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
| 4907 | (void *)(long)smp_processor_id()); | ||
| 4908 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4909 | } | ||
| 4910 | |||
| 4911 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4912 | { | ||
| 4913 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4914 | } | ||
| 4915 | |||
| 4916 | static ssize_t | ||
| 4917 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4918 | const char *buf, | ||
| 4919 | size_t count) | ||
| 4920 | { | ||
| 4921 | struct perf_cpu_context *cpuctx; | ||
| 4922 | unsigned long val; | ||
| 4923 | int err, cpu, mpt; | ||
| 4924 | |||
| 4925 | err = strict_strtoul(buf, 10, &val); | ||
| 4926 | if (err) | ||
| 4927 | return err; | ||
| 4928 | if (val > perf_max_events) | ||
| 4929 | return -EINVAL; | ||
| 4930 | |||
| 4931 | spin_lock(&perf_resource_lock); | ||
| 4932 | perf_reserved_percpu = val; | ||
| 4933 | for_each_online_cpu(cpu) { | ||
| 4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4935 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
| 4937 | perf_max_events - perf_reserved_percpu); | ||
| 4938 | cpuctx->max_pertask = mpt; | ||
| 4939 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4940 | } | ||
| 4941 | spin_unlock(&perf_resource_lock); | ||
| 4942 | |||
| 4943 | return count; | ||
| 4944 | } | ||
| 4945 | |||
| 4946 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4947 | { | ||
| 4948 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4949 | } | ||
| 4950 | |||
| 4951 | static ssize_t | ||
| 4952 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4953 | { | ||
| 4954 | unsigned long val; | ||
| 4955 | int err; | ||
| 4956 | |||
| 4957 | err = strict_strtoul(buf, 10, &val); | ||
| 4958 | if (err) | ||
| 4959 | return err; | ||
| 4960 | if (val > 1) | ||
| 4961 | return -EINVAL; | ||
| 4962 | |||
| 4963 | spin_lock(&perf_resource_lock); | ||
| 4964 | perf_overcommit = val; | ||
| 4965 | spin_unlock(&perf_resource_lock); | ||
| 4966 | |||
| 4967 | return count; | ||
| 4968 | } | ||
| 4969 | |||
| 4970 | static SYSDEV_CLASS_ATTR( | ||
| 4971 | reserve_percpu, | ||
| 4972 | 0644, | ||
| 4973 | perf_show_reserve_percpu, | ||
| 4974 | perf_set_reserve_percpu | ||
| 4975 | ); | ||
| 4976 | |||
| 4977 | static SYSDEV_CLASS_ATTR( | ||
| 4978 | overcommit, | ||
| 4979 | 0644, | ||
| 4980 | perf_show_overcommit, | ||
| 4981 | perf_set_overcommit | ||
| 4982 | ); | ||
| 4983 | |||
| 4984 | static struct attribute *perfclass_attrs[] = { | ||
| 4985 | &attr_reserve_percpu.attr, | ||
| 4986 | &attr_overcommit.attr, | ||
| 4987 | NULL | ||
| 4988 | }; | ||
| 4989 | |||
| 4990 | static struct attribute_group perfclass_attr_group = { | ||
| 4991 | .attrs = perfclass_attrs, | ||
| 4992 | .name = "perf_events", | ||
| 4993 | }; | ||
| 4994 | |||
| 4995 | static int __init perf_event_sysfs_init(void) | ||
| 4996 | { | ||
| 4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4998 | &perfclass_attr_group); | ||
| 4999 | } | ||
| 5000 | device_initcall(perf_event_sysfs_init); | ||
