diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-11 17:01:07 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-11 17:01:07 -0400 |
commit | 8a1ca8cedd108c8e76a6ab34079d0bbb4f244799 (patch) | |
tree | 636c715524f1718599209cc289908ea44b6cb859 /kernel/perf_counter.c | |
parent | b640f042faa2a2fad6464f259a8afec06e2f6386 (diff) | |
parent | 940010c5a314a7bd9b498593bc6ba1718ac5aec5 (diff) |
Merge branch 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (574 commits)
perf_counter: Turn off by default
perf_counter: Add counter->id to the throttle event
perf_counter: Better align code
perf_counter: Rename L2 to LL cache
perf_counter: Standardize event names
perf_counter: Rename enums
perf_counter tools: Clean up u64 usage
perf_counter: Rename perf_counter_limit sysctl
perf_counter: More paranoia settings
perf_counter: powerpc: Implement generalized cache events for POWER processors
perf_counters: powerpc: Add support for POWER7 processors
perf_counter: Accurate period data
perf_counter: Introduce struct for sample data
perf_counter tools: Normalize data using per sample period data
perf_counter: Annotate exit ctx recursion
perf_counter tools: Propagate signals properly
perf_counter tools: Small frequency related fixes
perf_counter: More aggressive frequency adjustment
perf_counter/x86: Fix the model number of Intel Core2 processors
perf_counter, x86: Correct some event and umask values for Intel processors
...
Diffstat (limited to 'kernel/perf_counter.c')
-rw-r--r-- | kernel/perf_counter.c | 4260 |
1 files changed, 4260 insertions, 0 deletions
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c new file mode 100644 index 000000000000..ef5d8a5b2453 --- /dev/null +++ b/kernel/perf_counter.c | |||
@@ -0,0 +1,4260 @@ | |||
1 | /* | ||
2 | * Performance counter core code | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/rculist.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/syscalls.h> | ||
27 | #include <linux/anon_inodes.h> | ||
28 | #include <linux/kernel_stat.h> | ||
29 | #include <linux/perf_counter.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU counters: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_counters __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_counters __read_mostly; | ||
43 | static atomic_t nr_mmap_counters __read_mostly; | ||
44 | static atomic_t nr_comm_counters __read_mostly; | ||
45 | |||
46 | /* | ||
47 | * perf counter paranoia level: | ||
48 | * 0 - not paranoid | ||
49 | * 1 - disallow cpu counters to unpriv | ||
50 | * 2 - disallow kernel profiling to unpriv | ||
51 | */ | ||
52 | int sysctl_perf_counter_paranoid __read_mostly; | ||
53 | |||
54 | static inline bool perf_paranoid_cpu(void) | ||
55 | { | ||
56 | return sysctl_perf_counter_paranoid > 0; | ||
57 | } | ||
58 | |||
59 | static inline bool perf_paranoid_kernel(void) | ||
60 | { | ||
61 | return sysctl_perf_counter_paranoid > 1; | ||
62 | } | ||
63 | |||
64 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
65 | |||
66 | /* | ||
67 | * max perf counter sample rate | ||
68 | */ | ||
69 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
70 | |||
71 | static atomic64_t perf_counter_id; | ||
72 | |||
73 | /* | ||
74 | * Lock for (sysadmin-configurable) counter reservations: | ||
75 | */ | ||
76 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
77 | |||
78 | /* | ||
79 | * Architecture provided APIs - weak aliases: | ||
80 | */ | ||
81 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
82 | { | ||
83 | return NULL; | ||
84 | } | ||
85 | |||
86 | void __weak hw_perf_disable(void) { barrier(); } | ||
87 | void __weak hw_perf_enable(void) { barrier(); } | ||
88 | |||
89 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
90 | |||
91 | int __weak | ||
92 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
93 | struct perf_cpu_context *cpuctx, | ||
94 | struct perf_counter_context *ctx, int cpu) | ||
95 | { | ||
96 | return 0; | ||
97 | } | ||
98 | |||
99 | void __weak perf_counter_print_debug(void) { } | ||
100 | |||
101 | static DEFINE_PER_CPU(int, disable_count); | ||
102 | |||
103 | void __perf_disable(void) | ||
104 | { | ||
105 | __get_cpu_var(disable_count)++; | ||
106 | } | ||
107 | |||
108 | bool __perf_enable(void) | ||
109 | { | ||
110 | return !--__get_cpu_var(disable_count); | ||
111 | } | ||
112 | |||
113 | void perf_disable(void) | ||
114 | { | ||
115 | __perf_disable(); | ||
116 | hw_perf_disable(); | ||
117 | } | ||
118 | |||
119 | void perf_enable(void) | ||
120 | { | ||
121 | if (__perf_enable()) | ||
122 | hw_perf_enable(); | ||
123 | } | ||
124 | |||
125 | static void get_ctx(struct perf_counter_context *ctx) | ||
126 | { | ||
127 | atomic_inc(&ctx->refcount); | ||
128 | } | ||
129 | |||
130 | static void free_ctx(struct rcu_head *head) | ||
131 | { | ||
132 | struct perf_counter_context *ctx; | ||
133 | |||
134 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
135 | kfree(ctx); | ||
136 | } | ||
137 | |||
138 | static void put_ctx(struct perf_counter_context *ctx) | ||
139 | { | ||
140 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
141 | if (ctx->parent_ctx) | ||
142 | put_ctx(ctx->parent_ctx); | ||
143 | if (ctx->task) | ||
144 | put_task_struct(ctx->task); | ||
145 | call_rcu(&ctx->rcu_head, free_ctx); | ||
146 | } | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * Get the perf_counter_context for a task and lock it. | ||
151 | * This has to cope with with the fact that until it is locked, | ||
152 | * the context could get moved to another task. | ||
153 | */ | ||
154 | static struct perf_counter_context * | ||
155 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
156 | { | ||
157 | struct perf_counter_context *ctx; | ||
158 | |||
159 | rcu_read_lock(); | ||
160 | retry: | ||
161 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
162 | if (ctx) { | ||
163 | /* | ||
164 | * If this context is a clone of another, it might | ||
165 | * get swapped for another underneath us by | ||
166 | * perf_counter_task_sched_out, though the | ||
167 | * rcu_read_lock() protects us from any context | ||
168 | * getting freed. Lock the context and check if it | ||
169 | * got swapped before we could get the lock, and retry | ||
170 | * if so. If we locked the right context, then it | ||
171 | * can't get swapped on us any more. | ||
172 | */ | ||
173 | spin_lock_irqsave(&ctx->lock, *flags); | ||
174 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
175 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
176 | goto retry; | ||
177 | } | ||
178 | } | ||
179 | rcu_read_unlock(); | ||
180 | return ctx; | ||
181 | } | ||
182 | |||
183 | /* | ||
184 | * Get the context for a task and increment its pin_count so it | ||
185 | * can't get swapped to another task. This also increments its | ||
186 | * reference count so that the context can't get freed. | ||
187 | */ | ||
188 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
189 | { | ||
190 | struct perf_counter_context *ctx; | ||
191 | unsigned long flags; | ||
192 | |||
193 | ctx = perf_lock_task_context(task, &flags); | ||
194 | if (ctx) { | ||
195 | ++ctx->pin_count; | ||
196 | get_ctx(ctx); | ||
197 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
198 | } | ||
199 | return ctx; | ||
200 | } | ||
201 | |||
202 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
203 | { | ||
204 | unsigned long flags; | ||
205 | |||
206 | spin_lock_irqsave(&ctx->lock, flags); | ||
207 | --ctx->pin_count; | ||
208 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
209 | put_ctx(ctx); | ||
210 | } | ||
211 | |||
212 | /* | ||
213 | * Add a counter from the lists for its context. | ||
214 | * Must be called with ctx->mutex and ctx->lock held. | ||
215 | */ | ||
216 | static void | ||
217 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
218 | { | ||
219 | struct perf_counter *group_leader = counter->group_leader; | ||
220 | |||
221 | /* | ||
222 | * Depending on whether it is a standalone or sibling counter, | ||
223 | * add it straight to the context's counter list, or to the group | ||
224 | * leader's sibling list: | ||
225 | */ | ||
226 | if (group_leader == counter) | ||
227 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
228 | else { | ||
229 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
230 | group_leader->nr_siblings++; | ||
231 | } | ||
232 | |||
233 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
234 | ctx->nr_counters++; | ||
235 | } | ||
236 | |||
237 | /* | ||
238 | * Remove a counter from the lists for its context. | ||
239 | * Must be called with ctx->mutex and ctx->lock held. | ||
240 | */ | ||
241 | static void | ||
242 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
243 | { | ||
244 | struct perf_counter *sibling, *tmp; | ||
245 | |||
246 | if (list_empty(&counter->list_entry)) | ||
247 | return; | ||
248 | ctx->nr_counters--; | ||
249 | |||
250 | list_del_init(&counter->list_entry); | ||
251 | list_del_rcu(&counter->event_entry); | ||
252 | |||
253 | if (counter->group_leader != counter) | ||
254 | counter->group_leader->nr_siblings--; | ||
255 | |||
256 | /* | ||
257 | * If this was a group counter with sibling counters then | ||
258 | * upgrade the siblings to singleton counters by adding them | ||
259 | * to the context list directly: | ||
260 | */ | ||
261 | list_for_each_entry_safe(sibling, tmp, | ||
262 | &counter->sibling_list, list_entry) { | ||
263 | |||
264 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
265 | sibling->group_leader = sibling; | ||
266 | } | ||
267 | } | ||
268 | |||
269 | static void | ||
270 | counter_sched_out(struct perf_counter *counter, | ||
271 | struct perf_cpu_context *cpuctx, | ||
272 | struct perf_counter_context *ctx) | ||
273 | { | ||
274 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
275 | return; | ||
276 | |||
277 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
278 | counter->tstamp_stopped = ctx->time; | ||
279 | counter->pmu->disable(counter); | ||
280 | counter->oncpu = -1; | ||
281 | |||
282 | if (!is_software_counter(counter)) | ||
283 | cpuctx->active_oncpu--; | ||
284 | ctx->nr_active--; | ||
285 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
286 | cpuctx->exclusive = 0; | ||
287 | } | ||
288 | |||
289 | static void | ||
290 | group_sched_out(struct perf_counter *group_counter, | ||
291 | struct perf_cpu_context *cpuctx, | ||
292 | struct perf_counter_context *ctx) | ||
293 | { | ||
294 | struct perf_counter *counter; | ||
295 | |||
296 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
297 | return; | ||
298 | |||
299 | counter_sched_out(group_counter, cpuctx, ctx); | ||
300 | |||
301 | /* | ||
302 | * Schedule out siblings (if any): | ||
303 | */ | ||
304 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
305 | counter_sched_out(counter, cpuctx, ctx); | ||
306 | |||
307 | if (group_counter->attr.exclusive) | ||
308 | cpuctx->exclusive = 0; | ||
309 | } | ||
310 | |||
311 | /* | ||
312 | * Cross CPU call to remove a performance counter | ||
313 | * | ||
314 | * We disable the counter on the hardware level first. After that we | ||
315 | * remove it from the context list. | ||
316 | */ | ||
317 | static void __perf_counter_remove_from_context(void *info) | ||
318 | { | ||
319 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
320 | struct perf_counter *counter = info; | ||
321 | struct perf_counter_context *ctx = counter->ctx; | ||
322 | |||
323 | /* | ||
324 | * If this is a task context, we need to check whether it is | ||
325 | * the current task context of this cpu. If not it has been | ||
326 | * scheduled out before the smp call arrived. | ||
327 | */ | ||
328 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
329 | return; | ||
330 | |||
331 | spin_lock(&ctx->lock); | ||
332 | /* | ||
333 | * Protect the list operation against NMI by disabling the | ||
334 | * counters on a global level. | ||
335 | */ | ||
336 | perf_disable(); | ||
337 | |||
338 | counter_sched_out(counter, cpuctx, ctx); | ||
339 | |||
340 | list_del_counter(counter, ctx); | ||
341 | |||
342 | if (!ctx->task) { | ||
343 | /* | ||
344 | * Allow more per task counters with respect to the | ||
345 | * reservation: | ||
346 | */ | ||
347 | cpuctx->max_pertask = | ||
348 | min(perf_max_counters - ctx->nr_counters, | ||
349 | perf_max_counters - perf_reserved_percpu); | ||
350 | } | ||
351 | |||
352 | perf_enable(); | ||
353 | spin_unlock(&ctx->lock); | ||
354 | } | ||
355 | |||
356 | |||
357 | /* | ||
358 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
359 | * | ||
360 | * Must be called with ctx->mutex held. | ||
361 | * | ||
362 | * CPU counters are removed with a smp call. For task counters we only | ||
363 | * call when the task is on a CPU. | ||
364 | * | ||
365 | * If counter->ctx is a cloned context, callers must make sure that | ||
366 | * every task struct that counter->ctx->task could possibly point to | ||
367 | * remains valid. This is OK when called from perf_release since | ||
368 | * that only calls us on the top-level context, which can't be a clone. | ||
369 | * When called from perf_counter_exit_task, it's OK because the | ||
370 | * context has been detached from its task. | ||
371 | */ | ||
372 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
373 | { | ||
374 | struct perf_counter_context *ctx = counter->ctx; | ||
375 | struct task_struct *task = ctx->task; | ||
376 | |||
377 | if (!task) { | ||
378 | /* | ||
379 | * Per cpu counters are removed via an smp call and | ||
380 | * the removal is always sucessful. | ||
381 | */ | ||
382 | smp_call_function_single(counter->cpu, | ||
383 | __perf_counter_remove_from_context, | ||
384 | counter, 1); | ||
385 | return; | ||
386 | } | ||
387 | |||
388 | retry: | ||
389 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
390 | counter); | ||
391 | |||
392 | spin_lock_irq(&ctx->lock); | ||
393 | /* | ||
394 | * If the context is active we need to retry the smp call. | ||
395 | */ | ||
396 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
397 | spin_unlock_irq(&ctx->lock); | ||
398 | goto retry; | ||
399 | } | ||
400 | |||
401 | /* | ||
402 | * The lock prevents that this context is scheduled in so we | ||
403 | * can remove the counter safely, if the call above did not | ||
404 | * succeed. | ||
405 | */ | ||
406 | if (!list_empty(&counter->list_entry)) { | ||
407 | list_del_counter(counter, ctx); | ||
408 | } | ||
409 | spin_unlock_irq(&ctx->lock); | ||
410 | } | ||
411 | |||
412 | static inline u64 perf_clock(void) | ||
413 | { | ||
414 | return cpu_clock(smp_processor_id()); | ||
415 | } | ||
416 | |||
417 | /* | ||
418 | * Update the record of the current time in a context. | ||
419 | */ | ||
420 | static void update_context_time(struct perf_counter_context *ctx) | ||
421 | { | ||
422 | u64 now = perf_clock(); | ||
423 | |||
424 | ctx->time += now - ctx->timestamp; | ||
425 | ctx->timestamp = now; | ||
426 | } | ||
427 | |||
428 | /* | ||
429 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
430 | */ | ||
431 | static void update_counter_times(struct perf_counter *counter) | ||
432 | { | ||
433 | struct perf_counter_context *ctx = counter->ctx; | ||
434 | u64 run_end; | ||
435 | |||
436 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
437 | return; | ||
438 | |||
439 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
440 | |||
441 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
442 | run_end = counter->tstamp_stopped; | ||
443 | else | ||
444 | run_end = ctx->time; | ||
445 | |||
446 | counter->total_time_running = run_end - counter->tstamp_running; | ||
447 | } | ||
448 | |||
449 | /* | ||
450 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
451 | */ | ||
452 | static void update_group_times(struct perf_counter *leader) | ||
453 | { | ||
454 | struct perf_counter *counter; | ||
455 | |||
456 | update_counter_times(leader); | ||
457 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
458 | update_counter_times(counter); | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Cross CPU call to disable a performance counter | ||
463 | */ | ||
464 | static void __perf_counter_disable(void *info) | ||
465 | { | ||
466 | struct perf_counter *counter = info; | ||
467 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
468 | struct perf_counter_context *ctx = counter->ctx; | ||
469 | |||
470 | /* | ||
471 | * If this is a per-task counter, need to check whether this | ||
472 | * counter's task is the current task on this cpu. | ||
473 | */ | ||
474 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
475 | return; | ||
476 | |||
477 | spin_lock(&ctx->lock); | ||
478 | |||
479 | /* | ||
480 | * If the counter is on, turn it off. | ||
481 | * If it is in error state, leave it in error state. | ||
482 | */ | ||
483 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
484 | update_context_time(ctx); | ||
485 | update_counter_times(counter); | ||
486 | if (counter == counter->group_leader) | ||
487 | group_sched_out(counter, cpuctx, ctx); | ||
488 | else | ||
489 | counter_sched_out(counter, cpuctx, ctx); | ||
490 | counter->state = PERF_COUNTER_STATE_OFF; | ||
491 | } | ||
492 | |||
493 | spin_unlock(&ctx->lock); | ||
494 | } | ||
495 | |||
496 | /* | ||
497 | * Disable a counter. | ||
498 | * | ||
499 | * If counter->ctx is a cloned context, callers must make sure that | ||
500 | * every task struct that counter->ctx->task could possibly point to | ||
501 | * remains valid. This condition is satisifed when called through | ||
502 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
503 | * hold the top-level counter's child_mutex, so any descendant that | ||
504 | * goes to exit will block in sync_child_counter. | ||
505 | * When called from perf_pending_counter it's OK because counter->ctx | ||
506 | * is the current context on this CPU and preemption is disabled, | ||
507 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
508 | */ | ||
509 | static void perf_counter_disable(struct perf_counter *counter) | ||
510 | { | ||
511 | struct perf_counter_context *ctx = counter->ctx; | ||
512 | struct task_struct *task = ctx->task; | ||
513 | |||
514 | if (!task) { | ||
515 | /* | ||
516 | * Disable the counter on the cpu that it's on | ||
517 | */ | ||
518 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
519 | counter, 1); | ||
520 | return; | ||
521 | } | ||
522 | |||
523 | retry: | ||
524 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
525 | |||
526 | spin_lock_irq(&ctx->lock); | ||
527 | /* | ||
528 | * If the counter is still active, we need to retry the cross-call. | ||
529 | */ | ||
530 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
531 | spin_unlock_irq(&ctx->lock); | ||
532 | goto retry; | ||
533 | } | ||
534 | |||
535 | /* | ||
536 | * Since we have the lock this context can't be scheduled | ||
537 | * in, so we can change the state safely. | ||
538 | */ | ||
539 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
540 | update_counter_times(counter); | ||
541 | counter->state = PERF_COUNTER_STATE_OFF; | ||
542 | } | ||
543 | |||
544 | spin_unlock_irq(&ctx->lock); | ||
545 | } | ||
546 | |||
547 | static int | ||
548 | counter_sched_in(struct perf_counter *counter, | ||
549 | struct perf_cpu_context *cpuctx, | ||
550 | struct perf_counter_context *ctx, | ||
551 | int cpu) | ||
552 | { | ||
553 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
554 | return 0; | ||
555 | |||
556 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
557 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
558 | /* | ||
559 | * The new state must be visible before we turn it on in the hardware: | ||
560 | */ | ||
561 | smp_wmb(); | ||
562 | |||
563 | if (counter->pmu->enable(counter)) { | ||
564 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
565 | counter->oncpu = -1; | ||
566 | return -EAGAIN; | ||
567 | } | ||
568 | |||
569 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
570 | |||
571 | if (!is_software_counter(counter)) | ||
572 | cpuctx->active_oncpu++; | ||
573 | ctx->nr_active++; | ||
574 | |||
575 | if (counter->attr.exclusive) | ||
576 | cpuctx->exclusive = 1; | ||
577 | |||
578 | return 0; | ||
579 | } | ||
580 | |||
581 | static int | ||
582 | group_sched_in(struct perf_counter *group_counter, | ||
583 | struct perf_cpu_context *cpuctx, | ||
584 | struct perf_counter_context *ctx, | ||
585 | int cpu) | ||
586 | { | ||
587 | struct perf_counter *counter, *partial_group; | ||
588 | int ret; | ||
589 | |||
590 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
591 | return 0; | ||
592 | |||
593 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
594 | if (ret) | ||
595 | return ret < 0 ? ret : 0; | ||
596 | |||
597 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
598 | return -EAGAIN; | ||
599 | |||
600 | /* | ||
601 | * Schedule in siblings as one group (if any): | ||
602 | */ | ||
603 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
604 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
605 | partial_group = counter; | ||
606 | goto group_error; | ||
607 | } | ||
608 | } | ||
609 | |||
610 | return 0; | ||
611 | |||
612 | group_error: | ||
613 | /* | ||
614 | * Groups can be scheduled in as one unit only, so undo any | ||
615 | * partial group before returning: | ||
616 | */ | ||
617 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
618 | if (counter == partial_group) | ||
619 | break; | ||
620 | counter_sched_out(counter, cpuctx, ctx); | ||
621 | } | ||
622 | counter_sched_out(group_counter, cpuctx, ctx); | ||
623 | |||
624 | return -EAGAIN; | ||
625 | } | ||
626 | |||
627 | /* | ||
628 | * Return 1 for a group consisting entirely of software counters, | ||
629 | * 0 if the group contains any hardware counters. | ||
630 | */ | ||
631 | static int is_software_only_group(struct perf_counter *leader) | ||
632 | { | ||
633 | struct perf_counter *counter; | ||
634 | |||
635 | if (!is_software_counter(leader)) | ||
636 | return 0; | ||
637 | |||
638 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
639 | if (!is_software_counter(counter)) | ||
640 | return 0; | ||
641 | |||
642 | return 1; | ||
643 | } | ||
644 | |||
645 | /* | ||
646 | * Work out whether we can put this counter group on the CPU now. | ||
647 | */ | ||
648 | static int group_can_go_on(struct perf_counter *counter, | ||
649 | struct perf_cpu_context *cpuctx, | ||
650 | int can_add_hw) | ||
651 | { | ||
652 | /* | ||
653 | * Groups consisting entirely of software counters can always go on. | ||
654 | */ | ||
655 | if (is_software_only_group(counter)) | ||
656 | return 1; | ||
657 | /* | ||
658 | * If an exclusive group is already on, no other hardware | ||
659 | * counters can go on. | ||
660 | */ | ||
661 | if (cpuctx->exclusive) | ||
662 | return 0; | ||
663 | /* | ||
664 | * If this group is exclusive and there are already | ||
665 | * counters on the CPU, it can't go on. | ||
666 | */ | ||
667 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
668 | return 0; | ||
669 | /* | ||
670 | * Otherwise, try to add it if all previous groups were able | ||
671 | * to go on. | ||
672 | */ | ||
673 | return can_add_hw; | ||
674 | } | ||
675 | |||
676 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
677 | struct perf_counter_context *ctx) | ||
678 | { | ||
679 | list_add_counter(counter, ctx); | ||
680 | counter->tstamp_enabled = ctx->time; | ||
681 | counter->tstamp_running = ctx->time; | ||
682 | counter->tstamp_stopped = ctx->time; | ||
683 | } | ||
684 | |||
685 | /* | ||
686 | * Cross CPU call to install and enable a performance counter | ||
687 | * | ||
688 | * Must be called with ctx->mutex held | ||
689 | */ | ||
690 | static void __perf_install_in_context(void *info) | ||
691 | { | ||
692 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
693 | struct perf_counter *counter = info; | ||
694 | struct perf_counter_context *ctx = counter->ctx; | ||
695 | struct perf_counter *leader = counter->group_leader; | ||
696 | int cpu = smp_processor_id(); | ||
697 | int err; | ||
698 | |||
699 | /* | ||
700 | * If this is a task context, we need to check whether it is | ||
701 | * the current task context of this cpu. If not it has been | ||
702 | * scheduled out before the smp call arrived. | ||
703 | * Or possibly this is the right context but it isn't | ||
704 | * on this cpu because it had no counters. | ||
705 | */ | ||
706 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
707 | if (cpuctx->task_ctx || ctx->task != current) | ||
708 | return; | ||
709 | cpuctx->task_ctx = ctx; | ||
710 | } | ||
711 | |||
712 | spin_lock(&ctx->lock); | ||
713 | ctx->is_active = 1; | ||
714 | update_context_time(ctx); | ||
715 | |||
716 | /* | ||
717 | * Protect the list operation against NMI by disabling the | ||
718 | * counters on a global level. NOP for non NMI based counters. | ||
719 | */ | ||
720 | perf_disable(); | ||
721 | |||
722 | add_counter_to_ctx(counter, ctx); | ||
723 | |||
724 | /* | ||
725 | * Don't put the counter on if it is disabled or if | ||
726 | * it is in a group and the group isn't on. | ||
727 | */ | ||
728 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
729 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
730 | goto unlock; | ||
731 | |||
732 | /* | ||
733 | * An exclusive counter can't go on if there are already active | ||
734 | * hardware counters, and no hardware counter can go on if there | ||
735 | * is already an exclusive counter on. | ||
736 | */ | ||
737 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
738 | err = -EEXIST; | ||
739 | else | ||
740 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
741 | |||
742 | if (err) { | ||
743 | /* | ||
744 | * This counter couldn't go on. If it is in a group | ||
745 | * then we have to pull the whole group off. | ||
746 | * If the counter group is pinned then put it in error state. | ||
747 | */ | ||
748 | if (leader != counter) | ||
749 | group_sched_out(leader, cpuctx, ctx); | ||
750 | if (leader->attr.pinned) { | ||
751 | update_group_times(leader); | ||
752 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
753 | } | ||
754 | } | ||
755 | |||
756 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
757 | cpuctx->max_pertask--; | ||
758 | |||
759 | unlock: | ||
760 | perf_enable(); | ||
761 | |||
762 | spin_unlock(&ctx->lock); | ||
763 | } | ||
764 | |||
765 | /* | ||
766 | * Attach a performance counter to a context | ||
767 | * | ||
768 | * First we add the counter to the list with the hardware enable bit | ||
769 | * in counter->hw_config cleared. | ||
770 | * | ||
771 | * If the counter is attached to a task which is on a CPU we use a smp | ||
772 | * call to enable it in the task context. The task might have been | ||
773 | * scheduled away, but we check this in the smp call again. | ||
774 | * | ||
775 | * Must be called with ctx->mutex held. | ||
776 | */ | ||
777 | static void | ||
778 | perf_install_in_context(struct perf_counter_context *ctx, | ||
779 | struct perf_counter *counter, | ||
780 | int cpu) | ||
781 | { | ||
782 | struct task_struct *task = ctx->task; | ||
783 | |||
784 | if (!task) { | ||
785 | /* | ||
786 | * Per cpu counters are installed via an smp call and | ||
787 | * the install is always sucessful. | ||
788 | */ | ||
789 | smp_call_function_single(cpu, __perf_install_in_context, | ||
790 | counter, 1); | ||
791 | return; | ||
792 | } | ||
793 | |||
794 | retry: | ||
795 | task_oncpu_function_call(task, __perf_install_in_context, | ||
796 | counter); | ||
797 | |||
798 | spin_lock_irq(&ctx->lock); | ||
799 | /* | ||
800 | * we need to retry the smp call. | ||
801 | */ | ||
802 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
803 | spin_unlock_irq(&ctx->lock); | ||
804 | goto retry; | ||
805 | } | ||
806 | |||
807 | /* | ||
808 | * The lock prevents that this context is scheduled in so we | ||
809 | * can add the counter safely, if it the call above did not | ||
810 | * succeed. | ||
811 | */ | ||
812 | if (list_empty(&counter->list_entry)) | ||
813 | add_counter_to_ctx(counter, ctx); | ||
814 | spin_unlock_irq(&ctx->lock); | ||
815 | } | ||
816 | |||
817 | /* | ||
818 | * Cross CPU call to enable a performance counter | ||
819 | */ | ||
820 | static void __perf_counter_enable(void *info) | ||
821 | { | ||
822 | struct perf_counter *counter = info; | ||
823 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
824 | struct perf_counter_context *ctx = counter->ctx; | ||
825 | struct perf_counter *leader = counter->group_leader; | ||
826 | int err; | ||
827 | |||
828 | /* | ||
829 | * If this is a per-task counter, need to check whether this | ||
830 | * counter's task is the current task on this cpu. | ||
831 | */ | ||
832 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
833 | if (cpuctx->task_ctx || ctx->task != current) | ||
834 | return; | ||
835 | cpuctx->task_ctx = ctx; | ||
836 | } | ||
837 | |||
838 | spin_lock(&ctx->lock); | ||
839 | ctx->is_active = 1; | ||
840 | update_context_time(ctx); | ||
841 | |||
842 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
843 | goto unlock; | ||
844 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
845 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
846 | |||
847 | /* | ||
848 | * If the counter is in a group and isn't the group leader, | ||
849 | * then don't put it on unless the group is on. | ||
850 | */ | ||
851 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
852 | goto unlock; | ||
853 | |||
854 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
855 | err = -EEXIST; | ||
856 | } else { | ||
857 | perf_disable(); | ||
858 | if (counter == leader) | ||
859 | err = group_sched_in(counter, cpuctx, ctx, | ||
860 | smp_processor_id()); | ||
861 | else | ||
862 | err = counter_sched_in(counter, cpuctx, ctx, | ||
863 | smp_processor_id()); | ||
864 | perf_enable(); | ||
865 | } | ||
866 | |||
867 | if (err) { | ||
868 | /* | ||
869 | * If this counter can't go on and it's part of a | ||
870 | * group, then the whole group has to come off. | ||
871 | */ | ||
872 | if (leader != counter) | ||
873 | group_sched_out(leader, cpuctx, ctx); | ||
874 | if (leader->attr.pinned) { | ||
875 | update_group_times(leader); | ||
876 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
877 | } | ||
878 | } | ||
879 | |||
880 | unlock: | ||
881 | spin_unlock(&ctx->lock); | ||
882 | } | ||
883 | |||
884 | /* | ||
885 | * Enable a counter. | ||
886 | * | ||
887 | * If counter->ctx is a cloned context, callers must make sure that | ||
888 | * every task struct that counter->ctx->task could possibly point to | ||
889 | * remains valid. This condition is satisfied when called through | ||
890 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
891 | * for perf_counter_disable. | ||
892 | */ | ||
893 | static void perf_counter_enable(struct perf_counter *counter) | ||
894 | { | ||
895 | struct perf_counter_context *ctx = counter->ctx; | ||
896 | struct task_struct *task = ctx->task; | ||
897 | |||
898 | if (!task) { | ||
899 | /* | ||
900 | * Enable the counter on the cpu that it's on | ||
901 | */ | ||
902 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
903 | counter, 1); | ||
904 | return; | ||
905 | } | ||
906 | |||
907 | spin_lock_irq(&ctx->lock); | ||
908 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
909 | goto out; | ||
910 | |||
911 | /* | ||
912 | * If the counter is in error state, clear that first. | ||
913 | * That way, if we see the counter in error state below, we | ||
914 | * know that it has gone back into error state, as distinct | ||
915 | * from the task having been scheduled away before the | ||
916 | * cross-call arrived. | ||
917 | */ | ||
918 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
919 | counter->state = PERF_COUNTER_STATE_OFF; | ||
920 | |||
921 | retry: | ||
922 | spin_unlock_irq(&ctx->lock); | ||
923 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
924 | |||
925 | spin_lock_irq(&ctx->lock); | ||
926 | |||
927 | /* | ||
928 | * If the context is active and the counter is still off, | ||
929 | * we need to retry the cross-call. | ||
930 | */ | ||
931 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
932 | goto retry; | ||
933 | |||
934 | /* | ||
935 | * Since we have the lock this context can't be scheduled | ||
936 | * in, so we can change the state safely. | ||
937 | */ | ||
938 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
939 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
940 | counter->tstamp_enabled = | ||
941 | ctx->time - counter->total_time_enabled; | ||
942 | } | ||
943 | out: | ||
944 | spin_unlock_irq(&ctx->lock); | ||
945 | } | ||
946 | |||
947 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
948 | { | ||
949 | /* | ||
950 | * not supported on inherited counters | ||
951 | */ | ||
952 | if (counter->attr.inherit) | ||
953 | return -EINVAL; | ||
954 | |||
955 | atomic_add(refresh, &counter->event_limit); | ||
956 | perf_counter_enable(counter); | ||
957 | |||
958 | return 0; | ||
959 | } | ||
960 | |||
961 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
962 | struct perf_cpu_context *cpuctx) | ||
963 | { | ||
964 | struct perf_counter *counter; | ||
965 | |||
966 | spin_lock(&ctx->lock); | ||
967 | ctx->is_active = 0; | ||
968 | if (likely(!ctx->nr_counters)) | ||
969 | goto out; | ||
970 | update_context_time(ctx); | ||
971 | |||
972 | perf_disable(); | ||
973 | if (ctx->nr_active) { | ||
974 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
975 | if (counter != counter->group_leader) | ||
976 | counter_sched_out(counter, cpuctx, ctx); | ||
977 | else | ||
978 | group_sched_out(counter, cpuctx, ctx); | ||
979 | } | ||
980 | } | ||
981 | perf_enable(); | ||
982 | out: | ||
983 | spin_unlock(&ctx->lock); | ||
984 | } | ||
985 | |||
986 | /* | ||
987 | * Test whether two contexts are equivalent, i.e. whether they | ||
988 | * have both been cloned from the same version of the same context | ||
989 | * and they both have the same number of enabled counters. | ||
990 | * If the number of enabled counters is the same, then the set | ||
991 | * of enabled counters should be the same, because these are both | ||
992 | * inherited contexts, therefore we can't access individual counters | ||
993 | * in them directly with an fd; we can only enable/disable all | ||
994 | * counters via prctl, or enable/disable all counters in a family | ||
995 | * via ioctl, which will have the same effect on both contexts. | ||
996 | */ | ||
997 | static int context_equiv(struct perf_counter_context *ctx1, | ||
998 | struct perf_counter_context *ctx2) | ||
999 | { | ||
1000 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1001 | && ctx1->parent_gen == ctx2->parent_gen | ||
1002 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1003 | } | ||
1004 | |||
1005 | /* | ||
1006 | * Called from scheduler to remove the counters of the current task, | ||
1007 | * with interrupts disabled. | ||
1008 | * | ||
1009 | * We stop each counter and update the counter value in counter->count. | ||
1010 | * | ||
1011 | * This does not protect us against NMI, but disable() | ||
1012 | * sets the disabled bit in the control field of counter _before_ | ||
1013 | * accessing the counter control register. If a NMI hits, then it will | ||
1014 | * not restart the counter. | ||
1015 | */ | ||
1016 | void perf_counter_task_sched_out(struct task_struct *task, | ||
1017 | struct task_struct *next, int cpu) | ||
1018 | { | ||
1019 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1020 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
1021 | struct perf_counter_context *next_ctx; | ||
1022 | struct perf_counter_context *parent; | ||
1023 | struct pt_regs *regs; | ||
1024 | int do_switch = 1; | ||
1025 | |||
1026 | regs = task_pt_regs(task); | ||
1027 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1028 | |||
1029 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1030 | return; | ||
1031 | |||
1032 | update_context_time(ctx); | ||
1033 | |||
1034 | rcu_read_lock(); | ||
1035 | parent = rcu_dereference(ctx->parent_ctx); | ||
1036 | next_ctx = next->perf_counter_ctxp; | ||
1037 | if (parent && next_ctx && | ||
1038 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1039 | /* | ||
1040 | * Looks like the two contexts are clones, so we might be | ||
1041 | * able to optimize the context switch. We lock both | ||
1042 | * contexts and check that they are clones under the | ||
1043 | * lock (including re-checking that neither has been | ||
1044 | * uncloned in the meantime). It doesn't matter which | ||
1045 | * order we take the locks because no other cpu could | ||
1046 | * be trying to lock both of these tasks. | ||
1047 | */ | ||
1048 | spin_lock(&ctx->lock); | ||
1049 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1050 | if (context_equiv(ctx, next_ctx)) { | ||
1051 | /* | ||
1052 | * XXX do we need a memory barrier of sorts | ||
1053 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
1054 | */ | ||
1055 | task->perf_counter_ctxp = next_ctx; | ||
1056 | next->perf_counter_ctxp = ctx; | ||
1057 | ctx->task = next; | ||
1058 | next_ctx->task = task; | ||
1059 | do_switch = 0; | ||
1060 | } | ||
1061 | spin_unlock(&next_ctx->lock); | ||
1062 | spin_unlock(&ctx->lock); | ||
1063 | } | ||
1064 | rcu_read_unlock(); | ||
1065 | |||
1066 | if (do_switch) { | ||
1067 | __perf_counter_sched_out(ctx, cpuctx); | ||
1068 | cpuctx->task_ctx = NULL; | ||
1069 | } | ||
1070 | } | ||
1071 | |||
1072 | /* | ||
1073 | * Called with IRQs disabled | ||
1074 | */ | ||
1075 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
1076 | { | ||
1077 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1078 | |||
1079 | if (!cpuctx->task_ctx) | ||
1080 | return; | ||
1081 | |||
1082 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1083 | return; | ||
1084 | |||
1085 | __perf_counter_sched_out(ctx, cpuctx); | ||
1086 | cpuctx->task_ctx = NULL; | ||
1087 | } | ||
1088 | |||
1089 | /* | ||
1090 | * Called with IRQs disabled | ||
1091 | */ | ||
1092 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1093 | { | ||
1094 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
1095 | } | ||
1096 | |||
1097 | static void | ||
1098 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
1099 | struct perf_cpu_context *cpuctx, int cpu) | ||
1100 | { | ||
1101 | struct perf_counter *counter; | ||
1102 | int can_add_hw = 1; | ||
1103 | |||
1104 | spin_lock(&ctx->lock); | ||
1105 | ctx->is_active = 1; | ||
1106 | if (likely(!ctx->nr_counters)) | ||
1107 | goto out; | ||
1108 | |||
1109 | ctx->timestamp = perf_clock(); | ||
1110 | |||
1111 | perf_disable(); | ||
1112 | |||
1113 | /* | ||
1114 | * First go through the list and put on any pinned groups | ||
1115 | * in order to give them the best chance of going on. | ||
1116 | */ | ||
1117 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1118 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
1119 | !counter->attr.pinned) | ||
1120 | continue; | ||
1121 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
1122 | continue; | ||
1123 | |||
1124 | if (counter != counter->group_leader) | ||
1125 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
1126 | else { | ||
1127 | if (group_can_go_on(counter, cpuctx, 1)) | ||
1128 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
1129 | } | ||
1130 | |||
1131 | /* | ||
1132 | * If this pinned group hasn't been scheduled, | ||
1133 | * put it in error state. | ||
1134 | */ | ||
1135 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1136 | update_group_times(counter); | ||
1137 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
1138 | } | ||
1139 | } | ||
1140 | |||
1141 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1142 | /* | ||
1143 | * Ignore counters in OFF or ERROR state, and | ||
1144 | * ignore pinned counters since we did them already. | ||
1145 | */ | ||
1146 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
1147 | counter->attr.pinned) | ||
1148 | continue; | ||
1149 | |||
1150 | /* | ||
1151 | * Listen to the 'cpu' scheduling filter constraint | ||
1152 | * of counters: | ||
1153 | */ | ||
1154 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
1155 | continue; | ||
1156 | |||
1157 | if (counter != counter->group_leader) { | ||
1158 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
1159 | can_add_hw = 0; | ||
1160 | } else { | ||
1161 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
1162 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
1163 | can_add_hw = 0; | ||
1164 | } | ||
1165 | } | ||
1166 | } | ||
1167 | perf_enable(); | ||
1168 | out: | ||
1169 | spin_unlock(&ctx->lock); | ||
1170 | } | ||
1171 | |||
1172 | /* | ||
1173 | * Called from scheduler to add the counters of the current task | ||
1174 | * with interrupts disabled. | ||
1175 | * | ||
1176 | * We restore the counter value and then enable it. | ||
1177 | * | ||
1178 | * This does not protect us against NMI, but enable() | ||
1179 | * sets the enabled bit in the control field of counter _before_ | ||
1180 | * accessing the counter control register. If a NMI hits, then it will | ||
1181 | * keep the counter running. | ||
1182 | */ | ||
1183 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
1184 | { | ||
1185 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1186 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
1187 | |||
1188 | if (likely(!ctx)) | ||
1189 | return; | ||
1190 | if (cpuctx->task_ctx == ctx) | ||
1191 | return; | ||
1192 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
1193 | cpuctx->task_ctx = ctx; | ||
1194 | } | ||
1195 | |||
1196 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1197 | { | ||
1198 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
1199 | |||
1200 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
1201 | } | ||
1202 | |||
1203 | #define MAX_INTERRUPTS (~0ULL) | ||
1204 | |||
1205 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
1206 | static void perf_log_period(struct perf_counter *counter, u64 period); | ||
1207 | |||
1208 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
1209 | { | ||
1210 | struct hw_perf_counter *hwc = &counter->hw; | ||
1211 | u64 period, sample_period; | ||
1212 | s64 delta; | ||
1213 | |||
1214 | events *= hwc->sample_period; | ||
1215 | period = div64_u64(events, counter->attr.sample_freq); | ||
1216 | |||
1217 | delta = (s64)(period - hwc->sample_period); | ||
1218 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1219 | |||
1220 | sample_period = hwc->sample_period + delta; | ||
1221 | |||
1222 | if (!sample_period) | ||
1223 | sample_period = 1; | ||
1224 | |||
1225 | perf_log_period(counter, sample_period); | ||
1226 | |||
1227 | hwc->sample_period = sample_period; | ||
1228 | } | ||
1229 | |||
1230 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
1231 | { | ||
1232 | struct perf_counter *counter; | ||
1233 | struct hw_perf_counter *hwc; | ||
1234 | u64 interrupts, freq; | ||
1235 | |||
1236 | spin_lock(&ctx->lock); | ||
1237 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1238 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
1239 | continue; | ||
1240 | |||
1241 | hwc = &counter->hw; | ||
1242 | |||
1243 | interrupts = hwc->interrupts; | ||
1244 | hwc->interrupts = 0; | ||
1245 | |||
1246 | /* | ||
1247 | * unthrottle counters on the tick | ||
1248 | */ | ||
1249 | if (interrupts == MAX_INTERRUPTS) { | ||
1250 | perf_log_throttle(counter, 1); | ||
1251 | counter->pmu->unthrottle(counter); | ||
1252 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
1253 | } | ||
1254 | |||
1255 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
1256 | continue; | ||
1257 | |||
1258 | /* | ||
1259 | * if the specified freq < HZ then we need to skip ticks | ||
1260 | */ | ||
1261 | if (counter->attr.sample_freq < HZ) { | ||
1262 | freq = counter->attr.sample_freq; | ||
1263 | |||
1264 | hwc->freq_count += freq; | ||
1265 | hwc->freq_interrupts += interrupts; | ||
1266 | |||
1267 | if (hwc->freq_count < HZ) | ||
1268 | continue; | ||
1269 | |||
1270 | interrupts = hwc->freq_interrupts; | ||
1271 | hwc->freq_interrupts = 0; | ||
1272 | hwc->freq_count -= HZ; | ||
1273 | } else | ||
1274 | freq = HZ; | ||
1275 | |||
1276 | perf_adjust_period(counter, freq * interrupts); | ||
1277 | |||
1278 | /* | ||
1279 | * In order to avoid being stalled by an (accidental) huge | ||
1280 | * sample period, force reset the sample period if we didn't | ||
1281 | * get any events in this freq period. | ||
1282 | */ | ||
1283 | if (!interrupts) { | ||
1284 | perf_disable(); | ||
1285 | counter->pmu->disable(counter); | ||
1286 | atomic_set(&hwc->period_left, 0); | ||
1287 | counter->pmu->enable(counter); | ||
1288 | perf_enable(); | ||
1289 | } | ||
1290 | } | ||
1291 | spin_unlock(&ctx->lock); | ||
1292 | } | ||
1293 | |||
1294 | /* | ||
1295 | * Round-robin a context's counters: | ||
1296 | */ | ||
1297 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
1298 | { | ||
1299 | struct perf_counter *counter; | ||
1300 | |||
1301 | if (!ctx->nr_counters) | ||
1302 | return; | ||
1303 | |||
1304 | spin_lock(&ctx->lock); | ||
1305 | /* | ||
1306 | * Rotate the first entry last (works just fine for group counters too): | ||
1307 | */ | ||
1308 | perf_disable(); | ||
1309 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1310 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
1311 | break; | ||
1312 | } | ||
1313 | perf_enable(); | ||
1314 | |||
1315 | spin_unlock(&ctx->lock); | ||
1316 | } | ||
1317 | |||
1318 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
1319 | { | ||
1320 | struct perf_cpu_context *cpuctx; | ||
1321 | struct perf_counter_context *ctx; | ||
1322 | |||
1323 | if (!atomic_read(&nr_counters)) | ||
1324 | return; | ||
1325 | |||
1326 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1327 | ctx = curr->perf_counter_ctxp; | ||
1328 | |||
1329 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1330 | if (ctx) | ||
1331 | perf_ctx_adjust_freq(ctx); | ||
1332 | |||
1333 | perf_counter_cpu_sched_out(cpuctx); | ||
1334 | if (ctx) | ||
1335 | __perf_counter_task_sched_out(ctx); | ||
1336 | |||
1337 | rotate_ctx(&cpuctx->ctx); | ||
1338 | if (ctx) | ||
1339 | rotate_ctx(ctx); | ||
1340 | |||
1341 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
1342 | if (ctx) | ||
1343 | perf_counter_task_sched_in(curr, cpu); | ||
1344 | } | ||
1345 | |||
1346 | /* | ||
1347 | * Cross CPU call to read the hardware counter | ||
1348 | */ | ||
1349 | static void __read(void *info) | ||
1350 | { | ||
1351 | struct perf_counter *counter = info; | ||
1352 | struct perf_counter_context *ctx = counter->ctx; | ||
1353 | unsigned long flags; | ||
1354 | |||
1355 | local_irq_save(flags); | ||
1356 | if (ctx->is_active) | ||
1357 | update_context_time(ctx); | ||
1358 | counter->pmu->read(counter); | ||
1359 | update_counter_times(counter); | ||
1360 | local_irq_restore(flags); | ||
1361 | } | ||
1362 | |||
1363 | static u64 perf_counter_read(struct perf_counter *counter) | ||
1364 | { | ||
1365 | /* | ||
1366 | * If counter is enabled and currently active on a CPU, update the | ||
1367 | * value in the counter structure: | ||
1368 | */ | ||
1369 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
1370 | smp_call_function_single(counter->oncpu, | ||
1371 | __read, counter, 1); | ||
1372 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1373 | update_counter_times(counter); | ||
1374 | } | ||
1375 | |||
1376 | return atomic64_read(&counter->count); | ||
1377 | } | ||
1378 | |||
1379 | /* | ||
1380 | * Initialize the perf_counter context in a task_struct: | ||
1381 | */ | ||
1382 | static void | ||
1383 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
1384 | struct task_struct *task) | ||
1385 | { | ||
1386 | memset(ctx, 0, sizeof(*ctx)); | ||
1387 | spin_lock_init(&ctx->lock); | ||
1388 | mutex_init(&ctx->mutex); | ||
1389 | INIT_LIST_HEAD(&ctx->counter_list); | ||
1390 | INIT_LIST_HEAD(&ctx->event_list); | ||
1391 | atomic_set(&ctx->refcount, 1); | ||
1392 | ctx->task = task; | ||
1393 | } | ||
1394 | |||
1395 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
1396 | { | ||
1397 | struct perf_counter_context *parent_ctx; | ||
1398 | struct perf_counter_context *ctx; | ||
1399 | struct perf_cpu_context *cpuctx; | ||
1400 | struct task_struct *task; | ||
1401 | unsigned long flags; | ||
1402 | int err; | ||
1403 | |||
1404 | /* | ||
1405 | * If cpu is not a wildcard then this is a percpu counter: | ||
1406 | */ | ||
1407 | if (cpu != -1) { | ||
1408 | /* Must be root to operate on a CPU counter: */ | ||
1409 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1410 | return ERR_PTR(-EACCES); | ||
1411 | |||
1412 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1413 | return ERR_PTR(-EINVAL); | ||
1414 | |||
1415 | /* | ||
1416 | * We could be clever and allow to attach a counter to an | ||
1417 | * offline CPU and activate it when the CPU comes up, but | ||
1418 | * that's for later. | ||
1419 | */ | ||
1420 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1421 | return ERR_PTR(-ENODEV); | ||
1422 | |||
1423 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1424 | ctx = &cpuctx->ctx; | ||
1425 | get_ctx(ctx); | ||
1426 | |||
1427 | return ctx; | ||
1428 | } | ||
1429 | |||
1430 | rcu_read_lock(); | ||
1431 | if (!pid) | ||
1432 | task = current; | ||
1433 | else | ||
1434 | task = find_task_by_vpid(pid); | ||
1435 | if (task) | ||
1436 | get_task_struct(task); | ||
1437 | rcu_read_unlock(); | ||
1438 | |||
1439 | if (!task) | ||
1440 | return ERR_PTR(-ESRCH); | ||
1441 | |||
1442 | /* | ||
1443 | * Can't attach counters to a dying task. | ||
1444 | */ | ||
1445 | err = -ESRCH; | ||
1446 | if (task->flags & PF_EXITING) | ||
1447 | goto errout; | ||
1448 | |||
1449 | /* Reuse ptrace permission checks for now. */ | ||
1450 | err = -EACCES; | ||
1451 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1452 | goto errout; | ||
1453 | |||
1454 | retry: | ||
1455 | ctx = perf_lock_task_context(task, &flags); | ||
1456 | if (ctx) { | ||
1457 | parent_ctx = ctx->parent_ctx; | ||
1458 | if (parent_ctx) { | ||
1459 | put_ctx(parent_ctx); | ||
1460 | ctx->parent_ctx = NULL; /* no longer a clone */ | ||
1461 | } | ||
1462 | /* | ||
1463 | * Get an extra reference before dropping the lock so that | ||
1464 | * this context won't get freed if the task exits. | ||
1465 | */ | ||
1466 | get_ctx(ctx); | ||
1467 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1468 | } | ||
1469 | |||
1470 | if (!ctx) { | ||
1471 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
1472 | err = -ENOMEM; | ||
1473 | if (!ctx) | ||
1474 | goto errout; | ||
1475 | __perf_counter_init_context(ctx, task); | ||
1476 | get_ctx(ctx); | ||
1477 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
1478 | /* | ||
1479 | * We raced with some other task; use | ||
1480 | * the context they set. | ||
1481 | */ | ||
1482 | kfree(ctx); | ||
1483 | goto retry; | ||
1484 | } | ||
1485 | get_task_struct(task); | ||
1486 | } | ||
1487 | |||
1488 | put_task_struct(task); | ||
1489 | return ctx; | ||
1490 | |||
1491 | errout: | ||
1492 | put_task_struct(task); | ||
1493 | return ERR_PTR(err); | ||
1494 | } | ||
1495 | |||
1496 | static void free_counter_rcu(struct rcu_head *head) | ||
1497 | { | ||
1498 | struct perf_counter *counter; | ||
1499 | |||
1500 | counter = container_of(head, struct perf_counter, rcu_head); | ||
1501 | if (counter->ns) | ||
1502 | put_pid_ns(counter->ns); | ||
1503 | kfree(counter); | ||
1504 | } | ||
1505 | |||
1506 | static void perf_pending_sync(struct perf_counter *counter); | ||
1507 | |||
1508 | static void free_counter(struct perf_counter *counter) | ||
1509 | { | ||
1510 | perf_pending_sync(counter); | ||
1511 | |||
1512 | atomic_dec(&nr_counters); | ||
1513 | if (counter->attr.mmap) | ||
1514 | atomic_dec(&nr_mmap_counters); | ||
1515 | if (counter->attr.comm) | ||
1516 | atomic_dec(&nr_comm_counters); | ||
1517 | |||
1518 | if (counter->destroy) | ||
1519 | counter->destroy(counter); | ||
1520 | |||
1521 | put_ctx(counter->ctx); | ||
1522 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
1523 | } | ||
1524 | |||
1525 | /* | ||
1526 | * Called when the last reference to the file is gone. | ||
1527 | */ | ||
1528 | static int perf_release(struct inode *inode, struct file *file) | ||
1529 | { | ||
1530 | struct perf_counter *counter = file->private_data; | ||
1531 | struct perf_counter_context *ctx = counter->ctx; | ||
1532 | |||
1533 | file->private_data = NULL; | ||
1534 | |||
1535 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1536 | mutex_lock(&ctx->mutex); | ||
1537 | perf_counter_remove_from_context(counter); | ||
1538 | mutex_unlock(&ctx->mutex); | ||
1539 | |||
1540 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
1541 | list_del_init(&counter->owner_entry); | ||
1542 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
1543 | put_task_struct(counter->owner); | ||
1544 | |||
1545 | free_counter(counter); | ||
1546 | |||
1547 | return 0; | ||
1548 | } | ||
1549 | |||
1550 | /* | ||
1551 | * Read the performance counter - simple non blocking version for now | ||
1552 | */ | ||
1553 | static ssize_t | ||
1554 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
1555 | { | ||
1556 | u64 values[3]; | ||
1557 | int n; | ||
1558 | |||
1559 | /* | ||
1560 | * Return end-of-file for a read on a counter that is in | ||
1561 | * error state (i.e. because it was pinned but it couldn't be | ||
1562 | * scheduled on to the CPU at some point). | ||
1563 | */ | ||
1564 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
1565 | return 0; | ||
1566 | |||
1567 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1568 | mutex_lock(&counter->child_mutex); | ||
1569 | values[0] = perf_counter_read(counter); | ||
1570 | n = 1; | ||
1571 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1572 | values[n++] = counter->total_time_enabled + | ||
1573 | atomic64_read(&counter->child_total_time_enabled); | ||
1574 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1575 | values[n++] = counter->total_time_running + | ||
1576 | atomic64_read(&counter->child_total_time_running); | ||
1577 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
1578 | values[n++] = counter->id; | ||
1579 | mutex_unlock(&counter->child_mutex); | ||
1580 | |||
1581 | if (count < n * sizeof(u64)) | ||
1582 | return -EINVAL; | ||
1583 | count = n * sizeof(u64); | ||
1584 | |||
1585 | if (copy_to_user(buf, values, count)) | ||
1586 | return -EFAULT; | ||
1587 | |||
1588 | return count; | ||
1589 | } | ||
1590 | |||
1591 | static ssize_t | ||
1592 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1593 | { | ||
1594 | struct perf_counter *counter = file->private_data; | ||
1595 | |||
1596 | return perf_read_hw(counter, buf, count); | ||
1597 | } | ||
1598 | |||
1599 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1600 | { | ||
1601 | struct perf_counter *counter = file->private_data; | ||
1602 | struct perf_mmap_data *data; | ||
1603 | unsigned int events = POLL_HUP; | ||
1604 | |||
1605 | rcu_read_lock(); | ||
1606 | data = rcu_dereference(counter->data); | ||
1607 | if (data) | ||
1608 | events = atomic_xchg(&data->poll, 0); | ||
1609 | rcu_read_unlock(); | ||
1610 | |||
1611 | poll_wait(file, &counter->waitq, wait); | ||
1612 | |||
1613 | return events; | ||
1614 | } | ||
1615 | |||
1616 | static void perf_counter_reset(struct perf_counter *counter) | ||
1617 | { | ||
1618 | (void)perf_counter_read(counter); | ||
1619 | atomic64_set(&counter->count, 0); | ||
1620 | perf_counter_update_userpage(counter); | ||
1621 | } | ||
1622 | |||
1623 | static void perf_counter_for_each_sibling(struct perf_counter *counter, | ||
1624 | void (*func)(struct perf_counter *)) | ||
1625 | { | ||
1626 | struct perf_counter_context *ctx = counter->ctx; | ||
1627 | struct perf_counter *sibling; | ||
1628 | |||
1629 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1630 | mutex_lock(&ctx->mutex); | ||
1631 | counter = counter->group_leader; | ||
1632 | |||
1633 | func(counter); | ||
1634 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
1635 | func(sibling); | ||
1636 | mutex_unlock(&ctx->mutex); | ||
1637 | } | ||
1638 | |||
1639 | /* | ||
1640 | * Holding the top-level counter's child_mutex means that any | ||
1641 | * descendant process that has inherited this counter will block | ||
1642 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
1643 | * task existence requirements of perf_counter_enable/disable. | ||
1644 | */ | ||
1645 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
1646 | void (*func)(struct perf_counter *)) | ||
1647 | { | ||
1648 | struct perf_counter *child; | ||
1649 | |||
1650 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1651 | mutex_lock(&counter->child_mutex); | ||
1652 | func(counter); | ||
1653 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1654 | func(child); | ||
1655 | mutex_unlock(&counter->child_mutex); | ||
1656 | } | ||
1657 | |||
1658 | static void perf_counter_for_each(struct perf_counter *counter, | ||
1659 | void (*func)(struct perf_counter *)) | ||
1660 | { | ||
1661 | struct perf_counter *child; | ||
1662 | |||
1663 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1664 | mutex_lock(&counter->child_mutex); | ||
1665 | perf_counter_for_each_sibling(counter, func); | ||
1666 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1667 | perf_counter_for_each_sibling(child, func); | ||
1668 | mutex_unlock(&counter->child_mutex); | ||
1669 | } | ||
1670 | |||
1671 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
1672 | { | ||
1673 | struct perf_counter_context *ctx = counter->ctx; | ||
1674 | unsigned long size; | ||
1675 | int ret = 0; | ||
1676 | u64 value; | ||
1677 | |||
1678 | if (!counter->attr.sample_period) | ||
1679 | return -EINVAL; | ||
1680 | |||
1681 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1682 | if (size != sizeof(value)) | ||
1683 | return -EFAULT; | ||
1684 | |||
1685 | if (!value) | ||
1686 | return -EINVAL; | ||
1687 | |||
1688 | spin_lock_irq(&ctx->lock); | ||
1689 | if (counter->attr.freq) { | ||
1690 | if (value > sysctl_perf_counter_sample_rate) { | ||
1691 | ret = -EINVAL; | ||
1692 | goto unlock; | ||
1693 | } | ||
1694 | |||
1695 | counter->attr.sample_freq = value; | ||
1696 | } else { | ||
1697 | perf_log_period(counter, value); | ||
1698 | |||
1699 | counter->attr.sample_period = value; | ||
1700 | counter->hw.sample_period = value; | ||
1701 | } | ||
1702 | unlock: | ||
1703 | spin_unlock_irq(&ctx->lock); | ||
1704 | |||
1705 | return ret; | ||
1706 | } | ||
1707 | |||
1708 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1709 | { | ||
1710 | struct perf_counter *counter = file->private_data; | ||
1711 | void (*func)(struct perf_counter *); | ||
1712 | u32 flags = arg; | ||
1713 | |||
1714 | switch (cmd) { | ||
1715 | case PERF_COUNTER_IOC_ENABLE: | ||
1716 | func = perf_counter_enable; | ||
1717 | break; | ||
1718 | case PERF_COUNTER_IOC_DISABLE: | ||
1719 | func = perf_counter_disable; | ||
1720 | break; | ||
1721 | case PERF_COUNTER_IOC_RESET: | ||
1722 | func = perf_counter_reset; | ||
1723 | break; | ||
1724 | |||
1725 | case PERF_COUNTER_IOC_REFRESH: | ||
1726 | return perf_counter_refresh(counter, arg); | ||
1727 | |||
1728 | case PERF_COUNTER_IOC_PERIOD: | ||
1729 | return perf_counter_period(counter, (u64 __user *)arg); | ||
1730 | |||
1731 | default: | ||
1732 | return -ENOTTY; | ||
1733 | } | ||
1734 | |||
1735 | if (flags & PERF_IOC_FLAG_GROUP) | ||
1736 | perf_counter_for_each(counter, func); | ||
1737 | else | ||
1738 | perf_counter_for_each_child(counter, func); | ||
1739 | |||
1740 | return 0; | ||
1741 | } | ||
1742 | |||
1743 | int perf_counter_task_enable(void) | ||
1744 | { | ||
1745 | struct perf_counter *counter; | ||
1746 | |||
1747 | mutex_lock(¤t->perf_counter_mutex); | ||
1748 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
1749 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
1750 | mutex_unlock(¤t->perf_counter_mutex); | ||
1751 | |||
1752 | return 0; | ||
1753 | } | ||
1754 | |||
1755 | int perf_counter_task_disable(void) | ||
1756 | { | ||
1757 | struct perf_counter *counter; | ||
1758 | |||
1759 | mutex_lock(¤t->perf_counter_mutex); | ||
1760 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
1761 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
1762 | mutex_unlock(¤t->perf_counter_mutex); | ||
1763 | |||
1764 | return 0; | ||
1765 | } | ||
1766 | |||
1767 | /* | ||
1768 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
1769 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
1770 | * code calls this from NMI context. | ||
1771 | */ | ||
1772 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
1773 | { | ||
1774 | struct perf_counter_mmap_page *userpg; | ||
1775 | struct perf_mmap_data *data; | ||
1776 | |||
1777 | rcu_read_lock(); | ||
1778 | data = rcu_dereference(counter->data); | ||
1779 | if (!data) | ||
1780 | goto unlock; | ||
1781 | |||
1782 | userpg = data->user_page; | ||
1783 | |||
1784 | /* | ||
1785 | * Disable preemption so as to not let the corresponding user-space | ||
1786 | * spin too long if we get preempted. | ||
1787 | */ | ||
1788 | preempt_disable(); | ||
1789 | ++userpg->lock; | ||
1790 | barrier(); | ||
1791 | userpg->index = counter->hw.idx; | ||
1792 | userpg->offset = atomic64_read(&counter->count); | ||
1793 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
1794 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
1795 | |||
1796 | barrier(); | ||
1797 | ++userpg->lock; | ||
1798 | preempt_enable(); | ||
1799 | unlock: | ||
1800 | rcu_read_unlock(); | ||
1801 | } | ||
1802 | |||
1803 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
1804 | { | ||
1805 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1806 | struct perf_mmap_data *data; | ||
1807 | int ret = VM_FAULT_SIGBUS; | ||
1808 | |||
1809 | rcu_read_lock(); | ||
1810 | data = rcu_dereference(counter->data); | ||
1811 | if (!data) | ||
1812 | goto unlock; | ||
1813 | |||
1814 | if (vmf->pgoff == 0) { | ||
1815 | vmf->page = virt_to_page(data->user_page); | ||
1816 | } else { | ||
1817 | int nr = vmf->pgoff - 1; | ||
1818 | |||
1819 | if ((unsigned)nr > data->nr_pages) | ||
1820 | goto unlock; | ||
1821 | |||
1822 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
1823 | } | ||
1824 | get_page(vmf->page); | ||
1825 | ret = 0; | ||
1826 | unlock: | ||
1827 | rcu_read_unlock(); | ||
1828 | |||
1829 | return ret; | ||
1830 | } | ||
1831 | |||
1832 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
1833 | { | ||
1834 | struct perf_mmap_data *data; | ||
1835 | unsigned long size; | ||
1836 | int i; | ||
1837 | |||
1838 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1839 | |||
1840 | size = sizeof(struct perf_mmap_data); | ||
1841 | size += nr_pages * sizeof(void *); | ||
1842 | |||
1843 | data = kzalloc(size, GFP_KERNEL); | ||
1844 | if (!data) | ||
1845 | goto fail; | ||
1846 | |||
1847 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
1848 | if (!data->user_page) | ||
1849 | goto fail_user_page; | ||
1850 | |||
1851 | for (i = 0; i < nr_pages; i++) { | ||
1852 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
1853 | if (!data->data_pages[i]) | ||
1854 | goto fail_data_pages; | ||
1855 | } | ||
1856 | |||
1857 | data->nr_pages = nr_pages; | ||
1858 | atomic_set(&data->lock, -1); | ||
1859 | |||
1860 | rcu_assign_pointer(counter->data, data); | ||
1861 | |||
1862 | return 0; | ||
1863 | |||
1864 | fail_data_pages: | ||
1865 | for (i--; i >= 0; i--) | ||
1866 | free_page((unsigned long)data->data_pages[i]); | ||
1867 | |||
1868 | free_page((unsigned long)data->user_page); | ||
1869 | |||
1870 | fail_user_page: | ||
1871 | kfree(data); | ||
1872 | |||
1873 | fail: | ||
1874 | return -ENOMEM; | ||
1875 | } | ||
1876 | |||
1877 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
1878 | { | ||
1879 | struct perf_mmap_data *data; | ||
1880 | int i; | ||
1881 | |||
1882 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
1883 | |||
1884 | free_page((unsigned long)data->user_page); | ||
1885 | for (i = 0; i < data->nr_pages; i++) | ||
1886 | free_page((unsigned long)data->data_pages[i]); | ||
1887 | kfree(data); | ||
1888 | } | ||
1889 | |||
1890 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
1891 | { | ||
1892 | struct perf_mmap_data *data = counter->data; | ||
1893 | |||
1894 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1895 | |||
1896 | rcu_assign_pointer(counter->data, NULL); | ||
1897 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
1898 | } | ||
1899 | |||
1900 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
1901 | { | ||
1902 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1903 | |||
1904 | atomic_inc(&counter->mmap_count); | ||
1905 | } | ||
1906 | |||
1907 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
1908 | { | ||
1909 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1910 | |||
1911 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1912 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
1913 | struct user_struct *user = current_user(); | ||
1914 | |||
1915 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
1916 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
1917 | perf_mmap_data_free(counter); | ||
1918 | mutex_unlock(&counter->mmap_mutex); | ||
1919 | } | ||
1920 | } | ||
1921 | |||
1922 | static struct vm_operations_struct perf_mmap_vmops = { | ||
1923 | .open = perf_mmap_open, | ||
1924 | .close = perf_mmap_close, | ||
1925 | .fault = perf_mmap_fault, | ||
1926 | }; | ||
1927 | |||
1928 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
1929 | { | ||
1930 | struct perf_counter *counter = file->private_data; | ||
1931 | unsigned long user_locked, user_lock_limit; | ||
1932 | struct user_struct *user = current_user(); | ||
1933 | unsigned long locked, lock_limit; | ||
1934 | unsigned long vma_size; | ||
1935 | unsigned long nr_pages; | ||
1936 | long user_extra, extra; | ||
1937 | int ret = 0; | ||
1938 | |||
1939 | if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE)) | ||
1940 | return -EINVAL; | ||
1941 | |||
1942 | vma_size = vma->vm_end - vma->vm_start; | ||
1943 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
1944 | |||
1945 | /* | ||
1946 | * If we have data pages ensure they're a power-of-two number, so we | ||
1947 | * can do bitmasks instead of modulo. | ||
1948 | */ | ||
1949 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
1950 | return -EINVAL; | ||
1951 | |||
1952 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
1953 | return -EINVAL; | ||
1954 | |||
1955 | if (vma->vm_pgoff != 0) | ||
1956 | return -EINVAL; | ||
1957 | |||
1958 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1959 | mutex_lock(&counter->mmap_mutex); | ||
1960 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
1961 | if (nr_pages != counter->data->nr_pages) | ||
1962 | ret = -EINVAL; | ||
1963 | goto unlock; | ||
1964 | } | ||
1965 | |||
1966 | user_extra = nr_pages + 1; | ||
1967 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
1968 | |||
1969 | /* | ||
1970 | * Increase the limit linearly with more CPUs: | ||
1971 | */ | ||
1972 | user_lock_limit *= num_online_cpus(); | ||
1973 | |||
1974 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
1975 | |||
1976 | extra = 0; | ||
1977 | if (user_locked > user_lock_limit) | ||
1978 | extra = user_locked - user_lock_limit; | ||
1979 | |||
1980 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
1981 | lock_limit >>= PAGE_SHIFT; | ||
1982 | locked = vma->vm_mm->locked_vm + extra; | ||
1983 | |||
1984 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
1985 | ret = -EPERM; | ||
1986 | goto unlock; | ||
1987 | } | ||
1988 | |||
1989 | WARN_ON(counter->data); | ||
1990 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
1991 | if (ret) | ||
1992 | goto unlock; | ||
1993 | |||
1994 | atomic_set(&counter->mmap_count, 1); | ||
1995 | atomic_long_add(user_extra, &user->locked_vm); | ||
1996 | vma->vm_mm->locked_vm += extra; | ||
1997 | counter->data->nr_locked = extra; | ||
1998 | unlock: | ||
1999 | mutex_unlock(&counter->mmap_mutex); | ||
2000 | |||
2001 | vma->vm_flags &= ~VM_MAYWRITE; | ||
2002 | vma->vm_flags |= VM_RESERVED; | ||
2003 | vma->vm_ops = &perf_mmap_vmops; | ||
2004 | |||
2005 | return ret; | ||
2006 | } | ||
2007 | |||
2008 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2009 | { | ||
2010 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2011 | struct perf_counter *counter = filp->private_data; | ||
2012 | int retval; | ||
2013 | |||
2014 | mutex_lock(&inode->i_mutex); | ||
2015 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
2016 | mutex_unlock(&inode->i_mutex); | ||
2017 | |||
2018 | if (retval < 0) | ||
2019 | return retval; | ||
2020 | |||
2021 | return 0; | ||
2022 | } | ||
2023 | |||
2024 | static const struct file_operations perf_fops = { | ||
2025 | .release = perf_release, | ||
2026 | .read = perf_read, | ||
2027 | .poll = perf_poll, | ||
2028 | .unlocked_ioctl = perf_ioctl, | ||
2029 | .compat_ioctl = perf_ioctl, | ||
2030 | .mmap = perf_mmap, | ||
2031 | .fasync = perf_fasync, | ||
2032 | }; | ||
2033 | |||
2034 | /* | ||
2035 | * Perf counter wakeup | ||
2036 | * | ||
2037 | * If there's data, ensure we set the poll() state and publish everything | ||
2038 | * to user-space before waking everybody up. | ||
2039 | */ | ||
2040 | |||
2041 | void perf_counter_wakeup(struct perf_counter *counter) | ||
2042 | { | ||
2043 | wake_up_all(&counter->waitq); | ||
2044 | |||
2045 | if (counter->pending_kill) { | ||
2046 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
2047 | counter->pending_kill = 0; | ||
2048 | } | ||
2049 | } | ||
2050 | |||
2051 | /* | ||
2052 | * Pending wakeups | ||
2053 | * | ||
2054 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2055 | * | ||
2056 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2057 | * single linked list and use cmpxchg() to add entries lockless. | ||
2058 | */ | ||
2059 | |||
2060 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
2061 | { | ||
2062 | struct perf_counter *counter = container_of(entry, | ||
2063 | struct perf_counter, pending); | ||
2064 | |||
2065 | if (counter->pending_disable) { | ||
2066 | counter->pending_disable = 0; | ||
2067 | perf_counter_disable(counter); | ||
2068 | } | ||
2069 | |||
2070 | if (counter->pending_wakeup) { | ||
2071 | counter->pending_wakeup = 0; | ||
2072 | perf_counter_wakeup(counter); | ||
2073 | } | ||
2074 | } | ||
2075 | |||
2076 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2077 | |||
2078 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2079 | PENDING_TAIL, | ||
2080 | }; | ||
2081 | |||
2082 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2083 | void (*func)(struct perf_pending_entry *)) | ||
2084 | { | ||
2085 | struct perf_pending_entry **head; | ||
2086 | |||
2087 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2088 | return; | ||
2089 | |||
2090 | entry->func = func; | ||
2091 | |||
2092 | head = &get_cpu_var(perf_pending_head); | ||
2093 | |||
2094 | do { | ||
2095 | entry->next = *head; | ||
2096 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2097 | |||
2098 | set_perf_counter_pending(); | ||
2099 | |||
2100 | put_cpu_var(perf_pending_head); | ||
2101 | } | ||
2102 | |||
2103 | static int __perf_pending_run(void) | ||
2104 | { | ||
2105 | struct perf_pending_entry *list; | ||
2106 | int nr = 0; | ||
2107 | |||
2108 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2109 | while (list != PENDING_TAIL) { | ||
2110 | void (*func)(struct perf_pending_entry *); | ||
2111 | struct perf_pending_entry *entry = list; | ||
2112 | |||
2113 | list = list->next; | ||
2114 | |||
2115 | func = entry->func; | ||
2116 | entry->next = NULL; | ||
2117 | /* | ||
2118 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2119 | * so that we won't be waiting forever. | ||
2120 | * -- see perf_not_pending(). | ||
2121 | */ | ||
2122 | smp_wmb(); | ||
2123 | |||
2124 | func(entry); | ||
2125 | nr++; | ||
2126 | } | ||
2127 | |||
2128 | return nr; | ||
2129 | } | ||
2130 | |||
2131 | static inline int perf_not_pending(struct perf_counter *counter) | ||
2132 | { | ||
2133 | /* | ||
2134 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2135 | * need to wait. | ||
2136 | */ | ||
2137 | get_cpu(); | ||
2138 | __perf_pending_run(); | ||
2139 | put_cpu(); | ||
2140 | |||
2141 | /* | ||
2142 | * Ensure we see the proper queue state before going to sleep | ||
2143 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2144 | */ | ||
2145 | smp_rmb(); | ||
2146 | return counter->pending.next == NULL; | ||
2147 | } | ||
2148 | |||
2149 | static void perf_pending_sync(struct perf_counter *counter) | ||
2150 | { | ||
2151 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
2152 | } | ||
2153 | |||
2154 | void perf_counter_do_pending(void) | ||
2155 | { | ||
2156 | __perf_pending_run(); | ||
2157 | } | ||
2158 | |||
2159 | /* | ||
2160 | * Callchain support -- arch specific | ||
2161 | */ | ||
2162 | |||
2163 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2164 | { | ||
2165 | return NULL; | ||
2166 | } | ||
2167 | |||
2168 | /* | ||
2169 | * Output | ||
2170 | */ | ||
2171 | |||
2172 | struct perf_output_handle { | ||
2173 | struct perf_counter *counter; | ||
2174 | struct perf_mmap_data *data; | ||
2175 | unsigned long head; | ||
2176 | unsigned long offset; | ||
2177 | int nmi; | ||
2178 | int overflow; | ||
2179 | int locked; | ||
2180 | unsigned long flags; | ||
2181 | }; | ||
2182 | |||
2183 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2184 | { | ||
2185 | atomic_set(&handle->data->poll, POLL_IN); | ||
2186 | |||
2187 | if (handle->nmi) { | ||
2188 | handle->counter->pending_wakeup = 1; | ||
2189 | perf_pending_queue(&handle->counter->pending, | ||
2190 | perf_pending_counter); | ||
2191 | } else | ||
2192 | perf_counter_wakeup(handle->counter); | ||
2193 | } | ||
2194 | |||
2195 | /* | ||
2196 | * Curious locking construct. | ||
2197 | * | ||
2198 | * We need to ensure a later event doesn't publish a head when a former | ||
2199 | * event isn't done writing. However since we need to deal with NMIs we | ||
2200 | * cannot fully serialize things. | ||
2201 | * | ||
2202 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2203 | * nesting on a single CPU. | ||
2204 | * | ||
2205 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2206 | * event completes. | ||
2207 | */ | ||
2208 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2209 | { | ||
2210 | struct perf_mmap_data *data = handle->data; | ||
2211 | int cpu; | ||
2212 | |||
2213 | handle->locked = 0; | ||
2214 | |||
2215 | local_irq_save(handle->flags); | ||
2216 | cpu = smp_processor_id(); | ||
2217 | |||
2218 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2219 | return; | ||
2220 | |||
2221 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2222 | cpu_relax(); | ||
2223 | |||
2224 | handle->locked = 1; | ||
2225 | } | ||
2226 | |||
2227 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2228 | { | ||
2229 | struct perf_mmap_data *data = handle->data; | ||
2230 | unsigned long head; | ||
2231 | int cpu; | ||
2232 | |||
2233 | data->done_head = data->head; | ||
2234 | |||
2235 | if (!handle->locked) | ||
2236 | goto out; | ||
2237 | |||
2238 | again: | ||
2239 | /* | ||
2240 | * The xchg implies a full barrier that ensures all writes are done | ||
2241 | * before we publish the new head, matched by a rmb() in userspace when | ||
2242 | * reading this position. | ||
2243 | */ | ||
2244 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2245 | data->user_page->data_head = head; | ||
2246 | |||
2247 | /* | ||
2248 | * NMI can happen here, which means we can miss a done_head update. | ||
2249 | */ | ||
2250 | |||
2251 | cpu = atomic_xchg(&data->lock, -1); | ||
2252 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2253 | |||
2254 | /* | ||
2255 | * Therefore we have to validate we did not indeed do so. | ||
2256 | */ | ||
2257 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2258 | /* | ||
2259 | * Since we had it locked, we can lock it again. | ||
2260 | */ | ||
2261 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2262 | cpu_relax(); | ||
2263 | |||
2264 | goto again; | ||
2265 | } | ||
2266 | |||
2267 | if (atomic_xchg(&data->wakeup, 0)) | ||
2268 | perf_output_wakeup(handle); | ||
2269 | out: | ||
2270 | local_irq_restore(handle->flags); | ||
2271 | } | ||
2272 | |||
2273 | static int perf_output_begin(struct perf_output_handle *handle, | ||
2274 | struct perf_counter *counter, unsigned int size, | ||
2275 | int nmi, int overflow) | ||
2276 | { | ||
2277 | struct perf_mmap_data *data; | ||
2278 | unsigned int offset, head; | ||
2279 | |||
2280 | /* | ||
2281 | * For inherited counters we send all the output towards the parent. | ||
2282 | */ | ||
2283 | if (counter->parent) | ||
2284 | counter = counter->parent; | ||
2285 | |||
2286 | rcu_read_lock(); | ||
2287 | data = rcu_dereference(counter->data); | ||
2288 | if (!data) | ||
2289 | goto out; | ||
2290 | |||
2291 | handle->data = data; | ||
2292 | handle->counter = counter; | ||
2293 | handle->nmi = nmi; | ||
2294 | handle->overflow = overflow; | ||
2295 | |||
2296 | if (!data->nr_pages) | ||
2297 | goto fail; | ||
2298 | |||
2299 | perf_output_lock(handle); | ||
2300 | |||
2301 | do { | ||
2302 | offset = head = atomic_long_read(&data->head); | ||
2303 | head += size; | ||
2304 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2305 | |||
2306 | handle->offset = offset; | ||
2307 | handle->head = head; | ||
2308 | |||
2309 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
2310 | atomic_set(&data->wakeup, 1); | ||
2311 | |||
2312 | return 0; | ||
2313 | |||
2314 | fail: | ||
2315 | perf_output_wakeup(handle); | ||
2316 | out: | ||
2317 | rcu_read_unlock(); | ||
2318 | |||
2319 | return -ENOSPC; | ||
2320 | } | ||
2321 | |||
2322 | static void perf_output_copy(struct perf_output_handle *handle, | ||
2323 | const void *buf, unsigned int len) | ||
2324 | { | ||
2325 | unsigned int pages_mask; | ||
2326 | unsigned int offset; | ||
2327 | unsigned int size; | ||
2328 | void **pages; | ||
2329 | |||
2330 | offset = handle->offset; | ||
2331 | pages_mask = handle->data->nr_pages - 1; | ||
2332 | pages = handle->data->data_pages; | ||
2333 | |||
2334 | do { | ||
2335 | unsigned int page_offset; | ||
2336 | int nr; | ||
2337 | |||
2338 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2339 | page_offset = offset & (PAGE_SIZE - 1); | ||
2340 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
2341 | |||
2342 | memcpy(pages[nr] + page_offset, buf, size); | ||
2343 | |||
2344 | len -= size; | ||
2345 | buf += size; | ||
2346 | offset += size; | ||
2347 | } while (len); | ||
2348 | |||
2349 | handle->offset = offset; | ||
2350 | |||
2351 | /* | ||
2352 | * Check we didn't copy past our reservation window, taking the | ||
2353 | * possible unsigned int wrap into account. | ||
2354 | */ | ||
2355 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2356 | } | ||
2357 | |||
2358 | #define perf_output_put(handle, x) \ | ||
2359 | perf_output_copy((handle), &(x), sizeof(x)) | ||
2360 | |||
2361 | static void perf_output_end(struct perf_output_handle *handle) | ||
2362 | { | ||
2363 | struct perf_counter *counter = handle->counter; | ||
2364 | struct perf_mmap_data *data = handle->data; | ||
2365 | |||
2366 | int wakeup_events = counter->attr.wakeup_events; | ||
2367 | |||
2368 | if (handle->overflow && wakeup_events) { | ||
2369 | int events = atomic_inc_return(&data->events); | ||
2370 | if (events >= wakeup_events) { | ||
2371 | atomic_sub(wakeup_events, &data->events); | ||
2372 | atomic_set(&data->wakeup, 1); | ||
2373 | } | ||
2374 | } | ||
2375 | |||
2376 | perf_output_unlock(handle); | ||
2377 | rcu_read_unlock(); | ||
2378 | } | ||
2379 | |||
2380 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
2381 | { | ||
2382 | /* | ||
2383 | * only top level counters have the pid namespace they were created in | ||
2384 | */ | ||
2385 | if (counter->parent) | ||
2386 | counter = counter->parent; | ||
2387 | |||
2388 | return task_tgid_nr_ns(p, counter->ns); | ||
2389 | } | ||
2390 | |||
2391 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
2392 | { | ||
2393 | /* | ||
2394 | * only top level counters have the pid namespace they were created in | ||
2395 | */ | ||
2396 | if (counter->parent) | ||
2397 | counter = counter->parent; | ||
2398 | |||
2399 | return task_pid_nr_ns(p, counter->ns); | ||
2400 | } | ||
2401 | |||
2402 | static void perf_counter_output(struct perf_counter *counter, int nmi, | ||
2403 | struct perf_sample_data *data) | ||
2404 | { | ||
2405 | int ret; | ||
2406 | u64 sample_type = counter->attr.sample_type; | ||
2407 | struct perf_output_handle handle; | ||
2408 | struct perf_event_header header; | ||
2409 | u64 ip; | ||
2410 | struct { | ||
2411 | u32 pid, tid; | ||
2412 | } tid_entry; | ||
2413 | struct { | ||
2414 | u64 id; | ||
2415 | u64 counter; | ||
2416 | } group_entry; | ||
2417 | struct perf_callchain_entry *callchain = NULL; | ||
2418 | int callchain_size = 0; | ||
2419 | u64 time; | ||
2420 | struct { | ||
2421 | u32 cpu, reserved; | ||
2422 | } cpu_entry; | ||
2423 | |||
2424 | header.type = 0; | ||
2425 | header.size = sizeof(header); | ||
2426 | |||
2427 | header.misc = PERF_EVENT_MISC_OVERFLOW; | ||
2428 | header.misc |= perf_misc_flags(data->regs); | ||
2429 | |||
2430 | if (sample_type & PERF_SAMPLE_IP) { | ||
2431 | ip = perf_instruction_pointer(data->regs); | ||
2432 | header.type |= PERF_SAMPLE_IP; | ||
2433 | header.size += sizeof(ip); | ||
2434 | } | ||
2435 | |||
2436 | if (sample_type & PERF_SAMPLE_TID) { | ||
2437 | /* namespace issues */ | ||
2438 | tid_entry.pid = perf_counter_pid(counter, current); | ||
2439 | tid_entry.tid = perf_counter_tid(counter, current); | ||
2440 | |||
2441 | header.type |= PERF_SAMPLE_TID; | ||
2442 | header.size += sizeof(tid_entry); | ||
2443 | } | ||
2444 | |||
2445 | if (sample_type & PERF_SAMPLE_TIME) { | ||
2446 | /* | ||
2447 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
2448 | */ | ||
2449 | time = sched_clock(); | ||
2450 | |||
2451 | header.type |= PERF_SAMPLE_TIME; | ||
2452 | header.size += sizeof(u64); | ||
2453 | } | ||
2454 | |||
2455 | if (sample_type & PERF_SAMPLE_ADDR) { | ||
2456 | header.type |= PERF_SAMPLE_ADDR; | ||
2457 | header.size += sizeof(u64); | ||
2458 | } | ||
2459 | |||
2460 | if (sample_type & PERF_SAMPLE_ID) { | ||
2461 | header.type |= PERF_SAMPLE_ID; | ||
2462 | header.size += sizeof(u64); | ||
2463 | } | ||
2464 | |||
2465 | if (sample_type & PERF_SAMPLE_CPU) { | ||
2466 | header.type |= PERF_SAMPLE_CPU; | ||
2467 | header.size += sizeof(cpu_entry); | ||
2468 | |||
2469 | cpu_entry.cpu = raw_smp_processor_id(); | ||
2470 | } | ||
2471 | |||
2472 | if (sample_type & PERF_SAMPLE_PERIOD) { | ||
2473 | header.type |= PERF_SAMPLE_PERIOD; | ||
2474 | header.size += sizeof(u64); | ||
2475 | } | ||
2476 | |||
2477 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
2478 | header.type |= PERF_SAMPLE_GROUP; | ||
2479 | header.size += sizeof(u64) + | ||
2480 | counter->nr_siblings * sizeof(group_entry); | ||
2481 | } | ||
2482 | |||
2483 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2484 | callchain = perf_callchain(data->regs); | ||
2485 | |||
2486 | if (callchain) { | ||
2487 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
2488 | |||
2489 | header.type |= PERF_SAMPLE_CALLCHAIN; | ||
2490 | header.size += callchain_size; | ||
2491 | } | ||
2492 | } | ||
2493 | |||
2494 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
2495 | if (ret) | ||
2496 | return; | ||
2497 | |||
2498 | perf_output_put(&handle, header); | ||
2499 | |||
2500 | if (sample_type & PERF_SAMPLE_IP) | ||
2501 | perf_output_put(&handle, ip); | ||
2502 | |||
2503 | if (sample_type & PERF_SAMPLE_TID) | ||
2504 | perf_output_put(&handle, tid_entry); | ||
2505 | |||
2506 | if (sample_type & PERF_SAMPLE_TIME) | ||
2507 | perf_output_put(&handle, time); | ||
2508 | |||
2509 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2510 | perf_output_put(&handle, data->addr); | ||
2511 | |||
2512 | if (sample_type & PERF_SAMPLE_ID) | ||
2513 | perf_output_put(&handle, counter->id); | ||
2514 | |||
2515 | if (sample_type & PERF_SAMPLE_CPU) | ||
2516 | perf_output_put(&handle, cpu_entry); | ||
2517 | |||
2518 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2519 | perf_output_put(&handle, data->period); | ||
2520 | |||
2521 | /* | ||
2522 | * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. | ||
2523 | */ | ||
2524 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
2525 | struct perf_counter *leader, *sub; | ||
2526 | u64 nr = counter->nr_siblings; | ||
2527 | |||
2528 | perf_output_put(&handle, nr); | ||
2529 | |||
2530 | leader = counter->group_leader; | ||
2531 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
2532 | if (sub != counter) | ||
2533 | sub->pmu->read(sub); | ||
2534 | |||
2535 | group_entry.id = sub->id; | ||
2536 | group_entry.counter = atomic64_read(&sub->count); | ||
2537 | |||
2538 | perf_output_put(&handle, group_entry); | ||
2539 | } | ||
2540 | } | ||
2541 | |||
2542 | if (callchain) | ||
2543 | perf_output_copy(&handle, callchain, callchain_size); | ||
2544 | |||
2545 | perf_output_end(&handle); | ||
2546 | } | ||
2547 | |||
2548 | /* | ||
2549 | * fork tracking | ||
2550 | */ | ||
2551 | |||
2552 | struct perf_fork_event { | ||
2553 | struct task_struct *task; | ||
2554 | |||
2555 | struct { | ||
2556 | struct perf_event_header header; | ||
2557 | |||
2558 | u32 pid; | ||
2559 | u32 ppid; | ||
2560 | } event; | ||
2561 | }; | ||
2562 | |||
2563 | static void perf_counter_fork_output(struct perf_counter *counter, | ||
2564 | struct perf_fork_event *fork_event) | ||
2565 | { | ||
2566 | struct perf_output_handle handle; | ||
2567 | int size = fork_event->event.header.size; | ||
2568 | struct task_struct *task = fork_event->task; | ||
2569 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
2570 | |||
2571 | if (ret) | ||
2572 | return; | ||
2573 | |||
2574 | fork_event->event.pid = perf_counter_pid(counter, task); | ||
2575 | fork_event->event.ppid = perf_counter_pid(counter, task->real_parent); | ||
2576 | |||
2577 | perf_output_put(&handle, fork_event->event); | ||
2578 | perf_output_end(&handle); | ||
2579 | } | ||
2580 | |||
2581 | static int perf_counter_fork_match(struct perf_counter *counter) | ||
2582 | { | ||
2583 | if (counter->attr.comm || counter->attr.mmap) | ||
2584 | return 1; | ||
2585 | |||
2586 | return 0; | ||
2587 | } | ||
2588 | |||
2589 | static void perf_counter_fork_ctx(struct perf_counter_context *ctx, | ||
2590 | struct perf_fork_event *fork_event) | ||
2591 | { | ||
2592 | struct perf_counter *counter; | ||
2593 | |||
2594 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2595 | return; | ||
2596 | |||
2597 | rcu_read_lock(); | ||
2598 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2599 | if (perf_counter_fork_match(counter)) | ||
2600 | perf_counter_fork_output(counter, fork_event); | ||
2601 | } | ||
2602 | rcu_read_unlock(); | ||
2603 | } | ||
2604 | |||
2605 | static void perf_counter_fork_event(struct perf_fork_event *fork_event) | ||
2606 | { | ||
2607 | struct perf_cpu_context *cpuctx; | ||
2608 | struct perf_counter_context *ctx; | ||
2609 | |||
2610 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2611 | perf_counter_fork_ctx(&cpuctx->ctx, fork_event); | ||
2612 | put_cpu_var(perf_cpu_context); | ||
2613 | |||
2614 | rcu_read_lock(); | ||
2615 | /* | ||
2616 | * doesn't really matter which of the child contexts the | ||
2617 | * events ends up in. | ||
2618 | */ | ||
2619 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
2620 | if (ctx) | ||
2621 | perf_counter_fork_ctx(ctx, fork_event); | ||
2622 | rcu_read_unlock(); | ||
2623 | } | ||
2624 | |||
2625 | void perf_counter_fork(struct task_struct *task) | ||
2626 | { | ||
2627 | struct perf_fork_event fork_event; | ||
2628 | |||
2629 | if (!atomic_read(&nr_comm_counters) && | ||
2630 | !atomic_read(&nr_mmap_counters)) | ||
2631 | return; | ||
2632 | |||
2633 | fork_event = (struct perf_fork_event){ | ||
2634 | .task = task, | ||
2635 | .event = { | ||
2636 | .header = { | ||
2637 | .type = PERF_EVENT_FORK, | ||
2638 | .size = sizeof(fork_event.event), | ||
2639 | }, | ||
2640 | }, | ||
2641 | }; | ||
2642 | |||
2643 | perf_counter_fork_event(&fork_event); | ||
2644 | } | ||
2645 | |||
2646 | /* | ||
2647 | * comm tracking | ||
2648 | */ | ||
2649 | |||
2650 | struct perf_comm_event { | ||
2651 | struct task_struct *task; | ||
2652 | char *comm; | ||
2653 | int comm_size; | ||
2654 | |||
2655 | struct { | ||
2656 | struct perf_event_header header; | ||
2657 | |||
2658 | u32 pid; | ||
2659 | u32 tid; | ||
2660 | } event; | ||
2661 | }; | ||
2662 | |||
2663 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
2664 | struct perf_comm_event *comm_event) | ||
2665 | { | ||
2666 | struct perf_output_handle handle; | ||
2667 | int size = comm_event->event.header.size; | ||
2668 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
2669 | |||
2670 | if (ret) | ||
2671 | return; | ||
2672 | |||
2673 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
2674 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
2675 | |||
2676 | perf_output_put(&handle, comm_event->event); | ||
2677 | perf_output_copy(&handle, comm_event->comm, | ||
2678 | comm_event->comm_size); | ||
2679 | perf_output_end(&handle); | ||
2680 | } | ||
2681 | |||
2682 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
2683 | { | ||
2684 | if (counter->attr.comm) | ||
2685 | return 1; | ||
2686 | |||
2687 | return 0; | ||
2688 | } | ||
2689 | |||
2690 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
2691 | struct perf_comm_event *comm_event) | ||
2692 | { | ||
2693 | struct perf_counter *counter; | ||
2694 | |||
2695 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2696 | return; | ||
2697 | |||
2698 | rcu_read_lock(); | ||
2699 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2700 | if (perf_counter_comm_match(counter)) | ||
2701 | perf_counter_comm_output(counter, comm_event); | ||
2702 | } | ||
2703 | rcu_read_unlock(); | ||
2704 | } | ||
2705 | |||
2706 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
2707 | { | ||
2708 | struct perf_cpu_context *cpuctx; | ||
2709 | struct perf_counter_context *ctx; | ||
2710 | unsigned int size; | ||
2711 | char *comm = comm_event->task->comm; | ||
2712 | |||
2713 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
2714 | |||
2715 | comm_event->comm = comm; | ||
2716 | comm_event->comm_size = size; | ||
2717 | |||
2718 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
2719 | |||
2720 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2721 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
2722 | put_cpu_var(perf_cpu_context); | ||
2723 | |||
2724 | rcu_read_lock(); | ||
2725 | /* | ||
2726 | * doesn't really matter which of the child contexts the | ||
2727 | * events ends up in. | ||
2728 | */ | ||
2729 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
2730 | if (ctx) | ||
2731 | perf_counter_comm_ctx(ctx, comm_event); | ||
2732 | rcu_read_unlock(); | ||
2733 | } | ||
2734 | |||
2735 | void perf_counter_comm(struct task_struct *task) | ||
2736 | { | ||
2737 | struct perf_comm_event comm_event; | ||
2738 | |||
2739 | if (!atomic_read(&nr_comm_counters)) | ||
2740 | return; | ||
2741 | |||
2742 | comm_event = (struct perf_comm_event){ | ||
2743 | .task = task, | ||
2744 | .event = { | ||
2745 | .header = { .type = PERF_EVENT_COMM, }, | ||
2746 | }, | ||
2747 | }; | ||
2748 | |||
2749 | perf_counter_comm_event(&comm_event); | ||
2750 | } | ||
2751 | |||
2752 | /* | ||
2753 | * mmap tracking | ||
2754 | */ | ||
2755 | |||
2756 | struct perf_mmap_event { | ||
2757 | struct vm_area_struct *vma; | ||
2758 | |||
2759 | const char *file_name; | ||
2760 | int file_size; | ||
2761 | |||
2762 | struct { | ||
2763 | struct perf_event_header header; | ||
2764 | |||
2765 | u32 pid; | ||
2766 | u32 tid; | ||
2767 | u64 start; | ||
2768 | u64 len; | ||
2769 | u64 pgoff; | ||
2770 | } event; | ||
2771 | }; | ||
2772 | |||
2773 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
2774 | struct perf_mmap_event *mmap_event) | ||
2775 | { | ||
2776 | struct perf_output_handle handle; | ||
2777 | int size = mmap_event->event.header.size; | ||
2778 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
2779 | |||
2780 | if (ret) | ||
2781 | return; | ||
2782 | |||
2783 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
2784 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
2785 | |||
2786 | perf_output_put(&handle, mmap_event->event); | ||
2787 | perf_output_copy(&handle, mmap_event->file_name, | ||
2788 | mmap_event->file_size); | ||
2789 | perf_output_end(&handle); | ||
2790 | } | ||
2791 | |||
2792 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
2793 | struct perf_mmap_event *mmap_event) | ||
2794 | { | ||
2795 | if (counter->attr.mmap) | ||
2796 | return 1; | ||
2797 | |||
2798 | return 0; | ||
2799 | } | ||
2800 | |||
2801 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
2802 | struct perf_mmap_event *mmap_event) | ||
2803 | { | ||
2804 | struct perf_counter *counter; | ||
2805 | |||
2806 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2807 | return; | ||
2808 | |||
2809 | rcu_read_lock(); | ||
2810 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2811 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
2812 | perf_counter_mmap_output(counter, mmap_event); | ||
2813 | } | ||
2814 | rcu_read_unlock(); | ||
2815 | } | ||
2816 | |||
2817 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
2818 | { | ||
2819 | struct perf_cpu_context *cpuctx; | ||
2820 | struct perf_counter_context *ctx; | ||
2821 | struct vm_area_struct *vma = mmap_event->vma; | ||
2822 | struct file *file = vma->vm_file; | ||
2823 | unsigned int size; | ||
2824 | char tmp[16]; | ||
2825 | char *buf = NULL; | ||
2826 | const char *name; | ||
2827 | |||
2828 | if (file) { | ||
2829 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | ||
2830 | if (!buf) { | ||
2831 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
2832 | goto got_name; | ||
2833 | } | ||
2834 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
2835 | if (IS_ERR(name)) { | ||
2836 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
2837 | goto got_name; | ||
2838 | } | ||
2839 | } else { | ||
2840 | name = arch_vma_name(mmap_event->vma); | ||
2841 | if (name) | ||
2842 | goto got_name; | ||
2843 | |||
2844 | if (!vma->vm_mm) { | ||
2845 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
2846 | goto got_name; | ||
2847 | } | ||
2848 | |||
2849 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
2850 | goto got_name; | ||
2851 | } | ||
2852 | |||
2853 | got_name: | ||
2854 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
2855 | |||
2856 | mmap_event->file_name = name; | ||
2857 | mmap_event->file_size = size; | ||
2858 | |||
2859 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
2860 | |||
2861 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2862 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
2863 | put_cpu_var(perf_cpu_context); | ||
2864 | |||
2865 | rcu_read_lock(); | ||
2866 | /* | ||
2867 | * doesn't really matter which of the child contexts the | ||
2868 | * events ends up in. | ||
2869 | */ | ||
2870 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
2871 | if (ctx) | ||
2872 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
2873 | rcu_read_unlock(); | ||
2874 | |||
2875 | kfree(buf); | ||
2876 | } | ||
2877 | |||
2878 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
2879 | { | ||
2880 | struct perf_mmap_event mmap_event; | ||
2881 | |||
2882 | if (!atomic_read(&nr_mmap_counters)) | ||
2883 | return; | ||
2884 | |||
2885 | mmap_event = (struct perf_mmap_event){ | ||
2886 | .vma = vma, | ||
2887 | .event = { | ||
2888 | .header = { .type = PERF_EVENT_MMAP, }, | ||
2889 | .start = vma->vm_start, | ||
2890 | .len = vma->vm_end - vma->vm_start, | ||
2891 | .pgoff = vma->vm_pgoff, | ||
2892 | }, | ||
2893 | }; | ||
2894 | |||
2895 | perf_counter_mmap_event(&mmap_event); | ||
2896 | } | ||
2897 | |||
2898 | /* | ||
2899 | * Log sample_period changes so that analyzing tools can re-normalize the | ||
2900 | * event flow. | ||
2901 | */ | ||
2902 | |||
2903 | struct freq_event { | ||
2904 | struct perf_event_header header; | ||
2905 | u64 time; | ||
2906 | u64 id; | ||
2907 | u64 period; | ||
2908 | }; | ||
2909 | |||
2910 | static void perf_log_period(struct perf_counter *counter, u64 period) | ||
2911 | { | ||
2912 | struct perf_output_handle handle; | ||
2913 | struct freq_event event; | ||
2914 | int ret; | ||
2915 | |||
2916 | if (counter->hw.sample_period == period) | ||
2917 | return; | ||
2918 | |||
2919 | if (counter->attr.sample_type & PERF_SAMPLE_PERIOD) | ||
2920 | return; | ||
2921 | |||
2922 | event = (struct freq_event) { | ||
2923 | .header = { | ||
2924 | .type = PERF_EVENT_PERIOD, | ||
2925 | .misc = 0, | ||
2926 | .size = sizeof(event), | ||
2927 | }, | ||
2928 | .time = sched_clock(), | ||
2929 | .id = counter->id, | ||
2930 | .period = period, | ||
2931 | }; | ||
2932 | |||
2933 | ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0); | ||
2934 | if (ret) | ||
2935 | return; | ||
2936 | |||
2937 | perf_output_put(&handle, event); | ||
2938 | perf_output_end(&handle); | ||
2939 | } | ||
2940 | |||
2941 | /* | ||
2942 | * IRQ throttle logging | ||
2943 | */ | ||
2944 | |||
2945 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
2946 | { | ||
2947 | struct perf_output_handle handle; | ||
2948 | int ret; | ||
2949 | |||
2950 | struct { | ||
2951 | struct perf_event_header header; | ||
2952 | u64 time; | ||
2953 | u64 id; | ||
2954 | } throttle_event = { | ||
2955 | .header = { | ||
2956 | .type = PERF_EVENT_THROTTLE + 1, | ||
2957 | .misc = 0, | ||
2958 | .size = sizeof(throttle_event), | ||
2959 | }, | ||
2960 | .time = sched_clock(), | ||
2961 | .id = counter->id, | ||
2962 | }; | ||
2963 | |||
2964 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
2965 | if (ret) | ||
2966 | return; | ||
2967 | |||
2968 | perf_output_put(&handle, throttle_event); | ||
2969 | perf_output_end(&handle); | ||
2970 | } | ||
2971 | |||
2972 | /* | ||
2973 | * Generic counter overflow handling. | ||
2974 | */ | ||
2975 | |||
2976 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
2977 | struct perf_sample_data *data) | ||
2978 | { | ||
2979 | int events = atomic_read(&counter->event_limit); | ||
2980 | int throttle = counter->pmu->unthrottle != NULL; | ||
2981 | struct hw_perf_counter *hwc = &counter->hw; | ||
2982 | int ret = 0; | ||
2983 | |||
2984 | if (!throttle) { | ||
2985 | hwc->interrupts++; | ||
2986 | } else { | ||
2987 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
2988 | hwc->interrupts++; | ||
2989 | if (HZ * hwc->interrupts > | ||
2990 | (u64)sysctl_perf_counter_sample_rate) { | ||
2991 | hwc->interrupts = MAX_INTERRUPTS; | ||
2992 | perf_log_throttle(counter, 0); | ||
2993 | ret = 1; | ||
2994 | } | ||
2995 | } else { | ||
2996 | /* | ||
2997 | * Keep re-disabling counters even though on the previous | ||
2998 | * pass we disabled it - just in case we raced with a | ||
2999 | * sched-in and the counter got enabled again: | ||
3000 | */ | ||
3001 | ret = 1; | ||
3002 | } | ||
3003 | } | ||
3004 | |||
3005 | if (counter->attr.freq) { | ||
3006 | u64 now = sched_clock(); | ||
3007 | s64 delta = now - hwc->freq_stamp; | ||
3008 | |||
3009 | hwc->freq_stamp = now; | ||
3010 | |||
3011 | if (delta > 0 && delta < TICK_NSEC) | ||
3012 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
3013 | } | ||
3014 | |||
3015 | /* | ||
3016 | * XXX event_limit might not quite work as expected on inherited | ||
3017 | * counters | ||
3018 | */ | ||
3019 | |||
3020 | counter->pending_kill = POLL_IN; | ||
3021 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
3022 | ret = 1; | ||
3023 | counter->pending_kill = POLL_HUP; | ||
3024 | if (nmi) { | ||
3025 | counter->pending_disable = 1; | ||
3026 | perf_pending_queue(&counter->pending, | ||
3027 | perf_pending_counter); | ||
3028 | } else | ||
3029 | perf_counter_disable(counter); | ||
3030 | } | ||
3031 | |||
3032 | perf_counter_output(counter, nmi, data); | ||
3033 | return ret; | ||
3034 | } | ||
3035 | |||
3036 | /* | ||
3037 | * Generic software counter infrastructure | ||
3038 | */ | ||
3039 | |||
3040 | static void perf_swcounter_update(struct perf_counter *counter) | ||
3041 | { | ||
3042 | struct hw_perf_counter *hwc = &counter->hw; | ||
3043 | u64 prev, now; | ||
3044 | s64 delta; | ||
3045 | |||
3046 | again: | ||
3047 | prev = atomic64_read(&hwc->prev_count); | ||
3048 | now = atomic64_read(&hwc->count); | ||
3049 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | ||
3050 | goto again; | ||
3051 | |||
3052 | delta = now - prev; | ||
3053 | |||
3054 | atomic64_add(delta, &counter->count); | ||
3055 | atomic64_sub(delta, &hwc->period_left); | ||
3056 | } | ||
3057 | |||
3058 | static void perf_swcounter_set_period(struct perf_counter *counter) | ||
3059 | { | ||
3060 | struct hw_perf_counter *hwc = &counter->hw; | ||
3061 | s64 left = atomic64_read(&hwc->period_left); | ||
3062 | s64 period = hwc->sample_period; | ||
3063 | |||
3064 | if (unlikely(left <= -period)) { | ||
3065 | left = period; | ||
3066 | atomic64_set(&hwc->period_left, left); | ||
3067 | hwc->last_period = period; | ||
3068 | } | ||
3069 | |||
3070 | if (unlikely(left <= 0)) { | ||
3071 | left += period; | ||
3072 | atomic64_add(period, &hwc->period_left); | ||
3073 | hwc->last_period = period; | ||
3074 | } | ||
3075 | |||
3076 | atomic64_set(&hwc->prev_count, -left); | ||
3077 | atomic64_set(&hwc->count, -left); | ||
3078 | } | ||
3079 | |||
3080 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
3081 | { | ||
3082 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3083 | struct perf_sample_data data; | ||
3084 | struct perf_counter *counter; | ||
3085 | u64 period; | ||
3086 | |||
3087 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
3088 | counter->pmu->read(counter); | ||
3089 | |||
3090 | data.addr = 0; | ||
3091 | data.regs = get_irq_regs(); | ||
3092 | /* | ||
3093 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3094 | * context, provide the next best thing, the user IP. | ||
3095 | */ | ||
3096 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
3097 | !counter->attr.exclude_user) | ||
3098 | data.regs = task_pt_regs(current); | ||
3099 | |||
3100 | if (data.regs) { | ||
3101 | if (perf_counter_overflow(counter, 0, &data)) | ||
3102 | ret = HRTIMER_NORESTART; | ||
3103 | } | ||
3104 | |||
3105 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
3106 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3107 | |||
3108 | return ret; | ||
3109 | } | ||
3110 | |||
3111 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
3112 | int nmi, struct pt_regs *regs, u64 addr) | ||
3113 | { | ||
3114 | struct perf_sample_data data = { | ||
3115 | .regs = regs, | ||
3116 | .addr = addr, | ||
3117 | .period = counter->hw.last_period, | ||
3118 | }; | ||
3119 | |||
3120 | perf_swcounter_update(counter); | ||
3121 | perf_swcounter_set_period(counter); | ||
3122 | if (perf_counter_overflow(counter, nmi, &data)) | ||
3123 | /* soft-disable the counter */ | ||
3124 | ; | ||
3125 | |||
3126 | } | ||
3127 | |||
3128 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
3129 | { | ||
3130 | struct perf_counter_context *ctx; | ||
3131 | unsigned long flags; | ||
3132 | int count; | ||
3133 | |||
3134 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
3135 | return 1; | ||
3136 | |||
3137 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
3138 | return 0; | ||
3139 | |||
3140 | /* | ||
3141 | * If the counter is inactive, it could be just because | ||
3142 | * its task is scheduled out, or because it's in a group | ||
3143 | * which could not go on the PMU. We want to count in | ||
3144 | * the first case but not the second. If the context is | ||
3145 | * currently active then an inactive software counter must | ||
3146 | * be the second case. If it's not currently active then | ||
3147 | * we need to know whether the counter was active when the | ||
3148 | * context was last active, which we can determine by | ||
3149 | * comparing counter->tstamp_stopped with ctx->time. | ||
3150 | * | ||
3151 | * We are within an RCU read-side critical section, | ||
3152 | * which protects the existence of *ctx. | ||
3153 | */ | ||
3154 | ctx = counter->ctx; | ||
3155 | spin_lock_irqsave(&ctx->lock, flags); | ||
3156 | count = 1; | ||
3157 | /* Re-check state now we have the lock */ | ||
3158 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | ||
3159 | counter->ctx->is_active || | ||
3160 | counter->tstamp_stopped < ctx->time) | ||
3161 | count = 0; | ||
3162 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
3163 | return count; | ||
3164 | } | ||
3165 | |||
3166 | static int perf_swcounter_match(struct perf_counter *counter, | ||
3167 | enum perf_type_id type, | ||
3168 | u32 event, struct pt_regs *regs) | ||
3169 | { | ||
3170 | if (!perf_swcounter_is_counting(counter)) | ||
3171 | return 0; | ||
3172 | |||
3173 | if (counter->attr.type != type) | ||
3174 | return 0; | ||
3175 | if (counter->attr.config != event) | ||
3176 | return 0; | ||
3177 | |||
3178 | if (regs) { | ||
3179 | if (counter->attr.exclude_user && user_mode(regs)) | ||
3180 | return 0; | ||
3181 | |||
3182 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
3183 | return 0; | ||
3184 | } | ||
3185 | |||
3186 | return 1; | ||
3187 | } | ||
3188 | |||
3189 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
3190 | int nmi, struct pt_regs *regs, u64 addr) | ||
3191 | { | ||
3192 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
3193 | |||
3194 | if (counter->hw.sample_period && !neg && regs) | ||
3195 | perf_swcounter_overflow(counter, nmi, regs, addr); | ||
3196 | } | ||
3197 | |||
3198 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
3199 | enum perf_type_id type, u32 event, | ||
3200 | u64 nr, int nmi, struct pt_regs *regs, | ||
3201 | u64 addr) | ||
3202 | { | ||
3203 | struct perf_counter *counter; | ||
3204 | |||
3205 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3206 | return; | ||
3207 | |||
3208 | rcu_read_lock(); | ||
3209 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3210 | if (perf_swcounter_match(counter, type, event, regs)) | ||
3211 | perf_swcounter_add(counter, nr, nmi, regs, addr); | ||
3212 | } | ||
3213 | rcu_read_unlock(); | ||
3214 | } | ||
3215 | |||
3216 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
3217 | { | ||
3218 | if (in_nmi()) | ||
3219 | return &cpuctx->recursion[3]; | ||
3220 | |||
3221 | if (in_irq()) | ||
3222 | return &cpuctx->recursion[2]; | ||
3223 | |||
3224 | if (in_softirq()) | ||
3225 | return &cpuctx->recursion[1]; | ||
3226 | |||
3227 | return &cpuctx->recursion[0]; | ||
3228 | } | ||
3229 | |||
3230 | static void __perf_swcounter_event(enum perf_type_id type, u32 event, | ||
3231 | u64 nr, int nmi, struct pt_regs *regs, | ||
3232 | u64 addr) | ||
3233 | { | ||
3234 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3235 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
3236 | struct perf_counter_context *ctx; | ||
3237 | |||
3238 | if (*recursion) | ||
3239 | goto out; | ||
3240 | |||
3241 | (*recursion)++; | ||
3242 | barrier(); | ||
3243 | |||
3244 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
3245 | nr, nmi, regs, addr); | ||
3246 | rcu_read_lock(); | ||
3247 | /* | ||
3248 | * doesn't really matter which of the child contexts the | ||
3249 | * events ends up in. | ||
3250 | */ | ||
3251 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3252 | if (ctx) | ||
3253 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr); | ||
3254 | rcu_read_unlock(); | ||
3255 | |||
3256 | barrier(); | ||
3257 | (*recursion)--; | ||
3258 | |||
3259 | out: | ||
3260 | put_cpu_var(perf_cpu_context); | ||
3261 | } | ||
3262 | |||
3263 | void | ||
3264 | perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) | ||
3265 | { | ||
3266 | __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr); | ||
3267 | } | ||
3268 | |||
3269 | static void perf_swcounter_read(struct perf_counter *counter) | ||
3270 | { | ||
3271 | perf_swcounter_update(counter); | ||
3272 | } | ||
3273 | |||
3274 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
3275 | { | ||
3276 | perf_swcounter_set_period(counter); | ||
3277 | return 0; | ||
3278 | } | ||
3279 | |||
3280 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
3281 | { | ||
3282 | perf_swcounter_update(counter); | ||
3283 | } | ||
3284 | |||
3285 | static const struct pmu perf_ops_generic = { | ||
3286 | .enable = perf_swcounter_enable, | ||
3287 | .disable = perf_swcounter_disable, | ||
3288 | .read = perf_swcounter_read, | ||
3289 | }; | ||
3290 | |||
3291 | /* | ||
3292 | * Software counter: cpu wall time clock | ||
3293 | */ | ||
3294 | |||
3295 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
3296 | { | ||
3297 | int cpu = raw_smp_processor_id(); | ||
3298 | s64 prev; | ||
3299 | u64 now; | ||
3300 | |||
3301 | now = cpu_clock(cpu); | ||
3302 | prev = atomic64_read(&counter->hw.prev_count); | ||
3303 | atomic64_set(&counter->hw.prev_count, now); | ||
3304 | atomic64_add(now - prev, &counter->count); | ||
3305 | } | ||
3306 | |||
3307 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
3308 | { | ||
3309 | struct hw_perf_counter *hwc = &counter->hw; | ||
3310 | int cpu = raw_smp_processor_id(); | ||
3311 | |||
3312 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3313 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3314 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
3315 | if (hwc->sample_period) { | ||
3316 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3317 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3318 | ns_to_ktime(period), 0, | ||
3319 | HRTIMER_MODE_REL, 0); | ||
3320 | } | ||
3321 | |||
3322 | return 0; | ||
3323 | } | ||
3324 | |||
3325 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
3326 | { | ||
3327 | if (counter->hw.sample_period) | ||
3328 | hrtimer_cancel(&counter->hw.hrtimer); | ||
3329 | cpu_clock_perf_counter_update(counter); | ||
3330 | } | ||
3331 | |||
3332 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
3333 | { | ||
3334 | cpu_clock_perf_counter_update(counter); | ||
3335 | } | ||
3336 | |||
3337 | static const struct pmu perf_ops_cpu_clock = { | ||
3338 | .enable = cpu_clock_perf_counter_enable, | ||
3339 | .disable = cpu_clock_perf_counter_disable, | ||
3340 | .read = cpu_clock_perf_counter_read, | ||
3341 | }; | ||
3342 | |||
3343 | /* | ||
3344 | * Software counter: task time clock | ||
3345 | */ | ||
3346 | |||
3347 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
3348 | { | ||
3349 | u64 prev; | ||
3350 | s64 delta; | ||
3351 | |||
3352 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
3353 | delta = now - prev; | ||
3354 | atomic64_add(delta, &counter->count); | ||
3355 | } | ||
3356 | |||
3357 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
3358 | { | ||
3359 | struct hw_perf_counter *hwc = &counter->hw; | ||
3360 | u64 now; | ||
3361 | |||
3362 | now = counter->ctx->time; | ||
3363 | |||
3364 | atomic64_set(&hwc->prev_count, now); | ||
3365 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3366 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
3367 | if (hwc->sample_period) { | ||
3368 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3369 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3370 | ns_to_ktime(period), 0, | ||
3371 | HRTIMER_MODE_REL, 0); | ||
3372 | } | ||
3373 | |||
3374 | return 0; | ||
3375 | } | ||
3376 | |||
3377 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
3378 | { | ||
3379 | if (counter->hw.sample_period) | ||
3380 | hrtimer_cancel(&counter->hw.hrtimer); | ||
3381 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
3382 | |||
3383 | } | ||
3384 | |||
3385 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
3386 | { | ||
3387 | u64 time; | ||
3388 | |||
3389 | if (!in_nmi()) { | ||
3390 | update_context_time(counter->ctx); | ||
3391 | time = counter->ctx->time; | ||
3392 | } else { | ||
3393 | u64 now = perf_clock(); | ||
3394 | u64 delta = now - counter->ctx->timestamp; | ||
3395 | time = counter->ctx->time + delta; | ||
3396 | } | ||
3397 | |||
3398 | task_clock_perf_counter_update(counter, time); | ||
3399 | } | ||
3400 | |||
3401 | static const struct pmu perf_ops_task_clock = { | ||
3402 | .enable = task_clock_perf_counter_enable, | ||
3403 | .disable = task_clock_perf_counter_disable, | ||
3404 | .read = task_clock_perf_counter_read, | ||
3405 | }; | ||
3406 | |||
3407 | /* | ||
3408 | * Software counter: cpu migrations | ||
3409 | */ | ||
3410 | void perf_counter_task_migration(struct task_struct *task, int cpu) | ||
3411 | { | ||
3412 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3413 | struct perf_counter_context *ctx; | ||
3414 | |||
3415 | perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE, | ||
3416 | PERF_COUNT_SW_CPU_MIGRATIONS, | ||
3417 | 1, 1, NULL, 0); | ||
3418 | |||
3419 | ctx = perf_pin_task_context(task); | ||
3420 | if (ctx) { | ||
3421 | perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE, | ||
3422 | PERF_COUNT_SW_CPU_MIGRATIONS, | ||
3423 | 1, 1, NULL, 0); | ||
3424 | perf_unpin_context(ctx); | ||
3425 | } | ||
3426 | } | ||
3427 | |||
3428 | #ifdef CONFIG_EVENT_PROFILE | ||
3429 | void perf_tpcounter_event(int event_id) | ||
3430 | { | ||
3431 | struct pt_regs *regs = get_irq_regs(); | ||
3432 | |||
3433 | if (!regs) | ||
3434 | regs = task_pt_regs(current); | ||
3435 | |||
3436 | __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0); | ||
3437 | } | ||
3438 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
3439 | |||
3440 | extern int ftrace_profile_enable(int); | ||
3441 | extern void ftrace_profile_disable(int); | ||
3442 | |||
3443 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
3444 | { | ||
3445 | ftrace_profile_disable(perf_event_id(&counter->attr)); | ||
3446 | } | ||
3447 | |||
3448 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
3449 | { | ||
3450 | int event_id = perf_event_id(&counter->attr); | ||
3451 | int ret; | ||
3452 | |||
3453 | ret = ftrace_profile_enable(event_id); | ||
3454 | if (ret) | ||
3455 | return NULL; | ||
3456 | |||
3457 | counter->destroy = tp_perf_counter_destroy; | ||
3458 | |||
3459 | return &perf_ops_generic; | ||
3460 | } | ||
3461 | #else | ||
3462 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
3463 | { | ||
3464 | return NULL; | ||
3465 | } | ||
3466 | #endif | ||
3467 | |||
3468 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
3469 | { | ||
3470 | const struct pmu *pmu = NULL; | ||
3471 | |||
3472 | /* | ||
3473 | * Software counters (currently) can't in general distinguish | ||
3474 | * between user, kernel and hypervisor events. | ||
3475 | * However, context switches and cpu migrations are considered | ||
3476 | * to be kernel events, and page faults are never hypervisor | ||
3477 | * events. | ||
3478 | */ | ||
3479 | switch (counter->attr.config) { | ||
3480 | case PERF_COUNT_SW_CPU_CLOCK: | ||
3481 | pmu = &perf_ops_cpu_clock; | ||
3482 | |||
3483 | break; | ||
3484 | case PERF_COUNT_SW_TASK_CLOCK: | ||
3485 | /* | ||
3486 | * If the user instantiates this as a per-cpu counter, | ||
3487 | * use the cpu_clock counter instead. | ||
3488 | */ | ||
3489 | if (counter->ctx->task) | ||
3490 | pmu = &perf_ops_task_clock; | ||
3491 | else | ||
3492 | pmu = &perf_ops_cpu_clock; | ||
3493 | |||
3494 | break; | ||
3495 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
3496 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
3497 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
3498 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
3499 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
3500 | pmu = &perf_ops_generic; | ||
3501 | break; | ||
3502 | } | ||
3503 | |||
3504 | return pmu; | ||
3505 | } | ||
3506 | |||
3507 | /* | ||
3508 | * Allocate and initialize a counter structure | ||
3509 | */ | ||
3510 | static struct perf_counter * | ||
3511 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
3512 | int cpu, | ||
3513 | struct perf_counter_context *ctx, | ||
3514 | struct perf_counter *group_leader, | ||
3515 | gfp_t gfpflags) | ||
3516 | { | ||
3517 | const struct pmu *pmu; | ||
3518 | struct perf_counter *counter; | ||
3519 | struct hw_perf_counter *hwc; | ||
3520 | long err; | ||
3521 | |||
3522 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
3523 | if (!counter) | ||
3524 | return ERR_PTR(-ENOMEM); | ||
3525 | |||
3526 | /* | ||
3527 | * Single counters are their own group leaders, with an | ||
3528 | * empty sibling list: | ||
3529 | */ | ||
3530 | if (!group_leader) | ||
3531 | group_leader = counter; | ||
3532 | |||
3533 | mutex_init(&counter->child_mutex); | ||
3534 | INIT_LIST_HEAD(&counter->child_list); | ||
3535 | |||
3536 | INIT_LIST_HEAD(&counter->list_entry); | ||
3537 | INIT_LIST_HEAD(&counter->event_entry); | ||
3538 | INIT_LIST_HEAD(&counter->sibling_list); | ||
3539 | init_waitqueue_head(&counter->waitq); | ||
3540 | |||
3541 | mutex_init(&counter->mmap_mutex); | ||
3542 | |||
3543 | counter->cpu = cpu; | ||
3544 | counter->attr = *attr; | ||
3545 | counter->group_leader = group_leader; | ||
3546 | counter->pmu = NULL; | ||
3547 | counter->ctx = ctx; | ||
3548 | counter->oncpu = -1; | ||
3549 | |||
3550 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
3551 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
3552 | |||
3553 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
3554 | |||
3555 | if (attr->disabled) | ||
3556 | counter->state = PERF_COUNTER_STATE_OFF; | ||
3557 | |||
3558 | pmu = NULL; | ||
3559 | |||
3560 | hwc = &counter->hw; | ||
3561 | hwc->sample_period = attr->sample_period; | ||
3562 | if (attr->freq && attr->sample_freq) | ||
3563 | hwc->sample_period = 1; | ||
3564 | |||
3565 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
3566 | |||
3567 | /* | ||
3568 | * we currently do not support PERF_SAMPLE_GROUP on inherited counters | ||
3569 | */ | ||
3570 | if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) | ||
3571 | goto done; | ||
3572 | |||
3573 | if (attr->type == PERF_TYPE_RAW) { | ||
3574 | pmu = hw_perf_counter_init(counter); | ||
3575 | goto done; | ||
3576 | } | ||
3577 | |||
3578 | switch (attr->type) { | ||
3579 | case PERF_TYPE_HARDWARE: | ||
3580 | case PERF_TYPE_HW_CACHE: | ||
3581 | pmu = hw_perf_counter_init(counter); | ||
3582 | break; | ||
3583 | |||
3584 | case PERF_TYPE_SOFTWARE: | ||
3585 | pmu = sw_perf_counter_init(counter); | ||
3586 | break; | ||
3587 | |||
3588 | case PERF_TYPE_TRACEPOINT: | ||
3589 | pmu = tp_perf_counter_init(counter); | ||
3590 | break; | ||
3591 | } | ||
3592 | done: | ||
3593 | err = 0; | ||
3594 | if (!pmu) | ||
3595 | err = -EINVAL; | ||
3596 | else if (IS_ERR(pmu)) | ||
3597 | err = PTR_ERR(pmu); | ||
3598 | |||
3599 | if (err) { | ||
3600 | if (counter->ns) | ||
3601 | put_pid_ns(counter->ns); | ||
3602 | kfree(counter); | ||
3603 | return ERR_PTR(err); | ||
3604 | } | ||
3605 | |||
3606 | counter->pmu = pmu; | ||
3607 | |||
3608 | atomic_inc(&nr_counters); | ||
3609 | if (counter->attr.mmap) | ||
3610 | atomic_inc(&nr_mmap_counters); | ||
3611 | if (counter->attr.comm) | ||
3612 | atomic_inc(&nr_comm_counters); | ||
3613 | |||
3614 | return counter; | ||
3615 | } | ||
3616 | |||
3617 | /** | ||
3618 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
3619 | * | ||
3620 | * @attr_uptr: event type attributes for monitoring/sampling | ||
3621 | * @pid: target pid | ||
3622 | * @cpu: target cpu | ||
3623 | * @group_fd: group leader counter fd | ||
3624 | */ | ||
3625 | SYSCALL_DEFINE5(perf_counter_open, | ||
3626 | const struct perf_counter_attr __user *, attr_uptr, | ||
3627 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
3628 | { | ||
3629 | struct perf_counter *counter, *group_leader; | ||
3630 | struct perf_counter_attr attr; | ||
3631 | struct perf_counter_context *ctx; | ||
3632 | struct file *counter_file = NULL; | ||
3633 | struct file *group_file = NULL; | ||
3634 | int fput_needed = 0; | ||
3635 | int fput_needed2 = 0; | ||
3636 | int ret; | ||
3637 | |||
3638 | /* for future expandability... */ | ||
3639 | if (flags) | ||
3640 | return -EINVAL; | ||
3641 | |||
3642 | if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0) | ||
3643 | return -EFAULT; | ||
3644 | |||
3645 | if (!attr.exclude_kernel) { | ||
3646 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
3647 | return -EACCES; | ||
3648 | } | ||
3649 | |||
3650 | if (attr.freq) { | ||
3651 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
3652 | return -EINVAL; | ||
3653 | } | ||
3654 | |||
3655 | /* | ||
3656 | * Get the target context (task or percpu): | ||
3657 | */ | ||
3658 | ctx = find_get_context(pid, cpu); | ||
3659 | if (IS_ERR(ctx)) | ||
3660 | return PTR_ERR(ctx); | ||
3661 | |||
3662 | /* | ||
3663 | * Look up the group leader (we will attach this counter to it): | ||
3664 | */ | ||
3665 | group_leader = NULL; | ||
3666 | if (group_fd != -1) { | ||
3667 | ret = -EINVAL; | ||
3668 | group_file = fget_light(group_fd, &fput_needed); | ||
3669 | if (!group_file) | ||
3670 | goto err_put_context; | ||
3671 | if (group_file->f_op != &perf_fops) | ||
3672 | goto err_put_context; | ||
3673 | |||
3674 | group_leader = group_file->private_data; | ||
3675 | /* | ||
3676 | * Do not allow a recursive hierarchy (this new sibling | ||
3677 | * becoming part of another group-sibling): | ||
3678 | */ | ||
3679 | if (group_leader->group_leader != group_leader) | ||
3680 | goto err_put_context; | ||
3681 | /* | ||
3682 | * Do not allow to attach to a group in a different | ||
3683 | * task or CPU context: | ||
3684 | */ | ||
3685 | if (group_leader->ctx != ctx) | ||
3686 | goto err_put_context; | ||
3687 | /* | ||
3688 | * Only a group leader can be exclusive or pinned | ||
3689 | */ | ||
3690 | if (attr.exclusive || attr.pinned) | ||
3691 | goto err_put_context; | ||
3692 | } | ||
3693 | |||
3694 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
3695 | GFP_KERNEL); | ||
3696 | ret = PTR_ERR(counter); | ||
3697 | if (IS_ERR(counter)) | ||
3698 | goto err_put_context; | ||
3699 | |||
3700 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
3701 | if (ret < 0) | ||
3702 | goto err_free_put_context; | ||
3703 | |||
3704 | counter_file = fget_light(ret, &fput_needed2); | ||
3705 | if (!counter_file) | ||
3706 | goto err_free_put_context; | ||
3707 | |||
3708 | counter->filp = counter_file; | ||
3709 | WARN_ON_ONCE(ctx->parent_ctx); | ||
3710 | mutex_lock(&ctx->mutex); | ||
3711 | perf_install_in_context(ctx, counter, cpu); | ||
3712 | ++ctx->generation; | ||
3713 | mutex_unlock(&ctx->mutex); | ||
3714 | |||
3715 | counter->owner = current; | ||
3716 | get_task_struct(current); | ||
3717 | mutex_lock(¤t->perf_counter_mutex); | ||
3718 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
3719 | mutex_unlock(¤t->perf_counter_mutex); | ||
3720 | |||
3721 | fput_light(counter_file, fput_needed2); | ||
3722 | |||
3723 | out_fput: | ||
3724 | fput_light(group_file, fput_needed); | ||
3725 | |||
3726 | return ret; | ||
3727 | |||
3728 | err_free_put_context: | ||
3729 | kfree(counter); | ||
3730 | |||
3731 | err_put_context: | ||
3732 | put_ctx(ctx); | ||
3733 | |||
3734 | goto out_fput; | ||
3735 | } | ||
3736 | |||
3737 | /* | ||
3738 | * inherit a counter from parent task to child task: | ||
3739 | */ | ||
3740 | static struct perf_counter * | ||
3741 | inherit_counter(struct perf_counter *parent_counter, | ||
3742 | struct task_struct *parent, | ||
3743 | struct perf_counter_context *parent_ctx, | ||
3744 | struct task_struct *child, | ||
3745 | struct perf_counter *group_leader, | ||
3746 | struct perf_counter_context *child_ctx) | ||
3747 | { | ||
3748 | struct perf_counter *child_counter; | ||
3749 | |||
3750 | /* | ||
3751 | * Instead of creating recursive hierarchies of counters, | ||
3752 | * we link inherited counters back to the original parent, | ||
3753 | * which has a filp for sure, which we use as the reference | ||
3754 | * count: | ||
3755 | */ | ||
3756 | if (parent_counter->parent) | ||
3757 | parent_counter = parent_counter->parent; | ||
3758 | |||
3759 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
3760 | parent_counter->cpu, child_ctx, | ||
3761 | group_leader, GFP_KERNEL); | ||
3762 | if (IS_ERR(child_counter)) | ||
3763 | return child_counter; | ||
3764 | get_ctx(child_ctx); | ||
3765 | |||
3766 | /* | ||
3767 | * Make the child state follow the state of the parent counter, | ||
3768 | * not its attr.disabled bit. We hold the parent's mutex, | ||
3769 | * so we won't race with perf_counter_{en, dis}able_family. | ||
3770 | */ | ||
3771 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
3772 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
3773 | else | ||
3774 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
3775 | |||
3776 | if (parent_counter->attr.freq) | ||
3777 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
3778 | |||
3779 | /* | ||
3780 | * Link it up in the child's context: | ||
3781 | */ | ||
3782 | add_counter_to_ctx(child_counter, child_ctx); | ||
3783 | |||
3784 | child_counter->parent = parent_counter; | ||
3785 | /* | ||
3786 | * inherit into child's child as well: | ||
3787 | */ | ||
3788 | child_counter->attr.inherit = 1; | ||
3789 | |||
3790 | /* | ||
3791 | * Get a reference to the parent filp - we will fput it | ||
3792 | * when the child counter exits. This is safe to do because | ||
3793 | * we are in the parent and we know that the filp still | ||
3794 | * exists and has a nonzero count: | ||
3795 | */ | ||
3796 | atomic_long_inc(&parent_counter->filp->f_count); | ||
3797 | |||
3798 | /* | ||
3799 | * Link this into the parent counter's child list | ||
3800 | */ | ||
3801 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
3802 | mutex_lock(&parent_counter->child_mutex); | ||
3803 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
3804 | mutex_unlock(&parent_counter->child_mutex); | ||
3805 | |||
3806 | return child_counter; | ||
3807 | } | ||
3808 | |||
3809 | static int inherit_group(struct perf_counter *parent_counter, | ||
3810 | struct task_struct *parent, | ||
3811 | struct perf_counter_context *parent_ctx, | ||
3812 | struct task_struct *child, | ||
3813 | struct perf_counter_context *child_ctx) | ||
3814 | { | ||
3815 | struct perf_counter *leader; | ||
3816 | struct perf_counter *sub; | ||
3817 | struct perf_counter *child_ctr; | ||
3818 | |||
3819 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
3820 | child, NULL, child_ctx); | ||
3821 | if (IS_ERR(leader)) | ||
3822 | return PTR_ERR(leader); | ||
3823 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
3824 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
3825 | child, leader, child_ctx); | ||
3826 | if (IS_ERR(child_ctr)) | ||
3827 | return PTR_ERR(child_ctr); | ||
3828 | } | ||
3829 | return 0; | ||
3830 | } | ||
3831 | |||
3832 | static void sync_child_counter(struct perf_counter *child_counter, | ||
3833 | struct perf_counter *parent_counter) | ||
3834 | { | ||
3835 | u64 child_val; | ||
3836 | |||
3837 | child_val = atomic64_read(&child_counter->count); | ||
3838 | |||
3839 | /* | ||
3840 | * Add back the child's count to the parent's count: | ||
3841 | */ | ||
3842 | atomic64_add(child_val, &parent_counter->count); | ||
3843 | atomic64_add(child_counter->total_time_enabled, | ||
3844 | &parent_counter->child_total_time_enabled); | ||
3845 | atomic64_add(child_counter->total_time_running, | ||
3846 | &parent_counter->child_total_time_running); | ||
3847 | |||
3848 | /* | ||
3849 | * Remove this counter from the parent's list | ||
3850 | */ | ||
3851 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
3852 | mutex_lock(&parent_counter->child_mutex); | ||
3853 | list_del_init(&child_counter->child_list); | ||
3854 | mutex_unlock(&parent_counter->child_mutex); | ||
3855 | |||
3856 | /* | ||
3857 | * Release the parent counter, if this was the last | ||
3858 | * reference to it. | ||
3859 | */ | ||
3860 | fput(parent_counter->filp); | ||
3861 | } | ||
3862 | |||
3863 | static void | ||
3864 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
3865 | struct perf_counter_context *child_ctx) | ||
3866 | { | ||
3867 | struct perf_counter *parent_counter; | ||
3868 | |||
3869 | update_counter_times(child_counter); | ||
3870 | perf_counter_remove_from_context(child_counter); | ||
3871 | |||
3872 | parent_counter = child_counter->parent; | ||
3873 | /* | ||
3874 | * It can happen that parent exits first, and has counters | ||
3875 | * that are still around due to the child reference. These | ||
3876 | * counters need to be zapped - but otherwise linger. | ||
3877 | */ | ||
3878 | if (parent_counter) { | ||
3879 | sync_child_counter(child_counter, parent_counter); | ||
3880 | free_counter(child_counter); | ||
3881 | } | ||
3882 | } | ||
3883 | |||
3884 | /* | ||
3885 | * When a child task exits, feed back counter values to parent counters. | ||
3886 | */ | ||
3887 | void perf_counter_exit_task(struct task_struct *child) | ||
3888 | { | ||
3889 | struct perf_counter *child_counter, *tmp; | ||
3890 | struct perf_counter_context *child_ctx; | ||
3891 | unsigned long flags; | ||
3892 | |||
3893 | if (likely(!child->perf_counter_ctxp)) | ||
3894 | return; | ||
3895 | |||
3896 | local_irq_save(flags); | ||
3897 | /* | ||
3898 | * We can't reschedule here because interrupts are disabled, | ||
3899 | * and either child is current or it is a task that can't be | ||
3900 | * scheduled, so we are now safe from rescheduling changing | ||
3901 | * our context. | ||
3902 | */ | ||
3903 | child_ctx = child->perf_counter_ctxp; | ||
3904 | __perf_counter_task_sched_out(child_ctx); | ||
3905 | |||
3906 | /* | ||
3907 | * Take the context lock here so that if find_get_context is | ||
3908 | * reading child->perf_counter_ctxp, we wait until it has | ||
3909 | * incremented the context's refcount before we do put_ctx below. | ||
3910 | */ | ||
3911 | spin_lock(&child_ctx->lock); | ||
3912 | child->perf_counter_ctxp = NULL; | ||
3913 | if (child_ctx->parent_ctx) { | ||
3914 | /* | ||
3915 | * This context is a clone; unclone it so it can't get | ||
3916 | * swapped to another process while we're removing all | ||
3917 | * the counters from it. | ||
3918 | */ | ||
3919 | put_ctx(child_ctx->parent_ctx); | ||
3920 | child_ctx->parent_ctx = NULL; | ||
3921 | } | ||
3922 | spin_unlock(&child_ctx->lock); | ||
3923 | local_irq_restore(flags); | ||
3924 | |||
3925 | /* | ||
3926 | * We can recurse on the same lock type through: | ||
3927 | * | ||
3928 | * __perf_counter_exit_task() | ||
3929 | * sync_child_counter() | ||
3930 | * fput(parent_counter->filp) | ||
3931 | * perf_release() | ||
3932 | * mutex_lock(&ctx->mutex) | ||
3933 | * | ||
3934 | * But since its the parent context it won't be the same instance. | ||
3935 | */ | ||
3936 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
3937 | |||
3938 | again: | ||
3939 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
3940 | list_entry) | ||
3941 | __perf_counter_exit_task(child_counter, child_ctx); | ||
3942 | |||
3943 | /* | ||
3944 | * If the last counter was a group counter, it will have appended all | ||
3945 | * its siblings to the list, but we obtained 'tmp' before that which | ||
3946 | * will still point to the list head terminating the iteration. | ||
3947 | */ | ||
3948 | if (!list_empty(&child_ctx->counter_list)) | ||
3949 | goto again; | ||
3950 | |||
3951 | mutex_unlock(&child_ctx->mutex); | ||
3952 | |||
3953 | put_ctx(child_ctx); | ||
3954 | } | ||
3955 | |||
3956 | /* | ||
3957 | * free an unexposed, unused context as created by inheritance by | ||
3958 | * init_task below, used by fork() in case of fail. | ||
3959 | */ | ||
3960 | void perf_counter_free_task(struct task_struct *task) | ||
3961 | { | ||
3962 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
3963 | struct perf_counter *counter, *tmp; | ||
3964 | |||
3965 | if (!ctx) | ||
3966 | return; | ||
3967 | |||
3968 | mutex_lock(&ctx->mutex); | ||
3969 | again: | ||
3970 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
3971 | struct perf_counter *parent = counter->parent; | ||
3972 | |||
3973 | if (WARN_ON_ONCE(!parent)) | ||
3974 | continue; | ||
3975 | |||
3976 | mutex_lock(&parent->child_mutex); | ||
3977 | list_del_init(&counter->child_list); | ||
3978 | mutex_unlock(&parent->child_mutex); | ||
3979 | |||
3980 | fput(parent->filp); | ||
3981 | |||
3982 | list_del_counter(counter, ctx); | ||
3983 | free_counter(counter); | ||
3984 | } | ||
3985 | |||
3986 | if (!list_empty(&ctx->counter_list)) | ||
3987 | goto again; | ||
3988 | |||
3989 | mutex_unlock(&ctx->mutex); | ||
3990 | |||
3991 | put_ctx(ctx); | ||
3992 | } | ||
3993 | |||
3994 | /* | ||
3995 | * Initialize the perf_counter context in task_struct | ||
3996 | */ | ||
3997 | int perf_counter_init_task(struct task_struct *child) | ||
3998 | { | ||
3999 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
4000 | struct perf_counter_context *cloned_ctx; | ||
4001 | struct perf_counter *counter; | ||
4002 | struct task_struct *parent = current; | ||
4003 | int inherited_all = 1; | ||
4004 | int ret = 0; | ||
4005 | |||
4006 | child->perf_counter_ctxp = NULL; | ||
4007 | |||
4008 | mutex_init(&child->perf_counter_mutex); | ||
4009 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
4010 | |||
4011 | if (likely(!parent->perf_counter_ctxp)) | ||
4012 | return 0; | ||
4013 | |||
4014 | /* | ||
4015 | * This is executed from the parent task context, so inherit | ||
4016 | * counters that have been marked for cloning. | ||
4017 | * First allocate and initialize a context for the child. | ||
4018 | */ | ||
4019 | |||
4020 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
4021 | if (!child_ctx) | ||
4022 | return -ENOMEM; | ||
4023 | |||
4024 | __perf_counter_init_context(child_ctx, child); | ||
4025 | child->perf_counter_ctxp = child_ctx; | ||
4026 | get_task_struct(child); | ||
4027 | |||
4028 | /* | ||
4029 | * If the parent's context is a clone, pin it so it won't get | ||
4030 | * swapped under us. | ||
4031 | */ | ||
4032 | parent_ctx = perf_pin_task_context(parent); | ||
4033 | |||
4034 | /* | ||
4035 | * No need to check if parent_ctx != NULL here; since we saw | ||
4036 | * it non-NULL earlier, the only reason for it to become NULL | ||
4037 | * is if we exit, and since we're currently in the middle of | ||
4038 | * a fork we can't be exiting at the same time. | ||
4039 | */ | ||
4040 | |||
4041 | /* | ||
4042 | * Lock the parent list. No need to lock the child - not PID | ||
4043 | * hashed yet and not running, so nobody can access it. | ||
4044 | */ | ||
4045 | mutex_lock(&parent_ctx->mutex); | ||
4046 | |||
4047 | /* | ||
4048 | * We dont have to disable NMIs - we are only looking at | ||
4049 | * the list, not manipulating it: | ||
4050 | */ | ||
4051 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
4052 | if (counter != counter->group_leader) | ||
4053 | continue; | ||
4054 | |||
4055 | if (!counter->attr.inherit) { | ||
4056 | inherited_all = 0; | ||
4057 | continue; | ||
4058 | } | ||
4059 | |||
4060 | ret = inherit_group(counter, parent, parent_ctx, | ||
4061 | child, child_ctx); | ||
4062 | if (ret) { | ||
4063 | inherited_all = 0; | ||
4064 | break; | ||
4065 | } | ||
4066 | } | ||
4067 | |||
4068 | if (inherited_all) { | ||
4069 | /* | ||
4070 | * Mark the child context as a clone of the parent | ||
4071 | * context, or of whatever the parent is a clone of. | ||
4072 | * Note that if the parent is a clone, it could get | ||
4073 | * uncloned at any point, but that doesn't matter | ||
4074 | * because the list of counters and the generation | ||
4075 | * count can't have changed since we took the mutex. | ||
4076 | */ | ||
4077 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4078 | if (cloned_ctx) { | ||
4079 | child_ctx->parent_ctx = cloned_ctx; | ||
4080 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4081 | } else { | ||
4082 | child_ctx->parent_ctx = parent_ctx; | ||
4083 | child_ctx->parent_gen = parent_ctx->generation; | ||
4084 | } | ||
4085 | get_ctx(child_ctx->parent_ctx); | ||
4086 | } | ||
4087 | |||
4088 | mutex_unlock(&parent_ctx->mutex); | ||
4089 | |||
4090 | perf_unpin_context(parent_ctx); | ||
4091 | |||
4092 | return ret; | ||
4093 | } | ||
4094 | |||
4095 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
4096 | { | ||
4097 | struct perf_cpu_context *cpuctx; | ||
4098 | |||
4099 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4100 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
4101 | |||
4102 | spin_lock(&perf_resource_lock); | ||
4103 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
4104 | spin_unlock(&perf_resource_lock); | ||
4105 | |||
4106 | hw_perf_counter_setup(cpu); | ||
4107 | } | ||
4108 | |||
4109 | #ifdef CONFIG_HOTPLUG_CPU | ||
4110 | static void __perf_counter_exit_cpu(void *info) | ||
4111 | { | ||
4112 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4113 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
4114 | struct perf_counter *counter, *tmp; | ||
4115 | |||
4116 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
4117 | __perf_counter_remove_from_context(counter); | ||
4118 | } | ||
4119 | static void perf_counter_exit_cpu(int cpu) | ||
4120 | { | ||
4121 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4122 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
4123 | |||
4124 | mutex_lock(&ctx->mutex); | ||
4125 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
4126 | mutex_unlock(&ctx->mutex); | ||
4127 | } | ||
4128 | #else | ||
4129 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
4130 | #endif | ||
4131 | |||
4132 | static int __cpuinit | ||
4133 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4134 | { | ||
4135 | unsigned int cpu = (long)hcpu; | ||
4136 | |||
4137 | switch (action) { | ||
4138 | |||
4139 | case CPU_UP_PREPARE: | ||
4140 | case CPU_UP_PREPARE_FROZEN: | ||
4141 | perf_counter_init_cpu(cpu); | ||
4142 | break; | ||
4143 | |||
4144 | case CPU_DOWN_PREPARE: | ||
4145 | case CPU_DOWN_PREPARE_FROZEN: | ||
4146 | perf_counter_exit_cpu(cpu); | ||
4147 | break; | ||
4148 | |||
4149 | default: | ||
4150 | break; | ||
4151 | } | ||
4152 | |||
4153 | return NOTIFY_OK; | ||
4154 | } | ||
4155 | |||
4156 | /* | ||
4157 | * This has to have a higher priority than migration_notifier in sched.c. | ||
4158 | */ | ||
4159 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
4160 | .notifier_call = perf_cpu_notify, | ||
4161 | .priority = 20, | ||
4162 | }; | ||
4163 | |||
4164 | void __init perf_counter_init(void) | ||
4165 | { | ||
4166 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
4167 | (void *)(long)smp_processor_id()); | ||
4168 | register_cpu_notifier(&perf_cpu_nb); | ||
4169 | } | ||
4170 | |||
4171 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
4172 | { | ||
4173 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
4174 | } | ||
4175 | |||
4176 | static ssize_t | ||
4177 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
4178 | const char *buf, | ||
4179 | size_t count) | ||
4180 | { | ||
4181 | struct perf_cpu_context *cpuctx; | ||
4182 | unsigned long val; | ||
4183 | int err, cpu, mpt; | ||
4184 | |||
4185 | err = strict_strtoul(buf, 10, &val); | ||
4186 | if (err) | ||
4187 | return err; | ||
4188 | if (val > perf_max_counters) | ||
4189 | return -EINVAL; | ||
4190 | |||
4191 | spin_lock(&perf_resource_lock); | ||
4192 | perf_reserved_percpu = val; | ||
4193 | for_each_online_cpu(cpu) { | ||
4194 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4195 | spin_lock_irq(&cpuctx->ctx.lock); | ||
4196 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
4197 | perf_max_counters - perf_reserved_percpu); | ||
4198 | cpuctx->max_pertask = mpt; | ||
4199 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
4200 | } | ||
4201 | spin_unlock(&perf_resource_lock); | ||
4202 | |||
4203 | return count; | ||
4204 | } | ||
4205 | |||
4206 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
4207 | { | ||
4208 | return sprintf(buf, "%d\n", perf_overcommit); | ||
4209 | } | ||
4210 | |||
4211 | static ssize_t | ||
4212 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
4213 | { | ||
4214 | unsigned long val; | ||
4215 | int err; | ||
4216 | |||
4217 | err = strict_strtoul(buf, 10, &val); | ||
4218 | if (err) | ||
4219 | return err; | ||
4220 | if (val > 1) | ||
4221 | return -EINVAL; | ||
4222 | |||
4223 | spin_lock(&perf_resource_lock); | ||
4224 | perf_overcommit = val; | ||
4225 | spin_unlock(&perf_resource_lock); | ||
4226 | |||
4227 | return count; | ||
4228 | } | ||
4229 | |||
4230 | static SYSDEV_CLASS_ATTR( | ||
4231 | reserve_percpu, | ||
4232 | 0644, | ||
4233 | perf_show_reserve_percpu, | ||
4234 | perf_set_reserve_percpu | ||
4235 | ); | ||
4236 | |||
4237 | static SYSDEV_CLASS_ATTR( | ||
4238 | overcommit, | ||
4239 | 0644, | ||
4240 | perf_show_overcommit, | ||
4241 | perf_set_overcommit | ||
4242 | ); | ||
4243 | |||
4244 | static struct attribute *perfclass_attrs[] = { | ||
4245 | &attr_reserve_percpu.attr, | ||
4246 | &attr_overcommit.attr, | ||
4247 | NULL | ||
4248 | }; | ||
4249 | |||
4250 | static struct attribute_group perfclass_attr_group = { | ||
4251 | .attrs = perfclass_attrs, | ||
4252 | .name = "perf_counters", | ||
4253 | }; | ||
4254 | |||
4255 | static int __init perf_counter_sysfs_init(void) | ||
4256 | { | ||
4257 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
4258 | &perfclass_attr_group); | ||
4259 | } | ||
4260 | device_initcall(perf_counter_sysfs_init); | ||