diff options
| author | Anton Altaparmakov <aia21@cantab.net> | 2005-06-26 17:19:40 -0400 |
|---|---|---|
| committer | Anton Altaparmakov <aia21@cantab.net> | 2005-06-26 17:19:40 -0400 |
| commit | 2a322e4c08be4e7cb0c04b427ddaaa679fd88863 (patch) | |
| tree | ad8cc17bfd3b5e57e36f07a249028667d72f0b96 /kernel/kexec.c | |
| parent | ba6d2377c85c9b8a793f455d8c9b6cf31985d70f (diff) | |
| parent | 8678887e7fb43cd6c9be6c9807b05e77848e0920 (diff) | |
Automatic merge with /usr/src/ntfs-2.6.git.
Diffstat (limited to 'kernel/kexec.c')
| -rw-r--r-- | kernel/kexec.c | 1063 |
1 files changed, 1063 insertions, 0 deletions
diff --git a/kernel/kexec.c b/kernel/kexec.c new file mode 100644 index 000000000000..7843548cf2d9 --- /dev/null +++ b/kernel/kexec.c | |||
| @@ -0,0 +1,1063 @@ | |||
| 1 | /* | ||
| 2 | * kexec.c - kexec system call | ||
| 3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> | ||
| 4 | * | ||
| 5 | * This source code is licensed under the GNU General Public License, | ||
| 6 | * Version 2. See the file COPYING for more details. | ||
| 7 | */ | ||
| 8 | |||
| 9 | #include <linux/mm.h> | ||
| 10 | #include <linux/file.h> | ||
| 11 | #include <linux/slab.h> | ||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/kexec.h> | ||
| 14 | #include <linux/spinlock.h> | ||
| 15 | #include <linux/list.h> | ||
| 16 | #include <linux/highmem.h> | ||
| 17 | #include <linux/syscalls.h> | ||
| 18 | #include <linux/reboot.h> | ||
| 19 | #include <linux/syscalls.h> | ||
| 20 | #include <linux/ioport.h> | ||
| 21 | #include <linux/hardirq.h> | ||
| 22 | |||
| 23 | #include <asm/page.h> | ||
| 24 | #include <asm/uaccess.h> | ||
| 25 | #include <asm/io.h> | ||
| 26 | #include <asm/system.h> | ||
| 27 | #include <asm/semaphore.h> | ||
| 28 | |||
| 29 | /* Location of the reserved area for the crash kernel */ | ||
| 30 | struct resource crashk_res = { | ||
| 31 | .name = "Crash kernel", | ||
| 32 | .start = 0, | ||
| 33 | .end = 0, | ||
| 34 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | ||
| 35 | }; | ||
| 36 | |||
| 37 | int kexec_should_crash(struct task_struct *p) | ||
| 38 | { | ||
| 39 | if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops) | ||
| 40 | return 1; | ||
| 41 | return 0; | ||
| 42 | } | ||
| 43 | |||
| 44 | /* | ||
| 45 | * When kexec transitions to the new kernel there is a one-to-one | ||
| 46 | * mapping between physical and virtual addresses. On processors | ||
| 47 | * where you can disable the MMU this is trivial, and easy. For | ||
| 48 | * others it is still a simple predictable page table to setup. | ||
| 49 | * | ||
| 50 | * In that environment kexec copies the new kernel to its final | ||
| 51 | * resting place. This means I can only support memory whose | ||
| 52 | * physical address can fit in an unsigned long. In particular | ||
| 53 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | ||
| 54 | * If the assembly stub has more restrictive requirements | ||
| 55 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | ||
| 56 | * defined more restrictively in <asm/kexec.h>. | ||
| 57 | * | ||
| 58 | * The code for the transition from the current kernel to the | ||
| 59 | * the new kernel is placed in the control_code_buffer, whose size | ||
| 60 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single | ||
| 61 | * page of memory is necessary, but some architectures require more. | ||
| 62 | * Because this memory must be identity mapped in the transition from | ||
| 63 | * virtual to physical addresses it must live in the range | ||
| 64 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | ||
| 65 | * modifiable. | ||
| 66 | * | ||
| 67 | * The assembly stub in the control code buffer is passed a linked list | ||
| 68 | * of descriptor pages detailing the source pages of the new kernel, | ||
| 69 | * and the destination addresses of those source pages. As this data | ||
| 70 | * structure is not used in the context of the current OS, it must | ||
| 71 | * be self-contained. | ||
| 72 | * | ||
| 73 | * The code has been made to work with highmem pages and will use a | ||
| 74 | * destination page in its final resting place (if it happens | ||
| 75 | * to allocate it). The end product of this is that most of the | ||
| 76 | * physical address space, and most of RAM can be used. | ||
| 77 | * | ||
| 78 | * Future directions include: | ||
| 79 | * - allocating a page table with the control code buffer identity | ||
| 80 | * mapped, to simplify machine_kexec and make kexec_on_panic more | ||
| 81 | * reliable. | ||
| 82 | */ | ||
| 83 | |||
| 84 | /* | ||
| 85 | * KIMAGE_NO_DEST is an impossible destination address..., for | ||
| 86 | * allocating pages whose destination address we do not care about. | ||
| 87 | */ | ||
| 88 | #define KIMAGE_NO_DEST (-1UL) | ||
| 89 | |||
| 90 | static int kimage_is_destination_range(struct kimage *image, | ||
| 91 | unsigned long start, unsigned long end); | ||
| 92 | static struct page *kimage_alloc_page(struct kimage *image, | ||
| 93 | unsigned int gfp_mask, | ||
| 94 | unsigned long dest); | ||
| 95 | |||
| 96 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | ||
| 97 | unsigned long nr_segments, | ||
| 98 | struct kexec_segment __user *segments) | ||
| 99 | { | ||
| 100 | size_t segment_bytes; | ||
| 101 | struct kimage *image; | ||
| 102 | unsigned long i; | ||
| 103 | int result; | ||
| 104 | |||
| 105 | /* Allocate a controlling structure */ | ||
| 106 | result = -ENOMEM; | ||
| 107 | image = kmalloc(sizeof(*image), GFP_KERNEL); | ||
| 108 | if (!image) | ||
| 109 | goto out; | ||
| 110 | |||
| 111 | memset(image, 0, sizeof(*image)); | ||
| 112 | image->head = 0; | ||
| 113 | image->entry = &image->head; | ||
| 114 | image->last_entry = &image->head; | ||
| 115 | image->control_page = ~0; /* By default this does not apply */ | ||
| 116 | image->start = entry; | ||
| 117 | image->type = KEXEC_TYPE_DEFAULT; | ||
| 118 | |||
| 119 | /* Initialize the list of control pages */ | ||
| 120 | INIT_LIST_HEAD(&image->control_pages); | ||
| 121 | |||
| 122 | /* Initialize the list of destination pages */ | ||
| 123 | INIT_LIST_HEAD(&image->dest_pages); | ||
| 124 | |||
| 125 | /* Initialize the list of unuseable pages */ | ||
| 126 | INIT_LIST_HEAD(&image->unuseable_pages); | ||
| 127 | |||
| 128 | /* Read in the segments */ | ||
| 129 | image->nr_segments = nr_segments; | ||
| 130 | segment_bytes = nr_segments * sizeof(*segments); | ||
| 131 | result = copy_from_user(image->segment, segments, segment_bytes); | ||
| 132 | if (result) | ||
| 133 | goto out; | ||
| 134 | |||
| 135 | /* | ||
| 136 | * Verify we have good destination addresses. The caller is | ||
| 137 | * responsible for making certain we don't attempt to load | ||
| 138 | * the new image into invalid or reserved areas of RAM. This | ||
| 139 | * just verifies it is an address we can use. | ||
| 140 | * | ||
| 141 | * Since the kernel does everything in page size chunks ensure | ||
| 142 | * the destination addreses are page aligned. Too many | ||
| 143 | * special cases crop of when we don't do this. The most | ||
| 144 | * insidious is getting overlapping destination addresses | ||
| 145 | * simply because addresses are changed to page size | ||
| 146 | * granularity. | ||
| 147 | */ | ||
| 148 | result = -EADDRNOTAVAIL; | ||
| 149 | for (i = 0; i < nr_segments; i++) { | ||
| 150 | unsigned long mstart, mend; | ||
| 151 | |||
| 152 | mstart = image->segment[i].mem; | ||
| 153 | mend = mstart + image->segment[i].memsz; | ||
| 154 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | ||
| 155 | goto out; | ||
| 156 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | ||
| 157 | goto out; | ||
| 158 | } | ||
| 159 | |||
| 160 | /* Verify our destination addresses do not overlap. | ||
| 161 | * If we alloed overlapping destination addresses | ||
| 162 | * through very weird things can happen with no | ||
| 163 | * easy explanation as one segment stops on another. | ||
| 164 | */ | ||
| 165 | result = -EINVAL; | ||
| 166 | for (i = 0; i < nr_segments; i++) { | ||
| 167 | unsigned long mstart, mend; | ||
| 168 | unsigned long j; | ||
| 169 | |||
| 170 | mstart = image->segment[i].mem; | ||
| 171 | mend = mstart + image->segment[i].memsz; | ||
| 172 | for (j = 0; j < i; j++) { | ||
| 173 | unsigned long pstart, pend; | ||
| 174 | pstart = image->segment[j].mem; | ||
| 175 | pend = pstart + image->segment[j].memsz; | ||
| 176 | /* Do the segments overlap ? */ | ||
| 177 | if ((mend > pstart) && (mstart < pend)) | ||
| 178 | goto out; | ||
| 179 | } | ||
| 180 | } | ||
| 181 | |||
| 182 | /* Ensure our buffer sizes are strictly less than | ||
| 183 | * our memory sizes. This should always be the case, | ||
| 184 | * and it is easier to check up front than to be surprised | ||
| 185 | * later on. | ||
| 186 | */ | ||
| 187 | result = -EINVAL; | ||
| 188 | for (i = 0; i < nr_segments; i++) { | ||
| 189 | if (image->segment[i].bufsz > image->segment[i].memsz) | ||
| 190 | goto out; | ||
| 191 | } | ||
| 192 | |||
| 193 | result = 0; | ||
| 194 | out: | ||
| 195 | if (result == 0) | ||
| 196 | *rimage = image; | ||
| 197 | else | ||
| 198 | kfree(image); | ||
| 199 | |||
| 200 | return result; | ||
| 201 | |||
| 202 | } | ||
| 203 | |||
| 204 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | ||
| 205 | unsigned long nr_segments, | ||
| 206 | struct kexec_segment __user *segments) | ||
| 207 | { | ||
| 208 | int result; | ||
| 209 | struct kimage *image; | ||
| 210 | |||
| 211 | /* Allocate and initialize a controlling structure */ | ||
| 212 | image = NULL; | ||
| 213 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | ||
| 214 | if (result) | ||
| 215 | goto out; | ||
| 216 | |||
| 217 | *rimage = image; | ||
| 218 | |||
| 219 | /* | ||
| 220 | * Find a location for the control code buffer, and add it | ||
| 221 | * the vector of segments so that it's pages will also be | ||
| 222 | * counted as destination pages. | ||
| 223 | */ | ||
| 224 | result = -ENOMEM; | ||
| 225 | image->control_code_page = kimage_alloc_control_pages(image, | ||
| 226 | get_order(KEXEC_CONTROL_CODE_SIZE)); | ||
| 227 | if (!image->control_code_page) { | ||
| 228 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | ||
| 229 | goto out; | ||
| 230 | } | ||
| 231 | |||
| 232 | result = 0; | ||
| 233 | out: | ||
| 234 | if (result == 0) | ||
| 235 | *rimage = image; | ||
| 236 | else | ||
| 237 | kfree(image); | ||
| 238 | |||
| 239 | return result; | ||
| 240 | } | ||
| 241 | |||
| 242 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | ||
| 243 | unsigned long nr_segments, | ||
| 244 | struct kexec_segment *segments) | ||
| 245 | { | ||
| 246 | int result; | ||
| 247 | struct kimage *image; | ||
| 248 | unsigned long i; | ||
| 249 | |||
| 250 | image = NULL; | ||
| 251 | /* Verify we have a valid entry point */ | ||
| 252 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | ||
| 253 | result = -EADDRNOTAVAIL; | ||
| 254 | goto out; | ||
| 255 | } | ||
| 256 | |||
| 257 | /* Allocate and initialize a controlling structure */ | ||
| 258 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | ||
| 259 | if (result) | ||
| 260 | goto out; | ||
| 261 | |||
| 262 | /* Enable the special crash kernel control page | ||
| 263 | * allocation policy. | ||
| 264 | */ | ||
| 265 | image->control_page = crashk_res.start; | ||
| 266 | image->type = KEXEC_TYPE_CRASH; | ||
| 267 | |||
| 268 | /* | ||
| 269 | * Verify we have good destination addresses. Normally | ||
| 270 | * the caller is responsible for making certain we don't | ||
| 271 | * attempt to load the new image into invalid or reserved | ||
| 272 | * areas of RAM. But crash kernels are preloaded into a | ||
| 273 | * reserved area of ram. We must ensure the addresses | ||
| 274 | * are in the reserved area otherwise preloading the | ||
| 275 | * kernel could corrupt things. | ||
| 276 | */ | ||
| 277 | result = -EADDRNOTAVAIL; | ||
| 278 | for (i = 0; i < nr_segments; i++) { | ||
| 279 | unsigned long mstart, mend; | ||
| 280 | |||
| 281 | mstart = image->segment[i].mem; | ||
| 282 | mend = mstart + image->segment[i].memsz - 1; | ||
| 283 | /* Ensure we are within the crash kernel limits */ | ||
| 284 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | ||
| 285 | goto out; | ||
| 286 | } | ||
| 287 | |||
| 288 | /* | ||
| 289 | * Find a location for the control code buffer, and add | ||
| 290 | * the vector of segments so that it's pages will also be | ||
| 291 | * counted as destination pages. | ||
| 292 | */ | ||
| 293 | result = -ENOMEM; | ||
| 294 | image->control_code_page = kimage_alloc_control_pages(image, | ||
| 295 | get_order(KEXEC_CONTROL_CODE_SIZE)); | ||
| 296 | if (!image->control_code_page) { | ||
| 297 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | ||
| 298 | goto out; | ||
| 299 | } | ||
| 300 | |||
| 301 | result = 0; | ||
| 302 | out: | ||
| 303 | if (result == 0) | ||
| 304 | *rimage = image; | ||
| 305 | else | ||
| 306 | kfree(image); | ||
| 307 | |||
| 308 | return result; | ||
| 309 | } | ||
| 310 | |||
| 311 | static int kimage_is_destination_range(struct kimage *image, | ||
| 312 | unsigned long start, | ||
| 313 | unsigned long end) | ||
| 314 | { | ||
| 315 | unsigned long i; | ||
| 316 | |||
| 317 | for (i = 0; i < image->nr_segments; i++) { | ||
| 318 | unsigned long mstart, mend; | ||
| 319 | |||
| 320 | mstart = image->segment[i].mem; | ||
| 321 | mend = mstart + image->segment[i].memsz; | ||
| 322 | if ((end > mstart) && (start < mend)) | ||
| 323 | return 1; | ||
| 324 | } | ||
| 325 | |||
| 326 | return 0; | ||
| 327 | } | ||
| 328 | |||
| 329 | static struct page *kimage_alloc_pages(unsigned int gfp_mask, | ||
| 330 | unsigned int order) | ||
| 331 | { | ||
| 332 | struct page *pages; | ||
| 333 | |||
| 334 | pages = alloc_pages(gfp_mask, order); | ||
| 335 | if (pages) { | ||
| 336 | unsigned int count, i; | ||
| 337 | pages->mapping = NULL; | ||
| 338 | pages->private = order; | ||
| 339 | count = 1 << order; | ||
| 340 | for (i = 0; i < count; i++) | ||
| 341 | SetPageReserved(pages + i); | ||
| 342 | } | ||
| 343 | |||
| 344 | return pages; | ||
| 345 | } | ||
| 346 | |||
| 347 | static void kimage_free_pages(struct page *page) | ||
| 348 | { | ||
| 349 | unsigned int order, count, i; | ||
| 350 | |||
| 351 | order = page->private; | ||
| 352 | count = 1 << order; | ||
| 353 | for (i = 0; i < count; i++) | ||
| 354 | ClearPageReserved(page + i); | ||
| 355 | __free_pages(page, order); | ||
| 356 | } | ||
| 357 | |||
| 358 | static void kimage_free_page_list(struct list_head *list) | ||
| 359 | { | ||
| 360 | struct list_head *pos, *next; | ||
| 361 | |||
| 362 | list_for_each_safe(pos, next, list) { | ||
| 363 | struct page *page; | ||
| 364 | |||
| 365 | page = list_entry(pos, struct page, lru); | ||
| 366 | list_del(&page->lru); | ||
| 367 | kimage_free_pages(page); | ||
| 368 | } | ||
| 369 | } | ||
| 370 | |||
| 371 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | ||
| 372 | unsigned int order) | ||
| 373 | { | ||
| 374 | /* Control pages are special, they are the intermediaries | ||
| 375 | * that are needed while we copy the rest of the pages | ||
| 376 | * to their final resting place. As such they must | ||
| 377 | * not conflict with either the destination addresses | ||
| 378 | * or memory the kernel is already using. | ||
| 379 | * | ||
| 380 | * The only case where we really need more than one of | ||
| 381 | * these are for architectures where we cannot disable | ||
| 382 | * the MMU and must instead generate an identity mapped | ||
| 383 | * page table for all of the memory. | ||
| 384 | * | ||
| 385 | * At worst this runs in O(N) of the image size. | ||
| 386 | */ | ||
| 387 | struct list_head extra_pages; | ||
| 388 | struct page *pages; | ||
| 389 | unsigned int count; | ||
| 390 | |||
| 391 | count = 1 << order; | ||
| 392 | INIT_LIST_HEAD(&extra_pages); | ||
| 393 | |||
| 394 | /* Loop while I can allocate a page and the page allocated | ||
| 395 | * is a destination page. | ||
| 396 | */ | ||
| 397 | do { | ||
| 398 | unsigned long pfn, epfn, addr, eaddr; | ||
| 399 | |||
| 400 | pages = kimage_alloc_pages(GFP_KERNEL, order); | ||
| 401 | if (!pages) | ||
| 402 | break; | ||
| 403 | pfn = page_to_pfn(pages); | ||
| 404 | epfn = pfn + count; | ||
| 405 | addr = pfn << PAGE_SHIFT; | ||
| 406 | eaddr = epfn << PAGE_SHIFT; | ||
| 407 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | ||
| 408 | kimage_is_destination_range(image, addr, eaddr)) { | ||
| 409 | list_add(&pages->lru, &extra_pages); | ||
| 410 | pages = NULL; | ||
| 411 | } | ||
| 412 | } while (!pages); | ||
| 413 | |||
| 414 | if (pages) { | ||
| 415 | /* Remember the allocated page... */ | ||
| 416 | list_add(&pages->lru, &image->control_pages); | ||
| 417 | |||
| 418 | /* Because the page is already in it's destination | ||
| 419 | * location we will never allocate another page at | ||
| 420 | * that address. Therefore kimage_alloc_pages | ||
| 421 | * will not return it (again) and we don't need | ||
| 422 | * to give it an entry in image->segment[]. | ||
| 423 | */ | ||
| 424 | } | ||
| 425 | /* Deal with the destination pages I have inadvertently allocated. | ||
| 426 | * | ||
| 427 | * Ideally I would convert multi-page allocations into single | ||
| 428 | * page allocations, and add everyting to image->dest_pages. | ||
| 429 | * | ||
| 430 | * For now it is simpler to just free the pages. | ||
| 431 | */ | ||
| 432 | kimage_free_page_list(&extra_pages); | ||
| 433 | |||
| 434 | return pages; | ||
| 435 | } | ||
| 436 | |||
| 437 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | ||
| 438 | unsigned int order) | ||
| 439 | { | ||
| 440 | /* Control pages are special, they are the intermediaries | ||
| 441 | * that are needed while we copy the rest of the pages | ||
| 442 | * to their final resting place. As such they must | ||
| 443 | * not conflict with either the destination addresses | ||
| 444 | * or memory the kernel is already using. | ||
| 445 | * | ||
| 446 | * Control pages are also the only pags we must allocate | ||
| 447 | * when loading a crash kernel. All of the other pages | ||
| 448 | * are specified by the segments and we just memcpy | ||
| 449 | * into them directly. | ||
| 450 | * | ||
| 451 | * The only case where we really need more than one of | ||
| 452 | * these are for architectures where we cannot disable | ||
| 453 | * the MMU and must instead generate an identity mapped | ||
| 454 | * page table for all of the memory. | ||
| 455 | * | ||
| 456 | * Given the low demand this implements a very simple | ||
| 457 | * allocator that finds the first hole of the appropriate | ||
| 458 | * size in the reserved memory region, and allocates all | ||
| 459 | * of the memory up to and including the hole. | ||
| 460 | */ | ||
| 461 | unsigned long hole_start, hole_end, size; | ||
| 462 | struct page *pages; | ||
| 463 | |||
| 464 | pages = NULL; | ||
| 465 | size = (1 << order) << PAGE_SHIFT; | ||
| 466 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | ||
| 467 | hole_end = hole_start + size - 1; | ||
| 468 | while (hole_end <= crashk_res.end) { | ||
| 469 | unsigned long i; | ||
| 470 | |||
| 471 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | ||
| 472 | break; | ||
| 473 | if (hole_end > crashk_res.end) | ||
| 474 | break; | ||
| 475 | /* See if I overlap any of the segments */ | ||
| 476 | for (i = 0; i < image->nr_segments; i++) { | ||
| 477 | unsigned long mstart, mend; | ||
| 478 | |||
| 479 | mstart = image->segment[i].mem; | ||
| 480 | mend = mstart + image->segment[i].memsz - 1; | ||
| 481 | if ((hole_end >= mstart) && (hole_start <= mend)) { | ||
| 482 | /* Advance the hole to the end of the segment */ | ||
| 483 | hole_start = (mend + (size - 1)) & ~(size - 1); | ||
| 484 | hole_end = hole_start + size - 1; | ||
| 485 | break; | ||
| 486 | } | ||
| 487 | } | ||
| 488 | /* If I don't overlap any segments I have found my hole! */ | ||
| 489 | if (i == image->nr_segments) { | ||
| 490 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | ||
| 491 | break; | ||
| 492 | } | ||
| 493 | } | ||
| 494 | if (pages) | ||
| 495 | image->control_page = hole_end; | ||
| 496 | |||
| 497 | return pages; | ||
| 498 | } | ||
| 499 | |||
| 500 | |||
| 501 | struct page *kimage_alloc_control_pages(struct kimage *image, | ||
| 502 | unsigned int order) | ||
| 503 | { | ||
| 504 | struct page *pages = NULL; | ||
| 505 | |||
| 506 | switch (image->type) { | ||
| 507 | case KEXEC_TYPE_DEFAULT: | ||
| 508 | pages = kimage_alloc_normal_control_pages(image, order); | ||
| 509 | break; | ||
| 510 | case KEXEC_TYPE_CRASH: | ||
| 511 | pages = kimage_alloc_crash_control_pages(image, order); | ||
| 512 | break; | ||
| 513 | } | ||
| 514 | |||
| 515 | return pages; | ||
| 516 | } | ||
| 517 | |||
| 518 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | ||
| 519 | { | ||
| 520 | if (*image->entry != 0) | ||
| 521 | image->entry++; | ||
| 522 | |||
| 523 | if (image->entry == image->last_entry) { | ||
| 524 | kimage_entry_t *ind_page; | ||
| 525 | struct page *page; | ||
| 526 | |||
| 527 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | ||
| 528 | if (!page) | ||
| 529 | return -ENOMEM; | ||
| 530 | |||
| 531 | ind_page = page_address(page); | ||
| 532 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | ||
| 533 | image->entry = ind_page; | ||
| 534 | image->last_entry = ind_page + | ||
| 535 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | ||
| 536 | } | ||
| 537 | *image->entry = entry; | ||
| 538 | image->entry++; | ||
| 539 | *image->entry = 0; | ||
| 540 | |||
| 541 | return 0; | ||
| 542 | } | ||
| 543 | |||
| 544 | static int kimage_set_destination(struct kimage *image, | ||
| 545 | unsigned long destination) | ||
| 546 | { | ||
| 547 | int result; | ||
| 548 | |||
| 549 | destination &= PAGE_MASK; | ||
| 550 | result = kimage_add_entry(image, destination | IND_DESTINATION); | ||
| 551 | if (result == 0) | ||
| 552 | image->destination = destination; | ||
| 553 | |||
| 554 | return result; | ||
| 555 | } | ||
| 556 | |||
| 557 | |||
| 558 | static int kimage_add_page(struct kimage *image, unsigned long page) | ||
| 559 | { | ||
| 560 | int result; | ||
| 561 | |||
| 562 | page &= PAGE_MASK; | ||
| 563 | result = kimage_add_entry(image, page | IND_SOURCE); | ||
| 564 | if (result == 0) | ||
| 565 | image->destination += PAGE_SIZE; | ||
| 566 | |||
| 567 | return result; | ||
| 568 | } | ||
| 569 | |||
| 570 | |||
| 571 | static void kimage_free_extra_pages(struct kimage *image) | ||
| 572 | { | ||
| 573 | /* Walk through and free any extra destination pages I may have */ | ||
| 574 | kimage_free_page_list(&image->dest_pages); | ||
| 575 | |||
| 576 | /* Walk through and free any unuseable pages I have cached */ | ||
| 577 | kimage_free_page_list(&image->unuseable_pages); | ||
| 578 | |||
| 579 | } | ||
| 580 | static int kimage_terminate(struct kimage *image) | ||
| 581 | { | ||
| 582 | if (*image->entry != 0) | ||
| 583 | image->entry++; | ||
| 584 | |||
| 585 | *image->entry = IND_DONE; | ||
| 586 | |||
| 587 | return 0; | ||
| 588 | } | ||
| 589 | |||
| 590 | #define for_each_kimage_entry(image, ptr, entry) \ | ||
| 591 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | ||
| 592 | ptr = (entry & IND_INDIRECTION)? \ | ||
| 593 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | ||
| 594 | |||
| 595 | static void kimage_free_entry(kimage_entry_t entry) | ||
| 596 | { | ||
| 597 | struct page *page; | ||
| 598 | |||
| 599 | page = pfn_to_page(entry >> PAGE_SHIFT); | ||
| 600 | kimage_free_pages(page); | ||
| 601 | } | ||
| 602 | |||
| 603 | static void kimage_free(struct kimage *image) | ||
| 604 | { | ||
| 605 | kimage_entry_t *ptr, entry; | ||
| 606 | kimage_entry_t ind = 0; | ||
| 607 | |||
| 608 | if (!image) | ||
| 609 | return; | ||
| 610 | |||
| 611 | kimage_free_extra_pages(image); | ||
| 612 | for_each_kimage_entry(image, ptr, entry) { | ||
| 613 | if (entry & IND_INDIRECTION) { | ||
| 614 | /* Free the previous indirection page */ | ||
| 615 | if (ind & IND_INDIRECTION) | ||
| 616 | kimage_free_entry(ind); | ||
| 617 | /* Save this indirection page until we are | ||
| 618 | * done with it. | ||
| 619 | */ | ||
| 620 | ind = entry; | ||
| 621 | } | ||
| 622 | else if (entry & IND_SOURCE) | ||
| 623 | kimage_free_entry(entry); | ||
| 624 | } | ||
| 625 | /* Free the final indirection page */ | ||
| 626 | if (ind & IND_INDIRECTION) | ||
| 627 | kimage_free_entry(ind); | ||
| 628 | |||
| 629 | /* Handle any machine specific cleanup */ | ||
| 630 | machine_kexec_cleanup(image); | ||
| 631 | |||
| 632 | /* Free the kexec control pages... */ | ||
| 633 | kimage_free_page_list(&image->control_pages); | ||
| 634 | kfree(image); | ||
| 635 | } | ||
| 636 | |||
| 637 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | ||
| 638 | unsigned long page) | ||
| 639 | { | ||
| 640 | kimage_entry_t *ptr, entry; | ||
| 641 | unsigned long destination = 0; | ||
| 642 | |||
| 643 | for_each_kimage_entry(image, ptr, entry) { | ||
| 644 | if (entry & IND_DESTINATION) | ||
| 645 | destination = entry & PAGE_MASK; | ||
| 646 | else if (entry & IND_SOURCE) { | ||
| 647 | if (page == destination) | ||
| 648 | return ptr; | ||
| 649 | destination += PAGE_SIZE; | ||
| 650 | } | ||
| 651 | } | ||
| 652 | |||
| 653 | return 0; | ||
| 654 | } | ||
| 655 | |||
| 656 | static struct page *kimage_alloc_page(struct kimage *image, | ||
| 657 | unsigned int gfp_mask, | ||
| 658 | unsigned long destination) | ||
| 659 | { | ||
| 660 | /* | ||
| 661 | * Here we implement safeguards to ensure that a source page | ||
| 662 | * is not copied to its destination page before the data on | ||
| 663 | * the destination page is no longer useful. | ||
| 664 | * | ||
| 665 | * To do this we maintain the invariant that a source page is | ||
| 666 | * either its own destination page, or it is not a | ||
| 667 | * destination page at all. | ||
| 668 | * | ||
| 669 | * That is slightly stronger than required, but the proof | ||
| 670 | * that no problems will not occur is trivial, and the | ||
| 671 | * implementation is simply to verify. | ||
| 672 | * | ||
| 673 | * When allocating all pages normally this algorithm will run | ||
| 674 | * in O(N) time, but in the worst case it will run in O(N^2) | ||
| 675 | * time. If the runtime is a problem the data structures can | ||
| 676 | * be fixed. | ||
| 677 | */ | ||
| 678 | struct page *page; | ||
| 679 | unsigned long addr; | ||
| 680 | |||
| 681 | /* | ||
| 682 | * Walk through the list of destination pages, and see if I | ||
| 683 | * have a match. | ||
| 684 | */ | ||
| 685 | list_for_each_entry(page, &image->dest_pages, lru) { | ||
| 686 | addr = page_to_pfn(page) << PAGE_SHIFT; | ||
| 687 | if (addr == destination) { | ||
| 688 | list_del(&page->lru); | ||
| 689 | return page; | ||
| 690 | } | ||
| 691 | } | ||
| 692 | page = NULL; | ||
| 693 | while (1) { | ||
| 694 | kimage_entry_t *old; | ||
| 695 | |||
| 696 | /* Allocate a page, if we run out of memory give up */ | ||
| 697 | page = kimage_alloc_pages(gfp_mask, 0); | ||
| 698 | if (!page) | ||
| 699 | return 0; | ||
| 700 | /* If the page cannot be used file it away */ | ||
| 701 | if (page_to_pfn(page) > | ||
| 702 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | ||
| 703 | list_add(&page->lru, &image->unuseable_pages); | ||
| 704 | continue; | ||
| 705 | } | ||
| 706 | addr = page_to_pfn(page) << PAGE_SHIFT; | ||
| 707 | |||
| 708 | /* If it is the destination page we want use it */ | ||
| 709 | if (addr == destination) | ||
| 710 | break; | ||
| 711 | |||
| 712 | /* If the page is not a destination page use it */ | ||
| 713 | if (!kimage_is_destination_range(image, addr, | ||
| 714 | addr + PAGE_SIZE)) | ||
| 715 | break; | ||
| 716 | |||
| 717 | /* | ||
| 718 | * I know that the page is someones destination page. | ||
| 719 | * See if there is already a source page for this | ||
| 720 | * destination page. And if so swap the source pages. | ||
| 721 | */ | ||
| 722 | old = kimage_dst_used(image, addr); | ||
| 723 | if (old) { | ||
| 724 | /* If so move it */ | ||
| 725 | unsigned long old_addr; | ||
| 726 | struct page *old_page; | ||
| 727 | |||
| 728 | old_addr = *old & PAGE_MASK; | ||
| 729 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | ||
| 730 | copy_highpage(page, old_page); | ||
| 731 | *old = addr | (*old & ~PAGE_MASK); | ||
| 732 | |||
| 733 | /* The old page I have found cannot be a | ||
| 734 | * destination page, so return it. | ||
| 735 | */ | ||
| 736 | addr = old_addr; | ||
| 737 | page = old_page; | ||
| 738 | break; | ||
| 739 | } | ||
| 740 | else { | ||
| 741 | /* Place the page on the destination list I | ||
| 742 | * will use it later. | ||
| 743 | */ | ||
| 744 | list_add(&page->lru, &image->dest_pages); | ||
| 745 | } | ||
| 746 | } | ||
| 747 | |||
| 748 | return page; | ||
| 749 | } | ||
| 750 | |||
| 751 | static int kimage_load_normal_segment(struct kimage *image, | ||
| 752 | struct kexec_segment *segment) | ||
| 753 | { | ||
| 754 | unsigned long maddr; | ||
| 755 | unsigned long ubytes, mbytes; | ||
| 756 | int result; | ||
| 757 | unsigned char *buf; | ||
| 758 | |||
| 759 | result = 0; | ||
| 760 | buf = segment->buf; | ||
| 761 | ubytes = segment->bufsz; | ||
| 762 | mbytes = segment->memsz; | ||
| 763 | maddr = segment->mem; | ||
| 764 | |||
| 765 | result = kimage_set_destination(image, maddr); | ||
| 766 | if (result < 0) | ||
| 767 | goto out; | ||
| 768 | |||
| 769 | while (mbytes) { | ||
| 770 | struct page *page; | ||
| 771 | char *ptr; | ||
| 772 | size_t uchunk, mchunk; | ||
| 773 | |||
| 774 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | ||
| 775 | if (page == 0) { | ||
| 776 | result = -ENOMEM; | ||
| 777 | goto out; | ||
| 778 | } | ||
| 779 | result = kimage_add_page(image, page_to_pfn(page) | ||
| 780 | << PAGE_SHIFT); | ||
| 781 | if (result < 0) | ||
| 782 | goto out; | ||
| 783 | |||
| 784 | ptr = kmap(page); | ||
| 785 | /* Start with a clear page */ | ||
| 786 | memset(ptr, 0, PAGE_SIZE); | ||
| 787 | ptr += maddr & ~PAGE_MASK; | ||
| 788 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | ||
| 789 | if (mchunk > mbytes) | ||
| 790 | mchunk = mbytes; | ||
| 791 | |||
| 792 | uchunk = mchunk; | ||
| 793 | if (uchunk > ubytes) | ||
| 794 | uchunk = ubytes; | ||
| 795 | |||
| 796 | result = copy_from_user(ptr, buf, uchunk); | ||
| 797 | kunmap(page); | ||
| 798 | if (result) { | ||
| 799 | result = (result < 0) ? result : -EIO; | ||
| 800 | goto out; | ||
| 801 | } | ||
| 802 | ubytes -= uchunk; | ||
| 803 | maddr += mchunk; | ||
| 804 | buf += mchunk; | ||
| 805 | mbytes -= mchunk; | ||
| 806 | } | ||
| 807 | out: | ||
| 808 | return result; | ||
| 809 | } | ||
| 810 | |||
| 811 | static int kimage_load_crash_segment(struct kimage *image, | ||
| 812 | struct kexec_segment *segment) | ||
| 813 | { | ||
| 814 | /* For crash dumps kernels we simply copy the data from | ||
| 815 | * user space to it's destination. | ||
| 816 | * We do things a page at a time for the sake of kmap. | ||
| 817 | */ | ||
| 818 | unsigned long maddr; | ||
| 819 | unsigned long ubytes, mbytes; | ||
| 820 | int result; | ||
| 821 | unsigned char *buf; | ||
| 822 | |||
| 823 | result = 0; | ||
| 824 | buf = segment->buf; | ||
| 825 | ubytes = segment->bufsz; | ||
| 826 | mbytes = segment->memsz; | ||
| 827 | maddr = segment->mem; | ||
| 828 | while (mbytes) { | ||
| 829 | struct page *page; | ||
| 830 | char *ptr; | ||
| 831 | size_t uchunk, mchunk; | ||
| 832 | |||
| 833 | page = pfn_to_page(maddr >> PAGE_SHIFT); | ||
| 834 | if (page == 0) { | ||
| 835 | result = -ENOMEM; | ||
| 836 | goto out; | ||
| 837 | } | ||
| 838 | ptr = kmap(page); | ||
| 839 | ptr += maddr & ~PAGE_MASK; | ||
| 840 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | ||
| 841 | if (mchunk > mbytes) | ||
| 842 | mchunk = mbytes; | ||
| 843 | |||
| 844 | uchunk = mchunk; | ||
| 845 | if (uchunk > ubytes) { | ||
| 846 | uchunk = ubytes; | ||
| 847 | /* Zero the trailing part of the page */ | ||
| 848 | memset(ptr + uchunk, 0, mchunk - uchunk); | ||
| 849 | } | ||
| 850 | result = copy_from_user(ptr, buf, uchunk); | ||
| 851 | kunmap(page); | ||
| 852 | if (result) { | ||
| 853 | result = (result < 0) ? result : -EIO; | ||
| 854 | goto out; | ||
| 855 | } | ||
| 856 | ubytes -= uchunk; | ||
| 857 | maddr += mchunk; | ||
| 858 | buf += mchunk; | ||
| 859 | mbytes -= mchunk; | ||
| 860 | } | ||
| 861 | out: | ||
| 862 | return result; | ||
| 863 | } | ||
| 864 | |||
| 865 | static int kimage_load_segment(struct kimage *image, | ||
| 866 | struct kexec_segment *segment) | ||
| 867 | { | ||
| 868 | int result = -ENOMEM; | ||
| 869 | |||
| 870 | switch (image->type) { | ||
| 871 | case KEXEC_TYPE_DEFAULT: | ||
| 872 | result = kimage_load_normal_segment(image, segment); | ||
| 873 | break; | ||
| 874 | case KEXEC_TYPE_CRASH: | ||
| 875 | result = kimage_load_crash_segment(image, segment); | ||
| 876 | break; | ||
| 877 | } | ||
| 878 | |||
| 879 | return result; | ||
| 880 | } | ||
| 881 | |||
| 882 | /* | ||
| 883 | * Exec Kernel system call: for obvious reasons only root may call it. | ||
| 884 | * | ||
| 885 | * This call breaks up into three pieces. | ||
| 886 | * - A generic part which loads the new kernel from the current | ||
| 887 | * address space, and very carefully places the data in the | ||
| 888 | * allocated pages. | ||
| 889 | * | ||
| 890 | * - A generic part that interacts with the kernel and tells all of | ||
| 891 | * the devices to shut down. Preventing on-going dmas, and placing | ||
| 892 | * the devices in a consistent state so a later kernel can | ||
| 893 | * reinitialize them. | ||
| 894 | * | ||
| 895 | * - A machine specific part that includes the syscall number | ||
| 896 | * and the copies the image to it's final destination. And | ||
| 897 | * jumps into the image at entry. | ||
| 898 | * | ||
| 899 | * kexec does not sync, or unmount filesystems so if you need | ||
| 900 | * that to happen you need to do that yourself. | ||
| 901 | */ | ||
| 902 | struct kimage *kexec_image = NULL; | ||
| 903 | static struct kimage *kexec_crash_image = NULL; | ||
| 904 | /* | ||
| 905 | * A home grown binary mutex. | ||
| 906 | * Nothing can wait so this mutex is safe to use | ||
| 907 | * in interrupt context :) | ||
| 908 | */ | ||
| 909 | static int kexec_lock = 0; | ||
| 910 | |||
| 911 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, | ||
| 912 | struct kexec_segment __user *segments, | ||
| 913 | unsigned long flags) | ||
| 914 | { | ||
| 915 | struct kimage **dest_image, *image; | ||
| 916 | int locked; | ||
| 917 | int result; | ||
| 918 | |||
| 919 | /* We only trust the superuser with rebooting the system. */ | ||
| 920 | if (!capable(CAP_SYS_BOOT)) | ||
| 921 | return -EPERM; | ||
| 922 | |||
| 923 | /* | ||
| 924 | * Verify we have a legal set of flags | ||
| 925 | * This leaves us room for future extensions. | ||
| 926 | */ | ||
| 927 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | ||
| 928 | return -EINVAL; | ||
| 929 | |||
| 930 | /* Verify we are on the appropriate architecture */ | ||
| 931 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | ||
| 932 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | ||
| 933 | return -EINVAL; | ||
| 934 | |||
| 935 | /* Put an artificial cap on the number | ||
| 936 | * of segments passed to kexec_load. | ||
| 937 | */ | ||
| 938 | if (nr_segments > KEXEC_SEGMENT_MAX) | ||
| 939 | return -EINVAL; | ||
| 940 | |||
| 941 | image = NULL; | ||
| 942 | result = 0; | ||
| 943 | |||
| 944 | /* Because we write directly to the reserved memory | ||
| 945 | * region when loading crash kernels we need a mutex here to | ||
| 946 | * prevent multiple crash kernels from attempting to load | ||
| 947 | * simultaneously, and to prevent a crash kernel from loading | ||
| 948 | * over the top of a in use crash kernel. | ||
| 949 | * | ||
| 950 | * KISS: always take the mutex. | ||
| 951 | */ | ||
| 952 | locked = xchg(&kexec_lock, 1); | ||
| 953 | if (locked) | ||
| 954 | return -EBUSY; | ||
| 955 | |||
| 956 | dest_image = &kexec_image; | ||
| 957 | if (flags & KEXEC_ON_CRASH) | ||
| 958 | dest_image = &kexec_crash_image; | ||
| 959 | if (nr_segments > 0) { | ||
| 960 | unsigned long i; | ||
| 961 | |||
| 962 | /* Loading another kernel to reboot into */ | ||
| 963 | if ((flags & KEXEC_ON_CRASH) == 0) | ||
| 964 | result = kimage_normal_alloc(&image, entry, | ||
| 965 | nr_segments, segments); | ||
| 966 | /* Loading another kernel to switch to if this one crashes */ | ||
| 967 | else if (flags & KEXEC_ON_CRASH) { | ||
| 968 | /* Free any current crash dump kernel before | ||
| 969 | * we corrupt it. | ||
| 970 | */ | ||
| 971 | kimage_free(xchg(&kexec_crash_image, NULL)); | ||
| 972 | result = kimage_crash_alloc(&image, entry, | ||
| 973 | nr_segments, segments); | ||
| 974 | } | ||
| 975 | if (result) | ||
| 976 | goto out; | ||
| 977 | |||
| 978 | result = machine_kexec_prepare(image); | ||
| 979 | if (result) | ||
| 980 | goto out; | ||
| 981 | |||
| 982 | for (i = 0; i < nr_segments; i++) { | ||
| 983 | result = kimage_load_segment(image, &image->segment[i]); | ||
| 984 | if (result) | ||
| 985 | goto out; | ||
| 986 | } | ||
| 987 | result = kimage_terminate(image); | ||
| 988 | if (result) | ||
| 989 | goto out; | ||
| 990 | } | ||
| 991 | /* Install the new kernel, and Uninstall the old */ | ||
| 992 | image = xchg(dest_image, image); | ||
| 993 | |||
| 994 | out: | ||
| 995 | xchg(&kexec_lock, 0); /* Release the mutex */ | ||
| 996 | kimage_free(image); | ||
| 997 | |||
| 998 | return result; | ||
| 999 | } | ||
| 1000 | |||
| 1001 | #ifdef CONFIG_COMPAT | ||
| 1002 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | ||
| 1003 | unsigned long nr_segments, | ||
| 1004 | struct compat_kexec_segment __user *segments, | ||
| 1005 | unsigned long flags) | ||
| 1006 | { | ||
| 1007 | struct compat_kexec_segment in; | ||
| 1008 | struct kexec_segment out, __user *ksegments; | ||
| 1009 | unsigned long i, result; | ||
| 1010 | |||
| 1011 | /* Don't allow clients that don't understand the native | ||
| 1012 | * architecture to do anything. | ||
| 1013 | */ | ||
| 1014 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) | ||
| 1015 | return -EINVAL; | ||
| 1016 | |||
| 1017 | if (nr_segments > KEXEC_SEGMENT_MAX) | ||
| 1018 | return -EINVAL; | ||
| 1019 | |||
| 1020 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | ||
| 1021 | for (i=0; i < nr_segments; i++) { | ||
| 1022 | result = copy_from_user(&in, &segments[i], sizeof(in)); | ||
| 1023 | if (result) | ||
| 1024 | return -EFAULT; | ||
| 1025 | |||
| 1026 | out.buf = compat_ptr(in.buf); | ||
| 1027 | out.bufsz = in.bufsz; | ||
| 1028 | out.mem = in.mem; | ||
| 1029 | out.memsz = in.memsz; | ||
| 1030 | |||
| 1031 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | ||
| 1032 | if (result) | ||
| 1033 | return -EFAULT; | ||
| 1034 | } | ||
| 1035 | |||
| 1036 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | ||
| 1037 | } | ||
| 1038 | #endif | ||
| 1039 | |||
| 1040 | void crash_kexec(struct pt_regs *regs) | ||
| 1041 | { | ||
| 1042 | struct kimage *image; | ||
| 1043 | int locked; | ||
| 1044 | |||
| 1045 | |||
| 1046 | /* Take the kexec_lock here to prevent sys_kexec_load | ||
| 1047 | * running on one cpu from replacing the crash kernel | ||
| 1048 | * we are using after a panic on a different cpu. | ||
| 1049 | * | ||
| 1050 | * If the crash kernel was not located in a fixed area | ||
| 1051 | * of memory the xchg(&kexec_crash_image) would be | ||
| 1052 | * sufficient. But since I reuse the memory... | ||
| 1053 | */ | ||
| 1054 | locked = xchg(&kexec_lock, 1); | ||
| 1055 | if (!locked) { | ||
| 1056 | image = xchg(&kexec_crash_image, NULL); | ||
| 1057 | if (image) { | ||
| 1058 | machine_crash_shutdown(regs); | ||
| 1059 | machine_kexec(image); | ||
| 1060 | } | ||
| 1061 | xchg(&kexec_lock, 0); | ||
| 1062 | } | ||
| 1063 | } | ||
