diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-02-16 04:28:11 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@woody.linux-foundation.org> | 2007-02-16 11:13:59 -0500 |
commit | 54cdfdb47f73b5af3d1ebb0f1e383efbe70fde9e (patch) | |
tree | e2f76277f6b7546e53c3a1d025e31bceb10bbff5 /kernel/hrtimer.c | |
parent | d40891e75fc1f646dce57d5d3bd1349a6aaf7a0e (diff) |
[PATCH] hrtimers: add high resolution timer support
Implement high resolution timers on top of the hrtimers infrastructure and the
clockevents / tick-management framework. This provides accurate timers for
all hrtimer subsystem users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'kernel/hrtimer.c')
-rw-r--r-- | kernel/hrtimer.c | 568 |
1 files changed, 520 insertions, 48 deletions
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index e04ef38ea3be..62aad8e1a383 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -3,7 +3,7 @@ | |||
3 | * | 3 | * |
4 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 4 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner <tglx@timesys.com> | 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
7 | * | 7 | * |
8 | * High-resolution kernel timers | 8 | * High-resolution kernel timers |
9 | * | 9 | * |
@@ -32,13 +32,17 @@ | |||
32 | */ | 32 | */ |
33 | 33 | ||
34 | #include <linux/cpu.h> | 34 | #include <linux/cpu.h> |
35 | #include <linux/irq.h> | ||
35 | #include <linux/module.h> | 36 | #include <linux/module.h> |
36 | #include <linux/percpu.h> | 37 | #include <linux/percpu.h> |
37 | #include <linux/hrtimer.h> | 38 | #include <linux/hrtimer.h> |
38 | #include <linux/notifier.h> | 39 | #include <linux/notifier.h> |
39 | #include <linux/syscalls.h> | 40 | #include <linux/syscalls.h> |
41 | #include <linux/kallsyms.h> | ||
40 | #include <linux/interrupt.h> | 42 | #include <linux/interrupt.h> |
41 | #include <linux/tick.h> | 43 | #include <linux/tick.h> |
44 | #include <linux/seq_file.h> | ||
45 | #include <linux/err.h> | ||
42 | 46 | ||
43 | #include <asm/uaccess.h> | 47 | #include <asm/uaccess.h> |
44 | 48 | ||
@@ -81,7 +85,7 @@ EXPORT_SYMBOL_GPL(ktime_get_real); | |||
81 | * This ensures that we capture erroneous accesses to these clock ids | 85 | * This ensures that we capture erroneous accesses to these clock ids |
82 | * rather than moving them into the range of valid clock id's. | 86 | * rather than moving them into the range of valid clock id's. |
83 | */ | 87 | */ |
84 | static DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | 88 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
85 | { | 89 | { |
86 | 90 | ||
87 | .clock_base = | 91 | .clock_base = |
@@ -89,12 +93,12 @@ static DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | |||
89 | { | 93 | { |
90 | .index = CLOCK_REALTIME, | 94 | .index = CLOCK_REALTIME, |
91 | .get_time = &ktime_get_real, | 95 | .get_time = &ktime_get_real, |
92 | .resolution = KTIME_REALTIME_RES, | 96 | .resolution = KTIME_LOW_RES, |
93 | }, | 97 | }, |
94 | { | 98 | { |
95 | .index = CLOCK_MONOTONIC, | 99 | .index = CLOCK_MONOTONIC, |
96 | .get_time = &ktime_get, | 100 | .get_time = &ktime_get, |
97 | .resolution = KTIME_MONOTONIC_RES, | 101 | .resolution = KTIME_LOW_RES, |
98 | }, | 102 | }, |
99 | } | 103 | } |
100 | }; | 104 | }; |
@@ -151,14 +155,6 @@ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) | |||
151 | } | 155 | } |
152 | 156 | ||
153 | /* | 157 | /* |
154 | * Helper function to check, whether the timer is on one of the queues | ||
155 | */ | ||
156 | static inline int hrtimer_is_queued(struct hrtimer *timer) | ||
157 | { | ||
158 | return timer->state & HRTIMER_STATE_ENQUEUED; | ||
159 | } | ||
160 | |||
161 | /* | ||
162 | * Helper function to check, whether the timer is running the callback | 158 | * Helper function to check, whether the timer is running the callback |
163 | * function | 159 | * function |
164 | */ | 160 | */ |
@@ -226,7 +222,7 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
226 | * completed. There is no conflict as we hold the lock until | 222 | * completed. There is no conflict as we hold the lock until |
227 | * the timer is enqueued. | 223 | * the timer is enqueued. |
228 | */ | 224 | */ |
229 | if (unlikely(timer->state & HRTIMER_STATE_CALLBACK)) | 225 | if (unlikely(hrtimer_callback_running(timer))) |
230 | return base; | 226 | return base; |
231 | 227 | ||
232 | /* See the comment in lock_timer_base() */ | 228 | /* See the comment in lock_timer_base() */ |
@@ -250,7 +246,7 @@ lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |||
250 | return base; | 246 | return base; |
251 | } | 247 | } |
252 | 248 | ||
253 | #define switch_hrtimer_base(t, b) (b) | 249 | # define switch_hrtimer_base(t, b) (b) |
254 | 250 | ||
255 | #endif /* !CONFIG_SMP */ | 251 | #endif /* !CONFIG_SMP */ |
256 | 252 | ||
@@ -281,9 +277,6 @@ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | |||
281 | 277 | ||
282 | return ktime_add(kt, tmp); | 278 | return ktime_add(kt, tmp); |
283 | } | 279 | } |
284 | |||
285 | #else /* CONFIG_KTIME_SCALAR */ | ||
286 | |||
287 | # endif /* !CONFIG_KTIME_SCALAR */ | 280 | # endif /* !CONFIG_KTIME_SCALAR */ |
288 | 281 | ||
289 | /* | 282 | /* |
@@ -308,6 +301,290 @@ unsigned long ktime_divns(const ktime_t kt, s64 div) | |||
308 | } | 301 | } |
309 | #endif /* BITS_PER_LONG >= 64 */ | 302 | #endif /* BITS_PER_LONG >= 64 */ |
310 | 303 | ||
304 | /* High resolution timer related functions */ | ||
305 | #ifdef CONFIG_HIGH_RES_TIMERS | ||
306 | |||
307 | /* | ||
308 | * High resolution timer enabled ? | ||
309 | */ | ||
310 | static int hrtimer_hres_enabled __read_mostly = 1; | ||
311 | |||
312 | /* | ||
313 | * Enable / Disable high resolution mode | ||
314 | */ | ||
315 | static int __init setup_hrtimer_hres(char *str) | ||
316 | { | ||
317 | if (!strcmp(str, "off")) | ||
318 | hrtimer_hres_enabled = 0; | ||
319 | else if (!strcmp(str, "on")) | ||
320 | hrtimer_hres_enabled = 1; | ||
321 | else | ||
322 | return 0; | ||
323 | return 1; | ||
324 | } | ||
325 | |||
326 | __setup("highres=", setup_hrtimer_hres); | ||
327 | |||
328 | /* | ||
329 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | ||
330 | */ | ||
331 | static inline int hrtimer_is_hres_enabled(void) | ||
332 | { | ||
333 | return hrtimer_hres_enabled; | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * Is the high resolution mode active ? | ||
338 | */ | ||
339 | static inline int hrtimer_hres_active(void) | ||
340 | { | ||
341 | return __get_cpu_var(hrtimer_bases).hres_active; | ||
342 | } | ||
343 | |||
344 | /* | ||
345 | * Reprogram the event source with checking both queues for the | ||
346 | * next event | ||
347 | * Called with interrupts disabled and base->lock held | ||
348 | */ | ||
349 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | ||
350 | { | ||
351 | int i; | ||
352 | struct hrtimer_clock_base *base = cpu_base->clock_base; | ||
353 | ktime_t expires; | ||
354 | |||
355 | cpu_base->expires_next.tv64 = KTIME_MAX; | ||
356 | |||
357 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | ||
358 | struct hrtimer *timer; | ||
359 | |||
360 | if (!base->first) | ||
361 | continue; | ||
362 | timer = rb_entry(base->first, struct hrtimer, node); | ||
363 | expires = ktime_sub(timer->expires, base->offset); | ||
364 | if (expires.tv64 < cpu_base->expires_next.tv64) | ||
365 | cpu_base->expires_next = expires; | ||
366 | } | ||
367 | |||
368 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | ||
369 | tick_program_event(cpu_base->expires_next, 1); | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Shared reprogramming for clock_realtime and clock_monotonic | ||
374 | * | ||
375 | * When a timer is enqueued and expires earlier than the already enqueued | ||
376 | * timers, we have to check, whether it expires earlier than the timer for | ||
377 | * which the clock event device was armed. | ||
378 | * | ||
379 | * Called with interrupts disabled and base->cpu_base.lock held | ||
380 | */ | ||
381 | static int hrtimer_reprogram(struct hrtimer *timer, | ||
382 | struct hrtimer_clock_base *base) | ||
383 | { | ||
384 | ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; | ||
385 | ktime_t expires = ktime_sub(timer->expires, base->offset); | ||
386 | int res; | ||
387 | |||
388 | /* | ||
389 | * When the callback is running, we do not reprogram the clock event | ||
390 | * device. The timer callback is either running on a different CPU or | ||
391 | * the callback is executed in the hrtimer_interupt context. The | ||
392 | * reprogramming is handled either by the softirq, which called the | ||
393 | * callback or at the end of the hrtimer_interrupt. | ||
394 | */ | ||
395 | if (hrtimer_callback_running(timer)) | ||
396 | return 0; | ||
397 | |||
398 | if (expires.tv64 >= expires_next->tv64) | ||
399 | return 0; | ||
400 | |||
401 | /* | ||
402 | * Clockevents returns -ETIME, when the event was in the past. | ||
403 | */ | ||
404 | res = tick_program_event(expires, 0); | ||
405 | if (!IS_ERR_VALUE(res)) | ||
406 | *expires_next = expires; | ||
407 | return res; | ||
408 | } | ||
409 | |||
410 | |||
411 | /* | ||
412 | * Retrigger next event is called after clock was set | ||
413 | * | ||
414 | * Called with interrupts disabled via on_each_cpu() | ||
415 | */ | ||
416 | static void retrigger_next_event(void *arg) | ||
417 | { | ||
418 | struct hrtimer_cpu_base *base; | ||
419 | struct timespec realtime_offset; | ||
420 | unsigned long seq; | ||
421 | |||
422 | if (!hrtimer_hres_active()) | ||
423 | return; | ||
424 | |||
425 | do { | ||
426 | seq = read_seqbegin(&xtime_lock); | ||
427 | set_normalized_timespec(&realtime_offset, | ||
428 | -wall_to_monotonic.tv_sec, | ||
429 | -wall_to_monotonic.tv_nsec); | ||
430 | } while (read_seqretry(&xtime_lock, seq)); | ||
431 | |||
432 | base = &__get_cpu_var(hrtimer_bases); | ||
433 | |||
434 | /* Adjust CLOCK_REALTIME offset */ | ||
435 | spin_lock(&base->lock); | ||
436 | base->clock_base[CLOCK_REALTIME].offset = | ||
437 | timespec_to_ktime(realtime_offset); | ||
438 | |||
439 | hrtimer_force_reprogram(base); | ||
440 | spin_unlock(&base->lock); | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * Clock realtime was set | ||
445 | * | ||
446 | * Change the offset of the realtime clock vs. the monotonic | ||
447 | * clock. | ||
448 | * | ||
449 | * We might have to reprogram the high resolution timer interrupt. On | ||
450 | * SMP we call the architecture specific code to retrigger _all_ high | ||
451 | * resolution timer interrupts. On UP we just disable interrupts and | ||
452 | * call the high resolution interrupt code. | ||
453 | */ | ||
454 | void clock_was_set(void) | ||
455 | { | ||
456 | /* Retrigger the CPU local events everywhere */ | ||
457 | on_each_cpu(retrigger_next_event, NULL, 0, 1); | ||
458 | } | ||
459 | |||
460 | /* | ||
461 | * Check, whether the timer is on the callback pending list | ||
462 | */ | ||
463 | static inline int hrtimer_cb_pending(const struct hrtimer *timer) | ||
464 | { | ||
465 | return timer->state & HRTIMER_STATE_PENDING; | ||
466 | } | ||
467 | |||
468 | /* | ||
469 | * Remove a timer from the callback pending list | ||
470 | */ | ||
471 | static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) | ||
472 | { | ||
473 | list_del_init(&timer->cb_entry); | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * Initialize the high resolution related parts of cpu_base | ||
478 | */ | ||
479 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | ||
480 | { | ||
481 | base->expires_next.tv64 = KTIME_MAX; | ||
482 | base->hres_active = 0; | ||
483 | INIT_LIST_HEAD(&base->cb_pending); | ||
484 | } | ||
485 | |||
486 | /* | ||
487 | * Initialize the high resolution related parts of a hrtimer | ||
488 | */ | ||
489 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) | ||
490 | { | ||
491 | INIT_LIST_HEAD(&timer->cb_entry); | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * When High resolution timers are active, try to reprogram. Note, that in case | ||
496 | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | ||
497 | * check happens. The timer gets enqueued into the rbtree. The reprogramming | ||
498 | * and expiry check is done in the hrtimer_interrupt or in the softirq. | ||
499 | */ | ||
500 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | ||
501 | struct hrtimer_clock_base *base) | ||
502 | { | ||
503 | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | ||
504 | |||
505 | /* Timer is expired, act upon the callback mode */ | ||
506 | switch(timer->cb_mode) { | ||
507 | case HRTIMER_CB_IRQSAFE_NO_RESTART: | ||
508 | /* | ||
509 | * We can call the callback from here. No restart | ||
510 | * happens, so no danger of recursion | ||
511 | */ | ||
512 | BUG_ON(timer->function(timer) != HRTIMER_NORESTART); | ||
513 | return 1; | ||
514 | case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: | ||
515 | /* | ||
516 | * This is solely for the sched tick emulation with | ||
517 | * dynamic tick support to ensure that we do not | ||
518 | * restart the tick right on the edge and end up with | ||
519 | * the tick timer in the softirq ! The calling site | ||
520 | * takes care of this. | ||
521 | */ | ||
522 | return 1; | ||
523 | case HRTIMER_CB_IRQSAFE: | ||
524 | case HRTIMER_CB_SOFTIRQ: | ||
525 | /* | ||
526 | * Move everything else into the softirq pending list ! | ||
527 | */ | ||
528 | list_add_tail(&timer->cb_entry, | ||
529 | &base->cpu_base->cb_pending); | ||
530 | timer->state = HRTIMER_STATE_PENDING; | ||
531 | raise_softirq(HRTIMER_SOFTIRQ); | ||
532 | return 1; | ||
533 | default: | ||
534 | BUG(); | ||
535 | } | ||
536 | } | ||
537 | return 0; | ||
538 | } | ||
539 | |||
540 | /* | ||
541 | * Switch to high resolution mode | ||
542 | */ | ||
543 | static void hrtimer_switch_to_hres(void) | ||
544 | { | ||
545 | struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); | ||
546 | unsigned long flags; | ||
547 | |||
548 | if (base->hres_active) | ||
549 | return; | ||
550 | |||
551 | local_irq_save(flags); | ||
552 | |||
553 | if (tick_init_highres()) { | ||
554 | local_irq_restore(flags); | ||
555 | return; | ||
556 | } | ||
557 | base->hres_active = 1; | ||
558 | base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; | ||
559 | base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; | ||
560 | |||
561 | tick_setup_sched_timer(); | ||
562 | |||
563 | /* "Retrigger" the interrupt to get things going */ | ||
564 | retrigger_next_event(NULL); | ||
565 | local_irq_restore(flags); | ||
566 | printk(KERN_INFO "Switched to high resolution mode on CPU %d\n", | ||
567 | smp_processor_id()); | ||
568 | } | ||
569 | |||
570 | #else | ||
571 | |||
572 | static inline int hrtimer_hres_active(void) { return 0; } | ||
573 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | ||
574 | static inline void hrtimer_switch_to_hres(void) { } | ||
575 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | ||
576 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | ||
577 | struct hrtimer_clock_base *base) | ||
578 | { | ||
579 | return 0; | ||
580 | } | ||
581 | static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; } | ||
582 | static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { } | ||
583 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } | ||
584 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } | ||
585 | |||
586 | #endif /* CONFIG_HIGH_RES_TIMERS */ | ||
587 | |||
311 | /* | 588 | /* |
312 | * Counterpart to lock_timer_base above: | 589 | * Counterpart to lock_timer_base above: |
313 | */ | 590 | */ |
@@ -365,7 +642,7 @@ hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) | |||
365 | * red black tree is O(log(n)). Must hold the base lock. | 642 | * red black tree is O(log(n)). Must hold the base lock. |
366 | */ | 643 | */ |
367 | static void enqueue_hrtimer(struct hrtimer *timer, | 644 | static void enqueue_hrtimer(struct hrtimer *timer, |
368 | struct hrtimer_clock_base *base) | 645 | struct hrtimer_clock_base *base, int reprogram) |
369 | { | 646 | { |
370 | struct rb_node **link = &base->active.rb_node; | 647 | struct rb_node **link = &base->active.rb_node; |
371 | struct rb_node *parent = NULL; | 648 | struct rb_node *parent = NULL; |
@@ -391,6 +668,22 @@ static void enqueue_hrtimer(struct hrtimer *timer, | |||
391 | * Insert the timer to the rbtree and check whether it | 668 | * Insert the timer to the rbtree and check whether it |
392 | * replaces the first pending timer | 669 | * replaces the first pending timer |
393 | */ | 670 | */ |
671 | if (!base->first || timer->expires.tv64 < | ||
672 | rb_entry(base->first, struct hrtimer, node)->expires.tv64) { | ||
673 | /* | ||
674 | * Reprogram the clock event device. When the timer is already | ||
675 | * expired hrtimer_enqueue_reprogram has either called the | ||
676 | * callback or added it to the pending list and raised the | ||
677 | * softirq. | ||
678 | * | ||
679 | * This is a NOP for !HIGHRES | ||
680 | */ | ||
681 | if (reprogram && hrtimer_enqueue_reprogram(timer, base)) | ||
682 | return; | ||
683 | |||
684 | base->first = &timer->node; | ||
685 | } | ||
686 | |||
394 | rb_link_node(&timer->node, parent, link); | 687 | rb_link_node(&timer->node, parent, link); |
395 | rb_insert_color(&timer->node, &base->active); | 688 | rb_insert_color(&timer->node, &base->active); |
396 | /* | 689 | /* |
@@ -398,28 +691,38 @@ static void enqueue_hrtimer(struct hrtimer *timer, | |||
398 | * state of a possibly running callback. | 691 | * state of a possibly running callback. |
399 | */ | 692 | */ |
400 | timer->state |= HRTIMER_STATE_ENQUEUED; | 693 | timer->state |= HRTIMER_STATE_ENQUEUED; |
401 | |||
402 | if (!base->first || timer->expires.tv64 < | ||
403 | rb_entry(base->first, struct hrtimer, node)->expires.tv64) | ||
404 | base->first = &timer->node; | ||
405 | } | 694 | } |
406 | 695 | ||
407 | /* | 696 | /* |
408 | * __remove_hrtimer - internal function to remove a timer | 697 | * __remove_hrtimer - internal function to remove a timer |
409 | * | 698 | * |
410 | * Caller must hold the base lock. | 699 | * Caller must hold the base lock. |
700 | * | ||
701 | * High resolution timer mode reprograms the clock event device when the | ||
702 | * timer is the one which expires next. The caller can disable this by setting | ||
703 | * reprogram to zero. This is useful, when the context does a reprogramming | ||
704 | * anyway (e.g. timer interrupt) | ||
411 | */ | 705 | */ |
412 | static void __remove_hrtimer(struct hrtimer *timer, | 706 | static void __remove_hrtimer(struct hrtimer *timer, |
413 | struct hrtimer_clock_base *base, | 707 | struct hrtimer_clock_base *base, |
414 | unsigned long newstate) | 708 | unsigned long newstate, int reprogram) |
415 | { | 709 | { |
416 | /* | 710 | /* High res. callback list. NOP for !HIGHRES */ |
417 | * Remove the timer from the rbtree and replace the | 711 | if (hrtimer_cb_pending(timer)) |
418 | * first entry pointer if necessary. | 712 | hrtimer_remove_cb_pending(timer); |
419 | */ | 713 | else { |
420 | if (base->first == &timer->node) | 714 | /* |
421 | base->first = rb_next(&timer->node); | 715 | * Remove the timer from the rbtree and replace the |
422 | rb_erase(&timer->node, &base->active); | 716 | * first entry pointer if necessary. |
717 | */ | ||
718 | if (base->first == &timer->node) { | ||
719 | base->first = rb_next(&timer->node); | ||
720 | /* Reprogram the clock event device. if enabled */ | ||
721 | if (reprogram && hrtimer_hres_active()) | ||
722 | hrtimer_force_reprogram(base->cpu_base); | ||
723 | } | ||
724 | rb_erase(&timer->node, &base->active); | ||
725 | } | ||
423 | timer->state = newstate; | 726 | timer->state = newstate; |
424 | } | 727 | } |
425 | 728 | ||
@@ -430,7 +733,19 @@ static inline int | |||
430 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | 733 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
431 | { | 734 | { |
432 | if (hrtimer_is_queued(timer)) { | 735 | if (hrtimer_is_queued(timer)) { |
433 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE); | 736 | int reprogram; |
737 | |||
738 | /* | ||
739 | * Remove the timer and force reprogramming when high | ||
740 | * resolution mode is active and the timer is on the current | ||
741 | * CPU. If we remove a timer on another CPU, reprogramming is | ||
742 | * skipped. The interrupt event on this CPU is fired and | ||
743 | * reprogramming happens in the interrupt handler. This is a | ||
744 | * rare case and less expensive than a smp call. | ||
745 | */ | ||
746 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | ||
747 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | ||
748 | reprogram); | ||
434 | return 1; | 749 | return 1; |
435 | } | 750 | } |
436 | return 0; | 751 | return 0; |
@@ -476,7 +791,7 @@ hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | |||
476 | } | 791 | } |
477 | timer->expires = tim; | 792 | timer->expires = tim; |
478 | 793 | ||
479 | enqueue_hrtimer(timer, new_base); | 794 | enqueue_hrtimer(timer, new_base, base == new_base); |
480 | 795 | ||
481 | unlock_hrtimer_base(timer, &flags); | 796 | unlock_hrtimer_base(timer, &flags); |
482 | 797 | ||
@@ -567,17 +882,19 @@ ktime_t hrtimer_get_next_event(void) | |||
567 | 882 | ||
568 | spin_lock_irqsave(&cpu_base->lock, flags); | 883 | spin_lock_irqsave(&cpu_base->lock, flags); |
569 | 884 | ||
570 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 885 | if (!hrtimer_hres_active()) { |
571 | struct hrtimer *timer; | 886 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
887 | struct hrtimer *timer; | ||
572 | 888 | ||
573 | if (!base->first) | 889 | if (!base->first) |
574 | continue; | 890 | continue; |
575 | 891 | ||
576 | timer = rb_entry(base->first, struct hrtimer, node); | 892 | timer = rb_entry(base->first, struct hrtimer, node); |
577 | delta.tv64 = timer->expires.tv64; | 893 | delta.tv64 = timer->expires.tv64; |
578 | delta = ktime_sub(delta, base->get_time()); | 894 | delta = ktime_sub(delta, base->get_time()); |
579 | if (delta.tv64 < mindelta.tv64) | 895 | if (delta.tv64 < mindelta.tv64) |
580 | mindelta.tv64 = delta.tv64; | 896 | mindelta.tv64 = delta.tv64; |
897 | } | ||
581 | } | 898 | } |
582 | 899 | ||
583 | spin_unlock_irqrestore(&cpu_base->lock, flags); | 900 | spin_unlock_irqrestore(&cpu_base->lock, flags); |
@@ -607,6 +924,7 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
607 | clock_id = CLOCK_MONOTONIC; | 924 | clock_id = CLOCK_MONOTONIC; |
608 | 925 | ||
609 | timer->base = &cpu_base->clock_base[clock_id]; | 926 | timer->base = &cpu_base->clock_base[clock_id]; |
927 | hrtimer_init_timer_hres(timer); | ||
610 | } | 928 | } |
611 | EXPORT_SYMBOL_GPL(hrtimer_init); | 929 | EXPORT_SYMBOL_GPL(hrtimer_init); |
612 | 930 | ||
@@ -629,6 +947,139 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
629 | } | 947 | } |
630 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 948 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
631 | 949 | ||
950 | #ifdef CONFIG_HIGH_RES_TIMERS | ||
951 | |||
952 | /* | ||
953 | * High resolution timer interrupt | ||
954 | * Called with interrupts disabled | ||
955 | */ | ||
956 | void hrtimer_interrupt(struct clock_event_device *dev) | ||
957 | { | ||
958 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | ||
959 | struct hrtimer_clock_base *base; | ||
960 | ktime_t expires_next, now; | ||
961 | int i, raise = 0; | ||
962 | |||
963 | BUG_ON(!cpu_base->hres_active); | ||
964 | cpu_base->nr_events++; | ||
965 | dev->next_event.tv64 = KTIME_MAX; | ||
966 | |||
967 | retry: | ||
968 | now = ktime_get(); | ||
969 | |||
970 | expires_next.tv64 = KTIME_MAX; | ||
971 | |||
972 | base = cpu_base->clock_base; | ||
973 | |||
974 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | ||
975 | ktime_t basenow; | ||
976 | struct rb_node *node; | ||
977 | |||
978 | spin_lock(&cpu_base->lock); | ||
979 | |||
980 | basenow = ktime_add(now, base->offset); | ||
981 | |||
982 | while ((node = base->first)) { | ||
983 | struct hrtimer *timer; | ||
984 | |||
985 | timer = rb_entry(node, struct hrtimer, node); | ||
986 | |||
987 | if (basenow.tv64 < timer->expires.tv64) { | ||
988 | ktime_t expires; | ||
989 | |||
990 | expires = ktime_sub(timer->expires, | ||
991 | base->offset); | ||
992 | if (expires.tv64 < expires_next.tv64) | ||
993 | expires_next = expires; | ||
994 | break; | ||
995 | } | ||
996 | |||
997 | /* Move softirq callbacks to the pending list */ | ||
998 | if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { | ||
999 | __remove_hrtimer(timer, base, | ||
1000 | HRTIMER_STATE_PENDING, 0); | ||
1001 | list_add_tail(&timer->cb_entry, | ||
1002 | &base->cpu_base->cb_pending); | ||
1003 | raise = 1; | ||
1004 | continue; | ||
1005 | } | ||
1006 | |||
1007 | __remove_hrtimer(timer, base, | ||
1008 | HRTIMER_STATE_CALLBACK, 0); | ||
1009 | |||
1010 | /* | ||
1011 | * Note: We clear the CALLBACK bit after | ||
1012 | * enqueue_hrtimer to avoid reprogramming of | ||
1013 | * the event hardware. This happens at the end | ||
1014 | * of this function anyway. | ||
1015 | */ | ||
1016 | if (timer->function(timer) != HRTIMER_NORESTART) { | ||
1017 | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | ||
1018 | enqueue_hrtimer(timer, base, 0); | ||
1019 | } | ||
1020 | timer->state &= ~HRTIMER_STATE_CALLBACK; | ||
1021 | } | ||
1022 | spin_unlock(&cpu_base->lock); | ||
1023 | base++; | ||
1024 | } | ||
1025 | |||
1026 | cpu_base->expires_next = expires_next; | ||
1027 | |||
1028 | /* Reprogramming necessary ? */ | ||
1029 | if (expires_next.tv64 != KTIME_MAX) { | ||
1030 | if (tick_program_event(expires_next, 0)) | ||
1031 | goto retry; | ||
1032 | } | ||
1033 | |||
1034 | /* Raise softirq ? */ | ||
1035 | if (raise) | ||
1036 | raise_softirq(HRTIMER_SOFTIRQ); | ||
1037 | } | ||
1038 | |||
1039 | static void run_hrtimer_softirq(struct softirq_action *h) | ||
1040 | { | ||
1041 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | ||
1042 | |||
1043 | spin_lock_irq(&cpu_base->lock); | ||
1044 | |||
1045 | while (!list_empty(&cpu_base->cb_pending)) { | ||
1046 | enum hrtimer_restart (*fn)(struct hrtimer *); | ||
1047 | struct hrtimer *timer; | ||
1048 | int restart; | ||
1049 | |||
1050 | timer = list_entry(cpu_base->cb_pending.next, | ||
1051 | struct hrtimer, cb_entry); | ||
1052 | |||
1053 | fn = timer->function; | ||
1054 | __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0); | ||
1055 | spin_unlock_irq(&cpu_base->lock); | ||
1056 | |||
1057 | restart = fn(timer); | ||
1058 | |||
1059 | spin_lock_irq(&cpu_base->lock); | ||
1060 | |||
1061 | timer->state &= ~HRTIMER_STATE_CALLBACK; | ||
1062 | if (restart == HRTIMER_RESTART) { | ||
1063 | BUG_ON(hrtimer_active(timer)); | ||
1064 | /* | ||
1065 | * Enqueue the timer, allow reprogramming of the event | ||
1066 | * device | ||
1067 | */ | ||
1068 | enqueue_hrtimer(timer, timer->base, 1); | ||
1069 | } else if (hrtimer_active(timer)) { | ||
1070 | /* | ||
1071 | * If the timer was rearmed on another CPU, reprogram | ||
1072 | * the event device. | ||
1073 | */ | ||
1074 | if (timer->base->first == &timer->node) | ||
1075 | hrtimer_reprogram(timer, timer->base); | ||
1076 | } | ||
1077 | } | ||
1078 | spin_unlock_irq(&cpu_base->lock); | ||
1079 | } | ||
1080 | |||
1081 | #endif /* CONFIG_HIGH_RES_TIMERS */ | ||
1082 | |||
632 | /* | 1083 | /* |
633 | * Expire the per base hrtimer-queue: | 1084 | * Expire the per base hrtimer-queue: |
634 | */ | 1085 | */ |
@@ -656,7 +1107,7 @@ static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base, | |||
656 | break; | 1107 | break; |
657 | 1108 | ||
658 | fn = timer->function; | 1109 | fn = timer->function; |
659 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK); | 1110 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
660 | spin_unlock_irq(&cpu_base->lock); | 1111 | spin_unlock_irq(&cpu_base->lock); |
661 | 1112 | ||
662 | restart = fn(timer); | 1113 | restart = fn(timer); |
@@ -666,7 +1117,7 @@ static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base, | |||
666 | timer->state &= ~HRTIMER_STATE_CALLBACK; | 1117 | timer->state &= ~HRTIMER_STATE_CALLBACK; |
667 | if (restart != HRTIMER_NORESTART) { | 1118 | if (restart != HRTIMER_NORESTART) { |
668 | BUG_ON(hrtimer_active(timer)); | 1119 | BUG_ON(hrtimer_active(timer)); |
669 | enqueue_hrtimer(timer, base); | 1120 | enqueue_hrtimer(timer, base, 0); |
670 | } | 1121 | } |
671 | } | 1122 | } |
672 | spin_unlock_irq(&cpu_base->lock); | 1123 | spin_unlock_irq(&cpu_base->lock); |
@@ -674,12 +1125,19 @@ static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base, | |||
674 | 1125 | ||
675 | /* | 1126 | /* |
676 | * Called from timer softirq every jiffy, expire hrtimers: | 1127 | * Called from timer softirq every jiffy, expire hrtimers: |
1128 | * | ||
1129 | * For HRT its the fall back code to run the softirq in the timer | ||
1130 | * softirq context in case the hrtimer initialization failed or has | ||
1131 | * not been done yet. | ||
677 | */ | 1132 | */ |
678 | void hrtimer_run_queues(void) | 1133 | void hrtimer_run_queues(void) |
679 | { | 1134 | { |
680 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 1135 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
681 | int i; | 1136 | int i; |
682 | 1137 | ||
1138 | if (hrtimer_hres_active()) | ||
1139 | return; | ||
1140 | |||
683 | /* | 1141 | /* |
684 | * This _is_ ugly: We have to check in the softirq context, | 1142 | * This _is_ ugly: We have to check in the softirq context, |
685 | * whether we can switch to highres and / or nohz mode. The | 1143 | * whether we can switch to highres and / or nohz mode. The |
@@ -688,7 +1146,8 @@ void hrtimer_run_queues(void) | |||
688 | * check bit in the tick_oneshot code, otherwise we might | 1146 | * check bit in the tick_oneshot code, otherwise we might |
689 | * deadlock vs. xtime_lock. | 1147 | * deadlock vs. xtime_lock. |
690 | */ | 1148 | */ |
691 | tick_check_oneshot_change(1); | 1149 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) |
1150 | hrtimer_switch_to_hres(); | ||
692 | 1151 | ||
693 | hrtimer_get_softirq_time(cpu_base); | 1152 | hrtimer_get_softirq_time(cpu_base); |
694 | 1153 | ||
@@ -716,6 +1175,9 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | |||
716 | { | 1175 | { |
717 | sl->timer.function = hrtimer_wakeup; | 1176 | sl->timer.function = hrtimer_wakeup; |
718 | sl->task = task; | 1177 | sl->task = task; |
1178 | #ifdef CONFIG_HIGH_RES_TIMERS | ||
1179 | sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART; | ||
1180 | #endif | ||
719 | } | 1181 | } |
720 | 1182 | ||
721 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 1183 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
@@ -726,7 +1188,8 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod | |||
726 | set_current_state(TASK_INTERRUPTIBLE); | 1188 | set_current_state(TASK_INTERRUPTIBLE); |
727 | hrtimer_start(&t->timer, t->timer.expires, mode); | 1189 | hrtimer_start(&t->timer, t->timer.expires, mode); |
728 | 1190 | ||
729 | schedule(); | 1191 | if (likely(t->task)) |
1192 | schedule(); | ||
730 | 1193 | ||
731 | hrtimer_cancel(&t->timer); | 1194 | hrtimer_cancel(&t->timer); |
732 | mode = HRTIMER_MODE_ABS; | 1195 | mode = HRTIMER_MODE_ABS; |
@@ -831,6 +1294,7 @@ static void __devinit init_hrtimers_cpu(int cpu) | |||
831 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | 1294 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) |
832 | cpu_base->clock_base[i].cpu_base = cpu_base; | 1295 | cpu_base->clock_base[i].cpu_base = cpu_base; |
833 | 1296 | ||
1297 | hrtimer_init_hres(cpu_base); | ||
834 | } | 1298 | } |
835 | 1299 | ||
836 | #ifdef CONFIG_HOTPLUG_CPU | 1300 | #ifdef CONFIG_HOTPLUG_CPU |
@@ -843,10 +1307,13 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
843 | 1307 | ||
844 | while ((node = rb_first(&old_base->active))) { | 1308 | while ((node = rb_first(&old_base->active))) { |
845 | timer = rb_entry(node, struct hrtimer, node); | 1309 | timer = rb_entry(node, struct hrtimer, node); |
846 | BUG_ON(timer->state & HRTIMER_STATE_CALLBACK); | 1310 | BUG_ON(hrtimer_callback_running(timer)); |
847 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE); | 1311 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); |
848 | timer->base = new_base; | 1312 | timer->base = new_base; |
849 | enqueue_hrtimer(timer, new_base); | 1313 | /* |
1314 | * Enqueue the timer. Allow reprogramming of the event device | ||
1315 | */ | ||
1316 | enqueue_hrtimer(timer, new_base, 1); | ||
850 | } | 1317 | } |
851 | } | 1318 | } |
852 | 1319 | ||
@@ -859,6 +1326,8 @@ static void migrate_hrtimers(int cpu) | |||
859 | old_base = &per_cpu(hrtimer_bases, cpu); | 1326 | old_base = &per_cpu(hrtimer_bases, cpu); |
860 | new_base = &get_cpu_var(hrtimer_bases); | 1327 | new_base = &get_cpu_var(hrtimer_bases); |
861 | 1328 | ||
1329 | tick_cancel_sched_timer(cpu); | ||
1330 | |||
862 | local_irq_disable(); | 1331 | local_irq_disable(); |
863 | 1332 | ||
864 | spin_lock(&new_base->lock); | 1333 | spin_lock(&new_base->lock); |
@@ -910,5 +1379,8 @@ void __init hrtimers_init(void) | |||
910 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | 1379 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, |
911 | (void *)(long)smp_processor_id()); | 1380 | (void *)(long)smp_processor_id()); |
912 | register_cpu_notifier(&hrtimers_nb); | 1381 | register_cpu_notifier(&hrtimers_nb); |
1382 | #ifdef CONFIG_HIGH_RES_TIMERS | ||
1383 | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL); | ||
1384 | #endif | ||
913 | } | 1385 | } |
914 | 1386 | ||