aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/Kconfig.preempt
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2008-12-18 15:55:32 -0500
committerIngo Molnar <mingo@elte.hu>2008-12-18 15:56:04 -0500
commit64db4cfff99c04cd5f550357edcc8780f96b54a2 (patch)
tree4856e788d21f0e31ed78a22b70b4521f7237705e /kernel/Kconfig.preempt
parentd110ec3a1e1f522e2e9dfceb9c36d6590c26d2d4 (diff)
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/Kconfig.preempt')
-rw-r--r--kernel/Kconfig.preempt62
1 files changed, 56 insertions, 6 deletions
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
index 9fdba03dc1fc..463f29743ea0 100644
--- a/kernel/Kconfig.preempt
+++ b/kernel/Kconfig.preempt
@@ -52,10 +52,29 @@ config PREEMPT
52 52
53endchoice 53endchoice
54 54
55choice
56 prompt "RCU Implementation"
57 default CLASSIC_RCU
58
59config CLASSIC_RCU
60 bool "Classic RCU"
61 help
62 This option selects the classic RCU implementation that is
63 designed for best read-side performance on non-realtime
64 systems.
65
66 Select this option if you are unsure.
67
68config TREE_RCU
69 bool "Tree-based hierarchical RCU"
70 help
71 This option selects the RCU implementation that is
72 designed for very large SMP system with hundreds or
73 thousands of CPUs.
74
55config PREEMPT_RCU 75config PREEMPT_RCU
56 bool "Preemptible RCU" 76 bool "Preemptible RCU"
57 depends on PREEMPT 77 depends on PREEMPT
58 default n
59 help 78 help
60 This option reduces the latency of the kernel by making certain 79 This option reduces the latency of the kernel by making certain
61 RCU sections preemptible. Normally RCU code is non-preemptible, if 80 RCU sections preemptible. Normally RCU code is non-preemptible, if
@@ -64,16 +83,47 @@ config PREEMPT_RCU
64 now-naive assumptions about each RCU read-side critical section 83 now-naive assumptions about each RCU read-side critical section
65 remaining on a given CPU through its execution. 84 remaining on a given CPU through its execution.
66 85
67 Say N if you are unsure. 86endchoice
68 87
69config RCU_TRACE 88config RCU_TRACE
70 bool "Enable tracing for RCU - currently stats in debugfs" 89 bool "Enable tracing for RCU"
71 depends on PREEMPT_RCU 90 depends on TREE_RCU || PREEMPT_RCU
72 select DEBUG_FS
73 default y
74 help 91 help
75 This option provides tracing in RCU which presents stats 92 This option provides tracing in RCU which presents stats
76 in debugfs for debugging RCU implementation. 93 in debugfs for debugging RCU implementation.
77 94
78 Say Y here if you want to enable RCU tracing 95 Say Y here if you want to enable RCU tracing
79 Say N if you are unsure. 96 Say N if you are unsure.
97
98config RCU_FANOUT
99 int "Tree-based hierarchical RCU fanout value"
100 range 2 64 if 64BIT
101 range 2 32 if !64BIT
102 depends on TREE_RCU
103 default 64 if 64BIT
104 default 32 if !64BIT
105 help
106 This option controls the fanout of hierarchical implementations
107 of RCU, allowing RCU to work efficiently on machines with
108 large numbers of CPUs. This value must be at least the cube
109 root of NR_CPUS, which allows NR_CPUS up to 32,768 for 32-bit
110 systems and up to 262,144 for 64-bit systems.
111
112 Select a specific number if testing RCU itself.
113 Take the default if unsure.
114
115config RCU_FANOUT_EXACT
116 bool "Disable tree-based hierarchical RCU auto-balancing"
117 depends on TREE_RCU
118 default n
119 help
120 This option forces use of the exact RCU_FANOUT value specified,
121 regardless of imbalances in the hierarchy. This is useful for
122 testing RCU itself, and might one day be useful on systems with
123 strong NUMA behavior.
124
125 Without RCU_FANOUT_EXACT, the code will balance the hierarchy.
126
127 Say n if unsure.
128
129