aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2014-12-13 16:33:26 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2014-12-13 16:33:26 -0500
commite3aa91a7cb21a595169b20c64f63ca39a91a0c43 (patch)
tree6a92a2e595629949a45336c770c2408abba8444d /include
parent78a45c6f067824cf5d0a9fedea7339ac2e28603c (diff)
parent8606813a6c8997fd3bb805186056d78670eb86ca (diff)
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu: - The crypto API is now documented :) - Disallow arbitrary module loading through crypto API. - Allow get request with empty driver name through crypto_user. - Allow speed testing of arbitrary hash functions. - Add caam support for ctr(aes), gcm(aes) and their derivatives. - nx now supports concurrent hashing properly. - Add sahara support for SHA1/256. - Add ARM64 version of CRC32. - Misc fixes. * git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (77 commits) crypto: tcrypt - Allow speed testing of arbitrary hash functions crypto: af_alg - add user space interface for AEAD crypto: qat - fix problem with coalescing enable logic crypto: sahara - add support for SHA1/256 crypto: sahara - replace tasklets with kthread crypto: sahara - add support for i.MX53 crypto: sahara - fix spinlock initialization crypto: arm - replace memset by memzero_explicit crypto: powerpc - replace memset by memzero_explicit crypto: sha - replace memset by memzero_explicit crypto: sparc - replace memset by memzero_explicit crypto: algif_skcipher - initialize upon init request crypto: algif_skcipher - removed unneeded code crypto: algif_skcipher - Fixed blocking recvmsg crypto: drbg - use memzero_explicit() for clearing sensitive data crypto: drbg - use MODULE_ALIAS_CRYPTO crypto: include crypto- module prefix in template crypto: user - add MODULE_ALIAS crypto: sha-mb - remove a bogus NULL check crytpo: qat - Fix 64 bytes requests ...
Diffstat (limited to 'include')
-rw-r--r--include/crypto/hash.h492
-rw-r--r--include/crypto/if_alg.h1
-rw-r--r--include/crypto/rng.h80
-rw-r--r--include/linux/crypto.h1112
-rw-r--r--include/net/sock.h1
-rw-r--r--include/uapi/linux/if_alg.h2
6 files changed, 1685 insertions, 3 deletions
diff --git a/include/crypto/hash.h b/include/crypto/hash.h
index 74b13ec1ebd4..98abda9ed3aa 100644
--- a/include/crypto/hash.h
+++ b/include/crypto/hash.h
@@ -17,6 +17,32 @@
17 17
18struct crypto_ahash; 18struct crypto_ahash;
19 19
20/**
21 * DOC: Message Digest Algorithm Definitions
22 *
23 * These data structures define modular message digest algorithm
24 * implementations, managed via crypto_register_ahash(),
25 * crypto_register_shash(), crypto_unregister_ahash() and
26 * crypto_unregister_shash().
27 */
28
29/**
30 * struct hash_alg_common - define properties of message digest
31 * @digestsize: Size of the result of the transformation. A buffer of this size
32 * must be available to the @final and @finup calls, so they can
33 * store the resulting hash into it. For various predefined sizes,
34 * search include/crypto/ using
35 * git grep _DIGEST_SIZE include/crypto.
36 * @statesize: Size of the block for partial state of the transformation. A
37 * buffer of this size must be passed to the @export function as it
38 * will save the partial state of the transformation into it. On the
39 * other side, the @import function will load the state from a
40 * buffer of this size as well.
41 * @base: Start of data structure of cipher algorithm. The common data
42 * structure of crypto_alg contains information common to all ciphers.
43 * The hash_alg_common data structure now adds the hash-specific
44 * information.
45 */
20struct hash_alg_common { 46struct hash_alg_common {
21 unsigned int digestsize; 47 unsigned int digestsize;
22 unsigned int statesize; 48 unsigned int statesize;
@@ -37,6 +63,63 @@ struct ahash_request {
37 void *__ctx[] CRYPTO_MINALIGN_ATTR; 63 void *__ctx[] CRYPTO_MINALIGN_ATTR;
38}; 64};
39 65
66/**
67 * struct ahash_alg - asynchronous message digest definition
68 * @init: Initialize the transformation context. Intended only to initialize the
69 * state of the HASH transformation at the begining. This shall fill in
70 * the internal structures used during the entire duration of the whole
71 * transformation. No data processing happens at this point.
72 * @update: Push a chunk of data into the driver for transformation. This
73 * function actually pushes blocks of data from upper layers into the
74 * driver, which then passes those to the hardware as seen fit. This
75 * function must not finalize the HASH transformation by calculating the
76 * final message digest as this only adds more data into the
77 * transformation. This function shall not modify the transformation
78 * context, as this function may be called in parallel with the same
79 * transformation object. Data processing can happen synchronously
80 * [SHASH] or asynchronously [AHASH] at this point.
81 * @final: Retrieve result from the driver. This function finalizes the
82 * transformation and retrieves the resulting hash from the driver and
83 * pushes it back to upper layers. No data processing happens at this
84 * point.
85 * @finup: Combination of @update and @final. This function is effectively a
86 * combination of @update and @final calls issued in sequence. As some
87 * hardware cannot do @update and @final separately, this callback was
88 * added to allow such hardware to be used at least by IPsec. Data
89 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
90 * at this point.
91 * @digest: Combination of @init and @update and @final. This function
92 * effectively behaves as the entire chain of operations, @init,
93 * @update and @final issued in sequence. Just like @finup, this was
94 * added for hardware which cannot do even the @finup, but can only do
95 * the whole transformation in one run. Data processing can happen
96 * synchronously [SHASH] or asynchronously [AHASH] at this point.
97 * @setkey: Set optional key used by the hashing algorithm. Intended to push
98 * optional key used by the hashing algorithm from upper layers into
99 * the driver. This function can store the key in the transformation
100 * context or can outright program it into the hardware. In the former
101 * case, one must be careful to program the key into the hardware at
102 * appropriate time and one must be careful that .setkey() can be
103 * called multiple times during the existence of the transformation
104 * object. Not all hashing algorithms do implement this function as it
105 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
106 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
107 * this function. This function must be called before any other of the
108 * @init, @update, @final, @finup, @digest is called. No data
109 * processing happens at this point.
110 * @export: Export partial state of the transformation. This function dumps the
111 * entire state of the ongoing transformation into a provided block of
112 * data so it can be @import 'ed back later on. This is useful in case
113 * you want to save partial result of the transformation after
114 * processing certain amount of data and reload this partial result
115 * multiple times later on for multiple re-use. No data processing
116 * happens at this point.
117 * @import: Import partial state of the transformation. This function loads the
118 * entire state of the ongoing transformation from a provided block of
119 * data so the transformation can continue from this point onward. No
120 * data processing happens at this point.
121 * @halg: see struct hash_alg_common
122 */
40struct ahash_alg { 123struct ahash_alg {
41 int (*init)(struct ahash_request *req); 124 int (*init)(struct ahash_request *req);
42 int (*update)(struct ahash_request *req); 125 int (*update)(struct ahash_request *req);
@@ -63,6 +146,23 @@ struct shash_desc {
63 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \ 146 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
64 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 147 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
65 148
149/**
150 * struct shash_alg - synchronous message digest definition
151 * @init: see struct ahash_alg
152 * @update: see struct ahash_alg
153 * @final: see struct ahash_alg
154 * @finup: see struct ahash_alg
155 * @digest: see struct ahash_alg
156 * @export: see struct ahash_alg
157 * @import: see struct ahash_alg
158 * @setkey: see struct ahash_alg
159 * @digestsize: see struct ahash_alg
160 * @statesize: see struct ahash_alg
161 * @descsize: Size of the operational state for the message digest. This state
162 * size is the memory size that needs to be allocated for
163 * shash_desc.__ctx
164 * @base: internally used
165 */
66struct shash_alg { 166struct shash_alg {
67 int (*init)(struct shash_desc *desc); 167 int (*init)(struct shash_desc *desc);
68 int (*update)(struct shash_desc *desc, const u8 *data, 168 int (*update)(struct shash_desc *desc, const u8 *data,
@@ -107,11 +207,35 @@ struct crypto_shash {
107 struct crypto_tfm base; 207 struct crypto_tfm base;
108}; 208};
109 209
210/**
211 * DOC: Asynchronous Message Digest API
212 *
213 * The asynchronous message digest API is used with the ciphers of type
214 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
215 *
216 * The asynchronous cipher operation discussion provided for the
217 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
218 */
219
110static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 220static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
111{ 221{
112 return container_of(tfm, struct crypto_ahash, base); 222 return container_of(tfm, struct crypto_ahash, base);
113} 223}
114 224
225/**
226 * crypto_alloc_ahash() - allocate ahash cipher handle
227 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
228 * ahash cipher
229 * @type: specifies the type of the cipher
230 * @mask: specifies the mask for the cipher
231 *
232 * Allocate a cipher handle for an ahash. The returned struct
233 * crypto_ahash is the cipher handle that is required for any subsequent
234 * API invocation for that ahash.
235 *
236 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
237 * of an error, PTR_ERR() returns the error code.
238 */
115struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 239struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
116 u32 mask); 240 u32 mask);
117 241
@@ -120,6 +244,10 @@ static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
120 return &tfm->base; 244 return &tfm->base;
121} 245}
122 246
247/**
248 * crypto_free_ahash() - zeroize and free the ahash handle
249 * @tfm: cipher handle to be freed
250 */
123static inline void crypto_free_ahash(struct crypto_ahash *tfm) 251static inline void crypto_free_ahash(struct crypto_ahash *tfm)
124{ 252{
125 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 253 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
@@ -143,6 +271,16 @@ static inline struct hash_alg_common *crypto_hash_alg_common(
143 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 271 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
144} 272}
145 273
274/**
275 * crypto_ahash_digestsize() - obtain message digest size
276 * @tfm: cipher handle
277 *
278 * The size for the message digest created by the message digest cipher
279 * referenced with the cipher handle is returned.
280 *
281 *
282 * Return: message digest size of cipher
283 */
146static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 284static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
147{ 285{
148 return crypto_hash_alg_common(tfm)->digestsize; 286 return crypto_hash_alg_common(tfm)->digestsize;
@@ -168,12 +306,32 @@ static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
168 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 306 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
169} 307}
170 308
309/**
310 * crypto_ahash_reqtfm() - obtain cipher handle from request
311 * @req: asynchronous request handle that contains the reference to the ahash
312 * cipher handle
313 *
314 * Return the ahash cipher handle that is registered with the asynchronous
315 * request handle ahash_request.
316 *
317 * Return: ahash cipher handle
318 */
171static inline struct crypto_ahash *crypto_ahash_reqtfm( 319static inline struct crypto_ahash *crypto_ahash_reqtfm(
172 struct ahash_request *req) 320 struct ahash_request *req)
173{ 321{
174 return __crypto_ahash_cast(req->base.tfm); 322 return __crypto_ahash_cast(req->base.tfm);
175} 323}
176 324
325/**
326 * crypto_ahash_reqsize() - obtain size of the request data structure
327 * @tfm: cipher handle
328 *
329 * Return the size of the ahash state size. With the crypto_ahash_export
330 * function, the caller can export the state into a buffer whose size is
331 * defined with this function.
332 *
333 * Return: size of the ahash state
334 */
177static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 335static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
178{ 336{
179 return tfm->reqsize; 337 return tfm->reqsize;
@@ -184,38 +342,166 @@ static inline void *ahash_request_ctx(struct ahash_request *req)
184 return req->__ctx; 342 return req->__ctx;
185} 343}
186 344
345/**
346 * crypto_ahash_setkey - set key for cipher handle
347 * @tfm: cipher handle
348 * @key: buffer holding the key
349 * @keylen: length of the key in bytes
350 *
351 * The caller provided key is set for the ahash cipher. The cipher
352 * handle must point to a keyed hash in order for this function to succeed.
353 *
354 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
355 */
187int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 356int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
188 unsigned int keylen); 357 unsigned int keylen);
358
359/**
360 * crypto_ahash_finup() - update and finalize message digest
361 * @req: reference to the ahash_request handle that holds all information
362 * needed to perform the cipher operation
363 *
364 * This function is a "short-hand" for the function calls of
365 * crypto_ahash_update and crypto_shash_final. The parameters have the same
366 * meaning as discussed for those separate functions.
367 *
368 * Return: 0 if the message digest creation was successful; < 0 if an error
369 * occurred
370 */
189int crypto_ahash_finup(struct ahash_request *req); 371int crypto_ahash_finup(struct ahash_request *req);
372
373/**
374 * crypto_ahash_final() - calculate message digest
375 * @req: reference to the ahash_request handle that holds all information
376 * needed to perform the cipher operation
377 *
378 * Finalize the message digest operation and create the message digest
379 * based on all data added to the cipher handle. The message digest is placed
380 * into the output buffer registered with the ahash_request handle.
381 *
382 * Return: 0 if the message digest creation was successful; < 0 if an error
383 * occurred
384 */
190int crypto_ahash_final(struct ahash_request *req); 385int crypto_ahash_final(struct ahash_request *req);
386
387/**
388 * crypto_ahash_digest() - calculate message digest for a buffer
389 * @req: reference to the ahash_request handle that holds all information
390 * needed to perform the cipher operation
391 *
392 * This function is a "short-hand" for the function calls of crypto_ahash_init,
393 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
394 * meaning as discussed for those separate three functions.
395 *
396 * Return: 0 if the message digest creation was successful; < 0 if an error
397 * occurred
398 */
191int crypto_ahash_digest(struct ahash_request *req); 399int crypto_ahash_digest(struct ahash_request *req);
192 400
401/**
402 * crypto_ahash_export() - extract current message digest state
403 * @req: reference to the ahash_request handle whose state is exported
404 * @out: output buffer of sufficient size that can hold the hash state
405 *
406 * This function exports the hash state of the ahash_request handle into the
407 * caller-allocated output buffer out which must have sufficient size (e.g. by
408 * calling crypto_ahash_reqsize).
409 *
410 * Return: 0 if the export was successful; < 0 if an error occurred
411 */
193static inline int crypto_ahash_export(struct ahash_request *req, void *out) 412static inline int crypto_ahash_export(struct ahash_request *req, void *out)
194{ 413{
195 return crypto_ahash_reqtfm(req)->export(req, out); 414 return crypto_ahash_reqtfm(req)->export(req, out);
196} 415}
197 416
417/**
418 * crypto_ahash_import() - import message digest state
419 * @req: reference to ahash_request handle the state is imported into
420 * @in: buffer holding the state
421 *
422 * This function imports the hash state into the ahash_request handle from the
423 * input buffer. That buffer should have been generated with the
424 * crypto_ahash_export function.
425 *
426 * Return: 0 if the import was successful; < 0 if an error occurred
427 */
198static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 428static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
199{ 429{
200 return crypto_ahash_reqtfm(req)->import(req, in); 430 return crypto_ahash_reqtfm(req)->import(req, in);
201} 431}
202 432
433/**
434 * crypto_ahash_init() - (re)initialize message digest handle
435 * @req: ahash_request handle that already is initialized with all necessary
436 * data using the ahash_request_* API functions
437 *
438 * The call (re-)initializes the message digest referenced by the ahash_request
439 * handle. Any potentially existing state created by previous operations is
440 * discarded.
441 *
442 * Return: 0 if the message digest initialization was successful; < 0 if an
443 * error occurred
444 */
203static inline int crypto_ahash_init(struct ahash_request *req) 445static inline int crypto_ahash_init(struct ahash_request *req)
204{ 446{
205 return crypto_ahash_reqtfm(req)->init(req); 447 return crypto_ahash_reqtfm(req)->init(req);
206} 448}
207 449
450/**
451 * crypto_ahash_update() - add data to message digest for processing
452 * @req: ahash_request handle that was previously initialized with the
453 * crypto_ahash_init call.
454 *
455 * Updates the message digest state of the &ahash_request handle. The input data
456 * is pointed to by the scatter/gather list registered in the &ahash_request
457 * handle
458 *
459 * Return: 0 if the message digest update was successful; < 0 if an error
460 * occurred
461 */
208static inline int crypto_ahash_update(struct ahash_request *req) 462static inline int crypto_ahash_update(struct ahash_request *req)
209{ 463{
210 return crypto_ahash_reqtfm(req)->update(req); 464 return crypto_ahash_reqtfm(req)->update(req);
211} 465}
212 466
467/**
468 * DOC: Asynchronous Hash Request Handle
469 *
470 * The &ahash_request data structure contains all pointers to data
471 * required for the asynchronous cipher operation. This includes the cipher
472 * handle (which can be used by multiple &ahash_request instances), pointer
473 * to plaintext and the message digest output buffer, asynchronous callback
474 * function, etc. It acts as a handle to the ahash_request_* API calls in a
475 * similar way as ahash handle to the crypto_ahash_* API calls.
476 */
477
478/**
479 * ahash_request_set_tfm() - update cipher handle reference in request
480 * @req: request handle to be modified
481 * @tfm: cipher handle that shall be added to the request handle
482 *
483 * Allow the caller to replace the existing ahash handle in the request
484 * data structure with a different one.
485 */
213static inline void ahash_request_set_tfm(struct ahash_request *req, 486static inline void ahash_request_set_tfm(struct ahash_request *req,
214 struct crypto_ahash *tfm) 487 struct crypto_ahash *tfm)
215{ 488{
216 req->base.tfm = crypto_ahash_tfm(tfm); 489 req->base.tfm = crypto_ahash_tfm(tfm);
217} 490}
218 491
492/**
493 * ahash_request_alloc() - allocate request data structure
494 * @tfm: cipher handle to be registered with the request
495 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
496 *
497 * Allocate the request data structure that must be used with the ahash
498 * message digest API calls. During
499 * the allocation, the provided ahash handle
500 * is registered in the request data structure.
501 *
502 * Return: allocated request handle in case of success; IS_ERR() is true in case
503 * of an error, PTR_ERR() returns the error code.
504 */
219static inline struct ahash_request *ahash_request_alloc( 505static inline struct ahash_request *ahash_request_alloc(
220 struct crypto_ahash *tfm, gfp_t gfp) 506 struct crypto_ahash *tfm, gfp_t gfp)
221{ 507{
@@ -230,6 +516,10 @@ static inline struct ahash_request *ahash_request_alloc(
230 return req; 516 return req;
231} 517}
232 518
519/**
520 * ahash_request_free() - zeroize and free the request data structure
521 * @req: request data structure cipher handle to be freed
522 */
233static inline void ahash_request_free(struct ahash_request *req) 523static inline void ahash_request_free(struct ahash_request *req)
234{ 524{
235 kzfree(req); 525 kzfree(req);
@@ -241,6 +531,31 @@ static inline struct ahash_request *ahash_request_cast(
241 return container_of(req, struct ahash_request, base); 531 return container_of(req, struct ahash_request, base);
242} 532}
243 533
534/**
535 * ahash_request_set_callback() - set asynchronous callback function
536 * @req: request handle
537 * @flags: specify zero or an ORing of the flags
538 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
539 * increase the wait queue beyond the initial maximum size;
540 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
541 * @compl: callback function pointer to be registered with the request handle
542 * @data: The data pointer refers to memory that is not used by the kernel
543 * crypto API, but provided to the callback function for it to use. Here,
544 * the caller can provide a reference to memory the callback function can
545 * operate on. As the callback function is invoked asynchronously to the
546 * related functionality, it may need to access data structures of the
547 * related functionality which can be referenced using this pointer. The
548 * callback function can access the memory via the "data" field in the
549 * &crypto_async_request data structure provided to the callback function.
550 *
551 * This function allows setting the callback function that is triggered once
552 * the cipher operation completes.
553 *
554 * The callback function is registered with the &ahash_request handle and
555 * must comply with the following template
556 *
557 * void callback_function(struct crypto_async_request *req, int error)
558 */
244static inline void ahash_request_set_callback(struct ahash_request *req, 559static inline void ahash_request_set_callback(struct ahash_request *req,
245 u32 flags, 560 u32 flags,
246 crypto_completion_t compl, 561 crypto_completion_t compl,
@@ -251,6 +566,19 @@ static inline void ahash_request_set_callback(struct ahash_request *req,
251 req->base.flags = flags; 566 req->base.flags = flags;
252} 567}
253 568
569/**
570 * ahash_request_set_crypt() - set data buffers
571 * @req: ahash_request handle to be updated
572 * @src: source scatter/gather list
573 * @result: buffer that is filled with the message digest -- the caller must
574 * ensure that the buffer has sufficient space by, for example, calling
575 * crypto_ahash_digestsize()
576 * @nbytes: number of bytes to process from the source scatter/gather list
577 *
578 * By using this call, the caller references the source scatter/gather list.
579 * The source scatter/gather list points to the data the message digest is to
580 * be calculated for.
581 */
254static inline void ahash_request_set_crypt(struct ahash_request *req, 582static inline void ahash_request_set_crypt(struct ahash_request *req,
255 struct scatterlist *src, u8 *result, 583 struct scatterlist *src, u8 *result,
256 unsigned int nbytes) 584 unsigned int nbytes)
@@ -260,6 +588,33 @@ static inline void ahash_request_set_crypt(struct ahash_request *req,
260 req->result = result; 588 req->result = result;
261} 589}
262 590
591/**
592 * DOC: Synchronous Message Digest API
593 *
594 * The synchronous message digest API is used with the ciphers of type
595 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
596 *
597 * The message digest API is able to maintain state information for the
598 * caller.
599 *
600 * The synchronous message digest API can store user-related context in in its
601 * shash_desc request data structure.
602 */
603
604/**
605 * crypto_alloc_shash() - allocate message digest handle
606 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
607 * message digest cipher
608 * @type: specifies the type of the cipher
609 * @mask: specifies the mask for the cipher
610 *
611 * Allocate a cipher handle for a message digest. The returned &struct
612 * crypto_shash is the cipher handle that is required for any subsequent
613 * API invocation for that message digest.
614 *
615 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
616 * of an error, PTR_ERR() returns the error code.
617 */
263struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 618struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
264 u32 mask); 619 u32 mask);
265 620
@@ -268,6 +623,10 @@ static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
268 return &tfm->base; 623 return &tfm->base;
269} 624}
270 625
626/**
627 * crypto_free_shash() - zeroize and free the message digest handle
628 * @tfm: cipher handle to be freed
629 */
271static inline void crypto_free_shash(struct crypto_shash *tfm) 630static inline void crypto_free_shash(struct crypto_shash *tfm)
272{ 631{
273 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 632 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
@@ -279,6 +638,15 @@ static inline unsigned int crypto_shash_alignmask(
279 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 638 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
280} 639}
281 640
641/**
642 * crypto_shash_blocksize() - obtain block size for cipher
643 * @tfm: cipher handle
644 *
645 * The block size for the message digest cipher referenced with the cipher
646 * handle is returned.
647 *
648 * Return: block size of cipher
649 */
282static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 650static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
283{ 651{
284 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 652 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
@@ -294,6 +662,15 @@ static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
294 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 662 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
295} 663}
296 664
665/**
666 * crypto_shash_digestsize() - obtain message digest size
667 * @tfm: cipher handle
668 *
669 * The size for the message digest created by the message digest cipher
670 * referenced with the cipher handle is returned.
671 *
672 * Return: digest size of cipher
673 */
297static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 674static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
298{ 675{
299 return crypto_shash_alg(tfm)->digestsize; 676 return crypto_shash_alg(tfm)->digestsize;
@@ -319,6 +696,21 @@ static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
319 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 696 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
320} 697}
321 698
699/**
700 * crypto_shash_descsize() - obtain the operational state size
701 * @tfm: cipher handle
702 *
703 * The size of the operational state the cipher needs during operation is
704 * returned for the hash referenced with the cipher handle. This size is
705 * required to calculate the memory requirements to allow the caller allocating
706 * sufficient memory for operational state.
707 *
708 * The operational state is defined with struct shash_desc where the size of
709 * that data structure is to be calculated as
710 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
711 *
712 * Return: size of the operational state
713 */
322static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 714static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
323{ 715{
324 return tfm->descsize; 716 return tfm->descsize;
@@ -329,29 +721,129 @@ static inline void *shash_desc_ctx(struct shash_desc *desc)
329 return desc->__ctx; 721 return desc->__ctx;
330} 722}
331 723
724/**
725 * crypto_shash_setkey() - set key for message digest
726 * @tfm: cipher handle
727 * @key: buffer holding the key
728 * @keylen: length of the key in bytes
729 *
730 * The caller provided key is set for the keyed message digest cipher. The
731 * cipher handle must point to a keyed message digest cipher in order for this
732 * function to succeed.
733 *
734 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
735 */
332int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 736int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
333 unsigned int keylen); 737 unsigned int keylen);
738
739/**
740 * crypto_shash_digest() - calculate message digest for buffer
741 * @desc: see crypto_shash_final()
742 * @data: see crypto_shash_update()
743 * @len: see crypto_shash_update()
744 * @out: see crypto_shash_final()
745 *
746 * This function is a "short-hand" for the function calls of crypto_shash_init,
747 * crypto_shash_update and crypto_shash_final. The parameters have the same
748 * meaning as discussed for those separate three functions.
749 *
750 * Return: 0 if the message digest creation was successful; < 0 if an error
751 * occurred
752 */
334int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 753int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
335 unsigned int len, u8 *out); 754 unsigned int len, u8 *out);
336 755
756/**
757 * crypto_shash_export() - extract operational state for message digest
758 * @desc: reference to the operational state handle whose state is exported
759 * @out: output buffer of sufficient size that can hold the hash state
760 *
761 * This function exports the hash state of the operational state handle into the
762 * caller-allocated output buffer out which must have sufficient size (e.g. by
763 * calling crypto_shash_descsize).
764 *
765 * Return: 0 if the export creation was successful; < 0 if an error occurred
766 */
337static inline int crypto_shash_export(struct shash_desc *desc, void *out) 767static inline int crypto_shash_export(struct shash_desc *desc, void *out)
338{ 768{
339 return crypto_shash_alg(desc->tfm)->export(desc, out); 769 return crypto_shash_alg(desc->tfm)->export(desc, out);
340} 770}
341 771
772/**
773 * crypto_shash_import() - import operational state
774 * @desc: reference to the operational state handle the state imported into
775 * @in: buffer holding the state
776 *
777 * This function imports the hash state into the operational state handle from
778 * the input buffer. That buffer should have been generated with the
779 * crypto_ahash_export function.
780 *
781 * Return: 0 if the import was successful; < 0 if an error occurred
782 */
342static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 783static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
343{ 784{
344 return crypto_shash_alg(desc->tfm)->import(desc, in); 785 return crypto_shash_alg(desc->tfm)->import(desc, in);
345} 786}
346 787
788/**
789 * crypto_shash_init() - (re)initialize message digest
790 * @desc: operational state handle that is already filled
791 *
792 * The call (re-)initializes the message digest referenced by the
793 * operational state handle. Any potentially existing state created by
794 * previous operations is discarded.
795 *
796 * Return: 0 if the message digest initialization was successful; < 0 if an
797 * error occurred
798 */
347static inline int crypto_shash_init(struct shash_desc *desc) 799static inline int crypto_shash_init(struct shash_desc *desc)
348{ 800{
349 return crypto_shash_alg(desc->tfm)->init(desc); 801 return crypto_shash_alg(desc->tfm)->init(desc);
350} 802}
351 803
804/**
805 * crypto_shash_update() - add data to message digest for processing
806 * @desc: operational state handle that is already initialized
807 * @data: input data to be added to the message digest
808 * @len: length of the input data
809 *
810 * Updates the message digest state of the operational state handle.
811 *
812 * Return: 0 if the message digest update was successful; < 0 if an error
813 * occurred
814 */
352int crypto_shash_update(struct shash_desc *desc, const u8 *data, 815int crypto_shash_update(struct shash_desc *desc, const u8 *data,
353 unsigned int len); 816 unsigned int len);
817
818/**
819 * crypto_shash_final() - calculate message digest
820 * @desc: operational state handle that is already filled with data
821 * @out: output buffer filled with the message digest
822 *
823 * Finalize the message digest operation and create the message digest
824 * based on all data added to the cipher handle. The message digest is placed
825 * into the output buffer. The caller must ensure that the output buffer is
826 * large enough by using crypto_shash_digestsize.
827 *
828 * Return: 0 if the message digest creation was successful; < 0 if an error
829 * occurred
830 */
354int crypto_shash_final(struct shash_desc *desc, u8 *out); 831int crypto_shash_final(struct shash_desc *desc, u8 *out);
832
833/**
834 * crypto_shash_finup() - calculate message digest of buffer
835 * @desc: see crypto_shash_final()
836 * @data: see crypto_shash_update()
837 * @len: see crypto_shash_update()
838 * @out: see crypto_shash_final()
839 *
840 * This function is a "short-hand" for the function calls of
841 * crypto_shash_update and crypto_shash_final. The parameters have the same
842 * meaning as discussed for those separate functions.
843 *
844 * Return: 0 if the message digest creation was successful; < 0 if an error
845 * occurred
846 */
355int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 847int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
356 unsigned int len, u8 *out); 848 unsigned int len, u8 *out);
357 849
diff --git a/include/crypto/if_alg.h b/include/crypto/if_alg.h
index d61c11170213..cd62bf4289e9 100644
--- a/include/crypto/if_alg.h
+++ b/include/crypto/if_alg.h
@@ -42,6 +42,7 @@ struct af_alg_completion {
42struct af_alg_control { 42struct af_alg_control {
43 struct af_alg_iv *iv; 43 struct af_alg_iv *iv;
44 int op; 44 int op;
45 unsigned int aead_assoclen;
45}; 46};
46 47
47struct af_alg_type { 48struct af_alg_type {
diff --git a/include/crypto/rng.h b/include/crypto/rng.h
index c93f9b917925..a16fb10142bf 100644
--- a/include/crypto/rng.h
+++ b/include/crypto/rng.h
@@ -20,11 +20,38 @@ extern struct crypto_rng *crypto_default_rng;
20int crypto_get_default_rng(void); 20int crypto_get_default_rng(void);
21void crypto_put_default_rng(void); 21void crypto_put_default_rng(void);
22 22
23/**
24 * DOC: Random number generator API
25 *
26 * The random number generator API is used with the ciphers of type
27 * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto)
28 */
29
23static inline struct crypto_rng *__crypto_rng_cast(struct crypto_tfm *tfm) 30static inline struct crypto_rng *__crypto_rng_cast(struct crypto_tfm *tfm)
24{ 31{
25 return (struct crypto_rng *)tfm; 32 return (struct crypto_rng *)tfm;
26} 33}
27 34
35/**
36 * crypto_alloc_rng() -- allocate RNG handle
37 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
38 * message digest cipher
39 * @type: specifies the type of the cipher
40 * @mask: specifies the mask for the cipher
41 *
42 * Allocate a cipher handle for a random number generator. The returned struct
43 * crypto_rng is the cipher handle that is required for any subsequent
44 * API invocation for that random number generator.
45 *
46 * For all random number generators, this call creates a new private copy of
47 * the random number generator that does not share a state with other
48 * instances. The only exception is the "krng" random number generator which
49 * is a kernel crypto API use case for the get_random_bytes() function of the
50 * /dev/random driver.
51 *
52 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
53 * of an error, PTR_ERR() returns the error code.
54 */
28static inline struct crypto_rng *crypto_alloc_rng(const char *alg_name, 55static inline struct crypto_rng *crypto_alloc_rng(const char *alg_name,
29 u32 type, u32 mask) 56 u32 type, u32 mask)
30{ 57{
@@ -40,6 +67,14 @@ static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm)
40 return &tfm->base; 67 return &tfm->base;
41} 68}
42 69
70/**
71 * crypto_rng_alg - obtain name of RNG
72 * @tfm: cipher handle
73 *
74 * Return the generic name (cra_name) of the initialized random number generator
75 *
76 * Return: generic name string
77 */
43static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) 78static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm)
44{ 79{
45 return &crypto_rng_tfm(tfm)->__crt_alg->cra_rng; 80 return &crypto_rng_tfm(tfm)->__crt_alg->cra_rng;
@@ -50,23 +85,68 @@ static inline struct rng_tfm *crypto_rng_crt(struct crypto_rng *tfm)
50 return &crypto_rng_tfm(tfm)->crt_rng; 85 return &crypto_rng_tfm(tfm)->crt_rng;
51} 86}
52 87
88/**
89 * crypto_free_rng() - zeroize and free RNG handle
90 * @tfm: cipher handle to be freed
91 */
53static inline void crypto_free_rng(struct crypto_rng *tfm) 92static inline void crypto_free_rng(struct crypto_rng *tfm)
54{ 93{
55 crypto_free_tfm(crypto_rng_tfm(tfm)); 94 crypto_free_tfm(crypto_rng_tfm(tfm));
56} 95}
57 96
97/**
98 * crypto_rng_get_bytes() - get random number
99 * @tfm: cipher handle
100 * @rdata: output buffer holding the random numbers
101 * @dlen: length of the output buffer
102 *
103 * This function fills the caller-allocated buffer with random numbers using the
104 * random number generator referenced by the cipher handle.
105 *
106 * Return: > 0 function was successful and returns the number of generated
107 * bytes; < 0 if an error occurred
108 */
58static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, 109static inline int crypto_rng_get_bytes(struct crypto_rng *tfm,
59 u8 *rdata, unsigned int dlen) 110 u8 *rdata, unsigned int dlen)
60{ 111{
61 return crypto_rng_crt(tfm)->rng_gen_random(tfm, rdata, dlen); 112 return crypto_rng_crt(tfm)->rng_gen_random(tfm, rdata, dlen);
62} 113}
63 114
115/**
116 * crypto_rng_reset() - re-initialize the RNG
117 * @tfm: cipher handle
118 * @seed: seed input data
119 * @slen: length of the seed input data
120 *
121 * The reset function completely re-initializes the random number generator
122 * referenced by the cipher handle by clearing the current state. The new state
123 * is initialized with the caller provided seed or automatically, depending
124 * on the random number generator type (the ANSI X9.31 RNG requires
125 * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding).
126 * The seed is provided as a parameter to this function call. The provided seed
127 * should have the length of the seed size defined for the random number
128 * generator as defined by crypto_rng_seedsize.
129 *
130 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
131 */
64static inline int crypto_rng_reset(struct crypto_rng *tfm, 132static inline int crypto_rng_reset(struct crypto_rng *tfm,
65 u8 *seed, unsigned int slen) 133 u8 *seed, unsigned int slen)
66{ 134{
67 return crypto_rng_crt(tfm)->rng_reset(tfm, seed, slen); 135 return crypto_rng_crt(tfm)->rng_reset(tfm, seed, slen);
68} 136}
69 137
138/**
139 * crypto_rng_seedsize() - obtain seed size of RNG
140 * @tfm: cipher handle
141 *
142 * The function returns the seed size for the random number generator
143 * referenced by the cipher handle. This value may be zero if the random
144 * number generator does not implement or require a reseeding. For example,
145 * the SP800-90A DRBGs implement an automated reseeding after reaching a
146 * pre-defined threshold.
147 *
148 * Return: seed size for the random number generator
149 */
70static inline int crypto_rng_seedsize(struct crypto_rng *tfm) 150static inline int crypto_rng_seedsize(struct crypto_rng *tfm)
71{ 151{
72 return crypto_rng_alg(tfm)->seedsize; 152 return crypto_rng_alg(tfm)->seedsize;
diff --git a/include/linux/crypto.h b/include/linux/crypto.h
index d45e949699ea..9c8776d0ada8 100644
--- a/include/linux/crypto.h
+++ b/include/linux/crypto.h
@@ -26,6 +26,19 @@
26#include <linux/uaccess.h> 26#include <linux/uaccess.h>
27 27
28/* 28/*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37#define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41/*
29 * Algorithm masks and types. 42 * Algorithm masks and types.
30 */ 43 */
31#define CRYPTO_ALG_TYPE_MASK 0x0000000f 44#define CRYPTO_ALG_TYPE_MASK 0x0000000f
@@ -127,6 +140,13 @@ struct skcipher_givcrypt_request;
127 140
128typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 141typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
129 142
143/**
144 * DOC: Block Cipher Context Data Structures
145 *
146 * These data structures define the operating context for each block cipher
147 * type.
148 */
149
130struct crypto_async_request { 150struct crypto_async_request {
131 struct list_head list; 151 struct list_head list;
132 crypto_completion_t complete; 152 crypto_completion_t complete;
@@ -194,9 +214,63 @@ struct hash_desc {
194 u32 flags; 214 u32 flags;
195}; 215};
196 216
197/* 217/**
198 * Algorithms: modular crypto algorithm implementations, managed 218 * DOC: Block Cipher Algorithm Definitions
199 * via crypto_register_alg() and crypto_unregister_alg(). 219 *
220 * These data structures define modular crypto algorithm implementations,
221 * managed via crypto_register_alg() and crypto_unregister_alg().
222 */
223
224/**
225 * struct ablkcipher_alg - asynchronous block cipher definition
226 * @min_keysize: Minimum key size supported by the transformation. This is the
227 * smallest key length supported by this transformation algorithm.
228 * This must be set to one of the pre-defined values as this is
229 * not hardware specific. Possible values for this field can be
230 * found via git grep "_MIN_KEY_SIZE" include/crypto/
231 * @max_keysize: Maximum key size supported by the transformation. This is the
232 * largest key length supported by this transformation algorithm.
233 * This must be set to one of the pre-defined values as this is
234 * not hardware specific. Possible values for this field can be
235 * found via git grep "_MAX_KEY_SIZE" include/crypto/
236 * @setkey: Set key for the transformation. This function is used to either
237 * program a supplied key into the hardware or store the key in the
238 * transformation context for programming it later. Note that this
239 * function does modify the transformation context. This function can
240 * be called multiple times during the existence of the transformation
241 * object, so one must make sure the key is properly reprogrammed into
242 * the hardware. This function is also responsible for checking the key
243 * length for validity. In case a software fallback was put in place in
244 * the @cra_init call, this function might need to use the fallback if
245 * the algorithm doesn't support all of the key sizes.
246 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
247 * the supplied scatterlist containing the blocks of data. The crypto
248 * API consumer is responsible for aligning the entries of the
249 * scatterlist properly and making sure the chunks are correctly
250 * sized. In case a software fallback was put in place in the
251 * @cra_init call, this function might need to use the fallback if
252 * the algorithm doesn't support all of the key sizes. In case the
253 * key was stored in transformation context, the key might need to be
254 * re-programmed into the hardware in this function. This function
255 * shall not modify the transformation context, as this function may
256 * be called in parallel with the same transformation object.
257 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
258 * and the conditions are exactly the same.
259 * @givencrypt: Update the IV for encryption. With this function, a cipher
260 * implementation may provide the function on how to update the IV
261 * for encryption.
262 * @givdecrypt: Update the IV for decryption. This is the reverse of
263 * @givencrypt .
264 * @geniv: The transformation implementation may use an "IV generator" provided
265 * by the kernel crypto API. Several use cases have a predefined
266 * approach how IVs are to be updated. For such use cases, the kernel
267 * crypto API provides ready-to-use implementations that can be
268 * referenced with this variable.
269 * @ivsize: IV size applicable for transformation. The consumer must provide an
270 * IV of exactly that size to perform the encrypt or decrypt operation.
271 *
272 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
273 * mandatory and must be filled.
200 */ 274 */
201struct ablkcipher_alg { 275struct ablkcipher_alg {
202 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 276 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
@@ -213,6 +287,32 @@ struct ablkcipher_alg {
213 unsigned int ivsize; 287 unsigned int ivsize;
214}; 288};
215 289
290/**
291 * struct aead_alg - AEAD cipher definition
292 * @maxauthsize: Set the maximum authentication tag size supported by the
293 * transformation. A transformation may support smaller tag sizes.
294 * As the authentication tag is a message digest to ensure the
295 * integrity of the encrypted data, a consumer typically wants the
296 * largest authentication tag possible as defined by this
297 * variable.
298 * @setauthsize: Set authentication size for the AEAD transformation. This
299 * function is used to specify the consumer requested size of the
300 * authentication tag to be either generated by the transformation
301 * during encryption or the size of the authentication tag to be
302 * supplied during the decryption operation. This function is also
303 * responsible for checking the authentication tag size for
304 * validity.
305 * @setkey: see struct ablkcipher_alg
306 * @encrypt: see struct ablkcipher_alg
307 * @decrypt: see struct ablkcipher_alg
308 * @givencrypt: see struct ablkcipher_alg
309 * @givdecrypt: see struct ablkcipher_alg
310 * @geniv: see struct ablkcipher_alg
311 * @ivsize: see struct ablkcipher_alg
312 *
313 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
314 * mandatory and must be filled.
315 */
216struct aead_alg { 316struct aead_alg {
217 int (*setkey)(struct crypto_aead *tfm, const u8 *key, 317 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
218 unsigned int keylen); 318 unsigned int keylen);
@@ -228,6 +328,18 @@ struct aead_alg {
228 unsigned int maxauthsize; 328 unsigned int maxauthsize;
229}; 329};
230 330
331/**
332 * struct blkcipher_alg - synchronous block cipher definition
333 * @min_keysize: see struct ablkcipher_alg
334 * @max_keysize: see struct ablkcipher_alg
335 * @setkey: see struct ablkcipher_alg
336 * @encrypt: see struct ablkcipher_alg
337 * @decrypt: see struct ablkcipher_alg
338 * @geniv: see struct ablkcipher_alg
339 * @ivsize: see struct ablkcipher_alg
340 *
341 * All fields except @geniv and @ivsize are mandatory and must be filled.
342 */
231struct blkcipher_alg { 343struct blkcipher_alg {
232 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 344 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
233 unsigned int keylen); 345 unsigned int keylen);
@@ -245,6 +357,53 @@ struct blkcipher_alg {
245 unsigned int ivsize; 357 unsigned int ivsize;
246}; 358};
247 359
360/**
361 * struct cipher_alg - single-block symmetric ciphers definition
362 * @cia_min_keysize: Minimum key size supported by the transformation. This is
363 * the smallest key length supported by this transformation
364 * algorithm. This must be set to one of the pre-defined
365 * values as this is not hardware specific. Possible values
366 * for this field can be found via git grep "_MIN_KEY_SIZE"
367 * include/crypto/
368 * @cia_max_keysize: Maximum key size supported by the transformation. This is
369 * the largest key length supported by this transformation
370 * algorithm. This must be set to one of the pre-defined values
371 * as this is not hardware specific. Possible values for this
372 * field can be found via git grep "_MAX_KEY_SIZE"
373 * include/crypto/
374 * @cia_setkey: Set key for the transformation. This function is used to either
375 * program a supplied key into the hardware or store the key in the
376 * transformation context for programming it later. Note that this
377 * function does modify the transformation context. This function
378 * can be called multiple times during the existence of the
379 * transformation object, so one must make sure the key is properly
380 * reprogrammed into the hardware. This function is also
381 * responsible for checking the key length for validity.
382 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
383 * single block of data, which must be @cra_blocksize big. This
384 * always operates on a full @cra_blocksize and it is not possible
385 * to encrypt a block of smaller size. The supplied buffers must
386 * therefore also be at least of @cra_blocksize size. Both the
387 * input and output buffers are always aligned to @cra_alignmask.
388 * In case either of the input or output buffer supplied by user
389 * of the crypto API is not aligned to @cra_alignmask, the crypto
390 * API will re-align the buffers. The re-alignment means that a
391 * new buffer will be allocated, the data will be copied into the
392 * new buffer, then the processing will happen on the new buffer,
393 * then the data will be copied back into the original buffer and
394 * finally the new buffer will be freed. In case a software
395 * fallback was put in place in the @cra_init call, this function
396 * might need to use the fallback if the algorithm doesn't support
397 * all of the key sizes. In case the key was stored in
398 * transformation context, the key might need to be re-programmed
399 * into the hardware in this function. This function shall not
400 * modify the transformation context, as this function may be
401 * called in parallel with the same transformation object.
402 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
403 * @cia_encrypt, and the conditions are exactly the same.
404 *
405 * All fields are mandatory and must be filled.
406 */
248struct cipher_alg { 407struct cipher_alg {
249 unsigned int cia_min_keysize; 408 unsigned int cia_min_keysize;
250 unsigned int cia_max_keysize; 409 unsigned int cia_max_keysize;
@@ -261,6 +420,25 @@ struct compress_alg {
261 unsigned int slen, u8 *dst, unsigned int *dlen); 420 unsigned int slen, u8 *dst, unsigned int *dlen);
262}; 421};
263 422
423/**
424 * struct rng_alg - random number generator definition
425 * @rng_make_random: The function defined by this variable obtains a random
426 * number. The random number generator transform must generate
427 * the random number out of the context provided with this
428 * call.
429 * @rng_reset: Reset of the random number generator by clearing the entire state.
430 * With the invocation of this function call, the random number
431 * generator shall completely reinitialize its state. If the random
432 * number generator requires a seed for setting up a new state,
433 * the seed must be provided by the consumer while invoking this
434 * function. The required size of the seed is defined with
435 * @seedsize .
436 * @seedsize: The seed size required for a random number generator
437 * initialization defined with this variable. Some random number
438 * generators like the SP800-90A DRBG does not require a seed as the
439 * seeding is implemented internally without the need of support by
440 * the consumer. In this case, the seed size is set to zero.
441 */
264struct rng_alg { 442struct rng_alg {
265 int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata, 443 int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata,
266 unsigned int dlen); 444 unsigned int dlen);
@@ -277,6 +455,81 @@ struct rng_alg {
277#define cra_compress cra_u.compress 455#define cra_compress cra_u.compress
278#define cra_rng cra_u.rng 456#define cra_rng cra_u.rng
279 457
458/**
459 * struct crypto_alg - definition of a cryptograpic cipher algorithm
460 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
461 * CRYPTO_ALG_* flags for the flags which go in here. Those are
462 * used for fine-tuning the description of the transformation
463 * algorithm.
464 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
465 * of the smallest possible unit which can be transformed with
466 * this algorithm. The users must respect this value.
467 * In case of HASH transformation, it is possible for a smaller
468 * block than @cra_blocksize to be passed to the crypto API for
469 * transformation, in case of any other transformation type, an
470 * error will be returned upon any attempt to transform smaller
471 * than @cra_blocksize chunks.
472 * @cra_ctxsize: Size of the operational context of the transformation. This
473 * value informs the kernel crypto API about the memory size
474 * needed to be allocated for the transformation context.
475 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
476 * buffer containing the input data for the algorithm must be
477 * aligned to this alignment mask. The data buffer for the
478 * output data must be aligned to this alignment mask. Note that
479 * the Crypto API will do the re-alignment in software, but
480 * only under special conditions and there is a performance hit.
481 * The re-alignment happens at these occasions for different
482 * @cra_u types: cipher -- For both input data and output data
483 * buffer; ahash -- For output hash destination buf; shash --
484 * For output hash destination buf.
485 * This is needed on hardware which is flawed by design and
486 * cannot pick data from arbitrary addresses.
487 * @cra_priority: Priority of this transformation implementation. In case
488 * multiple transformations with same @cra_name are available to
489 * the Crypto API, the kernel will use the one with highest
490 * @cra_priority.
491 * @cra_name: Generic name (usable by multiple implementations) of the
492 * transformation algorithm. This is the name of the transformation
493 * itself. This field is used by the kernel when looking up the
494 * providers of particular transformation.
495 * @cra_driver_name: Unique name of the transformation provider. This is the
496 * name of the provider of the transformation. This can be any
497 * arbitrary value, but in the usual case, this contains the
498 * name of the chip or provider and the name of the
499 * transformation algorithm.
500 * @cra_type: Type of the cryptographic transformation. This is a pointer to
501 * struct crypto_type, which implements callbacks common for all
502 * trasnformation types. There are multiple options:
503 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
504 * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
505 * This field might be empty. In that case, there are no common
506 * callbacks. This is the case for: cipher, compress, shash.
507 * @cra_u: Callbacks implementing the transformation. This is a union of
508 * multiple structures. Depending on the type of transformation selected
509 * by @cra_type and @cra_flags above, the associated structure must be
510 * filled with callbacks. This field might be empty. This is the case
511 * for ahash, shash.
512 * @cra_init: Initialize the cryptographic transformation object. This function
513 * is used to initialize the cryptographic transformation object.
514 * This function is called only once at the instantiation time, right
515 * after the transformation context was allocated. In case the
516 * cryptographic hardware has some special requirements which need to
517 * be handled by software, this function shall check for the precise
518 * requirement of the transformation and put any software fallbacks
519 * in place.
520 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
521 * counterpart to @cra_init, used to remove various changes set in
522 * @cra_init.
523 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
524 * @cra_list: internally used
525 * @cra_users: internally used
526 * @cra_refcnt: internally used
527 * @cra_destroy: internally used
528 *
529 * The struct crypto_alg describes a generic Crypto API algorithm and is common
530 * for all of the transformations. Any variable not documented here shall not
531 * be used by a cipher implementation as it is internal to the Crypto API.
532 */
280struct crypto_alg { 533struct crypto_alg {
281 struct list_head cra_list; 534 struct list_head cra_list;
282 struct list_head cra_users; 535 struct list_head cra_users;
@@ -581,6 +834,50 @@ static inline u32 crypto_skcipher_mask(u32 mask)
581 return mask; 834 return mask;
582} 835}
583 836
837/**
838 * DOC: Asynchronous Block Cipher API
839 *
840 * Asynchronous block cipher API is used with the ciphers of type
841 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
842 *
843 * Asynchronous cipher operations imply that the function invocation for a
844 * cipher request returns immediately before the completion of the operation.
845 * The cipher request is scheduled as a separate kernel thread and therefore
846 * load-balanced on the different CPUs via the process scheduler. To allow
847 * the kernel crypto API to inform the caller about the completion of a cipher
848 * request, the caller must provide a callback function. That function is
849 * invoked with the cipher handle when the request completes.
850 *
851 * To support the asynchronous operation, additional information than just the
852 * cipher handle must be supplied to the kernel crypto API. That additional
853 * information is given by filling in the ablkcipher_request data structure.
854 *
855 * For the asynchronous block cipher API, the state is maintained with the tfm
856 * cipher handle. A single tfm can be used across multiple calls and in
857 * parallel. For asynchronous block cipher calls, context data supplied and
858 * only used by the caller can be referenced the request data structure in
859 * addition to the IV used for the cipher request. The maintenance of such
860 * state information would be important for a crypto driver implementer to
861 * have, because when calling the callback function upon completion of the
862 * cipher operation, that callback function may need some information about
863 * which operation just finished if it invoked multiple in parallel. This
864 * state information is unused by the kernel crypto API.
865 */
866
867/**
868 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
869 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
870 * ablkcipher cipher
871 * @type: specifies the type of the cipher
872 * @mask: specifies the mask for the cipher
873 *
874 * Allocate a cipher handle for an ablkcipher. The returned struct
875 * crypto_ablkcipher is the cipher handle that is required for any subsequent
876 * API invocation for that ablkcipher.
877 *
878 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
879 * of an error, PTR_ERR() returns the error code.
880 */
584struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name, 881struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
585 u32 type, u32 mask); 882 u32 type, u32 mask);
586 883
@@ -590,11 +887,25 @@ static inline struct crypto_tfm *crypto_ablkcipher_tfm(
590 return &tfm->base; 887 return &tfm->base;
591} 888}
592 889
890/**
891 * crypto_free_ablkcipher() - zeroize and free cipher handle
892 * @tfm: cipher handle to be freed
893 */
593static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 894static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
594{ 895{
595 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 896 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
596} 897}
597 898
899/**
900 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
901 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
902 * ablkcipher
903 * @type: specifies the type of the cipher
904 * @mask: specifies the mask for the cipher
905 *
906 * Return: true when the ablkcipher is known to the kernel crypto API; false
907 * otherwise
908 */
598static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 909static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
599 u32 mask) 910 u32 mask)
600{ 911{
@@ -608,12 +919,31 @@ static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
608 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 919 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
609} 920}
610 921
922/**
923 * crypto_ablkcipher_ivsize() - obtain IV size
924 * @tfm: cipher handle
925 *
926 * The size of the IV for the ablkcipher referenced by the cipher handle is
927 * returned. This IV size may be zero if the cipher does not need an IV.
928 *
929 * Return: IV size in bytes
930 */
611static inline unsigned int crypto_ablkcipher_ivsize( 931static inline unsigned int crypto_ablkcipher_ivsize(
612 struct crypto_ablkcipher *tfm) 932 struct crypto_ablkcipher *tfm)
613{ 933{
614 return crypto_ablkcipher_crt(tfm)->ivsize; 934 return crypto_ablkcipher_crt(tfm)->ivsize;
615} 935}
616 936
937/**
938 * crypto_ablkcipher_blocksize() - obtain block size of cipher
939 * @tfm: cipher handle
940 *
941 * The block size for the ablkcipher referenced with the cipher handle is
942 * returned. The caller may use that information to allocate appropriate
943 * memory for the data returned by the encryption or decryption operation
944 *
945 * Return: block size of cipher
946 */
617static inline unsigned int crypto_ablkcipher_blocksize( 947static inline unsigned int crypto_ablkcipher_blocksize(
618 struct crypto_ablkcipher *tfm) 948 struct crypto_ablkcipher *tfm)
619{ 949{
@@ -643,6 +973,22 @@ static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
643 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 973 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
644} 974}
645 975
976/**
977 * crypto_ablkcipher_setkey() - set key for cipher
978 * @tfm: cipher handle
979 * @key: buffer holding the key
980 * @keylen: length of the key in bytes
981 *
982 * The caller provided key is set for the ablkcipher referenced by the cipher
983 * handle.
984 *
985 * Note, the key length determines the cipher type. Many block ciphers implement
986 * different cipher modes depending on the key size, such as AES-128 vs AES-192
987 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
988 * is performed.
989 *
990 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
991 */
646static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 992static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
647 const u8 *key, unsigned int keylen) 993 const u8 *key, unsigned int keylen)
648{ 994{
@@ -651,12 +997,32 @@ static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
651 return crt->setkey(crt->base, key, keylen); 997 return crt->setkey(crt->base, key, keylen);
652} 998}
653 999
1000/**
1001 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1002 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1003 *
1004 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1005 * data structure.
1006 *
1007 * Return: crypto_ablkcipher handle
1008 */
654static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 1009static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
655 struct ablkcipher_request *req) 1010 struct ablkcipher_request *req)
656{ 1011{
657 return __crypto_ablkcipher_cast(req->base.tfm); 1012 return __crypto_ablkcipher_cast(req->base.tfm);
658} 1013}
659 1014
1015/**
1016 * crypto_ablkcipher_encrypt() - encrypt plaintext
1017 * @req: reference to the ablkcipher_request handle that holds all information
1018 * needed to perform the cipher operation
1019 *
1020 * Encrypt plaintext data using the ablkcipher_request handle. That data
1021 * structure and how it is filled with data is discussed with the
1022 * ablkcipher_request_* functions.
1023 *
1024 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1025 */
660static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1026static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
661{ 1027{
662 struct ablkcipher_tfm *crt = 1028 struct ablkcipher_tfm *crt =
@@ -664,6 +1030,17 @@ static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
664 return crt->encrypt(req); 1030 return crt->encrypt(req);
665} 1031}
666 1032
1033/**
1034 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1035 * @req: reference to the ablkcipher_request handle that holds all information
1036 * needed to perform the cipher operation
1037 *
1038 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1039 * structure and how it is filled with data is discussed with the
1040 * ablkcipher_request_* functions.
1041 *
1042 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1043 */
667static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1044static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
668{ 1045{
669 struct ablkcipher_tfm *crt = 1046 struct ablkcipher_tfm *crt =
@@ -671,12 +1048,37 @@ static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
671 return crt->decrypt(req); 1048 return crt->decrypt(req);
672} 1049}
673 1050
1051/**
1052 * DOC: Asynchronous Cipher Request Handle
1053 *
1054 * The ablkcipher_request data structure contains all pointers to data
1055 * required for the asynchronous cipher operation. This includes the cipher
1056 * handle (which can be used by multiple ablkcipher_request instances), pointer
1057 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1058 * as a handle to the ablkcipher_request_* API calls in a similar way as
1059 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1060 */
1061
1062/**
1063 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1064 * @tfm: cipher handle
1065 *
1066 * Return: number of bytes
1067 */
674static inline unsigned int crypto_ablkcipher_reqsize( 1068static inline unsigned int crypto_ablkcipher_reqsize(
675 struct crypto_ablkcipher *tfm) 1069 struct crypto_ablkcipher *tfm)
676{ 1070{
677 return crypto_ablkcipher_crt(tfm)->reqsize; 1071 return crypto_ablkcipher_crt(tfm)->reqsize;
678} 1072}
679 1073
1074/**
1075 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1076 * @req: request handle to be modified
1077 * @tfm: cipher handle that shall be added to the request handle
1078 *
1079 * Allow the caller to replace the existing ablkcipher handle in the request
1080 * data structure with a different one.
1081 */
680static inline void ablkcipher_request_set_tfm( 1082static inline void ablkcipher_request_set_tfm(
681 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1083 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
682{ 1084{
@@ -689,6 +1091,18 @@ static inline struct ablkcipher_request *ablkcipher_request_cast(
689 return container_of(req, struct ablkcipher_request, base); 1091 return container_of(req, struct ablkcipher_request, base);
690} 1092}
691 1093
1094/**
1095 * ablkcipher_request_alloc() - allocate request data structure
1096 * @tfm: cipher handle to be registered with the request
1097 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1098 *
1099 * Allocate the request data structure that must be used with the ablkcipher
1100 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1101 * handle is registered in the request data structure.
1102 *
1103 * Return: allocated request handle in case of success; IS_ERR() is true in case
1104 * of an error, PTR_ERR() returns the error code.
1105 */
692static inline struct ablkcipher_request *ablkcipher_request_alloc( 1106static inline struct ablkcipher_request *ablkcipher_request_alloc(
693 struct crypto_ablkcipher *tfm, gfp_t gfp) 1107 struct crypto_ablkcipher *tfm, gfp_t gfp)
694{ 1108{
@@ -703,11 +1117,40 @@ static inline struct ablkcipher_request *ablkcipher_request_alloc(
703 return req; 1117 return req;
704} 1118}
705 1119
1120/**
1121 * ablkcipher_request_free() - zeroize and free request data structure
1122 * @req: request data structure cipher handle to be freed
1123 */
706static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1124static inline void ablkcipher_request_free(struct ablkcipher_request *req)
707{ 1125{
708 kzfree(req); 1126 kzfree(req);
709} 1127}
710 1128
1129/**
1130 * ablkcipher_request_set_callback() - set asynchronous callback function
1131 * @req: request handle
1132 * @flags: specify zero or an ORing of the flags
1133 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1134 * increase the wait queue beyond the initial maximum size;
1135 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1136 * @compl: callback function pointer to be registered with the request handle
1137 * @data: The data pointer refers to memory that is not used by the kernel
1138 * crypto API, but provided to the callback function for it to use. Here,
1139 * the caller can provide a reference to memory the callback function can
1140 * operate on. As the callback function is invoked asynchronously to the
1141 * related functionality, it may need to access data structures of the
1142 * related functionality which can be referenced using this pointer. The
1143 * callback function can access the memory via the "data" field in the
1144 * crypto_async_request data structure provided to the callback function.
1145 *
1146 * This function allows setting the callback function that is triggered once the
1147 * cipher operation completes.
1148 *
1149 * The callback function is registered with the ablkcipher_request handle and
1150 * must comply with the following template:
1151 *
1152 * void callback_function(struct crypto_async_request *req, int error)
1153 */
711static inline void ablkcipher_request_set_callback( 1154static inline void ablkcipher_request_set_callback(
712 struct ablkcipher_request *req, 1155 struct ablkcipher_request *req,
713 u32 flags, crypto_completion_t compl, void *data) 1156 u32 flags, crypto_completion_t compl, void *data)
@@ -717,6 +1160,22 @@ static inline void ablkcipher_request_set_callback(
717 req->base.flags = flags; 1160 req->base.flags = flags;
718} 1161}
719 1162
1163/**
1164 * ablkcipher_request_set_crypt() - set data buffers
1165 * @req: request handle
1166 * @src: source scatter / gather list
1167 * @dst: destination scatter / gather list
1168 * @nbytes: number of bytes to process from @src
1169 * @iv: IV for the cipher operation which must comply with the IV size defined
1170 * by crypto_ablkcipher_ivsize
1171 *
1172 * This function allows setting of the source data and destination data
1173 * scatter / gather lists.
1174 *
1175 * For encryption, the source is treated as the plaintext and the
1176 * destination is the ciphertext. For a decryption operation, the use is
1177 * reversed: the source is the ciphertext and the destination is the plaintext.
1178 */
720static inline void ablkcipher_request_set_crypt( 1179static inline void ablkcipher_request_set_crypt(
721 struct ablkcipher_request *req, 1180 struct ablkcipher_request *req,
722 struct scatterlist *src, struct scatterlist *dst, 1181 struct scatterlist *src, struct scatterlist *dst,
@@ -728,11 +1187,55 @@ static inline void ablkcipher_request_set_crypt(
728 req->info = iv; 1187 req->info = iv;
729} 1188}
730 1189
1190/**
1191 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
1192 *
1193 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
1194 * (listed as type "aead" in /proc/crypto)
1195 *
1196 * The most prominent examples for this type of encryption is GCM and CCM.
1197 * However, the kernel supports other types of AEAD ciphers which are defined
1198 * with the following cipher string:
1199 *
1200 * authenc(keyed message digest, block cipher)
1201 *
1202 * For example: authenc(hmac(sha256), cbc(aes))
1203 *
1204 * The example code provided for the asynchronous block cipher operation
1205 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
1206 * the *aead* pendants discussed in the following. In addtion, for the AEAD
1207 * operation, the aead_request_set_assoc function must be used to set the
1208 * pointer to the associated data memory location before performing the
1209 * encryption or decryption operation. In case of an encryption, the associated
1210 * data memory is filled during the encryption operation. For decryption, the
1211 * associated data memory must contain data that is used to verify the integrity
1212 * of the decrypted data. Another deviation from the asynchronous block cipher
1213 * operation is that the caller should explicitly check for -EBADMSG of the
1214 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
1215 * a breach in the integrity of the message. In essence, that -EBADMSG error
1216 * code is the key bonus an AEAD cipher has over "standard" block chaining
1217 * modes.
1218 */
1219
731static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) 1220static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
732{ 1221{
733 return (struct crypto_aead *)tfm; 1222 return (struct crypto_aead *)tfm;
734} 1223}
735 1224
1225/**
1226 * crypto_alloc_aead() - allocate AEAD cipher handle
1227 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1228 * AEAD cipher
1229 * @type: specifies the type of the cipher
1230 * @mask: specifies the mask for the cipher
1231 *
1232 * Allocate a cipher handle for an AEAD. The returned struct
1233 * crypto_aead is the cipher handle that is required for any subsequent
1234 * API invocation for that AEAD.
1235 *
1236 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1237 * of an error, PTR_ERR() returns the error code.
1238 */
736struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); 1239struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
737 1240
738static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) 1241static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
@@ -740,6 +1243,10 @@ static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
740 return &tfm->base; 1243 return &tfm->base;
741} 1244}
742 1245
1246/**
1247 * crypto_free_aead() - zeroize and free aead handle
1248 * @tfm: cipher handle to be freed
1249 */
743static inline void crypto_free_aead(struct crypto_aead *tfm) 1250static inline void crypto_free_aead(struct crypto_aead *tfm)
744{ 1251{
745 crypto_free_tfm(crypto_aead_tfm(tfm)); 1252 crypto_free_tfm(crypto_aead_tfm(tfm));
@@ -750,16 +1257,47 @@ static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm)
750 return &crypto_aead_tfm(tfm)->crt_aead; 1257 return &crypto_aead_tfm(tfm)->crt_aead;
751} 1258}
752 1259
1260/**
1261 * crypto_aead_ivsize() - obtain IV size
1262 * @tfm: cipher handle
1263 *
1264 * The size of the IV for the aead referenced by the cipher handle is
1265 * returned. This IV size may be zero if the cipher does not need an IV.
1266 *
1267 * Return: IV size in bytes
1268 */
753static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) 1269static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
754{ 1270{
755 return crypto_aead_crt(tfm)->ivsize; 1271 return crypto_aead_crt(tfm)->ivsize;
756} 1272}
757 1273
1274/**
1275 * crypto_aead_authsize() - obtain maximum authentication data size
1276 * @tfm: cipher handle
1277 *
1278 * The maximum size of the authentication data for the AEAD cipher referenced
1279 * by the AEAD cipher handle is returned. The authentication data size may be
1280 * zero if the cipher implements a hard-coded maximum.
1281 *
1282 * The authentication data may also be known as "tag value".
1283 *
1284 * Return: authentication data size / tag size in bytes
1285 */
758static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) 1286static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
759{ 1287{
760 return crypto_aead_crt(tfm)->authsize; 1288 return crypto_aead_crt(tfm)->authsize;
761} 1289}
762 1290
1291/**
1292 * crypto_aead_blocksize() - obtain block size of cipher
1293 * @tfm: cipher handle
1294 *
1295 * The block size for the AEAD referenced with the cipher handle is returned.
1296 * The caller may use that information to allocate appropriate memory for the
1297 * data returned by the encryption or decryption operation
1298 *
1299 * Return: block size of cipher
1300 */
763static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) 1301static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
764{ 1302{
765 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); 1303 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
@@ -785,6 +1323,22 @@ static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
785 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); 1323 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
786} 1324}
787 1325
1326/**
1327 * crypto_aead_setkey() - set key for cipher
1328 * @tfm: cipher handle
1329 * @key: buffer holding the key
1330 * @keylen: length of the key in bytes
1331 *
1332 * The caller provided key is set for the AEAD referenced by the cipher
1333 * handle.
1334 *
1335 * Note, the key length determines the cipher type. Many block ciphers implement
1336 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1337 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1338 * is performed.
1339 *
1340 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1341 */
788static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, 1342static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
789 unsigned int keylen) 1343 unsigned int keylen)
790{ 1344{
@@ -793,6 +1347,16 @@ static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
793 return crt->setkey(crt->base, key, keylen); 1347 return crt->setkey(crt->base, key, keylen);
794} 1348}
795 1349
1350/**
1351 * crypto_aead_setauthsize() - set authentication data size
1352 * @tfm: cipher handle
1353 * @authsize: size of the authentication data / tag in bytes
1354 *
1355 * Set the authentication data size / tag size. AEAD requires an authentication
1356 * tag (or MAC) in addition to the associated data.
1357 *
1358 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1359 */
796int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); 1360int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
797 1361
798static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) 1362static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
@@ -800,27 +1364,105 @@ static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
800 return __crypto_aead_cast(req->base.tfm); 1364 return __crypto_aead_cast(req->base.tfm);
801} 1365}
802 1366
1367/**
1368 * crypto_aead_encrypt() - encrypt plaintext
1369 * @req: reference to the aead_request handle that holds all information
1370 * needed to perform the cipher operation
1371 *
1372 * Encrypt plaintext data using the aead_request handle. That data structure
1373 * and how it is filled with data is discussed with the aead_request_*
1374 * functions.
1375 *
1376 * IMPORTANT NOTE The encryption operation creates the authentication data /
1377 * tag. That data is concatenated with the created ciphertext.
1378 * The ciphertext memory size is therefore the given number of
1379 * block cipher blocks + the size defined by the
1380 * crypto_aead_setauthsize invocation. The caller must ensure
1381 * that sufficient memory is available for the ciphertext and
1382 * the authentication tag.
1383 *
1384 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1385 */
803static inline int crypto_aead_encrypt(struct aead_request *req) 1386static inline int crypto_aead_encrypt(struct aead_request *req)
804{ 1387{
805 return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req); 1388 return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req);
806} 1389}
807 1390
1391/**
1392 * crypto_aead_decrypt() - decrypt ciphertext
1393 * @req: reference to the ablkcipher_request handle that holds all information
1394 * needed to perform the cipher operation
1395 *
1396 * Decrypt ciphertext data using the aead_request handle. That data structure
1397 * and how it is filled with data is discussed with the aead_request_*
1398 * functions.
1399 *
1400 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
1401 * authentication data / tag. That authentication data / tag
1402 * must have the size defined by the crypto_aead_setauthsize
1403 * invocation.
1404 *
1405 *
1406 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
1407 * cipher operation performs the authentication of the data during the
1408 * decryption operation. Therefore, the function returns this error if
1409 * the authentication of the ciphertext was unsuccessful (i.e. the
1410 * integrity of the ciphertext or the associated data was violated);
1411 * < 0 if an error occurred.
1412 */
808static inline int crypto_aead_decrypt(struct aead_request *req) 1413static inline int crypto_aead_decrypt(struct aead_request *req)
809{ 1414{
810 return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req); 1415 return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req);
811} 1416}
812 1417
1418/**
1419 * DOC: Asynchronous AEAD Request Handle
1420 *
1421 * The aead_request data structure contains all pointers to data required for
1422 * the AEAD cipher operation. This includes the cipher handle (which can be
1423 * used by multiple aead_request instances), pointer to plaintext and
1424 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
1425 * aead_request_* API calls in a similar way as AEAD handle to the
1426 * crypto_aead_* API calls.
1427 */
1428
1429/**
1430 * crypto_aead_reqsize() - obtain size of the request data structure
1431 * @tfm: cipher handle
1432 *
1433 * Return: number of bytes
1434 */
813static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) 1435static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
814{ 1436{
815 return crypto_aead_crt(tfm)->reqsize; 1437 return crypto_aead_crt(tfm)->reqsize;
816} 1438}
817 1439
1440/**
1441 * aead_request_set_tfm() - update cipher handle reference in request
1442 * @req: request handle to be modified
1443 * @tfm: cipher handle that shall be added to the request handle
1444 *
1445 * Allow the caller to replace the existing aead handle in the request
1446 * data structure with a different one.
1447 */
818static inline void aead_request_set_tfm(struct aead_request *req, 1448static inline void aead_request_set_tfm(struct aead_request *req,
819 struct crypto_aead *tfm) 1449 struct crypto_aead *tfm)
820{ 1450{
821 req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base); 1451 req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base);
822} 1452}
823 1453
1454/**
1455 * aead_request_alloc() - allocate request data structure
1456 * @tfm: cipher handle to be registered with the request
1457 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1458 *
1459 * Allocate the request data structure that must be used with the AEAD
1460 * encrypt and decrypt API calls. During the allocation, the provided aead
1461 * handle is registered in the request data structure.
1462 *
1463 * Return: allocated request handle in case of success; IS_ERR() is true in case
1464 * of an error, PTR_ERR() returns the error code.
1465 */
824static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, 1466static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
825 gfp_t gfp) 1467 gfp_t gfp)
826{ 1468{
@@ -834,11 +1476,40 @@ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
834 return req; 1476 return req;
835} 1477}
836 1478
1479/**
1480 * aead_request_free() - zeroize and free request data structure
1481 * @req: request data structure cipher handle to be freed
1482 */
837static inline void aead_request_free(struct aead_request *req) 1483static inline void aead_request_free(struct aead_request *req)
838{ 1484{
839 kzfree(req); 1485 kzfree(req);
840} 1486}
841 1487
1488/**
1489 * aead_request_set_callback() - set asynchronous callback function
1490 * @req: request handle
1491 * @flags: specify zero or an ORing of the flags
1492 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1493 * increase the wait queue beyond the initial maximum size;
1494 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1495 * @compl: callback function pointer to be registered with the request handle
1496 * @data: The data pointer refers to memory that is not used by the kernel
1497 * crypto API, but provided to the callback function for it to use. Here,
1498 * the caller can provide a reference to memory the callback function can
1499 * operate on. As the callback function is invoked asynchronously to the
1500 * related functionality, it may need to access data structures of the
1501 * related functionality which can be referenced using this pointer. The
1502 * callback function can access the memory via the "data" field in the
1503 * crypto_async_request data structure provided to the callback function.
1504 *
1505 * Setting the callback function that is triggered once the cipher operation
1506 * completes
1507 *
1508 * The callback function is registered with the aead_request handle and
1509 * must comply with the following template:
1510 *
1511 * void callback_function(struct crypto_async_request *req, int error)
1512 */
842static inline void aead_request_set_callback(struct aead_request *req, 1513static inline void aead_request_set_callback(struct aead_request *req,
843 u32 flags, 1514 u32 flags,
844 crypto_completion_t compl, 1515 crypto_completion_t compl,
@@ -849,6 +1520,36 @@ static inline void aead_request_set_callback(struct aead_request *req,
849 req->base.flags = flags; 1520 req->base.flags = flags;
850} 1521}
851 1522
1523/**
1524 * aead_request_set_crypt - set data buffers
1525 * @req: request handle
1526 * @src: source scatter / gather list
1527 * @dst: destination scatter / gather list
1528 * @cryptlen: number of bytes to process from @src
1529 * @iv: IV for the cipher operation which must comply with the IV size defined
1530 * by crypto_aead_ivsize()
1531 *
1532 * Setting the source data and destination data scatter / gather lists.
1533 *
1534 * For encryption, the source is treated as the plaintext and the
1535 * destination is the ciphertext. For a decryption operation, the use is
1536 * reversed: the source is the ciphertext and the destination is the plaintext.
1537 *
1538 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
1539 * the caller must concatenate the ciphertext followed by the
1540 * authentication tag and provide the entire data stream to the
1541 * decryption operation (i.e. the data length used for the
1542 * initialization of the scatterlist and the data length for the
1543 * decryption operation is identical). For encryption, however,
1544 * the authentication tag is created while encrypting the data.
1545 * The destination buffer must hold sufficient space for the
1546 * ciphertext and the authentication tag while the encryption
1547 * invocation must only point to the plaintext data size. The
1548 * following code snippet illustrates the memory usage
1549 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
1550 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
1551 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
1552 */
852static inline void aead_request_set_crypt(struct aead_request *req, 1553static inline void aead_request_set_crypt(struct aead_request *req,
853 struct scatterlist *src, 1554 struct scatterlist *src,
854 struct scatterlist *dst, 1555 struct scatterlist *dst,
@@ -860,6 +1561,15 @@ static inline void aead_request_set_crypt(struct aead_request *req,
860 req->iv = iv; 1561 req->iv = iv;
861} 1562}
862 1563
1564/**
1565 * aead_request_set_assoc() - set the associated data scatter / gather list
1566 * @req: request handle
1567 * @assoc: associated data scatter / gather list
1568 * @assoclen: number of bytes to process from @assoc
1569 *
1570 * For encryption, the memory is filled with the associated data. For
1571 * decryption, the memory must point to the associated data.
1572 */
863static inline void aead_request_set_assoc(struct aead_request *req, 1573static inline void aead_request_set_assoc(struct aead_request *req,
864 struct scatterlist *assoc, 1574 struct scatterlist *assoc,
865 unsigned int assoclen) 1575 unsigned int assoclen)
@@ -868,6 +1578,36 @@ static inline void aead_request_set_assoc(struct aead_request *req,
868 req->assoclen = assoclen; 1578 req->assoclen = assoclen;
869} 1579}
870 1580
1581/**
1582 * DOC: Synchronous Block Cipher API
1583 *
1584 * The synchronous block cipher API is used with the ciphers of type
1585 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1586 *
1587 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1588 * used in multiple calls and in parallel, this info should not be changeable
1589 * (unless a lock is used). This applies, for example, to the symmetric key.
1590 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1591 * structure for synchronous blkcipher api. So, its the only state info that can
1592 * be kept for synchronous calls without using a big lock across a tfm.
1593 *
1594 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1595 * consisting of a template (a block chaining mode) and a single block cipher
1596 * primitive (e.g. AES).
1597 *
1598 * The plaintext data buffer and the ciphertext data buffer are pointed to
1599 * by using scatter/gather lists. The cipher operation is performed
1600 * on all segments of the provided scatter/gather lists.
1601 *
1602 * The kernel crypto API supports a cipher operation "in-place" which means that
1603 * the caller may provide the same scatter/gather list for the plaintext and
1604 * cipher text. After the completion of the cipher operation, the plaintext
1605 * data is replaced with the ciphertext data in case of an encryption and vice
1606 * versa for a decryption. The caller must ensure that the scatter/gather lists
1607 * for the output data point to sufficiently large buffers, i.e. multiples of
1608 * the block size of the cipher.
1609 */
1610
871static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1611static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
872 struct crypto_tfm *tfm) 1612 struct crypto_tfm *tfm)
873{ 1613{
@@ -881,6 +1621,20 @@ static inline struct crypto_blkcipher *crypto_blkcipher_cast(
881 return __crypto_blkcipher_cast(tfm); 1621 return __crypto_blkcipher_cast(tfm);
882} 1622}
883 1623
1624/**
1625 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1626 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1627 * blkcipher cipher
1628 * @type: specifies the type of the cipher
1629 * @mask: specifies the mask for the cipher
1630 *
1631 * Allocate a cipher handle for a block cipher. The returned struct
1632 * crypto_blkcipher is the cipher handle that is required for any subsequent
1633 * API invocation for that block cipher.
1634 *
1635 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1636 * of an error, PTR_ERR() returns the error code.
1637 */
884static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1638static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
885 const char *alg_name, u32 type, u32 mask) 1639 const char *alg_name, u32 type, u32 mask)
886{ 1640{
@@ -897,11 +1651,25 @@ static inline struct crypto_tfm *crypto_blkcipher_tfm(
897 return &tfm->base; 1651 return &tfm->base;
898} 1652}
899 1653
1654/**
1655 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1656 * @tfm: cipher handle to be freed
1657 */
900static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1658static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
901{ 1659{
902 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1660 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
903} 1661}
904 1662
1663/**
1664 * crypto_has_blkcipher() - Search for the availability of a block cipher
1665 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1666 * block cipher
1667 * @type: specifies the type of the cipher
1668 * @mask: specifies the mask for the cipher
1669 *
1670 * Return: true when the block cipher is known to the kernel crypto API; false
1671 * otherwise
1672 */
905static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1673static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
906{ 1674{
907 type &= ~CRYPTO_ALG_TYPE_MASK; 1675 type &= ~CRYPTO_ALG_TYPE_MASK;
@@ -911,6 +1679,12 @@ static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
911 return crypto_has_alg(alg_name, type, mask); 1679 return crypto_has_alg(alg_name, type, mask);
912} 1680}
913 1681
1682/**
1683 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1684 * @tfm: cipher handle
1685 *
1686 * Return: The character string holding the name of the cipher
1687 */
914static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1688static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
915{ 1689{
916 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1690 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
@@ -928,11 +1702,30 @@ static inline struct blkcipher_alg *crypto_blkcipher_alg(
928 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1702 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
929} 1703}
930 1704
1705/**
1706 * crypto_blkcipher_ivsize() - obtain IV size
1707 * @tfm: cipher handle
1708 *
1709 * The size of the IV for the block cipher referenced by the cipher handle is
1710 * returned. This IV size may be zero if the cipher does not need an IV.
1711 *
1712 * Return: IV size in bytes
1713 */
931static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1714static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
932{ 1715{
933 return crypto_blkcipher_alg(tfm)->ivsize; 1716 return crypto_blkcipher_alg(tfm)->ivsize;
934} 1717}
935 1718
1719/**
1720 * crypto_blkcipher_blocksize() - obtain block size of cipher
1721 * @tfm: cipher handle
1722 *
1723 * The block size for the block cipher referenced with the cipher handle is
1724 * returned. The caller may use that information to allocate appropriate
1725 * memory for the data returned by the encryption or decryption operation.
1726 *
1727 * Return: block size of cipher
1728 */
936static inline unsigned int crypto_blkcipher_blocksize( 1729static inline unsigned int crypto_blkcipher_blocksize(
937 struct crypto_blkcipher *tfm) 1730 struct crypto_blkcipher *tfm)
938{ 1731{
@@ -962,6 +1755,22 @@ static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
962 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1755 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
963} 1756}
964 1757
1758/**
1759 * crypto_blkcipher_setkey() - set key for cipher
1760 * @tfm: cipher handle
1761 * @key: buffer holding the key
1762 * @keylen: length of the key in bytes
1763 *
1764 * The caller provided key is set for the block cipher referenced by the cipher
1765 * handle.
1766 *
1767 * Note, the key length determines the cipher type. Many block ciphers implement
1768 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1769 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1770 * is performed.
1771 *
1772 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1773 */
965static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1774static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
966 const u8 *key, unsigned int keylen) 1775 const u8 *key, unsigned int keylen)
967{ 1776{
@@ -969,6 +1778,24 @@ static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
969 key, keylen); 1778 key, keylen);
970} 1779}
971 1780
1781/**
1782 * crypto_blkcipher_encrypt() - encrypt plaintext
1783 * @desc: reference to the block cipher handle with meta data
1784 * @dst: scatter/gather list that is filled by the cipher operation with the
1785 * ciphertext
1786 * @src: scatter/gather list that holds the plaintext
1787 * @nbytes: number of bytes of the plaintext to encrypt.
1788 *
1789 * Encrypt plaintext data using the IV set by the caller with a preceding
1790 * call of crypto_blkcipher_set_iv.
1791 *
1792 * The blkcipher_desc data structure must be filled by the caller and can
1793 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1794 * with the block cipher handle; desc.flags is filled with either
1795 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1796 *
1797 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1798 */
972static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1799static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
973 struct scatterlist *dst, 1800 struct scatterlist *dst,
974 struct scatterlist *src, 1801 struct scatterlist *src,
@@ -978,6 +1805,25 @@ static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
978 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1805 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
979} 1806}
980 1807
1808/**
1809 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1810 * @desc: reference to the block cipher handle with meta data
1811 * @dst: scatter/gather list that is filled by the cipher operation with the
1812 * ciphertext
1813 * @src: scatter/gather list that holds the plaintext
1814 * @nbytes: number of bytes of the plaintext to encrypt.
1815 *
1816 * Encrypt plaintext data with the use of an IV that is solely used for this
1817 * cipher operation. Any previously set IV is not used.
1818 *
1819 * The blkcipher_desc data structure must be filled by the caller and can
1820 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1821 * with the block cipher handle; desc.info is filled with the IV to be used for
1822 * the current operation; desc.flags is filled with either
1823 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1824 *
1825 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1826 */
981static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1827static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
982 struct scatterlist *dst, 1828 struct scatterlist *dst,
983 struct scatterlist *src, 1829 struct scatterlist *src,
@@ -986,6 +1832,23 @@ static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
986 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1832 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
987} 1833}
988 1834
1835/**
1836 * crypto_blkcipher_decrypt() - decrypt ciphertext
1837 * @desc: reference to the block cipher handle with meta data
1838 * @dst: scatter/gather list that is filled by the cipher operation with the
1839 * plaintext
1840 * @src: scatter/gather list that holds the ciphertext
1841 * @nbytes: number of bytes of the ciphertext to decrypt.
1842 *
1843 * Decrypt ciphertext data using the IV set by the caller with a preceding
1844 * call of crypto_blkcipher_set_iv.
1845 *
1846 * The blkcipher_desc data structure must be filled by the caller as documented
1847 * for the crypto_blkcipher_encrypt call above.
1848 *
1849 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1850 *
1851 */
989static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1852static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
990 struct scatterlist *dst, 1853 struct scatterlist *dst,
991 struct scatterlist *src, 1854 struct scatterlist *src,
@@ -995,6 +1858,22 @@ static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
995 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1858 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
996} 1859}
997 1860
1861/**
1862 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1863 * @desc: reference to the block cipher handle with meta data
1864 * @dst: scatter/gather list that is filled by the cipher operation with the
1865 * plaintext
1866 * @src: scatter/gather list that holds the ciphertext
1867 * @nbytes: number of bytes of the ciphertext to decrypt.
1868 *
1869 * Decrypt ciphertext data with the use of an IV that is solely used for this
1870 * cipher operation. Any previously set IV is not used.
1871 *
1872 * The blkcipher_desc data structure must be filled by the caller as documented
1873 * for the crypto_blkcipher_encrypt_iv call above.
1874 *
1875 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1876 */
998static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1877static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
999 struct scatterlist *dst, 1878 struct scatterlist *dst,
1000 struct scatterlist *src, 1879 struct scatterlist *src,
@@ -1003,18 +1882,54 @@ static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1003 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1882 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1004} 1883}
1005 1884
1885/**
1886 * crypto_blkcipher_set_iv() - set IV for cipher
1887 * @tfm: cipher handle
1888 * @src: buffer holding the IV
1889 * @len: length of the IV in bytes
1890 *
1891 * The caller provided IV is set for the block cipher referenced by the cipher
1892 * handle.
1893 */
1006static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1894static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1007 const u8 *src, unsigned int len) 1895 const u8 *src, unsigned int len)
1008{ 1896{
1009 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1897 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1010} 1898}
1011 1899
1900/**
1901 * crypto_blkcipher_get_iv() - obtain IV from cipher
1902 * @tfm: cipher handle
1903 * @dst: buffer filled with the IV
1904 * @len: length of the buffer dst
1905 *
1906 * The caller can obtain the IV set for the block cipher referenced by the
1907 * cipher handle and store it into the user-provided buffer. If the buffer
1908 * has an insufficient space, the IV is truncated to fit the buffer.
1909 */
1012static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1910static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1013 u8 *dst, unsigned int len) 1911 u8 *dst, unsigned int len)
1014{ 1912{
1015 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1913 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1016} 1914}
1017 1915
1916/**
1917 * DOC: Single Block Cipher API
1918 *
1919 * The single block cipher API is used with the ciphers of type
1920 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1921 *
1922 * Using the single block cipher API calls, operations with the basic cipher
1923 * primitive can be implemented. These cipher primitives exclude any block
1924 * chaining operations including IV handling.
1925 *
1926 * The purpose of this single block cipher API is to support the implementation
1927 * of templates or other concepts that only need to perform the cipher operation
1928 * on one block at a time. Templates invoke the underlying cipher primitive
1929 * block-wise and process either the input or the output data of these cipher
1930 * operations.
1931 */
1932
1018static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1933static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1019{ 1934{
1020 return (struct crypto_cipher *)tfm; 1935 return (struct crypto_cipher *)tfm;
@@ -1026,6 +1941,20 @@ static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1026 return __crypto_cipher_cast(tfm); 1941 return __crypto_cipher_cast(tfm);
1027} 1942}
1028 1943
1944/**
1945 * crypto_alloc_cipher() - allocate single block cipher handle
1946 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1947 * single block cipher
1948 * @type: specifies the type of the cipher
1949 * @mask: specifies the mask for the cipher
1950 *
1951 * Allocate a cipher handle for a single block cipher. The returned struct
1952 * crypto_cipher is the cipher handle that is required for any subsequent API
1953 * invocation for that single block cipher.
1954 *
1955 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1956 * of an error, PTR_ERR() returns the error code.
1957 */
1029static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1958static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1030 u32 type, u32 mask) 1959 u32 type, u32 mask)
1031{ 1960{
@@ -1041,11 +1970,25 @@ static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1041 return &tfm->base; 1970 return &tfm->base;
1042} 1971}
1043 1972
1973/**
1974 * crypto_free_cipher() - zeroize and free the single block cipher handle
1975 * @tfm: cipher handle to be freed
1976 */
1044static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1977static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1045{ 1978{
1046 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1979 crypto_free_tfm(crypto_cipher_tfm(tfm));
1047} 1980}
1048 1981
1982/**
1983 * crypto_has_cipher() - Search for the availability of a single block cipher
1984 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1985 * single block cipher
1986 * @type: specifies the type of the cipher
1987 * @mask: specifies the mask for the cipher
1988 *
1989 * Return: true when the single block cipher is known to the kernel crypto API;
1990 * false otherwise
1991 */
1049static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1992static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1050{ 1993{
1051 type &= ~CRYPTO_ALG_TYPE_MASK; 1994 type &= ~CRYPTO_ALG_TYPE_MASK;
@@ -1060,6 +2003,16 @@ static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1060 return &crypto_cipher_tfm(tfm)->crt_cipher; 2003 return &crypto_cipher_tfm(tfm)->crt_cipher;
1061} 2004}
1062 2005
2006/**
2007 * crypto_cipher_blocksize() - obtain block size for cipher
2008 * @tfm: cipher handle
2009 *
2010 * The block size for the single block cipher referenced with the cipher handle
2011 * tfm is returned. The caller may use that information to allocate appropriate
2012 * memory for the data returned by the encryption or decryption operation
2013 *
2014 * Return: block size of cipher
2015 */
1063static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 2016static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1064{ 2017{
1065 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 2018 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
@@ -1087,6 +2040,22 @@ static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1087 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 2040 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1088} 2041}
1089 2042
2043/**
2044 * crypto_cipher_setkey() - set key for cipher
2045 * @tfm: cipher handle
2046 * @key: buffer holding the key
2047 * @keylen: length of the key in bytes
2048 *
2049 * The caller provided key is set for the single block cipher referenced by the
2050 * cipher handle.
2051 *
2052 * Note, the key length determines the cipher type. Many block ciphers implement
2053 * different cipher modes depending on the key size, such as AES-128 vs AES-192
2054 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
2055 * is performed.
2056 *
2057 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2058 */
1090static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 2059static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1091 const u8 *key, unsigned int keylen) 2060 const u8 *key, unsigned int keylen)
1092{ 2061{
@@ -1094,6 +2063,15 @@ static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1094 key, keylen); 2063 key, keylen);
1095} 2064}
1096 2065
2066/**
2067 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
2068 * @tfm: cipher handle
2069 * @dst: points to the buffer that will be filled with the ciphertext
2070 * @src: buffer holding the plaintext to be encrypted
2071 *
2072 * Invoke the encryption operation of one block. The caller must ensure that
2073 * the plaintext and ciphertext buffers are at least one block in size.
2074 */
1097static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 2075static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1098 u8 *dst, const u8 *src) 2076 u8 *dst, const u8 *src)
1099{ 2077{
@@ -1101,6 +2079,15 @@ static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1101 dst, src); 2079 dst, src);
1102} 2080}
1103 2081
2082/**
2083 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
2084 * @tfm: cipher handle
2085 * @dst: points to the buffer that will be filled with the plaintext
2086 * @src: buffer holding the ciphertext to be decrypted
2087 *
2088 * Invoke the decryption operation of one block. The caller must ensure that
2089 * the plaintext and ciphertext buffers are at least one block in size.
2090 */
1104static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 2091static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1105 u8 *dst, const u8 *src) 2092 u8 *dst, const u8 *src)
1106{ 2093{
@@ -1108,6 +2095,13 @@ static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1108 dst, src); 2095 dst, src);
1109} 2096}
1110 2097
2098/**
2099 * DOC: Synchronous Message Digest API
2100 *
2101 * The synchronous message digest API is used with the ciphers of type
2102 * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
2103 */
2104
1111static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm) 2105static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
1112{ 2106{
1113 return (struct crypto_hash *)tfm; 2107 return (struct crypto_hash *)tfm;
@@ -1120,6 +2114,20 @@ static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
1120 return __crypto_hash_cast(tfm); 2114 return __crypto_hash_cast(tfm);
1121} 2115}
1122 2116
2117/**
2118 * crypto_alloc_hash() - allocate synchronous message digest handle
2119 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2120 * message digest cipher
2121 * @type: specifies the type of the cipher
2122 * @mask: specifies the mask for the cipher
2123 *
2124 * Allocate a cipher handle for a message digest. The returned struct
2125 * crypto_hash is the cipher handle that is required for any subsequent
2126 * API invocation for that message digest.
2127 *
2128 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
2129 * of an error, PTR_ERR() returns the error code.
2130 */
1123static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name, 2131static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
1124 u32 type, u32 mask) 2132 u32 type, u32 mask)
1125{ 2133{
@@ -1136,11 +2144,25 @@ static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
1136 return &tfm->base; 2144 return &tfm->base;
1137} 2145}
1138 2146
2147/**
2148 * crypto_free_hash() - zeroize and free message digest handle
2149 * @tfm: cipher handle to be freed
2150 */
1139static inline void crypto_free_hash(struct crypto_hash *tfm) 2151static inline void crypto_free_hash(struct crypto_hash *tfm)
1140{ 2152{
1141 crypto_free_tfm(crypto_hash_tfm(tfm)); 2153 crypto_free_tfm(crypto_hash_tfm(tfm));
1142} 2154}
1143 2155
2156/**
2157 * crypto_has_hash() - Search for the availability of a message digest
2158 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2159 * message digest cipher
2160 * @type: specifies the type of the cipher
2161 * @mask: specifies the mask for the cipher
2162 *
2163 * Return: true when the message digest cipher is known to the kernel crypto
2164 * API; false otherwise
2165 */
1144static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask) 2166static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
1145{ 2167{
1146 type &= ~CRYPTO_ALG_TYPE_MASK; 2168 type &= ~CRYPTO_ALG_TYPE_MASK;
@@ -1156,6 +2178,15 @@ static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
1156 return &crypto_hash_tfm(tfm)->crt_hash; 2178 return &crypto_hash_tfm(tfm)->crt_hash;
1157} 2179}
1158 2180
2181/**
2182 * crypto_hash_blocksize() - obtain block size for message digest
2183 * @tfm: cipher handle
2184 *
2185 * The block size for the message digest cipher referenced with the cipher
2186 * handle is returned.
2187 *
2188 * Return: block size of cipher
2189 */
1159static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm) 2190static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
1160{ 2191{
1161 return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm)); 2192 return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
@@ -1166,6 +2197,15 @@ static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
1166 return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm)); 2197 return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
1167} 2198}
1168 2199
2200/**
2201 * crypto_hash_digestsize() - obtain message digest size
2202 * @tfm: cipher handle
2203 *
2204 * The size for the message digest created by the message digest cipher
2205 * referenced with the cipher handle is returned.
2206 *
2207 * Return: message digest size
2208 */
1169static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm) 2209static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
1170{ 2210{
1171 return crypto_hash_crt(tfm)->digestsize; 2211 return crypto_hash_crt(tfm)->digestsize;
@@ -1186,11 +2226,38 @@ static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
1186 crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags); 2226 crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
1187} 2227}
1188 2228
2229/**
2230 * crypto_hash_init() - (re)initialize message digest handle
2231 * @desc: cipher request handle that to be filled by caller --
2232 * desc.tfm is filled with the hash cipher handle;
2233 * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
2234 *
2235 * The call (re-)initializes the message digest referenced by the hash cipher
2236 * request handle. Any potentially existing state created by previous
2237 * operations is discarded.
2238 *
2239 * Return: 0 if the message digest initialization was successful; < 0 if an
2240 * error occurred
2241 */
1189static inline int crypto_hash_init(struct hash_desc *desc) 2242static inline int crypto_hash_init(struct hash_desc *desc)
1190{ 2243{
1191 return crypto_hash_crt(desc->tfm)->init(desc); 2244 return crypto_hash_crt(desc->tfm)->init(desc);
1192} 2245}
1193 2246
2247/**
2248 * crypto_hash_update() - add data to message digest for processing
2249 * @desc: cipher request handle
2250 * @sg: scatter / gather list pointing to the data to be added to the message
2251 * digest
2252 * @nbytes: number of bytes to be processed from @sg
2253 *
2254 * Updates the message digest state of the cipher handle pointed to by the
2255 * hash cipher request handle with the input data pointed to by the
2256 * scatter/gather list.
2257 *
2258 * Return: 0 if the message digest update was successful; < 0 if an error
2259 * occurred
2260 */
1194static inline int crypto_hash_update(struct hash_desc *desc, 2261static inline int crypto_hash_update(struct hash_desc *desc,
1195 struct scatterlist *sg, 2262 struct scatterlist *sg,
1196 unsigned int nbytes) 2263 unsigned int nbytes)
@@ -1198,11 +2265,39 @@ static inline int crypto_hash_update(struct hash_desc *desc,
1198 return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes); 2265 return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
1199} 2266}
1200 2267
2268/**
2269 * crypto_hash_final() - calculate message digest
2270 * @desc: cipher request handle
2271 * @out: message digest output buffer -- The caller must ensure that the out
2272 * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
2273 * function).
2274 *
2275 * Finalize the message digest operation and create the message digest
2276 * based on all data added to the cipher handle. The message digest is placed
2277 * into the output buffer.
2278 *
2279 * Return: 0 if the message digest creation was successful; < 0 if an error
2280 * occurred
2281 */
1201static inline int crypto_hash_final(struct hash_desc *desc, u8 *out) 2282static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
1202{ 2283{
1203 return crypto_hash_crt(desc->tfm)->final(desc, out); 2284 return crypto_hash_crt(desc->tfm)->final(desc, out);
1204} 2285}
1205 2286
2287/**
2288 * crypto_hash_digest() - calculate message digest for a buffer
2289 * @desc: see crypto_hash_final()
2290 * @sg: see crypto_hash_update()
2291 * @nbytes: see crypto_hash_update()
2292 * @out: see crypto_hash_final()
2293 *
2294 * This function is a "short-hand" for the function calls of crypto_hash_init,
2295 * crypto_hash_update and crypto_hash_final. The parameters have the same
2296 * meaning as discussed for those separate three functions.
2297 *
2298 * Return: 0 if the message digest creation was successful; < 0 if an error
2299 * occurred
2300 */
1206static inline int crypto_hash_digest(struct hash_desc *desc, 2301static inline int crypto_hash_digest(struct hash_desc *desc,
1207 struct scatterlist *sg, 2302 struct scatterlist *sg,
1208 unsigned int nbytes, u8 *out) 2303 unsigned int nbytes, u8 *out)
@@ -1210,6 +2305,17 @@ static inline int crypto_hash_digest(struct hash_desc *desc,
1210 return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out); 2305 return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
1211} 2306}
1212 2307
2308/**
2309 * crypto_hash_setkey() - set key for message digest
2310 * @hash: cipher handle
2311 * @key: buffer holding the key
2312 * @keylen: length of the key in bytes
2313 *
2314 * The caller provided key is set for the message digest cipher. The cipher
2315 * handle must point to a keyed hash in order for this function to succeed.
2316 *
2317 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2318 */
1213static inline int crypto_hash_setkey(struct crypto_hash *hash, 2319static inline int crypto_hash_setkey(struct crypto_hash *hash,
1214 const u8 *key, unsigned int keylen) 2320 const u8 *key, unsigned int keylen)
1215{ 2321{
diff --git a/include/net/sock.h b/include/net/sock.h
index c3e83c9a8ab8..2210fec65669 100644
--- a/include/net/sock.h
+++ b/include/net/sock.h
@@ -1593,6 +1593,7 @@ struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1593 int *errcode, int max_page_order); 1593 int *errcode, int max_page_order);
1594void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1594void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1595void sock_kfree_s(struct sock *sk, void *mem, int size); 1595void sock_kfree_s(struct sock *sk, void *mem, int size);
1596void sock_kzfree_s(struct sock *sk, void *mem, int size);
1596void sk_send_sigurg(struct sock *sk); 1597void sk_send_sigurg(struct sock *sk);
1597 1598
1598/* 1599/*
diff --git a/include/uapi/linux/if_alg.h b/include/uapi/linux/if_alg.h
index 0f9acce5b1ff..f2acd2fde1f3 100644
--- a/include/uapi/linux/if_alg.h
+++ b/include/uapi/linux/if_alg.h
@@ -32,6 +32,8 @@ struct af_alg_iv {
32#define ALG_SET_KEY 1 32#define ALG_SET_KEY 1
33#define ALG_SET_IV 2 33#define ALG_SET_IV 2
34#define ALG_SET_OP 3 34#define ALG_SET_OP 3
35#define ALG_SET_AEAD_ASSOCLEN 4
36#define ALG_SET_AEAD_AUTHSIZE 5
35 37
36/* Operations */ 38/* Operations */
37#define ALG_OP_DECRYPT 0 39#define ALG_OP_DECRYPT 0