aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab@redhat.com>2012-04-16 12:04:46 -0400
committerMauro Carvalho Chehab <mchehab@redhat.com>2012-05-28 18:10:59 -0400
commit982216a4290543fe73ae4f0a156f3d7906bd9b73 (patch)
tree0555488d5bc70a88ea5a89ccb22a24537ad97091 /include
parent93e4fe64ece4eccf0ff4ac69bceb389290b8ab7c (diff)
edac.h: Add generic layers for describing a memory location
The edac core were written with the idea that memory controllers are able to directly access csrows, and that the channels are used inside a csrows select. This is not true for FB-DIMM and RAMBUS memory controllers. Also, some recent advanced memory controllers don't present a per-csrows view. Instead, they view memories as DIMMs, instead of ranks, accessed via csrow/channel. So, changes are needed in order to allow the EDAC core to work with all types of architectures. In preparation for handling non-csrows based memory controllers, add some memory structs and a macro: enum hw_event_mc_err_type: describes the type of error (corrected, uncorrected, fatal) To be used by the new edac_mc_handle_error function; enum edac_mc_layer: describes the type of a given memory architecture layer (branch, channel, slot, csrow). struct edac_mc_layer: describes the properties of a memory layer (type, size, and if the layer will be used on a virtual csrow. EDAC_DIMM_PTR() - as the number of layers can vary from 1 to 3, this macro converts from an address with up to 3 layers into a linear address. Reviewed-by: Borislav Petkov <bp@amd64.org> Cc: Doug Thompson <norsk5@yahoo.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Diffstat (limited to 'include')
-rw-r--r--include/linux/edac.h103
1 files changed, 102 insertions, 1 deletions
diff --git a/include/linux/edac.h b/include/linux/edac.h
index 67717cab1313..9e628434e164 100644
--- a/include/linux/edac.h
+++ b/include/linux/edac.h
@@ -71,6 +71,25 @@ enum dev_type {
71#define DEV_FLAG_X64 BIT(DEV_X64) 71#define DEV_FLAG_X64 BIT(DEV_X64)
72 72
73/** 73/**
74 * enum hw_event_mc_err_type - type of the detected error
75 *
76 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
77 * corrected error was detected
78 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
79 * can't be corrected by ECC, but it is not
80 * fatal (maybe it is on an unused memory area,
81 * or the memory controller could recover from
82 * it for example, by re-trying the operation).
83 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
84 * be recovered.
85 */
86enum hw_event_mc_err_type {
87 HW_EVENT_ERR_CORRECTED,
88 HW_EVENT_ERR_UNCORRECTED,
89 HW_EVENT_ERR_FATAL,
90};
91
92/**
74 * enum mem_type - memory types. For a more detailed reference, please see 93 * enum mem_type - memory types. For a more detailed reference, please see
75 * http://en.wikipedia.org/wiki/DRAM 94 * http://en.wikipedia.org/wiki/DRAM
76 * 95 *
@@ -312,7 +331,89 @@ enum scrub_type {
312 * PS - I enjoyed writing all that about as much as you enjoyed reading it. 331 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
313 */ 332 */
314 333
315/* FIXME: add a per-dimm ce error count */ 334/**
335 * enum edac_mc_layer - memory controller hierarchy layer
336 *
337 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
338 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
339 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
340 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
341 *
342 * This enum is used by the drivers to tell edac_mc_sysfs what name should
343 * be used when describing a memory stick location.
344 */
345enum edac_mc_layer_type {
346 EDAC_MC_LAYER_BRANCH,
347 EDAC_MC_LAYER_CHANNEL,
348 EDAC_MC_LAYER_SLOT,
349 EDAC_MC_LAYER_CHIP_SELECT,
350};
351
352/**
353 * struct edac_mc_layer - describes the memory controller hierarchy
354 * @layer: layer type
355 * @size: number of components per layer. For example,
356 * if the channel layer has two channels, size = 2
357 * @is_virt_csrow: This layer is part of the "csrow" when old API
358 * compatibility mode is enabled. Otherwise, it is
359 * a channel
360 */
361struct edac_mc_layer {
362 enum edac_mc_layer_type type;
363 unsigned size;
364 bool is_virt_csrow;
365};
366
367/*
368 * Maximum number of layers used by the memory controller to uniquely
369 * identify a single memory stick.
370 * NOTE: Changing this constant requires not only to change the constant
371 * below, but also to change the existing code at the core, as there are
372 * some code there that are optimized for 3 layers.
373 */
374#define EDAC_MAX_LAYERS 3
375
376/**
377 * EDAC_DIMM_PTR - Macro responsible to find a pointer inside a pointer array
378 * for the element given by [layer0,layer1,layer2] position
379 *
380 * @layers: a struct edac_mc_layer array, describing how many elements
381 * were allocated for each layer
382 * @var: name of the var where we want to get the pointer
383 * (like mci->dimms)
384 * @n_layers: Number of layers at the @layers array
385 * @layer0: layer0 position
386 * @layer1: layer1 position. Unused if n_layers < 2
387 * @layer2: layer2 position. Unused if n_layers < 3
388 *
389 * For 1 layer, this macro returns &var[layer0]
390 * For 2 layers, this macro is similar to allocate a bi-dimensional array
391 * and to return "&var[layer0][layer1]"
392 * For 3 layers, this macro is similar to allocate a tri-dimensional array
393 * and to return "&var[layer0][layer1][layer2]"
394 *
395 * A loop could be used here to make it more generic, but, as we only have
396 * 3 layers, this is a little faster.
397 * By design, layers can never be 0 or more than 3. If that ever happens,
398 * a NULL is returned, causing an OOPS during the memory allocation routine,
399 * with would point to the developer that he's doing something wrong.
400 */
401#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
402 typeof(var) __p; \
403 if ((nlayers) == 1) \
404 __p = &var[layer0]; \
405 else if ((nlayers) == 2) \
406 __p = &var[(layer1) + ((layers[1]).size * (layer0))]; \
407 else if ((nlayers) == 3) \
408 __p = &var[(layer2) + ((layers[2]).size * ((layer1) + \
409 ((layers[1]).size * (layer0))))]; \
410 else \
411 __p = NULL; \
412 __p; \
413})
414
415
416/* FIXME: add the proper per-location error counts */
316struct dimm_info { 417struct dimm_info {
317 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ 418 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
318 unsigned memory_controller; 419 unsigned memory_controller;