aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorChuck Ebbert <76306.1226@compuserve.com>2006-12-06 20:14:01 -0500
committerAndi Kleen <andi@basil.nowhere.org>2006-12-06 20:14:01 -0500
commitacc207616a91a413a50fdd8847a747c4a7324167 (patch)
tree71f603615d7c9da8af47fd89346dce9a2e341456 /include
parentbe44d2aabce2d62f72d5751d1871b6212bf7a1c7 (diff)
[PATCH] i386: add sleazy FPU optimization
i386 port of the sLeAZY-fpu feature. Chuck reports that this gives him a +/- 0.4% improvement on his simple benchmark x86_64 description follows: Right now the kernel on x86-64 has a 100% lazy fpu behavior: after *every* context switch a trap is taken for the first FPU use to restore the FPU context lazily. This is of course great for applications that have very sporadic or no FPU use (since then you avoid doing the expensive save/restore all the time). However for very frequent FPU users... you take an extra trap every context switch. The patch below adds a simple heuristic to this code: After 5 consecutive context switches of FPU use, the lazy behavior is disabled and the context gets restored every context switch. If the app indeed uses the FPU, the trap is avoided. (the chance of the 6th time slice using FPU after the previous 5 having done so are quite high obviously). After 256 switches, this is reset and lazy behavior is returned (until there are 5 consecutive ones again). The reason for this is to give apps that do longer bursts of FPU use still the lazy behavior back after some time. Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Andi Kleen <ak@suse.de>
Diffstat (limited to 'include')
-rw-r--r--include/asm-i386/i387.h5
1 files changed, 4 insertions, 1 deletions
diff --git a/include/asm-i386/i387.h b/include/asm-i386/i387.h
index bc1d6edae1ed..434936c732d6 100644
--- a/include/asm-i386/i387.h
+++ b/include/asm-i386/i387.h
@@ -76,7 +76,9 @@ static inline void __save_init_fpu( struct task_struct *tsk )
76 76
77#define __unlazy_fpu( tsk ) do { \ 77#define __unlazy_fpu( tsk ) do { \
78 if (task_thread_info(tsk)->status & TS_USEDFPU) \ 78 if (task_thread_info(tsk)->status & TS_USEDFPU) \
79 save_init_fpu( tsk ); \ 79 save_init_fpu( tsk ); \
80 else \
81 tsk->fpu_counter = 0; \
80} while (0) 82} while (0)
81 83
82#define __clear_fpu( tsk ) \ 84#define __clear_fpu( tsk ) \
@@ -118,6 +120,7 @@ static inline void save_init_fpu( struct task_struct *tsk )
118extern unsigned short get_fpu_cwd( struct task_struct *tsk ); 120extern unsigned short get_fpu_cwd( struct task_struct *tsk );
119extern unsigned short get_fpu_swd( struct task_struct *tsk ); 121extern unsigned short get_fpu_swd( struct task_struct *tsk );
120extern unsigned short get_fpu_mxcsr( struct task_struct *tsk ); 122extern unsigned short get_fpu_mxcsr( struct task_struct *tsk );
123extern asmlinkage void math_state_restore(void);
121 124
122/* 125/*
123 * Signal frame handlers... 126 * Signal frame handlers...