aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@woody.linux-foundation.org>2007-05-05 17:13:36 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-05-05 17:13:36 -0400
commit68762f3d8e7ea644fae1f490f9850ebf462548bd (patch)
tree81be52e9ba33fc4d8aa5f569aaab77b5a34e09ab /include
parent4f7a307dc6e4d8bfeb56f7cf7231b08cb845687c (diff)
parent7544b0972c1fc1a0e6c54baa1f44c81019743daa (diff)
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
* master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6: [TG3]: Add TG3_FLAG_SUPPORT_MSI flag. [TG3]: Eliminate the TG3_FLAG_5701_REG_WRITE_BUG flag. [TG3]: Eliminate the TG3_FLAG_GOT_SERDES_FLOWCTL flag. [TG3]: Remove reset during MAC address changes. [TG3]: WoL fixes. [TG3]: Clear GPIO mask before storing. [TG3]: Improve NVRAM sizing. [TG3]: Fix TSO bugs. [MAC80211]: Add maintainers entry for mac80211. [MAC80211]: Add debugfs attributes. [MAC80211]: Add mac80211 wireless stack. [MAC80211]: Add generic include/linux/ieee80211.h [NETLINK]: Remove references to process ID [AF_IUCV]: Compile fix - adopt to skbuff changes.
Diffstat (limited to 'include')
-rw-r--r--include/linux/ieee80211.h342
-rw-r--r--include/linux/netlink.h4
-rw-r--r--include/net/mac80211.h1045
3 files changed, 1389 insertions, 2 deletions
diff --git a/include/linux/ieee80211.h b/include/linux/ieee80211.h
new file mode 100644
index 000000000000..ecd61e8438a5
--- /dev/null
+++ b/include/linux/ieee80211.h
@@ -0,0 +1,342 @@
1/*
2 * IEEE 802.11 defines
3 *
4 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
5 * <jkmaline@cc.hut.fi>
6 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
7 * Copyright (c) 2005, Devicescape Software, Inc.
8 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15#ifndef IEEE80211_H
16#define IEEE80211_H
17
18#include <linux/types.h>
19
20#define FCS_LEN 4
21
22#define IEEE80211_FCTL_VERS 0x0003
23#define IEEE80211_FCTL_FTYPE 0x000c
24#define IEEE80211_FCTL_STYPE 0x00f0
25#define IEEE80211_FCTL_TODS 0x0100
26#define IEEE80211_FCTL_FROMDS 0x0200
27#define IEEE80211_FCTL_MOREFRAGS 0x0400
28#define IEEE80211_FCTL_RETRY 0x0800
29#define IEEE80211_FCTL_PM 0x1000
30#define IEEE80211_FCTL_MOREDATA 0x2000
31#define IEEE80211_FCTL_PROTECTED 0x4000
32#define IEEE80211_FCTL_ORDER 0x8000
33
34#define IEEE80211_SCTL_FRAG 0x000F
35#define IEEE80211_SCTL_SEQ 0xFFF0
36
37#define IEEE80211_FTYPE_MGMT 0x0000
38#define IEEE80211_FTYPE_CTL 0x0004
39#define IEEE80211_FTYPE_DATA 0x0008
40
41/* management */
42#define IEEE80211_STYPE_ASSOC_REQ 0x0000
43#define IEEE80211_STYPE_ASSOC_RESP 0x0010
44#define IEEE80211_STYPE_REASSOC_REQ 0x0020
45#define IEEE80211_STYPE_REASSOC_RESP 0x0030
46#define IEEE80211_STYPE_PROBE_REQ 0x0040
47#define IEEE80211_STYPE_PROBE_RESP 0x0050
48#define IEEE80211_STYPE_BEACON 0x0080
49#define IEEE80211_STYPE_ATIM 0x0090
50#define IEEE80211_STYPE_DISASSOC 0x00A0
51#define IEEE80211_STYPE_AUTH 0x00B0
52#define IEEE80211_STYPE_DEAUTH 0x00C0
53#define IEEE80211_STYPE_ACTION 0x00D0
54
55/* control */
56#define IEEE80211_STYPE_PSPOLL 0x00A0
57#define IEEE80211_STYPE_RTS 0x00B0
58#define IEEE80211_STYPE_CTS 0x00C0
59#define IEEE80211_STYPE_ACK 0x00D0
60#define IEEE80211_STYPE_CFEND 0x00E0
61#define IEEE80211_STYPE_CFENDACK 0x00F0
62
63/* data */
64#define IEEE80211_STYPE_DATA 0x0000
65#define IEEE80211_STYPE_DATA_CFACK 0x0010
66#define IEEE80211_STYPE_DATA_CFPOLL 0x0020
67#define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
68#define IEEE80211_STYPE_NULLFUNC 0x0040
69#define IEEE80211_STYPE_CFACK 0x0050
70#define IEEE80211_STYPE_CFPOLL 0x0060
71#define IEEE80211_STYPE_CFACKPOLL 0x0070
72#define IEEE80211_STYPE_QOS_DATA 0x0080
73#define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
74#define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
75#define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
76#define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
77#define IEEE80211_STYPE_QOS_CFACK 0x00D0
78#define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
79#define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
80
81
82/* miscellaneous IEEE 802.11 constants */
83#define IEEE80211_MAX_FRAG_THRESHOLD 2346
84#define IEEE80211_MAX_RTS_THRESHOLD 2347
85#define IEEE80211_MAX_AID 2007
86#define IEEE80211_MAX_TIM_LEN 251
87#define IEEE80211_MAX_DATA_LEN 2304
88/* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
89 6.2.1.1.2.
90
91 The figure in section 7.1.2 suggests a body size of up to 2312
92 bytes is allowed, which is a bit confusing, I suspect this
93 represents the 2304 bytes of real data, plus a possible 8 bytes of
94 WEP IV and ICV. (this interpretation suggested by Ramiro Barreiro) */
95
96#define IEEE80211_MAX_SSID_LEN 32
97
98struct ieee80211_hdr {
99 __le16 frame_control;
100 __le16 duration_id;
101 u8 addr1[6];
102 u8 addr2[6];
103 u8 addr3[6];
104 __le16 seq_ctrl;
105 u8 addr4[6];
106} __attribute__ ((packed));
107
108
109struct ieee80211_mgmt {
110 __le16 frame_control;
111 __le16 duration;
112 u8 da[6];
113 u8 sa[6];
114 u8 bssid[6];
115 __le16 seq_ctrl;
116 union {
117 struct {
118 __le16 auth_alg;
119 __le16 auth_transaction;
120 __le16 status_code;
121 /* possibly followed by Challenge text */
122 u8 variable[0];
123 } __attribute__ ((packed)) auth;
124 struct {
125 __le16 reason_code;
126 } __attribute__ ((packed)) deauth;
127 struct {
128 __le16 capab_info;
129 __le16 listen_interval;
130 /* followed by SSID and Supported rates */
131 u8 variable[0];
132 } __attribute__ ((packed)) assoc_req;
133 struct {
134 __le16 capab_info;
135 __le16 status_code;
136 __le16 aid;
137 /* followed by Supported rates */
138 u8 variable[0];
139 } __attribute__ ((packed)) assoc_resp, reassoc_resp;
140 struct {
141 __le16 capab_info;
142 __le16 listen_interval;
143 u8 current_ap[6];
144 /* followed by SSID and Supported rates */
145 u8 variable[0];
146 } __attribute__ ((packed)) reassoc_req;
147 struct {
148 __le16 reason_code;
149 } __attribute__ ((packed)) disassoc;
150 struct {
151 __le64 timestamp;
152 __le16 beacon_int;
153 __le16 capab_info;
154 /* followed by some of SSID, Supported rates,
155 * FH Params, DS Params, CF Params, IBSS Params, TIM */
156 u8 variable[0];
157 } __attribute__ ((packed)) beacon;
158 struct {
159 /* only variable items: SSID, Supported rates */
160 u8 variable[0];
161 } __attribute__ ((packed)) probe_req;
162 struct {
163 __le64 timestamp;
164 __le16 beacon_int;
165 __le16 capab_info;
166 /* followed by some of SSID, Supported rates,
167 * FH Params, DS Params, CF Params, IBSS Params */
168 u8 variable[0];
169 } __attribute__ ((packed)) probe_resp;
170 struct {
171 u8 category;
172 union {
173 struct {
174 u8 action_code;
175 u8 dialog_token;
176 u8 status_code;
177 u8 variable[0];
178 } __attribute__ ((packed)) wme_action;
179 struct{
180 u8 action_code;
181 u8 element_id;
182 u8 length;
183 u8 switch_mode;
184 u8 new_chan;
185 u8 switch_count;
186 } __attribute__((packed)) chan_switch;
187 } u;
188 } __attribute__ ((packed)) action;
189 } u;
190} __attribute__ ((packed));
191
192
193/* Control frames */
194struct ieee80211_rts {
195 __le16 frame_control;
196 __le16 duration;
197 u8 ra[6];
198 u8 ta[6];
199} __attribute__ ((packed));
200
201struct ieee80211_cts {
202 __le16 frame_control;
203 __le16 duration;
204 u8 ra[6];
205} __attribute__ ((packed));
206
207
208/* Authentication algorithms */
209#define WLAN_AUTH_OPEN 0
210#define WLAN_AUTH_SHARED_KEY 1
211#define WLAN_AUTH_FAST_BSS_TRANSITION 2
212#define WLAN_AUTH_LEAP 128
213
214#define WLAN_AUTH_CHALLENGE_LEN 128
215
216#define WLAN_CAPABILITY_ESS (1<<0)
217#define WLAN_CAPABILITY_IBSS (1<<1)
218#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
219#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
220#define WLAN_CAPABILITY_PRIVACY (1<<4)
221#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
222#define WLAN_CAPABILITY_PBCC (1<<6)
223#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
224/* 802.11h */
225#define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
226#define WLAN_CAPABILITY_QOS (1<<9)
227#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
228#define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
229
230/* Status codes */
231enum ieee80211_statuscode {
232 WLAN_STATUS_SUCCESS = 0,
233 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
234 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
235 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
236 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
237 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
238 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
239 WLAN_STATUS_CHALLENGE_FAIL = 15,
240 WLAN_STATUS_AUTH_TIMEOUT = 16,
241 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
242 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
243 /* 802.11b */
244 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
245 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
246 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
247 /* 802.11h */
248 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
249 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
250 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
251 /* 802.11g */
252 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
253 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
254 /* 802.11i */
255 WLAN_STATUS_INVALID_IE = 40,
256 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
257 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
258 WLAN_STATUS_INVALID_AKMP = 43,
259 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
260 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
261 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
262};
263
264
265/* Reason codes */
266enum ieee80211_reasoncode {
267 WLAN_REASON_UNSPECIFIED = 1,
268 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
269 WLAN_REASON_DEAUTH_LEAVING = 3,
270 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
271 WLAN_REASON_DISASSOC_AP_BUSY = 5,
272 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
273 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
274 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
275 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
276 /* 802.11h */
277 WLAN_REASON_DISASSOC_BAD_POWER = 10,
278 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
279 /* 802.11i */
280 WLAN_REASON_INVALID_IE = 13,
281 WLAN_REASON_MIC_FAILURE = 14,
282 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
283 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
284 WLAN_REASON_IE_DIFFERENT = 17,
285 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
286 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
287 WLAN_REASON_INVALID_AKMP = 20,
288 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
289 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
290 WLAN_REASON_IEEE8021X_FAILED = 23,
291 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
292};
293
294
295/* Information Element IDs */
296enum ieee80211_eid {
297 WLAN_EID_SSID = 0,
298 WLAN_EID_SUPP_RATES = 1,
299 WLAN_EID_FH_PARAMS = 2,
300 WLAN_EID_DS_PARAMS = 3,
301 WLAN_EID_CF_PARAMS = 4,
302 WLAN_EID_TIM = 5,
303 WLAN_EID_IBSS_PARAMS = 6,
304 WLAN_EID_CHALLENGE = 16,
305 /* 802.11d */
306 WLAN_EID_COUNTRY = 7,
307 WLAN_EID_HP_PARAMS = 8,
308 WLAN_EID_HP_TABLE = 9,
309 WLAN_EID_REQUEST = 10,
310 /* 802.11h */
311 WLAN_EID_PWR_CONSTRAINT = 32,
312 WLAN_EID_PWR_CAPABILITY = 33,
313 WLAN_EID_TPC_REQUEST = 34,
314 WLAN_EID_TPC_REPORT = 35,
315 WLAN_EID_SUPPORTED_CHANNELS = 36,
316 WLAN_EID_CHANNEL_SWITCH = 37,
317 WLAN_EID_MEASURE_REQUEST = 38,
318 WLAN_EID_MEASURE_REPORT = 39,
319 WLAN_EID_QUIET = 40,
320 WLAN_EID_IBSS_DFS = 41,
321 /* 802.11g */
322 WLAN_EID_ERP_INFO = 42,
323 WLAN_EID_EXT_SUPP_RATES = 50,
324 /* 802.11i */
325 WLAN_EID_RSN = 48,
326 WLAN_EID_WPA = 221,
327 WLAN_EID_GENERIC = 221,
328 WLAN_EID_VENDOR_SPECIFIC = 221,
329 WLAN_EID_QOS_PARAMETER = 222
330};
331
332/* cipher suite selectors */
333#define WLAN_CIPHER_SUITE_USE_GROUP 0x000FAC00
334#define WLAN_CIPHER_SUITE_WEP40 0x000FAC01
335#define WLAN_CIPHER_SUITE_TKIP 0x000FAC02
336/* reserved: 0x000FAC03 */
337#define WLAN_CIPHER_SUITE_CCMP 0x000FAC04
338#define WLAN_CIPHER_SUITE_WEP104 0x000FAC05
339
340#define WLAN_MAX_KEY_LEN 32
341
342#endif /* IEEE80211_H */
diff --git a/include/linux/netlink.h b/include/linux/netlink.h
index f41688f56632..2e23353c28a5 100644
--- a/include/linux/netlink.h
+++ b/include/linux/netlink.h
@@ -31,7 +31,7 @@ struct sockaddr_nl
31{ 31{
32 sa_family_t nl_family; /* AF_NETLINK */ 32 sa_family_t nl_family; /* AF_NETLINK */
33 unsigned short nl_pad; /* zero */ 33 unsigned short nl_pad; /* zero */
34 __u32 nl_pid; /* process pid */ 34 __u32 nl_pid; /* port ID */
35 __u32 nl_groups; /* multicast groups mask */ 35 __u32 nl_groups; /* multicast groups mask */
36}; 36};
37 37
@@ -41,7 +41,7 @@ struct nlmsghdr
41 __u16 nlmsg_type; /* Message content */ 41 __u16 nlmsg_type; /* Message content */
42 __u16 nlmsg_flags; /* Additional flags */ 42 __u16 nlmsg_flags; /* Additional flags */
43 __u32 nlmsg_seq; /* Sequence number */ 43 __u32 nlmsg_seq; /* Sequence number */
44 __u32 nlmsg_pid; /* Sending process PID */ 44 __u32 nlmsg_pid; /* Sending process port ID */
45}; 45};
46 46
47/* Flags values */ 47/* Flags values */
diff --git a/include/net/mac80211.h b/include/net/mac80211.h
new file mode 100644
index 000000000000..a7f122b79948
--- /dev/null
+++ b/include/net/mac80211.h
@@ -0,0 +1,1045 @@
1/*
2 * Low-level hardware driver -- IEEE 802.11 driver (80211.o) interface
3 * Copyright 2002-2005, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#ifndef MAC80211_H
12#define MAC80211_H
13
14#include <linux/kernel.h>
15#include <linux/if_ether.h>
16#include <linux/skbuff.h>
17#include <linux/wireless.h>
18#include <linux/device.h>
19#include <linux/ieee80211.h>
20#include <net/wireless.h>
21#include <net/cfg80211.h>
22
23/* Note! Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
24 * called in hardware interrupt context. The low-level driver must not call any
25 * other functions in hardware interrupt context. If there is a need for such
26 * call, the low-level driver should first ACK the interrupt and perform the
27 * IEEE 802.11 code call after this, e.g., from a scheduled tasklet (in
28 * software interrupt context).
29 */
30
31/*
32 * Frame format used when passing frame between low-level hardware drivers
33 * and IEEE 802.11 driver the same as used in the wireless media, i.e.,
34 * buffers start with IEEE 802.11 header and include the same octets that
35 * are sent over air.
36 *
37 * If hardware uses IEEE 802.3 headers (and perform 802.3 <-> 802.11
38 * conversion in firmware), upper layer 802.11 code needs to be changed to
39 * support this.
40 *
41 * If the receive frame format is not the same as the real frame sent
42 * on the wireless media (e.g., due to padding etc.), upper layer 802.11 code
43 * could be updated to provide support for such format assuming this would
44 * optimize the performance, e.g., by removing need to re-allocation and
45 * copying of the data.
46 */
47
48#define IEEE80211_CHAN_W_SCAN 0x00000001
49#define IEEE80211_CHAN_W_ACTIVE_SCAN 0x00000002
50#define IEEE80211_CHAN_W_IBSS 0x00000004
51
52/* Channel information structure. Low-level driver is expected to fill in chan,
53 * freq, and val fields. Other fields will be filled in by 80211.o based on
54 * hostapd information and low-level driver does not need to use them. The
55 * limits for each channel will be provided in 'struct ieee80211_conf' when
56 * configuring the low-level driver with hw->config callback. If a device has
57 * a default regulatory domain, IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED
58 * can be set to let the driver configure all fields */
59struct ieee80211_channel {
60 short chan; /* channel number (IEEE 802.11) */
61 short freq; /* frequency in MHz */
62 int val; /* hw specific value for the channel */
63 int flag; /* flag for hostapd use (IEEE80211_CHAN_*) */
64 unsigned char power_level;
65 unsigned char antenna_max;
66};
67
68#define IEEE80211_RATE_ERP 0x00000001
69#define IEEE80211_RATE_BASIC 0x00000002
70#define IEEE80211_RATE_PREAMBLE2 0x00000004
71#define IEEE80211_RATE_SUPPORTED 0x00000010
72#define IEEE80211_RATE_OFDM 0x00000020
73#define IEEE80211_RATE_CCK 0x00000040
74#define IEEE80211_RATE_TURBO 0x00000080
75#define IEEE80211_RATE_MANDATORY 0x00000100
76
77#define IEEE80211_RATE_CCK_2 (IEEE80211_RATE_CCK | IEEE80211_RATE_PREAMBLE2)
78#define IEEE80211_RATE_MODULATION(f) \
79 (f & (IEEE80211_RATE_CCK | IEEE80211_RATE_OFDM))
80
81/* Low-level driver should set PREAMBLE2, OFDM, CCK, and TURBO flags.
82 * BASIC, SUPPORTED, ERP, and MANDATORY flags are set in 80211.o based on the
83 * configuration. */
84struct ieee80211_rate {
85 int rate; /* rate in 100 kbps */
86 int val; /* hw specific value for the rate */
87 int flags; /* IEEE80211_RATE_ flags */
88 int val2; /* hw specific value for the rate when using short preamble
89 * (only when IEEE80211_RATE_PREAMBLE2 flag is set, i.e., for
90 * 2, 5.5, and 11 Mbps) */
91 signed char min_rssi_ack;
92 unsigned char min_rssi_ack_delta;
93
94 /* following fields are set by 80211.o and need not be filled by the
95 * low-level driver */
96 int rate_inv; /* inverse of the rate (LCM(all rates) / rate) for
97 * optimizing channel utilization estimates */
98};
99
100/* 802.11g is backwards-compatible with 802.11b, so a wlan card can
101 * actually be both in 11b and 11g modes at the same time. */
102enum {
103 MODE_IEEE80211A, /* IEEE 802.11a */
104 MODE_IEEE80211B, /* IEEE 802.11b only */
105 MODE_ATHEROS_TURBO, /* Atheros Turbo mode (2x.11a at 5 GHz) */
106 MODE_IEEE80211G, /* IEEE 802.11g (and 802.11b compatibility) */
107 MODE_ATHEROS_TURBOG, /* Atheros Turbo mode (2x.11g at 2.4 GHz) */
108
109 /* keep last */
110 NUM_IEEE80211_MODES
111};
112
113struct ieee80211_hw_mode {
114 int mode; /* MODE_IEEE80211... */
115 int num_channels; /* Number of channels (below) */
116 struct ieee80211_channel *channels; /* Array of supported channels */
117 int num_rates; /* Number of rates (below) */
118 struct ieee80211_rate *rates; /* Array of supported rates */
119
120 struct list_head list; /* Internal, don't touch */
121};
122
123struct ieee80211_tx_queue_params {
124 int aifs; /* 0 .. 255; -1 = use default */
125 int cw_min; /* 2^n-1: 1, 3, 7, .. , 1023; 0 = use default */
126 int cw_max; /* 2^n-1: 1, 3, 7, .. , 1023; 0 = use default */
127 int burst_time; /* maximum burst time in 0.1 ms (i.e., 10 = 1 ms);
128 * 0 = disabled */
129};
130
131struct ieee80211_tx_queue_stats_data {
132 unsigned int len; /* num packets in queue */
133 unsigned int limit; /* queue len (soft) limit */
134 unsigned int count; /* total num frames sent */
135};
136
137enum {
138 IEEE80211_TX_QUEUE_DATA0,
139 IEEE80211_TX_QUEUE_DATA1,
140 IEEE80211_TX_QUEUE_DATA2,
141 IEEE80211_TX_QUEUE_DATA3,
142 IEEE80211_TX_QUEUE_DATA4,
143 IEEE80211_TX_QUEUE_SVP,
144
145 NUM_TX_DATA_QUEUES,
146
147/* due to stupidity in the sub-ioctl userspace interface, the items in
148 * this struct need to have fixed values. As soon as it is removed, we can
149 * fix these entries. */
150 IEEE80211_TX_QUEUE_AFTER_BEACON = 6,
151 IEEE80211_TX_QUEUE_BEACON = 7
152};
153
154struct ieee80211_tx_queue_stats {
155 struct ieee80211_tx_queue_stats_data data[NUM_TX_DATA_QUEUES];
156};
157
158struct ieee80211_low_level_stats {
159 unsigned int dot11ACKFailureCount;
160 unsigned int dot11RTSFailureCount;
161 unsigned int dot11FCSErrorCount;
162 unsigned int dot11RTSSuccessCount;
163};
164
165/* Transmit control fields. This data structure is passed to low-level driver
166 * with each TX frame. The low-level driver is responsible for configuring
167 * the hardware to use given values (depending on what is supported). */
168#define HW_KEY_IDX_INVALID -1
169
170struct ieee80211_tx_control {
171 int tx_rate; /* Transmit rate, given as the hw specific value for the
172 * rate (from struct ieee80211_rate) */
173 int rts_cts_rate; /* Transmit rate for RTS/CTS frame, given as the hw
174 * specific value for the rate (from
175 * struct ieee80211_rate) */
176
177#define IEEE80211_TXCTL_REQ_TX_STATUS (1<<0)/* request TX status callback for
178 * this frame */
179#define IEEE80211_TXCTL_DO_NOT_ENCRYPT (1<<1) /* send this frame without
180 * encryption; e.g., for EAPOL
181 * frames */
182#define IEEE80211_TXCTL_USE_RTS_CTS (1<<2) /* use RTS-CTS before sending
183 * frame */
184#define IEEE80211_TXCTL_USE_CTS_PROTECT (1<<3) /* use CTS protection for the
185 * frame (e.g., for combined
186 * 802.11g / 802.11b networks) */
187#define IEEE80211_TXCTL_NO_ACK (1<<4) /* tell the low level not to
188 * wait for an ack */
189#define IEEE80211_TXCTL_RATE_CTRL_PROBE (1<<5)
190#define IEEE80211_TXCTL_CLEAR_DST_MASK (1<<6)
191#define IEEE80211_TXCTL_REQUEUE (1<<7)
192#define IEEE80211_TXCTL_FIRST_FRAGMENT (1<<8) /* this is a first fragment of
193 * the frame */
194#define IEEE80211_TXCTL_TKIP_NEW_PHASE1_KEY (1<<9)
195 u32 flags; /* tx control flags defined
196 * above */
197 u8 retry_limit; /* 1 = only first attempt, 2 = one retry, .. */
198 u8 power_level; /* per-packet transmit power level, in dBm */
199 u8 antenna_sel_tx; /* 0 = default/diversity, 1 = Ant0, 2 = Ant1 */
200 s8 key_idx; /* -1 = do not encrypt, >= 0 keyidx from
201 * hw->set_key() */
202 u8 icv_len; /* length of the ICV/MIC field in octets */
203 u8 iv_len; /* length of the IV field in octets */
204 u8 tkip_key[16]; /* generated phase2/phase1 key for hw TKIP */
205 u8 queue; /* hardware queue to use for this frame;
206 * 0 = highest, hw->queues-1 = lowest */
207 u8 sw_retry_attempt; /* number of times hw has tried to
208 * transmit frame (not incl. hw retries) */
209
210 struct ieee80211_rate *rate; /* internal 80211.o rate */
211 struct ieee80211_rate *rts_rate; /* internal 80211.o rate
212 * for RTS/CTS */
213 int alt_retry_rate; /* retry rate for the last retries, given as the
214 * hw specific value for the rate (from
215 * struct ieee80211_rate). To be used to limit
216 * packet dropping when probing higher rates, if hw
217 * supports multiple retry rates. -1 = not used */
218 int type; /* internal */
219 int ifindex; /* internal */
220};
221
222/* Receive status. The low-level driver should provide this information
223 * (the subset supported by hardware) to the 802.11 code with each received
224 * frame. */
225struct ieee80211_rx_status {
226 u64 mactime;
227 int freq; /* receive frequency in Mhz */
228 int channel;
229 int phymode;
230 int ssi;
231 int signal; /* used as qual in statistics reporting */
232 int noise;
233 int antenna;
234 int rate;
235#define RX_FLAG_MMIC_ERROR (1<<0)
236#define RX_FLAG_DECRYPTED (1<<1)
237#define RX_FLAG_RADIOTAP (1<<2)
238 int flag;
239};
240
241/* Transmit status. The low-level driver should provide this information
242 * (the subset supported by hardware) to the 802.11 code for each transmit
243 * frame. */
244struct ieee80211_tx_status {
245 /* copied ieee80211_tx_control structure */
246 struct ieee80211_tx_control control;
247
248#define IEEE80211_TX_STATUS_TX_FILTERED (1<<0)
249#define IEEE80211_TX_STATUS_ACK (1<<1) /* whether the TX frame was ACKed */
250 u32 flags; /* tx staus flags defined above */
251
252 int ack_signal; /* measured signal strength of the ACK frame */
253 int excessive_retries;
254 int retry_count;
255
256 int queue_length; /* information about TX queue */
257 int queue_number;
258};
259
260
261/**
262 * struct ieee80211_conf - configuration of the device
263 *
264 * This struct indicates how the driver shall configure the hardware.
265 *
266 * @radio_enabled: when zero, driver is required to switch off the radio.
267 */
268struct ieee80211_conf {
269 int channel; /* IEEE 802.11 channel number */
270 int freq; /* MHz */
271 int channel_val; /* hw specific value for the channel */
272
273 int phymode; /* MODE_IEEE80211A, .. */
274 struct ieee80211_channel *chan;
275 struct ieee80211_hw_mode *mode;
276 unsigned int regulatory_domain;
277 int radio_enabled;
278
279 int beacon_int;
280
281#define IEEE80211_CONF_SHORT_SLOT_TIME (1<<0) /* use IEEE 802.11g Short Slot
282 * Time */
283#define IEEE80211_CONF_SSID_HIDDEN (1<<1) /* do not broadcast the ssid */
284#define IEEE80211_CONF_RADIOTAP (1<<2) /* use radiotap if supported
285 check this bit at RX time */
286 u32 flags; /* configuration flags defined above */
287
288 u8 power_level; /* transmit power limit for current
289 * regulatory domain; in dBm */
290 u8 antenna_max; /* maximum antenna gain */
291 short tx_power_reduction; /* in 0.1 dBm */
292
293 /* 0 = default/diversity, 1 = Ant0, 2 = Ant1 */
294 u8 antenna_sel_tx;
295 u8 antenna_sel_rx;
296
297 int antenna_def;
298 int antenna_mode;
299
300 /* Following five fields are used for IEEE 802.11H */
301 unsigned int radar_detect;
302 unsigned int spect_mgmt;
303 /* All following fields are currently unused. */
304 unsigned int quiet_duration; /* duration of quiet period */
305 unsigned int quiet_offset; /* how far into the beacon is the quiet
306 * period */
307 unsigned int quiet_period;
308 u8 radar_firpwr_threshold;
309 u8 radar_rssi_threshold;
310 u8 pulse_height_threshold;
311 u8 pulse_rssi_threshold;
312 u8 pulse_inband_threshold;
313};
314
315/**
316 * enum ieee80211_if_types - types of 802.11 network interfaces
317 *
318 * @IEEE80211_IF_TYPE_AP: interface in AP mode.
319 * @IEEE80211_IF_TYPE_MGMT: special interface for communication with hostap
320 * daemon. Drivers should never see this type.
321 * @IEEE80211_IF_TYPE_STA: interface in STA (client) mode.
322 * @IEEE80211_IF_TYPE_IBSS: interface in IBSS (ad-hoc) mode.
323 * @IEEE80211_IF_TYPE_MNTR: interface in monitor (rfmon) mode.
324 * @IEEE80211_IF_TYPE_WDS: interface in WDS mode.
325 * @IEEE80211_IF_TYPE_VLAN: not used.
326 */
327enum ieee80211_if_types {
328 IEEE80211_IF_TYPE_AP = 0x00000000,
329 IEEE80211_IF_TYPE_MGMT = 0x00000001,
330 IEEE80211_IF_TYPE_STA = 0x00000002,
331 IEEE80211_IF_TYPE_IBSS = 0x00000003,
332 IEEE80211_IF_TYPE_MNTR = 0x00000004,
333 IEEE80211_IF_TYPE_WDS = 0x5A580211,
334 IEEE80211_IF_TYPE_VLAN = 0x00080211,
335};
336
337/**
338 * struct ieee80211_if_init_conf - initial configuration of an interface
339 *
340 * @if_id: internal interface ID. This number has no particular meaning to
341 * drivers and the only allowed usage is to pass it to
342 * ieee80211_beacon_get() and ieee80211_get_buffered_bc() functions.
343 * This field is not valid for monitor interfaces
344 * (interfaces of %IEEE80211_IF_TYPE_MNTR type).
345 * @type: one of &enum ieee80211_if_types constants. Determines the type of
346 * added/removed interface.
347 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
348 * until the interface is removed (i.e. it cannot be used after
349 * remove_interface() callback was called for this interface).
350 *
351 * This structure is used in add_interface() and remove_interface()
352 * callbacks of &struct ieee80211_hw.
353 */
354struct ieee80211_if_init_conf {
355 int if_id;
356 int type;
357 void *mac_addr;
358};
359
360/**
361 * struct ieee80211_if_conf - configuration of an interface
362 *
363 * @type: type of the interface. This is always the same as was specified in
364 * &struct ieee80211_if_init_conf. The type of an interface never changes
365 * during the life of the interface; this field is present only for
366 * convenience.
367 * @bssid: BSSID of the network we are associated to/creating.
368 * @ssid: used (together with @ssid_len) by drivers for hardware that
369 * generate beacons independently. The pointer is valid only during the
370 * config_interface() call, so copy the value somewhere if you need
371 * it.
372 * @ssid_len: length of the @ssid field.
373 * @generic_elem: used (together with @generic_elem_len) by drivers for
374 * hardware that generate beacons independently. The pointer is valid
375 * only during the config_interface() call, so copy the value somewhere
376 * if you need it.
377 * @generic_elem_len: length of the generic element.
378 * @beacon: beacon template. Valid only if @host_gen_beacon_template in
379 * &struct ieee80211_hw is set. The driver is responsible of freeing
380 * the sk_buff.
381 * @beacon_control: tx_control for the beacon template, this field is only
382 * valid when the @beacon field was set.
383 *
384 * This structure is passed to the config_interface() callback of
385 * &struct ieee80211_hw.
386 */
387struct ieee80211_if_conf {
388 int type;
389 u8 *bssid;
390 u8 *ssid;
391 size_t ssid_len;
392 u8 *generic_elem;
393 size_t generic_elem_len;
394 struct sk_buff *beacon;
395 struct ieee80211_tx_control *beacon_control;
396};
397
398typedef enum { ALG_NONE, ALG_WEP, ALG_TKIP, ALG_CCMP, ALG_NULL }
399ieee80211_key_alg;
400
401
402struct ieee80211_key_conf {
403
404 int hw_key_idx; /* filled + used by low-level driver */
405 ieee80211_key_alg alg;
406 int keylen;
407
408#define IEEE80211_KEY_FORCE_SW_ENCRYPT (1<<0) /* to be cleared by low-level
409 driver */
410#define IEEE80211_KEY_DEFAULT_TX_KEY (1<<1) /* This key is the new default TX
411 key (used only for broadcast
412 keys). */
413#define IEEE80211_KEY_DEFAULT_WEP_ONLY (1<<2) /* static WEP is the only
414 configured security policy;
415 this allows some low-level
416 drivers to determine when
417 hwaccel can be used */
418 u32 flags; /* key configuration flags defined above */
419
420 s8 keyidx; /* WEP key index */
421 u8 key[0];
422};
423
424#define IEEE80211_SEQ_COUNTER_RX 0
425#define IEEE80211_SEQ_COUNTER_TX 1
426
427typedef enum {
428 SET_KEY, DISABLE_KEY, REMOVE_ALL_KEYS,
429} set_key_cmd;
430
431/* This is driver-visible part of the per-hw state the stack keeps. */
432struct ieee80211_hw {
433 /* points to the cfg80211 wiphy for this piece. Note
434 * that you must fill in the perm_addr and dev fields
435 * of this structure, use the macros provided below. */
436 struct wiphy *wiphy;
437
438 /* assigned by mac80211, don't write */
439 struct ieee80211_conf conf;
440
441 /* Single thread workqueue available for driver use
442 * Allocated by mac80211 on registration */
443 struct workqueue_struct *workqueue;
444
445 /* Pointer to the private area that was
446 * allocated with this struct for you. */
447 void *priv;
448
449 /* The rest is information about your hardware */
450
451 /* TODO: frame_type 802.11/802.3, sw_encryption requirements */
452
453 /* Some wireless LAN chipsets generate beacons in the hardware/firmware
454 * and others rely on host generated beacons. This option is used to
455 * configure the upper layer IEEE 802.11 module to generate beacons.
456 * The low-level driver can use ieee80211_beacon_get() to fetch the
457 * next beacon frame. */
458#define IEEE80211_HW_HOST_GEN_BEACON (1<<0)
459
460 /* The device needs to be supplied with a beacon template only. */
461#define IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE (1<<1)
462
463 /* Some devices handle decryption internally and do not
464 * indicate whether the frame was encrypted (unencrypted frames
465 * will be dropped by the hardware, unless specifically allowed
466 * through) */
467#define IEEE80211_HW_DEVICE_HIDES_WEP (1<<2)
468
469 /* Whether RX frames passed to ieee80211_rx() include FCS in the end */
470#define IEEE80211_HW_RX_INCLUDES_FCS (1<<3)
471
472 /* Some wireless LAN chipsets buffer broadcast/multicast frames for
473 * power saving stations in the hardware/firmware and others rely on
474 * the host system for such buffering. This option is used to
475 * configure the IEEE 802.11 upper layer to buffer broadcast/multicast
476 * frames when there are power saving stations so that low-level driver
477 * can fetch them with ieee80211_get_buffered_bc(). */
478#define IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING (1<<4)
479
480#define IEEE80211_HW_WEP_INCLUDE_IV (1<<5)
481
482 /* will data nullfunc frames get proper TX status callback */
483#define IEEE80211_HW_DATA_NULLFUNC_ACK (1<<6)
484
485 /* Force software encryption for TKIP packets if WMM is enabled. */
486#define IEEE80211_HW_NO_TKIP_WMM_HWACCEL (1<<7)
487
488 /* Some devices handle Michael MIC internally and do not include MIC in
489 * the received packets passed up. device_strips_mic must be set
490 * for such devices. The 'encryption' frame control bit is expected to
491 * be still set in the IEEE 802.11 header with this option unlike with
492 * the device_hides_wep configuration option.
493 */
494#define IEEE80211_HW_DEVICE_STRIPS_MIC (1<<8)
495
496 /* Device is capable of performing full monitor mode even during
497 * normal operation. */
498#define IEEE80211_HW_MONITOR_DURING_OPER (1<<9)
499
500 /* Device does not need BSSID filter set to broadcast in order to
501 * receive all probe responses while scanning */
502#define IEEE80211_HW_NO_PROBE_FILTERING (1<<10)
503
504 /* Channels are already configured to the default regulatory domain
505 * specified in the device's EEPROM */
506#define IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED (1<<11)
507
508 /* calculate Michael MIC for an MSDU when doing hwcrypto */
509#define IEEE80211_HW_TKIP_INCLUDE_MMIC (1<<12)
510 /* Do TKIP phase1 key mixing in stack to support cards only do
511 * phase2 key mixing when doing hwcrypto */
512#define IEEE80211_HW_TKIP_REQ_PHASE1_KEY (1<<13)
513 /* Do TKIP phase1 and phase2 key mixing in stack and send the generated
514 * per-packet RC4 key with each TX frame when doing hwcrypto */
515#define IEEE80211_HW_TKIP_REQ_PHASE2_KEY (1<<14)
516
517 u32 flags; /* hardware flags defined above */
518
519 /* Set to the size of a needed device specific skb headroom for TX skbs. */
520 unsigned int extra_tx_headroom;
521
522 /* This is the time in us to change channels
523 */
524 int channel_change_time;
525 /* Maximum values for various statistics.
526 * Leave at 0 to indicate no support. Use negative numbers for dBm. */
527 s8 max_rssi;
528 s8 max_signal;
529 s8 max_noise;
530
531 /* Number of available hardware TX queues for data packets.
532 * WMM requires at least four queues. */
533 int queues;
534};
535
536static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
537{
538 set_wiphy_dev(hw->wiphy, dev);
539}
540
541static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
542{
543 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
544}
545
546/* Configuration block used by the low-level driver to tell the 802.11 code
547 * about supported hardware features and to pass function pointers to callback
548 * functions. */
549struct ieee80211_ops {
550 /* Handler that 802.11 module calls for each transmitted frame.
551 * skb contains the buffer starting from the IEEE 802.11 header.
552 * The low-level driver should send the frame out based on
553 * configuration in the TX control data.
554 * Must be atomic. */
555 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb,
556 struct ieee80211_tx_control *control);
557
558 /* Handler for performing hardware reset. */
559 int (*reset)(struct ieee80211_hw *hw);
560
561 /* Handler that is called when any netdevice attached to the hardware
562 * device is set UP for the first time. This can be used, e.g., to
563 * enable interrupts and beacon sending. */
564 int (*open)(struct ieee80211_hw *hw);
565
566 /* Handler that is called when the last netdevice attached to the
567 * hardware device is set DOWN. This can be used, e.g., to disable
568 * interrupts and beacon sending. */
569 int (*stop)(struct ieee80211_hw *hw);
570
571 /* Handler for asking a driver if a new interface can be added (or,
572 * more exactly, set UP). If the handler returns zero, the interface
573 * is added. Driver should perform any initialization it needs prior
574 * to returning zero. By returning non-zero addition of the interface
575 * is inhibited. Unless monitor_during_oper is set, it is guaranteed
576 * that monitor interfaces and normal interfaces are mutually
577 * exclusive. The open() handler is called after add_interface()
578 * if this is the first device added. At least one of the open()
579 * open() and add_interface() callbacks has to be assigned. If
580 * add_interface() is NULL, one STA interface is permitted only. */
581 int (*add_interface)(struct ieee80211_hw *hw,
582 struct ieee80211_if_init_conf *conf);
583
584 /* Notify a driver that an interface is going down. The stop() handler
585 * is called prior to this if this is a last interface. */
586 void (*remove_interface)(struct ieee80211_hw *hw,
587 struct ieee80211_if_init_conf *conf);
588
589 /* Handler for configuration requests. IEEE 802.11 code calls this
590 * function to change hardware configuration, e.g., channel. */
591 int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf);
592
593 /* Handler for configuration requests related to interfaces (e.g.
594 * BSSID). */
595 int (*config_interface)(struct ieee80211_hw *hw,
596 int if_id, struct ieee80211_if_conf *conf);
597
598 /* ieee80211 drivers do not have access to the &struct net_device
599 * that is (are) connected with their device. Hence (and because
600 * we need to combine the multicast lists and flags for multiple
601 * virtual interfaces), they cannot assign set_multicast_list.
602 * The parameters here replace dev->flags and dev->mc_count,
603 * dev->mc_list is replaced by calling ieee80211_get_mc_list_item.
604 * Must be atomic. */
605 void (*set_multicast_list)(struct ieee80211_hw *hw,
606 unsigned short flags, int mc_count);
607
608 /* Set TIM bit handler. If the hardware/firmware takes care of beacon
609 * generation, IEEE 802.11 code uses this function to tell the
610 * low-level to set (or clear if set==0) TIM bit for the given aid. If
611 * host system is used to generate beacons, this handler is not used
612 * and low-level driver should set it to NULL.
613 * Must be atomic. */
614 int (*set_tim)(struct ieee80211_hw *hw, int aid, int set);
615
616 /* Set encryption key. IEEE 802.11 module calls this function to set
617 * encryption keys. addr is ff:ff:ff:ff:ff:ff for default keys and
618 * station hwaddr for individual keys. aid of the station is given
619 * to help low-level driver in selecting which key->hw_key_idx to use
620 * for this key. TX control data will use the hw_key_idx selected by
621 * the low-level driver.
622 * Must be atomic. */
623 int (*set_key)(struct ieee80211_hw *hw, set_key_cmd cmd,
624 u8 *addr, struct ieee80211_key_conf *key, int aid);
625
626 /* Set TX key index for default/broadcast keys. This is needed in cases
627 * where wlan card is doing full WEP/TKIP encapsulation (wep_include_iv
628 * is not set), in other cases, this function pointer can be set to
629 * NULL since the IEEE 802. 11 module takes care of selecting the key
630 * index for each TX frame. */
631 int (*set_key_idx)(struct ieee80211_hw *hw, int idx);
632
633 /* Enable/disable IEEE 802.1X. This item requests wlan card to pass
634 * unencrypted EAPOL-Key frames even when encryption is configured.
635 * If the wlan card does not require such a configuration, this
636 * function pointer can be set to NULL. */
637 int (*set_ieee8021x)(struct ieee80211_hw *hw, int use_ieee8021x);
638
639 /* Set port authorization state (IEEE 802.1X PAE) to be authorized
640 * (authorized=1) or unauthorized (authorized=0). This function can be
641 * used if the wlan hardware or low-level driver implements PAE.
642 * 80211.o module will anyway filter frames based on authorization
643 * state, so this function pointer can be NULL if low-level driver does
644 * not require event notification about port state changes.
645 * Currently unused. */
646 int (*set_port_auth)(struct ieee80211_hw *hw, u8 *addr,
647 int authorized);
648
649 /* Ask the hardware to service the scan request, no need to start
650 * the scan state machine in stack. */
651 int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len);
652
653 /* return low-level statistics */
654 int (*get_stats)(struct ieee80211_hw *hw,
655 struct ieee80211_low_level_stats *stats);
656
657 /* For devices that generate their own beacons and probe response
658 * or association responses this updates the state of privacy_invoked
659 * returns 0 for success or an error number */
660 int (*set_privacy_invoked)(struct ieee80211_hw *hw,
661 int privacy_invoked);
662
663 /* For devices that have internal sequence counters, allow 802.11
664 * code to access the current value of a counter */
665 int (*get_sequence_counter)(struct ieee80211_hw *hw,
666 u8* addr, u8 keyidx, u8 txrx,
667 u32* iv32, u16* iv16);
668
669 /* Configuration of RTS threshold (if device needs it) */
670 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
671
672 /* Configuration of fragmentation threshold.
673 * Assign this if the device does fragmentation by itself,
674 * if this method is assigned then the stack will not do
675 * fragmentation. */
676 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
677
678 /* Configuration of retry limits (if device needs it) */
679 int (*set_retry_limit)(struct ieee80211_hw *hw,
680 u32 short_retry, u32 long_retr);
681
682 /* Number of STAs in STA table notification (NULL = disabled).
683 * Must be atomic. */
684 void (*sta_table_notification)(struct ieee80211_hw *hw,
685 int num_sta);
686
687 /* Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
688 * bursting) for a hardware TX queue.
689 * queue = IEEE80211_TX_QUEUE_*.
690 * Must be atomic. */
691 int (*conf_tx)(struct ieee80211_hw *hw, int queue,
692 const struct ieee80211_tx_queue_params *params);
693
694 /* Get statistics of the current TX queue status. This is used to get
695 * number of currently queued packets (queue length), maximum queue
696 * size (limit), and total number of packets sent using each TX queue
697 * (count).
698 * Currently unused. */
699 int (*get_tx_stats)(struct ieee80211_hw *hw,
700 struct ieee80211_tx_queue_stats *stats);
701
702 /* Get the current TSF timer value from firmware/hardware. Currently,
703 * this is only used for IBSS mode debugging and, as such, is not a
704 * required function.
705 * Must be atomic. */
706 u64 (*get_tsf)(struct ieee80211_hw *hw);
707
708 /* Reset the TSF timer and allow firmware/hardware to synchronize with
709 * other STAs in the IBSS. This is only used in IBSS mode. This
710 * function is optional if the firmware/hardware takes full care of
711 * TSF synchronization. */
712 void (*reset_tsf)(struct ieee80211_hw *hw);
713
714 /* Setup beacon data for IBSS beacons. Unlike access point (Master),
715 * IBSS uses a fixed beacon frame which is configured using this
716 * function. This handler is required only for IBSS mode. */
717 int (*beacon_update)(struct ieee80211_hw *hw,
718 struct sk_buff *skb,
719 struct ieee80211_tx_control *control);
720
721 /* Determine whether the last IBSS beacon was sent by us. This is
722 * needed only for IBSS mode and the result of this function is used to
723 * determine whether to reply to Probe Requests. */
724 int (*tx_last_beacon)(struct ieee80211_hw *hw);
725};
726
727/* Allocate a new hardware device. This must be called once for each
728 * hardware device. The returned pointer must be used to refer to this
729 * device when calling other functions. 802.11 code allocates a private data
730 * area for the low-level driver. The size of this area is given as
731 * priv_data_len.
732 */
733struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
734 const struct ieee80211_ops *ops);
735
736/* Register hardware device to the IEEE 802.11 code and kernel. Low-level
737 * drivers must call this function before using any other IEEE 802.11
738 * function except ieee80211_register_hwmode. */
739int ieee80211_register_hw(struct ieee80211_hw *hw);
740
741/* driver can use this and ieee80211_get_rx_led_name to get the
742 * name of the registered LEDs after ieee80211_register_hw
743 * was called.
744 * This is useful to set the default trigger on the LED class
745 * device that your driver should export for each LED the device
746 * has, that way the default behaviour will be as expected but
747 * the user can still change it/turn off the LED etc.
748 */
749#ifdef CONFIG_MAC80211_LEDS
750extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
751extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
752#endif
753static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
754{
755#ifdef CONFIG_MAC80211_LEDS
756 return __ieee80211_get_tx_led_name(hw);
757#else
758 return NULL;
759#endif
760}
761
762static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
763{
764#ifdef CONFIG_MAC80211_LEDS
765 return __ieee80211_get_rx_led_name(hw);
766#else
767 return NULL;
768#endif
769}
770
771/* Register a new hardware PHYMODE capability to the stack. */
772int ieee80211_register_hwmode(struct ieee80211_hw *hw,
773 struct ieee80211_hw_mode *mode);
774
775/* Unregister a hardware device. This function instructs 802.11 code to free
776 * allocated resources and unregister netdevices from the kernel. */
777void ieee80211_unregister_hw(struct ieee80211_hw *hw);
778
779/* Free everything that was allocated including private data of a driver. */
780void ieee80211_free_hw(struct ieee80211_hw *hw);
781
782/* Receive frame callback function. The low-level driver uses this function to
783 * send received frames to the IEEE 802.11 code. Receive buffer (skb) must
784 * start with IEEE 802.11 header. */
785void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
786 struct ieee80211_rx_status *status);
787void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
788 struct sk_buff *skb,
789 struct ieee80211_rx_status *status);
790
791/* Transmit status callback function. The low-level driver must call this
792 * function to report transmit status for all the TX frames that had
793 * req_tx_status set in the transmit control fields. In addition, this should
794 * be called at least for all unicast frames to provide information for TX rate
795 * control algorithm. In order to maintain all statistics, this function is
796 * recommended to be called after each frame, including multicast/broadcast, is
797 * sent. */
798void ieee80211_tx_status(struct ieee80211_hw *hw,
799 struct sk_buff *skb,
800 struct ieee80211_tx_status *status);
801void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
802 struct sk_buff *skb,
803 struct ieee80211_tx_status *status);
804
805/**
806 * ieee80211_beacon_get - beacon generation function
807 * @hw: pointer obtained from ieee80211_alloc_hw().
808 * @if_id: interface ID from &struct ieee80211_if_init_conf.
809 * @control: will be filled with information needed to send this beacon.
810 *
811 * If the beacon frames are generated by the host system (i.e., not in
812 * hardware/firmware), the low-level driver uses this function to receive
813 * the next beacon frame from the 802.11 code. The low-level is responsible
814 * for calling this function before beacon data is needed (e.g., based on
815 * hardware interrupt). Returned skb is used only once and low-level driver
816 * is responsible of freeing it.
817 */
818struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
819 int if_id,
820 struct ieee80211_tx_control *control);
821
822/**
823 * ieee80211_rts_get - RTS frame generation function
824 * @hw: pointer obtained from ieee80211_alloc_hw().
825 * @frame: pointer to the frame that is going to be protected by the RTS.
826 * @frame_len: the frame length (in octets).
827 * @frame_txctl: &struct ieee80211_tx_control of the frame.
828 * @rts: The buffer where to store the RTS frame.
829 *
830 * If the RTS frames are generated by the host system (i.e., not in
831 * hardware/firmware), the low-level driver uses this function to receive
832 * the next RTS frame from the 802.11 code. The low-level is responsible
833 * for calling this function before and RTS frame is needed.
834 */
835void ieee80211_rts_get(struct ieee80211_hw *hw,
836 const void *frame, size_t frame_len,
837 const struct ieee80211_tx_control *frame_txctl,
838 struct ieee80211_rts *rts);
839
840/**
841 * ieee80211_rts_duration - Get the duration field for an RTS frame
842 * @hw: pointer obtained from ieee80211_alloc_hw().
843 * @frame_len: the length of the frame that is going to be protected by the RTS.
844 * @frame_txctl: &struct ieee80211_tx_control of the frame.
845 *
846 * If the RTS is generated in firmware, but the host system must provide
847 * the duration field, the low-level driver uses this function to receive
848 * the duration field value in little-endian byteorder.
849 */
850__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
851 size_t frame_len,
852 const struct ieee80211_tx_control *frame_txctl);
853
854/**
855 * ieee80211_ctstoself_get - CTS-to-self frame generation function
856 * @hw: pointer obtained from ieee80211_alloc_hw().
857 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
858 * @frame_len: the frame length (in octets).
859 * @frame_txctl: &struct ieee80211_tx_control of the frame.
860 * @cts: The buffer where to store the CTS-to-self frame.
861 *
862 * If the CTS-to-self frames are generated by the host system (i.e., not in
863 * hardware/firmware), the low-level driver uses this function to receive
864 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
865 * for calling this function before and CTS-to-self frame is needed.
866 */
867void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
868 const void *frame, size_t frame_len,
869 const struct ieee80211_tx_control *frame_txctl,
870 struct ieee80211_cts *cts);
871
872/**
873 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
874 * @hw: pointer obtained from ieee80211_alloc_hw().
875 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
876 * @frame_txctl: &struct ieee80211_tx_control of the frame.
877 *
878 * If the CTS-to-self is generated in firmware, but the host system must provide
879 * the duration field, the low-level driver uses this function to receive
880 * the duration field value in little-endian byteorder.
881 */
882__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
883 size_t frame_len,
884 const struct ieee80211_tx_control *frame_txctl);
885
886/**
887 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
888 * @hw: pointer obtained from ieee80211_alloc_hw().
889 * @frame_len: the length of the frame.
890 * @rate: the rate (in 100kbps) at which the frame is going to be transmitted.
891 *
892 * Calculate the duration field of some generic frame, given its
893 * length and transmission rate (in 100kbps).
894 */
895__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
896 size_t frame_len,
897 int rate);
898
899/**
900 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
901 * @hw: pointer as obtained from ieee80211_alloc_hw().
902 * @if_id: interface ID from &struct ieee80211_if_init_conf.
903 * @control: will be filled with information needed to send returned frame.
904 *
905 * Function for accessing buffered broadcast and multicast frames. If
906 * hardware/firmware does not implement buffering of broadcast/multicast
907 * frames when power saving is used, 802.11 code buffers them in the host
908 * memory. The low-level driver uses this function to fetch next buffered
909 * frame. In most cases, this is used when generating beacon frame. This
910 * function returns a pointer to the next buffered skb or NULL if no more
911 * buffered frames are available.
912 *
913 * Note: buffered frames are returned only after DTIM beacon frame was
914 * generated with ieee80211_beacon_get() and the low-level driver must thus
915 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
916 * NULL if the previous generated beacon was not DTIM, so the low-level driver
917 * does not need to check for DTIM beacons separately and should be able to
918 * use common code for all beacons.
919 */
920struct sk_buff *
921ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id,
922 struct ieee80211_tx_control *control);
923
924/* Low level drivers that have their own MLME and MAC indicate
925 * the aid for an associating station with this call */
926int ieee80211_set_aid_for_sta(struct ieee80211_hw *hw,
927 u8 *peer_address, u16 aid);
928
929
930/* Given an sk_buff with a raw 802.11 header at the data pointer this function
931 * returns the 802.11 header length in bytes (not including encryption
932 * headers). If the data in the sk_buff is too short to contain a valid 802.11
933 * header the function returns 0.
934 */
935int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
936
937/* Like ieee80211_get_hdrlen_from_skb() but takes a FC in CPU order. */
938int ieee80211_get_hdrlen(u16 fc);
939
940/**
941 * ieee80211_wake_queue - wake specific queue
942 * @hw: pointer as obtained from ieee80211_alloc_hw().
943 * @queue: queue number (counted from zero).
944 *
945 * Drivers should use this function instead of netif_wake_queue.
946 */
947void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
948
949/**
950 * ieee80211_stop_queue - stop specific queue
951 * @hw: pointer as obtained from ieee80211_alloc_hw().
952 * @queue: queue number (counted from zero).
953 *
954 * Drivers should use this function instead of netif_stop_queue.
955 */
956void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
957
958/**
959 * ieee80211_start_queues - start all queues
960 * @hw: pointer to as obtained from ieee80211_alloc_hw().
961 *
962 * Drivers should use this function instead of netif_start_queue.
963 */
964void ieee80211_start_queues(struct ieee80211_hw *hw);
965
966/**
967 * ieee80211_stop_queues - stop all queues
968 * @hw: pointer as obtained from ieee80211_alloc_hw().
969 *
970 * Drivers should use this function instead of netif_stop_queue.
971 */
972void ieee80211_stop_queues(struct ieee80211_hw *hw);
973
974/**
975 * ieee80211_wake_queues - wake all queues
976 * @hw: pointer as obtained from ieee80211_alloc_hw().
977 *
978 * Drivers should use this function instead of netif_wake_queue.
979 */
980void ieee80211_wake_queues(struct ieee80211_hw *hw);
981
982/**
983 * ieee80211_get_mc_list_item - iteration over items in multicast list
984 * @hw: pointer as obtained from ieee80211_alloc_hw().
985 * @prev: value returned by previous call to ieee80211_get_mc_list_item() or
986 * NULL to start a new iteration.
987 * @ptr: pointer to buffer of void * type for internal usage of
988 * ieee80211_get_mc_list_item().
989 *
990 * Iterates over items in multicast list of given device. To get the first
991 * item, pass NULL in @prev and in *@ptr. In subsequent calls, pass the
992 * value returned by previous call in @prev. Don't alter *@ptr during
993 * iteration. When there are no more items, NULL is returned.
994 */
995struct dev_mc_list *
996ieee80211_get_mc_list_item(struct ieee80211_hw *hw,
997 struct dev_mc_list *prev,
998 void **ptr);
999
1000/* called by driver to notify scan status completed */
1001void ieee80211_scan_completed(struct ieee80211_hw *hw);
1002
1003/* Function to indicate Radar Detection. The low level driver must call this
1004 * function to indicate the presence of radar in the current channel.
1005 * Additionally the radar type also could be sent */
1006int ieee80211_radar_status(struct ieee80211_hw *hw, int channel,
1007 int radar, int radar_type);
1008
1009/* return a pointer to the source address (SA) */
1010static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
1011{
1012 u8 *raw = (u8 *) hdr;
1013 u8 tofrom = (*(raw+1)) & 3; /* get the TODS and FROMDS bits */
1014
1015 switch (tofrom) {
1016 case 2:
1017 return hdr->addr3;
1018 case 3:
1019 return hdr->addr4;
1020 }
1021 return hdr->addr2;
1022}
1023
1024/* return a pointer to the destination address (DA) */
1025static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
1026{
1027 u8 *raw = (u8 *) hdr;
1028 u8 to_ds = (*(raw+1)) & 1; /* get the TODS bit */
1029
1030 if (to_ds)
1031 return hdr->addr3;
1032 return hdr->addr1;
1033}
1034
1035static inline int ieee80211_get_morefrag(struct ieee80211_hdr *hdr)
1036{
1037 return (le16_to_cpu(hdr->frame_control) &
1038 IEEE80211_FCTL_MOREFRAGS) != 0;
1039}
1040
1041#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
1042#define MAC_ARG(x) ((u8*)(x))[0], ((u8*)(x))[1], ((u8*)(x))[2], \
1043 ((u8*)(x))[3], ((u8*)(x))[4], ((u8*)(x))[5]
1044
1045#endif /* MAC80211_H */