aboutsummaryrefslogtreecommitdiffstats
path: root/include/litmus
diff options
context:
space:
mode:
authorGlenn Elliott <gelliott@cs.unc.edu>2012-08-20 17:28:55 -0400
committerBjoern Brandenburg <bbb@mpi-sws.org>2012-09-21 12:36:06 -0400
commite6f51fb826ce98d436f445aae4eb9e9dba1f30e8 (patch)
tree8ac378153f449e2098ca8eb87c895319b9c9a4e8 /include/litmus
parent7e13912f58908d302692bd8014b909d34eb16994 (diff)
EDF priority tie-breaks.
Instead of tie-breaking by PID (which is a static priority tie-break), we can tie-break by other job-level-unique parameters. This is desirable because tasks are equaly affected by tardiness since static priority tie-breaks cause tasks with greater PID values to experience the most tardiness. There are four tie-break methods: 1) Lateness. If two jobs, J_{1,i} and J_{2,j} of tasks T_1 and T_2, respectively, have equal deadlines, we favor the job of the task that had the worst lateness for jobs J_{1,i-1} and J_{2,j-1}. Note: Unlike tardiness, lateness may be less than zero. This occurs when a job finishes before its deadline. 2) Normalized Lateness. The same as #1, except lateness is first normalized by each task's relative deadline. This prevents tasks with short relative deadlines and small execution requirements from always losing tie-breaks. 3) Hash. The job tuple (PID, Job#) is used to generate a hash. Hash values are then compared. A job has ~50% chance of winning a tie-break with respect to another job. Note: Emperical testing shows that some jobs can have +/- ~1.5% advantage in tie-breaks. Linux's built-in hash function is not totally a uniform hash. 4) PIDs. PID-based tie-break used in prior versions of Litmus.
Diffstat (limited to 'include/litmus')
-rw-r--r--include/litmus/fpmath.h145
-rw-r--r--include/litmus/litmus.h2
-rw-r--r--include/litmus/rt_param.h6
3 files changed, 152 insertions, 1 deletions
diff --git a/include/litmus/fpmath.h b/include/litmus/fpmath.h
new file mode 100644
index 000000000000..04d4bcaeae96
--- /dev/null
+++ b/include/litmus/fpmath.h
@@ -0,0 +1,145 @@
1#ifndef __FP_MATH_H__
2#define __FP_MATH_H__
3
4#ifndef __KERNEL__
5#include <stdint.h>
6#define abs(x) (((x) < 0) ? -(x) : x)
7#endif
8
9// Use 64-bit because we want to track things at the nanosecond scale.
10// This can lead to very large numbers.
11typedef int64_t fpbuf_t;
12typedef struct
13{
14 fpbuf_t val;
15} fp_t;
16
17#define FP_SHIFT 10
18#define ROUND_BIT (FP_SHIFT - 1)
19
20#define _fp(x) ((fp_t) {x})
21
22#ifdef __KERNEL__
23static const fp_t LITMUS_FP_ZERO = {.val = 0};
24static const fp_t LITMUS_FP_ONE = {.val = (1 << FP_SHIFT)};
25#endif
26
27static inline fp_t FP(fpbuf_t x)
28{
29 return _fp(((fpbuf_t) x) << FP_SHIFT);
30}
31
32/* divide two integers to obtain a fixed point value */
33static inline fp_t _frac(fpbuf_t a, fpbuf_t b)
34{
35 return _fp(FP(a).val / (b));
36}
37
38static inline fpbuf_t _point(fp_t x)
39{
40 return (x.val % (1 << FP_SHIFT));
41
42}
43
44#define fp2str(x) x.val
45/*(x.val >> FP_SHIFT), (x.val % (1 << FP_SHIFT)) */
46#define _FP_ "%ld/1024"
47
48static inline fpbuf_t _floor(fp_t x)
49{
50 return x.val >> FP_SHIFT;
51}
52
53/* FIXME: negative rounding */
54static inline fpbuf_t _round(fp_t x)
55{
56 return _floor(x) + ((x.val >> ROUND_BIT) & 1);
57}
58
59/* multiply two fixed point values */
60static inline fp_t _mul(fp_t a, fp_t b)
61{
62 return _fp((a.val * b.val) >> FP_SHIFT);
63}
64
65static inline fp_t _div(fp_t a, fp_t b)
66{
67#if !defined(__KERNEL__) && !defined(unlikely)
68#define unlikely(x) (x)
69#define DO_UNDEF_UNLIKELY
70#endif
71 /* try not to overflow */
72 if (unlikely( a.val > (2l << ((sizeof(fpbuf_t)*8) - FP_SHIFT)) ))
73 return _fp((a.val / b.val) << FP_SHIFT);
74 else
75 return _fp((a.val << FP_SHIFT) / b.val);
76#ifdef DO_UNDEF_UNLIKELY
77#undef unlikely
78#undef DO_UNDEF_UNLIKELY
79#endif
80}
81
82static inline fp_t _add(fp_t a, fp_t b)
83{
84 return _fp(a.val + b.val);
85}
86
87static inline fp_t _sub(fp_t a, fp_t b)
88{
89 return _fp(a.val - b.val);
90}
91
92static inline fp_t _neg(fp_t x)
93{
94 return _fp(-x.val);
95}
96
97static inline fp_t _abs(fp_t x)
98{
99 return _fp(abs(x.val));
100}
101
102/* works the same as casting float/double to integer */
103static inline fpbuf_t _fp_to_integer(fp_t x)
104{
105 return _floor(_abs(x)) * ((x.val > 0) ? 1 : -1);
106}
107
108static inline fp_t _integer_to_fp(fpbuf_t x)
109{
110 return _frac(x,1);
111}
112
113static inline int _leq(fp_t a, fp_t b)
114{
115 return a.val <= b.val;
116}
117
118static inline int _geq(fp_t a, fp_t b)
119{
120 return a.val >= b.val;
121}
122
123static inline int _lt(fp_t a, fp_t b)
124{
125 return a.val < b.val;
126}
127
128static inline int _gt(fp_t a, fp_t b)
129{
130 return a.val > b.val;
131}
132
133static inline int _eq(fp_t a, fp_t b)
134{
135 return a.val == b.val;
136}
137
138static inline fp_t _max(fp_t a, fp_t b)
139{
140 if (a.val < b.val)
141 return b;
142 else
143 return a;
144}
145#endif
diff --git a/include/litmus/litmus.h b/include/litmus/litmus.h
index 338245abd6ed..807b7888695a 100644
--- a/include/litmus/litmus.h
+++ b/include/litmus/litmus.h
@@ -63,7 +63,7 @@ void litmus_exit_task(struct task_struct *tsk);
63#define get_exec_time(t) (tsk_rt(t)->job_params.exec_time) 63#define get_exec_time(t) (tsk_rt(t)->job_params.exec_time)
64#define get_deadline(t) (tsk_rt(t)->job_params.deadline) 64#define get_deadline(t) (tsk_rt(t)->job_params.deadline)
65#define get_release(t) (tsk_rt(t)->job_params.release) 65#define get_release(t) (tsk_rt(t)->job_params.release)
66 66#define get_lateness(t) (tsk_rt(t)->job_params.lateness)
67 67
68#define is_hrt(t) \ 68#define is_hrt(t) \
69 (tsk_rt(t)->task_params.cls == RT_CLASS_HARD) 69 (tsk_rt(t)->task_params.cls == RT_CLASS_HARD)
diff --git a/include/litmus/rt_param.h b/include/litmus/rt_param.h
index 89ac0dda7d3d..fac939dbd33a 100644
--- a/include/litmus/rt_param.h
+++ b/include/litmus/rt_param.h
@@ -110,6 +110,12 @@ struct rt_job {
110 /* How much service has this job received so far? */ 110 /* How much service has this job received so far? */
111 lt_t exec_time; 111 lt_t exec_time;
112 112
113 /* By how much did the prior job miss its deadline by?
114 * Value differs from tardiness in that lateness may
115 * be negative (when job finishes before its deadline).
116 */
117 long long lateness;
118
113 /* Which job is this. This is used to let user space 119 /* Which job is this. This is used to let user space
114 * specify which job to wait for, which is important if jobs 120 * specify which job to wait for, which is important if jobs
115 * overrun. If we just call sys_sleep_next_period() then we 121 * overrun. If we just call sys_sleep_next_period() then we