aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux
diff options
context:
space:
mode:
authorChristoph Lameter <clameter@sgi.com>2006-09-01 00:27:35 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-09-01 14:39:08 -0400
commitdf9ecaba3f152d1ea79f2a5e0b87505e03f47590 (patch)
treeb25f855923ef437a0513559425d6c875dbd3e617 /include/linux
parenta302eb4e4602d6444ae75a0e516fb2f2c62d6642 (diff)
[PATCH] ZVC: Scale thresholds depending on the size of the system
The ZVC counter update threshold is currently set to a fixed value of 32. This patch sets up the threshold depending on the number of processors and the sizes of the zones in the system. With the current threshold of 32, I was able to observe slight contention when more than 130-140 processors concurrently updated the counters. The contention vanished when I either increased the threshold to 64 or used Andrew's idea of overstepping the interval (see ZVC overstep patch). However, we saw contention again at 220-230 processors. So we need higher values for larger systems. But the current default is already a bit of an overkill for smaller systems. Some systems have tiny zones where precision matters. For example i386 and x86_64 have 16M DMA zones and either 900M ZONE_NORMAL or ZONE_DMA32. These are even present on SMP and NUMA systems. The patch here sets up a threshold based on the number of processors in the system and the size of the zone that these counters are used for. The threshold should grow logarithmically, so we use fls() as an easy approximation. Results of tests on a system with 1024 processors (4TB RAM) The following output is from a test allocating 1GB of memory concurrently on each processor (Forking the process. So contention on mmap_sem and the pte locks is not a factor): X MIN TYPE: CPUS WALL WALL SYS USER TOTCPU fork 1 0.552 0.552 0.540 0.012 0.552 fork 4 0.552 0.548 2.164 0.036 2.200 fork 16 0.564 0.548 8.812 0.164 8.976 fork 128 0.580 0.572 72.204 1.208 73.412 fork 256 1.300 0.660 310.400 2.160 312.560 fork 512 3.512 0.696 1526.836 4.816 1531.652 fork 1020 20.024 0.700 17243.176 6.688 17249.863 So a threshold of 32 is fine up to 128 processors. At 256 processors contention becomes a factor. Overstepping the counter (earlier patch) improves the numbers a bit: fork 4 0.552 0.548 2.164 0.040 2.204 fork 16 0.552 0.548 8.640 0.148 8.788 fork 128 0.556 0.548 69.676 0.956 70.632 fork 256 0.876 0.636 212.468 2.108 214.576 fork 512 2.276 0.672 997.324 4.260 1001.584 fork 1020 13.564 0.680 11586.436 6.088 11592.523 Still contention at 512 and 1020. Contention at 1020 is down by a third. 256 still has a slight bit of contention. After this patch the counter threshold will be set to 125 which reduces contention significantly: fork 128 0.560 0.548 69.776 0.932 70.708 fork 256 0.636 0.556 143.460 2.036 145.496 fork 512 0.640 0.548 284.244 4.236 288.480 fork 1020 1.500 0.588 1326.152 8.892 1335.044 [akpm@osdl.org: !SMP build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/mmzone.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
index 656b588a9f96..f45163c528e8 100644
--- a/include/linux/mmzone.h
+++ b/include/linux/mmzone.h
@@ -77,6 +77,7 @@ struct per_cpu_pages {
77struct per_cpu_pageset { 77struct per_cpu_pageset {
78 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 78 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
79#ifdef CONFIG_SMP 79#ifdef CONFIG_SMP
80 s8 stat_threshold;
80 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 81 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
81#endif 82#endif
82} ____cacheline_aligned_in_smp; 83} ____cacheline_aligned_in_smp;