aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/sched.h
diff options
context:
space:
mode:
authorFrank Mayhar <fmayhar@google.com>2008-09-12 12:54:39 -0400
committerIngo Molnar <mingo@elte.hu>2008-09-14 10:25:35 -0400
commitf06febc96ba8e0af80bcc3eaec0a109e88275fac (patch)
tree46dba9432ef25d2eae9434ff2df638c7a268c0f1 /include/linux/sched.h
parent6bfb09a1005193be5c81ebac9f3ef85210142650 (diff)
timers: fix itimer/many thread hang
Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: Frank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r--include/linux/sched.h257
1 files changed, 244 insertions, 13 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 3d9120c5ad15..26d7a5f2d0ba 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -425,6 +425,45 @@ struct pacct_struct {
425 unsigned long ac_minflt, ac_majflt; 425 unsigned long ac_minflt, ac_majflt;
426}; 426};
427 427
428/**
429 * struct task_cputime - collected CPU time counts
430 * @utime: time spent in user mode, in &cputime_t units
431 * @stime: time spent in kernel mode, in &cputime_t units
432 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
433 *
434 * This structure groups together three kinds of CPU time that are
435 * tracked for threads and thread groups. Most things considering
436 * CPU time want to group these counts together and treat all three
437 * of them in parallel.
438 */
439struct task_cputime {
440 cputime_t utime;
441 cputime_t stime;
442 unsigned long long sum_exec_runtime;
443};
444/* Alternate field names when used to cache expirations. */
445#define prof_exp stime
446#define virt_exp utime
447#define sched_exp sum_exec_runtime
448
449/**
450 * struct thread_group_cputime - thread group interval timer counts
451 * @totals: thread group interval timers; substructure for
452 * uniprocessor kernel, per-cpu for SMP kernel.
453 *
454 * This structure contains the version of task_cputime, above, that is
455 * used for thread group CPU clock calculations.
456 */
457#ifdef CONFIG_SMP
458struct thread_group_cputime {
459 struct task_cputime *totals;
460};
461#else
462struct thread_group_cputime {
463 struct task_cputime totals;
464};
465#endif
466
428/* 467/*
429 * NOTE! "signal_struct" does not have it's own 468 * NOTE! "signal_struct" does not have it's own
430 * locking, because a shared signal_struct always 469 * locking, because a shared signal_struct always
@@ -470,6 +509,17 @@ struct signal_struct {
470 cputime_t it_prof_expires, it_virt_expires; 509 cputime_t it_prof_expires, it_virt_expires;
471 cputime_t it_prof_incr, it_virt_incr; 510 cputime_t it_prof_incr, it_virt_incr;
472 511
512 /*
513 * Thread group totals for process CPU clocks.
514 * See thread_group_cputime(), et al, for details.
515 */
516 struct thread_group_cputime cputime;
517
518 /* Earliest-expiration cache. */
519 struct task_cputime cputime_expires;
520
521 struct list_head cpu_timers[3];
522
473 /* job control IDs */ 523 /* job control IDs */
474 524
475 /* 525 /*
@@ -500,7 +550,7 @@ struct signal_struct {
500 * Live threads maintain their own counters and add to these 550 * Live threads maintain their own counters and add to these
501 * in __exit_signal, except for the group leader. 551 * in __exit_signal, except for the group leader.
502 */ 552 */
503 cputime_t utime, stime, cutime, cstime; 553 cputime_t cutime, cstime;
504 cputime_t gtime; 554 cputime_t gtime;
505 cputime_t cgtime; 555 cputime_t cgtime;
506 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 556 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
@@ -509,14 +559,6 @@ struct signal_struct {
509 struct task_io_accounting ioac; 559 struct task_io_accounting ioac;
510 560
511 /* 561 /*
512 * Cumulative ns of scheduled CPU time for dead threads in the
513 * group, not including a zombie group leader. (This only differs
514 * from jiffies_to_ns(utime + stime) if sched_clock uses something
515 * other than jiffies.)
516 */
517 unsigned long long sum_sched_runtime;
518
519 /*
520 * We don't bother to synchronize most readers of this at all, 562 * We don't bother to synchronize most readers of this at all,
521 * because there is no reader checking a limit that actually needs 563 * because there is no reader checking a limit that actually needs
522 * to get both rlim_cur and rlim_max atomically, and either one 564 * to get both rlim_cur and rlim_max atomically, and either one
@@ -527,8 +569,6 @@ struct signal_struct {
527 */ 569 */
528 struct rlimit rlim[RLIM_NLIMITS]; 570 struct rlimit rlim[RLIM_NLIMITS];
529 571
530 struct list_head cpu_timers[3];
531
532 /* keep the process-shared keyrings here so that they do the right 572 /* keep the process-shared keyrings here so that they do the right
533 * thing in threads created with CLONE_THREAD */ 573 * thing in threads created with CLONE_THREAD */
534#ifdef CONFIG_KEYS 574#ifdef CONFIG_KEYS
@@ -1134,8 +1174,7 @@ struct task_struct {
1134/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1174/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1135 unsigned long min_flt, maj_flt; 1175 unsigned long min_flt, maj_flt;
1136 1176
1137 cputime_t it_prof_expires, it_virt_expires; 1177 struct task_cputime cputime_expires;
1138 unsigned long long it_sched_expires;
1139 struct list_head cpu_timers[3]; 1178 struct list_head cpu_timers[3];
1140 1179
1141/* process credentials */ 1180/* process credentials */
@@ -1585,6 +1624,7 @@ extern unsigned long long cpu_clock(int cpu);
1585 1624
1586extern unsigned long long 1625extern unsigned long long
1587task_sched_runtime(struct task_struct *task); 1626task_sched_runtime(struct task_struct *task);
1627extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1588 1628
1589/* sched_exec is called by processes performing an exec */ 1629/* sched_exec is called by processes performing an exec */
1590#ifdef CONFIG_SMP 1630#ifdef CONFIG_SMP
@@ -2082,6 +2122,197 @@ static inline int spin_needbreak(spinlock_t *lock)
2082} 2122}
2083 2123
2084/* 2124/*
2125 * Thread group CPU time accounting.
2126 */
2127#ifdef CONFIG_SMP
2128
2129extern int thread_group_cputime_alloc_smp(struct task_struct *);
2130extern void thread_group_cputime_smp(struct task_struct *, struct task_cputime *);
2131
2132static inline void thread_group_cputime_init(struct signal_struct *sig)
2133{
2134 sig->cputime.totals = NULL;
2135}
2136
2137static inline int thread_group_cputime_clone_thread(struct task_struct *curr,
2138 struct task_struct *new)
2139{
2140 if (curr->signal->cputime.totals)
2141 return 0;
2142 return thread_group_cputime_alloc_smp(curr);
2143}
2144
2145static inline void thread_group_cputime_free(struct signal_struct *sig)
2146{
2147 free_percpu(sig->cputime.totals);
2148}
2149
2150/**
2151 * thread_group_cputime - Sum the thread group time fields across all CPUs.
2152 *
2153 * This is a wrapper for the real routine, thread_group_cputime_smp(). See
2154 * that routine for details.
2155 */
2156static inline void thread_group_cputime(
2157 struct task_struct *tsk,
2158 struct task_cputime *times)
2159{
2160 thread_group_cputime_smp(tsk, times);
2161}
2162
2163/**
2164 * thread_group_cputime_account_user - Maintain utime for a thread group.
2165 *
2166 * @tgtimes: Pointer to thread_group_cputime structure.
2167 * @cputime: Time value by which to increment the utime field of that
2168 * structure.
2169 *
2170 * If thread group time is being maintained, get the structure for the
2171 * running CPU and update the utime field there.
2172 */
2173static inline void thread_group_cputime_account_user(
2174 struct thread_group_cputime *tgtimes,
2175 cputime_t cputime)
2176{
2177 if (tgtimes->totals) {
2178 struct task_cputime *times;
2179
2180 times = per_cpu_ptr(tgtimes->totals, get_cpu());
2181 times->utime = cputime_add(times->utime, cputime);
2182 put_cpu_no_resched();
2183 }
2184}
2185
2186/**
2187 * thread_group_cputime_account_system - Maintain stime for a thread group.
2188 *
2189 * @tgtimes: Pointer to thread_group_cputime structure.
2190 * @cputime: Time value by which to increment the stime field of that
2191 * structure.
2192 *
2193 * If thread group time is being maintained, get the structure for the
2194 * running CPU and update the stime field there.
2195 */
2196static inline void thread_group_cputime_account_system(
2197 struct thread_group_cputime *tgtimes,
2198 cputime_t cputime)
2199{
2200 if (tgtimes->totals) {
2201 struct task_cputime *times;
2202
2203 times = per_cpu_ptr(tgtimes->totals, get_cpu());
2204 times->stime = cputime_add(times->stime, cputime);
2205 put_cpu_no_resched();
2206 }
2207}
2208
2209/**
2210 * thread_group_cputime_account_exec_runtime - Maintain exec runtime for a
2211 * thread group.
2212 *
2213 * @tgtimes: Pointer to thread_group_cputime structure.
2214 * @ns: Time value by which to increment the sum_exec_runtime field
2215 * of that structure.
2216 *
2217 * If thread group time is being maintained, get the structure for the
2218 * running CPU and update the sum_exec_runtime field there.
2219 */
2220static inline void thread_group_cputime_account_exec_runtime(
2221 struct thread_group_cputime *tgtimes,
2222 unsigned long long ns)
2223{
2224 if (tgtimes->totals) {
2225 struct task_cputime *times;
2226
2227 times = per_cpu_ptr(tgtimes->totals, get_cpu());
2228 times->sum_exec_runtime += ns;
2229 put_cpu_no_resched();
2230 }
2231}
2232
2233#else /* CONFIG_SMP */
2234
2235static inline void thread_group_cputime_init(struct signal_struct *sig)
2236{
2237 sig->cputime.totals.utime = cputime_zero;
2238 sig->cputime.totals.stime = cputime_zero;
2239 sig->cputime.totals.sum_exec_runtime = 0;
2240}
2241
2242static inline int thread_group_cputime_alloc(struct task_struct *tsk)
2243{
2244 return 0;
2245}
2246
2247static inline void thread_group_cputime_free(struct signal_struct *sig)
2248{
2249}
2250
2251static inline int thread_group_cputime_clone_thread(struct task_struct *curr,
2252 struct task_struct *tsk)
2253{
2254}
2255
2256static inline void thread_group_cputime(struct task_struct *tsk,
2257 struct task_cputime *cputime)
2258{
2259 *cputime = tsk->signal->cputime.totals;
2260}
2261
2262static inline void thread_group_cputime_account_user(
2263 struct thread_group_cputime *tgtimes,
2264 cputime_t cputime)
2265{
2266 tgtimes->totals->utime = cputime_add(tgtimes->totals->utime, cputime);
2267}
2268
2269static inline void thread_group_cputime_account_system(
2270 struct thread_group_cputime *tgtimes,
2271 cputime_t cputime)
2272{
2273 tgtimes->totals->stime = cputime_add(tgtimes->totals->stime, cputime);
2274}
2275
2276static inline void thread_group_cputime_account_exec_runtime(
2277 struct thread_group_cputime *tgtimes,
2278 unsigned long long ns)
2279{
2280 tgtimes->totals->sum_exec_runtime += ns;
2281}
2282
2283#endif /* CONFIG_SMP */
2284
2285static inline void account_group_user_time(struct task_struct *tsk,
2286 cputime_t cputime)
2287{
2288 struct signal_struct *sig;
2289
2290 sig = tsk->signal;
2291 if (likely(sig))
2292 thread_group_cputime_account_user(&sig->cputime, cputime);
2293}
2294
2295static inline void account_group_system_time(struct task_struct *tsk,
2296 cputime_t cputime)
2297{
2298 struct signal_struct *sig;
2299
2300 sig = tsk->signal;
2301 if (likely(sig))
2302 thread_group_cputime_account_system(&sig->cputime, cputime);
2303}
2304
2305static inline void account_group_exec_runtime(struct task_struct *tsk,
2306 unsigned long long ns)
2307{
2308 struct signal_struct *sig;
2309
2310 sig = tsk->signal;
2311 if (likely(sig))
2312 thread_group_cputime_account_exec_runtime(&sig->cputime, ns);
2313}
2314
2315/*
2085 * Reevaluate whether the task has signals pending delivery. 2316 * Reevaluate whether the task has signals pending delivery.
2086 * Wake the task if so. 2317 * Wake the task if so.
2087 * This is required every time the blocked sigset_t changes. 2318 * This is required every time the blocked sigset_t changes.