aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/reiserfs_fs.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/linux/reiserfs_fs.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/linux/reiserfs_fs.h')
-rw-r--r--include/linux/reiserfs_fs.h2255
1 files changed, 2255 insertions, 0 deletions
diff --git a/include/linux/reiserfs_fs.h b/include/linux/reiserfs_fs.h
new file mode 100644
index 000000000000..bccff8b17dc4
--- /dev/null
+++ b/include/linux/reiserfs_fs.h
@@ -0,0 +1,2255 @@
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
10
11
12#ifndef _LINUX_REISER_FS_H
13#define _LINUX_REISER_FS_H
14
15#include <linux/types.h>
16#ifdef __KERNEL__
17#include <linux/slab.h>
18#include <linux/interrupt.h>
19#include <linux/sched.h>
20#include <linux/workqueue.h>
21#include <asm/unaligned.h>
22#include <linux/bitops.h>
23#include <linux/proc_fs.h>
24#include <linux/smp_lock.h>
25#include <linux/buffer_head.h>
26#include <linux/reiserfs_fs_i.h>
27#include <linux/reiserfs_fs_sb.h>
28#endif
29
30/*
31 * include/linux/reiser_fs.h
32 *
33 * Reiser File System constants and structures
34 *
35 */
36
37/* in reading the #defines, it may help to understand that they employ
38 the following abbreviations:
39
40 B = Buffer
41 I = Item header
42 H = Height within the tree (should be changed to LEV)
43 N = Number of the item in the node
44 STAT = stat data
45 DEH = Directory Entry Header
46 EC = Entry Count
47 E = Entry number
48 UL = Unsigned Long
49 BLKH = BLocK Header
50 UNFM = UNForMatted node
51 DC = Disk Child
52 P = Path
53
54 These #defines are named by concatenating these abbreviations,
55 where first comes the arguments, and last comes the return value,
56 of the macro.
57
58*/
59
60#define USE_INODE_GENERATION_COUNTER
61
62#define REISERFS_PREALLOCATE
63#define DISPLACE_NEW_PACKING_LOCALITIES
64#define PREALLOCATION_SIZE 9
65
66/* n must be power of 2 */
67#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
68
69// to be ok for alpha and others we have to align structures to 8 byte
70// boundary.
71// FIXME: do not change 4 by anything else: there is code which relies on that
72#define ROUND_UP(x) _ROUND_UP(x,8LL)
73
74/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
75** messages.
76*/
77#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
78
79void reiserfs_warning (struct super_block *s, const char * fmt, ...);
80/* assertions handling */
81
82/** always check a condition and panic if it's false. */
83#define RASSERT( cond, format, args... ) \
84if( !( cond ) ) \
85 reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at " \
86 __FILE__ ":%i:%s: " format "\n", \
87 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
88
89#if defined( CONFIG_REISERFS_CHECK )
90#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
91#else
92#define RFALSE( cond, format, args... ) do {;} while( 0 )
93#endif
94
95#define CONSTF __attribute_const__
96/*
97 * Disk Data Structures
98 */
99
100/***************************************************************************/
101/* SUPER BLOCK */
102/***************************************************************************/
103
104/*
105 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
106 * the version in RAM is part of a larger structure containing fields never written to disk.
107 */
108#define UNSET_HASH 0 // read_super will guess about, what hash names
109 // in directories were sorted with
110#define TEA_HASH 1
111#define YURA_HASH 2
112#define R5_HASH 3
113#define DEFAULT_HASH R5_HASH
114
115
116struct journal_params {
117 __u32 jp_journal_1st_block; /* where does journal start from on its
118 * device */
119 __u32 jp_journal_dev; /* journal device st_rdev */
120 __u32 jp_journal_size; /* size of the journal */
121 __u32 jp_journal_trans_max; /* max number of blocks in a transaction. */
122 __u32 jp_journal_magic; /* random value made on fs creation (this
123 * was sb_journal_block_count) */
124 __u32 jp_journal_max_batch; /* max number of blocks to batch into a
125 * trans */
126 __u32 jp_journal_max_commit_age; /* in seconds, how old can an async
127 * commit be */
128 __u32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
129 * be */
130};
131
132/* this is the super from 3.5.X, where X >= 10 */
133struct reiserfs_super_block_v1
134{
135 __u32 s_block_count; /* blocks count */
136 __u32 s_free_blocks; /* free blocks count */
137 __u32 s_root_block; /* root block number */
138 struct journal_params s_journal;
139 __u16 s_blocksize; /* block size */
140 __u16 s_oid_maxsize; /* max size of object id array, see
141 * get_objectid() commentary */
142 __u16 s_oid_cursize; /* current size of object id array */
143 __u16 s_umount_state; /* this is set to 1 when filesystem was
144 * umounted, to 2 - when not */
145 char s_magic[10]; /* reiserfs magic string indicates that
146 * file system is reiserfs:
147 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
148 __u16 s_fs_state; /* it is set to used by fsck to mark which
149 * phase of rebuilding is done */
150 __u32 s_hash_function_code; /* indicate, what hash function is being use
151 * to sort names in a directory*/
152 __u16 s_tree_height; /* height of disk tree */
153 __u16 s_bmap_nr; /* amount of bitmap blocks needed to address
154 * each block of file system */
155 __u16 s_version; /* this field is only reliable on filesystem
156 * with non-standard journal */
157 __u16 s_reserved_for_journal; /* size in blocks of journal area on main
158 * device, we need to keep after
159 * making fs with non-standard journal */
160} __attribute__ ((__packed__));
161
162#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
163
164/* this is the on disk super block */
165struct reiserfs_super_block
166{
167 struct reiserfs_super_block_v1 s_v1;
168 __u32 s_inode_generation;
169 __u32 s_flags; /* Right now used only by inode-attributes, if enabled */
170 unsigned char s_uuid[16]; /* filesystem unique identifier */
171 unsigned char s_label[16]; /* filesystem volume label */
172 char s_unused[88] ; /* zero filled by mkreiserfs and
173 * reiserfs_convert_objectid_map_v1()
174 * so any additions must be updated
175 * there as well. */
176} __attribute__ ((__packed__));
177
178#define SB_SIZE (sizeof(struct reiserfs_super_block))
179
180#define REISERFS_VERSION_1 0
181#define REISERFS_VERSION_2 2
182
183
184// on-disk super block fields converted to cpu form
185#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
186#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
187#define SB_BLOCKSIZE(s) \
188 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
189#define SB_BLOCK_COUNT(s) \
190 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
191#define SB_FREE_BLOCKS(s) \
192 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
193#define SB_REISERFS_MAGIC(s) \
194 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
195#define SB_ROOT_BLOCK(s) \
196 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
197#define SB_TREE_HEIGHT(s) \
198 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
199#define SB_REISERFS_STATE(s) \
200 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
201#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
202#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
203
204#define PUT_SB_BLOCK_COUNT(s, val) \
205 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
206#define PUT_SB_FREE_BLOCKS(s, val) \
207 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
208#define PUT_SB_ROOT_BLOCK(s, val) \
209 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
210#define PUT_SB_TREE_HEIGHT(s, val) \
211 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
212#define PUT_SB_REISERFS_STATE(s, val) \
213 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
214#define PUT_SB_VERSION(s, val) \
215 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
216#define PUT_SB_BMAP_NR(s, val) \
217 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
218
219
220#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
221#define SB_ONDISK_JOURNAL_SIZE(s) \
222 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
223#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
224 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
225#define SB_ONDISK_JOURNAL_DEVICE(s) \
226 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
227#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
228 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
229
230#define is_block_in_log_or_reserved_area(s, block) \
231 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
232 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
233 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
234 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
235
236
237
238 /* used by gcc */
239#define REISERFS_SUPER_MAGIC 0x52654973
240 /* used by file system utilities that
241 look at the superblock, etc. */
242#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
243#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
244#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
245
246int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
247int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
248int is_reiserfs_jr (struct reiserfs_super_block * rs);
249
250/* ReiserFS leaves the first 64k unused, so that partition labels have
251 enough space. If someone wants to write a fancy bootloader that
252 needs more than 64k, let us know, and this will be increased in size.
253 This number must be larger than than the largest block size on any
254 platform, or code will break. -Hans */
255#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
256#define REISERFS_FIRST_BLOCK unused_define
257#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
258
259/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
260#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
261
262// reiserfs internal error code (used by search_by_key adn fix_nodes))
263#define CARRY_ON 0
264#define REPEAT_SEARCH -1
265#define IO_ERROR -2
266#define NO_DISK_SPACE -3
267#define NO_BALANCING_NEEDED (-4)
268#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
269#define QUOTA_EXCEEDED -6
270
271typedef __u32 b_blocknr_t;
272typedef __u32 unp_t;
273
274struct unfm_nodeinfo {
275 unp_t unfm_nodenum;
276 unsigned short unfm_freespace;
277};
278
279/* there are two formats of keys: 3.5 and 3.6
280 */
281#define KEY_FORMAT_3_5 0
282#define KEY_FORMAT_3_6 1
283
284/* there are two stat datas */
285#define STAT_DATA_V1 0
286#define STAT_DATA_V2 1
287
288
289static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
290{
291 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
292}
293
294static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
295{
296 return sb->s_fs_info;
297}
298
299/** this says about version of key of all items (but stat data) the
300 object consists of */
301#define get_inode_item_key_version( inode ) \
302 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
303
304#define set_inode_item_key_version( inode, version ) \
305 ({ if((version)==KEY_FORMAT_3_6) \
306 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
307 else \
308 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
309
310#define get_inode_sd_version(inode) \
311 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
312
313#define set_inode_sd_version(inode, version) \
314 ({ if((version)==STAT_DATA_V2) \
315 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
316 else \
317 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
318
319/* This is an aggressive tail suppression policy, I am hoping it
320 improves our benchmarks. The principle behind it is that percentage
321 space saving is what matters, not absolute space saving. This is
322 non-intuitive, but it helps to understand it if you consider that the
323 cost to access 4 blocks is not much more than the cost to access 1
324 block, if you have to do a seek and rotate. A tail risks a
325 non-linear disk access that is significant as a percentage of total
326 time cost for a 4 block file and saves an amount of space that is
327 less significant as a percentage of space, or so goes the hypothesis.
328 -Hans */
329#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
330(\
331 (!(n_tail_size)) || \
332 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
333 ( (n_file_size) >= (n_block_size) * 4 ) || \
334 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
335 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
336 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
337 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
338 ( ( (n_file_size) >= (n_block_size) ) && \
339 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
340)
341
342/* Another strategy for tails, this one means only create a tail if all the
343 file would fit into one DIRECT item.
344 Primary intention for this one is to increase performance by decreasing
345 seeking.
346*/
347#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
348(\
349 (!(n_tail_size)) || \
350 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
351)
352
353
354
355/*
356 * values for s_umount_state field
357 */
358#define REISERFS_VALID_FS 1
359#define REISERFS_ERROR_FS 2
360
361//
362// there are 5 item types currently
363//
364#define TYPE_STAT_DATA 0
365#define TYPE_INDIRECT 1
366#define TYPE_DIRECT 2
367#define TYPE_DIRENTRY 3
368#define TYPE_MAXTYPE 3
369#define TYPE_ANY 15 // FIXME: comment is required
370
371/***************************************************************************/
372/* KEY & ITEM HEAD */
373/***************************************************************************/
374
375//
376// directories use this key as well as old files
377//
378struct offset_v1 {
379 __u32 k_offset;
380 __u32 k_uniqueness;
381} __attribute__ ((__packed__));
382
383struct offset_v2 {
384#ifdef __LITTLE_ENDIAN
385 /* little endian version */
386 __u64 k_offset:60;
387 __u64 k_type: 4;
388#else
389 /* big endian version */
390 __u64 k_type: 4;
391 __u64 k_offset:60;
392#endif
393} __attribute__ ((__packed__));
394
395#ifndef __LITTLE_ENDIAN
396typedef union {
397 struct offset_v2 offset_v2;
398 __u64 linear;
399} __attribute__ ((__packed__)) offset_v2_esafe_overlay;
400
401static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
402{
403 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
404 tmp.linear = le64_to_cpu( tmp.linear );
405 return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
406}
407
408static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
409{
410 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
411 tmp->linear = le64_to_cpu(tmp->linear);
412 tmp->offset_v2.k_type = type;
413 tmp->linear = cpu_to_le64(tmp->linear);
414}
415
416static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
417{
418 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
419 tmp.linear = le64_to_cpu( tmp.linear );
420 return tmp.offset_v2.k_offset;
421}
422
423static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
424 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
425 tmp->linear = le64_to_cpu(tmp->linear);
426 tmp->offset_v2.k_offset = offset;
427 tmp->linear = cpu_to_le64(tmp->linear);
428}
429#else
430# define offset_v2_k_type(v2) ((v2)->k_type)
431# define set_offset_v2_k_type(v2,val) (offset_v2_k_type(v2) = (val))
432# define offset_v2_k_offset(v2) ((v2)->k_offset)
433# define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
434#endif
435
436/* Key of an item determines its location in the S+tree, and
437 is composed of 4 components */
438struct reiserfs_key {
439 __u32 k_dir_id; /* packing locality: by default parent
440 directory object id */
441 __u32 k_objectid; /* object identifier */
442 union {
443 struct offset_v1 k_offset_v1;
444 struct offset_v2 k_offset_v2;
445 } __attribute__ ((__packed__)) u;
446} __attribute__ ((__packed__));
447
448
449struct cpu_key {
450 struct reiserfs_key on_disk_key;
451 int version;
452 int key_length; /* 3 in all cases but direct2indirect and
453 indirect2direct conversion */
454};
455
456/* Our function for comparing keys can compare keys of different
457 lengths. It takes as a parameter the length of the keys it is to
458 compare. These defines are used in determining what is to be passed
459 to it as that parameter. */
460#define REISERFS_FULL_KEY_LEN 4
461#define REISERFS_SHORT_KEY_LEN 2
462
463/* The result of the key compare */
464#define FIRST_GREATER 1
465#define SECOND_GREATER -1
466#define KEYS_IDENTICAL 0
467#define KEY_FOUND 1
468#define KEY_NOT_FOUND 0
469
470#define KEY_SIZE (sizeof(struct reiserfs_key))
471#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
472
473/* return values for search_by_key and clones */
474#define ITEM_FOUND 1
475#define ITEM_NOT_FOUND 0
476#define ENTRY_FOUND 1
477#define ENTRY_NOT_FOUND 0
478#define DIRECTORY_NOT_FOUND -1
479#define REGULAR_FILE_FOUND -2
480#define DIRECTORY_FOUND -3
481#define BYTE_FOUND 1
482#define BYTE_NOT_FOUND 0
483#define FILE_NOT_FOUND -1
484
485#define POSITION_FOUND 1
486#define POSITION_NOT_FOUND 0
487
488// return values for reiserfs_find_entry and search_by_entry_key
489#define NAME_FOUND 1
490#define NAME_NOT_FOUND 0
491#define GOTO_PREVIOUS_ITEM 2
492#define NAME_FOUND_INVISIBLE 3
493
494/* Everything in the filesystem is stored as a set of items. The
495 item head contains the key of the item, its free space (for
496 indirect items) and specifies the location of the item itself
497 within the block. */
498
499struct item_head
500{
501 /* Everything in the tree is found by searching for it based on
502 * its key.*/
503 struct reiserfs_key ih_key;
504 union {
505 /* The free space in the last unformatted node of an
506 indirect item if this is an indirect item. This
507 equals 0xFFFF iff this is a direct item or stat data
508 item. Note that the key, not this field, is used to
509 determine the item type, and thus which field this
510 union contains. */
511 __u16 ih_free_space_reserved;
512 /* Iff this is a directory item, this field equals the
513 number of directory entries in the directory item. */
514 __u16 ih_entry_count;
515 } __attribute__ ((__packed__)) u;
516 __u16 ih_item_len; /* total size of the item body */
517 __u16 ih_item_location; /* an offset to the item body
518 * within the block */
519 __u16 ih_version; /* 0 for all old items, 2 for new
520 ones. Highest bit is set by fsck
521 temporary, cleaned after all
522 done */
523} __attribute__ ((__packed__));
524/* size of item header */
525#define IH_SIZE (sizeof(struct item_head))
526
527#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
528#define ih_version(ih) le16_to_cpu((ih)->ih_version)
529#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
530#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
531#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
532
533#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
534#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
535#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
536#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
537#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
538
539
540#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
541
542#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
543#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
544
545/* these operate on indirect items, where you've got an array of ints
546** at a possibly unaligned location. These are a noop on ia32
547**
548** p is the array of __u32, i is the index into the array, v is the value
549** to store there.
550*/
551#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
552#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
553
554//
555// in old version uniqueness field shows key type
556//
557#define V1_SD_UNIQUENESS 0
558#define V1_INDIRECT_UNIQUENESS 0xfffffffe
559#define V1_DIRECT_UNIQUENESS 0xffffffff
560#define V1_DIRENTRY_UNIQUENESS 500
561#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
562
563//
564// here are conversion routines
565//
566static inline int uniqueness2type (__u32 uniqueness) CONSTF;
567static inline int uniqueness2type (__u32 uniqueness)
568{
569 switch ((int)uniqueness) {
570 case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
571 case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
572 case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
573 case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
574 default:
575 reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
576 uniqueness);
577 case V1_ANY_UNIQUENESS:
578 return TYPE_ANY;
579 }
580}
581
582static inline __u32 type2uniqueness (int type) CONSTF;
583static inline __u32 type2uniqueness (int type)
584{
585 switch (type) {
586 case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
587 case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
588 case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
589 case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
590 default:
591 reiserfs_warning (NULL, "vs-501: unknown type %d", type);
592 case TYPE_ANY:
593 return V1_ANY_UNIQUENESS;
594 }
595}
596
597//
598// key is pointer to on disk key which is stored in le, result is cpu,
599// there is no way to get version of object from key, so, provide
600// version to these defines
601//
602static inline loff_t le_key_k_offset (int version, const struct reiserfs_key * key)
603{
604 return (version == KEY_FORMAT_3_5) ?
605 le32_to_cpu( key->u.k_offset_v1.k_offset ) :
606 offset_v2_k_offset( &(key->u.k_offset_v2) );
607}
608
609static inline loff_t le_ih_k_offset (const struct item_head * ih)
610{
611 return le_key_k_offset (ih_version (ih), &(ih->ih_key));
612}
613
614static inline loff_t le_key_k_type (int version, const struct reiserfs_key * key)
615{
616 return (version == KEY_FORMAT_3_5) ?
617 uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
618 offset_v2_k_type( &(key->u.k_offset_v2) );
619}
620
621static inline loff_t le_ih_k_type (const struct item_head * ih)
622{
623 return le_key_k_type (ih_version (ih), &(ih->ih_key));
624}
625
626
627static inline void set_le_key_k_offset (int version, struct reiserfs_key * key, loff_t offset)
628{
629 (version == KEY_FORMAT_3_5) ?
630 (void)(key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
631 (void)(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
632}
633
634
635static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
636{
637 set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
638}
639
640
641static inline void set_le_key_k_type (int version, struct reiserfs_key * key, int type)
642{
643 (version == KEY_FORMAT_3_5) ?
644 (void)(key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
645 (void)(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
646}
647static inline void set_le_ih_k_type (struct item_head * ih, int type)
648{
649 set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
650}
651
652
653#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
654#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
655#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
656#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
657
658//
659// item header has version.
660//
661#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
662#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
663#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
664#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
665
666
667
668//
669// key is pointer to cpu key, result is cpu
670//
671static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
672{
673 return (key->version == KEY_FORMAT_3_5) ?
674 key->on_disk_key.u.k_offset_v1.k_offset :
675 key->on_disk_key.u.k_offset_v2.k_offset;
676}
677
678static inline loff_t cpu_key_k_type (const struct cpu_key * key)
679{
680 return (key->version == KEY_FORMAT_3_5) ?
681 uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
682 key->on_disk_key.u.k_offset_v2.k_type;
683}
684
685static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
686{
687 (key->version == KEY_FORMAT_3_5) ?
688 (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
689 (key->on_disk_key.u.k_offset_v2.k_offset = offset);
690}
691
692
693static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
694{
695 (key->version == KEY_FORMAT_3_5) ?
696 (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
697 (key->on_disk_key.u.k_offset_v2.k_type = type);
698}
699
700
701static inline void cpu_key_k_offset_dec (struct cpu_key * key)
702{
703 if (key->version == KEY_FORMAT_3_5)
704 key->on_disk_key.u.k_offset_v1.k_offset --;
705 else
706 key->on_disk_key.u.k_offset_v2.k_offset --;
707}
708
709
710#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
711#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
712#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
713#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
714
715
716/* are these used ? */
717#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
718#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
719#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
720#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
721
722
723
724
725
726#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
727 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
728 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
729
730/* maximal length of item */
731#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
732#define MIN_ITEM_LEN 1
733
734
735/* object identifier for root dir */
736#define REISERFS_ROOT_OBJECTID 2
737#define REISERFS_ROOT_PARENT_OBJECTID 1
738extern struct reiserfs_key root_key;
739
740
741
742
743/*
744 * Picture represents a leaf of the S+tree
745 * ______________________________________________________
746 * | | Array of | | |
747 * |Block | Object-Item | F r e e | Objects- |
748 * | head | Headers | S p a c e | Items |
749 * |______|_______________|___________________|___________|
750 */
751
752/* Header of a disk block. More precisely, header of a formatted leaf
753 or internal node, and not the header of an unformatted node. */
754struct block_head {
755 __u16 blk_level; /* Level of a block in the tree. */
756 __u16 blk_nr_item; /* Number of keys/items in a block. */
757 __u16 blk_free_space; /* Block free space in bytes. */
758 __u16 blk_reserved;
759 /* dump this in v4/planA */
760 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
761};
762
763#define BLKH_SIZE (sizeof(struct block_head))
764#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
765#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
766#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
767#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
768#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
769#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
770#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
771#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
772#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
773#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
774
775/*
776 * values for blk_level field of the struct block_head
777 */
778
779#define FREE_LEVEL 0 /* when node gets removed from the tree its
780 blk_level is set to FREE_LEVEL. It is then
781 used to see whether the node is still in the
782 tree */
783
784#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level.*/
785
786/* Given the buffer head of a formatted node, resolve to the block head of that node. */
787#define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
788/* Number of items that are in buffer. */
789#define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
790#define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
791#define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
792
793#define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
794#define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
795#define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
796
797
798/* Get right delimiting key. -- little endian */
799#define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
800
801/* Does the buffer contain a disk leaf. */
802#define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
803
804/* Does the buffer contain a disk internal node */
805#define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
806 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
807
808
809
810
811/***************************************************************************/
812/* STAT DATA */
813/***************************************************************************/
814
815
816//
817// old stat data is 32 bytes long. We are going to distinguish new one by
818// different size
819//
820struct stat_data_v1
821{
822 __u16 sd_mode; /* file type, permissions */
823 __u16 sd_nlink; /* number of hard links */
824 __u16 sd_uid; /* owner */
825 __u16 sd_gid; /* group */
826 __u32 sd_size; /* file size */
827 __u32 sd_atime; /* time of last access */
828 __u32 sd_mtime; /* time file was last modified */
829 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
830 union {
831 __u32 sd_rdev;
832 __u32 sd_blocks; /* number of blocks file uses */
833 } __attribute__ ((__packed__)) u;
834 __u32 sd_first_direct_byte; /* first byte of file which is stored
835 in a direct item: except that if it
836 equals 1 it is a symlink and if it
837 equals ~(__u32)0 there is no
838 direct item. The existence of this
839 field really grates on me. Let's
840 replace it with a macro based on
841 sd_size and our tail suppression
842 policy. Someday. -Hans */
843} __attribute__ ((__packed__));
844
845#define SD_V1_SIZE (sizeof(struct stat_data_v1))
846#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
847#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
848#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
849#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
850#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
851#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
852#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
853#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
854#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
855#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
856#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
857#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
858#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
859#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
860#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
861#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
862#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
863#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
864#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
865#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
866#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
867#define sd_v1_first_direct_byte(sdp) \
868 (le32_to_cpu((sdp)->sd_first_direct_byte))
869#define set_sd_v1_first_direct_byte(sdp,v) \
870 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
871
872#include <linux/ext2_fs.h>
873
874/* inode flags stored in sd_attrs (nee sd_reserved) */
875
876/* we want common flags to have the same values as in ext2,
877 so chattr(1) will work without problems */
878#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
879#define REISERFS_APPEND_FL EXT2_APPEND_FL
880#define REISERFS_SYNC_FL EXT2_SYNC_FL
881#define REISERFS_NOATIME_FL EXT2_NOATIME_FL
882#define REISERFS_NODUMP_FL EXT2_NODUMP_FL
883#define REISERFS_SECRM_FL EXT2_SECRM_FL
884#define REISERFS_UNRM_FL EXT2_UNRM_FL
885#define REISERFS_COMPR_FL EXT2_COMPR_FL
886#define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL
887
888/* persistent flags that file inherits from the parent directory */
889#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
890 REISERFS_SYNC_FL | \
891 REISERFS_NOATIME_FL | \
892 REISERFS_NODUMP_FL | \
893 REISERFS_SECRM_FL | \
894 REISERFS_COMPR_FL | \
895 REISERFS_NOTAIL_FL )
896
897/* Stat Data on disk (reiserfs version of UFS disk inode minus the
898 address blocks) */
899struct stat_data {
900 __u16 sd_mode; /* file type, permissions */
901 __u16 sd_attrs; /* persistent inode flags */
902 __u32 sd_nlink; /* number of hard links */
903 __u64 sd_size; /* file size */
904 __u32 sd_uid; /* owner */
905 __u32 sd_gid; /* group */
906 __u32 sd_atime; /* time of last access */
907 __u32 sd_mtime; /* time file was last modified */
908 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
909 __u32 sd_blocks;
910 union {
911 __u32 sd_rdev;
912 __u32 sd_generation;
913 //__u32 sd_first_direct_byte;
914 /* first byte of file which is stored in a
915 direct item: except that if it equals 1
916 it is a symlink and if it equals
917 ~(__u32)0 there is no direct item. The
918 existence of this field really grates
919 on me. Let's replace it with a macro
920 based on sd_size and our tail
921 suppression policy? */
922 } __attribute__ ((__packed__)) u;
923} __attribute__ ((__packed__));
924//
925// this is 44 bytes long
926//
927#define SD_SIZE (sizeof(struct stat_data))
928#define SD_V2_SIZE SD_SIZE
929#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
930#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
931#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
932/* sd_reserved */
933/* set_sd_reserved */
934#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
935#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
936#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
937#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
938#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
939#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
940#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
941#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
942#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
943#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
944#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
945#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
946#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
947#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
948#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
949#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
950#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
951#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
952#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
953#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
954#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
955#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
956
957
958/***************************************************************************/
959/* DIRECTORY STRUCTURE */
960/***************************************************************************/
961/*
962 Picture represents the structure of directory items
963 ________________________________________________
964 | Array of | | | | | |
965 | directory |N-1| N-2 | .... | 1st |0th|
966 | entry headers | | | | | |
967 |_______________|___|_____|________|_______|___|
968 <---- directory entries ------>
969
970 First directory item has k_offset component 1. We store "." and ".."
971 in one item, always, we never split "." and ".." into differing
972 items. This makes, among other things, the code for removing
973 directories simpler. */
974#define SD_OFFSET 0
975#define SD_UNIQUENESS 0
976#define DOT_OFFSET 1
977#define DOT_DOT_OFFSET 2
978#define DIRENTRY_UNIQUENESS 500
979
980/* */
981#define FIRST_ITEM_OFFSET 1
982
983/*
984 Q: How to get key of object pointed to by entry from entry?
985
986 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
987 of object, entry points to */
988
989/* NOT IMPLEMENTED:
990 Directory will someday contain stat data of object */
991
992
993
994struct reiserfs_de_head
995{
996 __u32 deh_offset; /* third component of the directory entry key */
997 __u32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
998 by directory entry */
999 __u32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1000 __u16 deh_location; /* offset of name in the whole item */
1001 __u16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1002 entry is hidden (unlinked) */
1003} __attribute__ ((__packed__));
1004#define DEH_SIZE sizeof(struct reiserfs_de_head)
1005#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1006#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1007#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1008#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1009#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1010
1011#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1012#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1013#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1014#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1015#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1016
1017/* empty directory contains two entries "." and ".." and their headers */
1018#define EMPTY_DIR_SIZE \
1019(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1020
1021/* old format directories have this size when empty */
1022#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1023
1024#define DEH_Statdata 0 /* not used now */
1025#define DEH_Visible 2
1026
1027/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1028#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1029# define ADDR_UNALIGNED_BITS (3)
1030#endif
1031
1032/* These are only used to manipulate deh_state.
1033 * Because of this, we'll use the ext2_ bit routines,
1034 * since they are little endian */
1035#ifdef ADDR_UNALIGNED_BITS
1036
1037# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1038# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1039
1040# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1041# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1042# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1043
1044#else
1045
1046# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1047# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1048# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1049
1050#endif
1051
1052#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1053#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1054#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1055#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1056
1057#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1058#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1059#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1060
1061extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1062 __u32 par_dirid, __u32 par_objid);
1063extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1064 __u32 par_dirid, __u32 par_objid);
1065
1066/* array of the entry headers */
1067 /* get item body */
1068#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1069#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1070
1071/* length of the directory entry in directory item. This define
1072 calculates length of i-th directory entry using directory entry
1073 locations from dir entry head. When it calculates length of 0-th
1074 directory entry, it uses length of whole item in place of entry
1075 location of the non-existent following entry in the calculation.
1076 See picture above.*/
1077/*
1078#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1079((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1080*/
1081static inline int entry_length (const struct buffer_head * bh,
1082 const struct item_head * ih, int pos_in_item)
1083{
1084 struct reiserfs_de_head * deh;
1085
1086 deh = B_I_DEH (bh, ih) + pos_in_item;
1087 if (pos_in_item)
1088 return deh_location(deh-1) - deh_location(deh);
1089
1090 return ih_item_len(ih) - deh_location(deh);
1091}
1092
1093
1094
1095/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1096#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1097
1098
1099/* name by bh, ih and entry_num */
1100#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1101
1102// two entries per block (at least)
1103#define REISERFS_MAX_NAME(block_size) 255
1104
1105
1106/* this structure is used for operations on directory entries. It is
1107 not a disk structure. */
1108/* When reiserfs_find_entry or search_by_entry_key find directory
1109 entry, they return filled reiserfs_dir_entry structure */
1110struct reiserfs_dir_entry
1111{
1112 struct buffer_head * de_bh;
1113 int de_item_num;
1114 struct item_head * de_ih;
1115 int de_entry_num;
1116 struct reiserfs_de_head * de_deh;
1117 int de_entrylen;
1118 int de_namelen;
1119 char * de_name;
1120 char * de_gen_number_bit_string;
1121
1122 __u32 de_dir_id;
1123 __u32 de_objectid;
1124
1125 struct cpu_key de_entry_key;
1126};
1127
1128/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1129
1130/* pointer to file name, stored in entry */
1131#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1132
1133/* length of name */
1134#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1135(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1136
1137
1138
1139/* hash value occupies bits from 7 up to 30 */
1140#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1141/* generation number occupies 7 bits starting from 0 up to 6 */
1142#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1143#define MAX_GENERATION_NUMBER 127
1144
1145#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1146
1147
1148/*
1149 * Picture represents an internal node of the reiserfs tree
1150 * ______________________________________________________
1151 * | | Array of | Array of | Free |
1152 * |block | keys | pointers | space |
1153 * | head | N | N+1 | |
1154 * |______|_______________|___________________|___________|
1155 */
1156
1157/***************************************************************************/
1158/* DISK CHILD */
1159/***************************************************************************/
1160/* Disk child pointer: The pointer from an internal node of the tree
1161 to a node that is on disk. */
1162struct disk_child {
1163 __u32 dc_block_number; /* Disk child's block number. */
1164 __u16 dc_size; /* Disk child's used space. */
1165 __u16 dc_reserved;
1166};
1167
1168#define DC_SIZE (sizeof(struct disk_child))
1169#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1170#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1171#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1172#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1173
1174/* Get disk child by buffer header and position in the tree node. */
1175#define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1176((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1177
1178/* Get disk child number by buffer header and position in the tree node. */
1179#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1180#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1181
1182 /* maximal value of field child_size in structure disk_child */
1183 /* child size is the combined size of all items and their headers */
1184#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1185
1186/* amount of used space in buffer (not including block head) */
1187#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1188
1189/* max and min number of keys in internal node */
1190#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1191#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1192
1193/***************************************************************************/
1194/* PATH STRUCTURES AND DEFINES */
1195/***************************************************************************/
1196
1197
1198/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1199 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1200 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1201 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1202 position of the block_number of the next node if it is looking through an internal node. If it
1203 is looking through a leaf node bin_search will find the position of the item which has key either
1204 equal to given key, or which is the maximal key less than the given key. */
1205
1206struct path_element {
1207 struct buffer_head * pe_buffer; /* Pointer to the buffer at the path in the tree. */
1208 int pe_position; /* Position in the tree node which is placed in the */
1209 /* buffer above. */
1210};
1211
1212#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1213#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1214#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1215
1216#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1217#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1218
1219
1220
1221/* We need to keep track of who the ancestors of nodes are. When we
1222 perform a search we record which nodes were visited while
1223 descending the tree looking for the node we searched for. This list
1224 of nodes is called the path. This information is used while
1225 performing balancing. Note that this path information may become
1226 invalid, and this means we must check it when using it to see if it
1227 is still valid. You'll need to read search_by_key and the comments
1228 in it, especially about decrement_counters_in_path(), to understand
1229 this structure.
1230
1231Paths make the code so much harder to work with and debug.... An
1232enormous number of bugs are due to them, and trying to write or modify
1233code that uses them just makes my head hurt. They are based on an
1234excessive effort to avoid disturbing the precious VFS code.:-( The
1235gods only know how we are going to SMP the code that uses them.
1236znodes are the way! */
1237
1238#define PATH_READA 0x1 /* do read ahead */
1239#define PATH_READA_BACK 0x2 /* read backwards */
1240
1241struct path {
1242 int path_length; /* Length of the array above. */
1243 int reada;
1244 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1245 int pos_in_item;
1246};
1247
1248#define pos_in_item(path) ((path)->pos_in_item)
1249
1250#define INITIALIZE_PATH(var) \
1251struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1252
1253/* Get path element by path and path position. */
1254#define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1255
1256/* Get buffer header at the path by path and path position. */
1257#define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1258
1259/* Get position in the element at the path by path and path position. */
1260#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1261
1262
1263#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1264 /* you know, to the person who didn't
1265 write this the macro name does not
1266 at first suggest what it does.
1267 Maybe POSITION_FROM_PATH_END? Or
1268 maybe we should just focus on
1269 dumping paths... -Hans */
1270#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1271
1272
1273#define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1274
1275/* in do_balance leaf has h == 0 in contrast with path structure,
1276 where root has level == 0. That is why we need these defines */
1277#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1278#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1279#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1280#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1281
1282#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1283
1284#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1285#define get_ih(path) PATH_PITEM_HEAD(path)
1286#define get_item_pos(path) PATH_LAST_POSITION(path)
1287#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1288#define item_moved(ih,path) comp_items(ih, path)
1289#define path_changed(ih,path) comp_items (ih, path)
1290
1291
1292/***************************************************************************/
1293/* MISC */
1294/***************************************************************************/
1295
1296/* Size of pointer to the unformatted node. */
1297#define UNFM_P_SIZE (sizeof(unp_t))
1298#define UNFM_P_SHIFT 2
1299
1300// in in-core inode key is stored on le form
1301#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1302
1303#define MAX_UL_INT 0xffffffff
1304#define MAX_INT 0x7ffffff
1305#define MAX_US_INT 0xffff
1306
1307// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1308#define U32_MAX (~(__u32)0)
1309
1310static inline loff_t max_reiserfs_offset (struct inode * inode)
1311{
1312 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1313 return (loff_t)U32_MAX;
1314
1315 return (loff_t)((~(__u64)0) >> 4);
1316}
1317
1318
1319/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1320#define MAX_KEY_OBJECTID MAX_UL_INT
1321
1322
1323#define MAX_B_NUM MAX_UL_INT
1324#define MAX_FC_NUM MAX_US_INT
1325
1326
1327/* the purpose is to detect overflow of an unsigned short */
1328#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1329
1330
1331/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1332#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1333#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1334
1335#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1336#define get_generation(s) atomic_read (&fs_generation(s))
1337#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1338#define __fs_changed(gen,s) (gen != get_generation (s))
1339#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1340
1341
1342/***************************************************************************/
1343/* FIXATE NODES */
1344/***************************************************************************/
1345
1346#define VI_TYPE_LEFT_MERGEABLE 1
1347#define VI_TYPE_RIGHT_MERGEABLE 2
1348
1349/* To make any changes in the tree we always first find node, that
1350 contains item to be changed/deleted or place to insert a new
1351 item. We call this node S. To do balancing we need to decide what
1352 we will shift to left/right neighbor, or to a new node, where new
1353 item will be etc. To make this analysis simpler we build virtual
1354 node. Virtual node is an array of items, that will replace items of
1355 node S. (For instance if we are going to delete an item, virtual
1356 node does not contain it). Virtual node keeps information about
1357 item sizes and types, mergeability of first and last items, sizes
1358 of all entries in directory item. We use this array of items when
1359 calculating what we can shift to neighbors and how many nodes we
1360 have to have if we do not any shiftings, if we shift to left/right
1361 neighbor or to both. */
1362struct virtual_item
1363{
1364 int vi_index; // index in the array of item operations
1365 unsigned short vi_type; // left/right mergeability
1366 unsigned short vi_item_len; /* length of item that it will have after balancing */
1367 struct item_head * vi_ih;
1368 const char * vi_item; // body of item (old or new)
1369 const void * vi_new_data; // 0 always but paste mode
1370 void * vi_uarea; // item specific area
1371};
1372
1373
1374struct virtual_node
1375{
1376 char * vn_free_ptr; /* this is a pointer to the free space in the buffer */
1377 unsigned short vn_nr_item; /* number of items in virtual node */
1378 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1379 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1380 short vn_affected_item_num;
1381 short vn_pos_in_item;
1382 struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1383 const void * vn_data;
1384 struct virtual_item * vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1385};
1386
1387/* used by directory items when creating virtual nodes */
1388struct direntry_uarea {
1389 int flags;
1390 __u16 entry_count;
1391 __u16 entry_sizes[1];
1392} __attribute__ ((__packed__)) ;
1393
1394
1395/***************************************************************************/
1396/* TREE BALANCE */
1397/***************************************************************************/
1398
1399/* This temporary structure is used in tree balance algorithms, and
1400 constructed as we go to the extent that its various parts are
1401 needed. It contains arrays of nodes that can potentially be
1402 involved in the balancing of node S, and parameters that define how
1403 each of the nodes must be balanced. Note that in these algorithms
1404 for balancing the worst case is to need to balance the current node
1405 S and the left and right neighbors and all of their parents plus
1406 create a new node. We implement S1 balancing for the leaf nodes
1407 and S0 balancing for the internal nodes (S1 and S0 are defined in
1408 our papers.)*/
1409
1410#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1411
1412/* maximum number of FEB blocknrs on a single level */
1413#define MAX_AMOUNT_NEEDED 2
1414
1415/* someday somebody will prefix every field in this struct with tb_ */
1416struct tree_balance
1417{
1418 int tb_mode;
1419 int need_balance_dirty;
1420 struct super_block * tb_sb;
1421 struct reiserfs_transaction_handle *transaction_handle ;
1422 struct path * tb_path;
1423 struct buffer_head * L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1424 struct buffer_head * R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path*/
1425 struct buffer_head * FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1426 struct buffer_head * FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1427 struct buffer_head * CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1428 struct buffer_head * CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1429
1430 struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1431 cur_blknum. */
1432 struct buffer_head * used[MAX_FEB_SIZE];
1433 struct buffer_head * thrown[MAX_FEB_SIZE];
1434 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1435 shifted to the left in order to balance the
1436 current node; for leaves includes item that
1437 will be partially shifted; for internal
1438 nodes, it is the number of child pointers
1439 rather than items. It includes the new item
1440 being created. The code sometimes subtracts
1441 one to get the number of wholly shifted
1442 items for other purposes. */
1443 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1444 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1445 S[h] to its item number within the node CFL[h] */
1446 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1447 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1448 S[h]. A negative value means removing. */
1449 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1450 balancing on the level h of the tree. If 0 then S is
1451 being deleted, if 1 then S is remaining and no new nodes
1452 are being created, if 2 or 3 then 1 or 2 new nodes is
1453 being created */
1454
1455 /* fields that are used only for balancing leaves of the tree */
1456 int cur_blknum; /* number of empty blocks having been already allocated */
1457 int s0num; /* number of items that fall into left most node when S[0] splits */
1458 int s1num; /* number of items that fall into first new node when S[0] splits */
1459 int s2num; /* number of items that fall into second new node when S[0] splits */
1460 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1461 /* most liquid item that cannot be shifted from S[0] entirely */
1462 /* if -1 then nothing will be partially shifted */
1463 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1464 /* most liquid item that cannot be shifted from S[0] entirely */
1465 /* if -1 then nothing will be partially shifted */
1466 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1467 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1468 int s2bytes;
1469 struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1470 char * vn_buf; /* kmalloced memory. Used to create
1471 virtual node and keep map of
1472 dirtied bitmap blocks */
1473 int vn_buf_size; /* size of the vn_buf */
1474 struct virtual_node * tb_vn; /* VN starts after bitmap of bitmap blocks */
1475
1476 int fs_gen; /* saved value of `reiserfs_generation' counter
1477 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1478#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1479 struct reiserfs_key key; /* key pointer, to pass to block allocator or
1480 another low-level subsystem */
1481#endif
1482} ;
1483
1484/* These are modes of balancing */
1485
1486/* When inserting an item. */
1487#define M_INSERT 'i'
1488/* When inserting into (directories only) or appending onto an already
1489 existant item. */
1490#define M_PASTE 'p'
1491/* When deleting an item. */
1492#define M_DELETE 'd'
1493/* When truncating an item or removing an entry from a (directory) item. */
1494#define M_CUT 'c'
1495
1496/* used when balancing on leaf level skipped (in reiserfsck) */
1497#define M_INTERNAL 'n'
1498
1499/* When further balancing is not needed, then do_balance does not need
1500 to be called. */
1501#define M_SKIP_BALANCING 's'
1502#define M_CONVERT 'v'
1503
1504/* modes of leaf_move_items */
1505#define LEAF_FROM_S_TO_L 0
1506#define LEAF_FROM_S_TO_R 1
1507#define LEAF_FROM_R_TO_L 2
1508#define LEAF_FROM_L_TO_R 3
1509#define LEAF_FROM_S_TO_SNEW 4
1510
1511#define FIRST_TO_LAST 0
1512#define LAST_TO_FIRST 1
1513
1514/* used in do_balance for passing parent of node information that has
1515 been gotten from tb struct */
1516struct buffer_info {
1517 struct tree_balance * tb;
1518 struct buffer_head * bi_bh;
1519 struct buffer_head * bi_parent;
1520 int bi_position;
1521};
1522
1523
1524/* there are 4 types of items: stat data, directory item, indirect, direct.
1525+-------------------+------------+--------------+------------+
1526| | k_offset | k_uniqueness | mergeable? |
1527+-------------------+------------+--------------+------------+
1528| stat data | 0 | 0 | no |
1529+-------------------+------------+--------------+------------+
1530| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1531| non 1st directory | hash value | | yes |
1532| item | | | |
1533+-------------------+------------+--------------+------------+
1534| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1535+-------------------+------------+--------------+------------+
1536| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1537+-------------------+------------+--------------+------------+
1538*/
1539
1540struct item_operations {
1541 int (*bytes_number) (struct item_head * ih, int block_size);
1542 void (*decrement_key) (struct cpu_key *);
1543 int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize);
1544 void (*print_item) (struct item_head *, char * item);
1545 void (*check_item) (struct item_head *, char * item);
1546
1547 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1548 int is_affected, int insert_size);
1549 int (*check_left) (struct virtual_item * vi, int free,
1550 int start_skip, int end_skip);
1551 int (*check_right) (struct virtual_item * vi, int free);
1552 int (*part_size) (struct virtual_item * vi, int from, int to);
1553 int (*unit_num) (struct virtual_item * vi);
1554 void (*print_vi) (struct virtual_item * vi);
1555};
1556
1557
1558extern struct item_operations * item_ops [TYPE_ANY + 1];
1559
1560#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1561#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1562#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1563#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1564#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1565#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1566#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1567#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1568#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1569#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1570
1571
1572
1573#define COMP_SHORT_KEYS comp_short_keys
1574
1575/* number of blocks pointed to by the indirect item */
1576#define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1577
1578/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1579#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1580
1581/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1582
1583
1584/* get the item header */
1585#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1586
1587/* get key */
1588#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1589
1590/* get the key */
1591#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1592
1593/* get item body */
1594#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1595
1596/* get the stat data by the buffer header and the item order */
1597#define B_N_STAT_DATA(bh,nr) \
1598( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1599
1600 /* following defines use reiserfs buffer header and item header */
1601
1602/* get stat-data */
1603#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1604
1605// this is 3976 for size==4096
1606#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1607
1608/* indirect items consist of entries which contain blocknrs, pos
1609 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1610 blocknr contained by the entry pos points to */
1611#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1612#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1613
1614struct reiserfs_iget_args {
1615 __u32 objectid ;
1616 __u32 dirid ;
1617} ;
1618
1619/***************************************************************************/
1620/* FUNCTION DECLARATIONS */
1621/***************************************************************************/
1622
1623/*#ifdef __KERNEL__*/
1624#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1625
1626#define journal_trans_half(blocksize) \
1627 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1628
1629/* journal.c see journal.c for all the comments here */
1630
1631/* first block written in a commit. */
1632struct reiserfs_journal_desc {
1633 __u32 j_trans_id ; /* id of commit */
1634 __u32 j_len ; /* length of commit. len +1 is the commit block */
1635 __u32 j_mount_id ; /* mount id of this trans*/
1636 __u32 j_realblock[1] ; /* real locations for each block */
1637} ;
1638
1639#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1640#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1641#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1642
1643#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1644#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1645#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1646
1647/* last block written in a commit */
1648struct reiserfs_journal_commit {
1649 __u32 j_trans_id ; /* must match j_trans_id from the desc block */
1650 __u32 j_len ; /* ditto */
1651 __u32 j_realblock[1] ; /* real locations for each block */
1652} ;
1653
1654#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1655#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1656#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1657
1658#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1659#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1660
1661/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1662** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1663** and this transaction does not need to be replayed.
1664*/
1665struct reiserfs_journal_header {
1666 __u32 j_last_flush_trans_id ; /* id of last fully flushed transaction */
1667 __u32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */
1668 __u32 j_mount_id ;
1669 /* 12 */ struct journal_params jh_journal;
1670} ;
1671
1672/* biggest tunable defines are right here */
1673#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1674#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1675#define JOURNAL_TRANS_MIN_DEFAULT 256
1676#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1677#define JOURNAL_MIN_RATIO 2
1678#define JOURNAL_MAX_COMMIT_AGE 30
1679#define JOURNAL_MAX_TRANS_AGE 30
1680#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1681#ifdef CONFIG_QUOTA
1682#define REISERFS_QUOTA_TRANS_BLOCKS 2 /* We need to update data and inode (atime) */
1683#define REISERFS_QUOTA_INIT_BLOCKS (DQUOT_MAX_WRITES*(JOURNAL_PER_BALANCE_CNT+2)+1) /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1684#else
1685#define REISERFS_QUOTA_TRANS_BLOCKS 0
1686#define REISERFS_QUOTA_INIT_BLOCKS 0
1687#endif
1688
1689/* both of these can be as low as 1, or as high as you want. The min is the
1690** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1691** as needed, and released when transactions are committed. On release, if
1692** the current number of nodes is > max, the node is freed, otherwise,
1693** it is put on a free list for faster use later.
1694*/
1695#define REISERFS_MIN_BITMAP_NODES 10
1696#define REISERFS_MAX_BITMAP_NODES 100
1697
1698#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1699#define JBH_HASH_MASK 8191
1700
1701#define _jhashfn(sb,block) \
1702 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1703 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1704#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1705
1706// We need these to make journal.c code more readable
1707#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1708#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1709#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1710
1711enum reiserfs_bh_state_bits {
1712 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1713 BH_JDirty_wait,
1714 BH_JNew, /* disk block was taken off free list before
1715 * being in a finished transaction, or
1716 * written to disk. Can be reused immed. */
1717 BH_JPrepared,
1718 BH_JRestore_dirty,
1719 BH_JTest, // debugging only will go away
1720};
1721
1722BUFFER_FNS(JDirty, journaled);
1723TAS_BUFFER_FNS(JDirty, journaled);
1724BUFFER_FNS(JDirty_wait, journal_dirty);
1725TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1726BUFFER_FNS(JNew, journal_new);
1727TAS_BUFFER_FNS(JNew, journal_new);
1728BUFFER_FNS(JPrepared, journal_prepared);
1729TAS_BUFFER_FNS(JPrepared, journal_prepared);
1730BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1731TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1732BUFFER_FNS(JTest, journal_test);
1733TAS_BUFFER_FNS(JTest, journal_test);
1734
1735/*
1736** transaction handle which is passed around for all journal calls
1737*/
1738struct reiserfs_transaction_handle {
1739 struct super_block *t_super ; /* super for this FS when journal_begin was
1740 called. saves calls to reiserfs_get_super
1741 also used by nested transactions to make
1742 sure they are nesting on the right FS
1743 _must_ be first in the handle
1744 */
1745 int t_refcount;
1746 int t_blocks_logged ; /* number of blocks this writer has logged */
1747 int t_blocks_allocated ; /* number of blocks this writer allocated */
1748 unsigned long t_trans_id ; /* sanity check, equals the current trans id */
1749 void *t_handle_save ; /* save existing current->journal_info */
1750 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1751 should be displaced from others */
1752 struct list_head t_list;
1753} ;
1754
1755/* used to keep track of ordered and tail writes, attached to the buffer
1756 * head through b_journal_head.
1757 */
1758struct reiserfs_jh {
1759 struct reiserfs_journal_list *jl;
1760 struct buffer_head *bh;
1761 struct list_head list;
1762};
1763
1764void reiserfs_free_jh(struct buffer_head *bh);
1765int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1766int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1767int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1768
1769static inline int
1770reiserfs_file_data_log(struct inode *inode) {
1771 if (reiserfs_data_log(inode->i_sb) ||
1772 (REISERFS_I(inode)->i_flags & i_data_log))
1773 return 1 ;
1774 return 0 ;
1775}
1776
1777static inline int reiserfs_transaction_running(struct super_block *s) {
1778 struct reiserfs_transaction_handle *th = current->journal_info ;
1779 if (th && th->t_super == s)
1780 return 1 ;
1781 if (th && th->t_super == NULL)
1782 BUG();
1783 return 0 ;
1784}
1785
1786int reiserfs_async_progress_wait(struct super_block *s);
1787
1788struct reiserfs_transaction_handle *
1789reiserfs_persistent_transaction(struct super_block *, int count);
1790int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1791int reiserfs_commit_page(struct inode *inode, struct page *page,
1792 unsigned from, unsigned to);
1793int reiserfs_flush_old_commits(struct super_block *);
1794int reiserfs_commit_for_inode(struct inode *) ;
1795int reiserfs_inode_needs_commit(struct inode *) ;
1796void reiserfs_update_inode_transaction(struct inode *) ;
1797void reiserfs_wait_on_write_block(struct super_block *s) ;
1798void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1799void reiserfs_allow_writes(struct super_block *s) ;
1800void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
1801int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1802void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1803int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
1804int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1805int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1806int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1807int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1808int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1809int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1810int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1811int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1812int journal_join_abort(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1813void reiserfs_journal_abort (struct super_block *sb, int errno);
1814void reiserfs_abort (struct super_block *sb, int errno, const char *fmt, ...);
1815int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1816
1817void add_save_link (struct reiserfs_transaction_handle * th,
1818 struct inode * inode, int truncate);
1819int remove_save_link (struct inode * inode, int truncate);
1820
1821/* objectid.c */
1822__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1823void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1824int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1825
1826/* stree.c */
1827int B_IS_IN_TREE(const struct buffer_head *);
1828extern void copy_item_head(struct item_head * p_v_to,
1829 const struct item_head * p_v_from);
1830
1831// first key is in cpu form, second - le
1832extern int comp_short_keys (const struct reiserfs_key * le_key,
1833 const struct cpu_key * cpu_key);
1834extern void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from);
1835
1836// both are in le form
1837extern int comp_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
1838extern int comp_short_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
1839
1840//
1841// get key version from on disk key - kludge
1842//
1843static inline int le_key_version (const struct reiserfs_key * key)
1844{
1845 int type;
1846
1847 type = offset_v2_k_type( &(key->u.k_offset_v2));
1848 if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1849 return KEY_FORMAT_3_5;
1850
1851 return KEY_FORMAT_3_6;
1852
1853}
1854
1855
1856static inline void copy_key (struct reiserfs_key *to, const struct reiserfs_key *from)
1857{
1858 memcpy (to, from, KEY_SIZE);
1859}
1860
1861
1862int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1863const struct reiserfs_key * get_rkey (const struct path * p_s_chk_path,
1864 const struct super_block * p_s_sb);
1865int search_by_key (struct super_block *, const struct cpu_key *,
1866 struct path *, int);
1867#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1868int search_for_position_by_key (struct super_block * p_s_sb,
1869 const struct cpu_key * p_s_cpu_key,
1870 struct path * p_s_search_path);
1871extern void decrement_bcount (struct buffer_head * p_s_bh);
1872void decrement_counters_in_path (struct path * p_s_search_path);
1873void pathrelse (struct path * p_s_search_path);
1874int reiserfs_check_path(struct path *p) ;
1875void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1876
1877int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1878 struct path * path,
1879 const struct cpu_key * key,
1880 struct item_head * ih,
1881 struct inode *inode, const char * body);
1882
1883int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1884 struct path * path,
1885 const struct cpu_key * key,
1886 struct inode *inode,
1887 const char * body, int paste_size);
1888
1889int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1890 struct path * path,
1891 struct cpu_key * key,
1892 struct inode * inode,
1893 struct page *page,
1894 loff_t new_file_size);
1895
1896int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1897 struct path * path,
1898 const struct cpu_key * key,
1899 struct inode * inode,
1900 struct buffer_head * p_s_un_bh);
1901
1902void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1903 struct inode *inode, struct reiserfs_key * key);
1904int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1905int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1906 struct inode * p_s_inode, struct page *,
1907 int update_timestamps);
1908
1909#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1910#define file_size(inode) ((inode)->i_size)
1911#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1912
1913#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1914!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1915
1916void padd_item (char * item, int total_length, int length);
1917
1918/* inode.c */
1919/* args for the create parameter of reiserfs_get_block */
1920#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1921#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1922#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1923#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1924#define GET_BLOCK_NO_ISEM 8 /* i_sem is not held, don't preallocate */
1925#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1926
1927int restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1928void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1929int reiserfs_find_actor(struct inode * inode, void *p) ;
1930int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1931void reiserfs_delete_inode (struct inode * inode);
1932int reiserfs_write_inode (struct inode * inode, int) ;
1933int reiserfs_get_block (struct inode * inode, sector_t block, struct buffer_head * bh_result, int create);
1934struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1935struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1936 int len, int fhtype,
1937 int (*acceptable)(void *contect, struct dentry *de),
1938 void *context) ;
1939int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp,
1940 int connectable );
1941
1942int reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1943void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1944 int type, int key_length);
1945void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1946 int version,
1947 loff_t offset, int type, int length, int entry_count);
1948struct inode * reiserfs_iget (struct super_block * s,
1949 const struct cpu_key * key);
1950
1951
1952int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1953 struct inode * dir, int mode,
1954 const char * symname, loff_t i_size,
1955 struct dentry *dentry, struct inode *inode);
1956
1957void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1958 struct inode * inode, loff_t size);
1959
1960static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1961 struct inode *inode)
1962{
1963 reiserfs_update_sd_size(th, inode, inode->i_size) ;
1964}
1965
1966void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1967void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1968int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1969
1970/* namei.c */
1971void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1972int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1973 struct path * path,
1974 struct reiserfs_dir_entry * de);
1975struct dentry *reiserfs_get_parent(struct dentry *) ;
1976/* procfs.c */
1977
1978#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1979#define REISERFS_PROC_INFO
1980#else
1981#undef REISERFS_PROC_INFO
1982#endif
1983
1984int reiserfs_proc_info_init( struct super_block *sb );
1985int reiserfs_proc_info_done( struct super_block *sb );
1986struct proc_dir_entry *reiserfs_proc_register_global( char *name,
1987 read_proc_t *func );
1988void reiserfs_proc_unregister_global( const char *name );
1989int reiserfs_proc_info_global_init( void );
1990int reiserfs_proc_info_global_done( void );
1991int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1992 int count, int *eof, void *data );
1993
1994#if defined( REISERFS_PROC_INFO )
1995
1996#define PROC_EXP( e ) e
1997
1998#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1999#define PROC_INFO_MAX( sb, field, value ) \
2000 __PINFO( sb ).field = \
2001 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2002#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2003#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2004#define PROC_INFO_BH_STAT( sb, bh, level ) \
2005 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2006 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2007 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2008#else
2009#define PROC_EXP( e )
2010#define VOID_V ( ( void ) 0 )
2011#define PROC_INFO_MAX( sb, field, value ) VOID_V
2012#define PROC_INFO_INC( sb, field ) VOID_V
2013#define PROC_INFO_ADD( sb, field, val ) VOID_V
2014#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
2015#endif
2016
2017/* dir.c */
2018extern struct inode_operations reiserfs_dir_inode_operations;
2019extern struct inode_operations reiserfs_symlink_inode_operations;
2020extern struct inode_operations reiserfs_special_inode_operations;
2021extern struct file_operations reiserfs_dir_operations;
2022
2023/* tail_conversion.c */
2024int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
2025int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
2026void reiserfs_unmap_buffer(struct buffer_head *) ;
2027
2028
2029/* file.c */
2030extern struct inode_operations reiserfs_file_inode_operations;
2031extern struct file_operations reiserfs_file_operations;
2032extern struct address_space_operations reiserfs_address_space_operations ;
2033
2034/* fix_nodes.c */
2035#ifdef CONFIG_REISERFS_CHECK
2036void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
2037void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
2038#else
2039static inline void *reiserfs_kmalloc(size_t size, int flags,
2040 struct super_block *s)
2041{
2042 return kmalloc(size, flags);
2043}
2044
2045static inline void reiserfs_kfree(const void *vp, size_t size,
2046 struct super_block *s)
2047{
2048 kfree(vp);
2049}
2050#endif
2051
2052int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
2053 struct item_head * p_s_ins_ih, const void *);
2054void unfix_nodes (struct tree_balance *);
2055
2056
2057/* prints.c */
2058void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
2059void reiserfs_info (struct super_block *s, const char * fmt, ...);
2060void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2061void print_indirect_item (struct buffer_head * bh, int item_num);
2062void store_print_tb (struct tree_balance * tb);
2063void print_cur_tb (char * mes);
2064void print_de (struct reiserfs_dir_entry * de);
2065void print_bi (struct buffer_info * bi, char * mes);
2066#define PRINT_LEAF_ITEMS 1 /* print all items */
2067#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2068#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2069void print_block (struct buffer_head * bh, ...);
2070void print_bmap (struct super_block * s, int silent);
2071void print_bmap_block (int i, char * data, int size, int silent);
2072/*void print_super_block (struct super_block * s, char * mes);*/
2073void print_objectid_map (struct super_block * s);
2074void print_block_head (struct buffer_head * bh, char * mes);
2075void check_leaf (struct buffer_head * bh);
2076void check_internal (struct buffer_head * bh);
2077void print_statistics (struct super_block * s);
2078char * reiserfs_hashname(int code);
2079
2080/* lbalance.c */
2081int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2082int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2083int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2084void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2085void leaf_insert_into_buf (struct buffer_info * bi, int before,
2086 struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2087void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2088 int pos_in_item, int paste_size, const char * body, int zeros_number);
2089void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2090 int cut_size);
2091void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2092 int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2093/* ibalance.c */
2094int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2095 struct buffer_head **);
2096
2097/* do_balance.c */
2098void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2099 struct buffer_head * bh, int flag);
2100#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2101#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2102
2103void do_balance (struct tree_balance * tb, struct item_head * ih,
2104 const char * body, int flag);
2105void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2106
2107int get_left_neighbor_position (struct tree_balance * tb, int h);
2108int get_right_neighbor_position (struct tree_balance * tb, int h);
2109void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2110void make_empty_node (struct buffer_info *);
2111struct buffer_head * get_FEB (struct tree_balance *);
2112
2113/* bitmap.c */
2114
2115/* structure contains hints for block allocator, and it is a container for
2116 * arguments, such as node, search path, transaction_handle, etc. */
2117 struct __reiserfs_blocknr_hint {
2118 struct inode * inode; /* inode passed to allocator, if we allocate unf. nodes */
2119 long block; /* file offset, in blocks */
2120 struct reiserfs_key key;
2121 struct path * path; /* search path, used by allocator to deternine search_start by
2122 * various ways */
2123 struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2124 * bitmap blocks changes */
2125 b_blocknr_t beg, end;
2126 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2127 * between different block allocator procedures
2128 * (determine_search_start() and others) */
2129 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2130 * function that do actual allocation */
2131
2132 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2133 * formatted/unformatted blocks with/without preallocation */
2134 unsigned preallocate:1;
2135};
2136
2137typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2138
2139int reiserfs_parse_alloc_options (struct super_block *, char *);
2140void reiserfs_init_alloc_options (struct super_block *s);
2141
2142/*
2143 * given a directory, this will tell you what packing locality
2144 * to use for a new object underneat it. The locality is returned
2145 * in disk byte order (le).
2146 */
2147u32 reiserfs_choose_packing(struct inode *dir);
2148
2149int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2150void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
2151int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2152extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2153 b_blocknr_t *new_blocknrs, int amount_needed)
2154{
2155 reiserfs_blocknr_hint_t hint = {
2156 .th = tb->transaction_handle,
2157 .path = tb->tb_path,
2158 .inode = NULL,
2159 .key = tb->key,
2160 .block = 0,
2161 .formatted_node = 1
2162 };
2163 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2164}
2165
2166extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2167 struct inode *inode,
2168 b_blocknr_t *new_blocknrs,
2169 struct path * path, long block)
2170{
2171 reiserfs_blocknr_hint_t hint = {
2172 .th = th,
2173 .path = path,
2174 .inode = inode,
2175 .block = block,
2176 .formatted_node = 0,
2177 .preallocate = 0
2178 };
2179 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2180}
2181
2182#ifdef REISERFS_PREALLOCATE
2183extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2184 struct inode * inode,
2185 b_blocknr_t *new_blocknrs,
2186 struct path * path, long block)
2187{
2188 reiserfs_blocknr_hint_t hint = {
2189 .th = th,
2190 .path = path,
2191 .inode = inode,
2192 .block = block,
2193 .formatted_node = 0,
2194 .preallocate = 1
2195 };
2196 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2197}
2198
2199void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2200 struct inode * inode);
2201void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2202#endif
2203void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2204void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2205int reiserfs_can_fit_pages(struct super_block *sb);
2206
2207/* hashes.c */
2208__u32 keyed_hash (const signed char *msg, int len);
2209__u32 yura_hash (const signed char *msg, int len);
2210__u32 r5_hash (const signed char *msg, int len);
2211
2212/* the ext2 bit routines adjust for big or little endian as
2213** appropriate for the arch, so in our laziness we use them rather
2214** than using the bit routines they call more directly. These
2215** routines must be used when changing on disk bitmaps. */
2216#define reiserfs_test_and_set_le_bit ext2_set_bit
2217#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2218#define reiserfs_test_le_bit ext2_test_bit
2219#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2220
2221/* sometimes reiserfs_truncate may require to allocate few new blocks
2222 to perform indirect2direct conversion. People probably used to
2223 think, that truncate should work without problems on a filesystem
2224 without free disk space. They may complain that they can not
2225 truncate due to lack of free disk space. This spare space allows us
2226 to not worry about it. 500 is probably too much, but it should be
2227 absolutely safe */
2228#define SPARE_SPACE 500
2229
2230
2231/* prototypes from ioctl.c */
2232int reiserfs_ioctl (struct inode * inode, struct file * filp,
2233 unsigned int cmd, unsigned long arg);
2234
2235/* ioctl's command */
2236#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2237/* define following flags to be the same as in ext2, so that chattr(1),
2238 lsattr(1) will work with us. */
2239#define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS
2240#define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS
2241#define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION
2242#define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION
2243
2244/* Locking primitives */
2245/* Right now we are still falling back to (un)lock_kernel, but eventually that
2246 would evolve into real per-fs locks */
2247#define reiserfs_write_lock( sb ) lock_kernel()
2248#define reiserfs_write_unlock( sb ) unlock_kernel()
2249
2250/* xattr stuff */
2251#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2252
2253#endif /* _LINUX_REISER_FS_H */
2254
2255