aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/page-flags.h
diff options
context:
space:
mode:
authorMartin Schwidefsky <schwidefsky@de.ibm.com>2012-11-07 07:17:37 -0500
committerMartin Schwidefsky <schwidefsky@de.ibm.com>2013-02-14 09:55:23 -0500
commitabf09bed3cceadd809f0356065c2ada6cee90d4a (patch)
treeb81cac34a4111f498cdef104a2b9c4c444faf0bd /include/linux/page-flags.h
parent486c0a0bc80d370471b21662bf03f04fbb37cdc6 (diff)
s390/mm: implement software dirty bits
The s390 architecture is unique in respect to dirty page detection, it uses the change bit in the per-page storage key to track page modifications. All other architectures track dirty bits by means of page table entries. This property of s390 has caused numerous problems in the past, e.g. see git commit ef5d437f71afdf4a "mm: fix XFS oops due to dirty pages without buffers on s390". To avoid future issues in regard to per-page dirty bits convert s390 to a fault based software dirty bit detection mechanism. All user page table entries which are marked as clean will be hardware read-only, even if the pte is supposed to be writable. A write by the user process will trigger a protection fault which will cause the user pte to be marked as dirty and the hardware read-only bit is removed. With this change the dirty bit in the storage key is irrelevant for Linux as a host, but the storage key is still required for KVM guests. The effect is that page_test_and_clear_dirty and the related code can be removed. The referenced bit in the storage key is still used by the page_test_and_clear_young primitive to provide page age information. For page cache pages of mappings with mapping_cap_account_dirty there will not be any change in behavior as the dirty bit tracking already uses read-only ptes to control the amount of dirty pages. Only for swap cache pages and pages of mappings without mapping_cap_account_dirty there can be additional protection faults. To avoid an excessive number of additional faults the mk_pte primitive checks for PageDirty if the pgprot value allows for writes and pre-dirties the pte. That avoids all additional faults for tmpfs and shmem pages until these pages are added to the swap cache. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Diffstat (limited to 'include/linux/page-flags.h')
-rw-r--r--include/linux/page-flags.h8
1 files changed, 0 insertions, 8 deletions
diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h
index 70473da47b3f..6d53675c2b54 100644
--- a/include/linux/page-flags.h
+++ b/include/linux/page-flags.h
@@ -303,21 +303,13 @@ static inline void __SetPageUptodate(struct page *page)
303 303
304static inline void SetPageUptodate(struct page *page) 304static inline void SetPageUptodate(struct page *page)
305{ 305{
306#ifdef CONFIG_S390
307 if (!test_and_set_bit(PG_uptodate, &page->flags))
308 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, 0);
309#else
310 /* 306 /*
311 * Memory barrier must be issued before setting the PG_uptodate bit, 307 * Memory barrier must be issued before setting the PG_uptodate bit,
312 * so that all previous stores issued in order to bring the page 308 * so that all previous stores issued in order to bring the page
313 * uptodate are actually visible before PageUptodate becomes true. 309 * uptodate are actually visible before PageUptodate becomes true.
314 *
315 * s390 doesn't need an explicit smp_wmb here because the test and
316 * set bit already provides full barriers.
317 */ 310 */
318 smp_wmb(); 311 smp_wmb();
319 set_bit(PG_uptodate, &(page)->flags); 312 set_bit(PG_uptodate, &(page)->flags);
320#endif
321} 313}
322 314
323CLEARPAGEFLAG(Uptodate, uptodate) 315CLEARPAGEFLAG(Uptodate, uptodate)