aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/llist.h
diff options
context:
space:
mode:
authorHuang Ying <ying.huang@intel.com>2011-07-13 01:14:23 -0400
committerLen Brown <len.brown@intel.com>2011-08-03 11:15:56 -0400
commitf49f23abf3dd786ddcac1c1e7db3c2013b07413f (patch)
tree0726af5e245025b60be8adee0deb8bc665510904 /include/linux/llist.h
parentdf013ffb8119c89f062ab05b7f544704315db47b (diff)
lib, Add lock-less NULL terminated single list
Cmpxchg is used to implement adding new entry to the list, deleting all entries from the list, deleting first entry of the list and some other operations. Because this is a single list, so the tail can not be accessed in O(1). If there are multiple producers and multiple consumers, llist_add can be used in producers and llist_del_all can be used in consumers. They can work simultaneously without lock. But llist_del_first can not be used here. Because llist_del_first depends on list->first->next does not changed if list->first is not changed during its operation, but llist_del_first, llist_add, llist_add (or llist_del_all, llist_add, llist_add) sequence in another consumer may violate that. If there are multiple producers and one consumer, llist_add can be used in producers and llist_del_all or llist_del_first can be used in the consumer. This can be summarized as follow: | add | del_first | del_all add | - | - | - del_first | | L | L del_all | | | - Where "-" stands for no lock is needed, while "L" stands for lock is needed. The list entries deleted via llist_del_all can be traversed with traversing function such as llist_for_each etc. But the list entries can not be traversed safely before deleted from the list. The order of deleted entries is from the newest to the oldest added one. If you want to traverse from the oldest to the newest, you must reverse the order by yourself before traversing. The basic atomic operation of this list is cmpxchg on long. On architectures that don't have NMI-safe cmpxchg implementation, the list can NOT be used in NMI handler. So code uses the list in NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. Signed-off-by: Huang Ying <ying.huang@intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Len Brown <len.brown@intel.com>
Diffstat (limited to 'include/linux/llist.h')
-rw-r--r--include/linux/llist.h126
1 files changed, 126 insertions, 0 deletions
diff --git a/include/linux/llist.h b/include/linux/llist.h
new file mode 100644
index 000000000000..aa0c8b5b3cd0
--- /dev/null
+++ b/include/linux/llist.h
@@ -0,0 +1,126 @@
1#ifndef LLIST_H
2#define LLIST_H
3/*
4 * Lock-less NULL terminated single linked list
5 *
6 * If there are multiple producers and multiple consumers, llist_add
7 * can be used in producers and llist_del_all can be used in
8 * consumers. They can work simultaneously without lock. But
9 * llist_del_first can not be used here. Because llist_del_first
10 * depends on list->first->next does not changed if list->first is not
11 * changed during its operation, but llist_del_first, llist_add,
12 * llist_add (or llist_del_all, llist_add, llist_add) sequence in
13 * another consumer may violate that.
14 *
15 * If there are multiple producers and one consumer, llist_add can be
16 * used in producers and llist_del_all or llist_del_first can be used
17 * in the consumer.
18 *
19 * This can be summarized as follow:
20 *
21 * | add | del_first | del_all
22 * add | - | - | -
23 * del_first | | L | L
24 * del_all | | | -
25 *
26 * Where "-" stands for no lock is needed, while "L" stands for lock
27 * is needed.
28 *
29 * The list entries deleted via llist_del_all can be traversed with
30 * traversing function such as llist_for_each etc. But the list
31 * entries can not be traversed safely before deleted from the list.
32 * The order of deleted entries is from the newest to the oldest added
33 * one. If you want to traverse from the oldest to the newest, you
34 * must reverse the order by yourself before traversing.
35 *
36 * The basic atomic operation of this list is cmpxchg on long. On
37 * architectures that don't have NMI-safe cmpxchg implementation, the
38 * list can NOT be used in NMI handler. So code uses the list in NMI
39 * handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
40 */
41
42struct llist_head {
43 struct llist_node *first;
44};
45
46struct llist_node {
47 struct llist_node *next;
48};
49
50#define LLIST_HEAD_INIT(name) { NULL }
51#define LLIST_HEAD(name) struct llist_head name = LLIST_HEAD_INIT(name)
52
53/**
54 * init_llist_head - initialize lock-less list head
55 * @head: the head for your lock-less list
56 */
57static inline void init_llist_head(struct llist_head *list)
58{
59 list->first = NULL;
60}
61
62/**
63 * llist_entry - get the struct of this entry
64 * @ptr: the &struct llist_node pointer.
65 * @type: the type of the struct this is embedded in.
66 * @member: the name of the llist_node within the struct.
67 */
68#define llist_entry(ptr, type, member) \
69 container_of(ptr, type, member)
70
71/**
72 * llist_for_each - iterate over some deleted entries of a lock-less list
73 * @pos: the &struct llist_node to use as a loop cursor
74 * @node: the first entry of deleted list entries
75 *
76 * In general, some entries of the lock-less list can be traversed
77 * safely only after being deleted from list, so start with an entry
78 * instead of list head.
79 *
80 * If being used on entries deleted from lock-less list directly, the
81 * traverse order is from the newest to the oldest added entry. If
82 * you want to traverse from the oldest to the newest, you must
83 * reverse the order by yourself before traversing.
84 */
85#define llist_for_each(pos, node) \
86 for ((pos) = (node); pos; (pos) = (pos)->next)
87
88/**
89 * llist_for_each_entry - iterate over some deleted entries of lock-less list of given type
90 * @pos: the type * to use as a loop cursor.
91 * @node: the fist entry of deleted list entries.
92 * @member: the name of the llist_node with the struct.
93 *
94 * In general, some entries of the lock-less list can be traversed
95 * safely only after being removed from list, so start with an entry
96 * instead of list head.
97 *
98 * If being used on entries deleted from lock-less list directly, the
99 * traverse order is from the newest to the oldest added entry. If
100 * you want to traverse from the oldest to the newest, you must
101 * reverse the order by yourself before traversing.
102 */
103#define llist_for_each_entry(pos, node, member) \
104 for ((pos) = llist_entry((node), typeof(*(pos)), member); \
105 &(pos)->member != NULL; \
106 (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member))
107
108/**
109 * llist_empty - tests whether a lock-less list is empty
110 * @head: the list to test
111 *
112 * Not guaranteed to be accurate or up to date. Just a quick way to
113 * test whether the list is empty without deleting something from the
114 * list.
115 */
116static inline int llist_empty(const struct llist_head *head)
117{
118 return ACCESS_ONCE(head->first) == NULL;
119}
120
121void llist_add(struct llist_node *new, struct llist_head *head);
122void llist_add_batch(struct llist_node *new_first, struct llist_node *new_last,
123 struct llist_head *head);
124struct llist_node *llist_del_first(struct llist_head *head);
125struct llist_node *llist_del_all(struct llist_head *head);
126#endif /* LLIST_H */