aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/hugetlb.h
diff options
context:
space:
mode:
authorMel Gorman <mel@csn.ul.ie>2008-07-24 00:27:23 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2008-07-24 13:47:16 -0400
commita1e78772d72b2616ed20e54896e68e0e7044854e (patch)
treed752dd96c2a4fcc555779a7aa99f95069c9b95ae /include/linux/hugetlb.h
parentfc1b8a73dd71226902a11928dd5500326e101df9 (diff)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork()
This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/hugetlb.h')
-rw-r--r--include/linux/hugetlb.h9
1 files changed, 8 insertions, 1 deletions
diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h
index a79e80b689d8..185b14c9f021 100644
--- a/include/linux/hugetlb.h
+++ b/include/linux/hugetlb.h
@@ -17,6 +17,7 @@ static inline int is_vm_hugetlb_page(struct vm_area_struct *vma)
17 return vma->vm_flags & VM_HUGETLB; 17 return vma->vm_flags & VM_HUGETLB;
18} 18}
19 19
20void reset_vma_resv_huge_pages(struct vm_area_struct *vma);
20int hugetlb_sysctl_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *); 21int hugetlb_sysctl_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *);
21int hugetlb_overcommit_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *); 22int hugetlb_overcommit_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *);
22int hugetlb_treat_movable_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *); 23int hugetlb_treat_movable_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *);
@@ -30,7 +31,8 @@ int hugetlb_report_node_meminfo(int, char *);
30unsigned long hugetlb_total_pages(void); 31unsigned long hugetlb_total_pages(void);
31int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 32int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
32 unsigned long address, int write_access); 33 unsigned long address, int write_access);
33int hugetlb_reserve_pages(struct inode *inode, long from, long to); 34int hugetlb_reserve_pages(struct inode *inode, long from, long to,
35 struct vm_area_struct *vma);
34void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed); 36void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed);
35 37
36extern unsigned long max_huge_pages; 38extern unsigned long max_huge_pages;
@@ -58,6 +60,11 @@ static inline int is_vm_hugetlb_page(struct vm_area_struct *vma)
58{ 60{
59 return 0; 61 return 0;
60} 62}
63
64static inline void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
65{
66}
67
61static inline unsigned long hugetlb_total_pages(void) 68static inline unsigned long hugetlb_total_pages(void)
62{ 69{
63 return 0; 70 return 0;