aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/debugobjects.h
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2008-04-30 03:55:01 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2008-04-30 11:29:53 -0400
commit3ac7fe5a4aab409bd5674d0b070bce97f9d20872 (patch)
tree5e12e8864bb8737695e4eb9c63970602d5f69e73 /include/linux/debugobjects.h
parent30327acf7846c5eb97c8e31c78317a2918d3e515 (diff)
infrastructure to debug (dynamic) objects
We can see an ever repeating problem pattern with objects of any kind in the kernel: 1) freeing of active objects 2) reinitialization of active objects Both problems can be hard to debug because the crash happens at a point where we have no chance to decode the root cause anymore. One problem spot are kernel timers, where the detection of the problem often happens in interrupt context and usually causes the machine to panic. While working on a timer related bug report I had to hack specialized code into the timer subsystem to get a reasonable hint for the root cause. This debug hack was fine for temporary use, but far from a mergeable solution due to the intrusiveness into the timer code. The code further lacked the ability to detect and report the root cause instantly and keep the system operational. Keeping the system operational is important to get hold of the debug information without special debugging aids like serial consoles and special knowledge of the bug reporter. The problems described above are not restricted to timers, but timers tend to expose it usually in a full system crash. Other objects are less explosive, but the symptoms caused by such mistakes can be even harder to debug. Instead of creating specialized debugging code for the timer subsystem a generic infrastructure is created which allows developers to verify their code and provides an easy to enable debug facility for users in case of trouble. The debugobjects core code keeps track of operations on static and dynamic objects by inserting them into a hashed list and sanity checking them on object operations and provides additional checks whenever kernel memory is freed. The tracked object operations are: - initializing an object - adding an object to a subsystem list - deleting an object from a subsystem list Each operation is sanity checked before the operation is executed and the subsystem specific code can provide a fixup function which allows to prevent the damage of the operation. When the sanity check triggers a warning message and a stack trace is printed. The list of operations can be extended if the need arises. For now it's limited to the requirements of the first user (timers). The core code enqueues the objects into hash buckets. The hash index is generated from the address of the object to simplify the lookup for the check on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a global lock. The debug code can be compiled in without being active. The runtime overhead is minimal and could be optimized by asm alternatives. A kernel command line option enables the debugging code. Thanks to Ingo Molnar for review, suggestions and cleanup patches. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Greg KH <greg@kroah.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/debugobjects.h')
-rw-r--r--include/linux/debugobjects.h90
1 files changed, 90 insertions, 0 deletions
diff --git a/include/linux/debugobjects.h b/include/linux/debugobjects.h
new file mode 100644
index 000000000000..8c243aaa86a7
--- /dev/null
+++ b/include/linux/debugobjects.h
@@ -0,0 +1,90 @@
1#ifndef _LINUX_DEBUGOBJECTS_H
2#define _LINUX_DEBUGOBJECTS_H
3
4#include <linux/list.h>
5#include <linux/spinlock.h>
6
7enum debug_obj_state {
8 ODEBUG_STATE_NONE,
9 ODEBUG_STATE_INIT,
10 ODEBUG_STATE_INACTIVE,
11 ODEBUG_STATE_ACTIVE,
12 ODEBUG_STATE_DESTROYED,
13 ODEBUG_STATE_NOTAVAILABLE,
14 ODEBUG_STATE_MAX,
15};
16
17struct debug_obj_descr;
18
19/**
20 * struct debug_obj - representaion of an tracked object
21 * @node: hlist node to link the object into the tracker list
22 * @state: tracked object state
23 * @object: pointer to the real object
24 * @descr: pointer to an object type specific debug description structure
25 */
26struct debug_obj {
27 struct hlist_node node;
28 enum debug_obj_state state;
29 void *object;
30 struct debug_obj_descr *descr;
31};
32
33/**
34 * struct debug_obj_descr - object type specific debug description structure
35 * @name: name of the object typee
36 * @fixup_init: fixup function, which is called when the init check
37 * fails
38 * @fixup_activate: fixup function, which is called when the activate check
39 * fails
40 * @fixup_destroy: fixup function, which is called when the destroy check
41 * fails
42 * @fixup_free: fixup function, which is called when the free check
43 * fails
44 */
45struct debug_obj_descr {
46 const char *name;
47
48 int (*fixup_init) (void *addr, enum debug_obj_state state);
49 int (*fixup_activate) (void *addr, enum debug_obj_state state);
50 int (*fixup_destroy) (void *addr, enum debug_obj_state state);
51 int (*fixup_free) (void *addr, enum debug_obj_state state);
52};
53
54#ifdef CONFIG_DEBUG_OBJECTS
55extern void debug_object_init (void *addr, struct debug_obj_descr *descr);
56extern void
57debug_object_init_on_stack(void *addr, struct debug_obj_descr *descr);
58extern void debug_object_activate (void *addr, struct debug_obj_descr *descr);
59extern void debug_object_deactivate(void *addr, struct debug_obj_descr *descr);
60extern void debug_object_destroy (void *addr, struct debug_obj_descr *descr);
61extern void debug_object_free (void *addr, struct debug_obj_descr *descr);
62
63extern void debug_objects_early_init(void);
64extern void debug_objects_mem_init(void);
65#else
66static inline void
67debug_object_init (void *addr, struct debug_obj_descr *descr) { }
68static inline void
69debug_object_init_on_stack(void *addr, struct debug_obj_descr *descr) { }
70static inline void
71debug_object_activate (void *addr, struct debug_obj_descr *descr) { }
72static inline void
73debug_object_deactivate(void *addr, struct debug_obj_descr *descr) { }
74static inline void
75debug_object_destroy (void *addr, struct debug_obj_descr *descr) { }
76static inline void
77debug_object_free (void *addr, struct debug_obj_descr *descr) { }
78
79static inline void debug_objects_early_init(void) { }
80static inline void debug_objects_mem_init(void) { }
81#endif
82
83#ifdef CONFIG_DEBUG_OBJECTS_FREE
84extern void debug_check_no_obj_freed(const void *address, unsigned long size);
85#else
86static inline void
87debug_check_no_obj_freed(const void *address, unsigned long size) { }
88#endif
89
90#endif