diff options
author | Chris Zankel <czankel@tensilica.com> | 2005-06-24 01:01:26 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-06-24 03:05:22 -0400 |
commit | 9a8fd5589902153a134111ed7a40f9cca1f83254 (patch) | |
tree | 6f7a06de25bdf0b2d94623794c2cbbc66b5a77f6 /include/asm-xtensa/uaccess.h | |
parent | 3f65ce4d141e435e54c20ed2379d983d362a2cb5 (diff) |
[PATCH] xtensa: Architecture support for Tensilica Xtensa Part 6
The attached patches provides part 6 of an architecture implementation for the
Tensilica Xtensa CPU series.
Signed-off-by: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/asm-xtensa/uaccess.h')
-rw-r--r-- | include/asm-xtensa/uaccess.h | 532 |
1 files changed, 532 insertions, 0 deletions
diff --git a/include/asm-xtensa/uaccess.h b/include/asm-xtensa/uaccess.h new file mode 100644 index 000000000000..35576b25c7b2 --- /dev/null +++ b/include/asm-xtensa/uaccess.h | |||
@@ -0,0 +1,532 @@ | |||
1 | /* | ||
2 | * include/asm-xtensa/uaccess.h | ||
3 | * | ||
4 | * User space memory access functions | ||
5 | * | ||
6 | * These routines provide basic accessing functions to the user memory | ||
7 | * space for the kernel. This header file provides fuctions such as: | ||
8 | * | ||
9 | * This file is subject to the terms and conditions of the GNU General Public | ||
10 | * License. See the file "COPYING" in the main directory of this archive | ||
11 | * for more details. | ||
12 | * | ||
13 | * Copyright (C) 2001 - 2005 Tensilica Inc. | ||
14 | */ | ||
15 | |||
16 | #ifndef _XTENSA_UACCESS_H | ||
17 | #define _XTENSA_UACCESS_H | ||
18 | |||
19 | #include <linux/errno.h> | ||
20 | |||
21 | #define VERIFY_READ 0 | ||
22 | #define VERIFY_WRITE 1 | ||
23 | |||
24 | #ifdef __ASSEMBLY__ | ||
25 | |||
26 | #define _ASMLANGUAGE | ||
27 | #include <asm/current.h> | ||
28 | #include <asm/offsets.h> | ||
29 | #include <asm/processor.h> | ||
30 | |||
31 | /* | ||
32 | * These assembly macros mirror the C macros that follow below. They | ||
33 | * should always have identical functionality. See | ||
34 | * arch/xtensa/kernel/sys.S for usage. | ||
35 | */ | ||
36 | |||
37 | #define KERNEL_DS 0 | ||
38 | #define USER_DS 1 | ||
39 | |||
40 | #define get_ds (KERNEL_DS) | ||
41 | |||
42 | /* | ||
43 | * get_fs reads current->thread.current_ds into a register. | ||
44 | * On Entry: | ||
45 | * <ad> anything | ||
46 | * <sp> stack | ||
47 | * On Exit: | ||
48 | * <ad> contains current->thread.current_ds | ||
49 | */ | ||
50 | .macro get_fs ad, sp | ||
51 | GET_CURRENT(\ad,\sp) | ||
52 | l32i \ad, \ad, THREAD_CURRENT_DS | ||
53 | .endm | ||
54 | |||
55 | /* | ||
56 | * set_fs sets current->thread.current_ds to some value. | ||
57 | * On Entry: | ||
58 | * <at> anything (temp register) | ||
59 | * <av> value to write | ||
60 | * <sp> stack | ||
61 | * On Exit: | ||
62 | * <at> destroyed (actually, current) | ||
63 | * <av> preserved, value to write | ||
64 | */ | ||
65 | .macro set_fs at, av, sp | ||
66 | GET_CURRENT(\at,\sp) | ||
67 | s32i \av, \at, THREAD_CURRENT_DS | ||
68 | .endm | ||
69 | |||
70 | /* | ||
71 | * kernel_ok determines whether we should bypass addr/size checking. | ||
72 | * See the equivalent C-macro version below for clarity. | ||
73 | * On success, kernel_ok branches to a label indicated by parameter | ||
74 | * <success>. This implies that the macro falls through to the next | ||
75 | * insruction on an error. | ||
76 | * | ||
77 | * Note that while this macro can be used independently, we designed | ||
78 | * in for optimal use in the access_ok macro below (i.e., we fall | ||
79 | * through on error). | ||
80 | * | ||
81 | * On Entry: | ||
82 | * <at> anything (temp register) | ||
83 | * <success> label to branch to on success; implies | ||
84 | * fall-through macro on error | ||
85 | * <sp> stack pointer | ||
86 | * On Exit: | ||
87 | * <at> destroyed (actually, current->thread.current_ds) | ||
88 | */ | ||
89 | |||
90 | #if ((KERNEL_DS != 0) || (USER_DS == 0)) | ||
91 | # error Assembly macro kernel_ok fails | ||
92 | #endif | ||
93 | .macro kernel_ok at, sp, success | ||
94 | get_fs \at, \sp | ||
95 | beqz \at, \success | ||
96 | .endm | ||
97 | |||
98 | /* | ||
99 | * user_ok determines whether the access to user-space memory is allowed. | ||
100 | * See the equivalent C-macro version below for clarity. | ||
101 | * | ||
102 | * On error, user_ok branches to a label indicated by parameter | ||
103 | * <error>. This implies that the macro falls through to the next | ||
104 | * instruction on success. | ||
105 | * | ||
106 | * Note that while this macro can be used independently, we designed | ||
107 | * in for optimal use in the access_ok macro below (i.e., we fall | ||
108 | * through on success). | ||
109 | * | ||
110 | * On Entry: | ||
111 | * <aa> register containing memory address | ||
112 | * <as> register containing memory size | ||
113 | * <at> temp register | ||
114 | * <error> label to branch to on error; implies fall-through | ||
115 | * macro on success | ||
116 | * On Exit: | ||
117 | * <aa> preserved | ||
118 | * <as> preserved | ||
119 | * <at> destroyed (actually, (TASK_SIZE + 1 - size)) | ||
120 | */ | ||
121 | .macro user_ok aa, as, at, error | ||
122 | movi \at, (TASK_SIZE+1) | ||
123 | bgeu \as, \at, \error | ||
124 | sub \at, \at, \as | ||
125 | bgeu \aa, \at, \error | ||
126 | .endm | ||
127 | |||
128 | /* | ||
129 | * access_ok determines whether a memory access is allowed. See the | ||
130 | * equivalent C-macro version below for clarity. | ||
131 | * | ||
132 | * On error, access_ok branches to a label indicated by parameter | ||
133 | * <error>. This implies that the macro falls through to the next | ||
134 | * instruction on success. | ||
135 | * | ||
136 | * Note that we assume success is the common case, and we optimize the | ||
137 | * branch fall-through case on success. | ||
138 | * | ||
139 | * On Entry: | ||
140 | * <aa> register containing memory address | ||
141 | * <as> register containing memory size | ||
142 | * <at> temp register | ||
143 | * <sp> | ||
144 | * <error> label to branch to on error; implies fall-through | ||
145 | * macro on success | ||
146 | * On Exit: | ||
147 | * <aa> preserved | ||
148 | * <as> preserved | ||
149 | * <at> destroyed | ||
150 | */ | ||
151 | .macro access_ok aa, as, at, sp, error | ||
152 | kernel_ok \at, \sp, .Laccess_ok_\@ | ||
153 | user_ok \aa, \as, \at, \error | ||
154 | .Laccess_ok_\@: | ||
155 | .endm | ||
156 | |||
157 | /* | ||
158 | * verify_area determines whether a memory access is allowed. It's | ||
159 | * mostly an unnecessary wrapper for access_ok, but we provide it as a | ||
160 | * duplicate of the verify_area() C inline function below. See the | ||
161 | * equivalent C version below for clarity. | ||
162 | * | ||
163 | * On error, verify_area branches to a label indicated by parameter | ||
164 | * <error>. This implies that the macro falls through to the next | ||
165 | * instruction on success. | ||
166 | * | ||
167 | * Note that we assume success is the common case, and we optimize the | ||
168 | * branch fall-through case on success. | ||
169 | * | ||
170 | * On Entry: | ||
171 | * <aa> register containing memory address | ||
172 | * <as> register containing memory size | ||
173 | * <at> temp register | ||
174 | * <error> label to branch to on error; implies fall-through | ||
175 | * macro on success | ||
176 | * On Exit: | ||
177 | * <aa> preserved | ||
178 | * <as> preserved | ||
179 | * <at> destroyed | ||
180 | */ | ||
181 | .macro verify_area aa, as, at, sp, error | ||
182 | access_ok \at, \aa, \as, \sp, \error | ||
183 | .endm | ||
184 | |||
185 | |||
186 | #else /* __ASSEMBLY__ not defined */ | ||
187 | |||
188 | #include <linux/sched.h> | ||
189 | #include <asm/types.h> | ||
190 | |||
191 | /* | ||
192 | * The fs value determines whether argument validity checking should | ||
193 | * be performed or not. If get_fs() == USER_DS, checking is | ||
194 | * performed, with get_fs() == KERNEL_DS, checking is bypassed. | ||
195 | * | ||
196 | * For historical reasons (Data Segment Register?), these macros are | ||
197 | * grossly misnamed. | ||
198 | */ | ||
199 | |||
200 | #define KERNEL_DS ((mm_segment_t) { 0 }) | ||
201 | #define USER_DS ((mm_segment_t) { 1 }) | ||
202 | |||
203 | #define get_ds() (KERNEL_DS) | ||
204 | #define get_fs() (current->thread.current_ds) | ||
205 | #define set_fs(val) (current->thread.current_ds = (val)) | ||
206 | |||
207 | #define segment_eq(a,b) ((a).seg == (b).seg) | ||
208 | |||
209 | #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) | ||
210 | #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size))) | ||
211 | #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size))) | ||
212 | #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size)) | ||
213 | |||
214 | extern inline int verify_area(int type, const void * addr, unsigned long size) | ||
215 | { | ||
216 | return access_ok(type,addr,size) ? 0 : -EFAULT; | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * These are the main single-value transfer routines. They | ||
221 | * automatically use the right size if we just have the right pointer | ||
222 | * type. | ||
223 | * | ||
224 | * This gets kind of ugly. We want to return _two_ values in | ||
225 | * "get_user()" and yet we don't want to do any pointers, because that | ||
226 | * is too much of a performance impact. Thus we have a few rather ugly | ||
227 | * macros here, and hide all the uglyness from the user. | ||
228 | * | ||
229 | * Careful to not | ||
230 | * (a) re-use the arguments for side effects (sizeof is ok) | ||
231 | * (b) require any knowledge of processes at this stage | ||
232 | */ | ||
233 | #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr))) | ||
234 | #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr))) | ||
235 | |||
236 | /* | ||
237 | * The "__xxx" versions of the user access functions are versions that | ||
238 | * do not verify the address space, that must have been done previously | ||
239 | * with a separate "access_ok()" call (this is used when we do multiple | ||
240 | * accesses to the same area of user memory). | ||
241 | */ | ||
242 | #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr))) | ||
243 | #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr))) | ||
244 | |||
245 | |||
246 | extern long __put_user_bad(void); | ||
247 | |||
248 | #define __put_user_nocheck(x,ptr,size) \ | ||
249 | ({ \ | ||
250 | long __pu_err; \ | ||
251 | __put_user_size((x),(ptr),(size),__pu_err); \ | ||
252 | __pu_err; \ | ||
253 | }) | ||
254 | |||
255 | #define __put_user_check(x,ptr,size) \ | ||
256 | ({ \ | ||
257 | long __pu_err = -EFAULT; \ | ||
258 | __typeof__(*(ptr)) *__pu_addr = (ptr); \ | ||
259 | if (access_ok(VERIFY_WRITE,__pu_addr,size)) \ | ||
260 | __put_user_size((x),__pu_addr,(size),__pu_err); \ | ||
261 | __pu_err; \ | ||
262 | }) | ||
263 | |||
264 | #define __put_user_size(x,ptr,size,retval) \ | ||
265 | do { \ | ||
266 | retval = 0; \ | ||
267 | switch (size) { \ | ||
268 | case 1: __put_user_asm(x,ptr,retval,1,"s8i"); break; \ | ||
269 | case 2: __put_user_asm(x,ptr,retval,2,"s16i"); break; \ | ||
270 | case 4: __put_user_asm(x,ptr,retval,4,"s32i"); break; \ | ||
271 | case 8: { \ | ||
272 | __typeof__(*ptr) __v64 = x; \ | ||
273 | retval = __copy_to_user(ptr,&__v64,8); \ | ||
274 | break; \ | ||
275 | } \ | ||
276 | default: __put_user_bad(); \ | ||
277 | } \ | ||
278 | } while (0) | ||
279 | |||
280 | |||
281 | /* | ||
282 | * Consider a case of a user single load/store would cause both an | ||
283 | * unaligned exception and an MMU-related exception (unaligned | ||
284 | * exceptions happen first): | ||
285 | * | ||
286 | * User code passes a bad variable ptr to a system call. | ||
287 | * Kernel tries to access the variable. | ||
288 | * Unaligned exception occurs. | ||
289 | * Unaligned exception handler tries to make aligned accesses. | ||
290 | * Double exception occurs for MMU-related cause (e.g., page not mapped). | ||
291 | * do_page_fault() thinks the fault address belongs to the kernel, not the | ||
292 | * user, and panics. | ||
293 | * | ||
294 | * The kernel currently prohibits user unaligned accesses. We use the | ||
295 | * __check_align_* macros to check for unaligned addresses before | ||
296 | * accessing user space so we don't crash the kernel. Both | ||
297 | * __put_user_asm and __get_user_asm use these alignment macros, so | ||
298 | * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in | ||
299 | * sync. | ||
300 | */ | ||
301 | |||
302 | #define __check_align_1 "" | ||
303 | |||
304 | #define __check_align_2 \ | ||
305 | " _bbci.l %2, 0, 1f \n" \ | ||
306 | " movi %0, %3 \n" \ | ||
307 | " _j 2f \n" | ||
308 | |||
309 | #define __check_align_4 \ | ||
310 | " _bbsi.l %2, 0, 0f \n" \ | ||
311 | " _bbci.l %2, 1, 1f \n" \ | ||
312 | "0: movi %0, %3 \n" \ | ||
313 | " _j 2f \n" | ||
314 | |||
315 | |||
316 | /* | ||
317 | * We don't tell gcc that we are accessing memory, but this is OK | ||
318 | * because we do not write to any memory gcc knows about, so there | ||
319 | * are no aliasing issues. | ||
320 | * | ||
321 | * WARNING: If you modify this macro at all, verify that the | ||
322 | * __check_align_* macros still work. | ||
323 | */ | ||
324 | #define __put_user_asm(x, addr, err, align, insn) \ | ||
325 | __asm__ __volatile__( \ | ||
326 | __check_align_##align \ | ||
327 | "1: "insn" %1, %2, 0 \n" \ | ||
328 | "2: \n" \ | ||
329 | " .section .fixup,\"ax\" \n" \ | ||
330 | " .align 4 \n" \ | ||
331 | "4: \n" \ | ||
332 | " .long 2b \n" \ | ||
333 | "5: \n" \ | ||
334 | " l32r %2, 4b \n" \ | ||
335 | " movi %0, %3 \n" \ | ||
336 | " jx %2 \n" \ | ||
337 | " .previous \n" \ | ||
338 | " .section __ex_table,\"a\" \n" \ | ||
339 | " .long 1b, 5b \n" \ | ||
340 | " .previous" \ | ||
341 | :"=r" (err) \ | ||
342 | :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err)) | ||
343 | |||
344 | #define __get_user_nocheck(x,ptr,size) \ | ||
345 | ({ \ | ||
346 | long __gu_err, __gu_val; \ | ||
347 | __get_user_size(__gu_val,(ptr),(size),__gu_err); \ | ||
348 | (x) = (__typeof__(*(ptr)))__gu_val; \ | ||
349 | __gu_err; \ | ||
350 | }) | ||
351 | |||
352 | #define __get_user_check(x,ptr,size) \ | ||
353 | ({ \ | ||
354 | long __gu_err = -EFAULT, __gu_val = 0; \ | ||
355 | const __typeof__(*(ptr)) *__gu_addr = (ptr); \ | ||
356 | if (access_ok(VERIFY_READ,__gu_addr,size)) \ | ||
357 | __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \ | ||
358 | (x) = (__typeof__(*(ptr)))__gu_val; \ | ||
359 | __gu_err; \ | ||
360 | }) | ||
361 | |||
362 | extern long __get_user_bad(void); | ||
363 | |||
364 | #define __get_user_size(x,ptr,size,retval) \ | ||
365 | do { \ | ||
366 | retval = 0; \ | ||
367 | switch (size) { \ | ||
368 | case 1: __get_user_asm(x,ptr,retval,1,"l8ui"); break; \ | ||
369 | case 2: __get_user_asm(x,ptr,retval,2,"l16ui"); break; \ | ||
370 | case 4: __get_user_asm(x,ptr,retval,4,"l32i"); break; \ | ||
371 | case 8: retval = __copy_from_user(&x,ptr,8); break; \ | ||
372 | default: (x) = __get_user_bad(); \ | ||
373 | } \ | ||
374 | } while (0) | ||
375 | |||
376 | |||
377 | /* | ||
378 | * WARNING: If you modify this macro at all, verify that the | ||
379 | * __check_align_* macros still work. | ||
380 | */ | ||
381 | #define __get_user_asm(x, addr, err, align, insn) \ | ||
382 | __asm__ __volatile__( \ | ||
383 | __check_align_##align \ | ||
384 | "1: "insn" %1, %2, 0 \n" \ | ||
385 | "2: \n" \ | ||
386 | " .section .fixup,\"ax\" \n" \ | ||
387 | " .align 4 \n" \ | ||
388 | "4: \n" \ | ||
389 | " .long 2b \n" \ | ||
390 | "5: \n" \ | ||
391 | " l32r %2, 4b \n" \ | ||
392 | " movi %1, 0 \n" \ | ||
393 | " movi %0, %3 \n" \ | ||
394 | " jx %2 \n" \ | ||
395 | " .previous \n" \ | ||
396 | " .section __ex_table,\"a\" \n" \ | ||
397 | " .long 1b, 5b \n" \ | ||
398 | " .previous" \ | ||
399 | :"=r" (err), "=r" (x) \ | ||
400 | :"r" (addr), "i" (-EFAULT), "0" (err)) | ||
401 | |||
402 | |||
403 | /* | ||
404 | * Copy to/from user space | ||
405 | */ | ||
406 | |||
407 | /* | ||
408 | * We use a generic, arbitrary-sized copy subroutine. The Xtensa | ||
409 | * architecture would cause heavy code bloat if we tried to inline | ||
410 | * these functions and provide __constant_copy_* equivalents like the | ||
411 | * i386 versions. __xtensa_copy_user is quite efficient. See the | ||
412 | * .fixup section of __xtensa_copy_user for a discussion on the | ||
413 | * X_zeroing equivalents for Xtensa. | ||
414 | */ | ||
415 | |||
416 | extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n); | ||
417 | #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size) | ||
418 | |||
419 | |||
420 | static inline unsigned long | ||
421 | __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n) | ||
422 | { | ||
423 | return __copy_user(to,from,n); | ||
424 | } | ||
425 | |||
426 | static inline unsigned long | ||
427 | __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n) | ||
428 | { | ||
429 | return __copy_user(to,from,n); | ||
430 | } | ||
431 | |||
432 | static inline unsigned long | ||
433 | __generic_copy_to_user(void *to, const void *from, unsigned long n) | ||
434 | { | ||
435 | prefetch(from); | ||
436 | if (access_ok(VERIFY_WRITE, to, n)) | ||
437 | return __copy_user(to,from,n); | ||
438 | return n; | ||
439 | } | ||
440 | |||
441 | static inline unsigned long | ||
442 | __generic_copy_from_user(void *to, const void *from, unsigned long n) | ||
443 | { | ||
444 | prefetchw(to); | ||
445 | if (access_ok(VERIFY_READ, from, n)) | ||
446 | return __copy_user(to,from,n); | ||
447 | else | ||
448 | memset(to, 0, n); | ||
449 | return n; | ||
450 | } | ||
451 | |||
452 | #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n)) | ||
453 | #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n)) | ||
454 | #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n)) | ||
455 | #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n)) | ||
456 | #define __copy_to_user_inatomic __copy_to_user | ||
457 | #define __copy_from_user_inatomic __copy_from_user | ||
458 | |||
459 | |||
460 | /* | ||
461 | * We need to return the number of bytes not cleared. Our memset() | ||
462 | * returns zero if a problem occurs while accessing user-space memory. | ||
463 | * In that event, return no memory cleared. Otherwise, zero for | ||
464 | * success. | ||
465 | */ | ||
466 | |||
467 | extern inline unsigned long | ||
468 | __xtensa_clear_user(void *addr, unsigned long size) | ||
469 | { | ||
470 | if ( ! memset(addr, 0, size) ) | ||
471 | return size; | ||
472 | return 0; | ||
473 | } | ||
474 | |||
475 | extern inline unsigned long | ||
476 | clear_user(void *addr, unsigned long size) | ||
477 | { | ||
478 | if (access_ok(VERIFY_WRITE, addr, size)) | ||
479 | return __xtensa_clear_user(addr, size); | ||
480 | return size ? -EFAULT : 0; | ||
481 | } | ||
482 | |||
483 | #define __clear_user __xtensa_clear_user | ||
484 | |||
485 | |||
486 | extern long __strncpy_user(char *, const char *, long); | ||
487 | #define __strncpy_from_user __strncpy_user | ||
488 | |||
489 | extern inline long | ||
490 | strncpy_from_user(char *dst, const char *src, long count) | ||
491 | { | ||
492 | if (access_ok(VERIFY_READ, src, 1)) | ||
493 | return __strncpy_from_user(dst, src, count); | ||
494 | return -EFAULT; | ||
495 | } | ||
496 | |||
497 | |||
498 | #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1) | ||
499 | |||
500 | /* | ||
501 | * Return the size of a string (including the ending 0!) | ||
502 | */ | ||
503 | extern long __strnlen_user(const char *, long); | ||
504 | |||
505 | extern inline long strnlen_user(const char *str, long len) | ||
506 | { | ||
507 | unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1; | ||
508 | |||
509 | if ((unsigned long)str > top) | ||
510 | return 0; | ||
511 | return __strnlen_user(str, len); | ||
512 | } | ||
513 | |||
514 | |||
515 | struct exception_table_entry | ||
516 | { | ||
517 | unsigned long insn, fixup; | ||
518 | }; | ||
519 | |||
520 | /* Returns 0 if exception not found and fixup.unit otherwise. */ | ||
521 | |||
522 | extern unsigned long search_exception_table(unsigned long addr); | ||
523 | extern void sort_exception_table(void); | ||
524 | |||
525 | /* Returns the new pc */ | ||
526 | #define fixup_exception(map_reg, fixup_unit, pc) \ | ||
527 | ({ \ | ||
528 | fixup_unit; \ | ||
529 | }) | ||
530 | |||
531 | #endif /* __ASSEMBLY__ */ | ||
532 | #endif /* _XTENSA_UACCESS_H */ | ||